]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/gpu/drm/i915/i915_perf.c
Merge tag 'f2fs-for-v5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeu...
[thirdparty/kernel/stable.git] / drivers / gpu / drm / i915 / i915_perf.c
1 /*
2 * Copyright © 2015-2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Robert Bragg <robert@sixbynine.org>
25 */
26
27
28 /**
29 * DOC: i915 Perf Overview
30 *
31 * Gen graphics supports a large number of performance counters that can help
32 * driver and application developers understand and optimize their use of the
33 * GPU.
34 *
35 * This i915 perf interface enables userspace to configure and open a file
36 * descriptor representing a stream of GPU metrics which can then be read() as
37 * a stream of sample records.
38 *
39 * The interface is particularly suited to exposing buffered metrics that are
40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41 *
42 * Streams representing a single context are accessible to applications with a
43 * corresponding drm file descriptor, such that OpenGL can use the interface
44 * without special privileges. Access to system-wide metrics requires root
45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46 * sysctl option.
47 *
48 */
49
50 /**
51 * DOC: i915 Perf History and Comparison with Core Perf
52 *
53 * The interface was initially inspired by the core Perf infrastructure but
54 * some notable differences are:
55 *
56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
57 * a perf event primarily corresponds to a single 64bit value, while a stream
58 * might sample sets of tightly-coupled counters, depending on the
59 * configuration. For example the Gen OA unit isn't designed to support
60 * orthogonal configurations of individual counters; it's configured for a set
61 * of related counters. Samples for an i915 perf stream capturing OA metrics
62 * will include a set of counter values packed in a compact HW specific format.
63 * The OA unit supports a number of different packing formats which can be
64 * selected by the user opening the stream. Perf has support for grouping
65 * events, but each event in the group is configured, validated and
66 * authenticated individually with separate system calls.
67 *
68 * i915 perf stream configurations are provided as an array of u64 (key,value)
69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
70 * interleaved with event-type specific members.
71 *
72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73 * The supported metrics are being written to memory by the GPU unsynchronized
74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
75 * the constraints on HW configuration require reports to be filtered before it
76 * would be acceptable to expose them to unprivileged applications - to hide
77 * the metrics of other processes/contexts. For these use cases a read() based
78 * interface is a good fit, and provides an opportunity to filter data as it
79 * gets copied from the GPU mapped buffers to userspace buffers.
80 *
81 *
82 * Issues hit with first prototype based on Core Perf
83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84 *
85 * The first prototype of this driver was based on the core perf
86 * infrastructure, and while we did make that mostly work, with some changes to
87 * perf, we found we were breaking or working around too many assumptions baked
88 * into perf's currently cpu centric design.
89 *
90 * In the end we didn't see a clear benefit to making perf's implementation and
91 * interface more complex by changing design assumptions while we knew we still
92 * wouldn't be able to use any existing perf based userspace tools.
93 *
94 * Also considering the Gen specific nature of the Observability hardware and
95 * how userspace will sometimes need to combine i915 perf OA metrics with
96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97 * expecting the interface to be used by a platform specific userspace such as
98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
99 * a standard vendor/architecture agnostic interface by not using perf.
100 *
101 *
102 * For posterity, in case we might re-visit trying to adapt core perf to be
103 * better suited to exposing i915 metrics these were the main pain points we
104 * hit:
105 *
106 * - The perf based OA PMU driver broke some significant design assumptions:
107 *
108 * Existing perf pmus are used for profiling work on a cpu and we were
109 * introducing the idea of _IS_DEVICE pmus with different security
110 * implications, the need to fake cpu-related data (such as user/kernel
111 * registers) to fit with perf's current design, and adding _DEVICE records
112 * as a way to forward device-specific status records.
113 *
114 * The OA unit writes reports of counters into a circular buffer, without
115 * involvement from the CPU, making our PMU driver the first of a kind.
116 *
117 * Given the way we were periodically forward data from the GPU-mapped, OA
118 * buffer to perf's buffer, those bursts of sample writes looked to perf like
119 * we were sampling too fast and so we had to subvert its throttling checks.
120 *
121 * Perf supports groups of counters and allows those to be read via
122 * transactions internally but transactions currently seem designed to be
123 * explicitly initiated from the cpu (say in response to a userspace read())
124 * and while we could pull a report out of the OA buffer we can't
125 * trigger a report from the cpu on demand.
126 *
127 * Related to being report based; the OA counters are configured in HW as a
128 * set while perf generally expects counter configurations to be orthogonal.
129 * Although counters can be associated with a group leader as they are
130 * opened, there's no clear precedent for being able to provide group-wide
131 * configuration attributes (for example we want to let userspace choose the
132 * OA unit report format used to capture all counters in a set, or specify a
133 * GPU context to filter metrics on). We avoided using perf's grouping
134 * feature and forwarded OA reports to userspace via perf's 'raw' sample
135 * field. This suited our userspace well considering how coupled the counters
136 * are when dealing with normalizing. It would be inconvenient to split
137 * counters up into separate events, only to require userspace to recombine
138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports
139 * for combining with the side-band raw reports it captures using
140 * MI_REPORT_PERF_COUNT commands.
141 *
142 * - As a side note on perf's grouping feature; there was also some concern
143 * that using PERF_FORMAT_GROUP as a way to pack together counter values
144 * would quite drastically inflate our sample sizes, which would likely
145 * lower the effective sampling resolutions we could use when the available
146 * memory bandwidth is limited.
147 *
148 * With the OA unit's report formats, counters are packed together as 32
149 * or 40bit values, with the largest report size being 256 bytes.
150 *
151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152 * documented ordering to the values, implying PERF_FORMAT_ID must also be
153 * used to add a 64bit ID before each value; giving 16 bytes per counter.
154 *
155 * Related to counter orthogonality; we can't time share the OA unit, while
156 * event scheduling is a central design idea within perf for allowing
157 * userspace to open + enable more events than can be configured in HW at any
158 * one time. The OA unit is not designed to allow re-configuration while in
159 * use. We can't reconfigure the OA unit without losing internal OA unit
160 * state which we can't access explicitly to save and restore. Reconfiguring
161 * the OA unit is also relatively slow, involving ~100 register writes. From
162 * userspace Mesa also depends on a stable OA configuration when emitting
163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164 * disabled while there are outstanding MI_RPC commands lest we hang the
165 * command streamer.
166 *
167 * The contents of sample records aren't extensible by device drivers (i.e.
168 * the sample_type bits). As an example; Sourab Gupta had been looking to
169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports
170 * into sample records by using the 'raw' field, but it's tricky to pack more
171 * than one thing into this field because events/core.c currently only lets a
172 * pmu give a single raw data pointer plus len which will be copied into the
173 * ring buffer. To include more than the OA report we'd have to copy the
174 * report into an intermediate larger buffer. I'd been considering allowing a
175 * vector of data+len values to be specified for copying the raw data, but
176 * it felt like a kludge to being using the raw field for this purpose.
177 *
178 * - It felt like our perf based PMU was making some technical compromises
179 * just for the sake of using perf:
180 *
181 * perf_event_open() requires events to either relate to a pid or a specific
182 * cpu core, while our device pmu related to neither. Events opened with a
183 * pid will be automatically enabled/disabled according to the scheduling of
184 * that process - so not appropriate for us. When an event is related to a
185 * cpu id, perf ensures pmu methods will be invoked via an inter process
186 * interrupt on that core. To avoid invasive changes our userspace opened OA
187 * perf events for a specific cpu. This was workable but it meant the
188 * majority of the OA driver ran in atomic context, including all OA report
189 * forwarding, which wasn't really necessary in our case and seems to make
190 * our locking requirements somewhat complex as we handled the interaction
191 * with the rest of the i915 driver.
192 */
193
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
197
198 #include "i915_drv.h"
199 #include "i915_oa_hsw.h"
200 #include "i915_oa_bdw.h"
201 #include "i915_oa_chv.h"
202 #include "i915_oa_sklgt2.h"
203 #include "i915_oa_sklgt3.h"
204 #include "i915_oa_sklgt4.h"
205 #include "i915_oa_bxt.h"
206 #include "i915_oa_kblgt2.h"
207 #include "i915_oa_kblgt3.h"
208 #include "i915_oa_glk.h"
209 #include "i915_oa_cflgt2.h"
210 #include "i915_oa_cflgt3.h"
211 #include "i915_oa_cnl.h"
212 #include "i915_oa_icl.h"
213 #include "intel_lrc_reg.h"
214
215 /* HW requires this to be a power of two, between 128k and 16M, though driver
216 * is currently generally designed assuming the largest 16M size is used such
217 * that the overflow cases are unlikely in normal operation.
218 */
219 #define OA_BUFFER_SIZE SZ_16M
220
221 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1))
222
223 /**
224 * DOC: OA Tail Pointer Race
225 *
226 * There's a HW race condition between OA unit tail pointer register updates and
227 * writes to memory whereby the tail pointer can sometimes get ahead of what's
228 * been written out to the OA buffer so far (in terms of what's visible to the
229 * CPU).
230 *
231 * Although this can be observed explicitly while copying reports to userspace
232 * by checking for a zeroed report-id field in tail reports, we want to account
233 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
234 * read() attempts.
235 *
236 * In effect we define a tail pointer for reading that lags the real tail
237 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
238 * time for the corresponding reports to become visible to the CPU.
239 *
240 * To manage this we actually track two tail pointers:
241 * 1) An 'aging' tail with an associated timestamp that is tracked until we
242 * can trust the corresponding data is visible to the CPU; at which point
243 * it is considered 'aged'.
244 * 2) An 'aged' tail that can be used for read()ing.
245 *
246 * The two separate pointers let us decouple read()s from tail pointer aging.
247 *
248 * The tail pointers are checked and updated at a limited rate within a hrtimer
249 * callback (the same callback that is used for delivering EPOLLIN events)
250 *
251 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
252 * indicates that an updated tail pointer is needed.
253 *
254 * Most of the implementation details for this workaround are in
255 * oa_buffer_check_unlocked() and _append_oa_reports()
256 *
257 * Note for posterity: previously the driver used to define an effective tail
258 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
259 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
260 * This was flawed considering that the OA unit may also automatically generate
261 * non-periodic reports (such as on context switch) or the OA unit may be
262 * enabled without any periodic sampling.
263 */
264 #define OA_TAIL_MARGIN_NSEC 100000ULL
265 #define INVALID_TAIL_PTR 0xffffffff
266
267 /* frequency for checking whether the OA unit has written new reports to the
268 * circular OA buffer...
269 */
270 #define POLL_FREQUENCY 200
271 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)
272
273 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
274 static int zero;
275 static int one = 1;
276 static u32 i915_perf_stream_paranoid = true;
277
278 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
279 * of the 64bit timestamp bits to trigger reports from) but there's currently
280 * no known use case for sampling as infrequently as once per 47 thousand years.
281 *
282 * Since the timestamps included in OA reports are only 32bits it seems
283 * reasonable to limit the OA exponent where it's still possible to account for
284 * overflow in OA report timestamps.
285 */
286 #define OA_EXPONENT_MAX 31
287
288 #define INVALID_CTX_ID 0xffffffff
289
290 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
291 #define OAREPORT_REASON_MASK 0x3f
292 #define OAREPORT_REASON_SHIFT 19
293 #define OAREPORT_REASON_TIMER (1<<0)
294 #define OAREPORT_REASON_CTX_SWITCH (1<<3)
295 #define OAREPORT_REASON_CLK_RATIO (1<<5)
296
297
298 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
299 *
300 * The highest sampling frequency we can theoretically program the OA unit
301 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
302 *
303 * Initialized just before we register the sysctl parameter.
304 */
305 static int oa_sample_rate_hard_limit;
306
307 /* Theoretically we can program the OA unit to sample every 160ns but don't
308 * allow that by default unless root...
309 *
310 * The default threshold of 100000Hz is based on perf's similar
311 * kernel.perf_event_max_sample_rate sysctl parameter.
312 */
313 static u32 i915_oa_max_sample_rate = 100000;
314
315 /* XXX: beware if future OA HW adds new report formats that the current
316 * code assumes all reports have a power-of-two size and ~(size - 1) can
317 * be used as a mask to align the OA tail pointer.
318 */
319 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
320 [I915_OA_FORMAT_A13] = { 0, 64 },
321 [I915_OA_FORMAT_A29] = { 1, 128 },
322 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 },
323 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
324 [I915_OA_FORMAT_B4_C8] = { 4, 64 },
325 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 },
326 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 },
327 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
328 };
329
330 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
331 [I915_OA_FORMAT_A12] = { 0, 64 },
332 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 },
333 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
334 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
335 };
336
337 #define SAMPLE_OA_REPORT (1<<0)
338
339 /**
340 * struct perf_open_properties - for validated properties given to open a stream
341 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
342 * @single_context: Whether a single or all gpu contexts should be monitored
343 * @ctx_handle: A gem ctx handle for use with @single_context
344 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
345 * @oa_format: An OA unit HW report format
346 * @oa_periodic: Whether to enable periodic OA unit sampling
347 * @oa_period_exponent: The OA unit sampling period is derived from this
348 *
349 * As read_properties_unlocked() enumerates and validates the properties given
350 * to open a stream of metrics the configuration is built up in the structure
351 * which starts out zero initialized.
352 */
353 struct perf_open_properties {
354 u32 sample_flags;
355
356 u64 single_context:1;
357 u64 ctx_handle;
358
359 /* OA sampling state */
360 int metrics_set;
361 int oa_format;
362 bool oa_periodic;
363 int oa_period_exponent;
364 };
365
366 static void free_oa_config(struct drm_i915_private *dev_priv,
367 struct i915_oa_config *oa_config)
368 {
369 if (!PTR_ERR(oa_config->flex_regs))
370 kfree(oa_config->flex_regs);
371 if (!PTR_ERR(oa_config->b_counter_regs))
372 kfree(oa_config->b_counter_regs);
373 if (!PTR_ERR(oa_config->mux_regs))
374 kfree(oa_config->mux_regs);
375 kfree(oa_config);
376 }
377
378 static void put_oa_config(struct drm_i915_private *dev_priv,
379 struct i915_oa_config *oa_config)
380 {
381 if (!atomic_dec_and_test(&oa_config->ref_count))
382 return;
383
384 free_oa_config(dev_priv, oa_config);
385 }
386
387 static int get_oa_config(struct drm_i915_private *dev_priv,
388 int metrics_set,
389 struct i915_oa_config **out_config)
390 {
391 int ret;
392
393 if (metrics_set == 1) {
394 *out_config = &dev_priv->perf.oa.test_config;
395 atomic_inc(&dev_priv->perf.oa.test_config.ref_count);
396 return 0;
397 }
398
399 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
400 if (ret)
401 return ret;
402
403 *out_config = idr_find(&dev_priv->perf.metrics_idr, metrics_set);
404 if (!*out_config)
405 ret = -EINVAL;
406 else
407 atomic_inc(&(*out_config)->ref_count);
408
409 mutex_unlock(&dev_priv->perf.metrics_lock);
410
411 return ret;
412 }
413
414 static u32 gen8_oa_hw_tail_read(struct drm_i915_private *dev_priv)
415 {
416 return I915_READ(GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
417 }
418
419 static u32 gen7_oa_hw_tail_read(struct drm_i915_private *dev_priv)
420 {
421 u32 oastatus1 = I915_READ(GEN7_OASTATUS1);
422
423 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
424 }
425
426 /**
427 * oa_buffer_check_unlocked - check for data and update tail ptr state
428 * @dev_priv: i915 device instance
429 *
430 * This is either called via fops (for blocking reads in user ctx) or the poll
431 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
432 * if there is data available for userspace to read.
433 *
434 * This function is central to providing a workaround for the OA unit tail
435 * pointer having a race with respect to what data is visible to the CPU.
436 * It is responsible for reading tail pointers from the hardware and giving
437 * the pointers time to 'age' before they are made available for reading.
438 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
439 *
440 * Besides returning true when there is data available to read() this function
441 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
442 * and .aged_tail_idx state used for reading.
443 *
444 * Note: It's safe to read OA config state here unlocked, assuming that this is
445 * only called while the stream is enabled, while the global OA configuration
446 * can't be modified.
447 *
448 * Returns: %true if the OA buffer contains data, else %false
449 */
450 static bool oa_buffer_check_unlocked(struct drm_i915_private *dev_priv)
451 {
452 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
453 unsigned long flags;
454 unsigned int aged_idx;
455 u32 head, hw_tail, aged_tail, aging_tail;
456 u64 now;
457
458 /* We have to consider the (unlikely) possibility that read() errors
459 * could result in an OA buffer reset which might reset the head,
460 * tails[] and aged_tail state.
461 */
462 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
463
464 /* NB: The head we observe here might effectively be a little out of
465 * date (between head and tails[aged_idx].offset if there is currently
466 * a read() in progress.
467 */
468 head = dev_priv->perf.oa.oa_buffer.head;
469
470 aged_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
471 aged_tail = dev_priv->perf.oa.oa_buffer.tails[aged_idx].offset;
472 aging_tail = dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset;
473
474 hw_tail = dev_priv->perf.oa.ops.oa_hw_tail_read(dev_priv);
475
476 /* The tail pointer increases in 64 byte increments,
477 * not in report_size steps...
478 */
479 hw_tail &= ~(report_size - 1);
480
481 now = ktime_get_mono_fast_ns();
482
483 /* Update the aged tail
484 *
485 * Flip the tail pointer available for read()s once the aging tail is
486 * old enough to trust that the corresponding data will be visible to
487 * the CPU...
488 *
489 * Do this before updating the aging pointer in case we may be able to
490 * immediately start aging a new pointer too (if new data has become
491 * available) without needing to wait for a later hrtimer callback.
492 */
493 if (aging_tail != INVALID_TAIL_PTR &&
494 ((now - dev_priv->perf.oa.oa_buffer.aging_timestamp) >
495 OA_TAIL_MARGIN_NSEC)) {
496
497 aged_idx ^= 1;
498 dev_priv->perf.oa.oa_buffer.aged_tail_idx = aged_idx;
499
500 aged_tail = aging_tail;
501
502 /* Mark that we need a new pointer to start aging... */
503 dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR;
504 aging_tail = INVALID_TAIL_PTR;
505 }
506
507 /* Update the aging tail
508 *
509 * We throttle aging tail updates until we have a new tail that
510 * represents >= one report more data than is already available for
511 * reading. This ensures there will be enough data for a successful
512 * read once this new pointer has aged and ensures we will give the new
513 * pointer time to age.
514 */
515 if (aging_tail == INVALID_TAIL_PTR &&
516 (aged_tail == INVALID_TAIL_PTR ||
517 OA_TAKEN(hw_tail, aged_tail) >= report_size)) {
518 struct i915_vma *vma = dev_priv->perf.oa.oa_buffer.vma;
519 u32 gtt_offset = i915_ggtt_offset(vma);
520
521 /* Be paranoid and do a bounds check on the pointer read back
522 * from hardware, just in case some spurious hardware condition
523 * could put the tail out of bounds...
524 */
525 if (hw_tail >= gtt_offset &&
526 hw_tail < (gtt_offset + OA_BUFFER_SIZE)) {
527 dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset =
528 aging_tail = hw_tail;
529 dev_priv->perf.oa.oa_buffer.aging_timestamp = now;
530 } else {
531 DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n",
532 hw_tail);
533 }
534 }
535
536 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
537
538 return aged_tail == INVALID_TAIL_PTR ?
539 false : OA_TAKEN(aged_tail, head) >= report_size;
540 }
541
542 /**
543 * append_oa_status - Appends a status record to a userspace read() buffer.
544 * @stream: An i915-perf stream opened for OA metrics
545 * @buf: destination buffer given by userspace
546 * @count: the number of bytes userspace wants to read
547 * @offset: (inout): the current position for writing into @buf
548 * @type: The kind of status to report to userspace
549 *
550 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
551 * into the userspace read() buffer.
552 *
553 * The @buf @offset will only be updated on success.
554 *
555 * Returns: 0 on success, negative error code on failure.
556 */
557 static int append_oa_status(struct i915_perf_stream *stream,
558 char __user *buf,
559 size_t count,
560 size_t *offset,
561 enum drm_i915_perf_record_type type)
562 {
563 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
564
565 if ((count - *offset) < header.size)
566 return -ENOSPC;
567
568 if (copy_to_user(buf + *offset, &header, sizeof(header)))
569 return -EFAULT;
570
571 (*offset) += header.size;
572
573 return 0;
574 }
575
576 /**
577 * append_oa_sample - Copies single OA report into userspace read() buffer.
578 * @stream: An i915-perf stream opened for OA metrics
579 * @buf: destination buffer given by userspace
580 * @count: the number of bytes userspace wants to read
581 * @offset: (inout): the current position for writing into @buf
582 * @report: A single OA report to (optionally) include as part of the sample
583 *
584 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
585 * properties when opening a stream, tracked as `stream->sample_flags`. This
586 * function copies the requested components of a single sample to the given
587 * read() @buf.
588 *
589 * The @buf @offset will only be updated on success.
590 *
591 * Returns: 0 on success, negative error code on failure.
592 */
593 static int append_oa_sample(struct i915_perf_stream *stream,
594 char __user *buf,
595 size_t count,
596 size_t *offset,
597 const u8 *report)
598 {
599 struct drm_i915_private *dev_priv = stream->dev_priv;
600 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
601 struct drm_i915_perf_record_header header;
602 u32 sample_flags = stream->sample_flags;
603
604 header.type = DRM_I915_PERF_RECORD_SAMPLE;
605 header.pad = 0;
606 header.size = stream->sample_size;
607
608 if ((count - *offset) < header.size)
609 return -ENOSPC;
610
611 buf += *offset;
612 if (copy_to_user(buf, &header, sizeof(header)))
613 return -EFAULT;
614 buf += sizeof(header);
615
616 if (sample_flags & SAMPLE_OA_REPORT) {
617 if (copy_to_user(buf, report, report_size))
618 return -EFAULT;
619 }
620
621 (*offset) += header.size;
622
623 return 0;
624 }
625
626 /**
627 * Copies all buffered OA reports into userspace read() buffer.
628 * @stream: An i915-perf stream opened for OA metrics
629 * @buf: destination buffer given by userspace
630 * @count: the number of bytes userspace wants to read
631 * @offset: (inout): the current position for writing into @buf
632 *
633 * Notably any error condition resulting in a short read (-%ENOSPC or
634 * -%EFAULT) will be returned even though one or more records may
635 * have been successfully copied. In this case it's up to the caller
636 * to decide if the error should be squashed before returning to
637 * userspace.
638 *
639 * Note: reports are consumed from the head, and appended to the
640 * tail, so the tail chases the head?... If you think that's mad
641 * and back-to-front you're not alone, but this follows the
642 * Gen PRM naming convention.
643 *
644 * Returns: 0 on success, negative error code on failure.
645 */
646 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
647 char __user *buf,
648 size_t count,
649 size_t *offset)
650 {
651 struct drm_i915_private *dev_priv = stream->dev_priv;
652 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
653 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
654 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
655 u32 mask = (OA_BUFFER_SIZE - 1);
656 size_t start_offset = *offset;
657 unsigned long flags;
658 unsigned int aged_tail_idx;
659 u32 head, tail;
660 u32 taken;
661 int ret = 0;
662
663 if (WARN_ON(!stream->enabled))
664 return -EIO;
665
666 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
667
668 head = dev_priv->perf.oa.oa_buffer.head;
669 aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
670 tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
671
672 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
673
674 /*
675 * An invalid tail pointer here means we're still waiting for the poll
676 * hrtimer callback to give us a pointer
677 */
678 if (tail == INVALID_TAIL_PTR)
679 return -EAGAIN;
680
681 /*
682 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
683 * while indexing relative to oa_buf_base.
684 */
685 head -= gtt_offset;
686 tail -= gtt_offset;
687
688 /*
689 * An out of bounds or misaligned head or tail pointer implies a driver
690 * bug since we validate + align the tail pointers we read from the
691 * hardware and we are in full control of the head pointer which should
692 * only be incremented by multiples of the report size (notably also
693 * all a power of two).
694 */
695 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
696 tail > OA_BUFFER_SIZE || tail % report_size,
697 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
698 head, tail))
699 return -EIO;
700
701
702 for (/* none */;
703 (taken = OA_TAKEN(tail, head));
704 head = (head + report_size) & mask) {
705 u8 *report = oa_buf_base + head;
706 u32 *report32 = (void *)report;
707 u32 ctx_id;
708 u32 reason;
709
710 /*
711 * All the report sizes factor neatly into the buffer
712 * size so we never expect to see a report split
713 * between the beginning and end of the buffer.
714 *
715 * Given the initial alignment check a misalignment
716 * here would imply a driver bug that would result
717 * in an overrun.
718 */
719 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
720 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
721 break;
722 }
723
724 /*
725 * The reason field includes flags identifying what
726 * triggered this specific report (mostly timer
727 * triggered or e.g. due to a context switch).
728 *
729 * This field is never expected to be zero so we can
730 * check that the report isn't invalid before copying
731 * it to userspace...
732 */
733 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
734 OAREPORT_REASON_MASK);
735 if (reason == 0) {
736 if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
737 DRM_NOTE("Skipping spurious, invalid OA report\n");
738 continue;
739 }
740
741 ctx_id = report32[2] & dev_priv->perf.oa.specific_ctx_id_mask;
742
743 /*
744 * Squash whatever is in the CTX_ID field if it's marked as
745 * invalid to be sure we avoid false-positive, single-context
746 * filtering below...
747 *
748 * Note: that we don't clear the valid_ctx_bit so userspace can
749 * understand that the ID has been squashed by the kernel.
750 */
751 if (!(report32[0] & dev_priv->perf.oa.gen8_valid_ctx_bit))
752 ctx_id = report32[2] = INVALID_CTX_ID;
753
754 /*
755 * NB: For Gen 8 the OA unit no longer supports clock gating
756 * off for a specific context and the kernel can't securely
757 * stop the counters from updating as system-wide / global
758 * values.
759 *
760 * Automatic reports now include a context ID so reports can be
761 * filtered on the cpu but it's not worth trying to
762 * automatically subtract/hide counter progress for other
763 * contexts while filtering since we can't stop userspace
764 * issuing MI_REPORT_PERF_COUNT commands which would still
765 * provide a side-band view of the real values.
766 *
767 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
768 * to normalize counters for a single filtered context then it
769 * needs be forwarded bookend context-switch reports so that it
770 * can track switches in between MI_REPORT_PERF_COUNT commands
771 * and can itself subtract/ignore the progress of counters
772 * associated with other contexts. Note that the hardware
773 * automatically triggers reports when switching to a new
774 * context which are tagged with the ID of the newly active
775 * context. To avoid the complexity (and likely fragility) of
776 * reading ahead while parsing reports to try and minimize
777 * forwarding redundant context switch reports (i.e. between
778 * other, unrelated contexts) we simply elect to forward them
779 * all.
780 *
781 * We don't rely solely on the reason field to identify context
782 * switches since it's not-uncommon for periodic samples to
783 * identify a switch before any 'context switch' report.
784 */
785 if (!dev_priv->perf.oa.exclusive_stream->ctx ||
786 dev_priv->perf.oa.specific_ctx_id == ctx_id ||
787 (dev_priv->perf.oa.oa_buffer.last_ctx_id ==
788 dev_priv->perf.oa.specific_ctx_id) ||
789 reason & OAREPORT_REASON_CTX_SWITCH) {
790
791 /*
792 * While filtering for a single context we avoid
793 * leaking the IDs of other contexts.
794 */
795 if (dev_priv->perf.oa.exclusive_stream->ctx &&
796 dev_priv->perf.oa.specific_ctx_id != ctx_id) {
797 report32[2] = INVALID_CTX_ID;
798 }
799
800 ret = append_oa_sample(stream, buf, count, offset,
801 report);
802 if (ret)
803 break;
804
805 dev_priv->perf.oa.oa_buffer.last_ctx_id = ctx_id;
806 }
807
808 /*
809 * The above reason field sanity check is based on
810 * the assumption that the OA buffer is initially
811 * zeroed and we reset the field after copying so the
812 * check is still meaningful once old reports start
813 * being overwritten.
814 */
815 report32[0] = 0;
816 }
817
818 if (start_offset != *offset) {
819 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
820
821 /*
822 * We removed the gtt_offset for the copy loop above, indexing
823 * relative to oa_buf_base so put back here...
824 */
825 head += gtt_offset;
826
827 I915_WRITE(GEN8_OAHEADPTR, head & GEN8_OAHEADPTR_MASK);
828 dev_priv->perf.oa.oa_buffer.head = head;
829
830 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
831 }
832
833 return ret;
834 }
835
836 /**
837 * gen8_oa_read - copy status records then buffered OA reports
838 * @stream: An i915-perf stream opened for OA metrics
839 * @buf: destination buffer given by userspace
840 * @count: the number of bytes userspace wants to read
841 * @offset: (inout): the current position for writing into @buf
842 *
843 * Checks OA unit status registers and if necessary appends corresponding
844 * status records for userspace (such as for a buffer full condition) and then
845 * initiate appending any buffered OA reports.
846 *
847 * Updates @offset according to the number of bytes successfully copied into
848 * the userspace buffer.
849 *
850 * NB: some data may be successfully copied to the userspace buffer
851 * even if an error is returned, and this is reflected in the
852 * updated @offset.
853 *
854 * Returns: zero on success or a negative error code
855 */
856 static int gen8_oa_read(struct i915_perf_stream *stream,
857 char __user *buf,
858 size_t count,
859 size_t *offset)
860 {
861 struct drm_i915_private *dev_priv = stream->dev_priv;
862 u32 oastatus;
863 int ret;
864
865 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
866 return -EIO;
867
868 oastatus = I915_READ(GEN8_OASTATUS);
869
870 /*
871 * We treat OABUFFER_OVERFLOW as a significant error:
872 *
873 * Although theoretically we could handle this more gracefully
874 * sometimes, some Gens don't correctly suppress certain
875 * automatically triggered reports in this condition and so we
876 * have to assume that old reports are now being trampled
877 * over.
878 *
879 * Considering how we don't currently give userspace control
880 * over the OA buffer size and always configure a large 16MB
881 * buffer, then a buffer overflow does anyway likely indicate
882 * that something has gone quite badly wrong.
883 */
884 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
885 ret = append_oa_status(stream, buf, count, offset,
886 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
887 if (ret)
888 return ret;
889
890 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
891 dev_priv->perf.oa.period_exponent);
892
893 dev_priv->perf.oa.ops.oa_disable(stream);
894 dev_priv->perf.oa.ops.oa_enable(stream);
895
896 /*
897 * Note: .oa_enable() is expected to re-init the oabuffer and
898 * reset GEN8_OASTATUS for us
899 */
900 oastatus = I915_READ(GEN8_OASTATUS);
901 }
902
903 if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
904 ret = append_oa_status(stream, buf, count, offset,
905 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
906 if (ret)
907 return ret;
908 I915_WRITE(GEN8_OASTATUS,
909 oastatus & ~GEN8_OASTATUS_REPORT_LOST);
910 }
911
912 return gen8_append_oa_reports(stream, buf, count, offset);
913 }
914
915 /**
916 * Copies all buffered OA reports into userspace read() buffer.
917 * @stream: An i915-perf stream opened for OA metrics
918 * @buf: destination buffer given by userspace
919 * @count: the number of bytes userspace wants to read
920 * @offset: (inout): the current position for writing into @buf
921 *
922 * Notably any error condition resulting in a short read (-%ENOSPC or
923 * -%EFAULT) will be returned even though one or more records may
924 * have been successfully copied. In this case it's up to the caller
925 * to decide if the error should be squashed before returning to
926 * userspace.
927 *
928 * Note: reports are consumed from the head, and appended to the
929 * tail, so the tail chases the head?... If you think that's mad
930 * and back-to-front you're not alone, but this follows the
931 * Gen PRM naming convention.
932 *
933 * Returns: 0 on success, negative error code on failure.
934 */
935 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
936 char __user *buf,
937 size_t count,
938 size_t *offset)
939 {
940 struct drm_i915_private *dev_priv = stream->dev_priv;
941 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
942 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
943 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
944 u32 mask = (OA_BUFFER_SIZE - 1);
945 size_t start_offset = *offset;
946 unsigned long flags;
947 unsigned int aged_tail_idx;
948 u32 head, tail;
949 u32 taken;
950 int ret = 0;
951
952 if (WARN_ON(!stream->enabled))
953 return -EIO;
954
955 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
956
957 head = dev_priv->perf.oa.oa_buffer.head;
958 aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
959 tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
960
961 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
962
963 /* An invalid tail pointer here means we're still waiting for the poll
964 * hrtimer callback to give us a pointer
965 */
966 if (tail == INVALID_TAIL_PTR)
967 return -EAGAIN;
968
969 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want
970 * while indexing relative to oa_buf_base.
971 */
972 head -= gtt_offset;
973 tail -= gtt_offset;
974
975 /* An out of bounds or misaligned head or tail pointer implies a driver
976 * bug since we validate + align the tail pointers we read from the
977 * hardware and we are in full control of the head pointer which should
978 * only be incremented by multiples of the report size (notably also
979 * all a power of two).
980 */
981 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
982 tail > OA_BUFFER_SIZE || tail % report_size,
983 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
984 head, tail))
985 return -EIO;
986
987
988 for (/* none */;
989 (taken = OA_TAKEN(tail, head));
990 head = (head + report_size) & mask) {
991 u8 *report = oa_buf_base + head;
992 u32 *report32 = (void *)report;
993
994 /* All the report sizes factor neatly into the buffer
995 * size so we never expect to see a report split
996 * between the beginning and end of the buffer.
997 *
998 * Given the initial alignment check a misalignment
999 * here would imply a driver bug that would result
1000 * in an overrun.
1001 */
1002 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
1003 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
1004 break;
1005 }
1006
1007 /* The report-ID field for periodic samples includes
1008 * some undocumented flags related to what triggered
1009 * the report and is never expected to be zero so we
1010 * can check that the report isn't invalid before
1011 * copying it to userspace...
1012 */
1013 if (report32[0] == 0) {
1014 if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
1015 DRM_NOTE("Skipping spurious, invalid OA report\n");
1016 continue;
1017 }
1018
1019 ret = append_oa_sample(stream, buf, count, offset, report);
1020 if (ret)
1021 break;
1022
1023 /* The above report-id field sanity check is based on
1024 * the assumption that the OA buffer is initially
1025 * zeroed and we reset the field after copying so the
1026 * check is still meaningful once old reports start
1027 * being overwritten.
1028 */
1029 report32[0] = 0;
1030 }
1031
1032 if (start_offset != *offset) {
1033 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1034
1035 /* We removed the gtt_offset for the copy loop above, indexing
1036 * relative to oa_buf_base so put back here...
1037 */
1038 head += gtt_offset;
1039
1040 I915_WRITE(GEN7_OASTATUS2,
1041 ((head & GEN7_OASTATUS2_HEAD_MASK) |
1042 GEN7_OASTATUS2_MEM_SELECT_GGTT));
1043 dev_priv->perf.oa.oa_buffer.head = head;
1044
1045 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1046 }
1047
1048 return ret;
1049 }
1050
1051 /**
1052 * gen7_oa_read - copy status records then buffered OA reports
1053 * @stream: An i915-perf stream opened for OA metrics
1054 * @buf: destination buffer given by userspace
1055 * @count: the number of bytes userspace wants to read
1056 * @offset: (inout): the current position for writing into @buf
1057 *
1058 * Checks Gen 7 specific OA unit status registers and if necessary appends
1059 * corresponding status records for userspace (such as for a buffer full
1060 * condition) and then initiate appending any buffered OA reports.
1061 *
1062 * Updates @offset according to the number of bytes successfully copied into
1063 * the userspace buffer.
1064 *
1065 * Returns: zero on success or a negative error code
1066 */
1067 static int gen7_oa_read(struct i915_perf_stream *stream,
1068 char __user *buf,
1069 size_t count,
1070 size_t *offset)
1071 {
1072 struct drm_i915_private *dev_priv = stream->dev_priv;
1073 u32 oastatus1;
1074 int ret;
1075
1076 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
1077 return -EIO;
1078
1079 oastatus1 = I915_READ(GEN7_OASTATUS1);
1080
1081 /* XXX: On Haswell we don't have a safe way to clear oastatus1
1082 * bits while the OA unit is enabled (while the tail pointer
1083 * may be updated asynchronously) so we ignore status bits
1084 * that have already been reported to userspace.
1085 */
1086 oastatus1 &= ~dev_priv->perf.oa.gen7_latched_oastatus1;
1087
1088 /* We treat OABUFFER_OVERFLOW as a significant error:
1089 *
1090 * - The status can be interpreted to mean that the buffer is
1091 * currently full (with a higher precedence than OA_TAKEN()
1092 * which will start to report a near-empty buffer after an
1093 * overflow) but it's awkward that we can't clear the status
1094 * on Haswell, so without a reset we won't be able to catch
1095 * the state again.
1096 *
1097 * - Since it also implies the HW has started overwriting old
1098 * reports it may also affect our sanity checks for invalid
1099 * reports when copying to userspace that assume new reports
1100 * are being written to cleared memory.
1101 *
1102 * - In the future we may want to introduce a flight recorder
1103 * mode where the driver will automatically maintain a safe
1104 * guard band between head/tail, avoiding this overflow
1105 * condition, but we avoid the added driver complexity for
1106 * now.
1107 */
1108 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1109 ret = append_oa_status(stream, buf, count, offset,
1110 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1111 if (ret)
1112 return ret;
1113
1114 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1115 dev_priv->perf.oa.period_exponent);
1116
1117 dev_priv->perf.oa.ops.oa_disable(stream);
1118 dev_priv->perf.oa.ops.oa_enable(stream);
1119
1120 oastatus1 = I915_READ(GEN7_OASTATUS1);
1121 }
1122
1123 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1124 ret = append_oa_status(stream, buf, count, offset,
1125 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1126 if (ret)
1127 return ret;
1128 dev_priv->perf.oa.gen7_latched_oastatus1 |=
1129 GEN7_OASTATUS1_REPORT_LOST;
1130 }
1131
1132 return gen7_append_oa_reports(stream, buf, count, offset);
1133 }
1134
1135 /**
1136 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1137 * @stream: An i915-perf stream opened for OA metrics
1138 *
1139 * Called when userspace tries to read() from a blocking stream FD opened
1140 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1141 * OA buffer and wakes us.
1142 *
1143 * Note: it's acceptable to have this return with some false positives
1144 * since any subsequent read handling will return -EAGAIN if there isn't
1145 * really data ready for userspace yet.
1146 *
1147 * Returns: zero on success or a negative error code
1148 */
1149 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1150 {
1151 struct drm_i915_private *dev_priv = stream->dev_priv;
1152
1153 /* We would wait indefinitely if periodic sampling is not enabled */
1154 if (!dev_priv->perf.oa.periodic)
1155 return -EIO;
1156
1157 return wait_event_interruptible(dev_priv->perf.oa.poll_wq,
1158 oa_buffer_check_unlocked(dev_priv));
1159 }
1160
1161 /**
1162 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1163 * @stream: An i915-perf stream opened for OA metrics
1164 * @file: An i915 perf stream file
1165 * @wait: poll() state table
1166 *
1167 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1168 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1169 * when it sees data ready to read in the circular OA buffer.
1170 */
1171 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1172 struct file *file,
1173 poll_table *wait)
1174 {
1175 struct drm_i915_private *dev_priv = stream->dev_priv;
1176
1177 poll_wait(file, &dev_priv->perf.oa.poll_wq, wait);
1178 }
1179
1180 /**
1181 * i915_oa_read - just calls through to &i915_oa_ops->read
1182 * @stream: An i915-perf stream opened for OA metrics
1183 * @buf: destination buffer given by userspace
1184 * @count: the number of bytes userspace wants to read
1185 * @offset: (inout): the current position for writing into @buf
1186 *
1187 * Updates @offset according to the number of bytes successfully copied into
1188 * the userspace buffer.
1189 *
1190 * Returns: zero on success or a negative error code
1191 */
1192 static int i915_oa_read(struct i915_perf_stream *stream,
1193 char __user *buf,
1194 size_t count,
1195 size_t *offset)
1196 {
1197 struct drm_i915_private *dev_priv = stream->dev_priv;
1198
1199 return dev_priv->perf.oa.ops.read(stream, buf, count, offset);
1200 }
1201
1202 static struct intel_context *oa_pin_context(struct drm_i915_private *i915,
1203 struct i915_gem_context *ctx)
1204 {
1205 struct intel_engine_cs *engine = i915->engine[RCS0];
1206 struct intel_context *ce;
1207 int ret;
1208
1209 ret = i915_mutex_lock_interruptible(&i915->drm);
1210 if (ret)
1211 return ERR_PTR(ret);
1212
1213 /*
1214 * As the ID is the gtt offset of the context's vma we
1215 * pin the vma to ensure the ID remains fixed.
1216 *
1217 * NB: implied RCS engine...
1218 */
1219 ce = intel_context_pin(ctx, engine);
1220 mutex_unlock(&i915->drm.struct_mutex);
1221 if (IS_ERR(ce))
1222 return ce;
1223
1224 i915->perf.oa.pinned_ctx = ce;
1225
1226 return ce;
1227 }
1228
1229 /**
1230 * oa_get_render_ctx_id - determine and hold ctx hw id
1231 * @stream: An i915-perf stream opened for OA metrics
1232 *
1233 * Determine the render context hw id, and ensure it remains fixed for the
1234 * lifetime of the stream. This ensures that we don't have to worry about
1235 * updating the context ID in OACONTROL on the fly.
1236 *
1237 * Returns: zero on success or a negative error code
1238 */
1239 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1240 {
1241 struct drm_i915_private *i915 = stream->dev_priv;
1242 struct intel_context *ce;
1243
1244 ce = oa_pin_context(i915, stream->ctx);
1245 if (IS_ERR(ce))
1246 return PTR_ERR(ce);
1247
1248 switch (INTEL_GEN(i915)) {
1249 case 7: {
1250 /*
1251 * On Haswell we don't do any post processing of the reports
1252 * and don't need to use the mask.
1253 */
1254 i915->perf.oa.specific_ctx_id = i915_ggtt_offset(ce->state);
1255 i915->perf.oa.specific_ctx_id_mask = 0;
1256 break;
1257 }
1258
1259 case 8:
1260 case 9:
1261 case 10:
1262 if (USES_GUC_SUBMISSION(i915)) {
1263 /*
1264 * When using GuC, the context descriptor we write in
1265 * i915 is read by GuC and rewritten before it's
1266 * actually written into the hardware. The LRCA is
1267 * what is put into the context id field of the
1268 * context descriptor by GuC. Because it's aligned to
1269 * a page, the lower 12bits are always at 0 and
1270 * dropped by GuC. They won't be part of the context
1271 * ID in the OA reports, so squash those lower bits.
1272 */
1273 i915->perf.oa.specific_ctx_id =
1274 lower_32_bits(ce->lrc_desc) >> 12;
1275
1276 /*
1277 * GuC uses the top bit to signal proxy submission, so
1278 * ignore that bit.
1279 */
1280 i915->perf.oa.specific_ctx_id_mask =
1281 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1282 } else {
1283 i915->perf.oa.specific_ctx_id_mask =
1284 (1U << GEN8_CTX_ID_WIDTH) - 1;
1285 i915->perf.oa.specific_ctx_id =
1286 upper_32_bits(ce->lrc_desc);
1287 i915->perf.oa.specific_ctx_id &=
1288 i915->perf.oa.specific_ctx_id_mask;
1289 }
1290 break;
1291
1292 case 11: {
1293 i915->perf.oa.specific_ctx_id_mask =
1294 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32) |
1295 ((1U << GEN11_ENGINE_INSTANCE_WIDTH) - 1) << (GEN11_ENGINE_INSTANCE_SHIFT - 32) |
1296 ((1 << GEN11_ENGINE_CLASS_WIDTH) - 1) << (GEN11_ENGINE_CLASS_SHIFT - 32);
1297 i915->perf.oa.specific_ctx_id = upper_32_bits(ce->lrc_desc);
1298 i915->perf.oa.specific_ctx_id &=
1299 i915->perf.oa.specific_ctx_id_mask;
1300 break;
1301 }
1302
1303 default:
1304 MISSING_CASE(INTEL_GEN(i915));
1305 }
1306
1307 DRM_DEBUG_DRIVER("filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1308 i915->perf.oa.specific_ctx_id,
1309 i915->perf.oa.specific_ctx_id_mask);
1310
1311 return 0;
1312 }
1313
1314 /**
1315 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1316 * @stream: An i915-perf stream opened for OA metrics
1317 *
1318 * In case anything needed doing to ensure the context HW ID would remain valid
1319 * for the lifetime of the stream, then that can be undone here.
1320 */
1321 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1322 {
1323 struct drm_i915_private *dev_priv = stream->dev_priv;
1324 struct intel_context *ce;
1325
1326 dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
1327 dev_priv->perf.oa.specific_ctx_id_mask = 0;
1328
1329 ce = fetch_and_zero(&dev_priv->perf.oa.pinned_ctx);
1330 if (ce) {
1331 mutex_lock(&dev_priv->drm.struct_mutex);
1332 intel_context_unpin(ce);
1333 mutex_unlock(&dev_priv->drm.struct_mutex);
1334 }
1335 }
1336
1337 static void
1338 free_oa_buffer(struct drm_i915_private *i915)
1339 {
1340 mutex_lock(&i915->drm.struct_mutex);
1341
1342 i915_vma_unpin_and_release(&i915->perf.oa.oa_buffer.vma,
1343 I915_VMA_RELEASE_MAP);
1344
1345 mutex_unlock(&i915->drm.struct_mutex);
1346
1347 i915->perf.oa.oa_buffer.vaddr = NULL;
1348 }
1349
1350 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1351 {
1352 struct drm_i915_private *dev_priv = stream->dev_priv;
1353
1354 BUG_ON(stream != dev_priv->perf.oa.exclusive_stream);
1355
1356 /*
1357 * Unset exclusive_stream first, it will be checked while disabling
1358 * the metric set on gen8+.
1359 */
1360 mutex_lock(&dev_priv->drm.struct_mutex);
1361 dev_priv->perf.oa.exclusive_stream = NULL;
1362 dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
1363 mutex_unlock(&dev_priv->drm.struct_mutex);
1364
1365 free_oa_buffer(dev_priv);
1366
1367 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1368 intel_runtime_pm_put(dev_priv, stream->wakeref);
1369
1370 if (stream->ctx)
1371 oa_put_render_ctx_id(stream);
1372
1373 put_oa_config(dev_priv, stream->oa_config);
1374
1375 if (dev_priv->perf.oa.spurious_report_rs.missed) {
1376 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1377 dev_priv->perf.oa.spurious_report_rs.missed);
1378 }
1379 }
1380
1381 static void gen7_init_oa_buffer(struct drm_i915_private *dev_priv)
1382 {
1383 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1384 unsigned long flags;
1385
1386 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1387
1388 /* Pre-DevBDW: OABUFFER must be set with counters off,
1389 * before OASTATUS1, but after OASTATUS2
1390 */
1391 I915_WRITE(GEN7_OASTATUS2,
1392 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); /* head */
1393 dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1394
1395 I915_WRITE(GEN7_OABUFFER, gtt_offset);
1396
1397 I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */
1398
1399 /* Mark that we need updated tail pointers to read from... */
1400 dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1401 dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1402
1403 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1404
1405 /* On Haswell we have to track which OASTATUS1 flags we've
1406 * already seen since they can't be cleared while periodic
1407 * sampling is enabled.
1408 */
1409 dev_priv->perf.oa.gen7_latched_oastatus1 = 0;
1410
1411 /* NB: although the OA buffer will initially be allocated
1412 * zeroed via shmfs (and so this memset is redundant when
1413 * first allocating), we may re-init the OA buffer, either
1414 * when re-enabling a stream or in error/reset paths.
1415 *
1416 * The reason we clear the buffer for each re-init is for the
1417 * sanity check in gen7_append_oa_reports() that looks at the
1418 * report-id field to make sure it's non-zero which relies on
1419 * the assumption that new reports are being written to zeroed
1420 * memory...
1421 */
1422 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1423
1424 /* Maybe make ->pollin per-stream state if we support multiple
1425 * concurrent streams in the future.
1426 */
1427 dev_priv->perf.oa.pollin = false;
1428 }
1429
1430 static void gen8_init_oa_buffer(struct drm_i915_private *dev_priv)
1431 {
1432 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1433 unsigned long flags;
1434
1435 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1436
1437 I915_WRITE(GEN8_OASTATUS, 0);
1438 I915_WRITE(GEN8_OAHEADPTR, gtt_offset);
1439 dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1440
1441 I915_WRITE(GEN8_OABUFFER_UDW, 0);
1442
1443 /*
1444 * PRM says:
1445 *
1446 * "This MMIO must be set before the OATAILPTR
1447 * register and after the OAHEADPTR register. This is
1448 * to enable proper functionality of the overflow
1449 * bit."
1450 */
1451 I915_WRITE(GEN8_OABUFFER, gtt_offset |
1452 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1453 I915_WRITE(GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1454
1455 /* Mark that we need updated tail pointers to read from... */
1456 dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1457 dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1458
1459 /*
1460 * Reset state used to recognise context switches, affecting which
1461 * reports we will forward to userspace while filtering for a single
1462 * context.
1463 */
1464 dev_priv->perf.oa.oa_buffer.last_ctx_id = INVALID_CTX_ID;
1465
1466 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1467
1468 /*
1469 * NB: although the OA buffer will initially be allocated
1470 * zeroed via shmfs (and so this memset is redundant when
1471 * first allocating), we may re-init the OA buffer, either
1472 * when re-enabling a stream or in error/reset paths.
1473 *
1474 * The reason we clear the buffer for each re-init is for the
1475 * sanity check in gen8_append_oa_reports() that looks at the
1476 * reason field to make sure it's non-zero which relies on
1477 * the assumption that new reports are being written to zeroed
1478 * memory...
1479 */
1480 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1481
1482 /*
1483 * Maybe make ->pollin per-stream state if we support multiple
1484 * concurrent streams in the future.
1485 */
1486 dev_priv->perf.oa.pollin = false;
1487 }
1488
1489 static int alloc_oa_buffer(struct drm_i915_private *dev_priv)
1490 {
1491 struct drm_i915_gem_object *bo;
1492 struct i915_vma *vma;
1493 int ret;
1494
1495 if (WARN_ON(dev_priv->perf.oa.oa_buffer.vma))
1496 return -ENODEV;
1497
1498 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1499 if (ret)
1500 return ret;
1501
1502 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1503 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1504
1505 bo = i915_gem_object_create(dev_priv, OA_BUFFER_SIZE);
1506 if (IS_ERR(bo)) {
1507 DRM_ERROR("Failed to allocate OA buffer\n");
1508 ret = PTR_ERR(bo);
1509 goto unlock;
1510 }
1511
1512 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1513
1514 /* PreHSW required 512K alignment, HSW requires 16M */
1515 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1516 if (IS_ERR(vma)) {
1517 ret = PTR_ERR(vma);
1518 goto err_unref;
1519 }
1520 dev_priv->perf.oa.oa_buffer.vma = vma;
1521
1522 dev_priv->perf.oa.oa_buffer.vaddr =
1523 i915_gem_object_pin_map(bo, I915_MAP_WB);
1524 if (IS_ERR(dev_priv->perf.oa.oa_buffer.vaddr)) {
1525 ret = PTR_ERR(dev_priv->perf.oa.oa_buffer.vaddr);
1526 goto err_unpin;
1527 }
1528
1529 DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n",
1530 i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma),
1531 dev_priv->perf.oa.oa_buffer.vaddr);
1532
1533 goto unlock;
1534
1535 err_unpin:
1536 __i915_vma_unpin(vma);
1537
1538 err_unref:
1539 i915_gem_object_put(bo);
1540
1541 dev_priv->perf.oa.oa_buffer.vaddr = NULL;
1542 dev_priv->perf.oa.oa_buffer.vma = NULL;
1543
1544 unlock:
1545 mutex_unlock(&dev_priv->drm.struct_mutex);
1546 return ret;
1547 }
1548
1549 static void config_oa_regs(struct drm_i915_private *dev_priv,
1550 const struct i915_oa_reg *regs,
1551 u32 n_regs)
1552 {
1553 u32 i;
1554
1555 for (i = 0; i < n_regs; i++) {
1556 const struct i915_oa_reg *reg = regs + i;
1557
1558 I915_WRITE(reg->addr, reg->value);
1559 }
1560 }
1561
1562 static int hsw_enable_metric_set(struct i915_perf_stream *stream)
1563 {
1564 struct drm_i915_private *dev_priv = stream->dev_priv;
1565 const struct i915_oa_config *oa_config = stream->oa_config;
1566
1567 /* PRM:
1568 *
1569 * OA unit is using “crclk” for its functionality. When trunk
1570 * level clock gating takes place, OA clock would be gated,
1571 * unable to count the events from non-render clock domain.
1572 * Render clock gating must be disabled when OA is enabled to
1573 * count the events from non-render domain. Unit level clock
1574 * gating for RCS should also be disabled.
1575 */
1576 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1577 ~GEN7_DOP_CLOCK_GATE_ENABLE));
1578 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) |
1579 GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1580
1581 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1582
1583 /* It apparently takes a fairly long time for a new MUX
1584 * configuration to be be applied after these register writes.
1585 * This delay duration was derived empirically based on the
1586 * render_basic config but hopefully it covers the maximum
1587 * configuration latency.
1588 *
1589 * As a fallback, the checks in _append_oa_reports() to skip
1590 * invalid OA reports do also seem to work to discard reports
1591 * generated before this config has completed - albeit not
1592 * silently.
1593 *
1594 * Unfortunately this is essentially a magic number, since we
1595 * don't currently know of a reliable mechanism for predicting
1596 * how long the MUX config will take to apply and besides
1597 * seeing invalid reports we don't know of a reliable way to
1598 * explicitly check that the MUX config has landed.
1599 *
1600 * It's even possible we've miss characterized the underlying
1601 * problem - it just seems like the simplest explanation why
1602 * a delay at this location would mitigate any invalid reports.
1603 */
1604 usleep_range(15000, 20000);
1605
1606 config_oa_regs(dev_priv, oa_config->b_counter_regs,
1607 oa_config->b_counter_regs_len);
1608
1609 return 0;
1610 }
1611
1612 static void hsw_disable_metric_set(struct drm_i915_private *dev_priv)
1613 {
1614 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) &
1615 ~GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1616 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) |
1617 GEN7_DOP_CLOCK_GATE_ENABLE));
1618
1619 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1620 ~GT_NOA_ENABLE));
1621 }
1622
1623 /*
1624 * NB: It must always remain pointer safe to run this even if the OA unit
1625 * has been disabled.
1626 *
1627 * It's fine to put out-of-date values into these per-context registers
1628 * in the case that the OA unit has been disabled.
1629 */
1630 static void
1631 gen8_update_reg_state_unlocked(struct intel_context *ce,
1632 u32 *reg_state,
1633 const struct i915_oa_config *oa_config)
1634 {
1635 struct drm_i915_private *i915 = ce->gem_context->i915;
1636 u32 ctx_oactxctrl = i915->perf.oa.ctx_oactxctrl_offset;
1637 u32 ctx_flexeu0 = i915->perf.oa.ctx_flexeu0_offset;
1638 /* The MMIO offsets for Flex EU registers aren't contiguous */
1639 i915_reg_t flex_regs[] = {
1640 EU_PERF_CNTL0,
1641 EU_PERF_CNTL1,
1642 EU_PERF_CNTL2,
1643 EU_PERF_CNTL3,
1644 EU_PERF_CNTL4,
1645 EU_PERF_CNTL5,
1646 EU_PERF_CNTL6,
1647 };
1648 int i;
1649
1650 CTX_REG(reg_state, ctx_oactxctrl, GEN8_OACTXCONTROL,
1651 (i915->perf.oa.period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
1652 (i915->perf.oa.periodic ? GEN8_OA_TIMER_ENABLE : 0) |
1653 GEN8_OA_COUNTER_RESUME);
1654
1655 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) {
1656 u32 state_offset = ctx_flexeu0 + i * 2;
1657 u32 mmio = i915_mmio_reg_offset(flex_regs[i]);
1658
1659 /*
1660 * This arbitrary default will select the 'EU FPU0 Pipeline
1661 * Active' event. In the future it's anticipated that there
1662 * will be an explicit 'No Event' we can select, but not yet...
1663 */
1664 u32 value = 0;
1665
1666 if (oa_config) {
1667 u32 j;
1668
1669 for (j = 0; j < oa_config->flex_regs_len; j++) {
1670 if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) {
1671 value = oa_config->flex_regs[j].value;
1672 break;
1673 }
1674 }
1675 }
1676
1677 CTX_REG(reg_state, state_offset, flex_regs[i], value);
1678 }
1679
1680 CTX_REG(reg_state,
1681 CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
1682 gen8_make_rpcs(i915, &ce->sseu));
1683 }
1684
1685 /*
1686 * Manages updating the per-context aspects of the OA stream
1687 * configuration across all contexts.
1688 *
1689 * The awkward consideration here is that OACTXCONTROL controls the
1690 * exponent for periodic sampling which is primarily used for system
1691 * wide profiling where we'd like a consistent sampling period even in
1692 * the face of context switches.
1693 *
1694 * Our approach of updating the register state context (as opposed to
1695 * say using a workaround batch buffer) ensures that the hardware
1696 * won't automatically reload an out-of-date timer exponent even
1697 * transiently before a WA BB could be parsed.
1698 *
1699 * This function needs to:
1700 * - Ensure the currently running context's per-context OA state is
1701 * updated
1702 * - Ensure that all existing contexts will have the correct per-context
1703 * OA state if they are scheduled for use.
1704 * - Ensure any new contexts will be initialized with the correct
1705 * per-context OA state.
1706 *
1707 * Note: it's only the RCS/Render context that has any OA state.
1708 */
1709 static int gen8_configure_all_contexts(struct drm_i915_private *dev_priv,
1710 const struct i915_oa_config *oa_config)
1711 {
1712 struct intel_engine_cs *engine = dev_priv->engine[RCS0];
1713 unsigned int map_type = i915_coherent_map_type(dev_priv);
1714 struct i915_gem_context *ctx;
1715 struct i915_request *rq;
1716 int ret;
1717
1718 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1719
1720 /*
1721 * The OA register config is setup through the context image. This image
1722 * might be written to by the GPU on context switch (in particular on
1723 * lite-restore). This means we can't safely update a context's image,
1724 * if this context is scheduled/submitted to run on the GPU.
1725 *
1726 * We could emit the OA register config through the batch buffer but
1727 * this might leave small interval of time where the OA unit is
1728 * configured at an invalid sampling period.
1729 *
1730 * So far the best way to work around this issue seems to be draining
1731 * the GPU from any submitted work.
1732 */
1733 ret = i915_gem_wait_for_idle(dev_priv,
1734 I915_WAIT_LOCKED,
1735 MAX_SCHEDULE_TIMEOUT);
1736 if (ret)
1737 return ret;
1738
1739 /* Update all contexts now that we've stalled the submission. */
1740 list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
1741 struct intel_context *ce = intel_context_lookup(ctx, engine);
1742 u32 *regs;
1743
1744 /* OA settings will be set upon first use */
1745 if (!ce || !ce->state)
1746 continue;
1747
1748 regs = i915_gem_object_pin_map(ce->state->obj, map_type);
1749 if (IS_ERR(regs))
1750 return PTR_ERR(regs);
1751
1752 ce->state->obj->mm.dirty = true;
1753 regs += LRC_STATE_PN * PAGE_SIZE / sizeof(*regs);
1754
1755 gen8_update_reg_state_unlocked(ce, regs, oa_config);
1756
1757 i915_gem_object_unpin_map(ce->state->obj);
1758 }
1759
1760 /*
1761 * Apply the configuration by doing one context restore of the edited
1762 * context image.
1763 */
1764 rq = i915_request_alloc(engine, dev_priv->kernel_context);
1765 if (IS_ERR(rq))
1766 return PTR_ERR(rq);
1767
1768 i915_request_add(rq);
1769
1770 return 0;
1771 }
1772
1773 static int gen8_enable_metric_set(struct i915_perf_stream *stream)
1774 {
1775 struct drm_i915_private *dev_priv = stream->dev_priv;
1776 const struct i915_oa_config *oa_config = stream->oa_config;
1777 int ret;
1778
1779 /*
1780 * We disable slice/unslice clock ratio change reports on SKL since
1781 * they are too noisy. The HW generates a lot of redundant reports
1782 * where the ratio hasn't really changed causing a lot of redundant
1783 * work to processes and increasing the chances we'll hit buffer
1784 * overruns.
1785 *
1786 * Although we don't currently use the 'disable overrun' OABUFFER
1787 * feature it's worth noting that clock ratio reports have to be
1788 * disabled before considering to use that feature since the HW doesn't
1789 * correctly block these reports.
1790 *
1791 * Currently none of the high-level metrics we have depend on knowing
1792 * this ratio to normalize.
1793 *
1794 * Note: This register is not power context saved and restored, but
1795 * that's OK considering that we disable RC6 while the OA unit is
1796 * enabled.
1797 *
1798 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
1799 * be read back from automatically triggered reports, as part of the
1800 * RPT_ID field.
1801 */
1802 if (IS_GEN_RANGE(dev_priv, 9, 11)) {
1803 I915_WRITE(GEN8_OA_DEBUG,
1804 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
1805 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
1806 }
1807
1808 /*
1809 * Update all contexts prior writing the mux configurations as we need
1810 * to make sure all slices/subslices are ON before writing to NOA
1811 * registers.
1812 */
1813 ret = gen8_configure_all_contexts(dev_priv, oa_config);
1814 if (ret)
1815 return ret;
1816
1817 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1818
1819 config_oa_regs(dev_priv, oa_config->b_counter_regs,
1820 oa_config->b_counter_regs_len);
1821
1822 return 0;
1823 }
1824
1825 static void gen8_disable_metric_set(struct drm_i915_private *dev_priv)
1826 {
1827 /* Reset all contexts' slices/subslices configurations. */
1828 gen8_configure_all_contexts(dev_priv, NULL);
1829
1830 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1831 ~GT_NOA_ENABLE));
1832 }
1833
1834 static void gen10_disable_metric_set(struct drm_i915_private *dev_priv)
1835 {
1836 /* Reset all contexts' slices/subslices configurations. */
1837 gen8_configure_all_contexts(dev_priv, NULL);
1838
1839 /* Make sure we disable noa to save power. */
1840 I915_WRITE(RPM_CONFIG1,
1841 I915_READ(RPM_CONFIG1) & ~GEN10_GT_NOA_ENABLE);
1842 }
1843
1844 static void gen7_oa_enable(struct i915_perf_stream *stream)
1845 {
1846 struct drm_i915_private *dev_priv = stream->dev_priv;
1847 struct i915_gem_context *ctx = stream->ctx;
1848 u32 ctx_id = dev_priv->perf.oa.specific_ctx_id;
1849 bool periodic = dev_priv->perf.oa.periodic;
1850 u32 period_exponent = dev_priv->perf.oa.period_exponent;
1851 u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1852
1853 /*
1854 * Reset buf pointers so we don't forward reports from before now.
1855 *
1856 * Think carefully if considering trying to avoid this, since it
1857 * also ensures status flags and the buffer itself are cleared
1858 * in error paths, and we have checks for invalid reports based
1859 * on the assumption that certain fields are written to zeroed
1860 * memory which this helps maintains.
1861 */
1862 gen7_init_oa_buffer(dev_priv);
1863
1864 I915_WRITE(GEN7_OACONTROL,
1865 (ctx_id & GEN7_OACONTROL_CTX_MASK) |
1866 (period_exponent <<
1867 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
1868 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
1869 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
1870 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
1871 GEN7_OACONTROL_ENABLE);
1872 }
1873
1874 static void gen8_oa_enable(struct i915_perf_stream *stream)
1875 {
1876 struct drm_i915_private *dev_priv = stream->dev_priv;
1877 u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1878
1879 /*
1880 * Reset buf pointers so we don't forward reports from before now.
1881 *
1882 * Think carefully if considering trying to avoid this, since it
1883 * also ensures status flags and the buffer itself are cleared
1884 * in error paths, and we have checks for invalid reports based
1885 * on the assumption that certain fields are written to zeroed
1886 * memory which this helps maintains.
1887 */
1888 gen8_init_oa_buffer(dev_priv);
1889
1890 /*
1891 * Note: we don't rely on the hardware to perform single context
1892 * filtering and instead filter on the cpu based on the context-id
1893 * field of reports
1894 */
1895 I915_WRITE(GEN8_OACONTROL, (report_format <<
1896 GEN8_OA_REPORT_FORMAT_SHIFT) |
1897 GEN8_OA_COUNTER_ENABLE);
1898 }
1899
1900 /**
1901 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
1902 * @stream: An i915 perf stream opened for OA metrics
1903 *
1904 * [Re]enables hardware periodic sampling according to the period configured
1905 * when opening the stream. This also starts a hrtimer that will periodically
1906 * check for data in the circular OA buffer for notifying userspace (e.g.
1907 * during a read() or poll()).
1908 */
1909 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
1910 {
1911 struct drm_i915_private *dev_priv = stream->dev_priv;
1912
1913 dev_priv->perf.oa.ops.oa_enable(stream);
1914
1915 if (dev_priv->perf.oa.periodic)
1916 hrtimer_start(&dev_priv->perf.oa.poll_check_timer,
1917 ns_to_ktime(POLL_PERIOD),
1918 HRTIMER_MODE_REL_PINNED);
1919 }
1920
1921 static void gen7_oa_disable(struct i915_perf_stream *stream)
1922 {
1923 struct intel_uncore *uncore = &stream->dev_priv->uncore;
1924
1925 intel_uncore_write(uncore, GEN7_OACONTROL, 0);
1926 if (intel_wait_for_register(uncore,
1927 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
1928 50))
1929 DRM_ERROR("wait for OA to be disabled timed out\n");
1930 }
1931
1932 static void gen8_oa_disable(struct i915_perf_stream *stream)
1933 {
1934 struct intel_uncore *uncore = &stream->dev_priv->uncore;
1935
1936 intel_uncore_write(uncore, GEN8_OACONTROL, 0);
1937 if (intel_wait_for_register(uncore,
1938 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
1939 50))
1940 DRM_ERROR("wait for OA to be disabled timed out\n");
1941 }
1942
1943 /**
1944 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
1945 * @stream: An i915 perf stream opened for OA metrics
1946 *
1947 * Stops the OA unit from periodically writing counter reports into the
1948 * circular OA buffer. This also stops the hrtimer that periodically checks for
1949 * data in the circular OA buffer, for notifying userspace.
1950 */
1951 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
1952 {
1953 struct drm_i915_private *dev_priv = stream->dev_priv;
1954
1955 dev_priv->perf.oa.ops.oa_disable(stream);
1956
1957 if (dev_priv->perf.oa.periodic)
1958 hrtimer_cancel(&dev_priv->perf.oa.poll_check_timer);
1959 }
1960
1961 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
1962 .destroy = i915_oa_stream_destroy,
1963 .enable = i915_oa_stream_enable,
1964 .disable = i915_oa_stream_disable,
1965 .wait_unlocked = i915_oa_wait_unlocked,
1966 .poll_wait = i915_oa_poll_wait,
1967 .read = i915_oa_read,
1968 };
1969
1970 /**
1971 * i915_oa_stream_init - validate combined props for OA stream and init
1972 * @stream: An i915 perf stream
1973 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
1974 * @props: The property state that configures stream (individually validated)
1975 *
1976 * While read_properties_unlocked() validates properties in isolation it
1977 * doesn't ensure that the combination necessarily makes sense.
1978 *
1979 * At this point it has been determined that userspace wants a stream of
1980 * OA metrics, but still we need to further validate the combined
1981 * properties are OK.
1982 *
1983 * If the configuration makes sense then we can allocate memory for
1984 * a circular OA buffer and apply the requested metric set configuration.
1985 *
1986 * Returns: zero on success or a negative error code.
1987 */
1988 static int i915_oa_stream_init(struct i915_perf_stream *stream,
1989 struct drm_i915_perf_open_param *param,
1990 struct perf_open_properties *props)
1991 {
1992 struct drm_i915_private *dev_priv = stream->dev_priv;
1993 int format_size;
1994 int ret;
1995
1996 /* If the sysfs metrics/ directory wasn't registered for some
1997 * reason then don't let userspace try their luck with config
1998 * IDs
1999 */
2000 if (!dev_priv->perf.metrics_kobj) {
2001 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2002 return -EINVAL;
2003 }
2004
2005 if (!(props->sample_flags & SAMPLE_OA_REPORT)) {
2006 DRM_DEBUG("Only OA report sampling supported\n");
2007 return -EINVAL;
2008 }
2009
2010 if (!dev_priv->perf.oa.ops.enable_metric_set) {
2011 DRM_DEBUG("OA unit not supported\n");
2012 return -ENODEV;
2013 }
2014
2015 /* To avoid the complexity of having to accurately filter
2016 * counter reports and marshal to the appropriate client
2017 * we currently only allow exclusive access
2018 */
2019 if (dev_priv->perf.oa.exclusive_stream) {
2020 DRM_DEBUG("OA unit already in use\n");
2021 return -EBUSY;
2022 }
2023
2024 if (!props->oa_format) {
2025 DRM_DEBUG("OA report format not specified\n");
2026 return -EINVAL;
2027 }
2028
2029 /* We set up some ratelimit state to potentially throttle any _NOTES
2030 * about spurious, invalid OA reports which we don't forward to
2031 * userspace.
2032 *
2033 * The initialization is associated with opening the stream (not driver
2034 * init) considering we print a _NOTE about any throttling when closing
2035 * the stream instead of waiting until driver _fini which no one would
2036 * ever see.
2037 *
2038 * Using the same limiting factors as printk_ratelimit()
2039 */
2040 ratelimit_state_init(&dev_priv->perf.oa.spurious_report_rs,
2041 5 * HZ, 10);
2042 /* Since we use a DRM_NOTE for spurious reports it would be
2043 * inconsistent to let __ratelimit() automatically print a warning for
2044 * throttling.
2045 */
2046 ratelimit_set_flags(&dev_priv->perf.oa.spurious_report_rs,
2047 RATELIMIT_MSG_ON_RELEASE);
2048
2049 stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2050
2051 format_size = dev_priv->perf.oa.oa_formats[props->oa_format].size;
2052
2053 stream->sample_flags |= SAMPLE_OA_REPORT;
2054 stream->sample_size += format_size;
2055
2056 dev_priv->perf.oa.oa_buffer.format_size = format_size;
2057 if (WARN_ON(dev_priv->perf.oa.oa_buffer.format_size == 0))
2058 return -EINVAL;
2059
2060 dev_priv->perf.oa.oa_buffer.format =
2061 dev_priv->perf.oa.oa_formats[props->oa_format].format;
2062
2063 dev_priv->perf.oa.periodic = props->oa_periodic;
2064 if (dev_priv->perf.oa.periodic)
2065 dev_priv->perf.oa.period_exponent = props->oa_period_exponent;
2066
2067 if (stream->ctx) {
2068 ret = oa_get_render_ctx_id(stream);
2069 if (ret) {
2070 DRM_DEBUG("Invalid context id to filter with\n");
2071 return ret;
2072 }
2073 }
2074
2075 ret = get_oa_config(dev_priv, props->metrics_set, &stream->oa_config);
2076 if (ret) {
2077 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2078 goto err_config;
2079 }
2080
2081 /* PRM - observability performance counters:
2082 *
2083 * OACONTROL, performance counter enable, note:
2084 *
2085 * "When this bit is set, in order to have coherent counts,
2086 * RC6 power state and trunk clock gating must be disabled.
2087 * This can be achieved by programming MMIO registers as
2088 * 0xA094=0 and 0xA090[31]=1"
2089 *
2090 * In our case we are expecting that taking pm + FORCEWAKE
2091 * references will effectively disable RC6.
2092 */
2093 stream->wakeref = intel_runtime_pm_get(dev_priv);
2094 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
2095
2096 ret = alloc_oa_buffer(dev_priv);
2097 if (ret)
2098 goto err_oa_buf_alloc;
2099
2100 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
2101 if (ret)
2102 goto err_lock;
2103
2104 stream->ops = &i915_oa_stream_ops;
2105 dev_priv->perf.oa.exclusive_stream = stream;
2106
2107 ret = dev_priv->perf.oa.ops.enable_metric_set(stream);
2108 if (ret) {
2109 DRM_DEBUG("Unable to enable metric set\n");
2110 goto err_enable;
2111 }
2112
2113 mutex_unlock(&dev_priv->drm.struct_mutex);
2114
2115 return 0;
2116
2117 err_enable:
2118 dev_priv->perf.oa.exclusive_stream = NULL;
2119 dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
2120 mutex_unlock(&dev_priv->drm.struct_mutex);
2121
2122 err_lock:
2123 free_oa_buffer(dev_priv);
2124
2125 err_oa_buf_alloc:
2126 put_oa_config(dev_priv, stream->oa_config);
2127
2128 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
2129 intel_runtime_pm_put(dev_priv, stream->wakeref);
2130
2131 err_config:
2132 if (stream->ctx)
2133 oa_put_render_ctx_id(stream);
2134
2135 return ret;
2136 }
2137
2138 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
2139 struct intel_context *ce,
2140 u32 *regs)
2141 {
2142 struct i915_perf_stream *stream;
2143
2144 if (engine->class != RENDER_CLASS)
2145 return;
2146
2147 stream = engine->i915->perf.oa.exclusive_stream;
2148 if (stream)
2149 gen8_update_reg_state_unlocked(ce, regs, stream->oa_config);
2150 }
2151
2152 /**
2153 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
2154 * @stream: An i915 perf stream
2155 * @file: An i915 perf stream file
2156 * @buf: destination buffer given by userspace
2157 * @count: the number of bytes userspace wants to read
2158 * @ppos: (inout) file seek position (unused)
2159 *
2160 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
2161 * ensure that if we've successfully copied any data then reporting that takes
2162 * precedence over any internal error status, so the data isn't lost.
2163 *
2164 * For example ret will be -ENOSPC whenever there is more buffered data than
2165 * can be copied to userspace, but that's only interesting if we weren't able
2166 * to copy some data because it implies the userspace buffer is too small to
2167 * receive a single record (and we never split records).
2168 *
2169 * Another case with ret == -EFAULT is more of a grey area since it would seem
2170 * like bad form for userspace to ask us to overrun its buffer, but the user
2171 * knows best:
2172 *
2173 * http://yarchive.net/comp/linux/partial_reads_writes.html
2174 *
2175 * Returns: The number of bytes copied or a negative error code on failure.
2176 */
2177 static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
2178 struct file *file,
2179 char __user *buf,
2180 size_t count,
2181 loff_t *ppos)
2182 {
2183 /* Note we keep the offset (aka bytes read) separate from any
2184 * error status so that the final check for whether we return
2185 * the bytes read with a higher precedence than any error (see
2186 * comment below) doesn't need to be handled/duplicated in
2187 * stream->ops->read() implementations.
2188 */
2189 size_t offset = 0;
2190 int ret = stream->ops->read(stream, buf, count, &offset);
2191
2192 return offset ?: (ret ?: -EAGAIN);
2193 }
2194
2195 /**
2196 * i915_perf_read - handles read() FOP for i915 perf stream FDs
2197 * @file: An i915 perf stream file
2198 * @buf: destination buffer given by userspace
2199 * @count: the number of bytes userspace wants to read
2200 * @ppos: (inout) file seek position (unused)
2201 *
2202 * The entry point for handling a read() on a stream file descriptor from
2203 * userspace. Most of the work is left to the i915_perf_read_locked() and
2204 * &i915_perf_stream_ops->read but to save having stream implementations (of
2205 * which we might have multiple later) we handle blocking read here.
2206 *
2207 * We can also consistently treat trying to read from a disabled stream
2208 * as an IO error so implementations can assume the stream is enabled
2209 * while reading.
2210 *
2211 * Returns: The number of bytes copied or a negative error code on failure.
2212 */
2213 static ssize_t i915_perf_read(struct file *file,
2214 char __user *buf,
2215 size_t count,
2216 loff_t *ppos)
2217 {
2218 struct i915_perf_stream *stream = file->private_data;
2219 struct drm_i915_private *dev_priv = stream->dev_priv;
2220 ssize_t ret;
2221
2222 /* To ensure it's handled consistently we simply treat all reads of a
2223 * disabled stream as an error. In particular it might otherwise lead
2224 * to a deadlock for blocking file descriptors...
2225 */
2226 if (!stream->enabled)
2227 return -EIO;
2228
2229 if (!(file->f_flags & O_NONBLOCK)) {
2230 /* There's the small chance of false positives from
2231 * stream->ops->wait_unlocked.
2232 *
2233 * E.g. with single context filtering since we only wait until
2234 * oabuffer has >= 1 report we don't immediately know whether
2235 * any reports really belong to the current context
2236 */
2237 do {
2238 ret = stream->ops->wait_unlocked(stream);
2239 if (ret)
2240 return ret;
2241
2242 mutex_lock(&dev_priv->perf.lock);
2243 ret = i915_perf_read_locked(stream, file,
2244 buf, count, ppos);
2245 mutex_unlock(&dev_priv->perf.lock);
2246 } while (ret == -EAGAIN);
2247 } else {
2248 mutex_lock(&dev_priv->perf.lock);
2249 ret = i915_perf_read_locked(stream, file, buf, count, ppos);
2250 mutex_unlock(&dev_priv->perf.lock);
2251 }
2252
2253 /* We allow the poll checking to sometimes report false positive EPOLLIN
2254 * events where we might actually report EAGAIN on read() if there's
2255 * not really any data available. In this situation though we don't
2256 * want to enter a busy loop between poll() reporting a EPOLLIN event
2257 * and read() returning -EAGAIN. Clearing the oa.pollin state here
2258 * effectively ensures we back off until the next hrtimer callback
2259 * before reporting another EPOLLIN event.
2260 */
2261 if (ret >= 0 || ret == -EAGAIN) {
2262 /* Maybe make ->pollin per-stream state if we support multiple
2263 * concurrent streams in the future.
2264 */
2265 dev_priv->perf.oa.pollin = false;
2266 }
2267
2268 return ret;
2269 }
2270
2271 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
2272 {
2273 struct drm_i915_private *dev_priv =
2274 container_of(hrtimer, typeof(*dev_priv),
2275 perf.oa.poll_check_timer);
2276
2277 if (oa_buffer_check_unlocked(dev_priv)) {
2278 dev_priv->perf.oa.pollin = true;
2279 wake_up(&dev_priv->perf.oa.poll_wq);
2280 }
2281
2282 hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));
2283
2284 return HRTIMER_RESTART;
2285 }
2286
2287 /**
2288 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
2289 * @dev_priv: i915 device instance
2290 * @stream: An i915 perf stream
2291 * @file: An i915 perf stream file
2292 * @wait: poll() state table
2293 *
2294 * For handling userspace polling on an i915 perf stream, this calls through to
2295 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
2296 * will be woken for new stream data.
2297 *
2298 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2299 * with any non-file-operation driver hooks.
2300 *
2301 * Returns: any poll events that are ready without sleeping
2302 */
2303 static __poll_t i915_perf_poll_locked(struct drm_i915_private *dev_priv,
2304 struct i915_perf_stream *stream,
2305 struct file *file,
2306 poll_table *wait)
2307 {
2308 __poll_t events = 0;
2309
2310 stream->ops->poll_wait(stream, file, wait);
2311
2312 /* Note: we don't explicitly check whether there's something to read
2313 * here since this path may be very hot depending on what else
2314 * userspace is polling, or on the timeout in use. We rely solely on
2315 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
2316 * samples to read.
2317 */
2318 if (dev_priv->perf.oa.pollin)
2319 events |= EPOLLIN;
2320
2321 return events;
2322 }
2323
2324 /**
2325 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
2326 * @file: An i915 perf stream file
2327 * @wait: poll() state table
2328 *
2329 * For handling userspace polling on an i915 perf stream, this ensures
2330 * poll_wait() gets called with a wait queue that will be woken for new stream
2331 * data.
2332 *
2333 * Note: Implementation deferred to i915_perf_poll_locked()
2334 *
2335 * Returns: any poll events that are ready without sleeping
2336 */
2337 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
2338 {
2339 struct i915_perf_stream *stream = file->private_data;
2340 struct drm_i915_private *dev_priv = stream->dev_priv;
2341 __poll_t ret;
2342
2343 mutex_lock(&dev_priv->perf.lock);
2344 ret = i915_perf_poll_locked(dev_priv, stream, file, wait);
2345 mutex_unlock(&dev_priv->perf.lock);
2346
2347 return ret;
2348 }
2349
2350 /**
2351 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
2352 * @stream: A disabled i915 perf stream
2353 *
2354 * [Re]enables the associated capture of data for this stream.
2355 *
2356 * If a stream was previously enabled then there's currently no intention
2357 * to provide userspace any guarantee about the preservation of previously
2358 * buffered data.
2359 */
2360 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
2361 {
2362 if (stream->enabled)
2363 return;
2364
2365 /* Allow stream->ops->enable() to refer to this */
2366 stream->enabled = true;
2367
2368 if (stream->ops->enable)
2369 stream->ops->enable(stream);
2370 }
2371
2372 /**
2373 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
2374 * @stream: An enabled i915 perf stream
2375 *
2376 * Disables the associated capture of data for this stream.
2377 *
2378 * The intention is that disabling an re-enabling a stream will ideally be
2379 * cheaper than destroying and re-opening a stream with the same configuration,
2380 * though there are no formal guarantees about what state or buffered data
2381 * must be retained between disabling and re-enabling a stream.
2382 *
2383 * Note: while a stream is disabled it's considered an error for userspace
2384 * to attempt to read from the stream (-EIO).
2385 */
2386 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
2387 {
2388 if (!stream->enabled)
2389 return;
2390
2391 /* Allow stream->ops->disable() to refer to this */
2392 stream->enabled = false;
2393
2394 if (stream->ops->disable)
2395 stream->ops->disable(stream);
2396 }
2397
2398 /**
2399 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2400 * @stream: An i915 perf stream
2401 * @cmd: the ioctl request
2402 * @arg: the ioctl data
2403 *
2404 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2405 * with any non-file-operation driver hooks.
2406 *
2407 * Returns: zero on success or a negative error code. Returns -EINVAL for
2408 * an unknown ioctl request.
2409 */
2410 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
2411 unsigned int cmd,
2412 unsigned long arg)
2413 {
2414 switch (cmd) {
2415 case I915_PERF_IOCTL_ENABLE:
2416 i915_perf_enable_locked(stream);
2417 return 0;
2418 case I915_PERF_IOCTL_DISABLE:
2419 i915_perf_disable_locked(stream);
2420 return 0;
2421 }
2422
2423 return -EINVAL;
2424 }
2425
2426 /**
2427 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2428 * @file: An i915 perf stream file
2429 * @cmd: the ioctl request
2430 * @arg: the ioctl data
2431 *
2432 * Implementation deferred to i915_perf_ioctl_locked().
2433 *
2434 * Returns: zero on success or a negative error code. Returns -EINVAL for
2435 * an unknown ioctl request.
2436 */
2437 static long i915_perf_ioctl(struct file *file,
2438 unsigned int cmd,
2439 unsigned long arg)
2440 {
2441 struct i915_perf_stream *stream = file->private_data;
2442 struct drm_i915_private *dev_priv = stream->dev_priv;
2443 long ret;
2444
2445 mutex_lock(&dev_priv->perf.lock);
2446 ret = i915_perf_ioctl_locked(stream, cmd, arg);
2447 mutex_unlock(&dev_priv->perf.lock);
2448
2449 return ret;
2450 }
2451
2452 /**
2453 * i915_perf_destroy_locked - destroy an i915 perf stream
2454 * @stream: An i915 perf stream
2455 *
2456 * Frees all resources associated with the given i915 perf @stream, disabling
2457 * any associated data capture in the process.
2458 *
2459 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2460 * with any non-file-operation driver hooks.
2461 */
2462 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
2463 {
2464 if (stream->enabled)
2465 i915_perf_disable_locked(stream);
2466
2467 if (stream->ops->destroy)
2468 stream->ops->destroy(stream);
2469
2470 list_del(&stream->link);
2471
2472 if (stream->ctx)
2473 i915_gem_context_put(stream->ctx);
2474
2475 kfree(stream);
2476 }
2477
2478 /**
2479 * i915_perf_release - handles userspace close() of a stream file
2480 * @inode: anonymous inode associated with file
2481 * @file: An i915 perf stream file
2482 *
2483 * Cleans up any resources associated with an open i915 perf stream file.
2484 *
2485 * NB: close() can't really fail from the userspace point of view.
2486 *
2487 * Returns: zero on success or a negative error code.
2488 */
2489 static int i915_perf_release(struct inode *inode, struct file *file)
2490 {
2491 struct i915_perf_stream *stream = file->private_data;
2492 struct drm_i915_private *dev_priv = stream->dev_priv;
2493
2494 mutex_lock(&dev_priv->perf.lock);
2495 i915_perf_destroy_locked(stream);
2496 mutex_unlock(&dev_priv->perf.lock);
2497
2498 return 0;
2499 }
2500
2501
2502 static const struct file_operations fops = {
2503 .owner = THIS_MODULE,
2504 .llseek = no_llseek,
2505 .release = i915_perf_release,
2506 .poll = i915_perf_poll,
2507 .read = i915_perf_read,
2508 .unlocked_ioctl = i915_perf_ioctl,
2509 /* Our ioctl have no arguments, so it's safe to use the same function
2510 * to handle 32bits compatibility.
2511 */
2512 .compat_ioctl = i915_perf_ioctl,
2513 };
2514
2515
2516 /**
2517 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
2518 * @dev_priv: i915 device instance
2519 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
2520 * @props: individually validated u64 property value pairs
2521 * @file: drm file
2522 *
2523 * See i915_perf_ioctl_open() for interface details.
2524 *
2525 * Implements further stream config validation and stream initialization on
2526 * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex
2527 * taken to serialize with any non-file-operation driver hooks.
2528 *
2529 * Note: at this point the @props have only been validated in isolation and
2530 * it's still necessary to validate that the combination of properties makes
2531 * sense.
2532 *
2533 * In the case where userspace is interested in OA unit metrics then further
2534 * config validation and stream initialization details will be handled by
2535 * i915_oa_stream_init(). The code here should only validate config state that
2536 * will be relevant to all stream types / backends.
2537 *
2538 * Returns: zero on success or a negative error code.
2539 */
2540 static int
2541 i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv,
2542 struct drm_i915_perf_open_param *param,
2543 struct perf_open_properties *props,
2544 struct drm_file *file)
2545 {
2546 struct i915_gem_context *specific_ctx = NULL;
2547 struct i915_perf_stream *stream = NULL;
2548 unsigned long f_flags = 0;
2549 bool privileged_op = true;
2550 int stream_fd;
2551 int ret;
2552
2553 if (props->single_context) {
2554 u32 ctx_handle = props->ctx_handle;
2555 struct drm_i915_file_private *file_priv = file->driver_priv;
2556
2557 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
2558 if (!specific_ctx) {
2559 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
2560 ctx_handle);
2561 ret = -ENOENT;
2562 goto err;
2563 }
2564 }
2565
2566 /*
2567 * On Haswell the OA unit supports clock gating off for a specific
2568 * context and in this mode there's no visibility of metrics for the
2569 * rest of the system, which we consider acceptable for a
2570 * non-privileged client.
2571 *
2572 * For Gen8+ the OA unit no longer supports clock gating off for a
2573 * specific context and the kernel can't securely stop the counters
2574 * from updating as system-wide / global values. Even though we can
2575 * filter reports based on the included context ID we can't block
2576 * clients from seeing the raw / global counter values via
2577 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
2578 * enable the OA unit by default.
2579 */
2580 if (IS_HASWELL(dev_priv) && specific_ctx)
2581 privileged_op = false;
2582
2583 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
2584 * we check a dev.i915.perf_stream_paranoid sysctl option
2585 * to determine if it's ok to access system wide OA counters
2586 * without CAP_SYS_ADMIN privileges.
2587 */
2588 if (privileged_op &&
2589 i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
2590 DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n");
2591 ret = -EACCES;
2592 goto err_ctx;
2593 }
2594
2595 stream = kzalloc(sizeof(*stream), GFP_KERNEL);
2596 if (!stream) {
2597 ret = -ENOMEM;
2598 goto err_ctx;
2599 }
2600
2601 stream->dev_priv = dev_priv;
2602 stream->ctx = specific_ctx;
2603
2604 ret = i915_oa_stream_init(stream, param, props);
2605 if (ret)
2606 goto err_alloc;
2607
2608 /* we avoid simply assigning stream->sample_flags = props->sample_flags
2609 * to have _stream_init check the combination of sample flags more
2610 * thoroughly, but still this is the expected result at this point.
2611 */
2612 if (WARN_ON(stream->sample_flags != props->sample_flags)) {
2613 ret = -ENODEV;
2614 goto err_flags;
2615 }
2616
2617 list_add(&stream->link, &dev_priv->perf.streams);
2618
2619 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
2620 f_flags |= O_CLOEXEC;
2621 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
2622 f_flags |= O_NONBLOCK;
2623
2624 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
2625 if (stream_fd < 0) {
2626 ret = stream_fd;
2627 goto err_open;
2628 }
2629
2630 if (!(param->flags & I915_PERF_FLAG_DISABLED))
2631 i915_perf_enable_locked(stream);
2632
2633 return stream_fd;
2634
2635 err_open:
2636 list_del(&stream->link);
2637 err_flags:
2638 if (stream->ops->destroy)
2639 stream->ops->destroy(stream);
2640 err_alloc:
2641 kfree(stream);
2642 err_ctx:
2643 if (specific_ctx)
2644 i915_gem_context_put(specific_ctx);
2645 err:
2646 return ret;
2647 }
2648
2649 static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent)
2650 {
2651 return div64_u64(1000000000ULL * (2ULL << exponent),
2652 1000ULL * RUNTIME_INFO(dev_priv)->cs_timestamp_frequency_khz);
2653 }
2654
2655 /**
2656 * read_properties_unlocked - validate + copy userspace stream open properties
2657 * @dev_priv: i915 device instance
2658 * @uprops: The array of u64 key value pairs given by userspace
2659 * @n_props: The number of key value pairs expected in @uprops
2660 * @props: The stream configuration built up while validating properties
2661 *
2662 * Note this function only validates properties in isolation it doesn't
2663 * validate that the combination of properties makes sense or that all
2664 * properties necessary for a particular kind of stream have been set.
2665 *
2666 * Note that there currently aren't any ordering requirements for properties so
2667 * we shouldn't validate or assume anything about ordering here. This doesn't
2668 * rule out defining new properties with ordering requirements in the future.
2669 */
2670 static int read_properties_unlocked(struct drm_i915_private *dev_priv,
2671 u64 __user *uprops,
2672 u32 n_props,
2673 struct perf_open_properties *props)
2674 {
2675 u64 __user *uprop = uprops;
2676 u32 i;
2677
2678 memset(props, 0, sizeof(struct perf_open_properties));
2679
2680 if (!n_props) {
2681 DRM_DEBUG("No i915 perf properties given\n");
2682 return -EINVAL;
2683 }
2684
2685 /* Considering that ID = 0 is reserved and assuming that we don't
2686 * (currently) expect any configurations to ever specify duplicate
2687 * values for a particular property ID then the last _PROP_MAX value is
2688 * one greater than the maximum number of properties we expect to get
2689 * from userspace.
2690 */
2691 if (n_props >= DRM_I915_PERF_PROP_MAX) {
2692 DRM_DEBUG("More i915 perf properties specified than exist\n");
2693 return -EINVAL;
2694 }
2695
2696 for (i = 0; i < n_props; i++) {
2697 u64 oa_period, oa_freq_hz;
2698 u64 id, value;
2699 int ret;
2700
2701 ret = get_user(id, uprop);
2702 if (ret)
2703 return ret;
2704
2705 ret = get_user(value, uprop + 1);
2706 if (ret)
2707 return ret;
2708
2709 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
2710 DRM_DEBUG("Unknown i915 perf property ID\n");
2711 return -EINVAL;
2712 }
2713
2714 switch ((enum drm_i915_perf_property_id)id) {
2715 case DRM_I915_PERF_PROP_CTX_HANDLE:
2716 props->single_context = 1;
2717 props->ctx_handle = value;
2718 break;
2719 case DRM_I915_PERF_PROP_SAMPLE_OA:
2720 if (value)
2721 props->sample_flags |= SAMPLE_OA_REPORT;
2722 break;
2723 case DRM_I915_PERF_PROP_OA_METRICS_SET:
2724 if (value == 0) {
2725 DRM_DEBUG("Unknown OA metric set ID\n");
2726 return -EINVAL;
2727 }
2728 props->metrics_set = value;
2729 break;
2730 case DRM_I915_PERF_PROP_OA_FORMAT:
2731 if (value == 0 || value >= I915_OA_FORMAT_MAX) {
2732 DRM_DEBUG("Out-of-range OA report format %llu\n",
2733 value);
2734 return -EINVAL;
2735 }
2736 if (!dev_priv->perf.oa.oa_formats[value].size) {
2737 DRM_DEBUG("Unsupported OA report format %llu\n",
2738 value);
2739 return -EINVAL;
2740 }
2741 props->oa_format = value;
2742 break;
2743 case DRM_I915_PERF_PROP_OA_EXPONENT:
2744 if (value > OA_EXPONENT_MAX) {
2745 DRM_DEBUG("OA timer exponent too high (> %u)\n",
2746 OA_EXPONENT_MAX);
2747 return -EINVAL;
2748 }
2749
2750 /* Theoretically we can program the OA unit to sample
2751 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
2752 * for BXT. We don't allow such high sampling
2753 * frequencies by default unless root.
2754 */
2755
2756 BUILD_BUG_ON(sizeof(oa_period) != 8);
2757 oa_period = oa_exponent_to_ns(dev_priv, value);
2758
2759 /* This check is primarily to ensure that oa_period <=
2760 * UINT32_MAX (before passing to do_div which only
2761 * accepts a u32 denominator), but we can also skip
2762 * checking anything < 1Hz which implicitly can't be
2763 * limited via an integer oa_max_sample_rate.
2764 */
2765 if (oa_period <= NSEC_PER_SEC) {
2766 u64 tmp = NSEC_PER_SEC;
2767 do_div(tmp, oa_period);
2768 oa_freq_hz = tmp;
2769 } else
2770 oa_freq_hz = 0;
2771
2772 if (oa_freq_hz > i915_oa_max_sample_rate &&
2773 !capable(CAP_SYS_ADMIN)) {
2774 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
2775 i915_oa_max_sample_rate);
2776 return -EACCES;
2777 }
2778
2779 props->oa_periodic = true;
2780 props->oa_period_exponent = value;
2781 break;
2782 case DRM_I915_PERF_PROP_MAX:
2783 MISSING_CASE(id);
2784 return -EINVAL;
2785 }
2786
2787 uprop += 2;
2788 }
2789
2790 return 0;
2791 }
2792
2793 /**
2794 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
2795 * @dev: drm device
2796 * @data: ioctl data copied from userspace (unvalidated)
2797 * @file: drm file
2798 *
2799 * Validates the stream open parameters given by userspace including flags
2800 * and an array of u64 key, value pair properties.
2801 *
2802 * Very little is assumed up front about the nature of the stream being
2803 * opened (for instance we don't assume it's for periodic OA unit metrics). An
2804 * i915-perf stream is expected to be a suitable interface for other forms of
2805 * buffered data written by the GPU besides periodic OA metrics.
2806 *
2807 * Note we copy the properties from userspace outside of the i915 perf
2808 * mutex to avoid an awkward lockdep with mmap_sem.
2809 *
2810 * Most of the implementation details are handled by
2811 * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock
2812 * mutex for serializing with any non-file-operation driver hooks.
2813 *
2814 * Return: A newly opened i915 Perf stream file descriptor or negative
2815 * error code on failure.
2816 */
2817 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
2818 struct drm_file *file)
2819 {
2820 struct drm_i915_private *dev_priv = dev->dev_private;
2821 struct drm_i915_perf_open_param *param = data;
2822 struct perf_open_properties props;
2823 u32 known_open_flags;
2824 int ret;
2825
2826 if (!dev_priv->perf.initialized) {
2827 DRM_DEBUG("i915 perf interface not available for this system\n");
2828 return -ENOTSUPP;
2829 }
2830
2831 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
2832 I915_PERF_FLAG_FD_NONBLOCK |
2833 I915_PERF_FLAG_DISABLED;
2834 if (param->flags & ~known_open_flags) {
2835 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
2836 return -EINVAL;
2837 }
2838
2839 ret = read_properties_unlocked(dev_priv,
2840 u64_to_user_ptr(param->properties_ptr),
2841 param->num_properties,
2842 &props);
2843 if (ret)
2844 return ret;
2845
2846 mutex_lock(&dev_priv->perf.lock);
2847 ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file);
2848 mutex_unlock(&dev_priv->perf.lock);
2849
2850 return ret;
2851 }
2852
2853 /**
2854 * i915_perf_register - exposes i915-perf to userspace
2855 * @dev_priv: i915 device instance
2856 *
2857 * In particular OA metric sets are advertised under a sysfs metrics/
2858 * directory allowing userspace to enumerate valid IDs that can be
2859 * used to open an i915-perf stream.
2860 */
2861 void i915_perf_register(struct drm_i915_private *dev_priv)
2862 {
2863 int ret;
2864
2865 if (!dev_priv->perf.initialized)
2866 return;
2867
2868 /* To be sure we're synchronized with an attempted
2869 * i915_perf_open_ioctl(); considering that we register after
2870 * being exposed to userspace.
2871 */
2872 mutex_lock(&dev_priv->perf.lock);
2873
2874 dev_priv->perf.metrics_kobj =
2875 kobject_create_and_add("metrics",
2876 &dev_priv->drm.primary->kdev->kobj);
2877 if (!dev_priv->perf.metrics_kobj)
2878 goto exit;
2879
2880 sysfs_attr_init(&dev_priv->perf.oa.test_config.sysfs_metric_id.attr);
2881
2882 if (INTEL_GEN(dev_priv) >= 11) {
2883 i915_perf_load_test_config_icl(dev_priv);
2884 } else if (IS_CANNONLAKE(dev_priv)) {
2885 i915_perf_load_test_config_cnl(dev_priv);
2886 } else if (IS_COFFEELAKE(dev_priv)) {
2887 if (IS_CFL_GT2(dev_priv))
2888 i915_perf_load_test_config_cflgt2(dev_priv);
2889 if (IS_CFL_GT3(dev_priv))
2890 i915_perf_load_test_config_cflgt3(dev_priv);
2891 } else if (IS_GEMINILAKE(dev_priv)) {
2892 i915_perf_load_test_config_glk(dev_priv);
2893 } else if (IS_KABYLAKE(dev_priv)) {
2894 if (IS_KBL_GT2(dev_priv))
2895 i915_perf_load_test_config_kblgt2(dev_priv);
2896 else if (IS_KBL_GT3(dev_priv))
2897 i915_perf_load_test_config_kblgt3(dev_priv);
2898 } else if (IS_BROXTON(dev_priv)) {
2899 i915_perf_load_test_config_bxt(dev_priv);
2900 } else if (IS_SKYLAKE(dev_priv)) {
2901 if (IS_SKL_GT2(dev_priv))
2902 i915_perf_load_test_config_sklgt2(dev_priv);
2903 else if (IS_SKL_GT3(dev_priv))
2904 i915_perf_load_test_config_sklgt3(dev_priv);
2905 else if (IS_SKL_GT4(dev_priv))
2906 i915_perf_load_test_config_sklgt4(dev_priv);
2907 } else if (IS_CHERRYVIEW(dev_priv)) {
2908 i915_perf_load_test_config_chv(dev_priv);
2909 } else if (IS_BROADWELL(dev_priv)) {
2910 i915_perf_load_test_config_bdw(dev_priv);
2911 } else if (IS_HASWELL(dev_priv)) {
2912 i915_perf_load_test_config_hsw(dev_priv);
2913 }
2914
2915 if (dev_priv->perf.oa.test_config.id == 0)
2916 goto sysfs_error;
2917
2918 ret = sysfs_create_group(dev_priv->perf.metrics_kobj,
2919 &dev_priv->perf.oa.test_config.sysfs_metric);
2920 if (ret)
2921 goto sysfs_error;
2922
2923 atomic_set(&dev_priv->perf.oa.test_config.ref_count, 1);
2924
2925 goto exit;
2926
2927 sysfs_error:
2928 kobject_put(dev_priv->perf.metrics_kobj);
2929 dev_priv->perf.metrics_kobj = NULL;
2930
2931 exit:
2932 mutex_unlock(&dev_priv->perf.lock);
2933 }
2934
2935 /**
2936 * i915_perf_unregister - hide i915-perf from userspace
2937 * @dev_priv: i915 device instance
2938 *
2939 * i915-perf state cleanup is split up into an 'unregister' and
2940 * 'deinit' phase where the interface is first hidden from
2941 * userspace by i915_perf_unregister() before cleaning up
2942 * remaining state in i915_perf_fini().
2943 */
2944 void i915_perf_unregister(struct drm_i915_private *dev_priv)
2945 {
2946 if (!dev_priv->perf.metrics_kobj)
2947 return;
2948
2949 sysfs_remove_group(dev_priv->perf.metrics_kobj,
2950 &dev_priv->perf.oa.test_config.sysfs_metric);
2951
2952 kobject_put(dev_priv->perf.metrics_kobj);
2953 dev_priv->perf.metrics_kobj = NULL;
2954 }
2955
2956 static bool gen8_is_valid_flex_addr(struct drm_i915_private *dev_priv, u32 addr)
2957 {
2958 static const i915_reg_t flex_eu_regs[] = {
2959 EU_PERF_CNTL0,
2960 EU_PERF_CNTL1,
2961 EU_PERF_CNTL2,
2962 EU_PERF_CNTL3,
2963 EU_PERF_CNTL4,
2964 EU_PERF_CNTL5,
2965 EU_PERF_CNTL6,
2966 };
2967 int i;
2968
2969 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
2970 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
2971 return true;
2972 }
2973 return false;
2974 }
2975
2976 static bool gen7_is_valid_b_counter_addr(struct drm_i915_private *dev_priv, u32 addr)
2977 {
2978 return (addr >= i915_mmio_reg_offset(OASTARTTRIG1) &&
2979 addr <= i915_mmio_reg_offset(OASTARTTRIG8)) ||
2980 (addr >= i915_mmio_reg_offset(OAREPORTTRIG1) &&
2981 addr <= i915_mmio_reg_offset(OAREPORTTRIG8)) ||
2982 (addr >= i915_mmio_reg_offset(OACEC0_0) &&
2983 addr <= i915_mmio_reg_offset(OACEC7_1));
2984 }
2985
2986 static bool gen7_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
2987 {
2988 return addr == i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) ||
2989 (addr >= i915_mmio_reg_offset(MICRO_BP0_0) &&
2990 addr <= i915_mmio_reg_offset(NOA_WRITE)) ||
2991 (addr >= i915_mmio_reg_offset(OA_PERFCNT1_LO) &&
2992 addr <= i915_mmio_reg_offset(OA_PERFCNT2_HI)) ||
2993 (addr >= i915_mmio_reg_offset(OA_PERFMATRIX_LO) &&
2994 addr <= i915_mmio_reg_offset(OA_PERFMATRIX_HI));
2995 }
2996
2997 static bool gen8_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
2998 {
2999 return gen7_is_valid_mux_addr(dev_priv, addr) ||
3000 addr == i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) ||
3001 (addr >= i915_mmio_reg_offset(RPM_CONFIG0) &&
3002 addr <= i915_mmio_reg_offset(NOA_CONFIG(8)));
3003 }
3004
3005 static bool gen10_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3006 {
3007 return gen8_is_valid_mux_addr(dev_priv, addr) ||
3008 (addr >= i915_mmio_reg_offset(OA_PERFCNT3_LO) &&
3009 addr <= i915_mmio_reg_offset(OA_PERFCNT4_HI));
3010 }
3011
3012 static bool hsw_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3013 {
3014 return gen7_is_valid_mux_addr(dev_priv, addr) ||
3015 (addr >= 0x25100 && addr <= 0x2FF90) ||
3016 (addr >= i915_mmio_reg_offset(HSW_MBVID2_NOA0) &&
3017 addr <= i915_mmio_reg_offset(HSW_MBVID2_NOA9)) ||
3018 addr == i915_mmio_reg_offset(HSW_MBVID2_MISR0);
3019 }
3020
3021 static bool chv_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3022 {
3023 return gen7_is_valid_mux_addr(dev_priv, addr) ||
3024 (addr >= 0x182300 && addr <= 0x1823A4);
3025 }
3026
3027 static u32 mask_reg_value(u32 reg, u32 val)
3028 {
3029 /* HALF_SLICE_CHICKEN2 is programmed with a the
3030 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3031 * programmed by userspace doesn't change this.
3032 */
3033 if (i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) == reg)
3034 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3035
3036 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3037 * indicated by its name and a bunch of selection fields used by OA
3038 * configs.
3039 */
3040 if (i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) == reg)
3041 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3042
3043 return val;
3044 }
3045
3046 static struct i915_oa_reg *alloc_oa_regs(struct drm_i915_private *dev_priv,
3047 bool (*is_valid)(struct drm_i915_private *dev_priv, u32 addr),
3048 u32 __user *regs,
3049 u32 n_regs)
3050 {
3051 struct i915_oa_reg *oa_regs;
3052 int err;
3053 u32 i;
3054
3055 if (!n_regs)
3056 return NULL;
3057
3058 if (!access_ok(regs, n_regs * sizeof(u32) * 2))
3059 return ERR_PTR(-EFAULT);
3060
3061 /* No is_valid function means we're not allowing any register to be programmed. */
3062 GEM_BUG_ON(!is_valid);
3063 if (!is_valid)
3064 return ERR_PTR(-EINVAL);
3065
3066 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3067 if (!oa_regs)
3068 return ERR_PTR(-ENOMEM);
3069
3070 for (i = 0; i < n_regs; i++) {
3071 u32 addr, value;
3072
3073 err = get_user(addr, regs);
3074 if (err)
3075 goto addr_err;
3076
3077 if (!is_valid(dev_priv, addr)) {
3078 DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3079 err = -EINVAL;
3080 goto addr_err;
3081 }
3082
3083 err = get_user(value, regs + 1);
3084 if (err)
3085 goto addr_err;
3086
3087 oa_regs[i].addr = _MMIO(addr);
3088 oa_regs[i].value = mask_reg_value(addr, value);
3089
3090 regs += 2;
3091 }
3092
3093 return oa_regs;
3094
3095 addr_err:
3096 kfree(oa_regs);
3097 return ERR_PTR(err);
3098 }
3099
3100 static ssize_t show_dynamic_id(struct device *dev,
3101 struct device_attribute *attr,
3102 char *buf)
3103 {
3104 struct i915_oa_config *oa_config =
3105 container_of(attr, typeof(*oa_config), sysfs_metric_id);
3106
3107 return sprintf(buf, "%d\n", oa_config->id);
3108 }
3109
3110 static int create_dynamic_oa_sysfs_entry(struct drm_i915_private *dev_priv,
3111 struct i915_oa_config *oa_config)
3112 {
3113 sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3114 oa_config->sysfs_metric_id.attr.name = "id";
3115 oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3116 oa_config->sysfs_metric_id.show = show_dynamic_id;
3117 oa_config->sysfs_metric_id.store = NULL;
3118
3119 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3120 oa_config->attrs[1] = NULL;
3121
3122 oa_config->sysfs_metric.name = oa_config->uuid;
3123 oa_config->sysfs_metric.attrs = oa_config->attrs;
3124
3125 return sysfs_create_group(dev_priv->perf.metrics_kobj,
3126 &oa_config->sysfs_metric);
3127 }
3128
3129 /**
3130 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3131 * @dev: drm device
3132 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
3133 * userspace (unvalidated)
3134 * @file: drm file
3135 *
3136 * Validates the submitted OA register to be saved into a new OA config that
3137 * can then be used for programming the OA unit and its NOA network.
3138 *
3139 * Returns: A new allocated config number to be used with the perf open ioctl
3140 * or a negative error code on failure.
3141 */
3142 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3143 struct drm_file *file)
3144 {
3145 struct drm_i915_private *dev_priv = dev->dev_private;
3146 struct drm_i915_perf_oa_config *args = data;
3147 struct i915_oa_config *oa_config, *tmp;
3148 int err, id;
3149
3150 if (!dev_priv->perf.initialized) {
3151 DRM_DEBUG("i915 perf interface not available for this system\n");
3152 return -ENOTSUPP;
3153 }
3154
3155 if (!dev_priv->perf.metrics_kobj) {
3156 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
3157 return -EINVAL;
3158 }
3159
3160 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3161 DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
3162 return -EACCES;
3163 }
3164
3165 if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
3166 (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
3167 (!args->flex_regs_ptr || !args->n_flex_regs)) {
3168 DRM_DEBUG("No OA registers given\n");
3169 return -EINVAL;
3170 }
3171
3172 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
3173 if (!oa_config) {
3174 DRM_DEBUG("Failed to allocate memory for the OA config\n");
3175 return -ENOMEM;
3176 }
3177
3178 atomic_set(&oa_config->ref_count, 1);
3179
3180 if (!uuid_is_valid(args->uuid)) {
3181 DRM_DEBUG("Invalid uuid format for OA config\n");
3182 err = -EINVAL;
3183 goto reg_err;
3184 }
3185
3186 /* Last character in oa_config->uuid will be 0 because oa_config is
3187 * kzalloc.
3188 */
3189 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
3190
3191 oa_config->mux_regs_len = args->n_mux_regs;
3192 oa_config->mux_regs =
3193 alloc_oa_regs(dev_priv,
3194 dev_priv->perf.oa.ops.is_valid_mux_reg,
3195 u64_to_user_ptr(args->mux_regs_ptr),
3196 args->n_mux_regs);
3197
3198 if (IS_ERR(oa_config->mux_regs)) {
3199 DRM_DEBUG("Failed to create OA config for mux_regs\n");
3200 err = PTR_ERR(oa_config->mux_regs);
3201 goto reg_err;
3202 }
3203
3204 oa_config->b_counter_regs_len = args->n_boolean_regs;
3205 oa_config->b_counter_regs =
3206 alloc_oa_regs(dev_priv,
3207 dev_priv->perf.oa.ops.is_valid_b_counter_reg,
3208 u64_to_user_ptr(args->boolean_regs_ptr),
3209 args->n_boolean_regs);
3210
3211 if (IS_ERR(oa_config->b_counter_regs)) {
3212 DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
3213 err = PTR_ERR(oa_config->b_counter_regs);
3214 goto reg_err;
3215 }
3216
3217 if (INTEL_GEN(dev_priv) < 8) {
3218 if (args->n_flex_regs != 0) {
3219 err = -EINVAL;
3220 goto reg_err;
3221 }
3222 } else {
3223 oa_config->flex_regs_len = args->n_flex_regs;
3224 oa_config->flex_regs =
3225 alloc_oa_regs(dev_priv,
3226 dev_priv->perf.oa.ops.is_valid_flex_reg,
3227 u64_to_user_ptr(args->flex_regs_ptr),
3228 args->n_flex_regs);
3229
3230 if (IS_ERR(oa_config->flex_regs)) {
3231 DRM_DEBUG("Failed to create OA config for flex_regs\n");
3232 err = PTR_ERR(oa_config->flex_regs);
3233 goto reg_err;
3234 }
3235 }
3236
3237 err = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3238 if (err)
3239 goto reg_err;
3240
3241 /* We shouldn't have too many configs, so this iteration shouldn't be
3242 * too costly.
3243 */
3244 idr_for_each_entry(&dev_priv->perf.metrics_idr, tmp, id) {
3245 if (!strcmp(tmp->uuid, oa_config->uuid)) {
3246 DRM_DEBUG("OA config already exists with this uuid\n");
3247 err = -EADDRINUSE;
3248 goto sysfs_err;
3249 }
3250 }
3251
3252 err = create_dynamic_oa_sysfs_entry(dev_priv, oa_config);
3253 if (err) {
3254 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3255 goto sysfs_err;
3256 }
3257
3258 /* Config id 0 is invalid, id 1 for kernel stored test config. */
3259 oa_config->id = idr_alloc(&dev_priv->perf.metrics_idr,
3260 oa_config, 2,
3261 0, GFP_KERNEL);
3262 if (oa_config->id < 0) {
3263 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3264 err = oa_config->id;
3265 goto sysfs_err;
3266 }
3267
3268 mutex_unlock(&dev_priv->perf.metrics_lock);
3269
3270 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
3271
3272 return oa_config->id;
3273
3274 sysfs_err:
3275 mutex_unlock(&dev_priv->perf.metrics_lock);
3276 reg_err:
3277 put_oa_config(dev_priv, oa_config);
3278 DRM_DEBUG("Failed to add new OA config\n");
3279 return err;
3280 }
3281
3282 /**
3283 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
3284 * @dev: drm device
3285 * @data: ioctl data (pointer to u64 integer) copied from userspace
3286 * @file: drm file
3287 *
3288 * Configs can be removed while being used, the will stop appearing in sysfs
3289 * and their content will be freed when the stream using the config is closed.
3290 *
3291 * Returns: 0 on success or a negative error code on failure.
3292 */
3293 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3294 struct drm_file *file)
3295 {
3296 struct drm_i915_private *dev_priv = dev->dev_private;
3297 u64 *arg = data;
3298 struct i915_oa_config *oa_config;
3299 int ret;
3300
3301 if (!dev_priv->perf.initialized) {
3302 DRM_DEBUG("i915 perf interface not available for this system\n");
3303 return -ENOTSUPP;
3304 }
3305
3306 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3307 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
3308 return -EACCES;
3309 }
3310
3311 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3312 if (ret)
3313 goto lock_err;
3314
3315 oa_config = idr_find(&dev_priv->perf.metrics_idr, *arg);
3316 if (!oa_config) {
3317 DRM_DEBUG("Failed to remove unknown OA config\n");
3318 ret = -ENOENT;
3319 goto config_err;
3320 }
3321
3322 GEM_BUG_ON(*arg != oa_config->id);
3323
3324 sysfs_remove_group(dev_priv->perf.metrics_kobj,
3325 &oa_config->sysfs_metric);
3326
3327 idr_remove(&dev_priv->perf.metrics_idr, *arg);
3328
3329 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
3330
3331 put_oa_config(dev_priv, oa_config);
3332
3333 config_err:
3334 mutex_unlock(&dev_priv->perf.metrics_lock);
3335 lock_err:
3336 return ret;
3337 }
3338
3339 static struct ctl_table oa_table[] = {
3340 {
3341 .procname = "perf_stream_paranoid",
3342 .data = &i915_perf_stream_paranoid,
3343 .maxlen = sizeof(i915_perf_stream_paranoid),
3344 .mode = 0644,
3345 .proc_handler = proc_dointvec_minmax,
3346 .extra1 = &zero,
3347 .extra2 = &one,
3348 },
3349 {
3350 .procname = "oa_max_sample_rate",
3351 .data = &i915_oa_max_sample_rate,
3352 .maxlen = sizeof(i915_oa_max_sample_rate),
3353 .mode = 0644,
3354 .proc_handler = proc_dointvec_minmax,
3355 .extra1 = &zero,
3356 .extra2 = &oa_sample_rate_hard_limit,
3357 },
3358 {}
3359 };
3360
3361 static struct ctl_table i915_root[] = {
3362 {
3363 .procname = "i915",
3364 .maxlen = 0,
3365 .mode = 0555,
3366 .child = oa_table,
3367 },
3368 {}
3369 };
3370
3371 static struct ctl_table dev_root[] = {
3372 {
3373 .procname = "dev",
3374 .maxlen = 0,
3375 .mode = 0555,
3376 .child = i915_root,
3377 },
3378 {}
3379 };
3380
3381 /**
3382 * i915_perf_init - initialize i915-perf state on module load
3383 * @dev_priv: i915 device instance
3384 *
3385 * Initializes i915-perf state without exposing anything to userspace.
3386 *
3387 * Note: i915-perf initialization is split into an 'init' and 'register'
3388 * phase with the i915_perf_register() exposing state to userspace.
3389 */
3390 void i915_perf_init(struct drm_i915_private *dev_priv)
3391 {
3392 if (IS_HASWELL(dev_priv)) {
3393 dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3394 gen7_is_valid_b_counter_addr;
3395 dev_priv->perf.oa.ops.is_valid_mux_reg =
3396 hsw_is_valid_mux_addr;
3397 dev_priv->perf.oa.ops.is_valid_flex_reg = NULL;
3398 dev_priv->perf.oa.ops.enable_metric_set = hsw_enable_metric_set;
3399 dev_priv->perf.oa.ops.disable_metric_set = hsw_disable_metric_set;
3400 dev_priv->perf.oa.ops.oa_enable = gen7_oa_enable;
3401 dev_priv->perf.oa.ops.oa_disable = gen7_oa_disable;
3402 dev_priv->perf.oa.ops.read = gen7_oa_read;
3403 dev_priv->perf.oa.ops.oa_hw_tail_read =
3404 gen7_oa_hw_tail_read;
3405
3406 dev_priv->perf.oa.oa_formats = hsw_oa_formats;
3407 } else if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
3408 /* Note: that although we could theoretically also support the
3409 * legacy ringbuffer mode on BDW (and earlier iterations of
3410 * this driver, before upstreaming did this) it didn't seem
3411 * worth the complexity to maintain now that BDW+ enable
3412 * execlist mode by default.
3413 */
3414 dev_priv->perf.oa.oa_formats = gen8_plus_oa_formats;
3415
3416 dev_priv->perf.oa.ops.oa_enable = gen8_oa_enable;
3417 dev_priv->perf.oa.ops.oa_disable = gen8_oa_disable;
3418 dev_priv->perf.oa.ops.read = gen8_oa_read;
3419 dev_priv->perf.oa.ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
3420
3421 if (IS_GEN_RANGE(dev_priv, 8, 9)) {
3422 dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3423 gen7_is_valid_b_counter_addr;
3424 dev_priv->perf.oa.ops.is_valid_mux_reg =
3425 gen8_is_valid_mux_addr;
3426 dev_priv->perf.oa.ops.is_valid_flex_reg =
3427 gen8_is_valid_flex_addr;
3428
3429 if (IS_CHERRYVIEW(dev_priv)) {
3430 dev_priv->perf.oa.ops.is_valid_mux_reg =
3431 chv_is_valid_mux_addr;
3432 }
3433
3434 dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set;
3435 dev_priv->perf.oa.ops.disable_metric_set = gen8_disable_metric_set;
3436
3437 if (IS_GEN(dev_priv, 8)) {
3438 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x120;
3439 dev_priv->perf.oa.ctx_flexeu0_offset = 0x2ce;
3440
3441 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<25);
3442 } else {
3443 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128;
3444 dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de;
3445
3446 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16);
3447 }
3448 } else if (IS_GEN_RANGE(dev_priv, 10, 11)) {
3449 dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3450 gen7_is_valid_b_counter_addr;
3451 dev_priv->perf.oa.ops.is_valid_mux_reg =
3452 gen10_is_valid_mux_addr;
3453 dev_priv->perf.oa.ops.is_valid_flex_reg =
3454 gen8_is_valid_flex_addr;
3455
3456 dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set;
3457 dev_priv->perf.oa.ops.disable_metric_set = gen10_disable_metric_set;
3458
3459 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128;
3460 dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de;
3461
3462 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16);
3463 }
3464 }
3465
3466 if (dev_priv->perf.oa.ops.enable_metric_set) {
3467 hrtimer_init(&dev_priv->perf.oa.poll_check_timer,
3468 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3469 dev_priv->perf.oa.poll_check_timer.function = oa_poll_check_timer_cb;
3470 init_waitqueue_head(&dev_priv->perf.oa.poll_wq);
3471
3472 INIT_LIST_HEAD(&dev_priv->perf.streams);
3473 mutex_init(&dev_priv->perf.lock);
3474 spin_lock_init(&dev_priv->perf.oa.oa_buffer.ptr_lock);
3475
3476 oa_sample_rate_hard_limit = 1000 *
3477 (RUNTIME_INFO(dev_priv)->cs_timestamp_frequency_khz / 2);
3478 dev_priv->perf.sysctl_header = register_sysctl_table(dev_root);
3479
3480 mutex_init(&dev_priv->perf.metrics_lock);
3481 idr_init(&dev_priv->perf.metrics_idr);
3482
3483 dev_priv->perf.initialized = true;
3484 }
3485 }
3486
3487 static int destroy_config(int id, void *p, void *data)
3488 {
3489 struct drm_i915_private *dev_priv = data;
3490 struct i915_oa_config *oa_config = p;
3491
3492 put_oa_config(dev_priv, oa_config);
3493
3494 return 0;
3495 }
3496
3497 /**
3498 * i915_perf_fini - Counter part to i915_perf_init()
3499 * @dev_priv: i915 device instance
3500 */
3501 void i915_perf_fini(struct drm_i915_private *dev_priv)
3502 {
3503 if (!dev_priv->perf.initialized)
3504 return;
3505
3506 idr_for_each(&dev_priv->perf.metrics_idr, destroy_config, dev_priv);
3507 idr_destroy(&dev_priv->perf.metrics_idr);
3508
3509 unregister_sysctl_table(dev_priv->perf.sysctl_header);
3510
3511 memset(&dev_priv->perf.oa.ops, 0, sizeof(dev_priv->perf.oa.ops));
3512
3513 dev_priv->perf.initialized = false;
3514 }