]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/x86/kvm/cpuid.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 499
[thirdparty/kernel/stable.git] / arch / x86 / kvm / cpuid.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 * cpuid support routines
5 *
6 * derived from arch/x86/kvm/x86.c
7 *
8 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9 * Copyright IBM Corporation, 2008
10 */
11
12 #include <linux/kvm_host.h>
13 #include <linux/export.h>
14 #include <linux/vmalloc.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched/stat.h>
17
18 #include <asm/processor.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
25 #include "pmu.h"
26
27 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
28 {
29 int feature_bit = 0;
30 u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
31
32 xstate_bv &= XFEATURE_MASK_EXTEND;
33 while (xstate_bv) {
34 if (xstate_bv & 0x1) {
35 u32 eax, ebx, ecx, edx, offset;
36 cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
37 offset = compacted ? ret : ebx;
38 ret = max(ret, offset + eax);
39 }
40
41 xstate_bv >>= 1;
42 feature_bit++;
43 }
44
45 return ret;
46 }
47
48 bool kvm_mpx_supported(void)
49 {
50 return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
51 && kvm_x86_ops->mpx_supported());
52 }
53 EXPORT_SYMBOL_GPL(kvm_mpx_supported);
54
55 u64 kvm_supported_xcr0(void)
56 {
57 u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
58
59 if (!kvm_mpx_supported())
60 xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
61
62 return xcr0;
63 }
64
65 #define F(x) bit(X86_FEATURE_##x)
66
67 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
68 {
69 struct kvm_cpuid_entry2 *best;
70 struct kvm_lapic *apic = vcpu->arch.apic;
71
72 best = kvm_find_cpuid_entry(vcpu, 1, 0);
73 if (!best)
74 return 0;
75
76 /* Update OSXSAVE bit */
77 if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
78 best->ecx &= ~F(OSXSAVE);
79 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
80 best->ecx |= F(OSXSAVE);
81 }
82
83 best->edx &= ~F(APIC);
84 if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
85 best->edx |= F(APIC);
86
87 if (apic) {
88 if (best->ecx & F(TSC_DEADLINE_TIMER))
89 apic->lapic_timer.timer_mode_mask = 3 << 17;
90 else
91 apic->lapic_timer.timer_mode_mask = 1 << 17;
92 }
93
94 best = kvm_find_cpuid_entry(vcpu, 7, 0);
95 if (best) {
96 /* Update OSPKE bit */
97 if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
98 best->ecx &= ~F(OSPKE);
99 if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
100 best->ecx |= F(OSPKE);
101 }
102 }
103
104 best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
105 if (!best) {
106 vcpu->arch.guest_supported_xcr0 = 0;
107 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
108 } else {
109 vcpu->arch.guest_supported_xcr0 =
110 (best->eax | ((u64)best->edx << 32)) &
111 kvm_supported_xcr0();
112 vcpu->arch.guest_xstate_size = best->ebx =
113 xstate_required_size(vcpu->arch.xcr0, false);
114 }
115
116 best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
117 if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
118 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
119
120 /*
121 * The existing code assumes virtual address is 48-bit or 57-bit in the
122 * canonical address checks; exit if it is ever changed.
123 */
124 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
125 if (best) {
126 int vaddr_bits = (best->eax & 0xff00) >> 8;
127
128 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
129 return -EINVAL;
130 }
131
132 best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
133 if (kvm_hlt_in_guest(vcpu->kvm) && best &&
134 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
135 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
136
137 /* Update physical-address width */
138 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
139 kvm_mmu_reset_context(vcpu);
140
141 kvm_pmu_refresh(vcpu);
142 return 0;
143 }
144
145 static int is_efer_nx(void)
146 {
147 unsigned long long efer = 0;
148
149 rdmsrl_safe(MSR_EFER, &efer);
150 return efer & EFER_NX;
151 }
152
153 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
154 {
155 int i;
156 struct kvm_cpuid_entry2 *e, *entry;
157
158 entry = NULL;
159 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
160 e = &vcpu->arch.cpuid_entries[i];
161 if (e->function == 0x80000001) {
162 entry = e;
163 break;
164 }
165 }
166 if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
167 entry->edx &= ~F(NX);
168 printk(KERN_INFO "kvm: guest NX capability removed\n");
169 }
170 }
171
172 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
173 {
174 struct kvm_cpuid_entry2 *best;
175
176 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
177 if (!best || best->eax < 0x80000008)
178 goto not_found;
179 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
180 if (best)
181 return best->eax & 0xff;
182 not_found:
183 return 36;
184 }
185 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
186
187 /* when an old userspace process fills a new kernel module */
188 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
189 struct kvm_cpuid *cpuid,
190 struct kvm_cpuid_entry __user *entries)
191 {
192 int r, i;
193 struct kvm_cpuid_entry *cpuid_entries = NULL;
194
195 r = -E2BIG;
196 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
197 goto out;
198 r = -ENOMEM;
199 if (cpuid->nent) {
200 cpuid_entries =
201 vmalloc(array_size(sizeof(struct kvm_cpuid_entry),
202 cpuid->nent));
203 if (!cpuid_entries)
204 goto out;
205 r = -EFAULT;
206 if (copy_from_user(cpuid_entries, entries,
207 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
208 goto out;
209 }
210 for (i = 0; i < cpuid->nent; i++) {
211 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
212 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
213 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
214 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
215 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
216 vcpu->arch.cpuid_entries[i].index = 0;
217 vcpu->arch.cpuid_entries[i].flags = 0;
218 vcpu->arch.cpuid_entries[i].padding[0] = 0;
219 vcpu->arch.cpuid_entries[i].padding[1] = 0;
220 vcpu->arch.cpuid_entries[i].padding[2] = 0;
221 }
222 vcpu->arch.cpuid_nent = cpuid->nent;
223 cpuid_fix_nx_cap(vcpu);
224 kvm_apic_set_version(vcpu);
225 kvm_x86_ops->cpuid_update(vcpu);
226 r = kvm_update_cpuid(vcpu);
227
228 out:
229 vfree(cpuid_entries);
230 return r;
231 }
232
233 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
234 struct kvm_cpuid2 *cpuid,
235 struct kvm_cpuid_entry2 __user *entries)
236 {
237 int r;
238
239 r = -E2BIG;
240 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
241 goto out;
242 r = -EFAULT;
243 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
244 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
245 goto out;
246 vcpu->arch.cpuid_nent = cpuid->nent;
247 kvm_apic_set_version(vcpu);
248 kvm_x86_ops->cpuid_update(vcpu);
249 r = kvm_update_cpuid(vcpu);
250 out:
251 return r;
252 }
253
254 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
255 struct kvm_cpuid2 *cpuid,
256 struct kvm_cpuid_entry2 __user *entries)
257 {
258 int r;
259
260 r = -E2BIG;
261 if (cpuid->nent < vcpu->arch.cpuid_nent)
262 goto out;
263 r = -EFAULT;
264 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
265 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
266 goto out;
267 return 0;
268
269 out:
270 cpuid->nent = vcpu->arch.cpuid_nent;
271 return r;
272 }
273
274 static void cpuid_mask(u32 *word, int wordnum)
275 {
276 *word &= boot_cpu_data.x86_capability[wordnum];
277 }
278
279 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
280 u32 index)
281 {
282 entry->function = function;
283 entry->index = index;
284 cpuid_count(entry->function, entry->index,
285 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
286 entry->flags = 0;
287 }
288
289 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
290 u32 func, u32 index, int *nent, int maxnent)
291 {
292 switch (func) {
293 case 0:
294 entry->eax = 7;
295 ++*nent;
296 break;
297 case 1:
298 entry->ecx = F(MOVBE);
299 ++*nent;
300 break;
301 case 7:
302 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
303 if (index == 0)
304 entry->ecx = F(RDPID);
305 ++*nent;
306 default:
307 break;
308 }
309
310 entry->function = func;
311 entry->index = index;
312
313 return 0;
314 }
315
316 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
317 u32 index, int *nent, int maxnent)
318 {
319 int r;
320 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
321 #ifdef CONFIG_X86_64
322 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
323 ? F(GBPAGES) : 0;
324 unsigned f_lm = F(LM);
325 #else
326 unsigned f_gbpages = 0;
327 unsigned f_lm = 0;
328 #endif
329 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
330 unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
331 unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
332 unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
333 unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0;
334 unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0;
335 unsigned f_la57 = 0;
336
337 /* cpuid 1.edx */
338 const u32 kvm_cpuid_1_edx_x86_features =
339 F(FPU) | F(VME) | F(DE) | F(PSE) |
340 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
341 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
342 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
343 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
344 0 /* Reserved, DS, ACPI */ | F(MMX) |
345 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
346 0 /* HTT, TM, Reserved, PBE */;
347 /* cpuid 0x80000001.edx */
348 const u32 kvm_cpuid_8000_0001_edx_x86_features =
349 F(FPU) | F(VME) | F(DE) | F(PSE) |
350 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
351 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
352 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
353 F(PAT) | F(PSE36) | 0 /* Reserved */ |
354 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
355 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
356 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
357 /* cpuid 1.ecx */
358 const u32 kvm_cpuid_1_ecx_x86_features =
359 /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
360 * but *not* advertised to guests via CPUID ! */
361 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
362 0 /* DS-CPL, VMX, SMX, EST */ |
363 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
364 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
365 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
366 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
367 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
368 F(F16C) | F(RDRAND);
369 /* cpuid 0x80000001.ecx */
370 const u32 kvm_cpuid_8000_0001_ecx_x86_features =
371 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
372 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
373 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
374 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
375 F(TOPOEXT) | F(PERFCTR_CORE);
376
377 /* cpuid 0x80000008.ebx */
378 const u32 kvm_cpuid_8000_0008_ebx_x86_features =
379 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
380 F(AMD_SSB_NO) | F(AMD_STIBP);
381
382 /* cpuid 0xC0000001.edx */
383 const u32 kvm_cpuid_C000_0001_edx_x86_features =
384 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
385 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
386 F(PMM) | F(PMM_EN);
387
388 /* cpuid 7.0.ebx */
389 const u32 kvm_cpuid_7_0_ebx_x86_features =
390 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
391 F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
392 F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
393 F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
394 F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | f_intel_pt;
395
396 /* cpuid 0xD.1.eax */
397 const u32 kvm_cpuid_D_1_eax_x86_features =
398 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
399
400 /* cpuid 7.0.ecx*/
401 const u32 kvm_cpuid_7_0_ecx_x86_features =
402 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ |
403 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
404 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
405 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B);
406
407 /* cpuid 7.0.edx*/
408 const u32 kvm_cpuid_7_0_edx_x86_features =
409 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
410 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
411 F(MD_CLEAR);
412
413 /* all calls to cpuid_count() should be made on the same cpu */
414 get_cpu();
415
416 r = -E2BIG;
417
418 if (*nent >= maxnent)
419 goto out;
420
421 do_cpuid_1_ent(entry, function, index);
422 ++*nent;
423
424 switch (function) {
425 case 0:
426 entry->eax = min(entry->eax, (u32)(f_intel_pt ? 0x14 : 0xd));
427 break;
428 case 1:
429 entry->edx &= kvm_cpuid_1_edx_x86_features;
430 cpuid_mask(&entry->edx, CPUID_1_EDX);
431 entry->ecx &= kvm_cpuid_1_ecx_x86_features;
432 cpuid_mask(&entry->ecx, CPUID_1_ECX);
433 /* we support x2apic emulation even if host does not support
434 * it since we emulate x2apic in software */
435 entry->ecx |= F(X2APIC);
436 break;
437 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
438 * may return different values. This forces us to get_cpu() before
439 * issuing the first command, and also to emulate this annoying behavior
440 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
441 case 2: {
442 int t, times = entry->eax & 0xff;
443
444 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
445 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
446 for (t = 1; t < times; ++t) {
447 if (*nent >= maxnent)
448 goto out;
449
450 do_cpuid_1_ent(&entry[t], function, 0);
451 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
452 ++*nent;
453 }
454 break;
455 }
456 /* functions 4 and 0x8000001d have additional index. */
457 case 4:
458 case 0x8000001d: {
459 int i, cache_type;
460
461 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
462 /* read more entries until cache_type is zero */
463 for (i = 1; ; ++i) {
464 if (*nent >= maxnent)
465 goto out;
466
467 cache_type = entry[i - 1].eax & 0x1f;
468 if (!cache_type)
469 break;
470 do_cpuid_1_ent(&entry[i], function, i);
471 entry[i].flags |=
472 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
473 ++*nent;
474 }
475 break;
476 }
477 case 6: /* Thermal management */
478 entry->eax = 0x4; /* allow ARAT */
479 entry->ebx = 0;
480 entry->ecx = 0;
481 entry->edx = 0;
482 break;
483 case 7: {
484 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
485 /* Mask ebx against host capability word 9 */
486 if (index == 0) {
487 entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
488 cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
489 // TSC_ADJUST is emulated
490 entry->ebx |= F(TSC_ADJUST);
491 entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
492 f_la57 = entry->ecx & F(LA57);
493 cpuid_mask(&entry->ecx, CPUID_7_ECX);
494 /* Set LA57 based on hardware capability. */
495 entry->ecx |= f_la57;
496 entry->ecx |= f_umip;
497 /* PKU is not yet implemented for shadow paging. */
498 if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
499 entry->ecx &= ~F(PKU);
500 entry->edx &= kvm_cpuid_7_0_edx_x86_features;
501 cpuid_mask(&entry->edx, CPUID_7_EDX);
502 /*
503 * We emulate ARCH_CAPABILITIES in software even
504 * if the host doesn't support it.
505 */
506 entry->edx |= F(ARCH_CAPABILITIES);
507 } else {
508 entry->ebx = 0;
509 entry->ecx = 0;
510 entry->edx = 0;
511 }
512 entry->eax = 0;
513 break;
514 }
515 case 9:
516 break;
517 case 0xa: { /* Architectural Performance Monitoring */
518 struct x86_pmu_capability cap;
519 union cpuid10_eax eax;
520 union cpuid10_edx edx;
521
522 perf_get_x86_pmu_capability(&cap);
523
524 /*
525 * Only support guest architectural pmu on a host
526 * with architectural pmu.
527 */
528 if (!cap.version)
529 memset(&cap, 0, sizeof(cap));
530
531 eax.split.version_id = min(cap.version, 2);
532 eax.split.num_counters = cap.num_counters_gp;
533 eax.split.bit_width = cap.bit_width_gp;
534 eax.split.mask_length = cap.events_mask_len;
535
536 edx.split.num_counters_fixed = cap.num_counters_fixed;
537 edx.split.bit_width_fixed = cap.bit_width_fixed;
538 edx.split.reserved = 0;
539
540 entry->eax = eax.full;
541 entry->ebx = cap.events_mask;
542 entry->ecx = 0;
543 entry->edx = edx.full;
544 break;
545 }
546 /* function 0xb has additional index. */
547 case 0xb: {
548 int i, level_type;
549
550 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
551 /* read more entries until level_type is zero */
552 for (i = 1; ; ++i) {
553 if (*nent >= maxnent)
554 goto out;
555
556 level_type = entry[i - 1].ecx & 0xff00;
557 if (!level_type)
558 break;
559 do_cpuid_1_ent(&entry[i], function, i);
560 entry[i].flags |=
561 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
562 ++*nent;
563 }
564 break;
565 }
566 case 0xd: {
567 int idx, i;
568 u64 supported = kvm_supported_xcr0();
569
570 entry->eax &= supported;
571 entry->ebx = xstate_required_size(supported, false);
572 entry->ecx = entry->ebx;
573 entry->edx &= supported >> 32;
574 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
575 if (!supported)
576 break;
577
578 for (idx = 1, i = 1; idx < 64; ++idx) {
579 u64 mask = ((u64)1 << idx);
580 if (*nent >= maxnent)
581 goto out;
582
583 do_cpuid_1_ent(&entry[i], function, idx);
584 if (idx == 1) {
585 entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
586 cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
587 entry[i].ebx = 0;
588 if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
589 entry[i].ebx =
590 xstate_required_size(supported,
591 true);
592 } else {
593 if (entry[i].eax == 0 || !(supported & mask))
594 continue;
595 if (WARN_ON_ONCE(entry[i].ecx & 1))
596 continue;
597 }
598 entry[i].ecx = 0;
599 entry[i].edx = 0;
600 entry[i].flags |=
601 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
602 ++*nent;
603 ++i;
604 }
605 break;
606 }
607 /* Intel PT */
608 case 0x14: {
609 int t, times = entry->eax;
610
611 if (!f_intel_pt)
612 break;
613
614 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
615 for (t = 1; t <= times; ++t) {
616 if (*nent >= maxnent)
617 goto out;
618 do_cpuid_1_ent(&entry[t], function, t);
619 entry[t].flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
620 ++*nent;
621 }
622 break;
623 }
624 case KVM_CPUID_SIGNATURE: {
625 static const char signature[12] = "KVMKVMKVM\0\0";
626 const u32 *sigptr = (const u32 *)signature;
627 entry->eax = KVM_CPUID_FEATURES;
628 entry->ebx = sigptr[0];
629 entry->ecx = sigptr[1];
630 entry->edx = sigptr[2];
631 break;
632 }
633 case KVM_CPUID_FEATURES:
634 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
635 (1 << KVM_FEATURE_NOP_IO_DELAY) |
636 (1 << KVM_FEATURE_CLOCKSOURCE2) |
637 (1 << KVM_FEATURE_ASYNC_PF) |
638 (1 << KVM_FEATURE_PV_EOI) |
639 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
640 (1 << KVM_FEATURE_PV_UNHALT) |
641 (1 << KVM_FEATURE_PV_TLB_FLUSH) |
642 (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
643 (1 << KVM_FEATURE_PV_SEND_IPI);
644
645 if (sched_info_on())
646 entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
647
648 entry->ebx = 0;
649 entry->ecx = 0;
650 entry->edx = 0;
651 break;
652 case 0x80000000:
653 entry->eax = min(entry->eax, 0x8000001f);
654 break;
655 case 0x80000001:
656 entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
657 cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
658 entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
659 cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
660 break;
661 case 0x80000007: /* Advanced power management */
662 /* invariant TSC is CPUID.80000007H:EDX[8] */
663 entry->edx &= (1 << 8);
664 /* mask against host */
665 entry->edx &= boot_cpu_data.x86_power;
666 entry->eax = entry->ebx = entry->ecx = 0;
667 break;
668 case 0x80000008: {
669 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
670 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
671 unsigned phys_as = entry->eax & 0xff;
672
673 if (!g_phys_as)
674 g_phys_as = phys_as;
675 entry->eax = g_phys_as | (virt_as << 8);
676 entry->edx = 0;
677 /*
678 * IBRS, IBPB and VIRT_SSBD aren't necessarily present in
679 * hardware cpuid
680 */
681 if (boot_cpu_has(X86_FEATURE_AMD_IBPB))
682 entry->ebx |= F(AMD_IBPB);
683 if (boot_cpu_has(X86_FEATURE_AMD_IBRS))
684 entry->ebx |= F(AMD_IBRS);
685 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
686 entry->ebx |= F(VIRT_SSBD);
687 entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
688 cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
689 /*
690 * The preference is to use SPEC CTRL MSR instead of the
691 * VIRT_SPEC MSR.
692 */
693 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
694 !boot_cpu_has(X86_FEATURE_AMD_SSBD))
695 entry->ebx |= F(VIRT_SSBD);
696 break;
697 }
698 case 0x80000019:
699 entry->ecx = entry->edx = 0;
700 break;
701 case 0x8000001a:
702 case 0x8000001e:
703 break;
704 /*Add support for Centaur's CPUID instruction*/
705 case 0xC0000000:
706 /*Just support up to 0xC0000004 now*/
707 entry->eax = min(entry->eax, 0xC0000004);
708 break;
709 case 0xC0000001:
710 entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
711 cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
712 break;
713 case 3: /* Processor serial number */
714 case 5: /* MONITOR/MWAIT */
715 case 0xC0000002:
716 case 0xC0000003:
717 case 0xC0000004:
718 default:
719 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
720 break;
721 }
722
723 kvm_x86_ops->set_supported_cpuid(function, entry);
724
725 r = 0;
726
727 out:
728 put_cpu();
729
730 return r;
731 }
732
733 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
734 u32 idx, int *nent, int maxnent, unsigned int type)
735 {
736 if (type == KVM_GET_EMULATED_CPUID)
737 return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
738
739 return __do_cpuid_ent(entry, func, idx, nent, maxnent);
740 }
741
742 #undef F
743
744 struct kvm_cpuid_param {
745 u32 func;
746 u32 idx;
747 bool has_leaf_count;
748 bool (*qualifier)(const struct kvm_cpuid_param *param);
749 };
750
751 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
752 {
753 return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
754 }
755
756 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
757 __u32 num_entries, unsigned int ioctl_type)
758 {
759 int i;
760 __u32 pad[3];
761
762 if (ioctl_type != KVM_GET_EMULATED_CPUID)
763 return false;
764
765 /*
766 * We want to make sure that ->padding is being passed clean from
767 * userspace in case we want to use it for something in the future.
768 *
769 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
770 * have to give ourselves satisfied only with the emulated side. /me
771 * sheds a tear.
772 */
773 for (i = 0; i < num_entries; i++) {
774 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
775 return true;
776
777 if (pad[0] || pad[1] || pad[2])
778 return true;
779 }
780 return false;
781 }
782
783 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
784 struct kvm_cpuid_entry2 __user *entries,
785 unsigned int type)
786 {
787 struct kvm_cpuid_entry2 *cpuid_entries;
788 int limit, nent = 0, r = -E2BIG, i;
789 u32 func;
790 static const struct kvm_cpuid_param param[] = {
791 { .func = 0, .has_leaf_count = true },
792 { .func = 0x80000000, .has_leaf_count = true },
793 { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
794 { .func = KVM_CPUID_SIGNATURE },
795 { .func = KVM_CPUID_FEATURES },
796 };
797
798 if (cpuid->nent < 1)
799 goto out;
800 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
801 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
802
803 if (sanity_check_entries(entries, cpuid->nent, type))
804 return -EINVAL;
805
806 r = -ENOMEM;
807 cpuid_entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
808 cpuid->nent));
809 if (!cpuid_entries)
810 goto out;
811
812 r = 0;
813 for (i = 0; i < ARRAY_SIZE(param); i++) {
814 const struct kvm_cpuid_param *ent = &param[i];
815
816 if (ent->qualifier && !ent->qualifier(ent))
817 continue;
818
819 r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
820 &nent, cpuid->nent, type);
821
822 if (r)
823 goto out_free;
824
825 if (!ent->has_leaf_count)
826 continue;
827
828 limit = cpuid_entries[nent - 1].eax;
829 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
830 r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
831 &nent, cpuid->nent, type);
832
833 if (r)
834 goto out_free;
835 }
836
837 r = -EFAULT;
838 if (copy_to_user(entries, cpuid_entries,
839 nent * sizeof(struct kvm_cpuid_entry2)))
840 goto out_free;
841 cpuid->nent = nent;
842 r = 0;
843
844 out_free:
845 vfree(cpuid_entries);
846 out:
847 return r;
848 }
849
850 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
851 {
852 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
853 struct kvm_cpuid_entry2 *ej;
854 int j = i;
855 int nent = vcpu->arch.cpuid_nent;
856
857 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
858 /* when no next entry is found, the current entry[i] is reselected */
859 do {
860 j = (j + 1) % nent;
861 ej = &vcpu->arch.cpuid_entries[j];
862 } while (ej->function != e->function);
863
864 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
865
866 return j;
867 }
868
869 /* find an entry with matching function, matching index (if needed), and that
870 * should be read next (if it's stateful) */
871 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
872 u32 function, u32 index)
873 {
874 if (e->function != function)
875 return 0;
876 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
877 return 0;
878 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
879 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
880 return 0;
881 return 1;
882 }
883
884 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
885 u32 function, u32 index)
886 {
887 int i;
888 struct kvm_cpuid_entry2 *best = NULL;
889
890 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
891 struct kvm_cpuid_entry2 *e;
892
893 e = &vcpu->arch.cpuid_entries[i];
894 if (is_matching_cpuid_entry(e, function, index)) {
895 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
896 move_to_next_stateful_cpuid_entry(vcpu, i);
897 best = e;
898 break;
899 }
900 }
901 return best;
902 }
903 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
904
905 /*
906 * If no match is found, check whether we exceed the vCPU's limit
907 * and return the content of the highest valid _standard_ leaf instead.
908 * This is to satisfy the CPUID specification.
909 */
910 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
911 u32 function, u32 index)
912 {
913 struct kvm_cpuid_entry2 *maxlevel;
914
915 maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
916 if (!maxlevel || maxlevel->eax >= function)
917 return NULL;
918 if (function & 0x80000000) {
919 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
920 if (!maxlevel)
921 return NULL;
922 }
923 return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
924 }
925
926 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
927 u32 *ecx, u32 *edx, bool check_limit)
928 {
929 u32 function = *eax, index = *ecx;
930 struct kvm_cpuid_entry2 *best;
931 bool entry_found = true;
932
933 best = kvm_find_cpuid_entry(vcpu, function, index);
934
935 if (!best) {
936 entry_found = false;
937 if (!check_limit)
938 goto out;
939
940 best = check_cpuid_limit(vcpu, function, index);
941 }
942
943 out:
944 if (best) {
945 *eax = best->eax;
946 *ebx = best->ebx;
947 *ecx = best->ecx;
948 *edx = best->edx;
949 } else
950 *eax = *ebx = *ecx = *edx = 0;
951 trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, entry_found);
952 return entry_found;
953 }
954 EXPORT_SYMBOL_GPL(kvm_cpuid);
955
956 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
957 {
958 u32 eax, ebx, ecx, edx;
959
960 if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
961 return 1;
962
963 eax = kvm_rax_read(vcpu);
964 ecx = kvm_rcx_read(vcpu);
965 kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true);
966 kvm_rax_write(vcpu, eax);
967 kvm_rbx_write(vcpu, ebx);
968 kvm_rcx_write(vcpu, ecx);
969 kvm_rdx_write(vcpu, edx);
970 return kvm_skip_emulated_instruction(vcpu);
971 }
972 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);