]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/gpu/drm/i915/i915_drv.h
Merge tag 'clang-format-for-linus-v5.1-rc5' of git://github.com/ojeda/linux
[thirdparty/kernel/stable.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/mm_types.h>
44 #include <linux/perf_event.h>
45 #include <linux/pm_qos.h>
46 #include <linux/reservation.h>
47 #include <linux/shmem_fs.h>
48 #include <linux/stackdepot.h>
49
50 #include <drm/intel-gtt.h>
51 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
52 #include <drm/drm_gem.h>
53 #include <drm/drm_auth.h>
54 #include <drm/drm_cache.h>
55 #include <drm/drm_util.h>
56 #include <drm/drm_dsc.h>
57 #include <drm/drm_connector.h>
58
59 #include "i915_fixed.h"
60 #include "i915_params.h"
61 #include "i915_reg.h"
62 #include "i915_utils.h"
63
64 #include "intel_bios.h"
65 #include "intel_device_info.h"
66 #include "intel_display.h"
67 #include "intel_dpll_mgr.h"
68 #include "intel_lrc.h"
69 #include "intel_opregion.h"
70 #include "intel_ringbuffer.h"
71 #include "intel_uncore.h"
72 #include "intel_wopcm.h"
73 #include "intel_workarounds.h"
74 #include "intel_uc.h"
75
76 #include "i915_gem.h"
77 #include "i915_gem_context.h"
78 #include "i915_gem_fence_reg.h"
79 #include "i915_gem_object.h"
80 #include "i915_gem_gtt.h"
81 #include "i915_gpu_error.h"
82 #include "i915_request.h"
83 #include "i915_scheduler.h"
84 #include "i915_timeline.h"
85 #include "i915_vma.h"
86
87 #include "intel_gvt.h"
88
89 /* General customization:
90 */
91
92 #define DRIVER_NAME "i915"
93 #define DRIVER_DESC "Intel Graphics"
94 #define DRIVER_DATE "20190207"
95 #define DRIVER_TIMESTAMP 1549572331
96
97 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
98 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
99 * which may not necessarily be a user visible problem. This will either
100 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
101 * enable distros and users to tailor their preferred amount of i915 abrt
102 * spam.
103 */
104 #define I915_STATE_WARN(condition, format...) ({ \
105 int __ret_warn_on = !!(condition); \
106 if (unlikely(__ret_warn_on)) \
107 if (!WARN(i915_modparams.verbose_state_checks, format)) \
108 DRM_ERROR(format); \
109 unlikely(__ret_warn_on); \
110 })
111
112 #define I915_STATE_WARN_ON(x) \
113 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
114
115 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
116
117 bool __i915_inject_load_failure(const char *func, int line);
118 #define i915_inject_load_failure() \
119 __i915_inject_load_failure(__func__, __LINE__)
120
121 bool i915_error_injected(void);
122
123 #else
124
125 #define i915_inject_load_failure() false
126 #define i915_error_injected() false
127
128 #endif
129
130 #define i915_load_error(i915, fmt, ...) \
131 __i915_printk(i915, i915_error_injected() ? KERN_DEBUG : KERN_ERR, \
132 fmt, ##__VA_ARGS__)
133
134 typedef depot_stack_handle_t intel_wakeref_t;
135
136 enum hpd_pin {
137 HPD_NONE = 0,
138 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
139 HPD_CRT,
140 HPD_SDVO_B,
141 HPD_SDVO_C,
142 HPD_PORT_A,
143 HPD_PORT_B,
144 HPD_PORT_C,
145 HPD_PORT_D,
146 HPD_PORT_E,
147 HPD_PORT_F,
148 HPD_NUM_PINS
149 };
150
151 #define for_each_hpd_pin(__pin) \
152 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
153
154 /* Threshold == 5 for long IRQs, 50 for short */
155 #define HPD_STORM_DEFAULT_THRESHOLD 50
156
157 struct i915_hotplug {
158 struct work_struct hotplug_work;
159
160 struct {
161 unsigned long last_jiffies;
162 int count;
163 enum {
164 HPD_ENABLED = 0,
165 HPD_DISABLED = 1,
166 HPD_MARK_DISABLED = 2
167 } state;
168 } stats[HPD_NUM_PINS];
169 u32 event_bits;
170 struct delayed_work reenable_work;
171
172 u32 long_port_mask;
173 u32 short_port_mask;
174 struct work_struct dig_port_work;
175
176 struct work_struct poll_init_work;
177 bool poll_enabled;
178
179 unsigned int hpd_storm_threshold;
180 /* Whether or not to count short HPD IRQs in HPD storms */
181 u8 hpd_short_storm_enabled;
182
183 /*
184 * if we get a HPD irq from DP and a HPD irq from non-DP
185 * the non-DP HPD could block the workqueue on a mode config
186 * mutex getting, that userspace may have taken. However
187 * userspace is waiting on the DP workqueue to run which is
188 * blocked behind the non-DP one.
189 */
190 struct workqueue_struct *dp_wq;
191 };
192
193 #define I915_GEM_GPU_DOMAINS \
194 (I915_GEM_DOMAIN_RENDER | \
195 I915_GEM_DOMAIN_SAMPLER | \
196 I915_GEM_DOMAIN_COMMAND | \
197 I915_GEM_DOMAIN_INSTRUCTION | \
198 I915_GEM_DOMAIN_VERTEX)
199
200 struct drm_i915_private;
201 struct i915_mm_struct;
202 struct i915_mmu_object;
203
204 struct drm_i915_file_private {
205 struct drm_i915_private *dev_priv;
206 struct drm_file *file;
207
208 struct {
209 spinlock_t lock;
210 struct list_head request_list;
211 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
212 * chosen to prevent the CPU getting more than a frame ahead of the GPU
213 * (when using lax throttling for the frontbuffer). We also use it to
214 * offer free GPU waitboosts for severely congested workloads.
215 */
216 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
217 } mm;
218 struct idr context_idr;
219
220 struct intel_rps_client {
221 atomic_t boosts;
222 } rps_client;
223
224 unsigned int bsd_engine;
225
226 /*
227 * Every context ban increments per client ban score. Also
228 * hangs in short succession increments ban score. If ban threshold
229 * is reached, client is considered banned and submitting more work
230 * will fail. This is a stop gap measure to limit the badly behaving
231 * clients access to gpu. Note that unbannable contexts never increment
232 * the client ban score.
233 */
234 #define I915_CLIENT_SCORE_HANG_FAST 1
235 #define I915_CLIENT_FAST_HANG_JIFFIES (60 * HZ)
236 #define I915_CLIENT_SCORE_CONTEXT_BAN 3
237 #define I915_CLIENT_SCORE_BANNED 9
238 /** ban_score: Accumulated score of all ctx bans and fast hangs. */
239 atomic_t ban_score;
240 unsigned long hang_timestamp;
241 };
242
243 /* Interface history:
244 *
245 * 1.1: Original.
246 * 1.2: Add Power Management
247 * 1.3: Add vblank support
248 * 1.4: Fix cmdbuffer path, add heap destroy
249 * 1.5: Add vblank pipe configuration
250 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
251 * - Support vertical blank on secondary display pipe
252 */
253 #define DRIVER_MAJOR 1
254 #define DRIVER_MINOR 6
255 #define DRIVER_PATCHLEVEL 0
256
257 struct intel_overlay;
258 struct intel_overlay_error_state;
259
260 struct sdvo_device_mapping {
261 u8 initialized;
262 u8 dvo_port;
263 u8 slave_addr;
264 u8 dvo_wiring;
265 u8 i2c_pin;
266 u8 ddc_pin;
267 };
268
269 struct intel_connector;
270 struct intel_encoder;
271 struct intel_atomic_state;
272 struct intel_crtc_state;
273 struct intel_initial_plane_config;
274 struct intel_crtc;
275 struct intel_limit;
276 struct dpll;
277 struct intel_cdclk_state;
278
279 struct drm_i915_display_funcs {
280 void (*get_cdclk)(struct drm_i915_private *dev_priv,
281 struct intel_cdclk_state *cdclk_state);
282 void (*set_cdclk)(struct drm_i915_private *dev_priv,
283 const struct intel_cdclk_state *cdclk_state);
284 int (*get_fifo_size)(struct drm_i915_private *dev_priv,
285 enum i9xx_plane_id i9xx_plane);
286 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
287 int (*compute_intermediate_wm)(struct intel_crtc_state *newstate);
288 void (*initial_watermarks)(struct intel_atomic_state *state,
289 struct intel_crtc_state *cstate);
290 void (*atomic_update_watermarks)(struct intel_atomic_state *state,
291 struct intel_crtc_state *cstate);
292 void (*optimize_watermarks)(struct intel_atomic_state *state,
293 struct intel_crtc_state *cstate);
294 int (*compute_global_watermarks)(struct intel_atomic_state *state);
295 void (*update_wm)(struct intel_crtc *crtc);
296 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
297 /* Returns the active state of the crtc, and if the crtc is active,
298 * fills out the pipe-config with the hw state. */
299 bool (*get_pipe_config)(struct intel_crtc *,
300 struct intel_crtc_state *);
301 void (*get_initial_plane_config)(struct intel_crtc *,
302 struct intel_initial_plane_config *);
303 int (*crtc_compute_clock)(struct intel_crtc *crtc,
304 struct intel_crtc_state *crtc_state);
305 void (*crtc_enable)(struct intel_crtc_state *pipe_config,
306 struct drm_atomic_state *old_state);
307 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
308 struct drm_atomic_state *old_state);
309 void (*update_crtcs)(struct drm_atomic_state *state);
310 void (*audio_codec_enable)(struct intel_encoder *encoder,
311 const struct intel_crtc_state *crtc_state,
312 const struct drm_connector_state *conn_state);
313 void (*audio_codec_disable)(struct intel_encoder *encoder,
314 const struct intel_crtc_state *old_crtc_state,
315 const struct drm_connector_state *old_conn_state);
316 void (*fdi_link_train)(struct intel_crtc *crtc,
317 const struct intel_crtc_state *crtc_state);
318 void (*init_clock_gating)(struct drm_i915_private *dev_priv);
319 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
320 /* clock updates for mode set */
321 /* cursor updates */
322 /* render clock increase/decrease */
323 /* display clock increase/decrease */
324 /* pll clock increase/decrease */
325
326 /*
327 * Program double buffered color management registers during
328 * vblank evasion. The registers should then latch during the
329 * next vblank start, alongside any other double buffered registers
330 * involved with the same commit.
331 */
332 void (*color_commit)(const struct intel_crtc_state *crtc_state);
333 /*
334 * Load LUTs (and other single buffered color management
335 * registers). Will (hopefully) be called during the vblank
336 * following the latching of any double buffered registers
337 * involved with the same commit.
338 */
339 void (*load_luts)(const struct intel_crtc_state *crtc_state);
340 };
341
342 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
343 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
344 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
345
346 struct intel_csr {
347 struct work_struct work;
348 const char *fw_path;
349 u32 required_version;
350 u32 max_fw_size; /* bytes */
351 u32 *dmc_payload;
352 u32 dmc_fw_size; /* dwords */
353 u32 version;
354 u32 mmio_count;
355 i915_reg_t mmioaddr[8];
356 u32 mmiodata[8];
357 u32 dc_state;
358 u32 allowed_dc_mask;
359 intel_wakeref_t wakeref;
360 };
361
362 enum i915_cache_level {
363 I915_CACHE_NONE = 0,
364 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
365 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
366 caches, eg sampler/render caches, and the
367 large Last-Level-Cache. LLC is coherent with
368 the CPU, but L3 is only visible to the GPU. */
369 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
370 };
371
372 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
373
374 enum fb_op_origin {
375 ORIGIN_GTT,
376 ORIGIN_CPU,
377 ORIGIN_CS,
378 ORIGIN_FLIP,
379 ORIGIN_DIRTYFB,
380 };
381
382 struct intel_fbc {
383 /* This is always the inner lock when overlapping with struct_mutex and
384 * it's the outer lock when overlapping with stolen_lock. */
385 struct mutex lock;
386 unsigned threshold;
387 unsigned int possible_framebuffer_bits;
388 unsigned int busy_bits;
389 unsigned int visible_pipes_mask;
390 struct intel_crtc *crtc;
391
392 struct drm_mm_node compressed_fb;
393 struct drm_mm_node *compressed_llb;
394
395 bool false_color;
396
397 bool enabled;
398 bool active;
399 bool flip_pending;
400
401 bool underrun_detected;
402 struct work_struct underrun_work;
403
404 /*
405 * Due to the atomic rules we can't access some structures without the
406 * appropriate locking, so we cache information here in order to avoid
407 * these problems.
408 */
409 struct intel_fbc_state_cache {
410 struct i915_vma *vma;
411 unsigned long flags;
412
413 struct {
414 unsigned int mode_flags;
415 u32 hsw_bdw_pixel_rate;
416 } crtc;
417
418 struct {
419 unsigned int rotation;
420 int src_w;
421 int src_h;
422 bool visible;
423 /*
424 * Display surface base address adjustement for
425 * pageflips. Note that on gen4+ this only adjusts up
426 * to a tile, offsets within a tile are handled in
427 * the hw itself (with the TILEOFF register).
428 */
429 int adjusted_x;
430 int adjusted_y;
431
432 int y;
433
434 u16 pixel_blend_mode;
435 } plane;
436
437 struct {
438 const struct drm_format_info *format;
439 unsigned int stride;
440 } fb;
441 } state_cache;
442
443 /*
444 * This structure contains everything that's relevant to program the
445 * hardware registers. When we want to figure out if we need to disable
446 * and re-enable FBC for a new configuration we just check if there's
447 * something different in the struct. The genx_fbc_activate functions
448 * are supposed to read from it in order to program the registers.
449 */
450 struct intel_fbc_reg_params {
451 struct i915_vma *vma;
452 unsigned long flags;
453
454 struct {
455 enum pipe pipe;
456 enum i9xx_plane_id i9xx_plane;
457 unsigned int fence_y_offset;
458 } crtc;
459
460 struct {
461 const struct drm_format_info *format;
462 unsigned int stride;
463 } fb;
464
465 int cfb_size;
466 unsigned int gen9_wa_cfb_stride;
467 } params;
468
469 const char *no_fbc_reason;
470 };
471
472 /*
473 * HIGH_RR is the highest eDP panel refresh rate read from EDID
474 * LOW_RR is the lowest eDP panel refresh rate found from EDID
475 * parsing for same resolution.
476 */
477 enum drrs_refresh_rate_type {
478 DRRS_HIGH_RR,
479 DRRS_LOW_RR,
480 DRRS_MAX_RR, /* RR count */
481 };
482
483 enum drrs_support_type {
484 DRRS_NOT_SUPPORTED = 0,
485 STATIC_DRRS_SUPPORT = 1,
486 SEAMLESS_DRRS_SUPPORT = 2
487 };
488
489 struct intel_dp;
490 struct i915_drrs {
491 struct mutex mutex;
492 struct delayed_work work;
493 struct intel_dp *dp;
494 unsigned busy_frontbuffer_bits;
495 enum drrs_refresh_rate_type refresh_rate_type;
496 enum drrs_support_type type;
497 };
498
499 struct i915_psr {
500 struct mutex lock;
501
502 #define I915_PSR_DEBUG_MODE_MASK 0x0f
503 #define I915_PSR_DEBUG_DEFAULT 0x00
504 #define I915_PSR_DEBUG_DISABLE 0x01
505 #define I915_PSR_DEBUG_ENABLE 0x02
506 #define I915_PSR_DEBUG_FORCE_PSR1 0x03
507 #define I915_PSR_DEBUG_IRQ 0x10
508
509 u32 debug;
510 bool sink_support;
511 bool prepared, enabled;
512 struct intel_dp *dp;
513 enum pipe pipe;
514 bool active;
515 struct work_struct work;
516 unsigned busy_frontbuffer_bits;
517 bool sink_psr2_support;
518 bool link_standby;
519 bool colorimetry_support;
520 bool psr2_enabled;
521 u8 sink_sync_latency;
522 ktime_t last_entry_attempt;
523 ktime_t last_exit;
524 bool sink_not_reliable;
525 bool irq_aux_error;
526 u16 su_x_granularity;
527 };
528
529 enum intel_pch {
530 PCH_NONE = 0, /* No PCH present */
531 PCH_IBX, /* Ibexpeak PCH */
532 PCH_CPT, /* Cougarpoint/Pantherpoint PCH */
533 PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */
534 PCH_SPT, /* Sunrisepoint PCH */
535 PCH_KBP, /* Kaby Lake PCH */
536 PCH_CNP, /* Cannon Lake PCH */
537 PCH_ICP, /* Ice Lake PCH */
538 PCH_NOP, /* PCH without south display */
539 };
540
541 enum intel_sbi_destination {
542 SBI_ICLK,
543 SBI_MPHY,
544 };
545
546 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
547 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
548 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
549 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
550 #define QUIRK_INCREASE_T12_DELAY (1<<6)
551 #define QUIRK_INCREASE_DDI_DISABLED_TIME (1<<7)
552
553 struct intel_fbdev;
554 struct intel_fbc_work;
555
556 struct intel_gmbus {
557 struct i2c_adapter adapter;
558 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
559 u32 force_bit;
560 u32 reg0;
561 i915_reg_t gpio_reg;
562 struct i2c_algo_bit_data bit_algo;
563 struct drm_i915_private *dev_priv;
564 };
565
566 struct i915_suspend_saved_registers {
567 u32 saveDSPARB;
568 u32 saveFBC_CONTROL;
569 u32 saveCACHE_MODE_0;
570 u32 saveMI_ARB_STATE;
571 u32 saveSWF0[16];
572 u32 saveSWF1[16];
573 u32 saveSWF3[3];
574 u64 saveFENCE[I915_MAX_NUM_FENCES];
575 u32 savePCH_PORT_HOTPLUG;
576 u16 saveGCDGMBUS;
577 };
578
579 struct vlv_s0ix_state {
580 /* GAM */
581 u32 wr_watermark;
582 u32 gfx_prio_ctrl;
583 u32 arb_mode;
584 u32 gfx_pend_tlb0;
585 u32 gfx_pend_tlb1;
586 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
587 u32 media_max_req_count;
588 u32 gfx_max_req_count;
589 u32 render_hwsp;
590 u32 ecochk;
591 u32 bsd_hwsp;
592 u32 blt_hwsp;
593 u32 tlb_rd_addr;
594
595 /* MBC */
596 u32 g3dctl;
597 u32 gsckgctl;
598 u32 mbctl;
599
600 /* GCP */
601 u32 ucgctl1;
602 u32 ucgctl3;
603 u32 rcgctl1;
604 u32 rcgctl2;
605 u32 rstctl;
606 u32 misccpctl;
607
608 /* GPM */
609 u32 gfxpause;
610 u32 rpdeuhwtc;
611 u32 rpdeuc;
612 u32 ecobus;
613 u32 pwrdwnupctl;
614 u32 rp_down_timeout;
615 u32 rp_deucsw;
616 u32 rcubmabdtmr;
617 u32 rcedata;
618 u32 spare2gh;
619
620 /* Display 1 CZ domain */
621 u32 gt_imr;
622 u32 gt_ier;
623 u32 pm_imr;
624 u32 pm_ier;
625 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
626
627 /* GT SA CZ domain */
628 u32 tilectl;
629 u32 gt_fifoctl;
630 u32 gtlc_wake_ctrl;
631 u32 gtlc_survive;
632 u32 pmwgicz;
633
634 /* Display 2 CZ domain */
635 u32 gu_ctl0;
636 u32 gu_ctl1;
637 u32 pcbr;
638 u32 clock_gate_dis2;
639 };
640
641 struct intel_rps_ei {
642 ktime_t ktime;
643 u32 render_c0;
644 u32 media_c0;
645 };
646
647 struct intel_rps {
648 /*
649 * work, interrupts_enabled and pm_iir are protected by
650 * dev_priv->irq_lock
651 */
652 struct work_struct work;
653 bool interrupts_enabled;
654 u32 pm_iir;
655
656 /* PM interrupt bits that should never be masked */
657 u32 pm_intrmsk_mbz;
658
659 /* Frequencies are stored in potentially platform dependent multiples.
660 * In other words, *_freq needs to be multiplied by X to be interesting.
661 * Soft limits are those which are used for the dynamic reclocking done
662 * by the driver (raise frequencies under heavy loads, and lower for
663 * lighter loads). Hard limits are those imposed by the hardware.
664 *
665 * A distinction is made for overclocking, which is never enabled by
666 * default, and is considered to be above the hard limit if it's
667 * possible at all.
668 */
669 u8 cur_freq; /* Current frequency (cached, may not == HW) */
670 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
671 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
672 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
673 u8 min_freq; /* AKA RPn. Minimum frequency */
674 u8 boost_freq; /* Frequency to request when wait boosting */
675 u8 idle_freq; /* Frequency to request when we are idle */
676 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
677 u8 rp1_freq; /* "less than" RP0 power/freqency */
678 u8 rp0_freq; /* Non-overclocked max frequency. */
679 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
680
681 int last_adj;
682
683 struct {
684 struct mutex mutex;
685
686 enum { LOW_POWER, BETWEEN, HIGH_POWER } mode;
687 unsigned int interactive;
688
689 u8 up_threshold; /* Current %busy required to uplock */
690 u8 down_threshold; /* Current %busy required to downclock */
691 } power;
692
693 bool enabled;
694 atomic_t num_waiters;
695 atomic_t boosts;
696
697 /* manual wa residency calculations */
698 struct intel_rps_ei ei;
699 };
700
701 struct intel_rc6 {
702 bool enabled;
703 u64 prev_hw_residency[4];
704 u64 cur_residency[4];
705 };
706
707 struct intel_llc_pstate {
708 bool enabled;
709 };
710
711 struct intel_gen6_power_mgmt {
712 struct intel_rps rps;
713 struct intel_rc6 rc6;
714 struct intel_llc_pstate llc_pstate;
715 };
716
717 /* defined intel_pm.c */
718 extern spinlock_t mchdev_lock;
719
720 struct intel_ilk_power_mgmt {
721 u8 cur_delay;
722 u8 min_delay;
723 u8 max_delay;
724 u8 fmax;
725 u8 fstart;
726
727 u64 last_count1;
728 unsigned long last_time1;
729 unsigned long chipset_power;
730 u64 last_count2;
731 u64 last_time2;
732 unsigned long gfx_power;
733 u8 corr;
734
735 int c_m;
736 int r_t;
737 };
738
739 struct drm_i915_private;
740 struct i915_power_well;
741
742 struct i915_power_well_ops {
743 /*
744 * Synchronize the well's hw state to match the current sw state, for
745 * example enable/disable it based on the current refcount. Called
746 * during driver init and resume time, possibly after first calling
747 * the enable/disable handlers.
748 */
749 void (*sync_hw)(struct drm_i915_private *dev_priv,
750 struct i915_power_well *power_well);
751 /*
752 * Enable the well and resources that depend on it (for example
753 * interrupts located on the well). Called after the 0->1 refcount
754 * transition.
755 */
756 void (*enable)(struct drm_i915_private *dev_priv,
757 struct i915_power_well *power_well);
758 /*
759 * Disable the well and resources that depend on it. Called after
760 * the 1->0 refcount transition.
761 */
762 void (*disable)(struct drm_i915_private *dev_priv,
763 struct i915_power_well *power_well);
764 /* Returns the hw enabled state. */
765 bool (*is_enabled)(struct drm_i915_private *dev_priv,
766 struct i915_power_well *power_well);
767 };
768
769 struct i915_power_well_regs {
770 i915_reg_t bios;
771 i915_reg_t driver;
772 i915_reg_t kvmr;
773 i915_reg_t debug;
774 };
775
776 /* Power well structure for haswell */
777 struct i915_power_well_desc {
778 const char *name;
779 bool always_on;
780 u64 domains;
781 /* unique identifier for this power well */
782 enum i915_power_well_id id;
783 /*
784 * Arbitraty data associated with this power well. Platform and power
785 * well specific.
786 */
787 union {
788 struct {
789 /*
790 * request/status flag index in the PUNIT power well
791 * control/status registers.
792 */
793 u8 idx;
794 } vlv;
795 struct {
796 enum dpio_phy phy;
797 } bxt;
798 struct {
799 const struct i915_power_well_regs *regs;
800 /*
801 * request/status flag index in the power well
802 * constrol/status registers.
803 */
804 u8 idx;
805 /* Mask of pipes whose IRQ logic is backed by the pw */
806 u8 irq_pipe_mask;
807 /* The pw is backing the VGA functionality */
808 bool has_vga:1;
809 bool has_fuses:1;
810 /*
811 * The pw is for an ICL+ TypeC PHY port in
812 * Thunderbolt mode.
813 */
814 bool is_tc_tbt:1;
815 } hsw;
816 };
817 const struct i915_power_well_ops *ops;
818 };
819
820 struct i915_power_well {
821 const struct i915_power_well_desc *desc;
822 /* power well enable/disable usage count */
823 int count;
824 /* cached hw enabled state */
825 bool hw_enabled;
826 };
827
828 struct i915_power_domains {
829 /*
830 * Power wells needed for initialization at driver init and suspend
831 * time are on. They are kept on until after the first modeset.
832 */
833 bool initializing;
834 bool display_core_suspended;
835 int power_well_count;
836
837 intel_wakeref_t wakeref;
838
839 struct mutex lock;
840 int domain_use_count[POWER_DOMAIN_NUM];
841 struct i915_power_well *power_wells;
842 };
843
844 #define MAX_L3_SLICES 2
845 struct intel_l3_parity {
846 u32 *remap_info[MAX_L3_SLICES];
847 struct work_struct error_work;
848 int which_slice;
849 };
850
851 struct i915_gem_mm {
852 /** Memory allocator for GTT stolen memory */
853 struct drm_mm stolen;
854 /** Protects the usage of the GTT stolen memory allocator. This is
855 * always the inner lock when overlapping with struct_mutex. */
856 struct mutex stolen_lock;
857
858 /* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */
859 spinlock_t obj_lock;
860
861 /** List of all objects in gtt_space. Used to restore gtt
862 * mappings on resume */
863 struct list_head bound_list;
864 /**
865 * List of objects which are not bound to the GTT (thus
866 * are idle and not used by the GPU). These objects may or may
867 * not actually have any pages attached.
868 */
869 struct list_head unbound_list;
870
871 /** List of all objects in gtt_space, currently mmaped by userspace.
872 * All objects within this list must also be on bound_list.
873 */
874 struct list_head userfault_list;
875
876 /**
877 * List of objects which are pending destruction.
878 */
879 struct llist_head free_list;
880 struct work_struct free_work;
881 spinlock_t free_lock;
882 /**
883 * Count of objects pending destructions. Used to skip needlessly
884 * waiting on an RCU barrier if no objects are waiting to be freed.
885 */
886 atomic_t free_count;
887
888 /**
889 * Small stash of WC pages
890 */
891 struct pagestash wc_stash;
892
893 /**
894 * tmpfs instance used for shmem backed objects
895 */
896 struct vfsmount *gemfs;
897
898 /** PPGTT used for aliasing the PPGTT with the GTT */
899 struct i915_hw_ppgtt *aliasing_ppgtt;
900
901 struct notifier_block oom_notifier;
902 struct notifier_block vmap_notifier;
903 struct shrinker shrinker;
904
905 /** LRU list of objects with fence regs on them. */
906 struct list_head fence_list;
907
908 /**
909 * Workqueue to fault in userptr pages, flushed by the execbuf
910 * when required but otherwise left to userspace to try again
911 * on EAGAIN.
912 */
913 struct workqueue_struct *userptr_wq;
914
915 u64 unordered_timeline;
916
917 /* the indicator for dispatch video commands on two BSD rings */
918 atomic_t bsd_engine_dispatch_index;
919
920 /** Bit 6 swizzling required for X tiling */
921 u32 bit_6_swizzle_x;
922 /** Bit 6 swizzling required for Y tiling */
923 u32 bit_6_swizzle_y;
924
925 /* accounting, useful for userland debugging */
926 spinlock_t object_stat_lock;
927 u64 object_memory;
928 u32 object_count;
929 };
930
931 #define I915_IDLE_ENGINES_TIMEOUT (200) /* in ms */
932
933 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
934 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
935
936 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */
937 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */
938
939 #define I915_ENGINE_WEDGED_TIMEOUT (60 * HZ) /* Reset but no recovery? */
940
941 struct ddi_vbt_port_info {
942 int max_tmds_clock;
943
944 /*
945 * This is an index in the HDMI/DVI DDI buffer translation table.
946 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
947 * populate this field.
948 */
949 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
950 u8 hdmi_level_shift;
951
952 u8 supports_dvi:1;
953 u8 supports_hdmi:1;
954 u8 supports_dp:1;
955 u8 supports_edp:1;
956 u8 supports_typec_usb:1;
957 u8 supports_tbt:1;
958
959 u8 alternate_aux_channel;
960 u8 alternate_ddc_pin;
961
962 u8 dp_boost_level;
963 u8 hdmi_boost_level;
964 int dp_max_link_rate; /* 0 for not limited by VBT */
965 };
966
967 enum psr_lines_to_wait {
968 PSR_0_LINES_TO_WAIT = 0,
969 PSR_1_LINE_TO_WAIT,
970 PSR_4_LINES_TO_WAIT,
971 PSR_8_LINES_TO_WAIT
972 };
973
974 struct intel_vbt_data {
975 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
976 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
977
978 /* Feature bits */
979 unsigned int int_tv_support:1;
980 unsigned int lvds_dither:1;
981 unsigned int int_crt_support:1;
982 unsigned int lvds_use_ssc:1;
983 unsigned int int_lvds_support:1;
984 unsigned int display_clock_mode:1;
985 unsigned int fdi_rx_polarity_inverted:1;
986 unsigned int panel_type:4;
987 int lvds_ssc_freq;
988 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
989 enum drm_panel_orientation orientation;
990
991 enum drrs_support_type drrs_type;
992
993 struct {
994 int rate;
995 int lanes;
996 int preemphasis;
997 int vswing;
998 bool low_vswing;
999 bool initialized;
1000 int bpp;
1001 struct edp_power_seq pps;
1002 } edp;
1003
1004 struct {
1005 bool enable;
1006 bool full_link;
1007 bool require_aux_wakeup;
1008 int idle_frames;
1009 enum psr_lines_to_wait lines_to_wait;
1010 int tp1_wakeup_time_us;
1011 int tp2_tp3_wakeup_time_us;
1012 } psr;
1013
1014 struct {
1015 u16 pwm_freq_hz;
1016 bool present;
1017 bool active_low_pwm;
1018 u8 min_brightness; /* min_brightness/255 of max */
1019 u8 controller; /* brightness controller number */
1020 enum intel_backlight_type type;
1021 } backlight;
1022
1023 /* MIPI DSI */
1024 struct {
1025 u16 panel_id;
1026 struct mipi_config *config;
1027 struct mipi_pps_data *pps;
1028 u16 bl_ports;
1029 u16 cabc_ports;
1030 u8 seq_version;
1031 u32 size;
1032 u8 *data;
1033 const u8 *sequence[MIPI_SEQ_MAX];
1034 u8 *deassert_seq; /* Used by fixup_mipi_sequences() */
1035 enum drm_panel_orientation orientation;
1036 } dsi;
1037
1038 int crt_ddc_pin;
1039
1040 int child_dev_num;
1041 struct child_device_config *child_dev;
1042
1043 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1044 struct sdvo_device_mapping sdvo_mappings[2];
1045 };
1046
1047 enum intel_ddb_partitioning {
1048 INTEL_DDB_PART_1_2,
1049 INTEL_DDB_PART_5_6, /* IVB+ */
1050 };
1051
1052 struct intel_wm_level {
1053 bool enable;
1054 u32 pri_val;
1055 u32 spr_val;
1056 u32 cur_val;
1057 u32 fbc_val;
1058 };
1059
1060 struct ilk_wm_values {
1061 u32 wm_pipe[3];
1062 u32 wm_lp[3];
1063 u32 wm_lp_spr[3];
1064 u32 wm_linetime[3];
1065 bool enable_fbc_wm;
1066 enum intel_ddb_partitioning partitioning;
1067 };
1068
1069 struct g4x_pipe_wm {
1070 u16 plane[I915_MAX_PLANES];
1071 u16 fbc;
1072 };
1073
1074 struct g4x_sr_wm {
1075 u16 plane;
1076 u16 cursor;
1077 u16 fbc;
1078 };
1079
1080 struct vlv_wm_ddl_values {
1081 u8 plane[I915_MAX_PLANES];
1082 };
1083
1084 struct vlv_wm_values {
1085 struct g4x_pipe_wm pipe[3];
1086 struct g4x_sr_wm sr;
1087 struct vlv_wm_ddl_values ddl[3];
1088 u8 level;
1089 bool cxsr;
1090 };
1091
1092 struct g4x_wm_values {
1093 struct g4x_pipe_wm pipe[2];
1094 struct g4x_sr_wm sr;
1095 struct g4x_sr_wm hpll;
1096 bool cxsr;
1097 bool hpll_en;
1098 bool fbc_en;
1099 };
1100
1101 struct skl_ddb_entry {
1102 u16 start, end; /* in number of blocks, 'end' is exclusive */
1103 };
1104
1105 static inline u16 skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1106 {
1107 return entry->end - entry->start;
1108 }
1109
1110 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1111 const struct skl_ddb_entry *e2)
1112 {
1113 if (e1->start == e2->start && e1->end == e2->end)
1114 return true;
1115
1116 return false;
1117 }
1118
1119 struct skl_ddb_allocation {
1120 u8 enabled_slices; /* GEN11 has configurable 2 slices */
1121 };
1122
1123 struct skl_ddb_values {
1124 unsigned dirty_pipes;
1125 struct skl_ddb_allocation ddb;
1126 };
1127
1128 struct skl_wm_level {
1129 u16 min_ddb_alloc;
1130 u16 plane_res_b;
1131 u8 plane_res_l;
1132 bool plane_en;
1133 };
1134
1135 /* Stores plane specific WM parameters */
1136 struct skl_wm_params {
1137 bool x_tiled, y_tiled;
1138 bool rc_surface;
1139 bool is_planar;
1140 u32 width;
1141 u8 cpp;
1142 u32 plane_pixel_rate;
1143 u32 y_min_scanlines;
1144 u32 plane_bytes_per_line;
1145 uint_fixed_16_16_t plane_blocks_per_line;
1146 uint_fixed_16_16_t y_tile_minimum;
1147 u32 linetime_us;
1148 u32 dbuf_block_size;
1149 };
1150
1151 /*
1152 * This struct helps tracking the state needed for runtime PM, which puts the
1153 * device in PCI D3 state. Notice that when this happens, nothing on the
1154 * graphics device works, even register access, so we don't get interrupts nor
1155 * anything else.
1156 *
1157 * Every piece of our code that needs to actually touch the hardware needs to
1158 * either call intel_runtime_pm_get or call intel_display_power_get with the
1159 * appropriate power domain.
1160 *
1161 * Our driver uses the autosuspend delay feature, which means we'll only really
1162 * suspend if we stay with zero refcount for a certain amount of time. The
1163 * default value is currently very conservative (see intel_runtime_pm_enable), but
1164 * it can be changed with the standard runtime PM files from sysfs.
1165 *
1166 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1167 * goes back to false exactly before we reenable the IRQs. We use this variable
1168 * to check if someone is trying to enable/disable IRQs while they're supposed
1169 * to be disabled. This shouldn't happen and we'll print some error messages in
1170 * case it happens.
1171 *
1172 * For more, read the Documentation/power/runtime_pm.txt.
1173 */
1174 struct i915_runtime_pm {
1175 atomic_t wakeref_count;
1176 bool suspended;
1177 bool irqs_enabled;
1178
1179 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
1180 /*
1181 * To aide detection of wakeref leaks and general misuse, we
1182 * track all wakeref holders. With manual markup (i.e. returning
1183 * a cookie to each rpm_get caller which they then supply to their
1184 * paired rpm_put) we can remove corresponding pairs of and keep
1185 * the array trimmed to active wakerefs.
1186 */
1187 struct intel_runtime_pm_debug {
1188 spinlock_t lock;
1189
1190 depot_stack_handle_t last_acquire;
1191 depot_stack_handle_t last_release;
1192
1193 depot_stack_handle_t *owners;
1194 unsigned long count;
1195 } debug;
1196 #endif
1197 };
1198
1199 enum intel_pipe_crc_source {
1200 INTEL_PIPE_CRC_SOURCE_NONE,
1201 INTEL_PIPE_CRC_SOURCE_PLANE1,
1202 INTEL_PIPE_CRC_SOURCE_PLANE2,
1203 INTEL_PIPE_CRC_SOURCE_PF,
1204 INTEL_PIPE_CRC_SOURCE_PIPE,
1205 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1206 INTEL_PIPE_CRC_SOURCE_TV,
1207 INTEL_PIPE_CRC_SOURCE_DP_B,
1208 INTEL_PIPE_CRC_SOURCE_DP_C,
1209 INTEL_PIPE_CRC_SOURCE_DP_D,
1210 INTEL_PIPE_CRC_SOURCE_AUTO,
1211 INTEL_PIPE_CRC_SOURCE_MAX,
1212 };
1213
1214 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1215 struct intel_pipe_crc {
1216 spinlock_t lock;
1217 int skipped;
1218 enum intel_pipe_crc_source source;
1219 };
1220
1221 struct i915_frontbuffer_tracking {
1222 spinlock_t lock;
1223
1224 /*
1225 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1226 * scheduled flips.
1227 */
1228 unsigned busy_bits;
1229 unsigned flip_bits;
1230 };
1231
1232 struct i915_virtual_gpu {
1233 bool active;
1234 u32 caps;
1235 };
1236
1237 /* used in computing the new watermarks state */
1238 struct intel_wm_config {
1239 unsigned int num_pipes_active;
1240 bool sprites_enabled;
1241 bool sprites_scaled;
1242 };
1243
1244 struct i915_oa_format {
1245 u32 format;
1246 int size;
1247 };
1248
1249 struct i915_oa_reg {
1250 i915_reg_t addr;
1251 u32 value;
1252 };
1253
1254 struct i915_oa_config {
1255 char uuid[UUID_STRING_LEN + 1];
1256 int id;
1257
1258 const struct i915_oa_reg *mux_regs;
1259 u32 mux_regs_len;
1260 const struct i915_oa_reg *b_counter_regs;
1261 u32 b_counter_regs_len;
1262 const struct i915_oa_reg *flex_regs;
1263 u32 flex_regs_len;
1264
1265 struct attribute_group sysfs_metric;
1266 struct attribute *attrs[2];
1267 struct device_attribute sysfs_metric_id;
1268
1269 atomic_t ref_count;
1270 };
1271
1272 struct i915_perf_stream;
1273
1274 /**
1275 * struct i915_perf_stream_ops - the OPs to support a specific stream type
1276 */
1277 struct i915_perf_stream_ops {
1278 /**
1279 * @enable: Enables the collection of HW samples, either in response to
1280 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1281 * without `I915_PERF_FLAG_DISABLED`.
1282 */
1283 void (*enable)(struct i915_perf_stream *stream);
1284
1285 /**
1286 * @disable: Disables the collection of HW samples, either in response
1287 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1288 * the stream.
1289 */
1290 void (*disable)(struct i915_perf_stream *stream);
1291
1292 /**
1293 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1294 * once there is something ready to read() for the stream
1295 */
1296 void (*poll_wait)(struct i915_perf_stream *stream,
1297 struct file *file,
1298 poll_table *wait);
1299
1300 /**
1301 * @wait_unlocked: For handling a blocking read, wait until there is
1302 * something to ready to read() for the stream. E.g. wait on the same
1303 * wait queue that would be passed to poll_wait().
1304 */
1305 int (*wait_unlocked)(struct i915_perf_stream *stream);
1306
1307 /**
1308 * @read: Copy buffered metrics as records to userspace
1309 * **buf**: the userspace, destination buffer
1310 * **count**: the number of bytes to copy, requested by userspace
1311 * **offset**: zero at the start of the read, updated as the read
1312 * proceeds, it represents how many bytes have been copied so far and
1313 * the buffer offset for copying the next record.
1314 *
1315 * Copy as many buffered i915 perf samples and records for this stream
1316 * to userspace as will fit in the given buffer.
1317 *
1318 * Only write complete records; returning -%ENOSPC if there isn't room
1319 * for a complete record.
1320 *
1321 * Return any error condition that results in a short read such as
1322 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1323 * returning to userspace.
1324 */
1325 int (*read)(struct i915_perf_stream *stream,
1326 char __user *buf,
1327 size_t count,
1328 size_t *offset);
1329
1330 /**
1331 * @destroy: Cleanup any stream specific resources.
1332 *
1333 * The stream will always be disabled before this is called.
1334 */
1335 void (*destroy)(struct i915_perf_stream *stream);
1336 };
1337
1338 /**
1339 * struct i915_perf_stream - state for a single open stream FD
1340 */
1341 struct i915_perf_stream {
1342 /**
1343 * @dev_priv: i915 drm device
1344 */
1345 struct drm_i915_private *dev_priv;
1346
1347 /**
1348 * @link: Links the stream into ``&drm_i915_private->streams``
1349 */
1350 struct list_head link;
1351
1352 /**
1353 * @wakeref: As we keep the device awake while the perf stream is
1354 * active, we track our runtime pm reference for later release.
1355 */
1356 intel_wakeref_t wakeref;
1357
1358 /**
1359 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
1360 * properties given when opening a stream, representing the contents
1361 * of a single sample as read() by userspace.
1362 */
1363 u32 sample_flags;
1364
1365 /**
1366 * @sample_size: Considering the configured contents of a sample
1367 * combined with the required header size, this is the total size
1368 * of a single sample record.
1369 */
1370 int sample_size;
1371
1372 /**
1373 * @ctx: %NULL if measuring system-wide across all contexts or a
1374 * specific context that is being monitored.
1375 */
1376 struct i915_gem_context *ctx;
1377
1378 /**
1379 * @enabled: Whether the stream is currently enabled, considering
1380 * whether the stream was opened in a disabled state and based
1381 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
1382 */
1383 bool enabled;
1384
1385 /**
1386 * @ops: The callbacks providing the implementation of this specific
1387 * type of configured stream.
1388 */
1389 const struct i915_perf_stream_ops *ops;
1390
1391 /**
1392 * @oa_config: The OA configuration used by the stream.
1393 */
1394 struct i915_oa_config *oa_config;
1395 };
1396
1397 /**
1398 * struct i915_oa_ops - Gen specific implementation of an OA unit stream
1399 */
1400 struct i915_oa_ops {
1401 /**
1402 * @is_valid_b_counter_reg: Validates register's address for
1403 * programming boolean counters for a particular platform.
1404 */
1405 bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
1406 u32 addr);
1407
1408 /**
1409 * @is_valid_mux_reg: Validates register's address for programming mux
1410 * for a particular platform.
1411 */
1412 bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
1413
1414 /**
1415 * @is_valid_flex_reg: Validates register's address for programming
1416 * flex EU filtering for a particular platform.
1417 */
1418 bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
1419
1420 /**
1421 * @enable_metric_set: Selects and applies any MUX configuration to set
1422 * up the Boolean and Custom (B/C) counters that are part of the
1423 * counter reports being sampled. May apply system constraints such as
1424 * disabling EU clock gating as required.
1425 */
1426 int (*enable_metric_set)(struct i915_perf_stream *stream);
1427
1428 /**
1429 * @disable_metric_set: Remove system constraints associated with using
1430 * the OA unit.
1431 */
1432 void (*disable_metric_set)(struct drm_i915_private *dev_priv);
1433
1434 /**
1435 * @oa_enable: Enable periodic sampling
1436 */
1437 void (*oa_enable)(struct i915_perf_stream *stream);
1438
1439 /**
1440 * @oa_disable: Disable periodic sampling
1441 */
1442 void (*oa_disable)(struct i915_perf_stream *stream);
1443
1444 /**
1445 * @read: Copy data from the circular OA buffer into a given userspace
1446 * buffer.
1447 */
1448 int (*read)(struct i915_perf_stream *stream,
1449 char __user *buf,
1450 size_t count,
1451 size_t *offset);
1452
1453 /**
1454 * @oa_hw_tail_read: read the OA tail pointer register
1455 *
1456 * In particular this enables us to share all the fiddly code for
1457 * handling the OA unit tail pointer race that affects multiple
1458 * generations.
1459 */
1460 u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
1461 };
1462
1463 struct intel_cdclk_state {
1464 unsigned int cdclk, vco, ref, bypass;
1465 u8 voltage_level;
1466 };
1467
1468 struct drm_i915_private {
1469 struct drm_device drm;
1470
1471 struct kmem_cache *objects;
1472 struct kmem_cache *vmas;
1473 struct kmem_cache *luts;
1474 struct kmem_cache *requests;
1475 struct kmem_cache *dependencies;
1476 struct kmem_cache *priorities;
1477
1478 const struct intel_device_info __info; /* Use INTEL_INFO() to access. */
1479 struct intel_runtime_info __runtime; /* Use RUNTIME_INFO() to access. */
1480 struct intel_driver_caps caps;
1481
1482 /**
1483 * Data Stolen Memory - aka "i915 stolen memory" gives us the start and
1484 * end of stolen which we can optionally use to create GEM objects
1485 * backed by stolen memory. Note that stolen_usable_size tells us
1486 * exactly how much of this we are actually allowed to use, given that
1487 * some portion of it is in fact reserved for use by hardware functions.
1488 */
1489 struct resource dsm;
1490 /**
1491 * Reseved portion of Data Stolen Memory
1492 */
1493 struct resource dsm_reserved;
1494
1495 /*
1496 * Stolen memory is segmented in hardware with different portions
1497 * offlimits to certain functions.
1498 *
1499 * The drm_mm is initialised to the total accessible range, as found
1500 * from the PCI config. On Broadwell+, this is further restricted to
1501 * avoid the first page! The upper end of stolen memory is reserved for
1502 * hardware functions and similarly removed from the accessible range.
1503 */
1504 resource_size_t stolen_usable_size; /* Total size minus reserved ranges */
1505
1506 void __iomem *regs;
1507
1508 struct intel_uncore uncore;
1509
1510 struct i915_virtual_gpu vgpu;
1511
1512 struct intel_gvt *gvt;
1513
1514 struct intel_wopcm wopcm;
1515
1516 struct intel_huc huc;
1517 struct intel_guc guc;
1518
1519 struct intel_csr csr;
1520
1521 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1522
1523 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
1524 * controller on different i2c buses. */
1525 struct mutex gmbus_mutex;
1526
1527 /**
1528 * Base address of where the gmbus and gpio blocks are located (either
1529 * on PCH or on SoC for platforms without PCH).
1530 */
1531 u32 gpio_mmio_base;
1532
1533 /* MMIO base address for MIPI regs */
1534 u32 mipi_mmio_base;
1535
1536 u32 psr_mmio_base;
1537
1538 u32 pps_mmio_base;
1539
1540 wait_queue_head_t gmbus_wait_queue;
1541
1542 struct pci_dev *bridge_dev;
1543 struct intel_engine_cs *engine[I915_NUM_ENGINES];
1544 /* Context used internally to idle the GPU and setup initial state */
1545 struct i915_gem_context *kernel_context;
1546 /* Context only to be used for injecting preemption commands */
1547 struct i915_gem_context *preempt_context;
1548 struct intel_engine_cs *engine_class[MAX_ENGINE_CLASS + 1]
1549 [MAX_ENGINE_INSTANCE + 1];
1550
1551 struct resource mch_res;
1552
1553 /* protects the irq masks */
1554 spinlock_t irq_lock;
1555
1556 bool display_irqs_enabled;
1557
1558 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1559 struct pm_qos_request pm_qos;
1560
1561 /* Sideband mailbox protection */
1562 struct mutex sb_lock;
1563
1564 /** Cached value of IMR to avoid reads in updating the bitfield */
1565 union {
1566 u32 irq_mask;
1567 u32 de_irq_mask[I915_MAX_PIPES];
1568 };
1569 u32 gt_irq_mask;
1570 u32 pm_imr;
1571 u32 pm_ier;
1572 u32 pm_rps_events;
1573 u32 pm_guc_events;
1574 u32 pipestat_irq_mask[I915_MAX_PIPES];
1575
1576 struct i915_hotplug hotplug;
1577 struct intel_fbc fbc;
1578 struct i915_drrs drrs;
1579 struct intel_opregion opregion;
1580 struct intel_vbt_data vbt;
1581
1582 bool preserve_bios_swizzle;
1583
1584 /* overlay */
1585 struct intel_overlay *overlay;
1586
1587 /* backlight registers and fields in struct intel_panel */
1588 struct mutex backlight_lock;
1589
1590 /* LVDS info */
1591 bool no_aux_handshake;
1592
1593 /* protects panel power sequencer state */
1594 struct mutex pps_mutex;
1595
1596 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1597 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1598
1599 unsigned int fsb_freq, mem_freq, is_ddr3;
1600 unsigned int skl_preferred_vco_freq;
1601 unsigned int max_cdclk_freq;
1602
1603 unsigned int max_dotclk_freq;
1604 unsigned int rawclk_freq;
1605 unsigned int hpll_freq;
1606 unsigned int fdi_pll_freq;
1607 unsigned int czclk_freq;
1608
1609 struct {
1610 /*
1611 * The current logical cdclk state.
1612 * See intel_atomic_state.cdclk.logical
1613 *
1614 * For reading holding any crtc lock is sufficient,
1615 * for writing must hold all of them.
1616 */
1617 struct intel_cdclk_state logical;
1618 /*
1619 * The current actual cdclk state.
1620 * See intel_atomic_state.cdclk.actual
1621 */
1622 struct intel_cdclk_state actual;
1623 /* The current hardware cdclk state */
1624 struct intel_cdclk_state hw;
1625 } cdclk;
1626
1627 /**
1628 * wq - Driver workqueue for GEM.
1629 *
1630 * NOTE: Work items scheduled here are not allowed to grab any modeset
1631 * locks, for otherwise the flushing done in the pageflip code will
1632 * result in deadlocks.
1633 */
1634 struct workqueue_struct *wq;
1635
1636 /* ordered wq for modesets */
1637 struct workqueue_struct *modeset_wq;
1638
1639 /* Display functions */
1640 struct drm_i915_display_funcs display;
1641
1642 /* PCH chipset type */
1643 enum intel_pch pch_type;
1644 unsigned short pch_id;
1645
1646 unsigned long quirks;
1647
1648 struct drm_atomic_state *modeset_restore_state;
1649 struct drm_modeset_acquire_ctx reset_ctx;
1650
1651 struct i915_ggtt ggtt; /* VM representing the global address space */
1652
1653 struct i915_gem_mm mm;
1654 DECLARE_HASHTABLE(mm_structs, 7);
1655 struct mutex mm_lock;
1656
1657 struct intel_ppat ppat;
1658
1659 /* Kernel Modesetting */
1660
1661 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1662 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1663
1664 #ifdef CONFIG_DEBUG_FS
1665 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1666 #endif
1667
1668 /* dpll and cdclk state is protected by connection_mutex */
1669 int num_shared_dpll;
1670 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1671 const struct intel_dpll_mgr *dpll_mgr;
1672
1673 /*
1674 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1675 * Must be global rather than per dpll, because on some platforms
1676 * plls share registers.
1677 */
1678 struct mutex dpll_lock;
1679
1680 unsigned int active_crtcs;
1681 /* minimum acceptable cdclk for each pipe */
1682 int min_cdclk[I915_MAX_PIPES];
1683 /* minimum acceptable voltage level for each pipe */
1684 u8 min_voltage_level[I915_MAX_PIPES];
1685
1686 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1687
1688 struct i915_wa_list gt_wa_list;
1689
1690 struct i915_frontbuffer_tracking fb_tracking;
1691
1692 struct intel_atomic_helper {
1693 struct llist_head free_list;
1694 struct work_struct free_work;
1695 } atomic_helper;
1696
1697 u16 orig_clock;
1698
1699 bool mchbar_need_disable;
1700
1701 struct intel_l3_parity l3_parity;
1702
1703 /* Cannot be determined by PCIID. You must always read a register. */
1704 u32 edram_cap;
1705
1706 /*
1707 * Protects RPS/RC6 register access and PCU communication.
1708 * Must be taken after struct_mutex if nested. Note that
1709 * this lock may be held for long periods of time when
1710 * talking to hw - so only take it when talking to hw!
1711 */
1712 struct mutex pcu_lock;
1713
1714 /* gen6+ GT PM state */
1715 struct intel_gen6_power_mgmt gt_pm;
1716
1717 /* ilk-only ips/rps state. Everything in here is protected by the global
1718 * mchdev_lock in intel_pm.c */
1719 struct intel_ilk_power_mgmt ips;
1720
1721 struct i915_power_domains power_domains;
1722
1723 struct i915_psr psr;
1724
1725 struct i915_gpu_error gpu_error;
1726
1727 struct drm_i915_gem_object *vlv_pctx;
1728
1729 /* list of fbdev register on this device */
1730 struct intel_fbdev *fbdev;
1731 struct work_struct fbdev_suspend_work;
1732
1733 struct drm_property *broadcast_rgb_property;
1734 struct drm_property *force_audio_property;
1735
1736 /* hda/i915 audio component */
1737 struct i915_audio_component *audio_component;
1738 bool audio_component_registered;
1739 /**
1740 * av_mutex - mutex for audio/video sync
1741 *
1742 */
1743 struct mutex av_mutex;
1744
1745 struct {
1746 struct mutex mutex;
1747 struct list_head list;
1748 struct llist_head free_list;
1749 struct work_struct free_work;
1750
1751 /* The hw wants to have a stable context identifier for the
1752 * lifetime of the context (for OA, PASID, faults, etc).
1753 * This is limited in execlists to 21 bits.
1754 */
1755 struct ida hw_ida;
1756 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1757 #define MAX_GUC_CONTEXT_HW_ID (1 << 20) /* exclusive */
1758 #define GEN11_MAX_CONTEXT_HW_ID (1<<11) /* exclusive */
1759 struct list_head hw_id_list;
1760 } contexts;
1761
1762 u32 fdi_rx_config;
1763
1764 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1765 u32 chv_phy_control;
1766 /*
1767 * Shadows for CHV DPLL_MD regs to keep the state
1768 * checker somewhat working in the presence hardware
1769 * crappiness (can't read out DPLL_MD for pipes B & C).
1770 */
1771 u32 chv_dpll_md[I915_MAX_PIPES];
1772 u32 bxt_phy_grc;
1773
1774 u32 suspend_count;
1775 bool power_domains_suspended;
1776 struct i915_suspend_saved_registers regfile;
1777 struct vlv_s0ix_state vlv_s0ix_state;
1778
1779 enum {
1780 I915_SAGV_UNKNOWN = 0,
1781 I915_SAGV_DISABLED,
1782 I915_SAGV_ENABLED,
1783 I915_SAGV_NOT_CONTROLLED
1784 } sagv_status;
1785
1786 struct {
1787 /*
1788 * Raw watermark latency values:
1789 * in 0.1us units for WM0,
1790 * in 0.5us units for WM1+.
1791 */
1792 /* primary */
1793 u16 pri_latency[5];
1794 /* sprite */
1795 u16 spr_latency[5];
1796 /* cursor */
1797 u16 cur_latency[5];
1798 /*
1799 * Raw watermark memory latency values
1800 * for SKL for all 8 levels
1801 * in 1us units.
1802 */
1803 u16 skl_latency[8];
1804
1805 /* current hardware state */
1806 union {
1807 struct ilk_wm_values hw;
1808 struct skl_ddb_values skl_hw;
1809 struct vlv_wm_values vlv;
1810 struct g4x_wm_values g4x;
1811 };
1812
1813 u8 max_level;
1814
1815 /*
1816 * Should be held around atomic WM register writing; also
1817 * protects * intel_crtc->wm.active and
1818 * cstate->wm.need_postvbl_update.
1819 */
1820 struct mutex wm_mutex;
1821
1822 /*
1823 * Set during HW readout of watermarks/DDB. Some platforms
1824 * need to know when we're still using BIOS-provided values
1825 * (which we don't fully trust).
1826 */
1827 bool distrust_bios_wm;
1828 } wm;
1829
1830 struct dram_info {
1831 bool valid;
1832 bool is_16gb_dimm;
1833 u8 num_channels;
1834 enum dram_rank {
1835 I915_DRAM_RANK_INVALID = 0,
1836 I915_DRAM_RANK_SINGLE,
1837 I915_DRAM_RANK_DUAL
1838 } rank;
1839 u32 bandwidth_kbps;
1840 bool symmetric_memory;
1841 } dram_info;
1842
1843 struct i915_runtime_pm runtime_pm;
1844
1845 struct {
1846 bool initialized;
1847
1848 struct kobject *metrics_kobj;
1849 struct ctl_table_header *sysctl_header;
1850
1851 /*
1852 * Lock associated with adding/modifying/removing OA configs
1853 * in dev_priv->perf.metrics_idr.
1854 */
1855 struct mutex metrics_lock;
1856
1857 /*
1858 * List of dynamic configurations, you need to hold
1859 * dev_priv->perf.metrics_lock to access it.
1860 */
1861 struct idr metrics_idr;
1862
1863 /*
1864 * Lock associated with anything below within this structure
1865 * except exclusive_stream.
1866 */
1867 struct mutex lock;
1868 struct list_head streams;
1869
1870 struct {
1871 /*
1872 * The stream currently using the OA unit. If accessed
1873 * outside a syscall associated to its file
1874 * descriptor, you need to hold
1875 * dev_priv->drm.struct_mutex.
1876 */
1877 struct i915_perf_stream *exclusive_stream;
1878
1879 struct intel_context *pinned_ctx;
1880 u32 specific_ctx_id;
1881 u32 specific_ctx_id_mask;
1882
1883 struct hrtimer poll_check_timer;
1884 wait_queue_head_t poll_wq;
1885 bool pollin;
1886
1887 /**
1888 * For rate limiting any notifications of spurious
1889 * invalid OA reports
1890 */
1891 struct ratelimit_state spurious_report_rs;
1892
1893 bool periodic;
1894 int period_exponent;
1895
1896 struct i915_oa_config test_config;
1897
1898 struct {
1899 struct i915_vma *vma;
1900 u8 *vaddr;
1901 u32 last_ctx_id;
1902 int format;
1903 int format_size;
1904
1905 /**
1906 * Locks reads and writes to all head/tail state
1907 *
1908 * Consider: the head and tail pointer state
1909 * needs to be read consistently from a hrtimer
1910 * callback (atomic context) and read() fop
1911 * (user context) with tail pointer updates
1912 * happening in atomic context and head updates
1913 * in user context and the (unlikely)
1914 * possibility of read() errors needing to
1915 * reset all head/tail state.
1916 *
1917 * Note: Contention or performance aren't
1918 * currently a significant concern here
1919 * considering the relatively low frequency of
1920 * hrtimer callbacks (5ms period) and that
1921 * reads typically only happen in response to a
1922 * hrtimer event and likely complete before the
1923 * next callback.
1924 *
1925 * Note: This lock is not held *while* reading
1926 * and copying data to userspace so the value
1927 * of head observed in htrimer callbacks won't
1928 * represent any partial consumption of data.
1929 */
1930 spinlock_t ptr_lock;
1931
1932 /**
1933 * One 'aging' tail pointer and one 'aged'
1934 * tail pointer ready to used for reading.
1935 *
1936 * Initial values of 0xffffffff are invalid
1937 * and imply that an update is required
1938 * (and should be ignored by an attempted
1939 * read)
1940 */
1941 struct {
1942 u32 offset;
1943 } tails[2];
1944
1945 /**
1946 * Index for the aged tail ready to read()
1947 * data up to.
1948 */
1949 unsigned int aged_tail_idx;
1950
1951 /**
1952 * A monotonic timestamp for when the current
1953 * aging tail pointer was read; used to
1954 * determine when it is old enough to trust.
1955 */
1956 u64 aging_timestamp;
1957
1958 /**
1959 * Although we can always read back the head
1960 * pointer register, we prefer to avoid
1961 * trusting the HW state, just to avoid any
1962 * risk that some hardware condition could
1963 * somehow bump the head pointer unpredictably
1964 * and cause us to forward the wrong OA buffer
1965 * data to userspace.
1966 */
1967 u32 head;
1968 } oa_buffer;
1969
1970 u32 gen7_latched_oastatus1;
1971 u32 ctx_oactxctrl_offset;
1972 u32 ctx_flexeu0_offset;
1973
1974 /**
1975 * The RPT_ID/reason field for Gen8+ includes a bit
1976 * to determine if the CTX ID in the report is valid
1977 * but the specific bit differs between Gen 8 and 9
1978 */
1979 u32 gen8_valid_ctx_bit;
1980
1981 struct i915_oa_ops ops;
1982 const struct i915_oa_format *oa_formats;
1983 } oa;
1984 } perf;
1985
1986 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
1987 struct {
1988 void (*resume)(struct drm_i915_private *);
1989 void (*cleanup_engine)(struct intel_engine_cs *engine);
1990
1991 struct i915_gt_timelines {
1992 struct mutex mutex; /* protects list, tainted by GPU */
1993 struct list_head active_list;
1994
1995 /* Pack multiple timelines' seqnos into the same page */
1996 spinlock_t hwsp_lock;
1997 struct list_head hwsp_free_list;
1998 } timelines;
1999
2000 struct list_head active_rings;
2001 struct list_head closed_vma;
2002 u32 active_requests;
2003
2004 /**
2005 * Is the GPU currently considered idle, or busy executing
2006 * userspace requests? Whilst idle, we allow runtime power
2007 * management to power down the hardware and display clocks.
2008 * In order to reduce the effect on performance, there
2009 * is a slight delay before we do so.
2010 */
2011 intel_wakeref_t awake;
2012
2013 /**
2014 * The number of times we have woken up.
2015 */
2016 unsigned int epoch;
2017 #define I915_EPOCH_INVALID 0
2018
2019 /**
2020 * We leave the user IRQ off as much as possible,
2021 * but this means that requests will finish and never
2022 * be retired once the system goes idle. Set a timer to
2023 * fire periodically while the ring is running. When it
2024 * fires, go retire requests.
2025 */
2026 struct delayed_work retire_work;
2027
2028 /**
2029 * When we detect an idle GPU, we want to turn on
2030 * powersaving features. So once we see that there
2031 * are no more requests outstanding and no more
2032 * arrive within a small period of time, we fire
2033 * off the idle_work.
2034 */
2035 struct delayed_work idle_work;
2036
2037 ktime_t last_init_time;
2038
2039 struct i915_vma *scratch;
2040 } gt;
2041
2042 /* perform PHY state sanity checks? */
2043 bool chv_phy_assert[2];
2044
2045 bool ipc_enabled;
2046
2047 /* Used to save the pipe-to-encoder mapping for audio */
2048 struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2049
2050 /* necessary resource sharing with HDMI LPE audio driver. */
2051 struct {
2052 struct platform_device *platdev;
2053 int irq;
2054 } lpe_audio;
2055
2056 struct i915_pmu pmu;
2057
2058 /*
2059 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2060 * will be rejected. Instead look for a better place.
2061 */
2062 };
2063
2064 struct dram_channel_info {
2065 struct info {
2066 u8 size, width;
2067 enum dram_rank rank;
2068 } l_info, s_info;
2069 enum dram_rank rank;
2070 bool is_16gb_dimm;
2071 };
2072
2073 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2074 {
2075 return container_of(dev, struct drm_i915_private, drm);
2076 }
2077
2078 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2079 {
2080 return to_i915(dev_get_drvdata(kdev));
2081 }
2082
2083 static inline struct drm_i915_private *wopcm_to_i915(struct intel_wopcm *wopcm)
2084 {
2085 return container_of(wopcm, struct drm_i915_private, wopcm);
2086 }
2087
2088 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2089 {
2090 return container_of(guc, struct drm_i915_private, guc);
2091 }
2092
2093 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2094 {
2095 return container_of(huc, struct drm_i915_private, huc);
2096 }
2097
2098 /* Simple iterator over all initialised engines */
2099 #define for_each_engine(engine__, dev_priv__, id__) \
2100 for ((id__) = 0; \
2101 (id__) < I915_NUM_ENGINES; \
2102 (id__)++) \
2103 for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2104
2105 /* Iterator over subset of engines selected by mask */
2106 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2107 for ((tmp__) = (mask__) & INTEL_INFO(dev_priv__)->ring_mask; \
2108 (tmp__) ? \
2109 ((engine__) = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : \
2110 0;)
2111
2112 enum hdmi_force_audio {
2113 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2114 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2115 HDMI_AUDIO_AUTO, /* trust EDID */
2116 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2117 };
2118
2119 #define I915_GTT_OFFSET_NONE ((u32)-1)
2120
2121 /*
2122 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2123 * considered to be the frontbuffer for the given plane interface-wise. This
2124 * doesn't mean that the hw necessarily already scans it out, but that any
2125 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2126 *
2127 * We have one bit per pipe and per scanout plane type.
2128 */
2129 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2130 #define INTEL_FRONTBUFFER(pipe, plane_id) ({ \
2131 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32); \
2132 BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE); \
2133 BIT((plane_id) + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)); \
2134 })
2135 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2136 BIT(INTEL_FRONTBUFFER_BITS_PER_PIPE - 1 + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2137 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2138 GENMASK(INTEL_FRONTBUFFER_BITS_PER_PIPE * ((pipe) + 1) - 1, \
2139 INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2140
2141 /*
2142 * Optimised SGL iterator for GEM objects
2143 */
2144 static __always_inline struct sgt_iter {
2145 struct scatterlist *sgp;
2146 union {
2147 unsigned long pfn;
2148 dma_addr_t dma;
2149 };
2150 unsigned int curr;
2151 unsigned int max;
2152 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2153 struct sgt_iter s = { .sgp = sgl };
2154
2155 if (s.sgp) {
2156 s.max = s.curr = s.sgp->offset;
2157 s.max += s.sgp->length;
2158 if (dma)
2159 s.dma = sg_dma_address(s.sgp);
2160 else
2161 s.pfn = page_to_pfn(sg_page(s.sgp));
2162 }
2163
2164 return s;
2165 }
2166
2167 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2168 {
2169 ++sg;
2170 if (unlikely(sg_is_chain(sg)))
2171 sg = sg_chain_ptr(sg);
2172 return sg;
2173 }
2174
2175 /**
2176 * __sg_next - return the next scatterlist entry in a list
2177 * @sg: The current sg entry
2178 *
2179 * Description:
2180 * If the entry is the last, return NULL; otherwise, step to the next
2181 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2182 * otherwise just return the pointer to the current element.
2183 **/
2184 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2185 {
2186 return sg_is_last(sg) ? NULL : ____sg_next(sg);
2187 }
2188
2189 /**
2190 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2191 * @__dmap: DMA address (output)
2192 * @__iter: 'struct sgt_iter' (iterator state, internal)
2193 * @__sgt: sg_table to iterate over (input)
2194 */
2195 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2196 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2197 ((__dmap) = (__iter).dma + (__iter).curr); \
2198 (((__iter).curr += I915_GTT_PAGE_SIZE) >= (__iter).max) ? \
2199 (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0)
2200
2201 /**
2202 * for_each_sgt_page - iterate over the pages of the given sg_table
2203 * @__pp: page pointer (output)
2204 * @__iter: 'struct sgt_iter' (iterator state, internal)
2205 * @__sgt: sg_table to iterate over (input)
2206 */
2207 #define for_each_sgt_page(__pp, __iter, __sgt) \
2208 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2209 ((__pp) = (__iter).pfn == 0 ? NULL : \
2210 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2211 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \
2212 (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0)
2213
2214 bool i915_sg_trim(struct sg_table *orig_st);
2215
2216 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg)
2217 {
2218 unsigned int page_sizes;
2219
2220 page_sizes = 0;
2221 while (sg) {
2222 GEM_BUG_ON(sg->offset);
2223 GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE));
2224 page_sizes |= sg->length;
2225 sg = __sg_next(sg);
2226 }
2227
2228 return page_sizes;
2229 }
2230
2231 static inline unsigned int i915_sg_segment_size(void)
2232 {
2233 unsigned int size = swiotlb_max_segment();
2234
2235 if (size == 0)
2236 return SCATTERLIST_MAX_SEGMENT;
2237
2238 size = rounddown(size, PAGE_SIZE);
2239 /* swiotlb_max_segment_size can return 1 byte when it means one page. */
2240 if (size < PAGE_SIZE)
2241 size = PAGE_SIZE;
2242
2243 return size;
2244 }
2245
2246 #define INTEL_INFO(dev_priv) (&(dev_priv)->__info)
2247 #define RUNTIME_INFO(dev_priv) (&(dev_priv)->__runtime)
2248 #define DRIVER_CAPS(dev_priv) (&(dev_priv)->caps)
2249
2250 #define INTEL_GEN(dev_priv) (INTEL_INFO(dev_priv)->gen)
2251 #define INTEL_DEVID(dev_priv) (RUNTIME_INFO(dev_priv)->device_id)
2252
2253 #define REVID_FOREVER 0xff
2254 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision)
2255
2256 #define INTEL_GEN_MASK(s, e) ( \
2257 BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \
2258 BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \
2259 GENMASK((e) - 1, (s) - 1))
2260
2261 /* Returns true if Gen is in inclusive range [Start, End] */
2262 #define IS_GEN_RANGE(dev_priv, s, e) \
2263 (!!(INTEL_INFO(dev_priv)->gen_mask & INTEL_GEN_MASK((s), (e))))
2264
2265 #define IS_GEN(dev_priv, n) \
2266 (BUILD_BUG_ON_ZERO(!__builtin_constant_p(n)) + \
2267 INTEL_INFO(dev_priv)->gen == (n))
2268
2269 /*
2270 * Return true if revision is in range [since,until] inclusive.
2271 *
2272 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2273 */
2274 #define IS_REVID(p, since, until) \
2275 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2276
2277 #define IS_PLATFORM(dev_priv, p) (INTEL_INFO(dev_priv)->platform_mask & BIT(p))
2278
2279 #define IS_I830(dev_priv) IS_PLATFORM(dev_priv, INTEL_I830)
2280 #define IS_I845G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I845G)
2281 #define IS_I85X(dev_priv) IS_PLATFORM(dev_priv, INTEL_I85X)
2282 #define IS_I865G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I865G)
2283 #define IS_I915G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915G)
2284 #define IS_I915GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915GM)
2285 #define IS_I945G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945G)
2286 #define IS_I945GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945GM)
2287 #define IS_I965G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965G)
2288 #define IS_I965GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965GM)
2289 #define IS_G45(dev_priv) IS_PLATFORM(dev_priv, INTEL_G45)
2290 #define IS_GM45(dev_priv) IS_PLATFORM(dev_priv, INTEL_GM45)
2291 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv))
2292 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001)
2293 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011)
2294 #define IS_PINEVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_PINEVIEW)
2295 #define IS_G33(dev_priv) IS_PLATFORM(dev_priv, INTEL_G33)
2296 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046)
2297 #define IS_IVYBRIDGE(dev_priv) IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE)
2298 #define IS_IVB_GT1(dev_priv) (IS_IVYBRIDGE(dev_priv) && \
2299 INTEL_INFO(dev_priv)->gt == 1)
2300 #define IS_VALLEYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW)
2301 #define IS_CHERRYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW)
2302 #define IS_HASWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_HASWELL)
2303 #define IS_BROADWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROADWELL)
2304 #define IS_SKYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_SKYLAKE)
2305 #define IS_BROXTON(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROXTON)
2306 #define IS_KABYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_KABYLAKE)
2307 #define IS_GEMINILAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_GEMINILAKE)
2308 #define IS_COFFEELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_COFFEELAKE)
2309 #define IS_CANNONLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_CANNONLAKE)
2310 #define IS_ICELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_ICELAKE)
2311 #define IS_MOBILE(dev_priv) (INTEL_INFO(dev_priv)->is_mobile)
2312 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2313 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2314 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \
2315 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \
2316 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \
2317 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2318 /* ULX machines are also considered ULT. */
2319 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \
2320 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2321 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \
2322 INTEL_INFO(dev_priv)->gt == 3)
2323 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \
2324 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2325 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \
2326 INTEL_INFO(dev_priv)->gt == 3)
2327 #define IS_HSW_GT1(dev_priv) (IS_HASWELL(dev_priv) && \
2328 INTEL_INFO(dev_priv)->gt == 1)
2329 /* ULX machines are also considered ULT. */
2330 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \
2331 INTEL_DEVID(dev_priv) == 0x0A1E)
2332 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \
2333 INTEL_DEVID(dev_priv) == 0x1913 || \
2334 INTEL_DEVID(dev_priv) == 0x1916 || \
2335 INTEL_DEVID(dev_priv) == 0x1921 || \
2336 INTEL_DEVID(dev_priv) == 0x1926)
2337 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \
2338 INTEL_DEVID(dev_priv) == 0x1915 || \
2339 INTEL_DEVID(dev_priv) == 0x191E)
2340 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \
2341 INTEL_DEVID(dev_priv) == 0x5913 || \
2342 INTEL_DEVID(dev_priv) == 0x5916 || \
2343 INTEL_DEVID(dev_priv) == 0x5921 || \
2344 INTEL_DEVID(dev_priv) == 0x5926)
2345 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \
2346 INTEL_DEVID(dev_priv) == 0x5915 || \
2347 INTEL_DEVID(dev_priv) == 0x591E)
2348 #define IS_AML_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x591C || \
2349 INTEL_DEVID(dev_priv) == 0x87C0 || \
2350 INTEL_DEVID(dev_priv) == 0x87CA)
2351 #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \
2352 INTEL_INFO(dev_priv)->gt == 2)
2353 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \
2354 INTEL_INFO(dev_priv)->gt == 3)
2355 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \
2356 INTEL_INFO(dev_priv)->gt == 4)
2357 #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \
2358 INTEL_INFO(dev_priv)->gt == 2)
2359 #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \
2360 INTEL_INFO(dev_priv)->gt == 3)
2361 #define IS_CFL_ULT(dev_priv) (IS_COFFEELAKE(dev_priv) && \
2362 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2363 #define IS_CFL_GT2(dev_priv) (IS_COFFEELAKE(dev_priv) && \
2364 INTEL_INFO(dev_priv)->gt == 2)
2365 #define IS_CFL_GT3(dev_priv) (IS_COFFEELAKE(dev_priv) && \
2366 INTEL_INFO(dev_priv)->gt == 3)
2367 #define IS_CNL_WITH_PORT_F(dev_priv) (IS_CANNONLAKE(dev_priv) && \
2368 (INTEL_DEVID(dev_priv) & 0x0004) == 0x0004)
2369 #define IS_ICL_WITH_PORT_F(dev_priv) (IS_ICELAKE(dev_priv) && \
2370 INTEL_DEVID(dev_priv) != 0x8A51)
2371
2372 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2373
2374 #define SKL_REVID_A0 0x0
2375 #define SKL_REVID_B0 0x1
2376 #define SKL_REVID_C0 0x2
2377 #define SKL_REVID_D0 0x3
2378 #define SKL_REVID_E0 0x4
2379 #define SKL_REVID_F0 0x5
2380 #define SKL_REVID_G0 0x6
2381 #define SKL_REVID_H0 0x7
2382
2383 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2384
2385 #define BXT_REVID_A0 0x0
2386 #define BXT_REVID_A1 0x1
2387 #define BXT_REVID_B0 0x3
2388 #define BXT_REVID_B_LAST 0x8
2389 #define BXT_REVID_C0 0x9
2390
2391 #define IS_BXT_REVID(dev_priv, since, until) \
2392 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2393
2394 #define KBL_REVID_A0 0x0
2395 #define KBL_REVID_B0 0x1
2396 #define KBL_REVID_C0 0x2
2397 #define KBL_REVID_D0 0x3
2398 #define KBL_REVID_E0 0x4
2399
2400 #define IS_KBL_REVID(dev_priv, since, until) \
2401 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2402
2403 #define GLK_REVID_A0 0x0
2404 #define GLK_REVID_A1 0x1
2405
2406 #define IS_GLK_REVID(dev_priv, since, until) \
2407 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2408
2409 #define CNL_REVID_A0 0x0
2410 #define CNL_REVID_B0 0x1
2411 #define CNL_REVID_C0 0x2
2412
2413 #define IS_CNL_REVID(p, since, until) \
2414 (IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2415
2416 #define ICL_REVID_A0 0x0
2417 #define ICL_REVID_A2 0x1
2418 #define ICL_REVID_B0 0x3
2419 #define ICL_REVID_B2 0x4
2420 #define ICL_REVID_C0 0x5
2421
2422 #define IS_ICL_REVID(p, since, until) \
2423 (IS_ICELAKE(p) && IS_REVID(p, since, until))
2424
2425 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp)
2426 #define IS_GEN9_LP(dev_priv) (IS_GEN(dev_priv, 9) && IS_LP(dev_priv))
2427 #define IS_GEN9_BC(dev_priv) (IS_GEN(dev_priv, 9) && !IS_LP(dev_priv))
2428
2429 #define ENGINE_MASK(id) BIT(id)
2430 #define RENDER_RING ENGINE_MASK(RCS)
2431 #define BSD_RING ENGINE_MASK(VCS)
2432 #define BLT_RING ENGINE_MASK(BCS)
2433 #define VEBOX_RING ENGINE_MASK(VECS)
2434 #define BSD2_RING ENGINE_MASK(VCS2)
2435 #define BSD3_RING ENGINE_MASK(VCS3)
2436 #define BSD4_RING ENGINE_MASK(VCS4)
2437 #define VEBOX2_RING ENGINE_MASK(VECS2)
2438 #define ALL_ENGINES (~0)
2439
2440 #define HAS_ENGINE(dev_priv, id) \
2441 (!!(INTEL_INFO(dev_priv)->ring_mask & ENGINE_MASK(id)))
2442
2443 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
2444 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
2445 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
2446 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
2447
2448 #define HAS_LLC(dev_priv) (INTEL_INFO(dev_priv)->has_llc)
2449 #define HAS_SNOOP(dev_priv) (INTEL_INFO(dev_priv)->has_snoop)
2450 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED))
2451 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \
2452 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2453
2454 #define HWS_NEEDS_PHYSICAL(dev_priv) (INTEL_INFO(dev_priv)->hws_needs_physical)
2455
2456 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
2457 (INTEL_INFO(dev_priv)->has_logical_ring_contexts)
2458 #define HAS_LOGICAL_RING_ELSQ(dev_priv) \
2459 (INTEL_INFO(dev_priv)->has_logical_ring_elsq)
2460 #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \
2461 (INTEL_INFO(dev_priv)->has_logical_ring_preemption)
2462
2463 #define HAS_EXECLISTS(dev_priv) HAS_LOGICAL_RING_CONTEXTS(dev_priv)
2464
2465 #define INTEL_PPGTT(dev_priv) (INTEL_INFO(dev_priv)->ppgtt)
2466 #define HAS_PPGTT(dev_priv) \
2467 (INTEL_PPGTT(dev_priv) != INTEL_PPGTT_NONE)
2468 #define HAS_FULL_PPGTT(dev_priv) \
2469 (INTEL_PPGTT(dev_priv) >= INTEL_PPGTT_FULL)
2470 #define HAS_FULL_48BIT_PPGTT(dev_priv) \
2471 (INTEL_PPGTT(dev_priv) >= INTEL_PPGTT_FULL_4LVL)
2472
2473 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \
2474 GEM_BUG_ON((sizes) == 0); \
2475 ((sizes) & ~INTEL_INFO(dev_priv)->page_sizes) == 0; \
2476 })
2477
2478 #define HAS_OVERLAY(dev_priv) (INTEL_INFO(dev_priv)->display.has_overlay)
2479 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
2480 (INTEL_INFO(dev_priv)->display.overlay_needs_physical)
2481
2482 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2483 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv))
2484
2485 /* WaRsDisableCoarsePowerGating:skl,cnl */
2486 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2487 (IS_CANNONLAKE(dev_priv) || \
2488 IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
2489
2490 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4)
2491 #define HAS_GMBUS_BURST_READ(dev_priv) (INTEL_GEN(dev_priv) >= 10 || \
2492 IS_GEMINILAKE(dev_priv) || \
2493 IS_KABYLAKE(dev_priv))
2494
2495 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2496 * rows, which changed the alignment requirements and fence programming.
2497 */
2498 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN(dev_priv, 2) && \
2499 !(IS_I915G(dev_priv) || \
2500 IS_I915GM(dev_priv)))
2501 #define SUPPORTS_TV(dev_priv) (INTEL_INFO(dev_priv)->display.supports_tv)
2502 #define I915_HAS_HOTPLUG(dev_priv) (INTEL_INFO(dev_priv)->display.has_hotplug)
2503
2504 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2)
2505 #define HAS_FBC(dev_priv) (INTEL_INFO(dev_priv)->display.has_fbc)
2506 #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH(dev_priv) && INTEL_GEN(dev_priv) >= 7)
2507
2508 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2509
2510 #define HAS_DP_MST(dev_priv) (INTEL_INFO(dev_priv)->display.has_dp_mst)
2511
2512 #define HAS_DDI(dev_priv) (INTEL_INFO(dev_priv)->display.has_ddi)
2513 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) (INTEL_INFO(dev_priv)->has_fpga_dbg)
2514 #define HAS_PSR(dev_priv) (INTEL_INFO(dev_priv)->display.has_psr)
2515
2516 #define HAS_RC6(dev_priv) (INTEL_INFO(dev_priv)->has_rc6)
2517 #define HAS_RC6p(dev_priv) (INTEL_INFO(dev_priv)->has_rc6p)
2518 #define HAS_RC6pp(dev_priv) (false) /* HW was never validated */
2519
2520 #define HAS_CSR(dev_priv) (INTEL_INFO(dev_priv)->display.has_csr)
2521
2522 #define HAS_RUNTIME_PM(dev_priv) (INTEL_INFO(dev_priv)->has_runtime_pm)
2523 #define HAS_64BIT_RELOC(dev_priv) (INTEL_INFO(dev_priv)->has_64bit_reloc)
2524
2525 #define HAS_IPC(dev_priv) (INTEL_INFO(dev_priv)->display.has_ipc)
2526
2527 /*
2528 * For now, anything with a GuC requires uCode loading, and then supports
2529 * command submission once loaded. But these are logically independent
2530 * properties, so we have separate macros to test them.
2531 */
2532 #define HAS_GUC(dev_priv) (INTEL_INFO(dev_priv)->has_guc)
2533 #define HAS_GUC_CT(dev_priv) (INTEL_INFO(dev_priv)->has_guc_ct)
2534 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
2535 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv))
2536
2537 /* For now, anything with a GuC has also HuC */
2538 #define HAS_HUC(dev_priv) (HAS_GUC(dev_priv))
2539 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
2540
2541 /* Having a GuC is not the same as using a GuC */
2542 #define USES_GUC(dev_priv) intel_uc_is_using_guc(dev_priv)
2543 #define USES_GUC_SUBMISSION(dev_priv) intel_uc_is_using_guc_submission(dev_priv)
2544 #define USES_HUC(dev_priv) intel_uc_is_using_huc(dev_priv)
2545
2546 #define HAS_POOLED_EU(dev_priv) (INTEL_INFO(dev_priv)->has_pooled_eu)
2547
2548 #define INTEL_PCH_DEVICE_ID_MASK 0xff80
2549 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
2550 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
2551 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
2552 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
2553 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
2554 #define INTEL_PCH_WPT_DEVICE_ID_TYPE 0x8c80
2555 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE 0x9c80
2556 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
2557 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
2558 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA280
2559 #define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300
2560 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80
2561 #define INTEL_PCH_ICP_DEVICE_ID_TYPE 0x3480
2562 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
2563 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
2564 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
2565
2566 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
2567 #define INTEL_PCH_ID(dev_priv) ((dev_priv)->pch_id)
2568 #define HAS_PCH_ICP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_ICP)
2569 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
2570 #define HAS_PCH_CNP_LP(dev_priv) \
2571 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
2572 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
2573 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
2574 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
2575 #define HAS_PCH_LPT_LP(dev_priv) \
2576 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
2577 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
2578 #define HAS_PCH_LPT_H(dev_priv) \
2579 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
2580 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_DEVICE_ID_TYPE)
2581 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
2582 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
2583 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
2584 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
2585
2586 #define HAS_GMCH(dev_priv) (INTEL_INFO(dev_priv)->display.has_gmch)
2587
2588 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
2589
2590 /* DPF == dynamic parity feature */
2591 #define HAS_L3_DPF(dev_priv) (INTEL_INFO(dev_priv)->has_l3_dpf)
2592 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
2593 2 : HAS_L3_DPF(dev_priv))
2594
2595 #define GT_FREQUENCY_MULTIPLIER 50
2596 #define GEN9_FREQ_SCALER 3
2597
2598 #define HAS_DISPLAY(dev_priv) (INTEL_INFO(dev_priv)->num_pipes > 0)
2599
2600 #include "i915_trace.h"
2601
2602 static inline bool intel_vtd_active(void)
2603 {
2604 #ifdef CONFIG_INTEL_IOMMU
2605 if (intel_iommu_gfx_mapped)
2606 return true;
2607 #endif
2608 return false;
2609 }
2610
2611 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2612 {
2613 return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
2614 }
2615
2616 static inline bool
2617 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
2618 {
2619 return IS_BROXTON(dev_priv) && intel_vtd_active();
2620 }
2621
2622 /* i915_drv.c */
2623 void __printf(3, 4)
2624 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2625 const char *fmt, ...);
2626
2627 #define i915_report_error(dev_priv, fmt, ...) \
2628 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2629
2630 #ifdef CONFIG_COMPAT
2631 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2632 unsigned long arg);
2633 #else
2634 #define i915_compat_ioctl NULL
2635 #endif
2636 extern const struct dev_pm_ops i915_pm_ops;
2637
2638 extern int i915_driver_load(struct pci_dev *pdev,
2639 const struct pci_device_id *ent);
2640 extern void i915_driver_unload(struct drm_device *dev);
2641
2642 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2643 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
2644 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2645 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2646 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2647 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2648 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2649
2650 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
2651 int intel_engines_init(struct drm_i915_private *dev_priv);
2652
2653 u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv);
2654
2655 /* intel_hotplug.c */
2656 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2657 u32 pin_mask, u32 long_mask);
2658 void intel_hpd_init(struct drm_i915_private *dev_priv);
2659 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2660 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2661 enum hpd_pin intel_hpd_pin_default(struct drm_i915_private *dev_priv,
2662 enum port port);
2663 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2664 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2665
2666 /* i915_irq.c */
2667 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2668 {
2669 unsigned long delay;
2670
2671 if (unlikely(!i915_modparams.enable_hangcheck))
2672 return;
2673
2674 /* Don't continually defer the hangcheck so that it is always run at
2675 * least once after work has been scheduled on any ring. Otherwise,
2676 * we will ignore a hung ring if a second ring is kept busy.
2677 */
2678
2679 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2680 queue_delayed_work(system_long_wq,
2681 &dev_priv->gpu_error.hangcheck_work, delay);
2682 }
2683
2684 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2685 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
2686 int intel_irq_install(struct drm_i915_private *dev_priv);
2687 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2688
2689 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
2690 {
2691 return dev_priv->gvt;
2692 }
2693
2694 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
2695 {
2696 return dev_priv->vgpu.active;
2697 }
2698
2699 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
2700 enum pipe pipe);
2701 void
2702 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2703 u32 status_mask);
2704
2705 void
2706 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2707 u32 status_mask);
2708
2709 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
2710 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
2711 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
2712 u32 mask,
2713 u32 bits);
2714 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
2715 u32 interrupt_mask,
2716 u32 enabled_irq_mask);
2717 static inline void
2718 ilk_enable_display_irq(struct drm_i915_private *dev_priv, u32 bits)
2719 {
2720 ilk_update_display_irq(dev_priv, bits, bits);
2721 }
2722 static inline void
2723 ilk_disable_display_irq(struct drm_i915_private *dev_priv, u32 bits)
2724 {
2725 ilk_update_display_irq(dev_priv, bits, 0);
2726 }
2727 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
2728 enum pipe pipe,
2729 u32 interrupt_mask,
2730 u32 enabled_irq_mask);
2731 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
2732 enum pipe pipe, u32 bits)
2733 {
2734 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
2735 }
2736 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
2737 enum pipe pipe, u32 bits)
2738 {
2739 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
2740 }
2741 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
2742 u32 interrupt_mask,
2743 u32 enabled_irq_mask);
2744 static inline void
2745 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, u32 bits)
2746 {
2747 ibx_display_interrupt_update(dev_priv, bits, bits);
2748 }
2749 static inline void
2750 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, u32 bits)
2751 {
2752 ibx_display_interrupt_update(dev_priv, bits, 0);
2753 }
2754
2755 /* i915_gem.c */
2756 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
2757 struct drm_file *file_priv);
2758 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
2759 struct drm_file *file_priv);
2760 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
2761 struct drm_file *file_priv);
2762 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
2763 struct drm_file *file_priv);
2764 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2765 struct drm_file *file_priv);
2766 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
2767 struct drm_file *file_priv);
2768 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
2769 struct drm_file *file_priv);
2770 int i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2771 struct drm_file *file_priv);
2772 int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2773 struct drm_file *file_priv);
2774 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2775 struct drm_file *file_priv);
2776 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
2777 struct drm_file *file);
2778 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
2779 struct drm_file *file);
2780 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2781 struct drm_file *file_priv);
2782 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
2783 struct drm_file *file_priv);
2784 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
2785 struct drm_file *file_priv);
2786 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
2787 struct drm_file *file_priv);
2788 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
2789 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
2790 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
2791 struct drm_file *file);
2792 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
2793 struct drm_file *file_priv);
2794 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
2795 struct drm_file *file_priv);
2796 void i915_gem_sanitize(struct drm_i915_private *i915);
2797 int i915_gem_init_early(struct drm_i915_private *dev_priv);
2798 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv);
2799 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
2800 int i915_gem_freeze(struct drm_i915_private *dev_priv);
2801 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
2802
2803 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
2804 void i915_gem_object_free(struct drm_i915_gem_object *obj);
2805 void i915_gem_object_init(struct drm_i915_gem_object *obj,
2806 const struct drm_i915_gem_object_ops *ops);
2807 struct drm_i915_gem_object *
2808 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
2809 struct drm_i915_gem_object *
2810 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
2811 const void *data, size_t size);
2812 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
2813 void i915_gem_free_object(struct drm_gem_object *obj);
2814
2815 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
2816 {
2817 if (!atomic_read(&i915->mm.free_count))
2818 return;
2819
2820 /* A single pass should suffice to release all the freed objects (along
2821 * most call paths) , but be a little more paranoid in that freeing
2822 * the objects does take a little amount of time, during which the rcu
2823 * callbacks could have added new objects into the freed list, and
2824 * armed the work again.
2825 */
2826 do {
2827 rcu_barrier();
2828 } while (flush_work(&i915->mm.free_work));
2829 }
2830
2831 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
2832 {
2833 /*
2834 * Similar to objects above (see i915_gem_drain_freed-objects), in
2835 * general we have workers that are armed by RCU and then rearm
2836 * themselves in their callbacks. To be paranoid, we need to
2837 * drain the workqueue a second time after waiting for the RCU
2838 * grace period so that we catch work queued via RCU from the first
2839 * pass. As neither drain_workqueue() nor flush_workqueue() report
2840 * a result, we make an assumption that we only don't require more
2841 * than 2 passes to catch all recursive RCU delayed work.
2842 *
2843 */
2844 int pass = 2;
2845 do {
2846 rcu_barrier();
2847 drain_workqueue(i915->wq);
2848 } while (--pass);
2849 }
2850
2851 struct i915_vma * __must_check
2852 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
2853 const struct i915_ggtt_view *view,
2854 u64 size,
2855 u64 alignment,
2856 u64 flags);
2857
2858 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
2859 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
2860
2861 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
2862
2863 static inline int __sg_page_count(const struct scatterlist *sg)
2864 {
2865 return sg->length >> PAGE_SHIFT;
2866 }
2867
2868 struct scatterlist *
2869 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
2870 unsigned int n, unsigned int *offset);
2871
2872 struct page *
2873 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
2874 unsigned int n);
2875
2876 struct page *
2877 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
2878 unsigned int n);
2879
2880 dma_addr_t
2881 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
2882 unsigned long n);
2883
2884 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2885 struct sg_table *pages,
2886 unsigned int sg_page_sizes);
2887 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
2888
2889 static inline int __must_check
2890 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
2891 {
2892 might_lock(&obj->mm.lock);
2893
2894 if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
2895 return 0;
2896
2897 return __i915_gem_object_get_pages(obj);
2898 }
2899
2900 static inline bool
2901 i915_gem_object_has_pages(struct drm_i915_gem_object *obj)
2902 {
2903 return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages));
2904 }
2905
2906 static inline void
2907 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
2908 {
2909 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2910
2911 atomic_inc(&obj->mm.pages_pin_count);
2912 }
2913
2914 static inline bool
2915 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
2916 {
2917 return atomic_read(&obj->mm.pages_pin_count);
2918 }
2919
2920 static inline void
2921 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
2922 {
2923 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2924 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
2925
2926 atomic_dec(&obj->mm.pages_pin_count);
2927 }
2928
2929 static inline void
2930 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
2931 {
2932 __i915_gem_object_unpin_pages(obj);
2933 }
2934
2935 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock/struct_mutex */
2936 I915_MM_NORMAL = 0,
2937 I915_MM_SHRINKER /* called "recursively" from direct-reclaim-esque */
2938 };
2939
2940 int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2941 enum i915_mm_subclass subclass);
2942 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
2943
2944 enum i915_map_type {
2945 I915_MAP_WB = 0,
2946 I915_MAP_WC,
2947 #define I915_MAP_OVERRIDE BIT(31)
2948 I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
2949 I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
2950 };
2951
2952 static inline enum i915_map_type
2953 i915_coherent_map_type(struct drm_i915_private *i915)
2954 {
2955 return HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
2956 }
2957
2958 /**
2959 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
2960 * @obj: the object to map into kernel address space
2961 * @type: the type of mapping, used to select pgprot_t
2962 *
2963 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
2964 * pages and then returns a contiguous mapping of the backing storage into
2965 * the kernel address space. Based on the @type of mapping, the PTE will be
2966 * set to either WriteBack or WriteCombine (via pgprot_t).
2967 *
2968 * The caller is responsible for calling i915_gem_object_unpin_map() when the
2969 * mapping is no longer required.
2970 *
2971 * Returns the pointer through which to access the mapped object, or an
2972 * ERR_PTR() on error.
2973 */
2974 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2975 enum i915_map_type type);
2976
2977 /**
2978 * i915_gem_object_unpin_map - releases an earlier mapping
2979 * @obj: the object to unmap
2980 *
2981 * After pinning the object and mapping its pages, once you are finished
2982 * with your access, call i915_gem_object_unpin_map() to release the pin
2983 * upon the mapping. Once the pin count reaches zero, that mapping may be
2984 * removed.
2985 */
2986 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
2987 {
2988 i915_gem_object_unpin_pages(obj);
2989 }
2990
2991 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
2992 unsigned int *needs_clflush);
2993 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
2994 unsigned int *needs_clflush);
2995 #define CLFLUSH_BEFORE BIT(0)
2996 #define CLFLUSH_AFTER BIT(1)
2997 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER)
2998
2999 static inline void
3000 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3001 {
3002 i915_gem_object_unpin_pages(obj);
3003 }
3004
3005 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3006 int i915_gem_dumb_create(struct drm_file *file_priv,
3007 struct drm_device *dev,
3008 struct drm_mode_create_dumb *args);
3009 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3010 u32 handle, u64 *offset);
3011 int i915_gem_mmap_gtt_version(void);
3012
3013 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3014 struct drm_i915_gem_object *new,
3015 unsigned frontbuffer_bits);
3016
3017 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3018
3019 struct i915_request *
3020 i915_gem_find_active_request(struct intel_engine_cs *engine);
3021
3022 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3023 {
3024 return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3025 }
3026
3027 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3028 {
3029 return unlikely(test_bit(I915_WEDGED, &error->flags));
3030 }
3031
3032 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3033 {
3034 return i915_reset_backoff(error) | i915_terminally_wedged(error);
3035 }
3036
3037 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3038 {
3039 return READ_ONCE(error->reset_count);
3040 }
3041
3042 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3043 struct intel_engine_cs *engine)
3044 {
3045 return READ_ONCE(error->reset_engine_count[engine->id]);
3046 }
3047
3048 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3049 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3050
3051 void i915_gem_init_mmio(struct drm_i915_private *i915);
3052 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3053 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3054 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3055 void i915_gem_fini(struct drm_i915_private *dev_priv);
3056 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3057 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3058 unsigned int flags, long timeout);
3059 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3060 void i915_gem_suspend_late(struct drm_i915_private *dev_priv);
3061 void i915_gem_resume(struct drm_i915_private *dev_priv);
3062 vm_fault_t i915_gem_fault(struct vm_fault *vmf);
3063 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3064 unsigned int flags,
3065 long timeout,
3066 struct intel_rps_client *rps);
3067 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3068 unsigned int flags,
3069 const struct i915_sched_attr *attr);
3070 #define I915_PRIORITY_DISPLAY I915_USER_PRIORITY(I915_PRIORITY_MAX)
3071
3072 int __must_check
3073 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3074 int __must_check
3075 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3076 int __must_check
3077 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3078 struct i915_vma * __must_check
3079 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3080 u32 alignment,
3081 const struct i915_ggtt_view *view,
3082 unsigned int flags);
3083 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3084 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3085 int align);
3086 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3087 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3088
3089 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3090 enum i915_cache_level cache_level);
3091
3092 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3093 struct dma_buf *dma_buf);
3094
3095 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3096 struct drm_gem_object *gem_obj, int flags);
3097
3098 static inline struct i915_hw_ppgtt *
3099 i915_vm_to_ppgtt(struct i915_address_space *vm)
3100 {
3101 return container_of(vm, struct i915_hw_ppgtt, vm);
3102 }
3103
3104 /* i915_gem_fence_reg.c */
3105 struct drm_i915_fence_reg *
3106 i915_reserve_fence(struct drm_i915_private *dev_priv);
3107 void i915_unreserve_fence(struct drm_i915_fence_reg *fence);
3108
3109 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3110 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3111
3112 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3113 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3114 struct sg_table *pages);
3115 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3116 struct sg_table *pages);
3117
3118 static inline struct i915_gem_context *
3119 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3120 {
3121 return idr_find(&file_priv->context_idr, id);
3122 }
3123
3124 static inline struct i915_gem_context *
3125 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3126 {
3127 struct i915_gem_context *ctx;
3128
3129 rcu_read_lock();
3130 ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3131 if (ctx && !kref_get_unless_zero(&ctx->ref))
3132 ctx = NULL;
3133 rcu_read_unlock();
3134
3135 return ctx;
3136 }
3137
3138 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3139 struct drm_file *file);
3140 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3141 struct drm_file *file);
3142 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3143 struct drm_file *file);
3144 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3145 struct i915_gem_context *ctx,
3146 u32 *reg_state);
3147
3148 /* i915_gem_evict.c */
3149 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3150 u64 min_size, u64 alignment,
3151 unsigned cache_level,
3152 u64 start, u64 end,
3153 unsigned flags);
3154 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3155 struct drm_mm_node *node,
3156 unsigned int flags);
3157 int i915_gem_evict_vm(struct i915_address_space *vm);
3158
3159 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv);
3160
3161 /* belongs in i915_gem_gtt.h */
3162 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3163 {
3164 wmb();
3165 if (INTEL_GEN(dev_priv) < 6)
3166 intel_gtt_chipset_flush();
3167 }
3168
3169 /* i915_gem_stolen.c */
3170 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3171 struct drm_mm_node *node, u64 size,
3172 unsigned alignment);
3173 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3174 struct drm_mm_node *node, u64 size,
3175 unsigned alignment, u64 start,
3176 u64 end);
3177 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3178 struct drm_mm_node *node);
3179 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3180 void i915_gem_cleanup_stolen(struct drm_i915_private *dev_priv);
3181 struct drm_i915_gem_object *
3182 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv,
3183 resource_size_t size);
3184 struct drm_i915_gem_object *
3185 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3186 resource_size_t stolen_offset,
3187 resource_size_t gtt_offset,
3188 resource_size_t size);
3189
3190 /* i915_gem_internal.c */
3191 struct drm_i915_gem_object *
3192 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3193 phys_addr_t size);
3194
3195 /* i915_gem_shrinker.c */
3196 unsigned long i915_gem_shrink(struct drm_i915_private *i915,
3197 unsigned long target,
3198 unsigned long *nr_scanned,
3199 unsigned flags);
3200 #define I915_SHRINK_PURGEABLE 0x1
3201 #define I915_SHRINK_UNBOUND 0x2
3202 #define I915_SHRINK_BOUND 0x4
3203 #define I915_SHRINK_ACTIVE 0x8
3204 #define I915_SHRINK_VMAPS 0x10
3205 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915);
3206 void i915_gem_shrinker_register(struct drm_i915_private *i915);
3207 void i915_gem_shrinker_unregister(struct drm_i915_private *i915);
3208 void i915_gem_shrinker_taints_mutex(struct drm_i915_private *i915,
3209 struct mutex *mutex);
3210
3211 /* i915_gem_tiling.c */
3212 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3213 {
3214 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3215
3216 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3217 i915_gem_object_is_tiled(obj);
3218 }
3219
3220 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3221 unsigned int tiling, unsigned int stride);
3222 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3223 unsigned int tiling, unsigned int stride);
3224
3225 /* i915_debugfs.c */
3226 #ifdef CONFIG_DEBUG_FS
3227 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3228 int i915_debugfs_connector_add(struct drm_connector *connector);
3229 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3230 #else
3231 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3232 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3233 { return 0; }
3234 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3235 #endif
3236
3237 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3238
3239 /* i915_cmd_parser.c */
3240 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3241 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3242 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3243 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3244 struct drm_i915_gem_object *batch_obj,
3245 struct drm_i915_gem_object *shadow_batch_obj,
3246 u32 batch_start_offset,
3247 u32 batch_len,
3248 bool is_master);
3249
3250 /* i915_perf.c */
3251 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3252 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3253 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3254 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3255
3256 /* i915_suspend.c */
3257 extern int i915_save_state(struct drm_i915_private *dev_priv);
3258 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3259
3260 /* i915_sysfs.c */
3261 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3262 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3263
3264 /* intel_lpe_audio.c */
3265 int intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3266 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3267 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3268 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3269 enum pipe pipe, enum port port,
3270 const void *eld, int ls_clock, bool dp_output);
3271
3272 /* intel_i2c.c */
3273 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3274 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3275 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3276 unsigned int pin);
3277 extern int intel_gmbus_output_aksv(struct i2c_adapter *adapter);
3278
3279 extern struct i2c_adapter *
3280 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3281 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3282 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3283 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3284 {
3285 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3286 }
3287 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3288
3289 /* intel_bios.c */
3290 void intel_bios_init(struct drm_i915_private *dev_priv);
3291 void intel_bios_cleanup(struct drm_i915_private *dev_priv);
3292 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3293 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3294 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3295 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3296 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3297 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3298 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3299 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3300 enum port port);
3301 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3302 enum port port);
3303 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *dev_priv, enum port port);
3304
3305 /* intel_acpi.c */
3306 #ifdef CONFIG_ACPI
3307 extern void intel_register_dsm_handler(void);
3308 extern void intel_unregister_dsm_handler(void);
3309 #else
3310 static inline void intel_register_dsm_handler(void) { return; }
3311 static inline void intel_unregister_dsm_handler(void) { return; }
3312 #endif /* CONFIG_ACPI */
3313
3314 /* intel_device_info.c */
3315 static inline struct intel_device_info *
3316 mkwrite_device_info(struct drm_i915_private *dev_priv)
3317 {
3318 return (struct intel_device_info *)INTEL_INFO(dev_priv);
3319 }
3320
3321 static inline struct intel_sseu
3322 intel_device_default_sseu(struct drm_i915_private *i915)
3323 {
3324 const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu;
3325 struct intel_sseu value = {
3326 .slice_mask = sseu->slice_mask,
3327 .subslice_mask = sseu->subslice_mask[0],
3328 .min_eus_per_subslice = sseu->max_eus_per_subslice,
3329 .max_eus_per_subslice = sseu->max_eus_per_subslice,
3330 };
3331
3332 return value;
3333 }
3334
3335 /* modesetting */
3336 extern void intel_modeset_init_hw(struct drm_device *dev);
3337 extern int intel_modeset_init(struct drm_device *dev);
3338 extern void intel_modeset_cleanup(struct drm_device *dev);
3339 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3340 bool state);
3341 extern void intel_display_resume(struct drm_device *dev);
3342 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3343 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3344 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3345 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3346 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3347 extern void intel_rps_mark_interactive(struct drm_i915_private *i915,
3348 bool interactive);
3349 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3350 bool enable);
3351 void intel_dsc_enable(struct intel_encoder *encoder,
3352 const struct intel_crtc_state *crtc_state);
3353 void intel_dsc_disable(const struct intel_crtc_state *crtc_state);
3354
3355 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3356 struct drm_file *file);
3357
3358 /* overlay */
3359 extern struct intel_overlay_error_state *
3360 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3361 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3362 struct intel_overlay_error_state *error);
3363
3364 extern struct intel_display_error_state *
3365 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3366 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3367 struct intel_display_error_state *error);
3368
3369 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3370 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, u32 mbox,
3371 u32 val, int fast_timeout_us,
3372 int slow_timeout_ms);
3373 #define sandybridge_pcode_write(dev_priv, mbox, val) \
3374 sandybridge_pcode_write_timeout(dev_priv, mbox, val, 500, 0)
3375
3376 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3377 u32 reply_mask, u32 reply, int timeout_base_ms);
3378
3379 /* intel_sideband.c */
3380 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3381 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3382 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3383 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3384 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3385 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3386 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3387 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3388 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3389 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3390 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3391 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3392 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3393 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3394 enum intel_sbi_destination destination);
3395 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3396 enum intel_sbi_destination destination);
3397 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3398 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3399
3400 /* intel_dpio_phy.c */
3401 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
3402 enum dpio_phy *phy, enum dpio_channel *ch);
3403 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
3404 enum port port, u32 margin, u32 scale,
3405 u32 enable, u32 deemphasis);
3406 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3407 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3408 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
3409 enum dpio_phy phy);
3410 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
3411 enum dpio_phy phy);
3412 u8 bxt_ddi_phy_calc_lane_lat_optim_mask(u8 lane_count);
3413 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
3414 u8 lane_lat_optim_mask);
3415 u8 bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
3416
3417 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3418 u32 deemph_reg_value, u32 margin_reg_value,
3419 bool uniq_trans_scale);
3420 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3421 const struct intel_crtc_state *crtc_state,
3422 bool reset);
3423 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
3424 const struct intel_crtc_state *crtc_state);
3425 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3426 const struct intel_crtc_state *crtc_state);
3427 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3428 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
3429 const struct intel_crtc_state *old_crtc_state);
3430
3431 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3432 u32 demph_reg_value, u32 preemph_reg_value,
3433 u32 uniqtranscale_reg_value, u32 tx3_demph);
3434 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
3435 const struct intel_crtc_state *crtc_state);
3436 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3437 const struct intel_crtc_state *crtc_state);
3438 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
3439 const struct intel_crtc_state *old_crtc_state);
3440
3441 /* intel_combo_phy.c */
3442 void icl_combo_phys_init(struct drm_i915_private *dev_priv);
3443 void icl_combo_phys_uninit(struct drm_i915_private *dev_priv);
3444 void cnl_combo_phys_init(struct drm_i915_private *dev_priv);
3445 void cnl_combo_phys_uninit(struct drm_i915_private *dev_priv);
3446
3447 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3448 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3449 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
3450 const i915_reg_t reg);
3451
3452 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat1);
3453
3454 static inline u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
3455 const i915_reg_t reg)
3456 {
3457 return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000);
3458 }
3459
3460 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3461 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3462
3463 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3464 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3465 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3466 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3467
3468 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3469 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3470 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3471 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3472
3473 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3474 * will be implemented using 2 32-bit writes in an arbitrary order with
3475 * an arbitrary delay between them. This can cause the hardware to
3476 * act upon the intermediate value, possibly leading to corruption and
3477 * machine death. For this reason we do not support I915_WRITE64, or
3478 * dev_priv->uncore.funcs.mmio_writeq.
3479 *
3480 * When reading a 64-bit value as two 32-bit values, the delay may cause
3481 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3482 * occasionally a 64-bit register does not actualy support a full readq
3483 * and must be read using two 32-bit reads.
3484 *
3485 * You have been warned.
3486 */
3487 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3488
3489 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
3490 u32 upper, lower, old_upper, loop = 0; \
3491 upper = I915_READ(upper_reg); \
3492 do { \
3493 old_upper = upper; \
3494 lower = I915_READ(lower_reg); \
3495 upper = I915_READ(upper_reg); \
3496 } while (upper != old_upper && loop++ < 2); \
3497 (u64)upper << 32 | lower; })
3498
3499 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
3500 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
3501
3502 #define __raw_read(x, s) \
3503 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
3504 i915_reg_t reg) \
3505 { \
3506 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3507 }
3508
3509 #define __raw_write(x, s) \
3510 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
3511 i915_reg_t reg, uint##x##_t val) \
3512 { \
3513 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3514 }
3515 __raw_read(8, b)
3516 __raw_read(16, w)
3517 __raw_read(32, l)
3518 __raw_read(64, q)
3519
3520 __raw_write(8, b)
3521 __raw_write(16, w)
3522 __raw_write(32, l)
3523 __raw_write(64, q)
3524
3525 #undef __raw_read
3526 #undef __raw_write
3527
3528 /* These are untraced mmio-accessors that are only valid to be used inside
3529 * critical sections, such as inside IRQ handlers, where forcewake is explicitly
3530 * controlled.
3531 *
3532 * Think twice, and think again, before using these.
3533 *
3534 * As an example, these accessors can possibly be used between:
3535 *
3536 * spin_lock_irq(&dev_priv->uncore.lock);
3537 * intel_uncore_forcewake_get__locked();
3538 *
3539 * and
3540 *
3541 * intel_uncore_forcewake_put__locked();
3542 * spin_unlock_irq(&dev_priv->uncore.lock);
3543 *
3544 *
3545 * Note: some registers may not need forcewake held, so
3546 * intel_uncore_forcewake_{get,put} can be omitted, see
3547 * intel_uncore_forcewake_for_reg().
3548 *
3549 * Certain architectures will die if the same cacheline is concurrently accessed
3550 * by different clients (e.g. on Ivybridge). Access to registers should
3551 * therefore generally be serialised, by either the dev_priv->uncore.lock or
3552 * a more localised lock guarding all access to that bank of registers.
3553 */
3554 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3555 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3556 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3557 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3558
3559 /* "Broadcast RGB" property */
3560 #define INTEL_BROADCAST_RGB_AUTO 0
3561 #define INTEL_BROADCAST_RGB_FULL 1
3562 #define INTEL_BROADCAST_RGB_LIMITED 2
3563
3564 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
3565 {
3566 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3567 return VLV_VGACNTRL;
3568 else if (INTEL_GEN(dev_priv) >= 5)
3569 return CPU_VGACNTRL;
3570 else
3571 return VGACNTRL;
3572 }
3573
3574 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3575 {
3576 unsigned long j = msecs_to_jiffies(m);
3577
3578 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3579 }
3580
3581 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3582 {
3583 /* nsecs_to_jiffies64() does not guard against overflow */
3584 if (NSEC_PER_SEC % HZ &&
3585 div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
3586 return MAX_JIFFY_OFFSET;
3587
3588 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3589 }
3590
3591 /*
3592 * If you need to wait X milliseconds between events A and B, but event B
3593 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3594 * when event A happened, then just before event B you call this function and
3595 * pass the timestamp as the first argument, and X as the second argument.
3596 */
3597 static inline void
3598 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3599 {
3600 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3601
3602 /*
3603 * Don't re-read the value of "jiffies" every time since it may change
3604 * behind our back and break the math.
3605 */
3606 tmp_jiffies = jiffies;
3607 target_jiffies = timestamp_jiffies +
3608 msecs_to_jiffies_timeout(to_wait_ms);
3609
3610 if (time_after(target_jiffies, tmp_jiffies)) {
3611 remaining_jiffies = target_jiffies - tmp_jiffies;
3612 while (remaining_jiffies)
3613 remaining_jiffies =
3614 schedule_timeout_uninterruptible(remaining_jiffies);
3615 }
3616 }
3617
3618 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
3619 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
3620
3621 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
3622 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
3623 * perform the operation. To check beforehand, pass in the parameters to
3624 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
3625 * you only need to pass in the minor offsets, page-aligned pointers are
3626 * always valid.
3627 *
3628 * For just checking for SSE4.1, in the foreknowledge that the future use
3629 * will be correctly aligned, just use i915_has_memcpy_from_wc().
3630 */
3631 #define i915_can_memcpy_from_wc(dst, src, len) \
3632 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
3633
3634 #define i915_has_memcpy_from_wc() \
3635 i915_memcpy_from_wc(NULL, NULL, 0)
3636
3637 /* i915_mm.c */
3638 int remap_io_mapping(struct vm_area_struct *vma,
3639 unsigned long addr, unsigned long pfn, unsigned long size,
3640 struct io_mapping *iomap);
3641
3642 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915)
3643 {
3644 if (INTEL_GEN(i915) >= 10)
3645 return CNL_HWS_CSB_WRITE_INDEX;
3646 else
3647 return I915_HWS_CSB_WRITE_INDEX;
3648 }
3649
3650 static inline u32 i915_scratch_offset(const struct drm_i915_private *i915)
3651 {
3652 return i915_ggtt_offset(i915->gt.scratch);
3653 }
3654
3655 #endif