]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/x86/kvm/paging_tmpl.h
367a47df4ba0e749406c6ce6a3598a2c6b3433ec
[thirdparty/kernel/stable.git] / arch / x86 / kvm / paging_tmpl.h
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 /*
22 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
23 * so the code in this file is compiled twice, once per pte size.
24 */
25
26 #if PTTYPE == 64
27 #define pt_element_t u64
28 #define guest_walker guest_walker64
29 #define FNAME(name) paging##64_##name
30 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
31 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
32 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
33 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
34 #define PT_LEVEL_BITS PT64_LEVEL_BITS
35 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
36 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
37 #define PT_HAVE_ACCESSED_DIRTY(mmu) true
38 #ifdef CONFIG_X86_64
39 #define PT_MAX_FULL_LEVELS 4
40 #define CMPXCHG cmpxchg
41 #else
42 #define CMPXCHG cmpxchg64
43 #define PT_MAX_FULL_LEVELS 2
44 #endif
45 #elif PTTYPE == 32
46 #define pt_element_t u32
47 #define guest_walker guest_walker32
48 #define FNAME(name) paging##32_##name
49 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
50 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
51 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
52 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
53 #define PT_LEVEL_BITS PT32_LEVEL_BITS
54 #define PT_MAX_FULL_LEVELS 2
55 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
56 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
57 #define PT_HAVE_ACCESSED_DIRTY(mmu) true
58 #define CMPXCHG cmpxchg
59 #elif PTTYPE == PTTYPE_EPT
60 #define pt_element_t u64
61 #define guest_walker guest_walkerEPT
62 #define FNAME(name) ept_##name
63 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
64 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
65 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
66 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
67 #define PT_LEVEL_BITS PT64_LEVEL_BITS
68 #define PT_GUEST_DIRTY_SHIFT 9
69 #define PT_GUEST_ACCESSED_SHIFT 8
70 #define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad)
71 #define CMPXCHG cmpxchg64
72 #define PT_MAX_FULL_LEVELS 4
73 #else
74 #error Invalid PTTYPE value
75 #endif
76
77 #define PT_GUEST_DIRTY_MASK (1 << PT_GUEST_DIRTY_SHIFT)
78 #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
79
80 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
81 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
82
83 /*
84 * The guest_walker structure emulates the behavior of the hardware page
85 * table walker.
86 */
87 struct guest_walker {
88 int level;
89 unsigned max_level;
90 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
91 pt_element_t ptes[PT_MAX_FULL_LEVELS];
92 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
93 gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
94 pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
95 bool pte_writable[PT_MAX_FULL_LEVELS];
96 unsigned pt_access;
97 unsigned pte_access;
98 gfn_t gfn;
99 struct x86_exception fault;
100 };
101
102 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
103 {
104 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
105 }
106
107 static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
108 unsigned gpte)
109 {
110 unsigned mask;
111
112 /* dirty bit is not supported, so no need to track it */
113 if (!PT_HAVE_ACCESSED_DIRTY(mmu))
114 return;
115
116 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
117
118 mask = (unsigned)~ACC_WRITE_MASK;
119 /* Allow write access to dirty gptes */
120 mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
121 PT_WRITABLE_MASK;
122 *access &= mask;
123 }
124
125 static inline int FNAME(is_present_gpte)(unsigned long pte)
126 {
127 #if PTTYPE != PTTYPE_EPT
128 return pte & PT_PRESENT_MASK;
129 #else
130 return pte & 7;
131 #endif
132 }
133
134 static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
135 pt_element_t __user *ptep_user, unsigned index,
136 pt_element_t orig_pte, pt_element_t new_pte)
137 {
138 int npages;
139 pt_element_t ret;
140 pt_element_t *table;
141 struct page *page;
142
143 npages = get_user_pages_fast((unsigned long)ptep_user, 1, FOLL_WRITE, &page);
144 if (likely(npages == 1)) {
145 table = kmap_atomic(page);
146 ret = CMPXCHG(&table[index], orig_pte, new_pte);
147 kunmap_atomic(table);
148
149 kvm_release_page_dirty(page);
150 } else {
151 struct vm_area_struct *vma;
152 unsigned long vaddr = (unsigned long)ptep_user & PAGE_MASK;
153 unsigned long pfn;
154 unsigned long paddr;
155
156 down_read(&current->mm->mmap_sem);
157 vma = find_vma_intersection(current->mm, vaddr, vaddr + PAGE_SIZE);
158 if (!vma || !(vma->vm_flags & VM_PFNMAP)) {
159 up_read(&current->mm->mmap_sem);
160 return -EFAULT;
161 }
162 pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
163 paddr = pfn << PAGE_SHIFT;
164 table = memremap(paddr, PAGE_SIZE, MEMREMAP_WB);
165 if (!table) {
166 up_read(&current->mm->mmap_sem);
167 return -EFAULT;
168 }
169 ret = CMPXCHG(&table[index], orig_pte, new_pte);
170 memunmap(table);
171 up_read(&current->mm->mmap_sem);
172 }
173
174 return (ret != orig_pte);
175 }
176
177 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
178 struct kvm_mmu_page *sp, u64 *spte,
179 u64 gpte)
180 {
181 if (is_rsvd_bits_set(vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
182 goto no_present;
183
184 if (!FNAME(is_present_gpte)(gpte))
185 goto no_present;
186
187 /* if accessed bit is not supported prefetch non accessed gpte */
188 if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
189 !(gpte & PT_GUEST_ACCESSED_MASK))
190 goto no_present;
191
192 return false;
193
194 no_present:
195 drop_spte(vcpu->kvm, spte);
196 return true;
197 }
198
199 /*
200 * For PTTYPE_EPT, a page table can be executable but not readable
201 * on supported processors. Therefore, set_spte does not automatically
202 * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
203 * to signify readability since it isn't used in the EPT case
204 */
205 static inline unsigned FNAME(gpte_access)(u64 gpte)
206 {
207 unsigned access;
208 #if PTTYPE == PTTYPE_EPT
209 access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
210 ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
211 ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
212 #else
213 BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
214 BUILD_BUG_ON(ACC_EXEC_MASK != 1);
215 access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
216 /* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */
217 access ^= (gpte >> PT64_NX_SHIFT);
218 #endif
219
220 return access;
221 }
222
223 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
224 struct kvm_mmu *mmu,
225 struct guest_walker *walker,
226 int write_fault)
227 {
228 unsigned level, index;
229 pt_element_t pte, orig_pte;
230 pt_element_t __user *ptep_user;
231 gfn_t table_gfn;
232 int ret;
233
234 /* dirty/accessed bits are not supported, so no need to update them */
235 if (!PT_HAVE_ACCESSED_DIRTY(mmu))
236 return 0;
237
238 for (level = walker->max_level; level >= walker->level; --level) {
239 pte = orig_pte = walker->ptes[level - 1];
240 table_gfn = walker->table_gfn[level - 1];
241 ptep_user = walker->ptep_user[level - 1];
242 index = offset_in_page(ptep_user) / sizeof(pt_element_t);
243 if (!(pte & PT_GUEST_ACCESSED_MASK)) {
244 trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
245 pte |= PT_GUEST_ACCESSED_MASK;
246 }
247 if (level == walker->level && write_fault &&
248 !(pte & PT_GUEST_DIRTY_MASK)) {
249 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
250 #if PTTYPE == PTTYPE_EPT
251 if (kvm_arch_write_log_dirty(vcpu))
252 return -EINVAL;
253 #endif
254 pte |= PT_GUEST_DIRTY_MASK;
255 }
256 if (pte == orig_pte)
257 continue;
258
259 /*
260 * If the slot is read-only, simply do not process the accessed
261 * and dirty bits. This is the correct thing to do if the slot
262 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
263 * are only supported if the accessed and dirty bits are already
264 * set in the ROM (so that MMIO writes are never needed).
265 *
266 * Note that NPT does not allow this at all and faults, since
267 * it always wants nested page table entries for the guest
268 * page tables to be writable. And EPT works but will simply
269 * overwrite the read-only memory to set the accessed and dirty
270 * bits.
271 */
272 if (unlikely(!walker->pte_writable[level - 1]))
273 continue;
274
275 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
276 if (ret)
277 return ret;
278
279 kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
280 walker->ptes[level - 1] = pte;
281 }
282 return 0;
283 }
284
285 static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
286 {
287 unsigned pkeys = 0;
288 #if PTTYPE == 64
289 pte_t pte = {.pte = gpte};
290
291 pkeys = pte_flags_pkey(pte_flags(pte));
292 #endif
293 return pkeys;
294 }
295
296 /*
297 * Fetch a guest pte for a guest virtual address
298 */
299 static int FNAME(walk_addr_generic)(struct guest_walker *walker,
300 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
301 gva_t addr, u32 access)
302 {
303 int ret;
304 pt_element_t pte;
305 pt_element_t __user *uninitialized_var(ptep_user);
306 gfn_t table_gfn;
307 u64 pt_access, pte_access;
308 unsigned index, accessed_dirty, pte_pkey;
309 unsigned nested_access;
310 gpa_t pte_gpa;
311 bool have_ad;
312 int offset;
313 u64 walk_nx_mask = 0;
314 const int write_fault = access & PFERR_WRITE_MASK;
315 const int user_fault = access & PFERR_USER_MASK;
316 const int fetch_fault = access & PFERR_FETCH_MASK;
317 u16 errcode = 0;
318 gpa_t real_gpa;
319 gfn_t gfn;
320
321 trace_kvm_mmu_pagetable_walk(addr, access);
322 retry_walk:
323 walker->level = mmu->root_level;
324 pte = mmu->get_cr3(vcpu);
325 have_ad = PT_HAVE_ACCESSED_DIRTY(mmu);
326
327 #if PTTYPE == 64
328 walk_nx_mask = 1ULL << PT64_NX_SHIFT;
329 if (walker->level == PT32E_ROOT_LEVEL) {
330 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
331 trace_kvm_mmu_paging_element(pte, walker->level);
332 if (!FNAME(is_present_gpte)(pte))
333 goto error;
334 --walker->level;
335 }
336 #endif
337 walker->max_level = walker->level;
338 ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
339
340 /*
341 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
342 * by the MOV to CR instruction are treated as reads and do not cause the
343 * processor to set the dirty flag in any EPT paging-structure entry.
344 */
345 nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
346
347 pte_access = ~0;
348 ++walker->level;
349
350 do {
351 gfn_t real_gfn;
352 unsigned long host_addr;
353
354 pt_access = pte_access;
355 --walker->level;
356
357 index = PT_INDEX(addr, walker->level);
358 table_gfn = gpte_to_gfn(pte);
359 offset = index * sizeof(pt_element_t);
360 pte_gpa = gfn_to_gpa(table_gfn) + offset;
361
362 BUG_ON(walker->level < 1);
363 walker->table_gfn[walker->level - 1] = table_gfn;
364 walker->pte_gpa[walker->level - 1] = pte_gpa;
365
366 real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
367 nested_access,
368 &walker->fault);
369
370 /*
371 * FIXME: This can happen if emulation (for of an INS/OUTS
372 * instruction) triggers a nested page fault. The exit
373 * qualification / exit info field will incorrectly have
374 * "guest page access" as the nested page fault's cause,
375 * instead of "guest page structure access". To fix this,
376 * the x86_exception struct should be augmented with enough
377 * information to fix the exit_qualification or exit_info_1
378 * fields.
379 */
380 if (unlikely(real_gfn == UNMAPPED_GVA))
381 return 0;
382
383 real_gfn = gpa_to_gfn(real_gfn);
384
385 host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, real_gfn,
386 &walker->pte_writable[walker->level - 1]);
387 if (unlikely(kvm_is_error_hva(host_addr)))
388 goto error;
389
390 ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
391 if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
392 goto error;
393 walker->ptep_user[walker->level - 1] = ptep_user;
394
395 trace_kvm_mmu_paging_element(pte, walker->level);
396
397 /*
398 * Inverting the NX it lets us AND it like other
399 * permission bits.
400 */
401 pte_access = pt_access & (pte ^ walk_nx_mask);
402
403 if (unlikely(!FNAME(is_present_gpte)(pte)))
404 goto error;
405
406 if (unlikely(is_rsvd_bits_set(mmu, pte, walker->level))) {
407 errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
408 goto error;
409 }
410
411 walker->ptes[walker->level - 1] = pte;
412 } while (!is_last_gpte(mmu, walker->level, pte));
413
414 pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
415 accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
416
417 /* Convert to ACC_*_MASK flags for struct guest_walker. */
418 walker->pt_access = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
419 walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
420 errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
421 if (unlikely(errcode))
422 goto error;
423
424 gfn = gpte_to_gfn_lvl(pte, walker->level);
425 gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
426
427 if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
428 gfn += pse36_gfn_delta(pte);
429
430 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
431 if (real_gpa == UNMAPPED_GVA)
432 return 0;
433
434 walker->gfn = real_gpa >> PAGE_SHIFT;
435
436 if (!write_fault)
437 FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
438 else
439 /*
440 * On a write fault, fold the dirty bit into accessed_dirty.
441 * For modes without A/D bits support accessed_dirty will be
442 * always clear.
443 */
444 accessed_dirty &= pte >>
445 (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
446
447 if (unlikely(!accessed_dirty)) {
448 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
449 if (unlikely(ret < 0))
450 goto error;
451 else if (ret)
452 goto retry_walk;
453 }
454
455 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
456 __func__, (u64)pte, walker->pte_access, walker->pt_access);
457 return 1;
458
459 error:
460 errcode |= write_fault | user_fault;
461 if (fetch_fault && (mmu->nx ||
462 kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
463 errcode |= PFERR_FETCH_MASK;
464
465 walker->fault.vector = PF_VECTOR;
466 walker->fault.error_code_valid = true;
467 walker->fault.error_code = errcode;
468
469 #if PTTYPE == PTTYPE_EPT
470 /*
471 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
472 * misconfiguration requires to be injected. The detection is
473 * done by is_rsvd_bits_set() above.
474 *
475 * We set up the value of exit_qualification to inject:
476 * [2:0] - Derive from the access bits. The exit_qualification might be
477 * out of date if it is serving an EPT misconfiguration.
478 * [5:3] - Calculated by the page walk of the guest EPT page tables
479 * [7:8] - Derived from [7:8] of real exit_qualification
480 *
481 * The other bits are set to 0.
482 */
483 if (!(errcode & PFERR_RSVD_MASK)) {
484 vcpu->arch.exit_qualification &= 0x180;
485 if (write_fault)
486 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
487 if (user_fault)
488 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
489 if (fetch_fault)
490 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
491 vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3;
492 }
493 #endif
494 walker->fault.address = addr;
495 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
496
497 trace_kvm_mmu_walker_error(walker->fault.error_code);
498 return 0;
499 }
500
501 static int FNAME(walk_addr)(struct guest_walker *walker,
502 struct kvm_vcpu *vcpu, gva_t addr, u32 access)
503 {
504 return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
505 access);
506 }
507
508 #if PTTYPE != PTTYPE_EPT
509 static int FNAME(walk_addr_nested)(struct guest_walker *walker,
510 struct kvm_vcpu *vcpu, gva_t addr,
511 u32 access)
512 {
513 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
514 addr, access);
515 }
516 #endif
517
518 static bool
519 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
520 u64 *spte, pt_element_t gpte, bool no_dirty_log)
521 {
522 unsigned pte_access;
523 gfn_t gfn;
524 kvm_pfn_t pfn;
525
526 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
527 return false;
528
529 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
530
531 gfn = gpte_to_gfn(gpte);
532 pte_access = sp->role.access & FNAME(gpte_access)(gpte);
533 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
534 pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
535 no_dirty_log && (pte_access & ACC_WRITE_MASK));
536 if (is_error_pfn(pfn))
537 return false;
538
539 /*
540 * we call mmu_set_spte() with host_writable = true because
541 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
542 */
543 mmu_set_spte(vcpu, spte, pte_access, 0, PT_PAGE_TABLE_LEVEL, gfn, pfn,
544 true, true);
545
546 return true;
547 }
548
549 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
550 u64 *spte, const void *pte)
551 {
552 pt_element_t gpte = *(const pt_element_t *)pte;
553
554 FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
555 }
556
557 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
558 struct guest_walker *gw, int level)
559 {
560 pt_element_t curr_pte;
561 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
562 u64 mask;
563 int r, index;
564
565 if (level == PT_PAGE_TABLE_LEVEL) {
566 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
567 base_gpa = pte_gpa & ~mask;
568 index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
569
570 r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
571 gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
572 curr_pte = gw->prefetch_ptes[index];
573 } else
574 r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
575 &curr_pte, sizeof(curr_pte));
576
577 return r || curr_pte != gw->ptes[level - 1];
578 }
579
580 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
581 u64 *sptep)
582 {
583 struct kvm_mmu_page *sp;
584 pt_element_t *gptep = gw->prefetch_ptes;
585 u64 *spte;
586 int i;
587
588 sp = page_header(__pa(sptep));
589
590 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
591 return;
592
593 if (sp->role.direct)
594 return __direct_pte_prefetch(vcpu, sp, sptep);
595
596 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
597 spte = sp->spt + i;
598
599 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
600 if (spte == sptep)
601 continue;
602
603 if (is_shadow_present_pte(*spte))
604 continue;
605
606 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
607 break;
608 }
609 }
610
611 /*
612 * Fetch a shadow pte for a specific level in the paging hierarchy.
613 * If the guest tries to write a write-protected page, we need to
614 * emulate this operation, return 1 to indicate this case.
615 */
616 static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
617 struct guest_walker *gw,
618 int write_fault, int hlevel,
619 kvm_pfn_t pfn, bool map_writable, bool prefault)
620 {
621 struct kvm_mmu_page *sp = NULL;
622 struct kvm_shadow_walk_iterator it;
623 unsigned direct_access, access = gw->pt_access;
624 int top_level, ret;
625
626 direct_access = gw->pte_access;
627
628 top_level = vcpu->arch.mmu->root_level;
629 if (top_level == PT32E_ROOT_LEVEL)
630 top_level = PT32_ROOT_LEVEL;
631 /*
632 * Verify that the top-level gpte is still there. Since the page
633 * is a root page, it is either write protected (and cannot be
634 * changed from now on) or it is invalid (in which case, we don't
635 * really care if it changes underneath us after this point).
636 */
637 if (FNAME(gpte_changed)(vcpu, gw, top_level))
638 goto out_gpte_changed;
639
640 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
641 goto out_gpte_changed;
642
643 for (shadow_walk_init(&it, vcpu, addr);
644 shadow_walk_okay(&it) && it.level > gw->level;
645 shadow_walk_next(&it)) {
646 gfn_t table_gfn;
647
648 clear_sp_write_flooding_count(it.sptep);
649 drop_large_spte(vcpu, it.sptep);
650
651 sp = NULL;
652 if (!is_shadow_present_pte(*it.sptep)) {
653 table_gfn = gw->table_gfn[it.level - 2];
654 sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
655 false, access);
656 }
657
658 /*
659 * Verify that the gpte in the page we've just write
660 * protected is still there.
661 */
662 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
663 goto out_gpte_changed;
664
665 if (sp)
666 link_shadow_page(vcpu, it.sptep, sp);
667 }
668
669 for (;
670 shadow_walk_okay(&it) && it.level > hlevel;
671 shadow_walk_next(&it)) {
672 gfn_t direct_gfn;
673
674 clear_sp_write_flooding_count(it.sptep);
675 validate_direct_spte(vcpu, it.sptep, direct_access);
676
677 drop_large_spte(vcpu, it.sptep);
678
679 if (is_shadow_present_pte(*it.sptep))
680 continue;
681
682 direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
683
684 sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
685 true, direct_access);
686 link_shadow_page(vcpu, it.sptep, sp);
687 }
688
689 clear_sp_write_flooding_count(it.sptep);
690 ret = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault,
691 it.level, gw->gfn, pfn, prefault, map_writable);
692 FNAME(pte_prefetch)(vcpu, gw, it.sptep);
693
694 return ret;
695
696 out_gpte_changed:
697 kvm_release_pfn_clean(pfn);
698 return RET_PF_RETRY;
699 }
700
701 /*
702 * To see whether the mapped gfn can write its page table in the current
703 * mapping.
704 *
705 * It is the helper function of FNAME(page_fault). When guest uses large page
706 * size to map the writable gfn which is used as current page table, we should
707 * force kvm to use small page size to map it because new shadow page will be
708 * created when kvm establishes shadow page table that stop kvm using large
709 * page size. Do it early can avoid unnecessary #PF and emulation.
710 *
711 * @write_fault_to_shadow_pgtable will return true if the fault gfn is
712 * currently used as its page table.
713 *
714 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
715 * since the PDPT is always shadowed, that means, we can not use large page
716 * size to map the gfn which is used as PDPT.
717 */
718 static bool
719 FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
720 struct guest_walker *walker, int user_fault,
721 bool *write_fault_to_shadow_pgtable)
722 {
723 int level;
724 gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
725 bool self_changed = false;
726
727 if (!(walker->pte_access & ACC_WRITE_MASK ||
728 (!is_write_protection(vcpu) && !user_fault)))
729 return false;
730
731 for (level = walker->level; level <= walker->max_level; level++) {
732 gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
733
734 self_changed |= !(gfn & mask);
735 *write_fault_to_shadow_pgtable |= !gfn;
736 }
737
738 return self_changed;
739 }
740
741 /*
742 * Page fault handler. There are several causes for a page fault:
743 * - there is no shadow pte for the guest pte
744 * - write access through a shadow pte marked read only so that we can set
745 * the dirty bit
746 * - write access to a shadow pte marked read only so we can update the page
747 * dirty bitmap, when userspace requests it
748 * - mmio access; in this case we will never install a present shadow pte
749 * - normal guest page fault due to the guest pte marked not present, not
750 * writable, or not executable
751 *
752 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
753 * a negative value on error.
754 */
755 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
756 bool prefault)
757 {
758 int write_fault = error_code & PFERR_WRITE_MASK;
759 int user_fault = error_code & PFERR_USER_MASK;
760 struct guest_walker walker;
761 int r;
762 kvm_pfn_t pfn;
763 int level = PT_PAGE_TABLE_LEVEL;
764 bool force_pt_level = false;
765 unsigned long mmu_seq;
766 bool map_writable, is_self_change_mapping;
767
768 pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
769
770 r = mmu_topup_memory_caches(vcpu);
771 if (r)
772 return r;
773
774 /*
775 * If PFEC.RSVD is set, this is a shadow page fault.
776 * The bit needs to be cleared before walking guest page tables.
777 */
778 error_code &= ~PFERR_RSVD_MASK;
779
780 /*
781 * Look up the guest pte for the faulting address.
782 */
783 r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
784
785 /*
786 * The page is not mapped by the guest. Let the guest handle it.
787 */
788 if (!r) {
789 pgprintk("%s: guest page fault\n", __func__);
790 if (!prefault)
791 inject_page_fault(vcpu, &walker.fault);
792
793 return RET_PF_RETRY;
794 }
795
796 if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) {
797 shadow_page_table_clear_flood(vcpu, addr);
798 return RET_PF_EMULATE;
799 }
800
801 vcpu->arch.write_fault_to_shadow_pgtable = false;
802
803 is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
804 &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
805
806 if (walker.level >= PT_DIRECTORY_LEVEL && !is_self_change_mapping) {
807 level = mapping_level(vcpu, walker.gfn, &force_pt_level);
808 if (likely(!force_pt_level)) {
809 level = min(walker.level, level);
810 walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
811 }
812 } else
813 force_pt_level = true;
814
815 mmu_seq = vcpu->kvm->mmu_notifier_seq;
816 smp_rmb();
817
818 if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
819 &map_writable))
820 return RET_PF_RETRY;
821
822 if (handle_abnormal_pfn(vcpu, addr, walker.gfn, pfn, walker.pte_access, &r))
823 return r;
824
825 /*
826 * Do not change pte_access if the pfn is a mmio page, otherwise
827 * we will cache the incorrect access into mmio spte.
828 */
829 if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
830 !is_write_protection(vcpu) && !user_fault &&
831 !is_noslot_pfn(pfn)) {
832 walker.pte_access |= ACC_WRITE_MASK;
833 walker.pte_access &= ~ACC_USER_MASK;
834
835 /*
836 * If we converted a user page to a kernel page,
837 * so that the kernel can write to it when cr0.wp=0,
838 * then we should prevent the kernel from executing it
839 * if SMEP is enabled.
840 */
841 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
842 walker.pte_access &= ~ACC_EXEC_MASK;
843 }
844
845 spin_lock(&vcpu->kvm->mmu_lock);
846 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
847 goto out_unlock;
848
849 kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
850 if (make_mmu_pages_available(vcpu) < 0)
851 goto out_unlock;
852 if (!force_pt_level)
853 transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
854 r = FNAME(fetch)(vcpu, addr, &walker, write_fault,
855 level, pfn, map_writable, prefault);
856 ++vcpu->stat.pf_fixed;
857 kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
858 spin_unlock(&vcpu->kvm->mmu_lock);
859
860 return r;
861
862 out_unlock:
863 spin_unlock(&vcpu->kvm->mmu_lock);
864 kvm_release_pfn_clean(pfn);
865 return RET_PF_RETRY;
866 }
867
868 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
869 {
870 int offset = 0;
871
872 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
873
874 if (PTTYPE == 32)
875 offset = sp->role.quadrant << PT64_LEVEL_BITS;
876
877 return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
878 }
879
880 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
881 {
882 struct kvm_shadow_walk_iterator iterator;
883 struct kvm_mmu_page *sp;
884 int level;
885 u64 *sptep;
886
887 vcpu_clear_mmio_info(vcpu, gva);
888
889 /*
890 * No need to check return value here, rmap_can_add() can
891 * help us to skip pte prefetch later.
892 */
893 mmu_topup_memory_caches(vcpu);
894
895 if (!VALID_PAGE(root_hpa)) {
896 WARN_ON(1);
897 return;
898 }
899
900 spin_lock(&vcpu->kvm->mmu_lock);
901 for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) {
902 level = iterator.level;
903 sptep = iterator.sptep;
904
905 sp = page_header(__pa(sptep));
906 if (is_last_spte(*sptep, level)) {
907 pt_element_t gpte;
908 gpa_t pte_gpa;
909
910 if (!sp->unsync)
911 break;
912
913 pte_gpa = FNAME(get_level1_sp_gpa)(sp);
914 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
915
916 if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
917 kvm_flush_remote_tlbs_with_address(vcpu->kvm,
918 sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
919
920 if (!rmap_can_add(vcpu))
921 break;
922
923 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
924 sizeof(pt_element_t)))
925 break;
926
927 FNAME(update_pte)(vcpu, sp, sptep, &gpte);
928 }
929
930 if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
931 break;
932 }
933 spin_unlock(&vcpu->kvm->mmu_lock);
934 }
935
936 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
937 struct x86_exception *exception)
938 {
939 struct guest_walker walker;
940 gpa_t gpa = UNMAPPED_GVA;
941 int r;
942
943 r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
944
945 if (r) {
946 gpa = gfn_to_gpa(walker.gfn);
947 gpa |= vaddr & ~PAGE_MASK;
948 } else if (exception)
949 *exception = walker.fault;
950
951 return gpa;
952 }
953
954 #if PTTYPE != PTTYPE_EPT
955 static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
956 u32 access,
957 struct x86_exception *exception)
958 {
959 struct guest_walker walker;
960 gpa_t gpa = UNMAPPED_GVA;
961 int r;
962
963 r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
964
965 if (r) {
966 gpa = gfn_to_gpa(walker.gfn);
967 gpa |= vaddr & ~PAGE_MASK;
968 } else if (exception)
969 *exception = walker.fault;
970
971 return gpa;
972 }
973 #endif
974
975 /*
976 * Using the cached information from sp->gfns is safe because:
977 * - The spte has a reference to the struct page, so the pfn for a given gfn
978 * can't change unless all sptes pointing to it are nuked first.
979 *
980 * Note:
981 * We should flush all tlbs if spte is dropped even though guest is
982 * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
983 * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
984 * used by guest then tlbs are not flushed, so guest is allowed to access the
985 * freed pages.
986 * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
987 */
988 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
989 {
990 int i, nr_present = 0;
991 bool host_writable;
992 gpa_t first_pte_gpa;
993 int set_spte_ret = 0;
994
995 /* direct kvm_mmu_page can not be unsync. */
996 BUG_ON(sp->role.direct);
997
998 first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
999
1000 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
1001 unsigned pte_access;
1002 pt_element_t gpte;
1003 gpa_t pte_gpa;
1004 gfn_t gfn;
1005
1006 if (!sp->spt[i])
1007 continue;
1008
1009 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
1010
1011 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
1012 sizeof(pt_element_t)))
1013 return 0;
1014
1015 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
1016 /*
1017 * Update spte before increasing tlbs_dirty to make
1018 * sure no tlb flush is lost after spte is zapped; see
1019 * the comments in kvm_flush_remote_tlbs().
1020 */
1021 smp_wmb();
1022 vcpu->kvm->tlbs_dirty++;
1023 continue;
1024 }
1025
1026 gfn = gpte_to_gfn(gpte);
1027 pte_access = sp->role.access;
1028 pte_access &= FNAME(gpte_access)(gpte);
1029 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
1030
1031 if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
1032 &nr_present))
1033 continue;
1034
1035 if (gfn != sp->gfns[i]) {
1036 drop_spte(vcpu->kvm, &sp->spt[i]);
1037 /*
1038 * The same as above where we are doing
1039 * prefetch_invalid_gpte().
1040 */
1041 smp_wmb();
1042 vcpu->kvm->tlbs_dirty++;
1043 continue;
1044 }
1045
1046 nr_present++;
1047
1048 host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
1049
1050 set_spte_ret |= set_spte(vcpu, &sp->spt[i],
1051 pte_access, PT_PAGE_TABLE_LEVEL,
1052 gfn, spte_to_pfn(sp->spt[i]),
1053 true, false, host_writable);
1054 }
1055
1056 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH)
1057 kvm_flush_remote_tlbs(vcpu->kvm);
1058
1059 return nr_present;
1060 }
1061
1062 #undef pt_element_t
1063 #undef guest_walker
1064 #undef FNAME
1065 #undef PT_BASE_ADDR_MASK
1066 #undef PT_INDEX
1067 #undef PT_LVL_ADDR_MASK
1068 #undef PT_LVL_OFFSET_MASK
1069 #undef PT_LEVEL_BITS
1070 #undef PT_MAX_FULL_LEVELS
1071 #undef gpte_to_gfn
1072 #undef gpte_to_gfn_lvl
1073 #undef CMPXCHG
1074 #undef PT_GUEST_ACCESSED_MASK
1075 #undef PT_GUEST_DIRTY_MASK
1076 #undef PT_GUEST_DIRTY_SHIFT
1077 #undef PT_GUEST_ACCESSED_SHIFT
1078 #undef PT_HAVE_ACCESSED_DIRTY