]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - block/cfq-iosched.c
Linux 4.20.17
[thirdparty/kernel/stable.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/sched/clock.h>
12 #include <linux/blkdev.h>
13 #include <linux/elevator.h>
14 #include <linux/ktime.h>
15 #include <linux/rbtree.h>
16 #include <linux/ioprio.h>
17 #include <linux/blktrace_api.h>
18 #include <linux/blk-cgroup.h>
19 #include "blk.h"
20 #include "blk-wbt.h"
21
22 /*
23 * tunables
24 */
25 /* max queue in one round of service */
26 static const int cfq_quantum = 8;
27 static const u64 cfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
28 /* maximum backwards seek, in KiB */
29 static const int cfq_back_max = 16 * 1024;
30 /* penalty of a backwards seek */
31 static const int cfq_back_penalty = 2;
32 static const u64 cfq_slice_sync = NSEC_PER_SEC / 10;
33 static u64 cfq_slice_async = NSEC_PER_SEC / 25;
34 static const int cfq_slice_async_rq = 2;
35 static u64 cfq_slice_idle = NSEC_PER_SEC / 125;
36 static u64 cfq_group_idle = NSEC_PER_SEC / 125;
37 static const u64 cfq_target_latency = (u64)NSEC_PER_SEC * 3/10; /* 300 ms */
38 static const int cfq_hist_divisor = 4;
39
40 /*
41 * offset from end of queue service tree for idle class
42 */
43 #define CFQ_IDLE_DELAY (NSEC_PER_SEC / 5)
44 /* offset from end of group service tree under time slice mode */
45 #define CFQ_SLICE_MODE_GROUP_DELAY (NSEC_PER_SEC / 5)
46 /* offset from end of group service under IOPS mode */
47 #define CFQ_IOPS_MODE_GROUP_DELAY (HZ / 5)
48
49 /*
50 * below this threshold, we consider thinktime immediate
51 */
52 #define CFQ_MIN_TT (2 * NSEC_PER_SEC / HZ)
53
54 #define CFQ_SLICE_SCALE (5)
55 #define CFQ_HW_QUEUE_MIN (5)
56 #define CFQ_SERVICE_SHIFT 12
57
58 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
59 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
60 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
61 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
62
63 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
64 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
65 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
66
67 static struct kmem_cache *cfq_pool;
68
69 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
70 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
71 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
72
73 #define sample_valid(samples) ((samples) > 80)
74 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
75
76 /* blkio-related constants */
77 #define CFQ_WEIGHT_LEGACY_MIN 10
78 #define CFQ_WEIGHT_LEGACY_DFL 500
79 #define CFQ_WEIGHT_LEGACY_MAX 1000
80
81 struct cfq_ttime {
82 u64 last_end_request;
83
84 u64 ttime_total;
85 u64 ttime_mean;
86 unsigned long ttime_samples;
87 };
88
89 /*
90 * Most of our rbtree usage is for sorting with min extraction, so
91 * if we cache the leftmost node we don't have to walk down the tree
92 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
93 * move this into the elevator for the rq sorting as well.
94 */
95 struct cfq_rb_root {
96 struct rb_root_cached rb;
97 struct rb_node *rb_rightmost;
98 unsigned count;
99 u64 min_vdisktime;
100 struct cfq_ttime ttime;
101 };
102 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT_CACHED, \
103 .rb_rightmost = NULL, \
104 .ttime = {.last_end_request = ktime_get_ns(),},}
105
106 /*
107 * Per process-grouping structure
108 */
109 struct cfq_queue {
110 /* reference count */
111 int ref;
112 /* various state flags, see below */
113 unsigned int flags;
114 /* parent cfq_data */
115 struct cfq_data *cfqd;
116 /* service_tree member */
117 struct rb_node rb_node;
118 /* service_tree key */
119 u64 rb_key;
120 /* prio tree member */
121 struct rb_node p_node;
122 /* prio tree root we belong to, if any */
123 struct rb_root *p_root;
124 /* sorted list of pending requests */
125 struct rb_root sort_list;
126 /* if fifo isn't expired, next request to serve */
127 struct request *next_rq;
128 /* requests queued in sort_list */
129 int queued[2];
130 /* currently allocated requests */
131 int allocated[2];
132 /* fifo list of requests in sort_list */
133 struct list_head fifo;
134
135 /* time when queue got scheduled in to dispatch first request. */
136 u64 dispatch_start;
137 u64 allocated_slice;
138 u64 slice_dispatch;
139 /* time when first request from queue completed and slice started. */
140 u64 slice_start;
141 u64 slice_end;
142 s64 slice_resid;
143
144 /* pending priority requests */
145 int prio_pending;
146 /* number of requests that are on the dispatch list or inside driver */
147 int dispatched;
148
149 /* io prio of this group */
150 unsigned short ioprio, org_ioprio;
151 unsigned short ioprio_class, org_ioprio_class;
152
153 pid_t pid;
154
155 u32 seek_history;
156 sector_t last_request_pos;
157
158 struct cfq_rb_root *service_tree;
159 struct cfq_queue *new_cfqq;
160 struct cfq_group *cfqg;
161 /* Number of sectors dispatched from queue in single dispatch round */
162 unsigned long nr_sectors;
163 };
164
165 /*
166 * First index in the service_trees.
167 * IDLE is handled separately, so it has negative index
168 */
169 enum wl_class_t {
170 BE_WORKLOAD = 0,
171 RT_WORKLOAD = 1,
172 IDLE_WORKLOAD = 2,
173 CFQ_PRIO_NR,
174 };
175
176 /*
177 * Second index in the service_trees.
178 */
179 enum wl_type_t {
180 ASYNC_WORKLOAD = 0,
181 SYNC_NOIDLE_WORKLOAD = 1,
182 SYNC_WORKLOAD = 2
183 };
184
185 struct cfqg_stats {
186 #ifdef CONFIG_CFQ_GROUP_IOSCHED
187 /* number of ios merged */
188 struct blkg_rwstat merged;
189 /* total time spent on device in ns, may not be accurate w/ queueing */
190 struct blkg_rwstat service_time;
191 /* total time spent waiting in scheduler queue in ns */
192 struct blkg_rwstat wait_time;
193 /* number of IOs queued up */
194 struct blkg_rwstat queued;
195 /* total disk time and nr sectors dispatched by this group */
196 struct blkg_stat time;
197 #ifdef CONFIG_DEBUG_BLK_CGROUP
198 /* time not charged to this cgroup */
199 struct blkg_stat unaccounted_time;
200 /* sum of number of ios queued across all samples */
201 struct blkg_stat avg_queue_size_sum;
202 /* count of samples taken for average */
203 struct blkg_stat avg_queue_size_samples;
204 /* how many times this group has been removed from service tree */
205 struct blkg_stat dequeue;
206 /* total time spent waiting for it to be assigned a timeslice. */
207 struct blkg_stat group_wait_time;
208 /* time spent idling for this blkcg_gq */
209 struct blkg_stat idle_time;
210 /* total time with empty current active q with other requests queued */
211 struct blkg_stat empty_time;
212 /* fields after this shouldn't be cleared on stat reset */
213 u64 start_group_wait_time;
214 u64 start_idle_time;
215 u64 start_empty_time;
216 uint16_t flags;
217 #endif /* CONFIG_DEBUG_BLK_CGROUP */
218 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
219 };
220
221 /* Per-cgroup data */
222 struct cfq_group_data {
223 /* must be the first member */
224 struct blkcg_policy_data cpd;
225
226 unsigned int weight;
227 unsigned int leaf_weight;
228 };
229
230 /* This is per cgroup per device grouping structure */
231 struct cfq_group {
232 /* must be the first member */
233 struct blkg_policy_data pd;
234
235 /* group service_tree member */
236 struct rb_node rb_node;
237
238 /* group service_tree key */
239 u64 vdisktime;
240
241 /*
242 * The number of active cfqgs and sum of their weights under this
243 * cfqg. This covers this cfqg's leaf_weight and all children's
244 * weights, but does not cover weights of further descendants.
245 *
246 * If a cfqg is on the service tree, it's active. An active cfqg
247 * also activates its parent and contributes to the children_weight
248 * of the parent.
249 */
250 int nr_active;
251 unsigned int children_weight;
252
253 /*
254 * vfraction is the fraction of vdisktime that the tasks in this
255 * cfqg are entitled to. This is determined by compounding the
256 * ratios walking up from this cfqg to the root.
257 *
258 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
259 * vfractions on a service tree is approximately 1. The sum may
260 * deviate a bit due to rounding errors and fluctuations caused by
261 * cfqgs entering and leaving the service tree.
262 */
263 unsigned int vfraction;
264
265 /*
266 * There are two weights - (internal) weight is the weight of this
267 * cfqg against the sibling cfqgs. leaf_weight is the wight of
268 * this cfqg against the child cfqgs. For the root cfqg, both
269 * weights are kept in sync for backward compatibility.
270 */
271 unsigned int weight;
272 unsigned int new_weight;
273 unsigned int dev_weight;
274
275 unsigned int leaf_weight;
276 unsigned int new_leaf_weight;
277 unsigned int dev_leaf_weight;
278
279 /* number of cfqq currently on this group */
280 int nr_cfqq;
281
282 /*
283 * Per group busy queues average. Useful for workload slice calc. We
284 * create the array for each prio class but at run time it is used
285 * only for RT and BE class and slot for IDLE class remains unused.
286 * This is primarily done to avoid confusion and a gcc warning.
287 */
288 unsigned int busy_queues_avg[CFQ_PRIO_NR];
289 /*
290 * rr lists of queues with requests. We maintain service trees for
291 * RT and BE classes. These trees are subdivided in subclasses
292 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
293 * class there is no subclassification and all the cfq queues go on
294 * a single tree service_tree_idle.
295 * Counts are embedded in the cfq_rb_root
296 */
297 struct cfq_rb_root service_trees[2][3];
298 struct cfq_rb_root service_tree_idle;
299
300 u64 saved_wl_slice;
301 enum wl_type_t saved_wl_type;
302 enum wl_class_t saved_wl_class;
303
304 /* number of requests that are on the dispatch list or inside driver */
305 int dispatched;
306 struct cfq_ttime ttime;
307 struct cfqg_stats stats; /* stats for this cfqg */
308
309 /* async queue for each priority case */
310 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
311 struct cfq_queue *async_idle_cfqq;
312
313 };
314
315 struct cfq_io_cq {
316 struct io_cq icq; /* must be the first member */
317 struct cfq_queue *cfqq[2];
318 struct cfq_ttime ttime;
319 int ioprio; /* the current ioprio */
320 #ifdef CONFIG_CFQ_GROUP_IOSCHED
321 uint64_t blkcg_serial_nr; /* the current blkcg serial */
322 #endif
323 };
324
325 /*
326 * Per block device queue structure
327 */
328 struct cfq_data {
329 struct request_queue *queue;
330 /* Root service tree for cfq_groups */
331 struct cfq_rb_root grp_service_tree;
332 struct cfq_group *root_group;
333
334 /*
335 * The priority currently being served
336 */
337 enum wl_class_t serving_wl_class;
338 enum wl_type_t serving_wl_type;
339 u64 workload_expires;
340 struct cfq_group *serving_group;
341
342 /*
343 * Each priority tree is sorted by next_request position. These
344 * trees are used when determining if two or more queues are
345 * interleaving requests (see cfq_close_cooperator).
346 */
347 struct rb_root prio_trees[CFQ_PRIO_LISTS];
348
349 unsigned int busy_queues;
350 unsigned int busy_sync_queues;
351
352 int rq_in_driver;
353 int rq_in_flight[2];
354
355 /*
356 * queue-depth detection
357 */
358 int rq_queued;
359 int hw_tag;
360 /*
361 * hw_tag can be
362 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
363 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
364 * 0 => no NCQ
365 */
366 int hw_tag_est_depth;
367 unsigned int hw_tag_samples;
368
369 /*
370 * idle window management
371 */
372 struct hrtimer idle_slice_timer;
373 struct work_struct unplug_work;
374
375 struct cfq_queue *active_queue;
376 struct cfq_io_cq *active_cic;
377
378 sector_t last_position;
379
380 /*
381 * tunables, see top of file
382 */
383 unsigned int cfq_quantum;
384 unsigned int cfq_back_penalty;
385 unsigned int cfq_back_max;
386 unsigned int cfq_slice_async_rq;
387 unsigned int cfq_latency;
388 u64 cfq_fifo_expire[2];
389 u64 cfq_slice[2];
390 u64 cfq_slice_idle;
391 u64 cfq_group_idle;
392 u64 cfq_target_latency;
393
394 /*
395 * Fallback dummy cfqq for extreme OOM conditions
396 */
397 struct cfq_queue oom_cfqq;
398
399 u64 last_delayed_sync;
400 };
401
402 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
403 static void cfq_put_queue(struct cfq_queue *cfqq);
404
405 static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
406 enum wl_class_t class,
407 enum wl_type_t type)
408 {
409 if (!cfqg)
410 return NULL;
411
412 if (class == IDLE_WORKLOAD)
413 return &cfqg->service_tree_idle;
414
415 return &cfqg->service_trees[class][type];
416 }
417
418 enum cfqq_state_flags {
419 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
420 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
421 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
422 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
423 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
424 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
425 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
426 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
427 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
428 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
429 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
430 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
431 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
432 };
433
434 #define CFQ_CFQQ_FNS(name) \
435 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
436 { \
437 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
438 } \
439 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
440 { \
441 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
442 } \
443 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
444 { \
445 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
446 }
447
448 CFQ_CFQQ_FNS(on_rr);
449 CFQ_CFQQ_FNS(wait_request);
450 CFQ_CFQQ_FNS(must_dispatch);
451 CFQ_CFQQ_FNS(must_alloc_slice);
452 CFQ_CFQQ_FNS(fifo_expire);
453 CFQ_CFQQ_FNS(idle_window);
454 CFQ_CFQQ_FNS(prio_changed);
455 CFQ_CFQQ_FNS(slice_new);
456 CFQ_CFQQ_FNS(sync);
457 CFQ_CFQQ_FNS(coop);
458 CFQ_CFQQ_FNS(split_coop);
459 CFQ_CFQQ_FNS(deep);
460 CFQ_CFQQ_FNS(wait_busy);
461 #undef CFQ_CFQQ_FNS
462
463 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
464
465 /* cfqg stats flags */
466 enum cfqg_stats_flags {
467 CFQG_stats_waiting = 0,
468 CFQG_stats_idling,
469 CFQG_stats_empty,
470 };
471
472 #define CFQG_FLAG_FNS(name) \
473 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
474 { \
475 stats->flags |= (1 << CFQG_stats_##name); \
476 } \
477 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
478 { \
479 stats->flags &= ~(1 << CFQG_stats_##name); \
480 } \
481 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
482 { \
483 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
484 } \
485
486 CFQG_FLAG_FNS(waiting)
487 CFQG_FLAG_FNS(idling)
488 CFQG_FLAG_FNS(empty)
489 #undef CFQG_FLAG_FNS
490
491 /* This should be called with the queue_lock held. */
492 static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
493 {
494 u64 now;
495
496 if (!cfqg_stats_waiting(stats))
497 return;
498
499 now = ktime_get_ns();
500 if (now > stats->start_group_wait_time)
501 blkg_stat_add(&stats->group_wait_time,
502 now - stats->start_group_wait_time);
503 cfqg_stats_clear_waiting(stats);
504 }
505
506 /* This should be called with the queue_lock held. */
507 static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
508 struct cfq_group *curr_cfqg)
509 {
510 struct cfqg_stats *stats = &cfqg->stats;
511
512 if (cfqg_stats_waiting(stats))
513 return;
514 if (cfqg == curr_cfqg)
515 return;
516 stats->start_group_wait_time = ktime_get_ns();
517 cfqg_stats_mark_waiting(stats);
518 }
519
520 /* This should be called with the queue_lock held. */
521 static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
522 {
523 u64 now;
524
525 if (!cfqg_stats_empty(stats))
526 return;
527
528 now = ktime_get_ns();
529 if (now > stats->start_empty_time)
530 blkg_stat_add(&stats->empty_time,
531 now - stats->start_empty_time);
532 cfqg_stats_clear_empty(stats);
533 }
534
535 static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
536 {
537 blkg_stat_add(&cfqg->stats.dequeue, 1);
538 }
539
540 static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
541 {
542 struct cfqg_stats *stats = &cfqg->stats;
543
544 if (blkg_rwstat_total(&stats->queued))
545 return;
546
547 /*
548 * group is already marked empty. This can happen if cfqq got new
549 * request in parent group and moved to this group while being added
550 * to service tree. Just ignore the event and move on.
551 */
552 if (cfqg_stats_empty(stats))
553 return;
554
555 stats->start_empty_time = ktime_get_ns();
556 cfqg_stats_mark_empty(stats);
557 }
558
559 static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
560 {
561 struct cfqg_stats *stats = &cfqg->stats;
562
563 if (cfqg_stats_idling(stats)) {
564 u64 now = ktime_get_ns();
565
566 if (now > stats->start_idle_time)
567 blkg_stat_add(&stats->idle_time,
568 now - stats->start_idle_time);
569 cfqg_stats_clear_idling(stats);
570 }
571 }
572
573 static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
574 {
575 struct cfqg_stats *stats = &cfqg->stats;
576
577 BUG_ON(cfqg_stats_idling(stats));
578
579 stats->start_idle_time = ktime_get_ns();
580 cfqg_stats_mark_idling(stats);
581 }
582
583 static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
584 {
585 struct cfqg_stats *stats = &cfqg->stats;
586
587 blkg_stat_add(&stats->avg_queue_size_sum,
588 blkg_rwstat_total(&stats->queued));
589 blkg_stat_add(&stats->avg_queue_size_samples, 1);
590 cfqg_stats_update_group_wait_time(stats);
591 }
592
593 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
594
595 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
596 static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
597 static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
598 static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
599 static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
600 static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
601 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
602
603 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
604
605 #ifdef CONFIG_CFQ_GROUP_IOSCHED
606
607 static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
608 {
609 return pd ? container_of(pd, struct cfq_group, pd) : NULL;
610 }
611
612 static struct cfq_group_data
613 *cpd_to_cfqgd(struct blkcg_policy_data *cpd)
614 {
615 return cpd ? container_of(cpd, struct cfq_group_data, cpd) : NULL;
616 }
617
618 static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
619 {
620 return pd_to_blkg(&cfqg->pd);
621 }
622
623 static struct blkcg_policy blkcg_policy_cfq;
624
625 static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
626 {
627 return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
628 }
629
630 static struct cfq_group_data *blkcg_to_cfqgd(struct blkcg *blkcg)
631 {
632 return cpd_to_cfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_cfq));
633 }
634
635 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
636 {
637 struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
638
639 return pblkg ? blkg_to_cfqg(pblkg) : NULL;
640 }
641
642 static inline bool cfqg_is_descendant(struct cfq_group *cfqg,
643 struct cfq_group *ancestor)
644 {
645 return cgroup_is_descendant(cfqg_to_blkg(cfqg)->blkcg->css.cgroup,
646 cfqg_to_blkg(ancestor)->blkcg->css.cgroup);
647 }
648
649 static inline void cfqg_get(struct cfq_group *cfqg)
650 {
651 return blkg_get(cfqg_to_blkg(cfqg));
652 }
653
654 static inline void cfqg_put(struct cfq_group *cfqg)
655 {
656 return blkg_put(cfqg_to_blkg(cfqg));
657 }
658
659 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
660 blk_add_cgroup_trace_msg((cfqd)->queue, \
661 cfqg_to_blkg((cfqq)->cfqg)->blkcg, \
662 "cfq%d%c%c " fmt, (cfqq)->pid, \
663 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
664 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
665 ##args); \
666 } while (0)
667
668 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
669 blk_add_cgroup_trace_msg((cfqd)->queue, \
670 cfqg_to_blkg(cfqg)->blkcg, fmt, ##args); \
671 } while (0)
672
673 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
674 struct cfq_group *curr_cfqg,
675 unsigned int op)
676 {
677 blkg_rwstat_add(&cfqg->stats.queued, op, 1);
678 cfqg_stats_end_empty_time(&cfqg->stats);
679 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
680 }
681
682 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
683 uint64_t time, unsigned long unaccounted_time)
684 {
685 blkg_stat_add(&cfqg->stats.time, time);
686 #ifdef CONFIG_DEBUG_BLK_CGROUP
687 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
688 #endif
689 }
690
691 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg,
692 unsigned int op)
693 {
694 blkg_rwstat_add(&cfqg->stats.queued, op, -1);
695 }
696
697 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg,
698 unsigned int op)
699 {
700 blkg_rwstat_add(&cfqg->stats.merged, op, 1);
701 }
702
703 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
704 u64 start_time_ns,
705 u64 io_start_time_ns,
706 unsigned int op)
707 {
708 struct cfqg_stats *stats = &cfqg->stats;
709 u64 now = ktime_get_ns();
710
711 if (now > io_start_time_ns)
712 blkg_rwstat_add(&stats->service_time, op,
713 now - io_start_time_ns);
714 if (io_start_time_ns > start_time_ns)
715 blkg_rwstat_add(&stats->wait_time, op,
716 io_start_time_ns - start_time_ns);
717 }
718
719 /* @stats = 0 */
720 static void cfqg_stats_reset(struct cfqg_stats *stats)
721 {
722 /* queued stats shouldn't be cleared */
723 blkg_rwstat_reset(&stats->merged);
724 blkg_rwstat_reset(&stats->service_time);
725 blkg_rwstat_reset(&stats->wait_time);
726 blkg_stat_reset(&stats->time);
727 #ifdef CONFIG_DEBUG_BLK_CGROUP
728 blkg_stat_reset(&stats->unaccounted_time);
729 blkg_stat_reset(&stats->avg_queue_size_sum);
730 blkg_stat_reset(&stats->avg_queue_size_samples);
731 blkg_stat_reset(&stats->dequeue);
732 blkg_stat_reset(&stats->group_wait_time);
733 blkg_stat_reset(&stats->idle_time);
734 blkg_stat_reset(&stats->empty_time);
735 #endif
736 }
737
738 /* @to += @from */
739 static void cfqg_stats_add_aux(struct cfqg_stats *to, struct cfqg_stats *from)
740 {
741 /* queued stats shouldn't be cleared */
742 blkg_rwstat_add_aux(&to->merged, &from->merged);
743 blkg_rwstat_add_aux(&to->service_time, &from->service_time);
744 blkg_rwstat_add_aux(&to->wait_time, &from->wait_time);
745 blkg_stat_add_aux(&from->time, &from->time);
746 #ifdef CONFIG_DEBUG_BLK_CGROUP
747 blkg_stat_add_aux(&to->unaccounted_time, &from->unaccounted_time);
748 blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
749 blkg_stat_add_aux(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
750 blkg_stat_add_aux(&to->dequeue, &from->dequeue);
751 blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time);
752 blkg_stat_add_aux(&to->idle_time, &from->idle_time);
753 blkg_stat_add_aux(&to->empty_time, &from->empty_time);
754 #endif
755 }
756
757 /*
758 * Transfer @cfqg's stats to its parent's aux counts so that the ancestors'
759 * recursive stats can still account for the amount used by this cfqg after
760 * it's gone.
761 */
762 static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
763 {
764 struct cfq_group *parent = cfqg_parent(cfqg);
765
766 lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
767
768 if (unlikely(!parent))
769 return;
770
771 cfqg_stats_add_aux(&parent->stats, &cfqg->stats);
772 cfqg_stats_reset(&cfqg->stats);
773 }
774
775 #else /* CONFIG_CFQ_GROUP_IOSCHED */
776
777 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
778 static inline bool cfqg_is_descendant(struct cfq_group *cfqg,
779 struct cfq_group *ancestor)
780 {
781 return true;
782 }
783 static inline void cfqg_get(struct cfq_group *cfqg) { }
784 static inline void cfqg_put(struct cfq_group *cfqg) { }
785
786 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
787 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
788 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
789 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
790 ##args)
791 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
792
793 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
794 struct cfq_group *curr_cfqg, unsigned int op) { }
795 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
796 uint64_t time, unsigned long unaccounted_time) { }
797 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg,
798 unsigned int op) { }
799 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg,
800 unsigned int op) { }
801 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
802 u64 start_time_ns,
803 u64 io_start_time_ns,
804 unsigned int op) { }
805
806 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
807
808 #define cfq_log(cfqd, fmt, args...) \
809 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
810
811 /* Traverses through cfq group service trees */
812 #define for_each_cfqg_st(cfqg, i, j, st) \
813 for (i = 0; i <= IDLE_WORKLOAD; i++) \
814 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
815 : &cfqg->service_tree_idle; \
816 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
817 (i == IDLE_WORKLOAD && j == 0); \
818 j++, st = i < IDLE_WORKLOAD ? \
819 &cfqg->service_trees[i][j]: NULL) \
820
821 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
822 struct cfq_ttime *ttime, bool group_idle)
823 {
824 u64 slice;
825 if (!sample_valid(ttime->ttime_samples))
826 return false;
827 if (group_idle)
828 slice = cfqd->cfq_group_idle;
829 else
830 slice = cfqd->cfq_slice_idle;
831 return ttime->ttime_mean > slice;
832 }
833
834 static inline bool iops_mode(struct cfq_data *cfqd)
835 {
836 /*
837 * If we are not idling on queues and it is a NCQ drive, parallel
838 * execution of requests is on and measuring time is not possible
839 * in most of the cases until and unless we drive shallower queue
840 * depths and that becomes a performance bottleneck. In such cases
841 * switch to start providing fairness in terms of number of IOs.
842 */
843 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
844 return true;
845 else
846 return false;
847 }
848
849 static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
850 {
851 if (cfq_class_idle(cfqq))
852 return IDLE_WORKLOAD;
853 if (cfq_class_rt(cfqq))
854 return RT_WORKLOAD;
855 return BE_WORKLOAD;
856 }
857
858
859 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
860 {
861 if (!cfq_cfqq_sync(cfqq))
862 return ASYNC_WORKLOAD;
863 if (!cfq_cfqq_idle_window(cfqq))
864 return SYNC_NOIDLE_WORKLOAD;
865 return SYNC_WORKLOAD;
866 }
867
868 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
869 struct cfq_data *cfqd,
870 struct cfq_group *cfqg)
871 {
872 if (wl_class == IDLE_WORKLOAD)
873 return cfqg->service_tree_idle.count;
874
875 return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
876 cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
877 cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
878 }
879
880 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
881 struct cfq_group *cfqg)
882 {
883 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
884 cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
885 }
886
887 static void cfq_dispatch_insert(struct request_queue *, struct request *);
888 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
889 struct cfq_io_cq *cic, struct bio *bio);
890
891 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
892 {
893 /* cic->icq is the first member, %NULL will convert to %NULL */
894 return container_of(icq, struct cfq_io_cq, icq);
895 }
896
897 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
898 struct io_context *ioc)
899 {
900 if (ioc)
901 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
902 return NULL;
903 }
904
905 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
906 {
907 return cic->cfqq[is_sync];
908 }
909
910 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
911 bool is_sync)
912 {
913 cic->cfqq[is_sync] = cfqq;
914 }
915
916 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
917 {
918 return cic->icq.q->elevator->elevator_data;
919 }
920
921 /*
922 * scheduler run of queue, if there are requests pending and no one in the
923 * driver that will restart queueing
924 */
925 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
926 {
927 if (cfqd->busy_queues) {
928 cfq_log(cfqd, "schedule dispatch");
929 kblockd_schedule_work(&cfqd->unplug_work);
930 }
931 }
932
933 /*
934 * Scale schedule slice based on io priority. Use the sync time slice only
935 * if a queue is marked sync and has sync io queued. A sync queue with async
936 * io only, should not get full sync slice length.
937 */
938 static inline u64 cfq_prio_slice(struct cfq_data *cfqd, bool sync,
939 unsigned short prio)
940 {
941 u64 base_slice = cfqd->cfq_slice[sync];
942 u64 slice = div_u64(base_slice, CFQ_SLICE_SCALE);
943
944 WARN_ON(prio >= IOPRIO_BE_NR);
945
946 return base_slice + (slice * (4 - prio));
947 }
948
949 static inline u64
950 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
951 {
952 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
953 }
954
955 /**
956 * cfqg_scale_charge - scale disk time charge according to cfqg weight
957 * @charge: disk time being charged
958 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
959 *
960 * Scale @charge according to @vfraction, which is in range (0, 1]. The
961 * scaling is inversely proportional.
962 *
963 * scaled = charge / vfraction
964 *
965 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
966 */
967 static inline u64 cfqg_scale_charge(u64 charge,
968 unsigned int vfraction)
969 {
970 u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */
971
972 /* charge / vfraction */
973 c <<= CFQ_SERVICE_SHIFT;
974 return div_u64(c, vfraction);
975 }
976
977 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
978 {
979 s64 delta = (s64)(vdisktime - min_vdisktime);
980 if (delta > 0)
981 min_vdisktime = vdisktime;
982
983 return min_vdisktime;
984 }
985
986 static void update_min_vdisktime(struct cfq_rb_root *st)
987 {
988 if (!RB_EMPTY_ROOT(&st->rb.rb_root)) {
989 struct cfq_group *cfqg = rb_entry_cfqg(st->rb.rb_leftmost);
990
991 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
992 cfqg->vdisktime);
993 }
994 }
995
996 /*
997 * get averaged number of queues of RT/BE priority.
998 * average is updated, with a formula that gives more weight to higher numbers,
999 * to quickly follows sudden increases and decrease slowly
1000 */
1001
1002 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
1003 struct cfq_group *cfqg, bool rt)
1004 {
1005 unsigned min_q, max_q;
1006 unsigned mult = cfq_hist_divisor - 1;
1007 unsigned round = cfq_hist_divisor / 2;
1008 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1009
1010 min_q = min(cfqg->busy_queues_avg[rt], busy);
1011 max_q = max(cfqg->busy_queues_avg[rt], busy);
1012 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1013 cfq_hist_divisor;
1014 return cfqg->busy_queues_avg[rt];
1015 }
1016
1017 static inline u64
1018 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1019 {
1020 return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1021 }
1022
1023 static inline u64
1024 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1025 {
1026 u64 slice = cfq_prio_to_slice(cfqd, cfqq);
1027 if (cfqd->cfq_latency) {
1028 /*
1029 * interested queues (we consider only the ones with the same
1030 * priority class in the cfq group)
1031 */
1032 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1033 cfq_class_rt(cfqq));
1034 u64 sync_slice = cfqd->cfq_slice[1];
1035 u64 expect_latency = sync_slice * iq;
1036 u64 group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1037
1038 if (expect_latency > group_slice) {
1039 u64 base_low_slice = 2 * cfqd->cfq_slice_idle;
1040 u64 low_slice;
1041
1042 /* scale low_slice according to IO priority
1043 * and sync vs async */
1044 low_slice = div64_u64(base_low_slice*slice, sync_slice);
1045 low_slice = min(slice, low_slice);
1046 /* the adapted slice value is scaled to fit all iqs
1047 * into the target latency */
1048 slice = div64_u64(slice*group_slice, expect_latency);
1049 slice = max(slice, low_slice);
1050 }
1051 }
1052 return slice;
1053 }
1054
1055 static inline void
1056 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1057 {
1058 u64 slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1059 u64 now = ktime_get_ns();
1060
1061 cfqq->slice_start = now;
1062 cfqq->slice_end = now + slice;
1063 cfqq->allocated_slice = slice;
1064 cfq_log_cfqq(cfqd, cfqq, "set_slice=%llu", cfqq->slice_end - now);
1065 }
1066
1067 /*
1068 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1069 * isn't valid until the first request from the dispatch is activated
1070 * and the slice time set.
1071 */
1072 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1073 {
1074 if (cfq_cfqq_slice_new(cfqq))
1075 return false;
1076 if (ktime_get_ns() < cfqq->slice_end)
1077 return false;
1078
1079 return true;
1080 }
1081
1082 /*
1083 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1084 * We choose the request that is closest to the head right now. Distance
1085 * behind the head is penalized and only allowed to a certain extent.
1086 */
1087 static struct request *
1088 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1089 {
1090 sector_t s1, s2, d1 = 0, d2 = 0;
1091 unsigned long back_max;
1092 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1093 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1094 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1095
1096 if (rq1 == NULL || rq1 == rq2)
1097 return rq2;
1098 if (rq2 == NULL)
1099 return rq1;
1100
1101 if (rq_is_sync(rq1) != rq_is_sync(rq2))
1102 return rq_is_sync(rq1) ? rq1 : rq2;
1103
1104 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1105 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1106
1107 s1 = blk_rq_pos(rq1);
1108 s2 = blk_rq_pos(rq2);
1109
1110 /*
1111 * by definition, 1KiB is 2 sectors
1112 */
1113 back_max = cfqd->cfq_back_max * 2;
1114
1115 /*
1116 * Strict one way elevator _except_ in the case where we allow
1117 * short backward seeks which are biased as twice the cost of a
1118 * similar forward seek.
1119 */
1120 if (s1 >= last)
1121 d1 = s1 - last;
1122 else if (s1 + back_max >= last)
1123 d1 = (last - s1) * cfqd->cfq_back_penalty;
1124 else
1125 wrap |= CFQ_RQ1_WRAP;
1126
1127 if (s2 >= last)
1128 d2 = s2 - last;
1129 else if (s2 + back_max >= last)
1130 d2 = (last - s2) * cfqd->cfq_back_penalty;
1131 else
1132 wrap |= CFQ_RQ2_WRAP;
1133
1134 /* Found required data */
1135
1136 /*
1137 * By doing switch() on the bit mask "wrap" we avoid having to
1138 * check two variables for all permutations: --> faster!
1139 */
1140 switch (wrap) {
1141 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1142 if (d1 < d2)
1143 return rq1;
1144 else if (d2 < d1)
1145 return rq2;
1146 else {
1147 if (s1 >= s2)
1148 return rq1;
1149 else
1150 return rq2;
1151 }
1152
1153 case CFQ_RQ2_WRAP:
1154 return rq1;
1155 case CFQ_RQ1_WRAP:
1156 return rq2;
1157 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1158 default:
1159 /*
1160 * Since both rqs are wrapped,
1161 * start with the one that's further behind head
1162 * (--> only *one* back seek required),
1163 * since back seek takes more time than forward.
1164 */
1165 if (s1 <= s2)
1166 return rq1;
1167 else
1168 return rq2;
1169 }
1170 }
1171
1172 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1173 {
1174 /* Service tree is empty */
1175 if (!root->count)
1176 return NULL;
1177
1178 return rb_entry(rb_first_cached(&root->rb), struct cfq_queue, rb_node);
1179 }
1180
1181 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1182 {
1183 return rb_entry_cfqg(rb_first_cached(&root->rb));
1184 }
1185
1186 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1187 {
1188 if (root->rb_rightmost == n)
1189 root->rb_rightmost = rb_prev(n);
1190
1191 rb_erase_cached(n, &root->rb);
1192 RB_CLEAR_NODE(n);
1193
1194 --root->count;
1195 }
1196
1197 /*
1198 * would be nice to take fifo expire time into account as well
1199 */
1200 static struct request *
1201 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1202 struct request *last)
1203 {
1204 struct rb_node *rbnext = rb_next(&last->rb_node);
1205 struct rb_node *rbprev = rb_prev(&last->rb_node);
1206 struct request *next = NULL, *prev = NULL;
1207
1208 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1209
1210 if (rbprev)
1211 prev = rb_entry_rq(rbprev);
1212
1213 if (rbnext)
1214 next = rb_entry_rq(rbnext);
1215 else {
1216 rbnext = rb_first(&cfqq->sort_list);
1217 if (rbnext && rbnext != &last->rb_node)
1218 next = rb_entry_rq(rbnext);
1219 }
1220
1221 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1222 }
1223
1224 static u64 cfq_slice_offset(struct cfq_data *cfqd,
1225 struct cfq_queue *cfqq)
1226 {
1227 /*
1228 * just an approximation, should be ok.
1229 */
1230 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1231 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1232 }
1233
1234 static inline s64
1235 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1236 {
1237 return cfqg->vdisktime - st->min_vdisktime;
1238 }
1239
1240 static void
1241 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1242 {
1243 struct rb_node **node = &st->rb.rb_root.rb_node;
1244 struct rb_node *parent = NULL;
1245 struct cfq_group *__cfqg;
1246 s64 key = cfqg_key(st, cfqg);
1247 bool leftmost = true, rightmost = true;
1248
1249 while (*node != NULL) {
1250 parent = *node;
1251 __cfqg = rb_entry_cfqg(parent);
1252
1253 if (key < cfqg_key(st, __cfqg)) {
1254 node = &parent->rb_left;
1255 rightmost = false;
1256 } else {
1257 node = &parent->rb_right;
1258 leftmost = false;
1259 }
1260 }
1261
1262 if (rightmost)
1263 st->rb_rightmost = &cfqg->rb_node;
1264
1265 rb_link_node(&cfqg->rb_node, parent, node);
1266 rb_insert_color_cached(&cfqg->rb_node, &st->rb, leftmost);
1267 }
1268
1269 /*
1270 * This has to be called only on activation of cfqg
1271 */
1272 static void
1273 cfq_update_group_weight(struct cfq_group *cfqg)
1274 {
1275 if (cfqg->new_weight) {
1276 cfqg->weight = cfqg->new_weight;
1277 cfqg->new_weight = 0;
1278 }
1279 }
1280
1281 static void
1282 cfq_update_group_leaf_weight(struct cfq_group *cfqg)
1283 {
1284 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1285
1286 if (cfqg->new_leaf_weight) {
1287 cfqg->leaf_weight = cfqg->new_leaf_weight;
1288 cfqg->new_leaf_weight = 0;
1289 }
1290 }
1291
1292 static void
1293 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1294 {
1295 unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */
1296 struct cfq_group *pos = cfqg;
1297 struct cfq_group *parent;
1298 bool propagate;
1299
1300 /* add to the service tree */
1301 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1302
1303 /*
1304 * Update leaf_weight. We cannot update weight at this point
1305 * because cfqg might already have been activated and is
1306 * contributing its current weight to the parent's child_weight.
1307 */
1308 cfq_update_group_leaf_weight(cfqg);
1309 __cfq_group_service_tree_add(st, cfqg);
1310
1311 /*
1312 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1313 * entitled to. vfraction is calculated by walking the tree
1314 * towards the root calculating the fraction it has at each level.
1315 * The compounded ratio is how much vfraction @cfqg owns.
1316 *
1317 * Start with the proportion tasks in this cfqg has against active
1318 * children cfqgs - its leaf_weight against children_weight.
1319 */
1320 propagate = !pos->nr_active++;
1321 pos->children_weight += pos->leaf_weight;
1322 vfr = vfr * pos->leaf_weight / pos->children_weight;
1323
1324 /*
1325 * Compound ->weight walking up the tree. Both activation and
1326 * vfraction calculation are done in the same loop. Propagation
1327 * stops once an already activated node is met. vfraction
1328 * calculation should always continue to the root.
1329 */
1330 while ((parent = cfqg_parent(pos))) {
1331 if (propagate) {
1332 cfq_update_group_weight(pos);
1333 propagate = !parent->nr_active++;
1334 parent->children_weight += pos->weight;
1335 }
1336 vfr = vfr * pos->weight / parent->children_weight;
1337 pos = parent;
1338 }
1339
1340 cfqg->vfraction = max_t(unsigned, vfr, 1);
1341 }
1342
1343 static inline u64 cfq_get_cfqg_vdisktime_delay(struct cfq_data *cfqd)
1344 {
1345 if (!iops_mode(cfqd))
1346 return CFQ_SLICE_MODE_GROUP_DELAY;
1347 else
1348 return CFQ_IOPS_MODE_GROUP_DELAY;
1349 }
1350
1351 static void
1352 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1353 {
1354 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1355 struct cfq_group *__cfqg;
1356 struct rb_node *n;
1357
1358 cfqg->nr_cfqq++;
1359 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1360 return;
1361
1362 /*
1363 * Currently put the group at the end. Later implement something
1364 * so that groups get lesser vtime based on their weights, so that
1365 * if group does not loose all if it was not continuously backlogged.
1366 */
1367 n = st->rb_rightmost;
1368 if (n) {
1369 __cfqg = rb_entry_cfqg(n);
1370 cfqg->vdisktime = __cfqg->vdisktime +
1371 cfq_get_cfqg_vdisktime_delay(cfqd);
1372 } else
1373 cfqg->vdisktime = st->min_vdisktime;
1374 cfq_group_service_tree_add(st, cfqg);
1375 }
1376
1377 static void
1378 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1379 {
1380 struct cfq_group *pos = cfqg;
1381 bool propagate;
1382
1383 /*
1384 * Undo activation from cfq_group_service_tree_add(). Deactivate
1385 * @cfqg and propagate deactivation upwards.
1386 */
1387 propagate = !--pos->nr_active;
1388 pos->children_weight -= pos->leaf_weight;
1389
1390 while (propagate) {
1391 struct cfq_group *parent = cfqg_parent(pos);
1392
1393 /* @pos has 0 nr_active at this point */
1394 WARN_ON_ONCE(pos->children_weight);
1395 pos->vfraction = 0;
1396
1397 if (!parent)
1398 break;
1399
1400 propagate = !--parent->nr_active;
1401 parent->children_weight -= pos->weight;
1402 pos = parent;
1403 }
1404
1405 /* remove from the service tree */
1406 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1407 cfq_rb_erase(&cfqg->rb_node, st);
1408 }
1409
1410 static void
1411 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1412 {
1413 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1414
1415 BUG_ON(cfqg->nr_cfqq < 1);
1416 cfqg->nr_cfqq--;
1417
1418 /* If there are other cfq queues under this group, don't delete it */
1419 if (cfqg->nr_cfqq)
1420 return;
1421
1422 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1423 cfq_group_service_tree_del(st, cfqg);
1424 cfqg->saved_wl_slice = 0;
1425 cfqg_stats_update_dequeue(cfqg);
1426 }
1427
1428 static inline u64 cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1429 u64 *unaccounted_time)
1430 {
1431 u64 slice_used;
1432 u64 now = ktime_get_ns();
1433
1434 /*
1435 * Queue got expired before even a single request completed or
1436 * got expired immediately after first request completion.
1437 */
1438 if (!cfqq->slice_start || cfqq->slice_start == now) {
1439 /*
1440 * Also charge the seek time incurred to the group, otherwise
1441 * if there are mutiple queues in the group, each can dispatch
1442 * a single request on seeky media and cause lots of seek time
1443 * and group will never know it.
1444 */
1445 slice_used = max_t(u64, (now - cfqq->dispatch_start),
1446 jiffies_to_nsecs(1));
1447 } else {
1448 slice_used = now - cfqq->slice_start;
1449 if (slice_used > cfqq->allocated_slice) {
1450 *unaccounted_time = slice_used - cfqq->allocated_slice;
1451 slice_used = cfqq->allocated_slice;
1452 }
1453 if (cfqq->slice_start > cfqq->dispatch_start)
1454 *unaccounted_time += cfqq->slice_start -
1455 cfqq->dispatch_start;
1456 }
1457
1458 return slice_used;
1459 }
1460
1461 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1462 struct cfq_queue *cfqq)
1463 {
1464 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1465 u64 used_sl, charge, unaccounted_sl = 0;
1466 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1467 - cfqg->service_tree_idle.count;
1468 unsigned int vfr;
1469 u64 now = ktime_get_ns();
1470
1471 BUG_ON(nr_sync < 0);
1472 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1473
1474 if (iops_mode(cfqd))
1475 charge = cfqq->slice_dispatch;
1476 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1477 charge = cfqq->allocated_slice;
1478
1479 /*
1480 * Can't update vdisktime while on service tree and cfqg->vfraction
1481 * is valid only while on it. Cache vfr, leave the service tree,
1482 * update vdisktime and go back on. The re-addition to the tree
1483 * will also update the weights as necessary.
1484 */
1485 vfr = cfqg->vfraction;
1486 cfq_group_service_tree_del(st, cfqg);
1487 cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1488 cfq_group_service_tree_add(st, cfqg);
1489
1490 /* This group is being expired. Save the context */
1491 if (cfqd->workload_expires > now) {
1492 cfqg->saved_wl_slice = cfqd->workload_expires - now;
1493 cfqg->saved_wl_type = cfqd->serving_wl_type;
1494 cfqg->saved_wl_class = cfqd->serving_wl_class;
1495 } else
1496 cfqg->saved_wl_slice = 0;
1497
1498 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1499 st->min_vdisktime);
1500 cfq_log_cfqq(cfqq->cfqd, cfqq,
1501 "sl_used=%llu disp=%llu charge=%llu iops=%u sect=%lu",
1502 used_sl, cfqq->slice_dispatch, charge,
1503 iops_mode(cfqd), cfqq->nr_sectors);
1504 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1505 cfqg_stats_set_start_empty_time(cfqg);
1506 }
1507
1508 /**
1509 * cfq_init_cfqg_base - initialize base part of a cfq_group
1510 * @cfqg: cfq_group to initialize
1511 *
1512 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1513 * is enabled or not.
1514 */
1515 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1516 {
1517 struct cfq_rb_root *st;
1518 int i, j;
1519
1520 for_each_cfqg_st(cfqg, i, j, st)
1521 *st = CFQ_RB_ROOT;
1522 RB_CLEAR_NODE(&cfqg->rb_node);
1523
1524 cfqg->ttime.last_end_request = ktime_get_ns();
1525 }
1526
1527 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1528 static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1529 bool on_dfl, bool reset_dev, bool is_leaf_weight);
1530
1531 static void cfqg_stats_exit(struct cfqg_stats *stats)
1532 {
1533 blkg_rwstat_exit(&stats->merged);
1534 blkg_rwstat_exit(&stats->service_time);
1535 blkg_rwstat_exit(&stats->wait_time);
1536 blkg_rwstat_exit(&stats->queued);
1537 blkg_stat_exit(&stats->time);
1538 #ifdef CONFIG_DEBUG_BLK_CGROUP
1539 blkg_stat_exit(&stats->unaccounted_time);
1540 blkg_stat_exit(&stats->avg_queue_size_sum);
1541 blkg_stat_exit(&stats->avg_queue_size_samples);
1542 blkg_stat_exit(&stats->dequeue);
1543 blkg_stat_exit(&stats->group_wait_time);
1544 blkg_stat_exit(&stats->idle_time);
1545 blkg_stat_exit(&stats->empty_time);
1546 #endif
1547 }
1548
1549 static int cfqg_stats_init(struct cfqg_stats *stats, gfp_t gfp)
1550 {
1551 if (blkg_rwstat_init(&stats->merged, gfp) ||
1552 blkg_rwstat_init(&stats->service_time, gfp) ||
1553 blkg_rwstat_init(&stats->wait_time, gfp) ||
1554 blkg_rwstat_init(&stats->queued, gfp) ||
1555 blkg_stat_init(&stats->time, gfp))
1556 goto err;
1557
1558 #ifdef CONFIG_DEBUG_BLK_CGROUP
1559 if (blkg_stat_init(&stats->unaccounted_time, gfp) ||
1560 blkg_stat_init(&stats->avg_queue_size_sum, gfp) ||
1561 blkg_stat_init(&stats->avg_queue_size_samples, gfp) ||
1562 blkg_stat_init(&stats->dequeue, gfp) ||
1563 blkg_stat_init(&stats->group_wait_time, gfp) ||
1564 blkg_stat_init(&stats->idle_time, gfp) ||
1565 blkg_stat_init(&stats->empty_time, gfp))
1566 goto err;
1567 #endif
1568 return 0;
1569 err:
1570 cfqg_stats_exit(stats);
1571 return -ENOMEM;
1572 }
1573
1574 static struct blkcg_policy_data *cfq_cpd_alloc(gfp_t gfp)
1575 {
1576 struct cfq_group_data *cgd;
1577
1578 cgd = kzalloc(sizeof(*cgd), gfp);
1579 if (!cgd)
1580 return NULL;
1581 return &cgd->cpd;
1582 }
1583
1584 static void cfq_cpd_init(struct blkcg_policy_data *cpd)
1585 {
1586 struct cfq_group_data *cgd = cpd_to_cfqgd(cpd);
1587 unsigned int weight = cgroup_subsys_on_dfl(io_cgrp_subsys) ?
1588 CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1589
1590 if (cpd_to_blkcg(cpd) == &blkcg_root)
1591 weight *= 2;
1592
1593 cgd->weight = weight;
1594 cgd->leaf_weight = weight;
1595 }
1596
1597 static void cfq_cpd_free(struct blkcg_policy_data *cpd)
1598 {
1599 kfree(cpd_to_cfqgd(cpd));
1600 }
1601
1602 static void cfq_cpd_bind(struct blkcg_policy_data *cpd)
1603 {
1604 struct blkcg *blkcg = cpd_to_blkcg(cpd);
1605 bool on_dfl = cgroup_subsys_on_dfl(io_cgrp_subsys);
1606 unsigned int weight = on_dfl ? CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1607
1608 if (blkcg == &blkcg_root)
1609 weight *= 2;
1610
1611 WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, false));
1612 WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, true));
1613 }
1614
1615 static struct blkg_policy_data *cfq_pd_alloc(gfp_t gfp, int node)
1616 {
1617 struct cfq_group *cfqg;
1618
1619 cfqg = kzalloc_node(sizeof(*cfqg), gfp, node);
1620 if (!cfqg)
1621 return NULL;
1622
1623 cfq_init_cfqg_base(cfqg);
1624 if (cfqg_stats_init(&cfqg->stats, gfp)) {
1625 kfree(cfqg);
1626 return NULL;
1627 }
1628
1629 return &cfqg->pd;
1630 }
1631
1632 static void cfq_pd_init(struct blkg_policy_data *pd)
1633 {
1634 struct cfq_group *cfqg = pd_to_cfqg(pd);
1635 struct cfq_group_data *cgd = blkcg_to_cfqgd(pd->blkg->blkcg);
1636
1637 cfqg->weight = cgd->weight;
1638 cfqg->leaf_weight = cgd->leaf_weight;
1639 }
1640
1641 static void cfq_pd_offline(struct blkg_policy_data *pd)
1642 {
1643 struct cfq_group *cfqg = pd_to_cfqg(pd);
1644 int i;
1645
1646 for (i = 0; i < IOPRIO_BE_NR; i++) {
1647 if (cfqg->async_cfqq[0][i]) {
1648 cfq_put_queue(cfqg->async_cfqq[0][i]);
1649 cfqg->async_cfqq[0][i] = NULL;
1650 }
1651 if (cfqg->async_cfqq[1][i]) {
1652 cfq_put_queue(cfqg->async_cfqq[1][i]);
1653 cfqg->async_cfqq[1][i] = NULL;
1654 }
1655 }
1656
1657 if (cfqg->async_idle_cfqq) {
1658 cfq_put_queue(cfqg->async_idle_cfqq);
1659 cfqg->async_idle_cfqq = NULL;
1660 }
1661
1662 /*
1663 * @blkg is going offline and will be ignored by
1664 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1665 * that they don't get lost. If IOs complete after this point, the
1666 * stats for them will be lost. Oh well...
1667 */
1668 cfqg_stats_xfer_dead(cfqg);
1669 }
1670
1671 static void cfq_pd_free(struct blkg_policy_data *pd)
1672 {
1673 struct cfq_group *cfqg = pd_to_cfqg(pd);
1674
1675 cfqg_stats_exit(&cfqg->stats);
1676 return kfree(cfqg);
1677 }
1678
1679 static void cfq_pd_reset_stats(struct blkg_policy_data *pd)
1680 {
1681 struct cfq_group *cfqg = pd_to_cfqg(pd);
1682
1683 cfqg_stats_reset(&cfqg->stats);
1684 }
1685
1686 static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
1687 struct blkcg *blkcg)
1688 {
1689 struct blkcg_gq *blkg;
1690
1691 blkg = blkg_lookup(blkcg, cfqd->queue);
1692 if (likely(blkg))
1693 return blkg_to_cfqg(blkg);
1694 return NULL;
1695 }
1696
1697 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1698 {
1699 cfqq->cfqg = cfqg;
1700 /* cfqq reference on cfqg */
1701 cfqg_get(cfqg);
1702 }
1703
1704 static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1705 struct blkg_policy_data *pd, int off)
1706 {
1707 struct cfq_group *cfqg = pd_to_cfqg(pd);
1708
1709 if (!cfqg->dev_weight)
1710 return 0;
1711 return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1712 }
1713
1714 static int cfqg_print_weight_device(struct seq_file *sf, void *v)
1715 {
1716 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1717 cfqg_prfill_weight_device, &blkcg_policy_cfq,
1718 0, false);
1719 return 0;
1720 }
1721
1722 static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1723 struct blkg_policy_data *pd, int off)
1724 {
1725 struct cfq_group *cfqg = pd_to_cfqg(pd);
1726
1727 if (!cfqg->dev_leaf_weight)
1728 return 0;
1729 return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1730 }
1731
1732 static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v)
1733 {
1734 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1735 cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq,
1736 0, false);
1737 return 0;
1738 }
1739
1740 static int cfq_print_weight(struct seq_file *sf, void *v)
1741 {
1742 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1743 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1744 unsigned int val = 0;
1745
1746 if (cgd)
1747 val = cgd->weight;
1748
1749 seq_printf(sf, "%u\n", val);
1750 return 0;
1751 }
1752
1753 static int cfq_print_leaf_weight(struct seq_file *sf, void *v)
1754 {
1755 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1756 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1757 unsigned int val = 0;
1758
1759 if (cgd)
1760 val = cgd->leaf_weight;
1761
1762 seq_printf(sf, "%u\n", val);
1763 return 0;
1764 }
1765
1766 static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of,
1767 char *buf, size_t nbytes, loff_t off,
1768 bool on_dfl, bool is_leaf_weight)
1769 {
1770 unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1771 unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1772 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1773 struct blkg_conf_ctx ctx;
1774 struct cfq_group *cfqg;
1775 struct cfq_group_data *cfqgd;
1776 int ret;
1777 u64 v;
1778
1779 ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1780 if (ret)
1781 return ret;
1782
1783 if (sscanf(ctx.body, "%llu", &v) == 1) {
1784 /* require "default" on dfl */
1785 ret = -ERANGE;
1786 if (!v && on_dfl)
1787 goto out_finish;
1788 } else if (!strcmp(strim(ctx.body), "default")) {
1789 v = 0;
1790 } else {
1791 ret = -EINVAL;
1792 goto out_finish;
1793 }
1794
1795 cfqg = blkg_to_cfqg(ctx.blkg);
1796 cfqgd = blkcg_to_cfqgd(blkcg);
1797
1798 ret = -ERANGE;
1799 if (!v || (v >= min && v <= max)) {
1800 if (!is_leaf_weight) {
1801 cfqg->dev_weight = v;
1802 cfqg->new_weight = v ?: cfqgd->weight;
1803 } else {
1804 cfqg->dev_leaf_weight = v;
1805 cfqg->new_leaf_weight = v ?: cfqgd->leaf_weight;
1806 }
1807 ret = 0;
1808 }
1809 out_finish:
1810 blkg_conf_finish(&ctx);
1811 return ret ?: nbytes;
1812 }
1813
1814 static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of,
1815 char *buf, size_t nbytes, loff_t off)
1816 {
1817 return __cfqg_set_weight_device(of, buf, nbytes, off, false, false);
1818 }
1819
1820 static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of,
1821 char *buf, size_t nbytes, loff_t off)
1822 {
1823 return __cfqg_set_weight_device(of, buf, nbytes, off, false, true);
1824 }
1825
1826 static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1827 bool on_dfl, bool reset_dev, bool is_leaf_weight)
1828 {
1829 unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1830 unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1831 struct blkcg *blkcg = css_to_blkcg(css);
1832 struct blkcg_gq *blkg;
1833 struct cfq_group_data *cfqgd;
1834 int ret = 0;
1835
1836 if (val < min || val > max)
1837 return -ERANGE;
1838
1839 spin_lock_irq(&blkcg->lock);
1840 cfqgd = blkcg_to_cfqgd(blkcg);
1841 if (!cfqgd) {
1842 ret = -EINVAL;
1843 goto out;
1844 }
1845
1846 if (!is_leaf_weight)
1847 cfqgd->weight = val;
1848 else
1849 cfqgd->leaf_weight = val;
1850
1851 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1852 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1853
1854 if (!cfqg)
1855 continue;
1856
1857 if (!is_leaf_weight) {
1858 if (reset_dev)
1859 cfqg->dev_weight = 0;
1860 if (!cfqg->dev_weight)
1861 cfqg->new_weight = cfqgd->weight;
1862 } else {
1863 if (reset_dev)
1864 cfqg->dev_leaf_weight = 0;
1865 if (!cfqg->dev_leaf_weight)
1866 cfqg->new_leaf_weight = cfqgd->leaf_weight;
1867 }
1868 }
1869
1870 out:
1871 spin_unlock_irq(&blkcg->lock);
1872 return ret;
1873 }
1874
1875 static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1876 u64 val)
1877 {
1878 return __cfq_set_weight(css, val, false, false, false);
1879 }
1880
1881 static int cfq_set_leaf_weight(struct cgroup_subsys_state *css,
1882 struct cftype *cft, u64 val)
1883 {
1884 return __cfq_set_weight(css, val, false, false, true);
1885 }
1886
1887 static int cfqg_print_stat(struct seq_file *sf, void *v)
1888 {
1889 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
1890 &blkcg_policy_cfq, seq_cft(sf)->private, false);
1891 return 0;
1892 }
1893
1894 static int cfqg_print_rwstat(struct seq_file *sf, void *v)
1895 {
1896 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
1897 &blkcg_policy_cfq, seq_cft(sf)->private, true);
1898 return 0;
1899 }
1900
1901 static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1902 struct blkg_policy_data *pd, int off)
1903 {
1904 u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd),
1905 &blkcg_policy_cfq, off);
1906 return __blkg_prfill_u64(sf, pd, sum);
1907 }
1908
1909 static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1910 struct blkg_policy_data *pd, int off)
1911 {
1912 struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd),
1913 &blkcg_policy_cfq, off);
1914 return __blkg_prfill_rwstat(sf, pd, &sum);
1915 }
1916
1917 static int cfqg_print_stat_recursive(struct seq_file *sf, void *v)
1918 {
1919 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1920 cfqg_prfill_stat_recursive, &blkcg_policy_cfq,
1921 seq_cft(sf)->private, false);
1922 return 0;
1923 }
1924
1925 static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
1926 {
1927 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1928 cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq,
1929 seq_cft(sf)->private, true);
1930 return 0;
1931 }
1932
1933 static u64 cfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd,
1934 int off)
1935 {
1936 u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes);
1937
1938 return __blkg_prfill_u64(sf, pd, sum >> 9);
1939 }
1940
1941 static int cfqg_print_stat_sectors(struct seq_file *sf, void *v)
1942 {
1943 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1944 cfqg_prfill_sectors, &blkcg_policy_cfq, 0, false);
1945 return 0;
1946 }
1947
1948 static u64 cfqg_prfill_sectors_recursive(struct seq_file *sf,
1949 struct blkg_policy_data *pd, int off)
1950 {
1951 struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL,
1952 offsetof(struct blkcg_gq, stat_bytes));
1953 u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) +
1954 atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]);
1955
1956 return __blkg_prfill_u64(sf, pd, sum >> 9);
1957 }
1958
1959 static int cfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v)
1960 {
1961 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1962 cfqg_prfill_sectors_recursive, &blkcg_policy_cfq, 0,
1963 false);
1964 return 0;
1965 }
1966
1967 #ifdef CONFIG_DEBUG_BLK_CGROUP
1968 static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1969 struct blkg_policy_data *pd, int off)
1970 {
1971 struct cfq_group *cfqg = pd_to_cfqg(pd);
1972 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1973 u64 v = 0;
1974
1975 if (samples) {
1976 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1977 v = div64_u64(v, samples);
1978 }
1979 __blkg_prfill_u64(sf, pd, v);
1980 return 0;
1981 }
1982
1983 /* print avg_queue_size */
1984 static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v)
1985 {
1986 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1987 cfqg_prfill_avg_queue_size, &blkcg_policy_cfq,
1988 0, false);
1989 return 0;
1990 }
1991 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1992
1993 static struct cftype cfq_blkcg_legacy_files[] = {
1994 /* on root, weight is mapped to leaf_weight */
1995 {
1996 .name = "weight_device",
1997 .flags = CFTYPE_ONLY_ON_ROOT,
1998 .seq_show = cfqg_print_leaf_weight_device,
1999 .write = cfqg_set_leaf_weight_device,
2000 },
2001 {
2002 .name = "weight",
2003 .flags = CFTYPE_ONLY_ON_ROOT,
2004 .seq_show = cfq_print_leaf_weight,
2005 .write_u64 = cfq_set_leaf_weight,
2006 },
2007
2008 /* no such mapping necessary for !roots */
2009 {
2010 .name = "weight_device",
2011 .flags = CFTYPE_NOT_ON_ROOT,
2012 .seq_show = cfqg_print_weight_device,
2013 .write = cfqg_set_weight_device,
2014 },
2015 {
2016 .name = "weight",
2017 .flags = CFTYPE_NOT_ON_ROOT,
2018 .seq_show = cfq_print_weight,
2019 .write_u64 = cfq_set_weight,
2020 },
2021
2022 {
2023 .name = "leaf_weight_device",
2024 .seq_show = cfqg_print_leaf_weight_device,
2025 .write = cfqg_set_leaf_weight_device,
2026 },
2027 {
2028 .name = "leaf_weight",
2029 .seq_show = cfq_print_leaf_weight,
2030 .write_u64 = cfq_set_leaf_weight,
2031 },
2032
2033 /* statistics, covers only the tasks in the cfqg */
2034 {
2035 .name = "time",
2036 .private = offsetof(struct cfq_group, stats.time),
2037 .seq_show = cfqg_print_stat,
2038 },
2039 {
2040 .name = "sectors",
2041 .seq_show = cfqg_print_stat_sectors,
2042 },
2043 {
2044 .name = "io_service_bytes",
2045 .private = (unsigned long)&blkcg_policy_cfq,
2046 .seq_show = blkg_print_stat_bytes,
2047 },
2048 {
2049 .name = "io_serviced",
2050 .private = (unsigned long)&blkcg_policy_cfq,
2051 .seq_show = blkg_print_stat_ios,
2052 },
2053 {
2054 .name = "io_service_time",
2055 .private = offsetof(struct cfq_group, stats.service_time),
2056 .seq_show = cfqg_print_rwstat,
2057 },
2058 {
2059 .name = "io_wait_time",
2060 .private = offsetof(struct cfq_group, stats.wait_time),
2061 .seq_show = cfqg_print_rwstat,
2062 },
2063 {
2064 .name = "io_merged",
2065 .private = offsetof(struct cfq_group, stats.merged),
2066 .seq_show = cfqg_print_rwstat,
2067 },
2068 {
2069 .name = "io_queued",
2070 .private = offsetof(struct cfq_group, stats.queued),
2071 .seq_show = cfqg_print_rwstat,
2072 },
2073
2074 /* the same statictics which cover the cfqg and its descendants */
2075 {
2076 .name = "time_recursive",
2077 .private = offsetof(struct cfq_group, stats.time),
2078 .seq_show = cfqg_print_stat_recursive,
2079 },
2080 {
2081 .name = "sectors_recursive",
2082 .seq_show = cfqg_print_stat_sectors_recursive,
2083 },
2084 {
2085 .name = "io_service_bytes_recursive",
2086 .private = (unsigned long)&blkcg_policy_cfq,
2087 .seq_show = blkg_print_stat_bytes_recursive,
2088 },
2089 {
2090 .name = "io_serviced_recursive",
2091 .private = (unsigned long)&blkcg_policy_cfq,
2092 .seq_show = blkg_print_stat_ios_recursive,
2093 },
2094 {
2095 .name = "io_service_time_recursive",
2096 .private = offsetof(struct cfq_group, stats.service_time),
2097 .seq_show = cfqg_print_rwstat_recursive,
2098 },
2099 {
2100 .name = "io_wait_time_recursive",
2101 .private = offsetof(struct cfq_group, stats.wait_time),
2102 .seq_show = cfqg_print_rwstat_recursive,
2103 },
2104 {
2105 .name = "io_merged_recursive",
2106 .private = offsetof(struct cfq_group, stats.merged),
2107 .seq_show = cfqg_print_rwstat_recursive,
2108 },
2109 {
2110 .name = "io_queued_recursive",
2111 .private = offsetof(struct cfq_group, stats.queued),
2112 .seq_show = cfqg_print_rwstat_recursive,
2113 },
2114 #ifdef CONFIG_DEBUG_BLK_CGROUP
2115 {
2116 .name = "avg_queue_size",
2117 .seq_show = cfqg_print_avg_queue_size,
2118 },
2119 {
2120 .name = "group_wait_time",
2121 .private = offsetof(struct cfq_group, stats.group_wait_time),
2122 .seq_show = cfqg_print_stat,
2123 },
2124 {
2125 .name = "idle_time",
2126 .private = offsetof(struct cfq_group, stats.idle_time),
2127 .seq_show = cfqg_print_stat,
2128 },
2129 {
2130 .name = "empty_time",
2131 .private = offsetof(struct cfq_group, stats.empty_time),
2132 .seq_show = cfqg_print_stat,
2133 },
2134 {
2135 .name = "dequeue",
2136 .private = offsetof(struct cfq_group, stats.dequeue),
2137 .seq_show = cfqg_print_stat,
2138 },
2139 {
2140 .name = "unaccounted_time",
2141 .private = offsetof(struct cfq_group, stats.unaccounted_time),
2142 .seq_show = cfqg_print_stat,
2143 },
2144 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2145 { } /* terminate */
2146 };
2147
2148 static int cfq_print_weight_on_dfl(struct seq_file *sf, void *v)
2149 {
2150 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2151 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
2152
2153 seq_printf(sf, "default %u\n", cgd->weight);
2154 blkcg_print_blkgs(sf, blkcg, cfqg_prfill_weight_device,
2155 &blkcg_policy_cfq, 0, false);
2156 return 0;
2157 }
2158
2159 static ssize_t cfq_set_weight_on_dfl(struct kernfs_open_file *of,
2160 char *buf, size_t nbytes, loff_t off)
2161 {
2162 char *endp;
2163 int ret;
2164 u64 v;
2165
2166 buf = strim(buf);
2167
2168 /* "WEIGHT" or "default WEIGHT" sets the default weight */
2169 v = simple_strtoull(buf, &endp, 0);
2170 if (*endp == '\0' || sscanf(buf, "default %llu", &v) == 1) {
2171 ret = __cfq_set_weight(of_css(of), v, true, false, false);
2172 return ret ?: nbytes;
2173 }
2174
2175 /* "MAJ:MIN WEIGHT" */
2176 return __cfqg_set_weight_device(of, buf, nbytes, off, true, false);
2177 }
2178
2179 static struct cftype cfq_blkcg_files[] = {
2180 {
2181 .name = "weight",
2182 .flags = CFTYPE_NOT_ON_ROOT,
2183 .seq_show = cfq_print_weight_on_dfl,
2184 .write = cfq_set_weight_on_dfl,
2185 },
2186 { } /* terminate */
2187 };
2188
2189 #else /* GROUP_IOSCHED */
2190 static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
2191 struct blkcg *blkcg)
2192 {
2193 return cfqd->root_group;
2194 }
2195
2196 static inline void
2197 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
2198 cfqq->cfqg = cfqg;
2199 }
2200
2201 #endif /* GROUP_IOSCHED */
2202
2203 /*
2204 * The cfqd->service_trees holds all pending cfq_queue's that have
2205 * requests waiting to be processed. It is sorted in the order that
2206 * we will service the queues.
2207 */
2208 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2209 bool add_front)
2210 {
2211 struct rb_node **p, *parent;
2212 struct cfq_queue *__cfqq;
2213 u64 rb_key;
2214 struct cfq_rb_root *st;
2215 bool leftmost = true;
2216 int new_cfqq = 1;
2217 u64 now = ktime_get_ns();
2218
2219 st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2220 if (cfq_class_idle(cfqq)) {
2221 rb_key = CFQ_IDLE_DELAY;
2222 parent = st->rb_rightmost;
2223 if (parent && parent != &cfqq->rb_node) {
2224 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2225 rb_key += __cfqq->rb_key;
2226 } else
2227 rb_key += now;
2228 } else if (!add_front) {
2229 /*
2230 * Get our rb key offset. Subtract any residual slice
2231 * value carried from last service. A negative resid
2232 * count indicates slice overrun, and this should position
2233 * the next service time further away in the tree.
2234 */
2235 rb_key = cfq_slice_offset(cfqd, cfqq) + now;
2236 rb_key -= cfqq->slice_resid;
2237 cfqq->slice_resid = 0;
2238 } else {
2239 rb_key = -NSEC_PER_SEC;
2240 __cfqq = cfq_rb_first(st);
2241 rb_key += __cfqq ? __cfqq->rb_key : now;
2242 }
2243
2244 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2245 new_cfqq = 0;
2246 /*
2247 * same position, nothing more to do
2248 */
2249 if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2250 return;
2251
2252 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2253 cfqq->service_tree = NULL;
2254 }
2255
2256 parent = NULL;
2257 cfqq->service_tree = st;
2258 p = &st->rb.rb_root.rb_node;
2259 while (*p) {
2260 parent = *p;
2261 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2262
2263 /*
2264 * sort by key, that represents service time.
2265 */
2266 if (rb_key < __cfqq->rb_key)
2267 p = &parent->rb_left;
2268 else {
2269 p = &parent->rb_right;
2270 leftmost = false;
2271 }
2272 }
2273
2274 cfqq->rb_key = rb_key;
2275 rb_link_node(&cfqq->rb_node, parent, p);
2276 rb_insert_color_cached(&cfqq->rb_node, &st->rb, leftmost);
2277 st->count++;
2278 if (add_front || !new_cfqq)
2279 return;
2280 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2281 }
2282
2283 static struct cfq_queue *
2284 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2285 sector_t sector, struct rb_node **ret_parent,
2286 struct rb_node ***rb_link)
2287 {
2288 struct rb_node **p, *parent;
2289 struct cfq_queue *cfqq = NULL;
2290
2291 parent = NULL;
2292 p = &root->rb_node;
2293 while (*p) {
2294 struct rb_node **n;
2295
2296 parent = *p;
2297 cfqq = rb_entry(parent, struct cfq_queue, p_node);
2298
2299 /*
2300 * Sort strictly based on sector. Smallest to the left,
2301 * largest to the right.
2302 */
2303 if (sector > blk_rq_pos(cfqq->next_rq))
2304 n = &(*p)->rb_right;
2305 else if (sector < blk_rq_pos(cfqq->next_rq))
2306 n = &(*p)->rb_left;
2307 else
2308 break;
2309 p = n;
2310 cfqq = NULL;
2311 }
2312
2313 *ret_parent = parent;
2314 if (rb_link)
2315 *rb_link = p;
2316 return cfqq;
2317 }
2318
2319 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2320 {
2321 struct rb_node **p, *parent;
2322 struct cfq_queue *__cfqq;
2323
2324 if (cfqq->p_root) {
2325 rb_erase(&cfqq->p_node, cfqq->p_root);
2326 cfqq->p_root = NULL;
2327 }
2328
2329 if (cfq_class_idle(cfqq))
2330 return;
2331 if (!cfqq->next_rq)
2332 return;
2333
2334 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2335 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2336 blk_rq_pos(cfqq->next_rq), &parent, &p);
2337 if (!__cfqq) {
2338 rb_link_node(&cfqq->p_node, parent, p);
2339 rb_insert_color(&cfqq->p_node, cfqq->p_root);
2340 } else
2341 cfqq->p_root = NULL;
2342 }
2343
2344 /*
2345 * Update cfqq's position in the service tree.
2346 */
2347 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2348 {
2349 /*
2350 * Resorting requires the cfqq to be on the RR list already.
2351 */
2352 if (cfq_cfqq_on_rr(cfqq)) {
2353 cfq_service_tree_add(cfqd, cfqq, 0);
2354 cfq_prio_tree_add(cfqd, cfqq);
2355 }
2356 }
2357
2358 /*
2359 * add to busy list of queues for service, trying to be fair in ordering
2360 * the pending list according to last request service
2361 */
2362 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2363 {
2364 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2365 BUG_ON(cfq_cfqq_on_rr(cfqq));
2366 cfq_mark_cfqq_on_rr(cfqq);
2367 cfqd->busy_queues++;
2368 if (cfq_cfqq_sync(cfqq))
2369 cfqd->busy_sync_queues++;
2370
2371 cfq_resort_rr_list(cfqd, cfqq);
2372 }
2373
2374 /*
2375 * Called when the cfqq no longer has requests pending, remove it from
2376 * the service tree.
2377 */
2378 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2379 {
2380 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2381 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2382 cfq_clear_cfqq_on_rr(cfqq);
2383
2384 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2385 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2386 cfqq->service_tree = NULL;
2387 }
2388 if (cfqq->p_root) {
2389 rb_erase(&cfqq->p_node, cfqq->p_root);
2390 cfqq->p_root = NULL;
2391 }
2392
2393 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2394 BUG_ON(!cfqd->busy_queues);
2395 cfqd->busy_queues--;
2396 if (cfq_cfqq_sync(cfqq))
2397 cfqd->busy_sync_queues--;
2398 }
2399
2400 /*
2401 * rb tree support functions
2402 */
2403 static void cfq_del_rq_rb(struct request *rq)
2404 {
2405 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2406 const int sync = rq_is_sync(rq);
2407
2408 BUG_ON(!cfqq->queued[sync]);
2409 cfqq->queued[sync]--;
2410
2411 elv_rb_del(&cfqq->sort_list, rq);
2412
2413 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2414 /*
2415 * Queue will be deleted from service tree when we actually
2416 * expire it later. Right now just remove it from prio tree
2417 * as it is empty.
2418 */
2419 if (cfqq->p_root) {
2420 rb_erase(&cfqq->p_node, cfqq->p_root);
2421 cfqq->p_root = NULL;
2422 }
2423 }
2424 }
2425
2426 static void cfq_add_rq_rb(struct request *rq)
2427 {
2428 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2429 struct cfq_data *cfqd = cfqq->cfqd;
2430 struct request *prev;
2431
2432 cfqq->queued[rq_is_sync(rq)]++;
2433
2434 elv_rb_add(&cfqq->sort_list, rq);
2435
2436 if (!cfq_cfqq_on_rr(cfqq))
2437 cfq_add_cfqq_rr(cfqd, cfqq);
2438
2439 /*
2440 * check if this request is a better next-serve candidate
2441 */
2442 prev = cfqq->next_rq;
2443 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2444
2445 /*
2446 * adjust priority tree position, if ->next_rq changes
2447 */
2448 if (prev != cfqq->next_rq)
2449 cfq_prio_tree_add(cfqd, cfqq);
2450
2451 BUG_ON(!cfqq->next_rq);
2452 }
2453
2454 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2455 {
2456 elv_rb_del(&cfqq->sort_list, rq);
2457 cfqq->queued[rq_is_sync(rq)]--;
2458 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2459 cfq_add_rq_rb(rq);
2460 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2461 rq->cmd_flags);
2462 }
2463
2464 static struct request *
2465 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2466 {
2467 struct task_struct *tsk = current;
2468 struct cfq_io_cq *cic;
2469 struct cfq_queue *cfqq;
2470
2471 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2472 if (!cic)
2473 return NULL;
2474
2475 cfqq = cic_to_cfqq(cic, op_is_sync(bio->bi_opf));
2476 if (cfqq)
2477 return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio));
2478
2479 return NULL;
2480 }
2481
2482 static void cfq_activate_request(struct request_queue *q, struct request *rq)
2483 {
2484 struct cfq_data *cfqd = q->elevator->elevator_data;
2485
2486 cfqd->rq_in_driver++;
2487 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2488 cfqd->rq_in_driver);
2489
2490 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2491 }
2492
2493 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2494 {
2495 struct cfq_data *cfqd = q->elevator->elevator_data;
2496
2497 WARN_ON(!cfqd->rq_in_driver);
2498 cfqd->rq_in_driver--;
2499 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2500 cfqd->rq_in_driver);
2501 }
2502
2503 static void cfq_remove_request(struct request *rq)
2504 {
2505 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2506
2507 if (cfqq->next_rq == rq)
2508 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2509
2510 list_del_init(&rq->queuelist);
2511 cfq_del_rq_rb(rq);
2512
2513 cfqq->cfqd->rq_queued--;
2514 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2515 if (rq->cmd_flags & REQ_PRIO) {
2516 WARN_ON(!cfqq->prio_pending);
2517 cfqq->prio_pending--;
2518 }
2519 }
2520
2521 static enum elv_merge cfq_merge(struct request_queue *q, struct request **req,
2522 struct bio *bio)
2523 {
2524 struct cfq_data *cfqd = q->elevator->elevator_data;
2525 struct request *__rq;
2526
2527 __rq = cfq_find_rq_fmerge(cfqd, bio);
2528 if (__rq && elv_bio_merge_ok(__rq, bio)) {
2529 *req = __rq;
2530 return ELEVATOR_FRONT_MERGE;
2531 }
2532
2533 return ELEVATOR_NO_MERGE;
2534 }
2535
2536 static void cfq_merged_request(struct request_queue *q, struct request *req,
2537 enum elv_merge type)
2538 {
2539 if (type == ELEVATOR_FRONT_MERGE) {
2540 struct cfq_queue *cfqq = RQ_CFQQ(req);
2541
2542 cfq_reposition_rq_rb(cfqq, req);
2543 }
2544 }
2545
2546 static void cfq_bio_merged(struct request_queue *q, struct request *req,
2547 struct bio *bio)
2548 {
2549 cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_opf);
2550 }
2551
2552 static void
2553 cfq_merged_requests(struct request_queue *q, struct request *rq,
2554 struct request *next)
2555 {
2556 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2557 struct cfq_data *cfqd = q->elevator->elevator_data;
2558
2559 /*
2560 * reposition in fifo if next is older than rq
2561 */
2562 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2563 next->fifo_time < rq->fifo_time &&
2564 cfqq == RQ_CFQQ(next)) {
2565 list_move(&rq->queuelist, &next->queuelist);
2566 rq->fifo_time = next->fifo_time;
2567 }
2568
2569 if (cfqq->next_rq == next)
2570 cfqq->next_rq = rq;
2571 cfq_remove_request(next);
2572 cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2573
2574 cfqq = RQ_CFQQ(next);
2575 /*
2576 * all requests of this queue are merged to other queues, delete it
2577 * from the service tree. If it's the active_queue,
2578 * cfq_dispatch_requests() will choose to expire it or do idle
2579 */
2580 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2581 cfqq != cfqd->active_queue)
2582 cfq_del_cfqq_rr(cfqd, cfqq);
2583 }
2584
2585 static int cfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2586 struct bio *bio)
2587 {
2588 struct cfq_data *cfqd = q->elevator->elevator_data;
2589 bool is_sync = op_is_sync(bio->bi_opf);
2590 struct cfq_io_cq *cic;
2591 struct cfq_queue *cfqq;
2592
2593 /*
2594 * Disallow merge of a sync bio into an async request.
2595 */
2596 if (is_sync && !rq_is_sync(rq))
2597 return false;
2598
2599 /*
2600 * Lookup the cfqq that this bio will be queued with and allow
2601 * merge only if rq is queued there.
2602 */
2603 cic = cfq_cic_lookup(cfqd, current->io_context);
2604 if (!cic)
2605 return false;
2606
2607 cfqq = cic_to_cfqq(cic, is_sync);
2608 return cfqq == RQ_CFQQ(rq);
2609 }
2610
2611 static int cfq_allow_rq_merge(struct request_queue *q, struct request *rq,
2612 struct request *next)
2613 {
2614 return RQ_CFQQ(rq) == RQ_CFQQ(next);
2615 }
2616
2617 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2618 {
2619 hrtimer_try_to_cancel(&cfqd->idle_slice_timer);
2620 cfqg_stats_update_idle_time(cfqq->cfqg);
2621 }
2622
2623 static void __cfq_set_active_queue(struct cfq_data *cfqd,
2624 struct cfq_queue *cfqq)
2625 {
2626 if (cfqq) {
2627 cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2628 cfqd->serving_wl_class, cfqd->serving_wl_type);
2629 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2630 cfqq->slice_start = 0;
2631 cfqq->dispatch_start = ktime_get_ns();
2632 cfqq->allocated_slice = 0;
2633 cfqq->slice_end = 0;
2634 cfqq->slice_dispatch = 0;
2635 cfqq->nr_sectors = 0;
2636
2637 cfq_clear_cfqq_wait_request(cfqq);
2638 cfq_clear_cfqq_must_dispatch(cfqq);
2639 cfq_clear_cfqq_must_alloc_slice(cfqq);
2640 cfq_clear_cfqq_fifo_expire(cfqq);
2641 cfq_mark_cfqq_slice_new(cfqq);
2642
2643 cfq_del_timer(cfqd, cfqq);
2644 }
2645
2646 cfqd->active_queue = cfqq;
2647 }
2648
2649 /*
2650 * current cfqq expired its slice (or was too idle), select new one
2651 */
2652 static void
2653 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2654 bool timed_out)
2655 {
2656 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2657
2658 if (cfq_cfqq_wait_request(cfqq))
2659 cfq_del_timer(cfqd, cfqq);
2660
2661 cfq_clear_cfqq_wait_request(cfqq);
2662 cfq_clear_cfqq_wait_busy(cfqq);
2663
2664 /*
2665 * If this cfqq is shared between multiple processes, check to
2666 * make sure that those processes are still issuing I/Os within
2667 * the mean seek distance. If not, it may be time to break the
2668 * queues apart again.
2669 */
2670 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2671 cfq_mark_cfqq_split_coop(cfqq);
2672
2673 /*
2674 * store what was left of this slice, if the queue idled/timed out
2675 */
2676 if (timed_out) {
2677 if (cfq_cfqq_slice_new(cfqq))
2678 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2679 else
2680 cfqq->slice_resid = cfqq->slice_end - ktime_get_ns();
2681 cfq_log_cfqq(cfqd, cfqq, "resid=%lld", cfqq->slice_resid);
2682 }
2683
2684 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2685
2686 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2687 cfq_del_cfqq_rr(cfqd, cfqq);
2688
2689 cfq_resort_rr_list(cfqd, cfqq);
2690
2691 if (cfqq == cfqd->active_queue)
2692 cfqd->active_queue = NULL;
2693
2694 if (cfqd->active_cic) {
2695 put_io_context(cfqd->active_cic->icq.ioc);
2696 cfqd->active_cic = NULL;
2697 }
2698 }
2699
2700 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2701 {
2702 struct cfq_queue *cfqq = cfqd->active_queue;
2703
2704 if (cfqq)
2705 __cfq_slice_expired(cfqd, cfqq, timed_out);
2706 }
2707
2708 /*
2709 * Get next queue for service. Unless we have a queue preemption,
2710 * we'll simply select the first cfqq in the service tree.
2711 */
2712 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2713 {
2714 struct cfq_rb_root *st = st_for(cfqd->serving_group,
2715 cfqd->serving_wl_class, cfqd->serving_wl_type);
2716
2717 if (!cfqd->rq_queued)
2718 return NULL;
2719
2720 /* There is nothing to dispatch */
2721 if (!st)
2722 return NULL;
2723 if (RB_EMPTY_ROOT(&st->rb.rb_root))
2724 return NULL;
2725 return cfq_rb_first(st);
2726 }
2727
2728 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2729 {
2730 struct cfq_group *cfqg;
2731 struct cfq_queue *cfqq;
2732 int i, j;
2733 struct cfq_rb_root *st;
2734
2735 if (!cfqd->rq_queued)
2736 return NULL;
2737
2738 cfqg = cfq_get_next_cfqg(cfqd);
2739 if (!cfqg)
2740 return NULL;
2741
2742 for_each_cfqg_st(cfqg, i, j, st) {
2743 cfqq = cfq_rb_first(st);
2744 if (cfqq)
2745 return cfqq;
2746 }
2747 return NULL;
2748 }
2749
2750 /*
2751 * Get and set a new active queue for service.
2752 */
2753 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2754 struct cfq_queue *cfqq)
2755 {
2756 if (!cfqq)
2757 cfqq = cfq_get_next_queue(cfqd);
2758
2759 __cfq_set_active_queue(cfqd, cfqq);
2760 return cfqq;
2761 }
2762
2763 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2764 struct request *rq)
2765 {
2766 if (blk_rq_pos(rq) >= cfqd->last_position)
2767 return blk_rq_pos(rq) - cfqd->last_position;
2768 else
2769 return cfqd->last_position - blk_rq_pos(rq);
2770 }
2771
2772 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2773 struct request *rq)
2774 {
2775 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2776 }
2777
2778 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2779 struct cfq_queue *cur_cfqq)
2780 {
2781 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2782 struct rb_node *parent, *node;
2783 struct cfq_queue *__cfqq;
2784 sector_t sector = cfqd->last_position;
2785
2786 if (RB_EMPTY_ROOT(root))
2787 return NULL;
2788
2789 /*
2790 * First, if we find a request starting at the end of the last
2791 * request, choose it.
2792 */
2793 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2794 if (__cfqq)
2795 return __cfqq;
2796
2797 /*
2798 * If the exact sector wasn't found, the parent of the NULL leaf
2799 * will contain the closest sector.
2800 */
2801 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2802 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2803 return __cfqq;
2804
2805 if (blk_rq_pos(__cfqq->next_rq) < sector)
2806 node = rb_next(&__cfqq->p_node);
2807 else
2808 node = rb_prev(&__cfqq->p_node);
2809 if (!node)
2810 return NULL;
2811
2812 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2813 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2814 return __cfqq;
2815
2816 return NULL;
2817 }
2818
2819 /*
2820 * cfqd - obvious
2821 * cur_cfqq - passed in so that we don't decide that the current queue is
2822 * closely cooperating with itself.
2823 *
2824 * So, basically we're assuming that that cur_cfqq has dispatched at least
2825 * one request, and that cfqd->last_position reflects a position on the disk
2826 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2827 * assumption.
2828 */
2829 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2830 struct cfq_queue *cur_cfqq)
2831 {
2832 struct cfq_queue *cfqq;
2833
2834 if (cfq_class_idle(cur_cfqq))
2835 return NULL;
2836 if (!cfq_cfqq_sync(cur_cfqq))
2837 return NULL;
2838 if (CFQQ_SEEKY(cur_cfqq))
2839 return NULL;
2840
2841 /*
2842 * Don't search priority tree if it's the only queue in the group.
2843 */
2844 if (cur_cfqq->cfqg->nr_cfqq == 1)
2845 return NULL;
2846
2847 /*
2848 * We should notice if some of the queues are cooperating, eg
2849 * working closely on the same area of the disk. In that case,
2850 * we can group them together and don't waste time idling.
2851 */
2852 cfqq = cfqq_close(cfqd, cur_cfqq);
2853 if (!cfqq)
2854 return NULL;
2855
2856 /* If new queue belongs to different cfq_group, don't choose it */
2857 if (cur_cfqq->cfqg != cfqq->cfqg)
2858 return NULL;
2859
2860 /*
2861 * It only makes sense to merge sync queues.
2862 */
2863 if (!cfq_cfqq_sync(cfqq))
2864 return NULL;
2865 if (CFQQ_SEEKY(cfqq))
2866 return NULL;
2867
2868 /*
2869 * Do not merge queues of different priority classes
2870 */
2871 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2872 return NULL;
2873
2874 return cfqq;
2875 }
2876
2877 /*
2878 * Determine whether we should enforce idle window for this queue.
2879 */
2880
2881 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2882 {
2883 enum wl_class_t wl_class = cfqq_class(cfqq);
2884 struct cfq_rb_root *st = cfqq->service_tree;
2885
2886 BUG_ON(!st);
2887 BUG_ON(!st->count);
2888
2889 if (!cfqd->cfq_slice_idle)
2890 return false;
2891
2892 /* We never do for idle class queues. */
2893 if (wl_class == IDLE_WORKLOAD)
2894 return false;
2895
2896 /* We do for queues that were marked with idle window flag. */
2897 if (cfq_cfqq_idle_window(cfqq) &&
2898 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2899 return true;
2900
2901 /*
2902 * Otherwise, we do only if they are the last ones
2903 * in their service tree.
2904 */
2905 if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2906 !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2907 return true;
2908 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2909 return false;
2910 }
2911
2912 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2913 {
2914 struct cfq_queue *cfqq = cfqd->active_queue;
2915 struct cfq_rb_root *st = cfqq->service_tree;
2916 struct cfq_io_cq *cic;
2917 u64 sl, group_idle = 0;
2918 u64 now = ktime_get_ns();
2919
2920 /*
2921 * SSD device without seek penalty, disable idling. But only do so
2922 * for devices that support queuing, otherwise we still have a problem
2923 * with sync vs async workloads.
2924 */
2925 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag &&
2926 !cfqd->cfq_group_idle)
2927 return;
2928
2929 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2930 WARN_ON(cfq_cfqq_slice_new(cfqq));
2931
2932 /*
2933 * idle is disabled, either manually or by past process history
2934 */
2935 if (!cfq_should_idle(cfqd, cfqq)) {
2936 /* no queue idling. Check for group idling */
2937 if (cfqd->cfq_group_idle)
2938 group_idle = cfqd->cfq_group_idle;
2939 else
2940 return;
2941 }
2942
2943 /*
2944 * still active requests from this queue, don't idle
2945 */
2946 if (cfqq->dispatched)
2947 return;
2948
2949 /*
2950 * task has exited, don't wait
2951 */
2952 cic = cfqd->active_cic;
2953 if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2954 return;
2955
2956 /*
2957 * If our average think time is larger than the remaining time
2958 * slice, then don't idle. This avoids overrunning the allotted
2959 * time slice.
2960 */
2961 if (sample_valid(cic->ttime.ttime_samples) &&
2962 (cfqq->slice_end - now < cic->ttime.ttime_mean)) {
2963 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%llu",
2964 cic->ttime.ttime_mean);
2965 return;
2966 }
2967
2968 /*
2969 * There are other queues in the group or this is the only group and
2970 * it has too big thinktime, don't do group idle.
2971 */
2972 if (group_idle &&
2973 (cfqq->cfqg->nr_cfqq > 1 ||
2974 cfq_io_thinktime_big(cfqd, &st->ttime, true)))
2975 return;
2976
2977 cfq_mark_cfqq_wait_request(cfqq);
2978
2979 if (group_idle)
2980 sl = cfqd->cfq_group_idle;
2981 else
2982 sl = cfqd->cfq_slice_idle;
2983
2984 hrtimer_start(&cfqd->idle_slice_timer, ns_to_ktime(sl),
2985 HRTIMER_MODE_REL);
2986 cfqg_stats_set_start_idle_time(cfqq->cfqg);
2987 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %llu group_idle: %d", sl,
2988 group_idle ? 1 : 0);
2989 }
2990
2991 /*
2992 * Move request from internal lists to the request queue dispatch list.
2993 */
2994 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2995 {
2996 struct cfq_data *cfqd = q->elevator->elevator_data;
2997 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2998
2999 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
3000
3001 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
3002 cfq_remove_request(rq);
3003 cfqq->dispatched++;
3004 (RQ_CFQG(rq))->dispatched++;
3005 elv_dispatch_sort(q, rq);
3006
3007 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
3008 cfqq->nr_sectors += blk_rq_sectors(rq);
3009 }
3010
3011 /*
3012 * return expired entry, or NULL to just start from scratch in rbtree
3013 */
3014 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
3015 {
3016 struct request *rq = NULL;
3017
3018 if (cfq_cfqq_fifo_expire(cfqq))
3019 return NULL;
3020
3021 cfq_mark_cfqq_fifo_expire(cfqq);
3022
3023 if (list_empty(&cfqq->fifo))
3024 return NULL;
3025
3026 rq = rq_entry_fifo(cfqq->fifo.next);
3027 if (ktime_get_ns() < rq->fifo_time)
3028 rq = NULL;
3029
3030 return rq;
3031 }
3032
3033 static inline int
3034 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3035 {
3036 const int base_rq = cfqd->cfq_slice_async_rq;
3037
3038 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
3039
3040 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
3041 }
3042
3043 /*
3044 * Must be called with the queue_lock held.
3045 */
3046 static int cfqq_process_refs(struct cfq_queue *cfqq)
3047 {
3048 int process_refs, io_refs;
3049
3050 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
3051 process_refs = cfqq->ref - io_refs;
3052 BUG_ON(process_refs < 0);
3053 return process_refs;
3054 }
3055
3056 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
3057 {
3058 int process_refs, new_process_refs;
3059 struct cfq_queue *__cfqq;
3060
3061 /*
3062 * If there are no process references on the new_cfqq, then it is
3063 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
3064 * chain may have dropped their last reference (not just their
3065 * last process reference).
3066 */
3067 if (!cfqq_process_refs(new_cfqq))
3068 return;
3069
3070 /* Avoid a circular list and skip interim queue merges */
3071 while ((__cfqq = new_cfqq->new_cfqq)) {
3072 if (__cfqq == cfqq)
3073 return;
3074 new_cfqq = __cfqq;
3075 }
3076
3077 process_refs = cfqq_process_refs(cfqq);
3078 new_process_refs = cfqq_process_refs(new_cfqq);
3079 /*
3080 * If the process for the cfqq has gone away, there is no
3081 * sense in merging the queues.
3082 */
3083 if (process_refs == 0 || new_process_refs == 0)
3084 return;
3085
3086 /*
3087 * Merge in the direction of the lesser amount of work.
3088 */
3089 if (new_process_refs >= process_refs) {
3090 cfqq->new_cfqq = new_cfqq;
3091 new_cfqq->ref += process_refs;
3092 } else {
3093 new_cfqq->new_cfqq = cfqq;
3094 cfqq->ref += new_process_refs;
3095 }
3096 }
3097
3098 static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
3099 struct cfq_group *cfqg, enum wl_class_t wl_class)
3100 {
3101 struct cfq_queue *queue;
3102 int i;
3103 bool key_valid = false;
3104 u64 lowest_key = 0;
3105 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
3106
3107 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
3108 /* select the one with lowest rb_key */
3109 queue = cfq_rb_first(st_for(cfqg, wl_class, i));
3110 if (queue &&
3111 (!key_valid || queue->rb_key < lowest_key)) {
3112 lowest_key = queue->rb_key;
3113 cur_best = i;
3114 key_valid = true;
3115 }
3116 }
3117
3118 return cur_best;
3119 }
3120
3121 static void
3122 choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
3123 {
3124 u64 slice;
3125 unsigned count;
3126 struct cfq_rb_root *st;
3127 u64 group_slice;
3128 enum wl_class_t original_class = cfqd->serving_wl_class;
3129 u64 now = ktime_get_ns();
3130
3131 /* Choose next priority. RT > BE > IDLE */
3132 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
3133 cfqd->serving_wl_class = RT_WORKLOAD;
3134 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
3135 cfqd->serving_wl_class = BE_WORKLOAD;
3136 else {
3137 cfqd->serving_wl_class = IDLE_WORKLOAD;
3138 cfqd->workload_expires = now + jiffies_to_nsecs(1);
3139 return;
3140 }
3141
3142 if (original_class != cfqd->serving_wl_class)
3143 goto new_workload;
3144
3145 /*
3146 * For RT and BE, we have to choose also the type
3147 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3148 * expiration time
3149 */
3150 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3151 count = st->count;
3152
3153 /*
3154 * check workload expiration, and that we still have other queues ready
3155 */
3156 if (count && !(now > cfqd->workload_expires))
3157 return;
3158
3159 new_workload:
3160 /* otherwise select new workload type */
3161 cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
3162 cfqd->serving_wl_class);
3163 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3164 count = st->count;
3165
3166 /*
3167 * the workload slice is computed as a fraction of target latency
3168 * proportional to the number of queues in that workload, over
3169 * all the queues in the same priority class
3170 */
3171 group_slice = cfq_group_slice(cfqd, cfqg);
3172
3173 slice = div_u64(group_slice * count,
3174 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
3175 cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
3176 cfqg)));
3177
3178 if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
3179 u64 tmp;
3180
3181 /*
3182 * Async queues are currently system wide. Just taking
3183 * proportion of queues with-in same group will lead to higher
3184 * async ratio system wide as generally root group is going
3185 * to have higher weight. A more accurate thing would be to
3186 * calculate system wide asnc/sync ratio.
3187 */
3188 tmp = cfqd->cfq_target_latency *
3189 cfqg_busy_async_queues(cfqd, cfqg);
3190 tmp = div_u64(tmp, cfqd->busy_queues);
3191 slice = min_t(u64, slice, tmp);
3192
3193 /* async workload slice is scaled down according to
3194 * the sync/async slice ratio. */
3195 slice = div64_u64(slice*cfqd->cfq_slice[0], cfqd->cfq_slice[1]);
3196 } else
3197 /* sync workload slice is at least 2 * cfq_slice_idle */
3198 slice = max(slice, 2 * cfqd->cfq_slice_idle);
3199
3200 slice = max_t(u64, slice, CFQ_MIN_TT);
3201 cfq_log(cfqd, "workload slice:%llu", slice);
3202 cfqd->workload_expires = now + slice;
3203 }
3204
3205 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
3206 {
3207 struct cfq_rb_root *st = &cfqd->grp_service_tree;
3208 struct cfq_group *cfqg;
3209
3210 if (RB_EMPTY_ROOT(&st->rb.rb_root))
3211 return NULL;
3212 cfqg = cfq_rb_first_group(st);
3213 update_min_vdisktime(st);
3214 return cfqg;
3215 }
3216
3217 static void cfq_choose_cfqg(struct cfq_data *cfqd)
3218 {
3219 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3220 u64 now = ktime_get_ns();
3221
3222 cfqd->serving_group = cfqg;
3223
3224 /* Restore the workload type data */
3225 if (cfqg->saved_wl_slice) {
3226 cfqd->workload_expires = now + cfqg->saved_wl_slice;
3227 cfqd->serving_wl_type = cfqg->saved_wl_type;
3228 cfqd->serving_wl_class = cfqg->saved_wl_class;
3229 } else
3230 cfqd->workload_expires = now - 1;
3231
3232 choose_wl_class_and_type(cfqd, cfqg);
3233 }
3234
3235 /*
3236 * Select a queue for service. If we have a current active queue,
3237 * check whether to continue servicing it, or retrieve and set a new one.
3238 */
3239 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3240 {
3241 struct cfq_queue *cfqq, *new_cfqq = NULL;
3242 u64 now = ktime_get_ns();
3243
3244 cfqq = cfqd->active_queue;
3245 if (!cfqq)
3246 goto new_queue;
3247
3248 if (!cfqd->rq_queued)
3249 return NULL;
3250
3251 /*
3252 * We were waiting for group to get backlogged. Expire the queue
3253 */
3254 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3255 goto expire;
3256
3257 /*
3258 * The active queue has run out of time, expire it and select new.
3259 */
3260 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3261 /*
3262 * If slice had not expired at the completion of last request
3263 * we might not have turned on wait_busy flag. Don't expire
3264 * the queue yet. Allow the group to get backlogged.
3265 *
3266 * The very fact that we have used the slice, that means we
3267 * have been idling all along on this queue and it should be
3268 * ok to wait for this request to complete.
3269 */
3270 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3271 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3272 cfqq = NULL;
3273 goto keep_queue;
3274 } else
3275 goto check_group_idle;
3276 }
3277
3278 /*
3279 * The active queue has requests and isn't expired, allow it to
3280 * dispatch.
3281 */
3282 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3283 goto keep_queue;
3284
3285 /*
3286 * If another queue has a request waiting within our mean seek
3287 * distance, let it run. The expire code will check for close
3288 * cooperators and put the close queue at the front of the service
3289 * tree. If possible, merge the expiring queue with the new cfqq.
3290 */
3291 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3292 if (new_cfqq) {
3293 if (!cfqq->new_cfqq)
3294 cfq_setup_merge(cfqq, new_cfqq);
3295 goto expire;
3296 }
3297
3298 /*
3299 * No requests pending. If the active queue still has requests in
3300 * flight or is idling for a new request, allow either of these
3301 * conditions to happen (or time out) before selecting a new queue.
3302 */
3303 if (hrtimer_active(&cfqd->idle_slice_timer)) {
3304 cfqq = NULL;
3305 goto keep_queue;
3306 }
3307
3308 /*
3309 * This is a deep seek queue, but the device is much faster than
3310 * the queue can deliver, don't idle
3311 **/
3312 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3313 (cfq_cfqq_slice_new(cfqq) ||
3314 (cfqq->slice_end - now > now - cfqq->slice_start))) {
3315 cfq_clear_cfqq_deep(cfqq);
3316 cfq_clear_cfqq_idle_window(cfqq);
3317 }
3318
3319 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3320 cfqq = NULL;
3321 goto keep_queue;
3322 }
3323
3324 /*
3325 * If group idle is enabled and there are requests dispatched from
3326 * this group, wait for requests to complete.
3327 */
3328 check_group_idle:
3329 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3330 cfqq->cfqg->dispatched &&
3331 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3332 cfqq = NULL;
3333 goto keep_queue;
3334 }
3335
3336 expire:
3337 cfq_slice_expired(cfqd, 0);
3338 new_queue:
3339 /*
3340 * Current queue expired. Check if we have to switch to a new
3341 * service tree
3342 */
3343 if (!new_cfqq)
3344 cfq_choose_cfqg(cfqd);
3345
3346 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3347 keep_queue:
3348 return cfqq;
3349 }
3350
3351 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3352 {
3353 int dispatched = 0;
3354
3355 while (cfqq->next_rq) {
3356 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3357 dispatched++;
3358 }
3359
3360 BUG_ON(!list_empty(&cfqq->fifo));
3361
3362 /* By default cfqq is not expired if it is empty. Do it explicitly */
3363 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3364 return dispatched;
3365 }
3366
3367 /*
3368 * Drain our current requests. Used for barriers and when switching
3369 * io schedulers on-the-fly.
3370 */
3371 static int cfq_forced_dispatch(struct cfq_data *cfqd)
3372 {
3373 struct cfq_queue *cfqq;
3374 int dispatched = 0;
3375
3376 /* Expire the timeslice of the current active queue first */
3377 cfq_slice_expired(cfqd, 0);
3378 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3379 __cfq_set_active_queue(cfqd, cfqq);
3380 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3381 }
3382
3383 BUG_ON(cfqd->busy_queues);
3384
3385 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3386 return dispatched;
3387 }
3388
3389 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3390 struct cfq_queue *cfqq)
3391 {
3392 u64 now = ktime_get_ns();
3393
3394 /* the queue hasn't finished any request, can't estimate */
3395 if (cfq_cfqq_slice_new(cfqq))
3396 return true;
3397 if (now + cfqd->cfq_slice_idle * cfqq->dispatched > cfqq->slice_end)
3398 return true;
3399
3400 return false;
3401 }
3402
3403 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3404 {
3405 unsigned int max_dispatch;
3406
3407 if (cfq_cfqq_must_dispatch(cfqq))
3408 return true;
3409
3410 /*
3411 * Drain async requests before we start sync IO
3412 */
3413 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3414 return false;
3415
3416 /*
3417 * If this is an async queue and we have sync IO in flight, let it wait
3418 */
3419 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3420 return false;
3421
3422 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3423 if (cfq_class_idle(cfqq))
3424 max_dispatch = 1;
3425
3426 /*
3427 * Does this cfqq already have too much IO in flight?
3428 */
3429 if (cfqq->dispatched >= max_dispatch) {
3430 bool promote_sync = false;
3431 /*
3432 * idle queue must always only have a single IO in flight
3433 */
3434 if (cfq_class_idle(cfqq))
3435 return false;
3436
3437 /*
3438 * If there is only one sync queue
3439 * we can ignore async queue here and give the sync
3440 * queue no dispatch limit. The reason is a sync queue can
3441 * preempt async queue, limiting the sync queue doesn't make
3442 * sense. This is useful for aiostress test.
3443 */
3444 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3445 promote_sync = true;
3446
3447 /*
3448 * We have other queues, don't allow more IO from this one
3449 */
3450 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3451 !promote_sync)
3452 return false;
3453
3454 /*
3455 * Sole queue user, no limit
3456 */
3457 if (cfqd->busy_queues == 1 || promote_sync)
3458 max_dispatch = -1;
3459 else
3460 /*
3461 * Normally we start throttling cfqq when cfq_quantum/2
3462 * requests have been dispatched. But we can drive
3463 * deeper queue depths at the beginning of slice
3464 * subjected to upper limit of cfq_quantum.
3465 * */
3466 max_dispatch = cfqd->cfq_quantum;
3467 }
3468
3469 /*
3470 * Async queues must wait a bit before being allowed dispatch.
3471 * We also ramp up the dispatch depth gradually for async IO,
3472 * based on the last sync IO we serviced
3473 */
3474 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3475 u64 last_sync = ktime_get_ns() - cfqd->last_delayed_sync;
3476 unsigned int depth;
3477
3478 depth = div64_u64(last_sync, cfqd->cfq_slice[1]);
3479 if (!depth && !cfqq->dispatched)
3480 depth = 1;
3481 if (depth < max_dispatch)
3482 max_dispatch = depth;
3483 }
3484
3485 /*
3486 * If we're below the current max, allow a dispatch
3487 */
3488 return cfqq->dispatched < max_dispatch;
3489 }
3490
3491 /*
3492 * Dispatch a request from cfqq, moving them to the request queue
3493 * dispatch list.
3494 */
3495 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3496 {
3497 struct request *rq;
3498
3499 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3500
3501 rq = cfq_check_fifo(cfqq);
3502 if (rq)
3503 cfq_mark_cfqq_must_dispatch(cfqq);
3504
3505 if (!cfq_may_dispatch(cfqd, cfqq))
3506 return false;
3507
3508 /*
3509 * follow expired path, else get first next available
3510 */
3511 if (!rq)
3512 rq = cfqq->next_rq;
3513 else
3514 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
3515
3516 /*
3517 * insert request into driver dispatch list
3518 */
3519 cfq_dispatch_insert(cfqd->queue, rq);
3520
3521 if (!cfqd->active_cic) {
3522 struct cfq_io_cq *cic = RQ_CIC(rq);
3523
3524 atomic_long_inc(&cic->icq.ioc->refcount);
3525 cfqd->active_cic = cic;
3526 }
3527
3528 return true;
3529 }
3530
3531 /*
3532 * Find the cfqq that we need to service and move a request from that to the
3533 * dispatch list
3534 */
3535 static int cfq_dispatch_requests(struct request_queue *q, int force)
3536 {
3537 struct cfq_data *cfqd = q->elevator->elevator_data;
3538 struct cfq_queue *cfqq;
3539
3540 if (!cfqd->busy_queues)
3541 return 0;
3542
3543 if (unlikely(force))
3544 return cfq_forced_dispatch(cfqd);
3545
3546 cfqq = cfq_select_queue(cfqd);
3547 if (!cfqq)
3548 return 0;
3549
3550 /*
3551 * Dispatch a request from this cfqq, if it is allowed
3552 */
3553 if (!cfq_dispatch_request(cfqd, cfqq))
3554 return 0;
3555
3556 cfqq->slice_dispatch++;
3557 cfq_clear_cfqq_must_dispatch(cfqq);
3558
3559 /*
3560 * expire an async queue immediately if it has used up its slice. idle
3561 * queue always expire after 1 dispatch round.
3562 */
3563 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3564 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3565 cfq_class_idle(cfqq))) {
3566 cfqq->slice_end = ktime_get_ns() + 1;
3567 cfq_slice_expired(cfqd, 0);
3568 }
3569
3570 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3571 return 1;
3572 }
3573
3574 /*
3575 * task holds one reference to the queue, dropped when task exits. each rq
3576 * in-flight on this queue also holds a reference, dropped when rq is freed.
3577 *
3578 * Each cfq queue took a reference on the parent group. Drop it now.
3579 * queue lock must be held here.
3580 */
3581 static void cfq_put_queue(struct cfq_queue *cfqq)
3582 {
3583 struct cfq_data *cfqd = cfqq->cfqd;
3584 struct cfq_group *cfqg;
3585
3586 BUG_ON(cfqq->ref <= 0);
3587
3588 cfqq->ref--;
3589 if (cfqq->ref)
3590 return;
3591
3592 cfq_log_cfqq(cfqd, cfqq, "put_queue");
3593 BUG_ON(rb_first(&cfqq->sort_list));
3594 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3595 cfqg = cfqq->cfqg;
3596
3597 if (unlikely(cfqd->active_queue == cfqq)) {
3598 __cfq_slice_expired(cfqd, cfqq, 0);
3599 cfq_schedule_dispatch(cfqd);
3600 }
3601
3602 BUG_ON(cfq_cfqq_on_rr(cfqq));
3603 kmem_cache_free(cfq_pool, cfqq);
3604 cfqg_put(cfqg);
3605 }
3606
3607 static void cfq_put_cooperator(struct cfq_queue *cfqq)
3608 {
3609 struct cfq_queue *__cfqq, *next;
3610
3611 /*
3612 * If this queue was scheduled to merge with another queue, be
3613 * sure to drop the reference taken on that queue (and others in
3614 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3615 */
3616 __cfqq = cfqq->new_cfqq;
3617 while (__cfqq) {
3618 if (__cfqq == cfqq) {
3619 WARN(1, "cfqq->new_cfqq loop detected\n");
3620 break;
3621 }
3622 next = __cfqq->new_cfqq;
3623 cfq_put_queue(__cfqq);
3624 __cfqq = next;
3625 }
3626 }
3627
3628 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3629 {
3630 if (unlikely(cfqq == cfqd->active_queue)) {
3631 __cfq_slice_expired(cfqd, cfqq, 0);
3632 cfq_schedule_dispatch(cfqd);
3633 }
3634
3635 cfq_put_cooperator(cfqq);
3636
3637 cfq_put_queue(cfqq);
3638 }
3639
3640 static void cfq_init_icq(struct io_cq *icq)
3641 {
3642 struct cfq_io_cq *cic = icq_to_cic(icq);
3643
3644 cic->ttime.last_end_request = ktime_get_ns();
3645 }
3646
3647 static void cfq_exit_icq(struct io_cq *icq)
3648 {
3649 struct cfq_io_cq *cic = icq_to_cic(icq);
3650 struct cfq_data *cfqd = cic_to_cfqd(cic);
3651
3652 if (cic_to_cfqq(cic, false)) {
3653 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, false));
3654 cic_set_cfqq(cic, NULL, false);
3655 }
3656
3657 if (cic_to_cfqq(cic, true)) {
3658 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, true));
3659 cic_set_cfqq(cic, NULL, true);
3660 }
3661 }
3662
3663 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3664 {
3665 struct task_struct *tsk = current;
3666 int ioprio_class;
3667
3668 if (!cfq_cfqq_prio_changed(cfqq))
3669 return;
3670
3671 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3672 switch (ioprio_class) {
3673 default:
3674 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3675 /* fall through */
3676 case IOPRIO_CLASS_NONE:
3677 /*
3678 * no prio set, inherit CPU scheduling settings
3679 */
3680 cfqq->ioprio = task_nice_ioprio(tsk);
3681 cfqq->ioprio_class = task_nice_ioclass(tsk);
3682 break;
3683 case IOPRIO_CLASS_RT:
3684 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3685 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3686 break;
3687 case IOPRIO_CLASS_BE:
3688 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3689 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3690 break;
3691 case IOPRIO_CLASS_IDLE:
3692 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3693 cfqq->ioprio = 7;
3694 cfq_clear_cfqq_idle_window(cfqq);
3695 break;
3696 }
3697
3698 /*
3699 * keep track of original prio settings in case we have to temporarily
3700 * elevate the priority of this queue
3701 */
3702 cfqq->org_ioprio = cfqq->ioprio;
3703 cfqq->org_ioprio_class = cfqq->ioprio_class;
3704 cfq_clear_cfqq_prio_changed(cfqq);
3705 }
3706
3707 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3708 {
3709 int ioprio = cic->icq.ioc->ioprio;
3710 struct cfq_data *cfqd = cic_to_cfqd(cic);
3711 struct cfq_queue *cfqq;
3712
3713 /*
3714 * Check whether ioprio has changed. The condition may trigger
3715 * spuriously on a newly created cic but there's no harm.
3716 */
3717 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3718 return;
3719
3720 cfqq = cic_to_cfqq(cic, false);
3721 if (cfqq) {
3722 cfq_put_queue(cfqq);
3723 cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio);
3724 cic_set_cfqq(cic, cfqq, false);
3725 }
3726
3727 cfqq = cic_to_cfqq(cic, true);
3728 if (cfqq)
3729 cfq_mark_cfqq_prio_changed(cfqq);
3730
3731 cic->ioprio = ioprio;
3732 }
3733
3734 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3735 pid_t pid, bool is_sync)
3736 {
3737 RB_CLEAR_NODE(&cfqq->rb_node);
3738 RB_CLEAR_NODE(&cfqq->p_node);
3739 INIT_LIST_HEAD(&cfqq->fifo);
3740
3741 cfqq->ref = 0;
3742 cfqq->cfqd = cfqd;
3743
3744 cfq_mark_cfqq_prio_changed(cfqq);
3745
3746 if (is_sync) {
3747 if (!cfq_class_idle(cfqq))
3748 cfq_mark_cfqq_idle_window(cfqq);
3749 cfq_mark_cfqq_sync(cfqq);
3750 }
3751 cfqq->pid = pid;
3752 }
3753
3754 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3755 static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3756 {
3757 struct cfq_data *cfqd = cic_to_cfqd(cic);
3758 struct cfq_queue *cfqq;
3759 uint64_t serial_nr;
3760
3761 rcu_read_lock();
3762 serial_nr = bio_blkcg(bio)->css.serial_nr;
3763 rcu_read_unlock();
3764
3765 /*
3766 * Check whether blkcg has changed. The condition may trigger
3767 * spuriously on a newly created cic but there's no harm.
3768 */
3769 if (unlikely(!cfqd) || likely(cic->blkcg_serial_nr == serial_nr))
3770 return;
3771
3772 /*
3773 * Drop reference to queues. New queues will be assigned in new
3774 * group upon arrival of fresh requests.
3775 */
3776 cfqq = cic_to_cfqq(cic, false);
3777 if (cfqq) {
3778 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3779 cic_set_cfqq(cic, NULL, false);
3780 cfq_put_queue(cfqq);
3781 }
3782
3783 cfqq = cic_to_cfqq(cic, true);
3784 if (cfqq) {
3785 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3786 cic_set_cfqq(cic, NULL, true);
3787 cfq_put_queue(cfqq);
3788 }
3789
3790 cic->blkcg_serial_nr = serial_nr;
3791 }
3792 #else
3793 static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3794 {
3795 }
3796 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3797
3798 static struct cfq_queue **
3799 cfq_async_queue_prio(struct cfq_group *cfqg, int ioprio_class, int ioprio)
3800 {
3801 switch (ioprio_class) {
3802 case IOPRIO_CLASS_RT:
3803 return &cfqg->async_cfqq[0][ioprio];
3804 case IOPRIO_CLASS_NONE:
3805 ioprio = IOPRIO_NORM;
3806 /* fall through */
3807 case IOPRIO_CLASS_BE:
3808 return &cfqg->async_cfqq[1][ioprio];
3809 case IOPRIO_CLASS_IDLE:
3810 return &cfqg->async_idle_cfqq;
3811 default:
3812 BUG();
3813 }
3814 }
3815
3816 static struct cfq_queue *
3817 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3818 struct bio *bio)
3819 {
3820 int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3821 int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3822 struct cfq_queue **async_cfqq = NULL;
3823 struct cfq_queue *cfqq;
3824 struct cfq_group *cfqg;
3825
3826 rcu_read_lock();
3827 cfqg = cfq_lookup_cfqg(cfqd, bio_blkcg(bio));
3828 if (!cfqg) {
3829 cfqq = &cfqd->oom_cfqq;
3830 goto out;
3831 }
3832
3833 if (!is_sync) {
3834 if (!ioprio_valid(cic->ioprio)) {
3835 struct task_struct *tsk = current;
3836 ioprio = task_nice_ioprio(tsk);
3837 ioprio_class = task_nice_ioclass(tsk);
3838 }
3839 async_cfqq = cfq_async_queue_prio(cfqg, ioprio_class, ioprio);
3840 cfqq = *async_cfqq;
3841 if (cfqq)
3842 goto out;
3843 }
3844
3845 cfqq = kmem_cache_alloc_node(cfq_pool,
3846 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
3847 cfqd->queue->node);
3848 if (!cfqq) {
3849 cfqq = &cfqd->oom_cfqq;
3850 goto out;
3851 }
3852
3853 /* cfq_init_cfqq() assumes cfqq->ioprio_class is initialized. */
3854 cfqq->ioprio_class = IOPRIO_CLASS_NONE;
3855 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3856 cfq_init_prio_data(cfqq, cic);
3857 cfq_link_cfqq_cfqg(cfqq, cfqg);
3858 cfq_log_cfqq(cfqd, cfqq, "alloced");
3859
3860 if (async_cfqq) {
3861 /* a new async queue is created, pin and remember */
3862 cfqq->ref++;
3863 *async_cfqq = cfqq;
3864 }
3865 out:
3866 cfqq->ref++;
3867 rcu_read_unlock();
3868 return cfqq;
3869 }
3870
3871 static void
3872 __cfq_update_io_thinktime(struct cfq_ttime *ttime, u64 slice_idle)
3873 {
3874 u64 elapsed = ktime_get_ns() - ttime->last_end_request;
3875 elapsed = min(elapsed, 2UL * slice_idle);
3876
3877 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3878 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
3879 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
3880 ttime->ttime_samples);
3881 }
3882
3883 static void
3884 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3885 struct cfq_io_cq *cic)
3886 {
3887 if (cfq_cfqq_sync(cfqq)) {
3888 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3889 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3890 cfqd->cfq_slice_idle);
3891 }
3892 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3893 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3894 #endif
3895 }
3896
3897 static void
3898 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3899 struct request *rq)
3900 {
3901 sector_t sdist = 0;
3902 sector_t n_sec = blk_rq_sectors(rq);
3903 if (cfqq->last_request_pos) {
3904 if (cfqq->last_request_pos < blk_rq_pos(rq))
3905 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3906 else
3907 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3908 }
3909
3910 cfqq->seek_history <<= 1;
3911 if (blk_queue_nonrot(cfqd->queue))
3912 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3913 else
3914 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3915 }
3916
3917 static inline bool req_noidle(struct request *req)
3918 {
3919 return req_op(req) == REQ_OP_WRITE &&
3920 (req->cmd_flags & (REQ_SYNC | REQ_IDLE)) == REQ_SYNC;
3921 }
3922
3923 /*
3924 * Disable idle window if the process thinks too long or seeks so much that
3925 * it doesn't matter
3926 */
3927 static void
3928 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3929 struct cfq_io_cq *cic)
3930 {
3931 int old_idle, enable_idle;
3932
3933 /*
3934 * Don't idle for async or idle io prio class
3935 */
3936 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3937 return;
3938
3939 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3940
3941 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3942 cfq_mark_cfqq_deep(cfqq);
3943
3944 if (cfqq->next_rq && req_noidle(cfqq->next_rq))
3945 enable_idle = 0;
3946 else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3947 !cfqd->cfq_slice_idle ||
3948 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3949 enable_idle = 0;
3950 else if (sample_valid(cic->ttime.ttime_samples)) {
3951 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3952 enable_idle = 0;
3953 else
3954 enable_idle = 1;
3955 }
3956
3957 if (old_idle != enable_idle) {
3958 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3959 if (enable_idle)
3960 cfq_mark_cfqq_idle_window(cfqq);
3961 else
3962 cfq_clear_cfqq_idle_window(cfqq);
3963 }
3964 }
3965
3966 /*
3967 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3968 * no or if we aren't sure, a 1 will cause a preempt.
3969 */
3970 static bool
3971 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3972 struct request *rq)
3973 {
3974 struct cfq_queue *cfqq;
3975
3976 cfqq = cfqd->active_queue;
3977 if (!cfqq)
3978 return false;
3979
3980 if (cfq_class_idle(new_cfqq))
3981 return false;
3982
3983 if (cfq_class_idle(cfqq))
3984 return true;
3985
3986 /*
3987 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3988 */
3989 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3990 return false;
3991
3992 /*
3993 * if the new request is sync, but the currently running queue is
3994 * not, let the sync request have priority.
3995 */
3996 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3997 return true;
3998
3999 /*
4000 * Treat ancestors of current cgroup the same way as current cgroup.
4001 * For anybody else we disallow preemption to guarantee service
4002 * fairness among cgroups.
4003 */
4004 if (!cfqg_is_descendant(cfqq->cfqg, new_cfqq->cfqg))
4005 return false;
4006
4007 if (cfq_slice_used(cfqq))
4008 return true;
4009
4010 /*
4011 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
4012 */
4013 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
4014 return true;
4015
4016 WARN_ON_ONCE(cfqq->ioprio_class != new_cfqq->ioprio_class);
4017 /* Allow preemption only if we are idling on sync-noidle tree */
4018 if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
4019 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
4020 RB_EMPTY_ROOT(&cfqq->sort_list))
4021 return true;
4022
4023 /*
4024 * So both queues are sync. Let the new request get disk time if
4025 * it's a metadata request and the current queue is doing regular IO.
4026 */
4027 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
4028 return true;
4029
4030 /* An idle queue should not be idle now for some reason */
4031 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
4032 return true;
4033
4034 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
4035 return false;
4036
4037 /*
4038 * if this request is as-good as one we would expect from the
4039 * current cfqq, let it preempt
4040 */
4041 if (cfq_rq_close(cfqd, cfqq, rq))
4042 return true;
4043
4044 return false;
4045 }
4046
4047 /*
4048 * cfqq preempts the active queue. if we allowed preempt with no slice left,
4049 * let it have half of its nominal slice.
4050 */
4051 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4052 {
4053 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
4054
4055 cfq_log_cfqq(cfqd, cfqq, "preempt");
4056 cfq_slice_expired(cfqd, 1);
4057
4058 /*
4059 * workload type is changed, don't save slice, otherwise preempt
4060 * doesn't happen
4061 */
4062 if (old_type != cfqq_type(cfqq))
4063 cfqq->cfqg->saved_wl_slice = 0;
4064
4065 /*
4066 * Put the new queue at the front of the of the current list,
4067 * so we know that it will be selected next.
4068 */
4069 BUG_ON(!cfq_cfqq_on_rr(cfqq));
4070
4071 cfq_service_tree_add(cfqd, cfqq, 1);
4072
4073 cfqq->slice_end = 0;
4074 cfq_mark_cfqq_slice_new(cfqq);
4075 }
4076
4077 /*
4078 * Called when a new fs request (rq) is added (to cfqq). Check if there's
4079 * something we should do about it
4080 */
4081 static void
4082 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
4083 struct request *rq)
4084 {
4085 struct cfq_io_cq *cic = RQ_CIC(rq);
4086
4087 cfqd->rq_queued++;
4088 if (rq->cmd_flags & REQ_PRIO)
4089 cfqq->prio_pending++;
4090
4091 cfq_update_io_thinktime(cfqd, cfqq, cic);
4092 cfq_update_io_seektime(cfqd, cfqq, rq);
4093 cfq_update_idle_window(cfqd, cfqq, cic);
4094
4095 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4096
4097 if (cfqq == cfqd->active_queue) {
4098 /*
4099 * Remember that we saw a request from this process, but
4100 * don't start queuing just yet. Otherwise we risk seeing lots
4101 * of tiny requests, because we disrupt the normal plugging
4102 * and merging. If the request is already larger than a single
4103 * page, let it rip immediately. For that case we assume that
4104 * merging is already done. Ditto for a busy system that
4105 * has other work pending, don't risk delaying until the
4106 * idle timer unplug to continue working.
4107 */
4108 if (cfq_cfqq_wait_request(cfqq)) {
4109 if (blk_rq_bytes(rq) > PAGE_SIZE ||
4110 cfqd->busy_queues > 1) {
4111 cfq_del_timer(cfqd, cfqq);
4112 cfq_clear_cfqq_wait_request(cfqq);
4113 __blk_run_queue(cfqd->queue);
4114 } else {
4115 cfqg_stats_update_idle_time(cfqq->cfqg);
4116 cfq_mark_cfqq_must_dispatch(cfqq);
4117 }
4118 }
4119 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
4120 /*
4121 * not the active queue - expire current slice if it is
4122 * idle and has expired it's mean thinktime or this new queue
4123 * has some old slice time left and is of higher priority or
4124 * this new queue is RT and the current one is BE
4125 */
4126 cfq_preempt_queue(cfqd, cfqq);
4127 __blk_run_queue(cfqd->queue);
4128 }
4129 }
4130
4131 static void cfq_insert_request(struct request_queue *q, struct request *rq)
4132 {
4133 struct cfq_data *cfqd = q->elevator->elevator_data;
4134 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4135
4136 cfq_log_cfqq(cfqd, cfqq, "insert_request");
4137 cfq_init_prio_data(cfqq, RQ_CIC(rq));
4138
4139 rq->fifo_time = ktime_get_ns() + cfqd->cfq_fifo_expire[rq_is_sync(rq)];
4140 list_add_tail(&rq->queuelist, &cfqq->fifo);
4141 cfq_add_rq_rb(rq);
4142 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
4143 rq->cmd_flags);
4144 cfq_rq_enqueued(cfqd, cfqq, rq);
4145 }
4146
4147 /*
4148 * Update hw_tag based on peak queue depth over 50 samples under
4149 * sufficient load.
4150 */
4151 static void cfq_update_hw_tag(struct cfq_data *cfqd)
4152 {
4153 struct cfq_queue *cfqq = cfqd->active_queue;
4154
4155 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
4156 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
4157
4158 if (cfqd->hw_tag == 1)
4159 return;
4160
4161 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
4162 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
4163 return;
4164
4165 /*
4166 * If active queue hasn't enough requests and can idle, cfq might not
4167 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4168 * case
4169 */
4170 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
4171 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
4172 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
4173 return;
4174
4175 if (cfqd->hw_tag_samples++ < 50)
4176 return;
4177
4178 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
4179 cfqd->hw_tag = 1;
4180 else
4181 cfqd->hw_tag = 0;
4182 }
4183
4184 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4185 {
4186 struct cfq_io_cq *cic = cfqd->active_cic;
4187 u64 now = ktime_get_ns();
4188
4189 /* If the queue already has requests, don't wait */
4190 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4191 return false;
4192
4193 /* If there are other queues in the group, don't wait */
4194 if (cfqq->cfqg->nr_cfqq > 1)
4195 return false;
4196
4197 /* the only queue in the group, but think time is big */
4198 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
4199 return false;
4200
4201 if (cfq_slice_used(cfqq))
4202 return true;
4203
4204 /* if slice left is less than think time, wait busy */
4205 if (cic && sample_valid(cic->ttime.ttime_samples)
4206 && (cfqq->slice_end - now < cic->ttime.ttime_mean))
4207 return true;
4208
4209 /*
4210 * If think times is less than a jiffy than ttime_mean=0 and above
4211 * will not be true. It might happen that slice has not expired yet
4212 * but will expire soon (4-5 ns) during select_queue(). To cover the
4213 * case where think time is less than a jiffy, mark the queue wait
4214 * busy if only 1 jiffy is left in the slice.
4215 */
4216 if (cfqq->slice_end - now <= jiffies_to_nsecs(1))
4217 return true;
4218
4219 return false;
4220 }
4221
4222 static void cfq_completed_request(struct request_queue *q, struct request *rq)
4223 {
4224 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4225 struct cfq_data *cfqd = cfqq->cfqd;
4226 const int sync = rq_is_sync(rq);
4227 u64 now = ktime_get_ns();
4228
4229 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", req_noidle(rq));
4230
4231 cfq_update_hw_tag(cfqd);
4232
4233 WARN_ON(!cfqd->rq_in_driver);
4234 WARN_ON(!cfqq->dispatched);
4235 cfqd->rq_in_driver--;
4236 cfqq->dispatched--;
4237 (RQ_CFQG(rq))->dispatched--;
4238 cfqg_stats_update_completion(cfqq->cfqg, rq->start_time_ns,
4239 rq->io_start_time_ns, rq->cmd_flags);
4240
4241 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4242
4243 if (sync) {
4244 struct cfq_rb_root *st;
4245
4246 RQ_CIC(rq)->ttime.last_end_request = now;
4247
4248 if (cfq_cfqq_on_rr(cfqq))
4249 st = cfqq->service_tree;
4250 else
4251 st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4252 cfqq_type(cfqq));
4253
4254 st->ttime.last_end_request = now;
4255 if (rq->start_time_ns + cfqd->cfq_fifo_expire[1] <= now)
4256 cfqd->last_delayed_sync = now;
4257 }
4258
4259 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4260 cfqq->cfqg->ttime.last_end_request = now;
4261 #endif
4262
4263 /*
4264 * If this is the active queue, check if it needs to be expired,
4265 * or if we want to idle in case it has no pending requests.
4266 */
4267 if (cfqd->active_queue == cfqq) {
4268 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4269
4270 if (cfq_cfqq_slice_new(cfqq)) {
4271 cfq_set_prio_slice(cfqd, cfqq);
4272 cfq_clear_cfqq_slice_new(cfqq);
4273 }
4274
4275 /*
4276 * Should we wait for next request to come in before we expire
4277 * the queue.
4278 */
4279 if (cfq_should_wait_busy(cfqd, cfqq)) {
4280 u64 extend_sl = cfqd->cfq_slice_idle;
4281 if (!cfqd->cfq_slice_idle)
4282 extend_sl = cfqd->cfq_group_idle;
4283 cfqq->slice_end = now + extend_sl;
4284 cfq_mark_cfqq_wait_busy(cfqq);
4285 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4286 }
4287
4288 /*
4289 * Idling is not enabled on:
4290 * - expired queues
4291 * - idle-priority queues
4292 * - async queues
4293 * - queues with still some requests queued
4294 * - when there is a close cooperator
4295 */
4296 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4297 cfq_slice_expired(cfqd, 1);
4298 else if (sync && cfqq_empty &&
4299 !cfq_close_cooperator(cfqd, cfqq)) {
4300 cfq_arm_slice_timer(cfqd);
4301 }
4302 }
4303
4304 if (!cfqd->rq_in_driver)
4305 cfq_schedule_dispatch(cfqd);
4306 }
4307
4308 static void cfqq_boost_on_prio(struct cfq_queue *cfqq, unsigned int op)
4309 {
4310 /*
4311 * If REQ_PRIO is set, boost class and prio level, if it's below
4312 * BE/NORM. If prio is not set, restore the potentially boosted
4313 * class/prio level.
4314 */
4315 if (!(op & REQ_PRIO)) {
4316 cfqq->ioprio_class = cfqq->org_ioprio_class;
4317 cfqq->ioprio = cfqq->org_ioprio;
4318 } else {
4319 if (cfq_class_idle(cfqq))
4320 cfqq->ioprio_class = IOPRIO_CLASS_BE;
4321 if (cfqq->ioprio > IOPRIO_NORM)
4322 cfqq->ioprio = IOPRIO_NORM;
4323 }
4324 }
4325
4326 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4327 {
4328 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4329 cfq_mark_cfqq_must_alloc_slice(cfqq);
4330 return ELV_MQUEUE_MUST;
4331 }
4332
4333 return ELV_MQUEUE_MAY;
4334 }
4335
4336 static int cfq_may_queue(struct request_queue *q, unsigned int op)
4337 {
4338 struct cfq_data *cfqd = q->elevator->elevator_data;
4339 struct task_struct *tsk = current;
4340 struct cfq_io_cq *cic;
4341 struct cfq_queue *cfqq;
4342
4343 /*
4344 * don't force setup of a queue from here, as a call to may_queue
4345 * does not necessarily imply that a request actually will be queued.
4346 * so just lookup a possibly existing queue, or return 'may queue'
4347 * if that fails
4348 */
4349 cic = cfq_cic_lookup(cfqd, tsk->io_context);
4350 if (!cic)
4351 return ELV_MQUEUE_MAY;
4352
4353 cfqq = cic_to_cfqq(cic, op_is_sync(op));
4354 if (cfqq) {
4355 cfq_init_prio_data(cfqq, cic);
4356 cfqq_boost_on_prio(cfqq, op);
4357
4358 return __cfq_may_queue(cfqq);
4359 }
4360
4361 return ELV_MQUEUE_MAY;
4362 }
4363
4364 /*
4365 * queue lock held here
4366 */
4367 static void cfq_put_request(struct request *rq)
4368 {
4369 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4370
4371 if (cfqq) {
4372 const int rw = rq_data_dir(rq);
4373
4374 BUG_ON(!cfqq->allocated[rw]);
4375 cfqq->allocated[rw]--;
4376
4377 /* Put down rq reference on cfqg */
4378 cfqg_put(RQ_CFQG(rq));
4379 rq->elv.priv[0] = NULL;
4380 rq->elv.priv[1] = NULL;
4381
4382 cfq_put_queue(cfqq);
4383 }
4384 }
4385
4386 static struct cfq_queue *
4387 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4388 struct cfq_queue *cfqq)
4389 {
4390 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4391 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4392 cfq_mark_cfqq_coop(cfqq->new_cfqq);
4393 cfq_put_queue(cfqq);
4394 return cic_to_cfqq(cic, 1);
4395 }
4396
4397 /*
4398 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4399 * was the last process referring to said cfqq.
4400 */
4401 static struct cfq_queue *
4402 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4403 {
4404 if (cfqq_process_refs(cfqq) == 1) {
4405 cfqq->pid = current->pid;
4406 cfq_clear_cfqq_coop(cfqq);
4407 cfq_clear_cfqq_split_coop(cfqq);
4408 return cfqq;
4409 }
4410
4411 cic_set_cfqq(cic, NULL, 1);
4412
4413 cfq_put_cooperator(cfqq);
4414
4415 cfq_put_queue(cfqq);
4416 return NULL;
4417 }
4418 /*
4419 * Allocate cfq data structures associated with this request.
4420 */
4421 static int
4422 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4423 gfp_t gfp_mask)
4424 {
4425 struct cfq_data *cfqd = q->elevator->elevator_data;
4426 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4427 const int rw = rq_data_dir(rq);
4428 const bool is_sync = rq_is_sync(rq);
4429 struct cfq_queue *cfqq;
4430
4431 spin_lock_irq(q->queue_lock);
4432
4433 check_ioprio_changed(cic, bio);
4434 check_blkcg_changed(cic, bio);
4435 new_queue:
4436 cfqq = cic_to_cfqq(cic, is_sync);
4437 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4438 if (cfqq)
4439 cfq_put_queue(cfqq);
4440 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio);
4441 cic_set_cfqq(cic, cfqq, is_sync);
4442 } else {
4443 /*
4444 * If the queue was seeky for too long, break it apart.
4445 */
4446 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4447 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4448 cfqq = split_cfqq(cic, cfqq);
4449 if (!cfqq)
4450 goto new_queue;
4451 }
4452
4453 /*
4454 * Check to see if this queue is scheduled to merge with
4455 * another, closely cooperating queue. The merging of
4456 * queues happens here as it must be done in process context.
4457 * The reference on new_cfqq was taken in merge_cfqqs.
4458 */
4459 if (cfqq->new_cfqq)
4460 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4461 }
4462
4463 cfqq->allocated[rw]++;
4464
4465 cfqq->ref++;
4466 cfqg_get(cfqq->cfqg);
4467 rq->elv.priv[0] = cfqq;
4468 rq->elv.priv[1] = cfqq->cfqg;
4469 spin_unlock_irq(q->queue_lock);
4470
4471 return 0;
4472 }
4473
4474 static void cfq_kick_queue(struct work_struct *work)
4475 {
4476 struct cfq_data *cfqd =
4477 container_of(work, struct cfq_data, unplug_work);
4478 struct request_queue *q = cfqd->queue;
4479
4480 spin_lock_irq(q->queue_lock);
4481 __blk_run_queue(cfqd->queue);
4482 spin_unlock_irq(q->queue_lock);
4483 }
4484
4485 /*
4486 * Timer running if the active_queue is currently idling inside its time slice
4487 */
4488 static enum hrtimer_restart cfq_idle_slice_timer(struct hrtimer *timer)
4489 {
4490 struct cfq_data *cfqd = container_of(timer, struct cfq_data,
4491 idle_slice_timer);
4492 struct cfq_queue *cfqq;
4493 unsigned long flags;
4494 int timed_out = 1;
4495
4496 cfq_log(cfqd, "idle timer fired");
4497
4498 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4499
4500 cfqq = cfqd->active_queue;
4501 if (cfqq) {
4502 timed_out = 0;
4503
4504 /*
4505 * We saw a request before the queue expired, let it through
4506 */
4507 if (cfq_cfqq_must_dispatch(cfqq))
4508 goto out_kick;
4509
4510 /*
4511 * expired
4512 */
4513 if (cfq_slice_used(cfqq))
4514 goto expire;
4515
4516 /*
4517 * only expire and reinvoke request handler, if there are
4518 * other queues with pending requests
4519 */
4520 if (!cfqd->busy_queues)
4521 goto out_cont;
4522
4523 /*
4524 * not expired and it has a request pending, let it dispatch
4525 */
4526 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4527 goto out_kick;
4528
4529 /*
4530 * Queue depth flag is reset only when the idle didn't succeed
4531 */
4532 cfq_clear_cfqq_deep(cfqq);
4533 }
4534 expire:
4535 cfq_slice_expired(cfqd, timed_out);
4536 out_kick:
4537 cfq_schedule_dispatch(cfqd);
4538 out_cont:
4539 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4540 return HRTIMER_NORESTART;
4541 }
4542
4543 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4544 {
4545 hrtimer_cancel(&cfqd->idle_slice_timer);
4546 cancel_work_sync(&cfqd->unplug_work);
4547 }
4548
4549 static void cfq_exit_queue(struct elevator_queue *e)
4550 {
4551 struct cfq_data *cfqd = e->elevator_data;
4552 struct request_queue *q = cfqd->queue;
4553
4554 cfq_shutdown_timer_wq(cfqd);
4555
4556 spin_lock_irq(q->queue_lock);
4557
4558 if (cfqd->active_queue)
4559 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4560
4561 spin_unlock_irq(q->queue_lock);
4562
4563 cfq_shutdown_timer_wq(cfqd);
4564
4565 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4566 blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4567 #else
4568 kfree(cfqd->root_group);
4569 #endif
4570 kfree(cfqd);
4571 }
4572
4573 static int cfq_init_queue(struct request_queue *q, struct elevator_type *e)
4574 {
4575 struct cfq_data *cfqd;
4576 struct blkcg_gq *blkg __maybe_unused;
4577 int i, ret;
4578 struct elevator_queue *eq;
4579
4580 eq = elevator_alloc(q, e);
4581 if (!eq)
4582 return -ENOMEM;
4583
4584 cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
4585 if (!cfqd) {
4586 kobject_put(&eq->kobj);
4587 return -ENOMEM;
4588 }
4589 eq->elevator_data = cfqd;
4590
4591 cfqd->queue = q;
4592 spin_lock_irq(q->queue_lock);
4593 q->elevator = eq;
4594 spin_unlock_irq(q->queue_lock);
4595
4596 /* Init root service tree */
4597 cfqd->grp_service_tree = CFQ_RB_ROOT;
4598
4599 /* Init root group and prefer root group over other groups by default */
4600 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4601 ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4602 if (ret)
4603 goto out_free;
4604
4605 cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4606 #else
4607 ret = -ENOMEM;
4608 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4609 GFP_KERNEL, cfqd->queue->node);
4610 if (!cfqd->root_group)
4611 goto out_free;
4612
4613 cfq_init_cfqg_base(cfqd->root_group);
4614 cfqd->root_group->weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4615 cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4616 #endif
4617
4618 /*
4619 * Not strictly needed (since RB_ROOT just clears the node and we
4620 * zeroed cfqd on alloc), but better be safe in case someone decides
4621 * to add magic to the rb code
4622 */
4623 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4624 cfqd->prio_trees[i] = RB_ROOT;
4625
4626 /*
4627 * Our fallback cfqq if cfq_get_queue() runs into OOM issues.
4628 * Grab a permanent reference to it, so that the normal code flow
4629 * will not attempt to free it. oom_cfqq is linked to root_group
4630 * but shouldn't hold a reference as it'll never be unlinked. Lose
4631 * the reference from linking right away.
4632 */
4633 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4634 cfqd->oom_cfqq.ref++;
4635
4636 spin_lock_irq(q->queue_lock);
4637 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4638 cfqg_put(cfqd->root_group);
4639 spin_unlock_irq(q->queue_lock);
4640
4641 hrtimer_init(&cfqd->idle_slice_timer, CLOCK_MONOTONIC,
4642 HRTIMER_MODE_REL);
4643 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4644
4645 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4646
4647 cfqd->cfq_quantum = cfq_quantum;
4648 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4649 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4650 cfqd->cfq_back_max = cfq_back_max;
4651 cfqd->cfq_back_penalty = cfq_back_penalty;
4652 cfqd->cfq_slice[0] = cfq_slice_async;
4653 cfqd->cfq_slice[1] = cfq_slice_sync;
4654 cfqd->cfq_target_latency = cfq_target_latency;
4655 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4656 cfqd->cfq_slice_idle = cfq_slice_idle;
4657 cfqd->cfq_group_idle = cfq_group_idle;
4658 cfqd->cfq_latency = 1;
4659 cfqd->hw_tag = -1;
4660 /*
4661 * we optimistically start assuming sync ops weren't delayed in last
4662 * second, in order to have larger depth for async operations.
4663 */
4664 cfqd->last_delayed_sync = ktime_get_ns() - NSEC_PER_SEC;
4665 return 0;
4666
4667 out_free:
4668 kfree(cfqd);
4669 kobject_put(&eq->kobj);
4670 return ret;
4671 }
4672
4673 static void cfq_registered_queue(struct request_queue *q)
4674 {
4675 struct elevator_queue *e = q->elevator;
4676 struct cfq_data *cfqd = e->elevator_data;
4677
4678 /*
4679 * Default to IOPS mode with no idling for SSDs
4680 */
4681 if (blk_queue_nonrot(q))
4682 cfqd->cfq_slice_idle = 0;
4683 wbt_disable_default(q);
4684 }
4685
4686 /*
4687 * sysfs parts below -->
4688 */
4689 static ssize_t
4690 cfq_var_show(unsigned int var, char *page)
4691 {
4692 return sprintf(page, "%u\n", var);
4693 }
4694
4695 static void
4696 cfq_var_store(unsigned int *var, const char *page)
4697 {
4698 char *p = (char *) page;
4699
4700 *var = simple_strtoul(p, &p, 10);
4701 }
4702
4703 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4704 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4705 { \
4706 struct cfq_data *cfqd = e->elevator_data; \
4707 u64 __data = __VAR; \
4708 if (__CONV) \
4709 __data = div_u64(__data, NSEC_PER_MSEC); \
4710 return cfq_var_show(__data, (page)); \
4711 }
4712 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4713 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4714 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4715 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4716 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4717 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4718 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4719 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4720 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4721 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4722 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4723 SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4724 #undef SHOW_FUNCTION
4725
4726 #define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
4727 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4728 { \
4729 struct cfq_data *cfqd = e->elevator_data; \
4730 u64 __data = __VAR; \
4731 __data = div_u64(__data, NSEC_PER_USEC); \
4732 return cfq_var_show(__data, (page)); \
4733 }
4734 USEC_SHOW_FUNCTION(cfq_slice_idle_us_show, cfqd->cfq_slice_idle);
4735 USEC_SHOW_FUNCTION(cfq_group_idle_us_show, cfqd->cfq_group_idle);
4736 USEC_SHOW_FUNCTION(cfq_slice_sync_us_show, cfqd->cfq_slice[1]);
4737 USEC_SHOW_FUNCTION(cfq_slice_async_us_show, cfqd->cfq_slice[0]);
4738 USEC_SHOW_FUNCTION(cfq_target_latency_us_show, cfqd->cfq_target_latency);
4739 #undef USEC_SHOW_FUNCTION
4740
4741 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4742 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4743 { \
4744 struct cfq_data *cfqd = e->elevator_data; \
4745 unsigned int __data, __min = (MIN), __max = (MAX); \
4746 \
4747 cfq_var_store(&__data, (page)); \
4748 if (__data < __min) \
4749 __data = __min; \
4750 else if (__data > __max) \
4751 __data = __max; \
4752 if (__CONV) \
4753 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
4754 else \
4755 *(__PTR) = __data; \
4756 return count; \
4757 }
4758 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4759 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4760 UINT_MAX, 1);
4761 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4762 UINT_MAX, 1);
4763 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4764 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4765 UINT_MAX, 0);
4766 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4767 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4768 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4769 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4770 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4771 UINT_MAX, 0);
4772 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4773 STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4774 #undef STORE_FUNCTION
4775
4776 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
4777 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4778 { \
4779 struct cfq_data *cfqd = e->elevator_data; \
4780 unsigned int __data, __min = (MIN), __max = (MAX); \
4781 \
4782 cfq_var_store(&__data, (page)); \
4783 if (__data < __min) \
4784 __data = __min; \
4785 else if (__data > __max) \
4786 __data = __max; \
4787 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
4788 return count; \
4789 }
4790 USEC_STORE_FUNCTION(cfq_slice_idle_us_store, &cfqd->cfq_slice_idle, 0, UINT_MAX);
4791 USEC_STORE_FUNCTION(cfq_group_idle_us_store, &cfqd->cfq_group_idle, 0, UINT_MAX);
4792 USEC_STORE_FUNCTION(cfq_slice_sync_us_store, &cfqd->cfq_slice[1], 1, UINT_MAX);
4793 USEC_STORE_FUNCTION(cfq_slice_async_us_store, &cfqd->cfq_slice[0], 1, UINT_MAX);
4794 USEC_STORE_FUNCTION(cfq_target_latency_us_store, &cfqd->cfq_target_latency, 1, UINT_MAX);
4795 #undef USEC_STORE_FUNCTION
4796
4797 #define CFQ_ATTR(name) \
4798 __ATTR(name, 0644, cfq_##name##_show, cfq_##name##_store)
4799
4800 static struct elv_fs_entry cfq_attrs[] = {
4801 CFQ_ATTR(quantum),
4802 CFQ_ATTR(fifo_expire_sync),
4803 CFQ_ATTR(fifo_expire_async),
4804 CFQ_ATTR(back_seek_max),
4805 CFQ_ATTR(back_seek_penalty),
4806 CFQ_ATTR(slice_sync),
4807 CFQ_ATTR(slice_sync_us),
4808 CFQ_ATTR(slice_async),
4809 CFQ_ATTR(slice_async_us),
4810 CFQ_ATTR(slice_async_rq),
4811 CFQ_ATTR(slice_idle),
4812 CFQ_ATTR(slice_idle_us),
4813 CFQ_ATTR(group_idle),
4814 CFQ_ATTR(group_idle_us),
4815 CFQ_ATTR(low_latency),
4816 CFQ_ATTR(target_latency),
4817 CFQ_ATTR(target_latency_us),
4818 __ATTR_NULL
4819 };
4820
4821 static struct elevator_type iosched_cfq = {
4822 .ops.sq = {
4823 .elevator_merge_fn = cfq_merge,
4824 .elevator_merged_fn = cfq_merged_request,
4825 .elevator_merge_req_fn = cfq_merged_requests,
4826 .elevator_allow_bio_merge_fn = cfq_allow_bio_merge,
4827 .elevator_allow_rq_merge_fn = cfq_allow_rq_merge,
4828 .elevator_bio_merged_fn = cfq_bio_merged,
4829 .elevator_dispatch_fn = cfq_dispatch_requests,
4830 .elevator_add_req_fn = cfq_insert_request,
4831 .elevator_activate_req_fn = cfq_activate_request,
4832 .elevator_deactivate_req_fn = cfq_deactivate_request,
4833 .elevator_completed_req_fn = cfq_completed_request,
4834 .elevator_former_req_fn = elv_rb_former_request,
4835 .elevator_latter_req_fn = elv_rb_latter_request,
4836 .elevator_init_icq_fn = cfq_init_icq,
4837 .elevator_exit_icq_fn = cfq_exit_icq,
4838 .elevator_set_req_fn = cfq_set_request,
4839 .elevator_put_req_fn = cfq_put_request,
4840 .elevator_may_queue_fn = cfq_may_queue,
4841 .elevator_init_fn = cfq_init_queue,
4842 .elevator_exit_fn = cfq_exit_queue,
4843 .elevator_registered_fn = cfq_registered_queue,
4844 },
4845 .icq_size = sizeof(struct cfq_io_cq),
4846 .icq_align = __alignof__(struct cfq_io_cq),
4847 .elevator_attrs = cfq_attrs,
4848 .elevator_name = "cfq",
4849 .elevator_owner = THIS_MODULE,
4850 };
4851
4852 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4853 static struct blkcg_policy blkcg_policy_cfq = {
4854 .dfl_cftypes = cfq_blkcg_files,
4855 .legacy_cftypes = cfq_blkcg_legacy_files,
4856
4857 .cpd_alloc_fn = cfq_cpd_alloc,
4858 .cpd_init_fn = cfq_cpd_init,
4859 .cpd_free_fn = cfq_cpd_free,
4860 .cpd_bind_fn = cfq_cpd_bind,
4861
4862 .pd_alloc_fn = cfq_pd_alloc,
4863 .pd_init_fn = cfq_pd_init,
4864 .pd_offline_fn = cfq_pd_offline,
4865 .pd_free_fn = cfq_pd_free,
4866 .pd_reset_stats_fn = cfq_pd_reset_stats,
4867 };
4868 #endif
4869
4870 static int __init cfq_init(void)
4871 {
4872 int ret;
4873
4874 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4875 ret = blkcg_policy_register(&blkcg_policy_cfq);
4876 if (ret)
4877 return ret;
4878 #else
4879 cfq_group_idle = 0;
4880 #endif
4881
4882 ret = -ENOMEM;
4883 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4884 if (!cfq_pool)
4885 goto err_pol_unreg;
4886
4887 ret = elv_register(&iosched_cfq);
4888 if (ret)
4889 goto err_free_pool;
4890
4891 return 0;
4892
4893 err_free_pool:
4894 kmem_cache_destroy(cfq_pool);
4895 err_pol_unreg:
4896 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4897 blkcg_policy_unregister(&blkcg_policy_cfq);
4898 #endif
4899 return ret;
4900 }
4901
4902 static void __exit cfq_exit(void)
4903 {
4904 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4905 blkcg_policy_unregister(&blkcg_policy_cfq);
4906 #endif
4907 elv_unregister(&iosched_cfq);
4908 kmem_cache_destroy(cfq_pool);
4909 }
4910
4911 module_init(cfq_init);
4912 module_exit(cfq_exit);
4913
4914 MODULE_AUTHOR("Jens Axboe");
4915 MODULE_LICENSE("GPL");
4916 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");