]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/x86/kvm/paging_tmpl.h
Merge tag 'omap-for-v5.1/fixes-rc6' of git://git.kernel.org/pub/scm/linux/kernel...
[thirdparty/kernel/stable.git] / arch / x86 / kvm / paging_tmpl.h
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 /*
22 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
23 * so the code in this file is compiled twice, once per pte size.
24 */
25
26 #if PTTYPE == 64
27 #define pt_element_t u64
28 #define guest_walker guest_walker64
29 #define FNAME(name) paging##64_##name
30 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
31 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
32 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
33 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
34 #define PT_LEVEL_BITS PT64_LEVEL_BITS
35 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
36 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
37 #define PT_HAVE_ACCESSED_DIRTY(mmu) true
38 #ifdef CONFIG_X86_64
39 #define PT_MAX_FULL_LEVELS 4
40 #define CMPXCHG cmpxchg
41 #else
42 #define CMPXCHG cmpxchg64
43 #define PT_MAX_FULL_LEVELS 2
44 #endif
45 #elif PTTYPE == 32
46 #define pt_element_t u32
47 #define guest_walker guest_walker32
48 #define FNAME(name) paging##32_##name
49 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
50 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
51 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
52 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
53 #define PT_LEVEL_BITS PT32_LEVEL_BITS
54 #define PT_MAX_FULL_LEVELS 2
55 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
56 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
57 #define PT_HAVE_ACCESSED_DIRTY(mmu) true
58 #define CMPXCHG cmpxchg
59 #elif PTTYPE == PTTYPE_EPT
60 #define pt_element_t u64
61 #define guest_walker guest_walkerEPT
62 #define FNAME(name) ept_##name
63 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
64 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
65 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
66 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
67 #define PT_LEVEL_BITS PT64_LEVEL_BITS
68 #define PT_GUEST_DIRTY_SHIFT 9
69 #define PT_GUEST_ACCESSED_SHIFT 8
70 #define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad)
71 #define CMPXCHG cmpxchg64
72 #define PT_MAX_FULL_LEVELS 4
73 #else
74 #error Invalid PTTYPE value
75 #endif
76
77 #define PT_GUEST_DIRTY_MASK (1 << PT_GUEST_DIRTY_SHIFT)
78 #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
79
80 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
81 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
82
83 /*
84 * The guest_walker structure emulates the behavior of the hardware page
85 * table walker.
86 */
87 struct guest_walker {
88 int level;
89 unsigned max_level;
90 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
91 pt_element_t ptes[PT_MAX_FULL_LEVELS];
92 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
93 gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
94 pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
95 bool pte_writable[PT_MAX_FULL_LEVELS];
96 unsigned pt_access;
97 unsigned pte_access;
98 gfn_t gfn;
99 struct x86_exception fault;
100 };
101
102 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
103 {
104 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
105 }
106
107 static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
108 unsigned gpte)
109 {
110 unsigned mask;
111
112 /* dirty bit is not supported, so no need to track it */
113 if (!PT_HAVE_ACCESSED_DIRTY(mmu))
114 return;
115
116 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
117
118 mask = (unsigned)~ACC_WRITE_MASK;
119 /* Allow write access to dirty gptes */
120 mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
121 PT_WRITABLE_MASK;
122 *access &= mask;
123 }
124
125 static inline int FNAME(is_present_gpte)(unsigned long pte)
126 {
127 #if PTTYPE != PTTYPE_EPT
128 return pte & PT_PRESENT_MASK;
129 #else
130 return pte & 7;
131 #endif
132 }
133
134 static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
135 pt_element_t __user *ptep_user, unsigned index,
136 pt_element_t orig_pte, pt_element_t new_pte)
137 {
138 int npages;
139 pt_element_t ret;
140 pt_element_t *table;
141 struct page *page;
142
143 npages = get_user_pages_fast((unsigned long)ptep_user, 1, FOLL_WRITE, &page);
144 /* Check if the user is doing something meaningless. */
145 if (unlikely(npages != 1))
146 return -EFAULT;
147
148 table = kmap_atomic(page);
149 ret = CMPXCHG(&table[index], orig_pte, new_pte);
150 kunmap_atomic(table);
151
152 kvm_release_page_dirty(page);
153
154 return (ret != orig_pte);
155 }
156
157 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
158 struct kvm_mmu_page *sp, u64 *spte,
159 u64 gpte)
160 {
161 if (is_rsvd_bits_set(vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
162 goto no_present;
163
164 if (!FNAME(is_present_gpte)(gpte))
165 goto no_present;
166
167 /* if accessed bit is not supported prefetch non accessed gpte */
168 if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
169 !(gpte & PT_GUEST_ACCESSED_MASK))
170 goto no_present;
171
172 return false;
173
174 no_present:
175 drop_spte(vcpu->kvm, spte);
176 return true;
177 }
178
179 /*
180 * For PTTYPE_EPT, a page table can be executable but not readable
181 * on supported processors. Therefore, set_spte does not automatically
182 * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
183 * to signify readability since it isn't used in the EPT case
184 */
185 static inline unsigned FNAME(gpte_access)(u64 gpte)
186 {
187 unsigned access;
188 #if PTTYPE == PTTYPE_EPT
189 access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
190 ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
191 ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
192 #else
193 BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
194 BUILD_BUG_ON(ACC_EXEC_MASK != 1);
195 access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
196 /* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */
197 access ^= (gpte >> PT64_NX_SHIFT);
198 #endif
199
200 return access;
201 }
202
203 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
204 struct kvm_mmu *mmu,
205 struct guest_walker *walker,
206 int write_fault)
207 {
208 unsigned level, index;
209 pt_element_t pte, orig_pte;
210 pt_element_t __user *ptep_user;
211 gfn_t table_gfn;
212 int ret;
213
214 /* dirty/accessed bits are not supported, so no need to update them */
215 if (!PT_HAVE_ACCESSED_DIRTY(mmu))
216 return 0;
217
218 for (level = walker->max_level; level >= walker->level; --level) {
219 pte = orig_pte = walker->ptes[level - 1];
220 table_gfn = walker->table_gfn[level - 1];
221 ptep_user = walker->ptep_user[level - 1];
222 index = offset_in_page(ptep_user) / sizeof(pt_element_t);
223 if (!(pte & PT_GUEST_ACCESSED_MASK)) {
224 trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
225 pte |= PT_GUEST_ACCESSED_MASK;
226 }
227 if (level == walker->level && write_fault &&
228 !(pte & PT_GUEST_DIRTY_MASK)) {
229 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
230 #if PTTYPE == PTTYPE_EPT
231 if (kvm_arch_write_log_dirty(vcpu))
232 return -EINVAL;
233 #endif
234 pte |= PT_GUEST_DIRTY_MASK;
235 }
236 if (pte == orig_pte)
237 continue;
238
239 /*
240 * If the slot is read-only, simply do not process the accessed
241 * and dirty bits. This is the correct thing to do if the slot
242 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
243 * are only supported if the accessed and dirty bits are already
244 * set in the ROM (so that MMIO writes are never needed).
245 *
246 * Note that NPT does not allow this at all and faults, since
247 * it always wants nested page table entries for the guest
248 * page tables to be writable. And EPT works but will simply
249 * overwrite the read-only memory to set the accessed and dirty
250 * bits.
251 */
252 if (unlikely(!walker->pte_writable[level - 1]))
253 continue;
254
255 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
256 if (ret)
257 return ret;
258
259 kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
260 walker->ptes[level - 1] = pte;
261 }
262 return 0;
263 }
264
265 static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
266 {
267 unsigned pkeys = 0;
268 #if PTTYPE == 64
269 pte_t pte = {.pte = gpte};
270
271 pkeys = pte_flags_pkey(pte_flags(pte));
272 #endif
273 return pkeys;
274 }
275
276 /*
277 * Fetch a guest pte for a guest virtual address
278 */
279 static int FNAME(walk_addr_generic)(struct guest_walker *walker,
280 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
281 gva_t addr, u32 access)
282 {
283 int ret;
284 pt_element_t pte;
285 pt_element_t __user *uninitialized_var(ptep_user);
286 gfn_t table_gfn;
287 u64 pt_access, pte_access;
288 unsigned index, accessed_dirty, pte_pkey;
289 unsigned nested_access;
290 gpa_t pte_gpa;
291 bool have_ad;
292 int offset;
293 u64 walk_nx_mask = 0;
294 const int write_fault = access & PFERR_WRITE_MASK;
295 const int user_fault = access & PFERR_USER_MASK;
296 const int fetch_fault = access & PFERR_FETCH_MASK;
297 u16 errcode = 0;
298 gpa_t real_gpa;
299 gfn_t gfn;
300
301 trace_kvm_mmu_pagetable_walk(addr, access);
302 retry_walk:
303 walker->level = mmu->root_level;
304 pte = mmu->get_cr3(vcpu);
305 have_ad = PT_HAVE_ACCESSED_DIRTY(mmu);
306
307 #if PTTYPE == 64
308 walk_nx_mask = 1ULL << PT64_NX_SHIFT;
309 if (walker->level == PT32E_ROOT_LEVEL) {
310 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
311 trace_kvm_mmu_paging_element(pte, walker->level);
312 if (!FNAME(is_present_gpte)(pte))
313 goto error;
314 --walker->level;
315 }
316 #endif
317 walker->max_level = walker->level;
318 ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
319
320 /*
321 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
322 * by the MOV to CR instruction are treated as reads and do not cause the
323 * processor to set the dirty flag in any EPT paging-structure entry.
324 */
325 nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
326
327 pte_access = ~0;
328 ++walker->level;
329
330 do {
331 gfn_t real_gfn;
332 unsigned long host_addr;
333
334 pt_access = pte_access;
335 --walker->level;
336
337 index = PT_INDEX(addr, walker->level);
338 table_gfn = gpte_to_gfn(pte);
339 offset = index * sizeof(pt_element_t);
340 pte_gpa = gfn_to_gpa(table_gfn) + offset;
341
342 BUG_ON(walker->level < 1);
343 walker->table_gfn[walker->level - 1] = table_gfn;
344 walker->pte_gpa[walker->level - 1] = pte_gpa;
345
346 real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
347 nested_access,
348 &walker->fault);
349
350 /*
351 * FIXME: This can happen if emulation (for of an INS/OUTS
352 * instruction) triggers a nested page fault. The exit
353 * qualification / exit info field will incorrectly have
354 * "guest page access" as the nested page fault's cause,
355 * instead of "guest page structure access". To fix this,
356 * the x86_exception struct should be augmented with enough
357 * information to fix the exit_qualification or exit_info_1
358 * fields.
359 */
360 if (unlikely(real_gfn == UNMAPPED_GVA))
361 return 0;
362
363 real_gfn = gpa_to_gfn(real_gfn);
364
365 host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, real_gfn,
366 &walker->pte_writable[walker->level - 1]);
367 if (unlikely(kvm_is_error_hva(host_addr)))
368 goto error;
369
370 ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
371 if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
372 goto error;
373 walker->ptep_user[walker->level - 1] = ptep_user;
374
375 trace_kvm_mmu_paging_element(pte, walker->level);
376
377 /*
378 * Inverting the NX it lets us AND it like other
379 * permission bits.
380 */
381 pte_access = pt_access & (pte ^ walk_nx_mask);
382
383 if (unlikely(!FNAME(is_present_gpte)(pte)))
384 goto error;
385
386 if (unlikely(is_rsvd_bits_set(mmu, pte, walker->level))) {
387 errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
388 goto error;
389 }
390
391 walker->ptes[walker->level - 1] = pte;
392 } while (!is_last_gpte(mmu, walker->level, pte));
393
394 pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
395 accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
396
397 /* Convert to ACC_*_MASK flags for struct guest_walker. */
398 walker->pt_access = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
399 walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
400 errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
401 if (unlikely(errcode))
402 goto error;
403
404 gfn = gpte_to_gfn_lvl(pte, walker->level);
405 gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
406
407 if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
408 gfn += pse36_gfn_delta(pte);
409
410 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
411 if (real_gpa == UNMAPPED_GVA)
412 return 0;
413
414 walker->gfn = real_gpa >> PAGE_SHIFT;
415
416 if (!write_fault)
417 FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
418 else
419 /*
420 * On a write fault, fold the dirty bit into accessed_dirty.
421 * For modes without A/D bits support accessed_dirty will be
422 * always clear.
423 */
424 accessed_dirty &= pte >>
425 (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
426
427 if (unlikely(!accessed_dirty)) {
428 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
429 if (unlikely(ret < 0))
430 goto error;
431 else if (ret)
432 goto retry_walk;
433 }
434
435 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
436 __func__, (u64)pte, walker->pte_access, walker->pt_access);
437 return 1;
438
439 error:
440 errcode |= write_fault | user_fault;
441 if (fetch_fault && (mmu->nx ||
442 kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
443 errcode |= PFERR_FETCH_MASK;
444
445 walker->fault.vector = PF_VECTOR;
446 walker->fault.error_code_valid = true;
447 walker->fault.error_code = errcode;
448
449 #if PTTYPE == PTTYPE_EPT
450 /*
451 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
452 * misconfiguration requires to be injected. The detection is
453 * done by is_rsvd_bits_set() above.
454 *
455 * We set up the value of exit_qualification to inject:
456 * [2:0] - Derive from the access bits. The exit_qualification might be
457 * out of date if it is serving an EPT misconfiguration.
458 * [5:3] - Calculated by the page walk of the guest EPT page tables
459 * [7:8] - Derived from [7:8] of real exit_qualification
460 *
461 * The other bits are set to 0.
462 */
463 if (!(errcode & PFERR_RSVD_MASK)) {
464 vcpu->arch.exit_qualification &= 0x180;
465 if (write_fault)
466 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
467 if (user_fault)
468 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
469 if (fetch_fault)
470 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
471 vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3;
472 }
473 #endif
474 walker->fault.address = addr;
475 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
476
477 trace_kvm_mmu_walker_error(walker->fault.error_code);
478 return 0;
479 }
480
481 static int FNAME(walk_addr)(struct guest_walker *walker,
482 struct kvm_vcpu *vcpu, gva_t addr, u32 access)
483 {
484 return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
485 access);
486 }
487
488 #if PTTYPE != PTTYPE_EPT
489 static int FNAME(walk_addr_nested)(struct guest_walker *walker,
490 struct kvm_vcpu *vcpu, gva_t addr,
491 u32 access)
492 {
493 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
494 addr, access);
495 }
496 #endif
497
498 static bool
499 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
500 u64 *spte, pt_element_t gpte, bool no_dirty_log)
501 {
502 unsigned pte_access;
503 gfn_t gfn;
504 kvm_pfn_t pfn;
505
506 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
507 return false;
508
509 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
510
511 gfn = gpte_to_gfn(gpte);
512 pte_access = sp->role.access & FNAME(gpte_access)(gpte);
513 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
514 pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
515 no_dirty_log && (pte_access & ACC_WRITE_MASK));
516 if (is_error_pfn(pfn))
517 return false;
518
519 /*
520 * we call mmu_set_spte() with host_writable = true because
521 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
522 */
523 mmu_set_spte(vcpu, spte, pte_access, 0, PT_PAGE_TABLE_LEVEL, gfn, pfn,
524 true, true);
525
526 return true;
527 }
528
529 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
530 u64 *spte, const void *pte)
531 {
532 pt_element_t gpte = *(const pt_element_t *)pte;
533
534 FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
535 }
536
537 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
538 struct guest_walker *gw, int level)
539 {
540 pt_element_t curr_pte;
541 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
542 u64 mask;
543 int r, index;
544
545 if (level == PT_PAGE_TABLE_LEVEL) {
546 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
547 base_gpa = pte_gpa & ~mask;
548 index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
549
550 r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
551 gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
552 curr_pte = gw->prefetch_ptes[index];
553 } else
554 r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
555 &curr_pte, sizeof(curr_pte));
556
557 return r || curr_pte != gw->ptes[level - 1];
558 }
559
560 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
561 u64 *sptep)
562 {
563 struct kvm_mmu_page *sp;
564 pt_element_t *gptep = gw->prefetch_ptes;
565 u64 *spte;
566 int i;
567
568 sp = page_header(__pa(sptep));
569
570 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
571 return;
572
573 if (sp->role.direct)
574 return __direct_pte_prefetch(vcpu, sp, sptep);
575
576 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
577 spte = sp->spt + i;
578
579 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
580 if (spte == sptep)
581 continue;
582
583 if (is_shadow_present_pte(*spte))
584 continue;
585
586 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
587 break;
588 }
589 }
590
591 /*
592 * Fetch a shadow pte for a specific level in the paging hierarchy.
593 * If the guest tries to write a write-protected page, we need to
594 * emulate this operation, return 1 to indicate this case.
595 */
596 static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
597 struct guest_walker *gw,
598 int write_fault, int hlevel,
599 kvm_pfn_t pfn, bool map_writable, bool prefault)
600 {
601 struct kvm_mmu_page *sp = NULL;
602 struct kvm_shadow_walk_iterator it;
603 unsigned direct_access, access = gw->pt_access;
604 int top_level, ret;
605
606 direct_access = gw->pte_access;
607
608 top_level = vcpu->arch.mmu->root_level;
609 if (top_level == PT32E_ROOT_LEVEL)
610 top_level = PT32_ROOT_LEVEL;
611 /*
612 * Verify that the top-level gpte is still there. Since the page
613 * is a root page, it is either write protected (and cannot be
614 * changed from now on) or it is invalid (in which case, we don't
615 * really care if it changes underneath us after this point).
616 */
617 if (FNAME(gpte_changed)(vcpu, gw, top_level))
618 goto out_gpte_changed;
619
620 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
621 goto out_gpte_changed;
622
623 for (shadow_walk_init(&it, vcpu, addr);
624 shadow_walk_okay(&it) && it.level > gw->level;
625 shadow_walk_next(&it)) {
626 gfn_t table_gfn;
627
628 clear_sp_write_flooding_count(it.sptep);
629 drop_large_spte(vcpu, it.sptep);
630
631 sp = NULL;
632 if (!is_shadow_present_pte(*it.sptep)) {
633 table_gfn = gw->table_gfn[it.level - 2];
634 sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
635 false, access);
636 }
637
638 /*
639 * Verify that the gpte in the page we've just write
640 * protected is still there.
641 */
642 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
643 goto out_gpte_changed;
644
645 if (sp)
646 link_shadow_page(vcpu, it.sptep, sp);
647 }
648
649 for (;
650 shadow_walk_okay(&it) && it.level > hlevel;
651 shadow_walk_next(&it)) {
652 gfn_t direct_gfn;
653
654 clear_sp_write_flooding_count(it.sptep);
655 validate_direct_spte(vcpu, it.sptep, direct_access);
656
657 drop_large_spte(vcpu, it.sptep);
658
659 if (is_shadow_present_pte(*it.sptep))
660 continue;
661
662 direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
663
664 sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
665 true, direct_access);
666 link_shadow_page(vcpu, it.sptep, sp);
667 }
668
669 clear_sp_write_flooding_count(it.sptep);
670 ret = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault,
671 it.level, gw->gfn, pfn, prefault, map_writable);
672 FNAME(pte_prefetch)(vcpu, gw, it.sptep);
673
674 return ret;
675
676 out_gpte_changed:
677 kvm_release_pfn_clean(pfn);
678 return RET_PF_RETRY;
679 }
680
681 /*
682 * To see whether the mapped gfn can write its page table in the current
683 * mapping.
684 *
685 * It is the helper function of FNAME(page_fault). When guest uses large page
686 * size to map the writable gfn which is used as current page table, we should
687 * force kvm to use small page size to map it because new shadow page will be
688 * created when kvm establishes shadow page table that stop kvm using large
689 * page size. Do it early can avoid unnecessary #PF and emulation.
690 *
691 * @write_fault_to_shadow_pgtable will return true if the fault gfn is
692 * currently used as its page table.
693 *
694 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
695 * since the PDPT is always shadowed, that means, we can not use large page
696 * size to map the gfn which is used as PDPT.
697 */
698 static bool
699 FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
700 struct guest_walker *walker, int user_fault,
701 bool *write_fault_to_shadow_pgtable)
702 {
703 int level;
704 gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
705 bool self_changed = false;
706
707 if (!(walker->pte_access & ACC_WRITE_MASK ||
708 (!is_write_protection(vcpu) && !user_fault)))
709 return false;
710
711 for (level = walker->level; level <= walker->max_level; level++) {
712 gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
713
714 self_changed |= !(gfn & mask);
715 *write_fault_to_shadow_pgtable |= !gfn;
716 }
717
718 return self_changed;
719 }
720
721 /*
722 * Page fault handler. There are several causes for a page fault:
723 * - there is no shadow pte for the guest pte
724 * - write access through a shadow pte marked read only so that we can set
725 * the dirty bit
726 * - write access to a shadow pte marked read only so we can update the page
727 * dirty bitmap, when userspace requests it
728 * - mmio access; in this case we will never install a present shadow pte
729 * - normal guest page fault due to the guest pte marked not present, not
730 * writable, or not executable
731 *
732 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
733 * a negative value on error.
734 */
735 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
736 bool prefault)
737 {
738 int write_fault = error_code & PFERR_WRITE_MASK;
739 int user_fault = error_code & PFERR_USER_MASK;
740 struct guest_walker walker;
741 int r;
742 kvm_pfn_t pfn;
743 int level = PT_PAGE_TABLE_LEVEL;
744 bool force_pt_level = false;
745 unsigned long mmu_seq;
746 bool map_writable, is_self_change_mapping;
747
748 pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
749
750 r = mmu_topup_memory_caches(vcpu);
751 if (r)
752 return r;
753
754 /*
755 * If PFEC.RSVD is set, this is a shadow page fault.
756 * The bit needs to be cleared before walking guest page tables.
757 */
758 error_code &= ~PFERR_RSVD_MASK;
759
760 /*
761 * Look up the guest pte for the faulting address.
762 */
763 r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
764
765 /*
766 * The page is not mapped by the guest. Let the guest handle it.
767 */
768 if (!r) {
769 pgprintk("%s: guest page fault\n", __func__);
770 if (!prefault)
771 inject_page_fault(vcpu, &walker.fault);
772
773 return RET_PF_RETRY;
774 }
775
776 if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) {
777 shadow_page_table_clear_flood(vcpu, addr);
778 return RET_PF_EMULATE;
779 }
780
781 vcpu->arch.write_fault_to_shadow_pgtable = false;
782
783 is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
784 &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
785
786 if (walker.level >= PT_DIRECTORY_LEVEL && !is_self_change_mapping) {
787 level = mapping_level(vcpu, walker.gfn, &force_pt_level);
788 if (likely(!force_pt_level)) {
789 level = min(walker.level, level);
790 walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
791 }
792 } else
793 force_pt_level = true;
794
795 mmu_seq = vcpu->kvm->mmu_notifier_seq;
796 smp_rmb();
797
798 if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
799 &map_writable))
800 return RET_PF_RETRY;
801
802 if (handle_abnormal_pfn(vcpu, addr, walker.gfn, pfn, walker.pte_access, &r))
803 return r;
804
805 /*
806 * Do not change pte_access if the pfn is a mmio page, otherwise
807 * we will cache the incorrect access into mmio spte.
808 */
809 if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
810 !is_write_protection(vcpu) && !user_fault &&
811 !is_noslot_pfn(pfn)) {
812 walker.pte_access |= ACC_WRITE_MASK;
813 walker.pte_access &= ~ACC_USER_MASK;
814
815 /*
816 * If we converted a user page to a kernel page,
817 * so that the kernel can write to it when cr0.wp=0,
818 * then we should prevent the kernel from executing it
819 * if SMEP is enabled.
820 */
821 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
822 walker.pte_access &= ~ACC_EXEC_MASK;
823 }
824
825 spin_lock(&vcpu->kvm->mmu_lock);
826 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
827 goto out_unlock;
828
829 kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
830 if (make_mmu_pages_available(vcpu) < 0)
831 goto out_unlock;
832 if (!force_pt_level)
833 transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
834 r = FNAME(fetch)(vcpu, addr, &walker, write_fault,
835 level, pfn, map_writable, prefault);
836 ++vcpu->stat.pf_fixed;
837 kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
838 spin_unlock(&vcpu->kvm->mmu_lock);
839
840 return r;
841
842 out_unlock:
843 spin_unlock(&vcpu->kvm->mmu_lock);
844 kvm_release_pfn_clean(pfn);
845 return RET_PF_RETRY;
846 }
847
848 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
849 {
850 int offset = 0;
851
852 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
853
854 if (PTTYPE == 32)
855 offset = sp->role.quadrant << PT64_LEVEL_BITS;
856
857 return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
858 }
859
860 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
861 {
862 struct kvm_shadow_walk_iterator iterator;
863 struct kvm_mmu_page *sp;
864 int level;
865 u64 *sptep;
866
867 vcpu_clear_mmio_info(vcpu, gva);
868
869 /*
870 * No need to check return value here, rmap_can_add() can
871 * help us to skip pte prefetch later.
872 */
873 mmu_topup_memory_caches(vcpu);
874
875 if (!VALID_PAGE(root_hpa)) {
876 WARN_ON(1);
877 return;
878 }
879
880 spin_lock(&vcpu->kvm->mmu_lock);
881 for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) {
882 level = iterator.level;
883 sptep = iterator.sptep;
884
885 sp = page_header(__pa(sptep));
886 if (is_last_spte(*sptep, level)) {
887 pt_element_t gpte;
888 gpa_t pte_gpa;
889
890 if (!sp->unsync)
891 break;
892
893 pte_gpa = FNAME(get_level1_sp_gpa)(sp);
894 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
895
896 if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
897 kvm_flush_remote_tlbs_with_address(vcpu->kvm,
898 sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
899
900 if (!rmap_can_add(vcpu))
901 break;
902
903 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
904 sizeof(pt_element_t)))
905 break;
906
907 FNAME(update_pte)(vcpu, sp, sptep, &gpte);
908 }
909
910 if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
911 break;
912 }
913 spin_unlock(&vcpu->kvm->mmu_lock);
914 }
915
916 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
917 struct x86_exception *exception)
918 {
919 struct guest_walker walker;
920 gpa_t gpa = UNMAPPED_GVA;
921 int r;
922
923 r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
924
925 if (r) {
926 gpa = gfn_to_gpa(walker.gfn);
927 gpa |= vaddr & ~PAGE_MASK;
928 } else if (exception)
929 *exception = walker.fault;
930
931 return gpa;
932 }
933
934 #if PTTYPE != PTTYPE_EPT
935 static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
936 u32 access,
937 struct x86_exception *exception)
938 {
939 struct guest_walker walker;
940 gpa_t gpa = UNMAPPED_GVA;
941 int r;
942
943 r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
944
945 if (r) {
946 gpa = gfn_to_gpa(walker.gfn);
947 gpa |= vaddr & ~PAGE_MASK;
948 } else if (exception)
949 *exception = walker.fault;
950
951 return gpa;
952 }
953 #endif
954
955 /*
956 * Using the cached information from sp->gfns is safe because:
957 * - The spte has a reference to the struct page, so the pfn for a given gfn
958 * can't change unless all sptes pointing to it are nuked first.
959 *
960 * Note:
961 * We should flush all tlbs if spte is dropped even though guest is
962 * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
963 * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
964 * used by guest then tlbs are not flushed, so guest is allowed to access the
965 * freed pages.
966 * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
967 */
968 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
969 {
970 int i, nr_present = 0;
971 bool host_writable;
972 gpa_t first_pte_gpa;
973 int set_spte_ret = 0;
974
975 /* direct kvm_mmu_page can not be unsync. */
976 BUG_ON(sp->role.direct);
977
978 first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
979
980 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
981 unsigned pte_access;
982 pt_element_t gpte;
983 gpa_t pte_gpa;
984 gfn_t gfn;
985
986 if (!sp->spt[i])
987 continue;
988
989 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
990
991 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
992 sizeof(pt_element_t)))
993 return 0;
994
995 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
996 /*
997 * Update spte before increasing tlbs_dirty to make
998 * sure no tlb flush is lost after spte is zapped; see
999 * the comments in kvm_flush_remote_tlbs().
1000 */
1001 smp_wmb();
1002 vcpu->kvm->tlbs_dirty++;
1003 continue;
1004 }
1005
1006 gfn = gpte_to_gfn(gpte);
1007 pte_access = sp->role.access;
1008 pte_access &= FNAME(gpte_access)(gpte);
1009 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
1010
1011 if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
1012 &nr_present))
1013 continue;
1014
1015 if (gfn != sp->gfns[i]) {
1016 drop_spte(vcpu->kvm, &sp->spt[i]);
1017 /*
1018 * The same as above where we are doing
1019 * prefetch_invalid_gpte().
1020 */
1021 smp_wmb();
1022 vcpu->kvm->tlbs_dirty++;
1023 continue;
1024 }
1025
1026 nr_present++;
1027
1028 host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
1029
1030 set_spte_ret |= set_spte(vcpu, &sp->spt[i],
1031 pte_access, PT_PAGE_TABLE_LEVEL,
1032 gfn, spte_to_pfn(sp->spt[i]),
1033 true, false, host_writable);
1034 }
1035
1036 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH)
1037 kvm_flush_remote_tlbs(vcpu->kvm);
1038
1039 return nr_present;
1040 }
1041
1042 #undef pt_element_t
1043 #undef guest_walker
1044 #undef FNAME
1045 #undef PT_BASE_ADDR_MASK
1046 #undef PT_INDEX
1047 #undef PT_LVL_ADDR_MASK
1048 #undef PT_LVL_OFFSET_MASK
1049 #undef PT_LEVEL_BITS
1050 #undef PT_MAX_FULL_LEVELS
1051 #undef gpte_to_gfn
1052 #undef gpte_to_gfn_lvl
1053 #undef CMPXCHG
1054 #undef PT_GUEST_ACCESSED_MASK
1055 #undef PT_GUEST_DIRTY_MASK
1056 #undef PT_GUEST_DIRTY_SHIFT
1057 #undef PT_GUEST_ACCESSED_SHIFT
1058 #undef PT_HAVE_ACCESSED_DIRTY