]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/x86/kernel/cpu/resctrl/monitor.c
x86/resctrl: Prevent NULL pointer dereference when local MBM is disabled
[thirdparty/kernel/stable.git] / arch / x86 / kernel / cpu / resctrl / monitor.c
1 /*
2 * Resource Director Technology(RDT)
3 * - Monitoring code
4 *
5 * Copyright (C) 2017 Intel Corporation
6 *
7 * Author:
8 * Vikas Shivappa <vikas.shivappa@intel.com>
9 *
10 * This replaces the cqm.c based on perf but we reuse a lot of
11 * code and datastructures originally from Peter Zijlstra and Matt Fleming.
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms and conditions of the GNU General Public License,
15 * version 2, as published by the Free Software Foundation.
16 *
17 * This program is distributed in the hope it will be useful, but WITHOUT
18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 * more details.
21 *
22 * More information about RDT be found in the Intel (R) x86 Architecture
23 * Software Developer Manual June 2016, volume 3, section 17.17.
24 */
25
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <asm/cpu_device_id.h>
29 #include "internal.h"
30
31 struct rmid_entry {
32 u32 rmid;
33 int busy;
34 struct list_head list;
35 };
36
37 /**
38 * @rmid_free_lru A least recently used list of free RMIDs
39 * These RMIDs are guaranteed to have an occupancy less than the
40 * threshold occupancy
41 */
42 static LIST_HEAD(rmid_free_lru);
43
44 /**
45 * @rmid_limbo_count count of currently unused but (potentially)
46 * dirty RMIDs.
47 * This counts RMIDs that no one is currently using but that
48 * may have a occupancy value > intel_cqm_threshold. User can change
49 * the threshold occupancy value.
50 */
51 static unsigned int rmid_limbo_count;
52
53 /**
54 * @rmid_entry - The entry in the limbo and free lists.
55 */
56 static struct rmid_entry *rmid_ptrs;
57
58 /*
59 * Global boolean for rdt_monitor which is true if any
60 * resource monitoring is enabled.
61 */
62 bool rdt_mon_capable;
63
64 /*
65 * Global to indicate which monitoring events are enabled.
66 */
67 unsigned int rdt_mon_features;
68
69 /*
70 * This is the threshold cache occupancy at which we will consider an
71 * RMID available for re-allocation.
72 */
73 unsigned int resctrl_cqm_threshold;
74
75 static inline struct rmid_entry *__rmid_entry(u32 rmid)
76 {
77 struct rmid_entry *entry;
78
79 entry = &rmid_ptrs[rmid];
80 WARN_ON(entry->rmid != rmid);
81
82 return entry;
83 }
84
85 static u64 __rmid_read(u32 rmid, u32 eventid)
86 {
87 u64 val;
88
89 /*
90 * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured
91 * with a valid event code for supported resource type and the bits
92 * IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID,
93 * IA32_QM_CTR.data (bits 61:0) reports the monitored data.
94 * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62)
95 * are error bits.
96 */
97 wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid);
98 rdmsrl(MSR_IA32_QM_CTR, val);
99
100 return val;
101 }
102
103 static bool rmid_dirty(struct rmid_entry *entry)
104 {
105 u64 val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
106
107 return val >= resctrl_cqm_threshold;
108 }
109
110 /*
111 * Check the RMIDs that are marked as busy for this domain. If the
112 * reported LLC occupancy is below the threshold clear the busy bit and
113 * decrement the count. If the busy count gets to zero on an RMID, we
114 * free the RMID
115 */
116 void __check_limbo(struct rdt_domain *d, bool force_free)
117 {
118 struct rmid_entry *entry;
119 struct rdt_resource *r;
120 u32 crmid = 1, nrmid;
121
122 r = &rdt_resources_all[RDT_RESOURCE_L3];
123
124 /*
125 * Skip RMID 0 and start from RMID 1 and check all the RMIDs that
126 * are marked as busy for occupancy < threshold. If the occupancy
127 * is less than the threshold decrement the busy counter of the
128 * RMID and move it to the free list when the counter reaches 0.
129 */
130 for (;;) {
131 nrmid = find_next_bit(d->rmid_busy_llc, r->num_rmid, crmid);
132 if (nrmid >= r->num_rmid)
133 break;
134
135 entry = __rmid_entry(nrmid);
136 if (force_free || !rmid_dirty(entry)) {
137 clear_bit(entry->rmid, d->rmid_busy_llc);
138 if (!--entry->busy) {
139 rmid_limbo_count--;
140 list_add_tail(&entry->list, &rmid_free_lru);
141 }
142 }
143 crmid = nrmid + 1;
144 }
145 }
146
147 bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d)
148 {
149 return find_first_bit(d->rmid_busy_llc, r->num_rmid) != r->num_rmid;
150 }
151
152 /*
153 * As of now the RMIDs allocation is global.
154 * However we keep track of which packages the RMIDs
155 * are used to optimize the limbo list management.
156 */
157 int alloc_rmid(void)
158 {
159 struct rmid_entry *entry;
160
161 lockdep_assert_held(&rdtgroup_mutex);
162
163 if (list_empty(&rmid_free_lru))
164 return rmid_limbo_count ? -EBUSY : -ENOSPC;
165
166 entry = list_first_entry(&rmid_free_lru,
167 struct rmid_entry, list);
168 list_del(&entry->list);
169
170 return entry->rmid;
171 }
172
173 static void add_rmid_to_limbo(struct rmid_entry *entry)
174 {
175 struct rdt_resource *r;
176 struct rdt_domain *d;
177 int cpu;
178 u64 val;
179
180 r = &rdt_resources_all[RDT_RESOURCE_L3];
181
182 entry->busy = 0;
183 cpu = get_cpu();
184 list_for_each_entry(d, &r->domains, list) {
185 if (cpumask_test_cpu(cpu, &d->cpu_mask)) {
186 val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
187 if (val <= resctrl_cqm_threshold)
188 continue;
189 }
190
191 /*
192 * For the first limbo RMID in the domain,
193 * setup up the limbo worker.
194 */
195 if (!has_busy_rmid(r, d))
196 cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL);
197 set_bit(entry->rmid, d->rmid_busy_llc);
198 entry->busy++;
199 }
200 put_cpu();
201
202 if (entry->busy)
203 rmid_limbo_count++;
204 else
205 list_add_tail(&entry->list, &rmid_free_lru);
206 }
207
208 void free_rmid(u32 rmid)
209 {
210 struct rmid_entry *entry;
211
212 if (!rmid)
213 return;
214
215 lockdep_assert_held(&rdtgroup_mutex);
216
217 entry = __rmid_entry(rmid);
218
219 if (is_llc_occupancy_enabled())
220 add_rmid_to_limbo(entry);
221 else
222 list_add_tail(&entry->list, &rmid_free_lru);
223 }
224
225 static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr)
226 {
227 u64 shift = 64 - MBM_CNTR_WIDTH, chunks;
228
229 chunks = (cur_msr << shift) - (prev_msr << shift);
230 return chunks >>= shift;
231 }
232
233 static int __mon_event_count(u32 rmid, struct rmid_read *rr)
234 {
235 struct mbm_state *m;
236 u64 chunks, tval;
237
238 tval = __rmid_read(rmid, rr->evtid);
239 if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL)) {
240 rr->val = tval;
241 return -EINVAL;
242 }
243 switch (rr->evtid) {
244 case QOS_L3_OCCUP_EVENT_ID:
245 rr->val += tval;
246 return 0;
247 case QOS_L3_MBM_TOTAL_EVENT_ID:
248 m = &rr->d->mbm_total[rmid];
249 break;
250 case QOS_L3_MBM_LOCAL_EVENT_ID:
251 m = &rr->d->mbm_local[rmid];
252 break;
253 default:
254 /*
255 * Code would never reach here because
256 * an invalid event id would fail the __rmid_read.
257 */
258 return -EINVAL;
259 }
260
261 if (rr->first) {
262 memset(m, 0, sizeof(struct mbm_state));
263 m->prev_bw_msr = m->prev_msr = tval;
264 return 0;
265 }
266
267 chunks = mbm_overflow_count(m->prev_msr, tval);
268 m->chunks += chunks;
269 m->prev_msr = tval;
270
271 rr->val += m->chunks;
272 return 0;
273 }
274
275 /*
276 * Supporting function to calculate the memory bandwidth
277 * and delta bandwidth in MBps.
278 */
279 static void mbm_bw_count(u32 rmid, struct rmid_read *rr)
280 {
281 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3];
282 struct mbm_state *m = &rr->d->mbm_local[rmid];
283 u64 tval, cur_bw, chunks;
284
285 tval = __rmid_read(rmid, rr->evtid);
286 if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
287 return;
288
289 chunks = mbm_overflow_count(m->prev_bw_msr, tval);
290 m->chunks_bw += chunks;
291 m->chunks = m->chunks_bw;
292 cur_bw = (chunks * r->mon_scale) >> 20;
293
294 if (m->delta_comp)
295 m->delta_bw = abs(cur_bw - m->prev_bw);
296 m->delta_comp = false;
297 m->prev_bw = cur_bw;
298 m->prev_bw_msr = tval;
299 }
300
301 /*
302 * This is called via IPI to read the CQM/MBM counters
303 * on a domain.
304 */
305 void mon_event_count(void *info)
306 {
307 struct rdtgroup *rdtgrp, *entry;
308 struct rmid_read *rr = info;
309 struct list_head *head;
310
311 rdtgrp = rr->rgrp;
312
313 if (__mon_event_count(rdtgrp->mon.rmid, rr))
314 return;
315
316 /*
317 * For Ctrl groups read data from child monitor groups.
318 */
319 head = &rdtgrp->mon.crdtgrp_list;
320
321 if (rdtgrp->type == RDTCTRL_GROUP) {
322 list_for_each_entry(entry, head, mon.crdtgrp_list) {
323 if (__mon_event_count(entry->mon.rmid, rr))
324 return;
325 }
326 }
327 }
328
329 /*
330 * Feedback loop for MBA software controller (mba_sc)
331 *
332 * mba_sc is a feedback loop where we periodically read MBM counters and
333 * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so
334 * that:
335 *
336 * current bandwdith(cur_bw) < user specified bandwidth(user_bw)
337 *
338 * This uses the MBM counters to measure the bandwidth and MBA throttle
339 * MSRs to control the bandwidth for a particular rdtgrp. It builds on the
340 * fact that resctrl rdtgroups have both monitoring and control.
341 *
342 * The frequency of the checks is 1s and we just tag along the MBM overflow
343 * timer. Having 1s interval makes the calculation of bandwidth simpler.
344 *
345 * Although MBA's goal is to restrict the bandwidth to a maximum, there may
346 * be a need to increase the bandwidth to avoid uncecessarily restricting
347 * the L2 <-> L3 traffic.
348 *
349 * Since MBA controls the L2 external bandwidth where as MBM measures the
350 * L3 external bandwidth the following sequence could lead to such a
351 * situation.
352 *
353 * Consider an rdtgroup which had high L3 <-> memory traffic in initial
354 * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but
355 * after some time rdtgroup has mostly L2 <-> L3 traffic.
356 *
357 * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its
358 * throttle MSRs already have low percentage values. To avoid
359 * unnecessarily restricting such rdtgroups, we also increase the bandwidth.
360 */
361 static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_domain *dom_mbm)
362 {
363 u32 closid, rmid, cur_msr, cur_msr_val, new_msr_val;
364 struct mbm_state *pmbm_data, *cmbm_data;
365 u32 cur_bw, delta_bw, user_bw;
366 struct rdt_resource *r_mba;
367 struct rdt_domain *dom_mba;
368 struct list_head *head;
369 struct rdtgroup *entry;
370
371 if (!is_mbm_local_enabled())
372 return;
373
374 r_mba = &rdt_resources_all[RDT_RESOURCE_MBA];
375 closid = rgrp->closid;
376 rmid = rgrp->mon.rmid;
377 pmbm_data = &dom_mbm->mbm_local[rmid];
378
379 dom_mba = get_domain_from_cpu(smp_processor_id(), r_mba);
380 if (!dom_mba) {
381 pr_warn_once("Failure to get domain for MBA update\n");
382 return;
383 }
384
385 cur_bw = pmbm_data->prev_bw;
386 user_bw = dom_mba->mbps_val[closid];
387 delta_bw = pmbm_data->delta_bw;
388 cur_msr_val = dom_mba->ctrl_val[closid];
389
390 /*
391 * For Ctrl groups read data from child monitor groups.
392 */
393 head = &rgrp->mon.crdtgrp_list;
394 list_for_each_entry(entry, head, mon.crdtgrp_list) {
395 cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
396 cur_bw += cmbm_data->prev_bw;
397 delta_bw += cmbm_data->delta_bw;
398 }
399
400 /*
401 * Scale up/down the bandwidth linearly for the ctrl group. The
402 * bandwidth step is the bandwidth granularity specified by the
403 * hardware.
404 *
405 * The delta_bw is used when increasing the bandwidth so that we
406 * dont alternately increase and decrease the control values
407 * continuously.
408 *
409 * For ex: consider cur_bw = 90MBps, user_bw = 100MBps and if
410 * bandwidth step is 20MBps(> user_bw - cur_bw), we would keep
411 * switching between 90 and 110 continuously if we only check
412 * cur_bw < user_bw.
413 */
414 if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) {
415 new_msr_val = cur_msr_val - r_mba->membw.bw_gran;
416 } else if (cur_msr_val < MAX_MBA_BW &&
417 (user_bw > (cur_bw + delta_bw))) {
418 new_msr_val = cur_msr_val + r_mba->membw.bw_gran;
419 } else {
420 return;
421 }
422
423 cur_msr = r_mba->msr_base + closid;
424 wrmsrl(cur_msr, delay_bw_map(new_msr_val, r_mba));
425 dom_mba->ctrl_val[closid] = new_msr_val;
426
427 /*
428 * Delta values are updated dynamically package wise for each
429 * rdtgrp everytime the throttle MSR changes value.
430 *
431 * This is because (1)the increase in bandwidth is not perfectly
432 * linear and only "approximately" linear even when the hardware
433 * says it is linear.(2)Also since MBA is a core specific
434 * mechanism, the delta values vary based on number of cores used
435 * by the rdtgrp.
436 */
437 pmbm_data->delta_comp = true;
438 list_for_each_entry(entry, head, mon.crdtgrp_list) {
439 cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
440 cmbm_data->delta_comp = true;
441 }
442 }
443
444 static void mbm_update(struct rdt_domain *d, int rmid)
445 {
446 struct rmid_read rr;
447
448 rr.first = false;
449 rr.d = d;
450
451 /*
452 * This is protected from concurrent reads from user
453 * as both the user and we hold the global mutex.
454 */
455 if (is_mbm_total_enabled()) {
456 rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID;
457 __mon_event_count(rmid, &rr);
458 }
459 if (is_mbm_local_enabled()) {
460 rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID;
461
462 /*
463 * Call the MBA software controller only for the
464 * control groups and when user has enabled
465 * the software controller explicitly.
466 */
467 if (!is_mba_sc(NULL))
468 __mon_event_count(rmid, &rr);
469 else
470 mbm_bw_count(rmid, &rr);
471 }
472 }
473
474 /*
475 * Handler to scan the limbo list and move the RMIDs
476 * to free list whose occupancy < threshold_occupancy.
477 */
478 void cqm_handle_limbo(struct work_struct *work)
479 {
480 unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL);
481 int cpu = smp_processor_id();
482 struct rdt_resource *r;
483 struct rdt_domain *d;
484
485 mutex_lock(&rdtgroup_mutex);
486
487 r = &rdt_resources_all[RDT_RESOURCE_L3];
488 d = get_domain_from_cpu(cpu, r);
489
490 if (!d) {
491 pr_warn_once("Failure to get domain for limbo worker\n");
492 goto out_unlock;
493 }
494
495 __check_limbo(d, false);
496
497 if (has_busy_rmid(r, d))
498 schedule_delayed_work_on(cpu, &d->cqm_limbo, delay);
499
500 out_unlock:
501 mutex_unlock(&rdtgroup_mutex);
502 }
503
504 void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms)
505 {
506 unsigned long delay = msecs_to_jiffies(delay_ms);
507 int cpu;
508
509 cpu = cpumask_any(&dom->cpu_mask);
510 dom->cqm_work_cpu = cpu;
511
512 schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay);
513 }
514
515 void mbm_handle_overflow(struct work_struct *work)
516 {
517 unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL);
518 struct rdtgroup *prgrp, *crgrp;
519 int cpu = smp_processor_id();
520 struct list_head *head;
521 struct rdt_domain *d;
522
523 mutex_lock(&rdtgroup_mutex);
524
525 if (!static_branch_likely(&rdt_enable_key))
526 goto out_unlock;
527
528 d = get_domain_from_cpu(cpu, &rdt_resources_all[RDT_RESOURCE_L3]);
529 if (!d)
530 goto out_unlock;
531
532 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
533 mbm_update(d, prgrp->mon.rmid);
534
535 head = &prgrp->mon.crdtgrp_list;
536 list_for_each_entry(crgrp, head, mon.crdtgrp_list)
537 mbm_update(d, crgrp->mon.rmid);
538
539 if (is_mba_sc(NULL))
540 update_mba_bw(prgrp, d);
541 }
542
543 schedule_delayed_work_on(cpu, &d->mbm_over, delay);
544
545 out_unlock:
546 mutex_unlock(&rdtgroup_mutex);
547 }
548
549 void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms)
550 {
551 unsigned long delay = msecs_to_jiffies(delay_ms);
552 int cpu;
553
554 if (!static_branch_likely(&rdt_enable_key))
555 return;
556 cpu = cpumask_any(&dom->cpu_mask);
557 dom->mbm_work_cpu = cpu;
558 schedule_delayed_work_on(cpu, &dom->mbm_over, delay);
559 }
560
561 static int dom_data_init(struct rdt_resource *r)
562 {
563 struct rmid_entry *entry = NULL;
564 int i, nr_rmids;
565
566 nr_rmids = r->num_rmid;
567 rmid_ptrs = kcalloc(nr_rmids, sizeof(struct rmid_entry), GFP_KERNEL);
568 if (!rmid_ptrs)
569 return -ENOMEM;
570
571 for (i = 0; i < nr_rmids; i++) {
572 entry = &rmid_ptrs[i];
573 INIT_LIST_HEAD(&entry->list);
574
575 entry->rmid = i;
576 list_add_tail(&entry->list, &rmid_free_lru);
577 }
578
579 /*
580 * RMID 0 is special and is always allocated. It's used for all
581 * tasks that are not monitored.
582 */
583 entry = __rmid_entry(0);
584 list_del(&entry->list);
585
586 return 0;
587 }
588
589 static struct mon_evt llc_occupancy_event = {
590 .name = "llc_occupancy",
591 .evtid = QOS_L3_OCCUP_EVENT_ID,
592 };
593
594 static struct mon_evt mbm_total_event = {
595 .name = "mbm_total_bytes",
596 .evtid = QOS_L3_MBM_TOTAL_EVENT_ID,
597 };
598
599 static struct mon_evt mbm_local_event = {
600 .name = "mbm_local_bytes",
601 .evtid = QOS_L3_MBM_LOCAL_EVENT_ID,
602 };
603
604 /*
605 * Initialize the event list for the resource.
606 *
607 * Note that MBM events are also part of RDT_RESOURCE_L3 resource
608 * because as per the SDM the total and local memory bandwidth
609 * are enumerated as part of L3 monitoring.
610 */
611 static void l3_mon_evt_init(struct rdt_resource *r)
612 {
613 INIT_LIST_HEAD(&r->evt_list);
614
615 if (is_llc_occupancy_enabled())
616 list_add_tail(&llc_occupancy_event.list, &r->evt_list);
617 if (is_mbm_total_enabled())
618 list_add_tail(&mbm_total_event.list, &r->evt_list);
619 if (is_mbm_local_enabled())
620 list_add_tail(&mbm_local_event.list, &r->evt_list);
621 }
622
623 int rdt_get_mon_l3_config(struct rdt_resource *r)
624 {
625 unsigned int cl_size = boot_cpu_data.x86_cache_size;
626 int ret;
627
628 r->mon_scale = boot_cpu_data.x86_cache_occ_scale;
629 r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1;
630
631 /*
632 * A reasonable upper limit on the max threshold is the number
633 * of lines tagged per RMID if all RMIDs have the same number of
634 * lines tagged in the LLC.
635 *
636 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
637 */
638 resctrl_cqm_threshold = cl_size * 1024 / r->num_rmid;
639
640 /* h/w works in units of "boot_cpu_data.x86_cache_occ_scale" */
641 resctrl_cqm_threshold /= r->mon_scale;
642
643 ret = dom_data_init(r);
644 if (ret)
645 return ret;
646
647 l3_mon_evt_init(r);
648
649 r->mon_capable = true;
650 r->mon_enabled = true;
651
652 return 0;
653 }