]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/x86/kernel/hpet.c
x86/cpufeature: Carve out X86_FEATURE_*
[thirdparty/kernel/stable.git] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/i8253.h>
8 #include <linux/slab.h>
9 #include <linux/hpet.h>
10 #include <linux/init.h>
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/io.h>
14
15 #include <asm/cpufeature.h>
16 #include <asm/irqdomain.h>
17 #include <asm/fixmap.h>
18 #include <asm/hpet.h>
19 #include <asm/time.h>
20
21 #define HPET_MASK CLOCKSOURCE_MASK(32)
22
23 /* FSEC = 10^-15
24 NSEC = 10^-9 */
25 #define FSEC_PER_NSEC 1000000L
26
27 #define HPET_DEV_USED_BIT 2
28 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
29 #define HPET_DEV_VALID 0x8
30 #define HPET_DEV_FSB_CAP 0x1000
31 #define HPET_DEV_PERI_CAP 0x2000
32
33 #define HPET_MIN_CYCLES 128
34 #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
35
36 /*
37 * HPET address is set in acpi/boot.c, when an ACPI entry exists
38 */
39 unsigned long hpet_address;
40 u8 hpet_blockid; /* OS timer block num */
41 bool hpet_msi_disable;
42
43 #ifdef CONFIG_PCI_MSI
44 static unsigned int hpet_num_timers;
45 #endif
46 static void __iomem *hpet_virt_address;
47
48 struct hpet_dev {
49 struct clock_event_device evt;
50 unsigned int num;
51 int cpu;
52 unsigned int irq;
53 unsigned int flags;
54 char name[10];
55 };
56
57 inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
58 {
59 return container_of(evtdev, struct hpet_dev, evt);
60 }
61
62 inline unsigned int hpet_readl(unsigned int a)
63 {
64 return readl(hpet_virt_address + a);
65 }
66
67 static inline void hpet_writel(unsigned int d, unsigned int a)
68 {
69 writel(d, hpet_virt_address + a);
70 }
71
72 #ifdef CONFIG_X86_64
73 #include <asm/pgtable.h>
74 #endif
75
76 static inline void hpet_set_mapping(void)
77 {
78 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
79 }
80
81 static inline void hpet_clear_mapping(void)
82 {
83 iounmap(hpet_virt_address);
84 hpet_virt_address = NULL;
85 }
86
87 /*
88 * HPET command line enable / disable
89 */
90 bool boot_hpet_disable;
91 bool hpet_force_user;
92 static bool hpet_verbose;
93
94 static int __init hpet_setup(char *str)
95 {
96 while (str) {
97 char *next = strchr(str, ',');
98
99 if (next)
100 *next++ = 0;
101 if (!strncmp("disable", str, 7))
102 boot_hpet_disable = true;
103 if (!strncmp("force", str, 5))
104 hpet_force_user = true;
105 if (!strncmp("verbose", str, 7))
106 hpet_verbose = true;
107 str = next;
108 }
109 return 1;
110 }
111 __setup("hpet=", hpet_setup);
112
113 static int __init disable_hpet(char *str)
114 {
115 boot_hpet_disable = true;
116 return 1;
117 }
118 __setup("nohpet", disable_hpet);
119
120 static inline int is_hpet_capable(void)
121 {
122 return !boot_hpet_disable && hpet_address;
123 }
124
125 /*
126 * HPET timer interrupt enable / disable
127 */
128 static bool hpet_legacy_int_enabled;
129
130 /**
131 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
132 */
133 int is_hpet_enabled(void)
134 {
135 return is_hpet_capable() && hpet_legacy_int_enabled;
136 }
137 EXPORT_SYMBOL_GPL(is_hpet_enabled);
138
139 static void _hpet_print_config(const char *function, int line)
140 {
141 u32 i, timers, l, h;
142 printk(KERN_INFO "hpet: %s(%d):\n", function, line);
143 l = hpet_readl(HPET_ID);
144 h = hpet_readl(HPET_PERIOD);
145 timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
146 printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
147 l = hpet_readl(HPET_CFG);
148 h = hpet_readl(HPET_STATUS);
149 printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
150 l = hpet_readl(HPET_COUNTER);
151 h = hpet_readl(HPET_COUNTER+4);
152 printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
153
154 for (i = 0; i < timers; i++) {
155 l = hpet_readl(HPET_Tn_CFG(i));
156 h = hpet_readl(HPET_Tn_CFG(i)+4);
157 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
158 i, l, h);
159 l = hpet_readl(HPET_Tn_CMP(i));
160 h = hpet_readl(HPET_Tn_CMP(i)+4);
161 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
162 i, l, h);
163 l = hpet_readl(HPET_Tn_ROUTE(i));
164 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
165 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
166 i, l, h);
167 }
168 }
169
170 #define hpet_print_config() \
171 do { \
172 if (hpet_verbose) \
173 _hpet_print_config(__func__, __LINE__); \
174 } while (0)
175
176 /*
177 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
178 * timer 0 and timer 1 in case of RTC emulation.
179 */
180 #ifdef CONFIG_HPET
181
182 static void hpet_reserve_msi_timers(struct hpet_data *hd);
183
184 static void hpet_reserve_platform_timers(unsigned int id)
185 {
186 struct hpet __iomem *hpet = hpet_virt_address;
187 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
188 unsigned int nrtimers, i;
189 struct hpet_data hd;
190
191 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
192
193 memset(&hd, 0, sizeof(hd));
194 hd.hd_phys_address = hpet_address;
195 hd.hd_address = hpet;
196 hd.hd_nirqs = nrtimers;
197 hpet_reserve_timer(&hd, 0);
198
199 #ifdef CONFIG_HPET_EMULATE_RTC
200 hpet_reserve_timer(&hd, 1);
201 #endif
202
203 /*
204 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
205 * is wrong for i8259!) not the output IRQ. Many BIOS writers
206 * don't bother configuring *any* comparator interrupts.
207 */
208 hd.hd_irq[0] = HPET_LEGACY_8254;
209 hd.hd_irq[1] = HPET_LEGACY_RTC;
210
211 for (i = 2; i < nrtimers; timer++, i++) {
212 hd.hd_irq[i] = (readl(&timer->hpet_config) &
213 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
214 }
215
216 hpet_reserve_msi_timers(&hd);
217
218 hpet_alloc(&hd);
219
220 }
221 #else
222 static void hpet_reserve_platform_timers(unsigned int id) { }
223 #endif
224
225 /*
226 * Common hpet info
227 */
228 static unsigned long hpet_freq;
229
230 static struct clock_event_device hpet_clockevent;
231
232 static void hpet_stop_counter(void)
233 {
234 u32 cfg = hpet_readl(HPET_CFG);
235 cfg &= ~HPET_CFG_ENABLE;
236 hpet_writel(cfg, HPET_CFG);
237 }
238
239 static void hpet_reset_counter(void)
240 {
241 hpet_writel(0, HPET_COUNTER);
242 hpet_writel(0, HPET_COUNTER + 4);
243 }
244
245 static void hpet_start_counter(void)
246 {
247 unsigned int cfg = hpet_readl(HPET_CFG);
248 cfg |= HPET_CFG_ENABLE;
249 hpet_writel(cfg, HPET_CFG);
250 }
251
252 static void hpet_restart_counter(void)
253 {
254 hpet_stop_counter();
255 hpet_reset_counter();
256 hpet_start_counter();
257 }
258
259 static void hpet_resume_device(void)
260 {
261 force_hpet_resume();
262 }
263
264 static void hpet_resume_counter(struct clocksource *cs)
265 {
266 hpet_resume_device();
267 hpet_restart_counter();
268 }
269
270 static void hpet_enable_legacy_int(void)
271 {
272 unsigned int cfg = hpet_readl(HPET_CFG);
273
274 cfg |= HPET_CFG_LEGACY;
275 hpet_writel(cfg, HPET_CFG);
276 hpet_legacy_int_enabled = true;
277 }
278
279 static void hpet_legacy_clockevent_register(void)
280 {
281 /* Start HPET legacy interrupts */
282 hpet_enable_legacy_int();
283
284 /*
285 * Start hpet with the boot cpu mask and make it
286 * global after the IO_APIC has been initialized.
287 */
288 hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
289 clockevents_config_and_register(&hpet_clockevent, hpet_freq,
290 HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
291 global_clock_event = &hpet_clockevent;
292 printk(KERN_DEBUG "hpet clockevent registered\n");
293 }
294
295 static int hpet_set_periodic(struct clock_event_device *evt, int timer)
296 {
297 unsigned int cfg, cmp, now;
298 uint64_t delta;
299
300 hpet_stop_counter();
301 delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
302 delta >>= evt->shift;
303 now = hpet_readl(HPET_COUNTER);
304 cmp = now + (unsigned int)delta;
305 cfg = hpet_readl(HPET_Tn_CFG(timer));
306 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
307 HPET_TN_32BIT;
308 hpet_writel(cfg, HPET_Tn_CFG(timer));
309 hpet_writel(cmp, HPET_Tn_CMP(timer));
310 udelay(1);
311 /*
312 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
313 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
314 * bit is automatically cleared after the first write.
315 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
316 * Publication # 24674)
317 */
318 hpet_writel((unsigned int)delta, HPET_Tn_CMP(timer));
319 hpet_start_counter();
320 hpet_print_config();
321
322 return 0;
323 }
324
325 static int hpet_set_oneshot(struct clock_event_device *evt, int timer)
326 {
327 unsigned int cfg;
328
329 cfg = hpet_readl(HPET_Tn_CFG(timer));
330 cfg &= ~HPET_TN_PERIODIC;
331 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
332 hpet_writel(cfg, HPET_Tn_CFG(timer));
333
334 return 0;
335 }
336
337 static int hpet_shutdown(struct clock_event_device *evt, int timer)
338 {
339 unsigned int cfg;
340
341 cfg = hpet_readl(HPET_Tn_CFG(timer));
342 cfg &= ~HPET_TN_ENABLE;
343 hpet_writel(cfg, HPET_Tn_CFG(timer));
344
345 return 0;
346 }
347
348 static int hpet_resume(struct clock_event_device *evt, int timer)
349 {
350 if (!timer) {
351 hpet_enable_legacy_int();
352 } else {
353 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
354
355 irq_domain_activate_irq(irq_get_irq_data(hdev->irq));
356 disable_irq(hdev->irq);
357 irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
358 enable_irq(hdev->irq);
359 }
360 hpet_print_config();
361
362 return 0;
363 }
364
365 static int hpet_next_event(unsigned long delta,
366 struct clock_event_device *evt, int timer)
367 {
368 u32 cnt;
369 s32 res;
370
371 cnt = hpet_readl(HPET_COUNTER);
372 cnt += (u32) delta;
373 hpet_writel(cnt, HPET_Tn_CMP(timer));
374
375 /*
376 * HPETs are a complete disaster. The compare register is
377 * based on a equal comparison and neither provides a less
378 * than or equal functionality (which would require to take
379 * the wraparound into account) nor a simple count down event
380 * mode. Further the write to the comparator register is
381 * delayed internally up to two HPET clock cycles in certain
382 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
383 * longer delays. We worked around that by reading back the
384 * compare register, but that required another workaround for
385 * ICH9,10 chips where the first readout after write can
386 * return the old stale value. We already had a minimum
387 * programming delta of 5us enforced, but a NMI or SMI hitting
388 * between the counter readout and the comparator write can
389 * move us behind that point easily. Now instead of reading
390 * the compare register back several times, we make the ETIME
391 * decision based on the following: Return ETIME if the
392 * counter value after the write is less than HPET_MIN_CYCLES
393 * away from the event or if the counter is already ahead of
394 * the event. The minimum programming delta for the generic
395 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
396 */
397 res = (s32)(cnt - hpet_readl(HPET_COUNTER));
398
399 return res < HPET_MIN_CYCLES ? -ETIME : 0;
400 }
401
402 static int hpet_legacy_shutdown(struct clock_event_device *evt)
403 {
404 return hpet_shutdown(evt, 0);
405 }
406
407 static int hpet_legacy_set_oneshot(struct clock_event_device *evt)
408 {
409 return hpet_set_oneshot(evt, 0);
410 }
411
412 static int hpet_legacy_set_periodic(struct clock_event_device *evt)
413 {
414 return hpet_set_periodic(evt, 0);
415 }
416
417 static int hpet_legacy_resume(struct clock_event_device *evt)
418 {
419 return hpet_resume(evt, 0);
420 }
421
422 static int hpet_legacy_next_event(unsigned long delta,
423 struct clock_event_device *evt)
424 {
425 return hpet_next_event(delta, evt, 0);
426 }
427
428 /*
429 * The hpet clock event device
430 */
431 static struct clock_event_device hpet_clockevent = {
432 .name = "hpet",
433 .features = CLOCK_EVT_FEAT_PERIODIC |
434 CLOCK_EVT_FEAT_ONESHOT,
435 .set_state_periodic = hpet_legacy_set_periodic,
436 .set_state_oneshot = hpet_legacy_set_oneshot,
437 .set_state_shutdown = hpet_legacy_shutdown,
438 .tick_resume = hpet_legacy_resume,
439 .set_next_event = hpet_legacy_next_event,
440 .irq = 0,
441 .rating = 50,
442 };
443
444 /*
445 * HPET MSI Support
446 */
447 #ifdef CONFIG_PCI_MSI
448
449 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
450 static struct hpet_dev *hpet_devs;
451 static struct irq_domain *hpet_domain;
452
453 void hpet_msi_unmask(struct irq_data *data)
454 {
455 struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
456 unsigned int cfg;
457
458 /* unmask it */
459 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
460 cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
461 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
462 }
463
464 void hpet_msi_mask(struct irq_data *data)
465 {
466 struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
467 unsigned int cfg;
468
469 /* mask it */
470 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
471 cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
472 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
473 }
474
475 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
476 {
477 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
478 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
479 }
480
481 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
482 {
483 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
484 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
485 msg->address_hi = 0;
486 }
487
488 static int hpet_msi_shutdown(struct clock_event_device *evt)
489 {
490 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
491
492 return hpet_shutdown(evt, hdev->num);
493 }
494
495 static int hpet_msi_set_oneshot(struct clock_event_device *evt)
496 {
497 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
498
499 return hpet_set_oneshot(evt, hdev->num);
500 }
501
502 static int hpet_msi_set_periodic(struct clock_event_device *evt)
503 {
504 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
505
506 return hpet_set_periodic(evt, hdev->num);
507 }
508
509 static int hpet_msi_resume(struct clock_event_device *evt)
510 {
511 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
512
513 return hpet_resume(evt, hdev->num);
514 }
515
516 static int hpet_msi_next_event(unsigned long delta,
517 struct clock_event_device *evt)
518 {
519 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
520 return hpet_next_event(delta, evt, hdev->num);
521 }
522
523 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
524 {
525 struct hpet_dev *dev = (struct hpet_dev *)data;
526 struct clock_event_device *hevt = &dev->evt;
527
528 if (!hevt->event_handler) {
529 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
530 dev->num);
531 return IRQ_HANDLED;
532 }
533
534 hevt->event_handler(hevt);
535 return IRQ_HANDLED;
536 }
537
538 static int hpet_setup_irq(struct hpet_dev *dev)
539 {
540
541 if (request_irq(dev->irq, hpet_interrupt_handler,
542 IRQF_TIMER | IRQF_NOBALANCING,
543 dev->name, dev))
544 return -1;
545
546 disable_irq(dev->irq);
547 irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
548 enable_irq(dev->irq);
549
550 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
551 dev->name, dev->irq);
552
553 return 0;
554 }
555
556 /* This should be called in specific @cpu */
557 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
558 {
559 struct clock_event_device *evt = &hdev->evt;
560
561 WARN_ON(cpu != smp_processor_id());
562 if (!(hdev->flags & HPET_DEV_VALID))
563 return;
564
565 hdev->cpu = cpu;
566 per_cpu(cpu_hpet_dev, cpu) = hdev;
567 evt->name = hdev->name;
568 hpet_setup_irq(hdev);
569 evt->irq = hdev->irq;
570
571 evt->rating = 110;
572 evt->features = CLOCK_EVT_FEAT_ONESHOT;
573 if (hdev->flags & HPET_DEV_PERI_CAP) {
574 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
575 evt->set_state_periodic = hpet_msi_set_periodic;
576 }
577
578 evt->set_state_shutdown = hpet_msi_shutdown;
579 evt->set_state_oneshot = hpet_msi_set_oneshot;
580 evt->tick_resume = hpet_msi_resume;
581 evt->set_next_event = hpet_msi_next_event;
582 evt->cpumask = cpumask_of(hdev->cpu);
583
584 clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
585 0x7FFFFFFF);
586 }
587
588 #ifdef CONFIG_HPET
589 /* Reserve at least one timer for userspace (/dev/hpet) */
590 #define RESERVE_TIMERS 1
591 #else
592 #define RESERVE_TIMERS 0
593 #endif
594
595 static void hpet_msi_capability_lookup(unsigned int start_timer)
596 {
597 unsigned int id;
598 unsigned int num_timers;
599 unsigned int num_timers_used = 0;
600 int i, irq;
601
602 if (hpet_msi_disable)
603 return;
604
605 if (boot_cpu_has(X86_FEATURE_ARAT))
606 return;
607 id = hpet_readl(HPET_ID);
608
609 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
610 num_timers++; /* Value read out starts from 0 */
611 hpet_print_config();
612
613 hpet_domain = hpet_create_irq_domain(hpet_blockid);
614 if (!hpet_domain)
615 return;
616
617 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
618 if (!hpet_devs)
619 return;
620
621 hpet_num_timers = num_timers;
622
623 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
624 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
625 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
626
627 /* Only consider HPET timer with MSI support */
628 if (!(cfg & HPET_TN_FSB_CAP))
629 continue;
630
631 hdev->flags = 0;
632 if (cfg & HPET_TN_PERIODIC_CAP)
633 hdev->flags |= HPET_DEV_PERI_CAP;
634 sprintf(hdev->name, "hpet%d", i);
635 hdev->num = i;
636
637 irq = hpet_assign_irq(hpet_domain, hdev, hdev->num);
638 if (irq <= 0)
639 continue;
640
641 hdev->irq = irq;
642 hdev->flags |= HPET_DEV_FSB_CAP;
643 hdev->flags |= HPET_DEV_VALID;
644 num_timers_used++;
645 if (num_timers_used == num_possible_cpus())
646 break;
647 }
648
649 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
650 num_timers, num_timers_used);
651 }
652
653 #ifdef CONFIG_HPET
654 static void hpet_reserve_msi_timers(struct hpet_data *hd)
655 {
656 int i;
657
658 if (!hpet_devs)
659 return;
660
661 for (i = 0; i < hpet_num_timers; i++) {
662 struct hpet_dev *hdev = &hpet_devs[i];
663
664 if (!(hdev->flags & HPET_DEV_VALID))
665 continue;
666
667 hd->hd_irq[hdev->num] = hdev->irq;
668 hpet_reserve_timer(hd, hdev->num);
669 }
670 }
671 #endif
672
673 static struct hpet_dev *hpet_get_unused_timer(void)
674 {
675 int i;
676
677 if (!hpet_devs)
678 return NULL;
679
680 for (i = 0; i < hpet_num_timers; i++) {
681 struct hpet_dev *hdev = &hpet_devs[i];
682
683 if (!(hdev->flags & HPET_DEV_VALID))
684 continue;
685 if (test_and_set_bit(HPET_DEV_USED_BIT,
686 (unsigned long *)&hdev->flags))
687 continue;
688 return hdev;
689 }
690 return NULL;
691 }
692
693 struct hpet_work_struct {
694 struct delayed_work work;
695 struct completion complete;
696 };
697
698 static void hpet_work(struct work_struct *w)
699 {
700 struct hpet_dev *hdev;
701 int cpu = smp_processor_id();
702 struct hpet_work_struct *hpet_work;
703
704 hpet_work = container_of(w, struct hpet_work_struct, work.work);
705
706 hdev = hpet_get_unused_timer();
707 if (hdev)
708 init_one_hpet_msi_clockevent(hdev, cpu);
709
710 complete(&hpet_work->complete);
711 }
712
713 static int hpet_cpuhp_notify(struct notifier_block *n,
714 unsigned long action, void *hcpu)
715 {
716 unsigned long cpu = (unsigned long)hcpu;
717 struct hpet_work_struct work;
718 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
719
720 switch (action & 0xf) {
721 case CPU_ONLINE:
722 INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
723 init_completion(&work.complete);
724 /* FIXME: add schedule_work_on() */
725 schedule_delayed_work_on(cpu, &work.work, 0);
726 wait_for_completion(&work.complete);
727 destroy_delayed_work_on_stack(&work.work);
728 break;
729 case CPU_DEAD:
730 if (hdev) {
731 free_irq(hdev->irq, hdev);
732 hdev->flags &= ~HPET_DEV_USED;
733 per_cpu(cpu_hpet_dev, cpu) = NULL;
734 }
735 break;
736 }
737 return NOTIFY_OK;
738 }
739 #else
740
741 static void hpet_msi_capability_lookup(unsigned int start_timer)
742 {
743 return;
744 }
745
746 #ifdef CONFIG_HPET
747 static void hpet_reserve_msi_timers(struct hpet_data *hd)
748 {
749 return;
750 }
751 #endif
752
753 static int hpet_cpuhp_notify(struct notifier_block *n,
754 unsigned long action, void *hcpu)
755 {
756 return NOTIFY_OK;
757 }
758
759 #endif
760
761 /*
762 * Clock source related code
763 */
764 static cycle_t read_hpet(struct clocksource *cs)
765 {
766 return (cycle_t)hpet_readl(HPET_COUNTER);
767 }
768
769 static struct clocksource clocksource_hpet = {
770 .name = "hpet",
771 .rating = 250,
772 .read = read_hpet,
773 .mask = HPET_MASK,
774 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
775 .resume = hpet_resume_counter,
776 .archdata = { .vclock_mode = VCLOCK_HPET },
777 };
778
779 static int hpet_clocksource_register(void)
780 {
781 u64 start, now;
782 cycle_t t1;
783
784 /* Start the counter */
785 hpet_restart_counter();
786
787 /* Verify whether hpet counter works */
788 t1 = hpet_readl(HPET_COUNTER);
789 start = rdtsc();
790
791 /*
792 * We don't know the TSC frequency yet, but waiting for
793 * 200000 TSC cycles is safe:
794 * 4 GHz == 50us
795 * 1 GHz == 200us
796 */
797 do {
798 rep_nop();
799 now = rdtsc();
800 } while ((now - start) < 200000UL);
801
802 if (t1 == hpet_readl(HPET_COUNTER)) {
803 printk(KERN_WARNING
804 "HPET counter not counting. HPET disabled\n");
805 return -ENODEV;
806 }
807
808 clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
809 return 0;
810 }
811
812 static u32 *hpet_boot_cfg;
813
814 /**
815 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
816 */
817 int __init hpet_enable(void)
818 {
819 u32 hpet_period, cfg, id;
820 u64 freq;
821 unsigned int i, last;
822
823 if (!is_hpet_capable())
824 return 0;
825
826 hpet_set_mapping();
827
828 /*
829 * Read the period and check for a sane value:
830 */
831 hpet_period = hpet_readl(HPET_PERIOD);
832
833 /*
834 * AMD SB700 based systems with spread spectrum enabled use a
835 * SMM based HPET emulation to provide proper frequency
836 * setting. The SMM code is initialized with the first HPET
837 * register access and takes some time to complete. During
838 * this time the config register reads 0xffffffff. We check
839 * for max. 1000 loops whether the config register reads a non
840 * 0xffffffff value to make sure that HPET is up and running
841 * before we go further. A counting loop is safe, as the HPET
842 * access takes thousands of CPU cycles. On non SB700 based
843 * machines this check is only done once and has no side
844 * effects.
845 */
846 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
847 if (i == 1000) {
848 printk(KERN_WARNING
849 "HPET config register value = 0xFFFFFFFF. "
850 "Disabling HPET\n");
851 goto out_nohpet;
852 }
853 }
854
855 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
856 goto out_nohpet;
857
858 /*
859 * The period is a femto seconds value. Convert it to a
860 * frequency.
861 */
862 freq = FSEC_PER_SEC;
863 do_div(freq, hpet_period);
864 hpet_freq = freq;
865
866 /*
867 * Read the HPET ID register to retrieve the IRQ routing
868 * information and the number of channels
869 */
870 id = hpet_readl(HPET_ID);
871 hpet_print_config();
872
873 last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
874
875 #ifdef CONFIG_HPET_EMULATE_RTC
876 /*
877 * The legacy routing mode needs at least two channels, tick timer
878 * and the rtc emulation channel.
879 */
880 if (!last)
881 goto out_nohpet;
882 #endif
883
884 cfg = hpet_readl(HPET_CFG);
885 hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
886 GFP_KERNEL);
887 if (hpet_boot_cfg)
888 *hpet_boot_cfg = cfg;
889 else
890 pr_warn("HPET initial state will not be saved\n");
891 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
892 hpet_writel(cfg, HPET_CFG);
893 if (cfg)
894 pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
895 cfg);
896
897 for (i = 0; i <= last; ++i) {
898 cfg = hpet_readl(HPET_Tn_CFG(i));
899 if (hpet_boot_cfg)
900 hpet_boot_cfg[i + 1] = cfg;
901 cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
902 hpet_writel(cfg, HPET_Tn_CFG(i));
903 cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
904 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
905 | HPET_TN_FSB | HPET_TN_FSB_CAP);
906 if (cfg)
907 pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
908 cfg, i);
909 }
910 hpet_print_config();
911
912 if (hpet_clocksource_register())
913 goto out_nohpet;
914
915 if (id & HPET_ID_LEGSUP) {
916 hpet_legacy_clockevent_register();
917 return 1;
918 }
919 return 0;
920
921 out_nohpet:
922 hpet_clear_mapping();
923 hpet_address = 0;
924 return 0;
925 }
926
927 /*
928 * Needs to be late, as the reserve_timer code calls kalloc !
929 *
930 * Not a problem on i386 as hpet_enable is called from late_time_init,
931 * but on x86_64 it is necessary !
932 */
933 static __init int hpet_late_init(void)
934 {
935 int cpu;
936
937 if (boot_hpet_disable)
938 return -ENODEV;
939
940 if (!hpet_address) {
941 if (!force_hpet_address)
942 return -ENODEV;
943
944 hpet_address = force_hpet_address;
945 hpet_enable();
946 }
947
948 if (!hpet_virt_address)
949 return -ENODEV;
950
951 if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
952 hpet_msi_capability_lookup(2);
953 else
954 hpet_msi_capability_lookup(0);
955
956 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
957 hpet_print_config();
958
959 if (hpet_msi_disable)
960 return 0;
961
962 if (boot_cpu_has(X86_FEATURE_ARAT))
963 return 0;
964
965 cpu_notifier_register_begin();
966 for_each_online_cpu(cpu) {
967 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
968 }
969
970 /* This notifier should be called after workqueue is ready */
971 __hotcpu_notifier(hpet_cpuhp_notify, -20);
972 cpu_notifier_register_done();
973
974 return 0;
975 }
976 fs_initcall(hpet_late_init);
977
978 void hpet_disable(void)
979 {
980 if (is_hpet_capable() && hpet_virt_address) {
981 unsigned int cfg = hpet_readl(HPET_CFG), id, last;
982
983 if (hpet_boot_cfg)
984 cfg = *hpet_boot_cfg;
985 else if (hpet_legacy_int_enabled) {
986 cfg &= ~HPET_CFG_LEGACY;
987 hpet_legacy_int_enabled = false;
988 }
989 cfg &= ~HPET_CFG_ENABLE;
990 hpet_writel(cfg, HPET_CFG);
991
992 if (!hpet_boot_cfg)
993 return;
994
995 id = hpet_readl(HPET_ID);
996 last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
997
998 for (id = 0; id <= last; ++id)
999 hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
1000
1001 if (*hpet_boot_cfg & HPET_CFG_ENABLE)
1002 hpet_writel(*hpet_boot_cfg, HPET_CFG);
1003 }
1004 }
1005
1006 #ifdef CONFIG_HPET_EMULATE_RTC
1007
1008 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1009 * is enabled, we support RTC interrupt functionality in software.
1010 * RTC has 3 kinds of interrupts:
1011 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1012 * is updated
1013 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1014 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1015 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1016 * (1) and (2) above are implemented using polling at a frequency of
1017 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1018 * overhead. (DEFAULT_RTC_INT_FREQ)
1019 * For (3), we use interrupts at 64Hz or user specified periodic
1020 * frequency, whichever is higher.
1021 */
1022 #include <linux/mc146818rtc.h>
1023 #include <linux/rtc.h>
1024 #include <asm/rtc.h>
1025
1026 #define DEFAULT_RTC_INT_FREQ 64
1027 #define DEFAULT_RTC_SHIFT 6
1028 #define RTC_NUM_INTS 1
1029
1030 static unsigned long hpet_rtc_flags;
1031 static int hpet_prev_update_sec;
1032 static struct rtc_time hpet_alarm_time;
1033 static unsigned long hpet_pie_count;
1034 static u32 hpet_t1_cmp;
1035 static u32 hpet_default_delta;
1036 static u32 hpet_pie_delta;
1037 static unsigned long hpet_pie_limit;
1038
1039 static rtc_irq_handler irq_handler;
1040
1041 /*
1042 * Check that the hpet counter c1 is ahead of the c2
1043 */
1044 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1045 {
1046 return (s32)(c2 - c1) < 0;
1047 }
1048
1049 /*
1050 * Registers a IRQ handler.
1051 */
1052 int hpet_register_irq_handler(rtc_irq_handler handler)
1053 {
1054 if (!is_hpet_enabled())
1055 return -ENODEV;
1056 if (irq_handler)
1057 return -EBUSY;
1058
1059 irq_handler = handler;
1060
1061 return 0;
1062 }
1063 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1064
1065 /*
1066 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1067 * and does cleanup.
1068 */
1069 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1070 {
1071 if (!is_hpet_enabled())
1072 return;
1073
1074 irq_handler = NULL;
1075 hpet_rtc_flags = 0;
1076 }
1077 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1078
1079 /*
1080 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1081 * is not supported by all HPET implementations for timer 1.
1082 *
1083 * hpet_rtc_timer_init() is called when the rtc is initialized.
1084 */
1085 int hpet_rtc_timer_init(void)
1086 {
1087 unsigned int cfg, cnt, delta;
1088 unsigned long flags;
1089
1090 if (!is_hpet_enabled())
1091 return 0;
1092
1093 if (!hpet_default_delta) {
1094 uint64_t clc;
1095
1096 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1097 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1098 hpet_default_delta = clc;
1099 }
1100
1101 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1102 delta = hpet_default_delta;
1103 else
1104 delta = hpet_pie_delta;
1105
1106 local_irq_save(flags);
1107
1108 cnt = delta + hpet_readl(HPET_COUNTER);
1109 hpet_writel(cnt, HPET_T1_CMP);
1110 hpet_t1_cmp = cnt;
1111
1112 cfg = hpet_readl(HPET_T1_CFG);
1113 cfg &= ~HPET_TN_PERIODIC;
1114 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1115 hpet_writel(cfg, HPET_T1_CFG);
1116
1117 local_irq_restore(flags);
1118
1119 return 1;
1120 }
1121 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1122
1123 static void hpet_disable_rtc_channel(void)
1124 {
1125 u32 cfg = hpet_readl(HPET_T1_CFG);
1126 cfg &= ~HPET_TN_ENABLE;
1127 hpet_writel(cfg, HPET_T1_CFG);
1128 }
1129
1130 /*
1131 * The functions below are called from rtc driver.
1132 * Return 0 if HPET is not being used.
1133 * Otherwise do the necessary changes and return 1.
1134 */
1135 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1136 {
1137 if (!is_hpet_enabled())
1138 return 0;
1139
1140 hpet_rtc_flags &= ~bit_mask;
1141 if (unlikely(!hpet_rtc_flags))
1142 hpet_disable_rtc_channel();
1143
1144 return 1;
1145 }
1146 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1147
1148 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1149 {
1150 unsigned long oldbits = hpet_rtc_flags;
1151
1152 if (!is_hpet_enabled())
1153 return 0;
1154
1155 hpet_rtc_flags |= bit_mask;
1156
1157 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1158 hpet_prev_update_sec = -1;
1159
1160 if (!oldbits)
1161 hpet_rtc_timer_init();
1162
1163 return 1;
1164 }
1165 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1166
1167 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1168 unsigned char sec)
1169 {
1170 if (!is_hpet_enabled())
1171 return 0;
1172
1173 hpet_alarm_time.tm_hour = hrs;
1174 hpet_alarm_time.tm_min = min;
1175 hpet_alarm_time.tm_sec = sec;
1176
1177 return 1;
1178 }
1179 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1180
1181 int hpet_set_periodic_freq(unsigned long freq)
1182 {
1183 uint64_t clc;
1184
1185 if (!is_hpet_enabled())
1186 return 0;
1187
1188 if (freq <= DEFAULT_RTC_INT_FREQ)
1189 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1190 else {
1191 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1192 do_div(clc, freq);
1193 clc >>= hpet_clockevent.shift;
1194 hpet_pie_delta = clc;
1195 hpet_pie_limit = 0;
1196 }
1197 return 1;
1198 }
1199 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1200
1201 int hpet_rtc_dropped_irq(void)
1202 {
1203 return is_hpet_enabled();
1204 }
1205 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1206
1207 static void hpet_rtc_timer_reinit(void)
1208 {
1209 unsigned int delta;
1210 int lost_ints = -1;
1211
1212 if (unlikely(!hpet_rtc_flags))
1213 hpet_disable_rtc_channel();
1214
1215 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1216 delta = hpet_default_delta;
1217 else
1218 delta = hpet_pie_delta;
1219
1220 /*
1221 * Increment the comparator value until we are ahead of the
1222 * current count.
1223 */
1224 do {
1225 hpet_t1_cmp += delta;
1226 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1227 lost_ints++;
1228 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1229
1230 if (lost_ints) {
1231 if (hpet_rtc_flags & RTC_PIE)
1232 hpet_pie_count += lost_ints;
1233 if (printk_ratelimit())
1234 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1235 lost_ints);
1236 }
1237 }
1238
1239 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1240 {
1241 struct rtc_time curr_time;
1242 unsigned long rtc_int_flag = 0;
1243
1244 hpet_rtc_timer_reinit();
1245 memset(&curr_time, 0, sizeof(struct rtc_time));
1246
1247 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1248 get_rtc_time(&curr_time);
1249
1250 if (hpet_rtc_flags & RTC_UIE &&
1251 curr_time.tm_sec != hpet_prev_update_sec) {
1252 if (hpet_prev_update_sec >= 0)
1253 rtc_int_flag = RTC_UF;
1254 hpet_prev_update_sec = curr_time.tm_sec;
1255 }
1256
1257 if (hpet_rtc_flags & RTC_PIE &&
1258 ++hpet_pie_count >= hpet_pie_limit) {
1259 rtc_int_flag |= RTC_PF;
1260 hpet_pie_count = 0;
1261 }
1262
1263 if (hpet_rtc_flags & RTC_AIE &&
1264 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1265 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1266 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1267 rtc_int_flag |= RTC_AF;
1268
1269 if (rtc_int_flag) {
1270 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1271 if (irq_handler)
1272 irq_handler(rtc_int_flag, dev_id);
1273 }
1274 return IRQ_HANDLED;
1275 }
1276 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1277 #endif