]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/gpu/drm/i915/intel_dp.c
drm/i915/dp: revert back to max link rate and lane count on eDP
[thirdparty/kernel/stable.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/types.h>
32 #include <linux/notifier.h>
33 #include <linux/reboot.h>
34 #include <asm/byteorder.h>
35 #include <drm/drm_atomic_helper.h>
36 #include <drm/drm_crtc.h>
37 #include <drm/drm_dp_helper.h>
38 #include <drm/drm_edid.h>
39 #include <drm/drm_hdcp.h>
40 #include <drm/drm_probe_helper.h>
41 #include "intel_drv.h"
42 #include <drm/i915_drm.h>
43 #include "i915_drv.h"
44
45 #define DP_DPRX_ESI_LEN 14
46
47 /* DP DSC small joiner has 2 FIFOs each of 640 x 6 bytes */
48 #define DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER 61440
49 #define DP_DSC_MIN_SUPPORTED_BPC 8
50 #define DP_DSC_MAX_SUPPORTED_BPC 10
51
52 /* DP DSC throughput values used for slice count calculations KPixels/s */
53 #define DP_DSC_PEAK_PIXEL_RATE 2720000
54 #define DP_DSC_MAX_ENC_THROUGHPUT_0 340000
55 #define DP_DSC_MAX_ENC_THROUGHPUT_1 400000
56
57 /* DP DSC FEC Overhead factor = (100 - 2.4)/100 */
58 #define DP_DSC_FEC_OVERHEAD_FACTOR 976
59
60 /* Compliance test status bits */
61 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
62 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
63 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
64 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
65
66 struct dp_link_dpll {
67 int clock;
68 struct dpll dpll;
69 };
70
71 static const struct dp_link_dpll g4x_dpll[] = {
72 { 162000,
73 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
74 { 270000,
75 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
76 };
77
78 static const struct dp_link_dpll pch_dpll[] = {
79 { 162000,
80 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
81 { 270000,
82 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
83 };
84
85 static const struct dp_link_dpll vlv_dpll[] = {
86 { 162000,
87 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
88 { 270000,
89 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
90 };
91
92 /*
93 * CHV supports eDP 1.4 that have more link rates.
94 * Below only provides the fixed rate but exclude variable rate.
95 */
96 static const struct dp_link_dpll chv_dpll[] = {
97 /*
98 * CHV requires to program fractional division for m2.
99 * m2 is stored in fixed point format using formula below
100 * (m2_int << 22) | m2_fraction
101 */
102 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
103 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
104 { 270000, /* m2_int = 27, m2_fraction = 0 */
105 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
106 };
107
108 /* Constants for DP DSC configurations */
109 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
110
111 /* With Single pipe configuration, HW is capable of supporting maximum
112 * of 4 slices per line.
113 */
114 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
115
116 /**
117 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
118 * @intel_dp: DP struct
119 *
120 * If a CPU or PCH DP output is attached to an eDP panel, this function
121 * will return true, and false otherwise.
122 */
123 bool intel_dp_is_edp(struct intel_dp *intel_dp)
124 {
125 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
126
127 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
128 }
129
130 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
131 {
132 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
133 }
134
135 static void intel_dp_link_down(struct intel_encoder *encoder,
136 const struct intel_crtc_state *old_crtc_state);
137 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
138 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
139 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
140 const struct intel_crtc_state *crtc_state);
141 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
142 enum pipe pipe);
143 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
144
145 /* update sink rates from dpcd */
146 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
147 {
148 static const int dp_rates[] = {
149 162000, 270000, 540000, 810000
150 };
151 int i, max_rate;
152
153 max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
154
155 for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
156 if (dp_rates[i] > max_rate)
157 break;
158 intel_dp->sink_rates[i] = dp_rates[i];
159 }
160
161 intel_dp->num_sink_rates = i;
162 }
163
164 /* Get length of rates array potentially limited by max_rate. */
165 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
166 {
167 int i;
168
169 /* Limit results by potentially reduced max rate */
170 for (i = 0; i < len; i++) {
171 if (rates[len - i - 1] <= max_rate)
172 return len - i;
173 }
174
175 return 0;
176 }
177
178 /* Get length of common rates array potentially limited by max_rate. */
179 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
180 int max_rate)
181 {
182 return intel_dp_rate_limit_len(intel_dp->common_rates,
183 intel_dp->num_common_rates, max_rate);
184 }
185
186 /* Theoretical max between source and sink */
187 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
188 {
189 return intel_dp->common_rates[intel_dp->num_common_rates - 1];
190 }
191
192 static int intel_dp_get_fia_supported_lane_count(struct intel_dp *intel_dp)
193 {
194 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
195 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
196 enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
197 u32 lane_info;
198
199 if (tc_port == PORT_TC_NONE || dig_port->tc_type != TC_PORT_TYPEC)
200 return 4;
201
202 lane_info = (I915_READ(PORT_TX_DFLEXDPSP) &
203 DP_LANE_ASSIGNMENT_MASK(tc_port)) >>
204 DP_LANE_ASSIGNMENT_SHIFT(tc_port);
205
206 switch (lane_info) {
207 default:
208 MISSING_CASE(lane_info);
209 case 1:
210 case 2:
211 case 4:
212 case 8:
213 return 1;
214 case 3:
215 case 12:
216 return 2;
217 case 15:
218 return 4;
219 }
220 }
221
222 /* Theoretical max between source and sink */
223 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
224 {
225 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
226 int source_max = intel_dig_port->max_lanes;
227 int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
228 int fia_max = intel_dp_get_fia_supported_lane_count(intel_dp);
229
230 return min3(source_max, sink_max, fia_max);
231 }
232
233 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
234 {
235 return intel_dp->max_link_lane_count;
236 }
237
238 int
239 intel_dp_link_required(int pixel_clock, int bpp)
240 {
241 /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
242 return DIV_ROUND_UP(pixel_clock * bpp, 8);
243 }
244
245 int
246 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
247 {
248 /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
249 * link rate that is generally expressed in Gbps. Since, 8 bits of data
250 * is transmitted every LS_Clk per lane, there is no need to account for
251 * the channel encoding that is done in the PHY layer here.
252 */
253
254 return max_link_clock * max_lanes;
255 }
256
257 static int
258 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
259 {
260 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
261 struct intel_encoder *encoder = &intel_dig_port->base;
262 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
263 int max_dotclk = dev_priv->max_dotclk_freq;
264 int ds_max_dotclk;
265
266 int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
267
268 if (type != DP_DS_PORT_TYPE_VGA)
269 return max_dotclk;
270
271 ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
272 intel_dp->downstream_ports);
273
274 if (ds_max_dotclk != 0)
275 max_dotclk = min(max_dotclk, ds_max_dotclk);
276
277 return max_dotclk;
278 }
279
280 static int cnl_max_source_rate(struct intel_dp *intel_dp)
281 {
282 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
283 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
284 enum port port = dig_port->base.port;
285
286 u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
287
288 /* Low voltage SKUs are limited to max of 5.4G */
289 if (voltage == VOLTAGE_INFO_0_85V)
290 return 540000;
291
292 /* For this SKU 8.1G is supported in all ports */
293 if (IS_CNL_WITH_PORT_F(dev_priv))
294 return 810000;
295
296 /* For other SKUs, max rate on ports A and D is 5.4G */
297 if (port == PORT_A || port == PORT_D)
298 return 540000;
299
300 return 810000;
301 }
302
303 static int icl_max_source_rate(struct intel_dp *intel_dp)
304 {
305 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
306 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
307 enum port port = dig_port->base.port;
308
309 if (intel_port_is_combophy(dev_priv, port) &&
310 !intel_dp_is_edp(intel_dp))
311 return 540000;
312
313 return 810000;
314 }
315
316 static void
317 intel_dp_set_source_rates(struct intel_dp *intel_dp)
318 {
319 /* The values must be in increasing order */
320 static const int cnl_rates[] = {
321 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
322 };
323 static const int bxt_rates[] = {
324 162000, 216000, 243000, 270000, 324000, 432000, 540000
325 };
326 static const int skl_rates[] = {
327 162000, 216000, 270000, 324000, 432000, 540000
328 };
329 static const int hsw_rates[] = {
330 162000, 270000, 540000
331 };
332 static const int g4x_rates[] = {
333 162000, 270000
334 };
335 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
336 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
337 const struct ddi_vbt_port_info *info =
338 &dev_priv->vbt.ddi_port_info[dig_port->base.port];
339 const int *source_rates;
340 int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
341
342 /* This should only be done once */
343 WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);
344
345 if (INTEL_GEN(dev_priv) >= 10) {
346 source_rates = cnl_rates;
347 size = ARRAY_SIZE(cnl_rates);
348 if (IS_GEN(dev_priv, 10))
349 max_rate = cnl_max_source_rate(intel_dp);
350 else
351 max_rate = icl_max_source_rate(intel_dp);
352 } else if (IS_GEN9_LP(dev_priv)) {
353 source_rates = bxt_rates;
354 size = ARRAY_SIZE(bxt_rates);
355 } else if (IS_GEN9_BC(dev_priv)) {
356 source_rates = skl_rates;
357 size = ARRAY_SIZE(skl_rates);
358 } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
359 IS_BROADWELL(dev_priv)) {
360 source_rates = hsw_rates;
361 size = ARRAY_SIZE(hsw_rates);
362 } else {
363 source_rates = g4x_rates;
364 size = ARRAY_SIZE(g4x_rates);
365 }
366
367 if (max_rate && vbt_max_rate)
368 max_rate = min(max_rate, vbt_max_rate);
369 else if (vbt_max_rate)
370 max_rate = vbt_max_rate;
371
372 if (max_rate)
373 size = intel_dp_rate_limit_len(source_rates, size, max_rate);
374
375 intel_dp->source_rates = source_rates;
376 intel_dp->num_source_rates = size;
377 }
378
379 static int intersect_rates(const int *source_rates, int source_len,
380 const int *sink_rates, int sink_len,
381 int *common_rates)
382 {
383 int i = 0, j = 0, k = 0;
384
385 while (i < source_len && j < sink_len) {
386 if (source_rates[i] == sink_rates[j]) {
387 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
388 return k;
389 common_rates[k] = source_rates[i];
390 ++k;
391 ++i;
392 ++j;
393 } else if (source_rates[i] < sink_rates[j]) {
394 ++i;
395 } else {
396 ++j;
397 }
398 }
399 return k;
400 }
401
402 /* return index of rate in rates array, or -1 if not found */
403 static int intel_dp_rate_index(const int *rates, int len, int rate)
404 {
405 int i;
406
407 for (i = 0; i < len; i++)
408 if (rate == rates[i])
409 return i;
410
411 return -1;
412 }
413
414 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
415 {
416 WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
417
418 intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
419 intel_dp->num_source_rates,
420 intel_dp->sink_rates,
421 intel_dp->num_sink_rates,
422 intel_dp->common_rates);
423
424 /* Paranoia, there should always be something in common. */
425 if (WARN_ON(intel_dp->num_common_rates == 0)) {
426 intel_dp->common_rates[0] = 162000;
427 intel_dp->num_common_rates = 1;
428 }
429 }
430
431 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
432 u8 lane_count)
433 {
434 /*
435 * FIXME: we need to synchronize the current link parameters with
436 * hardware readout. Currently fast link training doesn't work on
437 * boot-up.
438 */
439 if (link_rate == 0 ||
440 link_rate > intel_dp->max_link_rate)
441 return false;
442
443 if (lane_count == 0 ||
444 lane_count > intel_dp_max_lane_count(intel_dp))
445 return false;
446
447 return true;
448 }
449
450 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
451 int link_rate,
452 u8 lane_count)
453 {
454 const struct drm_display_mode *fixed_mode =
455 intel_dp->attached_connector->panel.fixed_mode;
456 int mode_rate, max_rate;
457
458 mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
459 max_rate = intel_dp_max_data_rate(link_rate, lane_count);
460 if (mode_rate > max_rate)
461 return false;
462
463 return true;
464 }
465
466 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
467 int link_rate, u8 lane_count)
468 {
469 int index;
470
471 index = intel_dp_rate_index(intel_dp->common_rates,
472 intel_dp->num_common_rates,
473 link_rate);
474 if (index > 0) {
475 if (intel_dp_is_edp(intel_dp) &&
476 !intel_dp_can_link_train_fallback_for_edp(intel_dp,
477 intel_dp->common_rates[index - 1],
478 lane_count)) {
479 DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
480 return 0;
481 }
482 intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
483 intel_dp->max_link_lane_count = lane_count;
484 } else if (lane_count > 1) {
485 if (intel_dp_is_edp(intel_dp) &&
486 !intel_dp_can_link_train_fallback_for_edp(intel_dp,
487 intel_dp_max_common_rate(intel_dp),
488 lane_count >> 1)) {
489 DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
490 return 0;
491 }
492 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
493 intel_dp->max_link_lane_count = lane_count >> 1;
494 } else {
495 DRM_ERROR("Link Training Unsuccessful\n");
496 return -1;
497 }
498
499 return 0;
500 }
501
502 static enum drm_mode_status
503 intel_dp_mode_valid(struct drm_connector *connector,
504 struct drm_display_mode *mode)
505 {
506 struct intel_dp *intel_dp = intel_attached_dp(connector);
507 struct intel_connector *intel_connector = to_intel_connector(connector);
508 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
509 struct drm_i915_private *dev_priv = to_i915(connector->dev);
510 int target_clock = mode->clock;
511 int max_rate, mode_rate, max_lanes, max_link_clock;
512 int max_dotclk;
513 u16 dsc_max_output_bpp = 0;
514 u8 dsc_slice_count = 0;
515
516 if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
517 return MODE_NO_DBLESCAN;
518
519 max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
520
521 if (intel_dp_is_edp(intel_dp) && fixed_mode) {
522 if (mode->hdisplay > fixed_mode->hdisplay)
523 return MODE_PANEL;
524
525 if (mode->vdisplay > fixed_mode->vdisplay)
526 return MODE_PANEL;
527
528 target_clock = fixed_mode->clock;
529 }
530
531 max_link_clock = intel_dp_max_link_rate(intel_dp);
532 max_lanes = intel_dp_max_lane_count(intel_dp);
533
534 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
535 mode_rate = intel_dp_link_required(target_clock, 18);
536
537 /*
538 * Output bpp is stored in 6.4 format so right shift by 4 to get the
539 * integer value since we support only integer values of bpp.
540 */
541 if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
542 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
543 if (intel_dp_is_edp(intel_dp)) {
544 dsc_max_output_bpp =
545 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
546 dsc_slice_count =
547 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
548 true);
549 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
550 dsc_max_output_bpp =
551 intel_dp_dsc_get_output_bpp(max_link_clock,
552 max_lanes,
553 target_clock,
554 mode->hdisplay) >> 4;
555 dsc_slice_count =
556 intel_dp_dsc_get_slice_count(intel_dp,
557 target_clock,
558 mode->hdisplay);
559 }
560 }
561
562 if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
563 target_clock > max_dotclk)
564 return MODE_CLOCK_HIGH;
565
566 if (mode->clock < 10000)
567 return MODE_CLOCK_LOW;
568
569 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
570 return MODE_H_ILLEGAL;
571
572 return MODE_OK;
573 }
574
575 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
576 {
577 int i;
578 u32 v = 0;
579
580 if (src_bytes > 4)
581 src_bytes = 4;
582 for (i = 0; i < src_bytes; i++)
583 v |= ((u32)src[i]) << ((3 - i) * 8);
584 return v;
585 }
586
587 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
588 {
589 int i;
590 if (dst_bytes > 4)
591 dst_bytes = 4;
592 for (i = 0; i < dst_bytes; i++)
593 dst[i] = src >> ((3-i) * 8);
594 }
595
596 static void
597 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
598 static void
599 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
600 bool force_disable_vdd);
601 static void
602 intel_dp_pps_init(struct intel_dp *intel_dp);
603
604 static intel_wakeref_t
605 pps_lock(struct intel_dp *intel_dp)
606 {
607 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
608 intel_wakeref_t wakeref;
609
610 /*
611 * See intel_power_sequencer_reset() why we need
612 * a power domain reference here.
613 */
614 wakeref = intel_display_power_get(dev_priv,
615 intel_aux_power_domain(dp_to_dig_port(intel_dp)));
616
617 mutex_lock(&dev_priv->pps_mutex);
618
619 return wakeref;
620 }
621
622 static intel_wakeref_t
623 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
624 {
625 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
626
627 mutex_unlock(&dev_priv->pps_mutex);
628 intel_display_power_put(dev_priv,
629 intel_aux_power_domain(dp_to_dig_port(intel_dp)),
630 wakeref);
631 return 0;
632 }
633
634 #define with_pps_lock(dp, wf) \
635 for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
636
637 static void
638 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
639 {
640 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
641 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
642 enum pipe pipe = intel_dp->pps_pipe;
643 bool pll_enabled, release_cl_override = false;
644 enum dpio_phy phy = DPIO_PHY(pipe);
645 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
646 u32 DP;
647
648 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
649 "skipping pipe %c power sequencer kick due to port %c being active\n",
650 pipe_name(pipe), port_name(intel_dig_port->base.port)))
651 return;
652
653 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
654 pipe_name(pipe), port_name(intel_dig_port->base.port));
655
656 /* Preserve the BIOS-computed detected bit. This is
657 * supposed to be read-only.
658 */
659 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
660 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
661 DP |= DP_PORT_WIDTH(1);
662 DP |= DP_LINK_TRAIN_PAT_1;
663
664 if (IS_CHERRYVIEW(dev_priv))
665 DP |= DP_PIPE_SEL_CHV(pipe);
666 else
667 DP |= DP_PIPE_SEL(pipe);
668
669 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
670
671 /*
672 * The DPLL for the pipe must be enabled for this to work.
673 * So enable temporarily it if it's not already enabled.
674 */
675 if (!pll_enabled) {
676 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
677 !chv_phy_powergate_ch(dev_priv, phy, ch, true);
678
679 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
680 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
681 DRM_ERROR("Failed to force on pll for pipe %c!\n",
682 pipe_name(pipe));
683 return;
684 }
685 }
686
687 /*
688 * Similar magic as in intel_dp_enable_port().
689 * We _must_ do this port enable + disable trick
690 * to make this power sequencer lock onto the port.
691 * Otherwise even VDD force bit won't work.
692 */
693 I915_WRITE(intel_dp->output_reg, DP);
694 POSTING_READ(intel_dp->output_reg);
695
696 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
697 POSTING_READ(intel_dp->output_reg);
698
699 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
700 POSTING_READ(intel_dp->output_reg);
701
702 if (!pll_enabled) {
703 vlv_force_pll_off(dev_priv, pipe);
704
705 if (release_cl_override)
706 chv_phy_powergate_ch(dev_priv, phy, ch, false);
707 }
708 }
709
710 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
711 {
712 struct intel_encoder *encoder;
713 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
714
715 /*
716 * We don't have power sequencer currently.
717 * Pick one that's not used by other ports.
718 */
719 for_each_intel_dp(&dev_priv->drm, encoder) {
720 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
721
722 if (encoder->type == INTEL_OUTPUT_EDP) {
723 WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
724 intel_dp->active_pipe != intel_dp->pps_pipe);
725
726 if (intel_dp->pps_pipe != INVALID_PIPE)
727 pipes &= ~(1 << intel_dp->pps_pipe);
728 } else {
729 WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);
730
731 if (intel_dp->active_pipe != INVALID_PIPE)
732 pipes &= ~(1 << intel_dp->active_pipe);
733 }
734 }
735
736 if (pipes == 0)
737 return INVALID_PIPE;
738
739 return ffs(pipes) - 1;
740 }
741
742 static enum pipe
743 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
744 {
745 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
746 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
747 enum pipe pipe;
748
749 lockdep_assert_held(&dev_priv->pps_mutex);
750
751 /* We should never land here with regular DP ports */
752 WARN_ON(!intel_dp_is_edp(intel_dp));
753
754 WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
755 intel_dp->active_pipe != intel_dp->pps_pipe);
756
757 if (intel_dp->pps_pipe != INVALID_PIPE)
758 return intel_dp->pps_pipe;
759
760 pipe = vlv_find_free_pps(dev_priv);
761
762 /*
763 * Didn't find one. This should not happen since there
764 * are two power sequencers and up to two eDP ports.
765 */
766 if (WARN_ON(pipe == INVALID_PIPE))
767 pipe = PIPE_A;
768
769 vlv_steal_power_sequencer(dev_priv, pipe);
770 intel_dp->pps_pipe = pipe;
771
772 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
773 pipe_name(intel_dp->pps_pipe),
774 port_name(intel_dig_port->base.port));
775
776 /* init power sequencer on this pipe and port */
777 intel_dp_init_panel_power_sequencer(intel_dp);
778 intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
779
780 /*
781 * Even vdd force doesn't work until we've made
782 * the power sequencer lock in on the port.
783 */
784 vlv_power_sequencer_kick(intel_dp);
785
786 return intel_dp->pps_pipe;
787 }
788
789 static int
790 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
791 {
792 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
793 int backlight_controller = dev_priv->vbt.backlight.controller;
794
795 lockdep_assert_held(&dev_priv->pps_mutex);
796
797 /* We should never land here with regular DP ports */
798 WARN_ON(!intel_dp_is_edp(intel_dp));
799
800 if (!intel_dp->pps_reset)
801 return backlight_controller;
802
803 intel_dp->pps_reset = false;
804
805 /*
806 * Only the HW needs to be reprogrammed, the SW state is fixed and
807 * has been setup during connector init.
808 */
809 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
810
811 return backlight_controller;
812 }
813
814 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
815 enum pipe pipe);
816
817 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
818 enum pipe pipe)
819 {
820 return I915_READ(PP_STATUS(pipe)) & PP_ON;
821 }
822
823 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
824 enum pipe pipe)
825 {
826 return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
827 }
828
829 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
830 enum pipe pipe)
831 {
832 return true;
833 }
834
835 static enum pipe
836 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
837 enum port port,
838 vlv_pipe_check pipe_check)
839 {
840 enum pipe pipe;
841
842 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
843 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
844 PANEL_PORT_SELECT_MASK;
845
846 if (port_sel != PANEL_PORT_SELECT_VLV(port))
847 continue;
848
849 if (!pipe_check(dev_priv, pipe))
850 continue;
851
852 return pipe;
853 }
854
855 return INVALID_PIPE;
856 }
857
858 static void
859 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
860 {
861 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
862 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
863 enum port port = intel_dig_port->base.port;
864
865 lockdep_assert_held(&dev_priv->pps_mutex);
866
867 /* try to find a pipe with this port selected */
868 /* first pick one where the panel is on */
869 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
870 vlv_pipe_has_pp_on);
871 /* didn't find one? pick one where vdd is on */
872 if (intel_dp->pps_pipe == INVALID_PIPE)
873 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
874 vlv_pipe_has_vdd_on);
875 /* didn't find one? pick one with just the correct port */
876 if (intel_dp->pps_pipe == INVALID_PIPE)
877 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
878 vlv_pipe_any);
879
880 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
881 if (intel_dp->pps_pipe == INVALID_PIPE) {
882 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
883 port_name(port));
884 return;
885 }
886
887 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
888 port_name(port), pipe_name(intel_dp->pps_pipe));
889
890 intel_dp_init_panel_power_sequencer(intel_dp);
891 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
892 }
893
894 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
895 {
896 struct intel_encoder *encoder;
897
898 if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
899 !IS_GEN9_LP(dev_priv)))
900 return;
901
902 /*
903 * We can't grab pps_mutex here due to deadlock with power_domain
904 * mutex when power_domain functions are called while holding pps_mutex.
905 * That also means that in order to use pps_pipe the code needs to
906 * hold both a power domain reference and pps_mutex, and the power domain
907 * reference get/put must be done while _not_ holding pps_mutex.
908 * pps_{lock,unlock}() do these steps in the correct order, so one
909 * should use them always.
910 */
911
912 for_each_intel_dp(&dev_priv->drm, encoder) {
913 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
914
915 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
916
917 if (encoder->type != INTEL_OUTPUT_EDP)
918 continue;
919
920 if (IS_GEN9_LP(dev_priv))
921 intel_dp->pps_reset = true;
922 else
923 intel_dp->pps_pipe = INVALID_PIPE;
924 }
925 }
926
927 struct pps_registers {
928 i915_reg_t pp_ctrl;
929 i915_reg_t pp_stat;
930 i915_reg_t pp_on;
931 i915_reg_t pp_off;
932 i915_reg_t pp_div;
933 };
934
935 static void intel_pps_get_registers(struct intel_dp *intel_dp,
936 struct pps_registers *regs)
937 {
938 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
939 int pps_idx = 0;
940
941 memset(regs, 0, sizeof(*regs));
942
943 if (IS_GEN9_LP(dev_priv))
944 pps_idx = bxt_power_sequencer_idx(intel_dp);
945 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
946 pps_idx = vlv_power_sequencer_pipe(intel_dp);
947
948 regs->pp_ctrl = PP_CONTROL(pps_idx);
949 regs->pp_stat = PP_STATUS(pps_idx);
950 regs->pp_on = PP_ON_DELAYS(pps_idx);
951 regs->pp_off = PP_OFF_DELAYS(pps_idx);
952 if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv) &&
953 !HAS_PCH_ICP(dev_priv))
954 regs->pp_div = PP_DIVISOR(pps_idx);
955 }
956
957 static i915_reg_t
958 _pp_ctrl_reg(struct intel_dp *intel_dp)
959 {
960 struct pps_registers regs;
961
962 intel_pps_get_registers(intel_dp, &regs);
963
964 return regs.pp_ctrl;
965 }
966
967 static i915_reg_t
968 _pp_stat_reg(struct intel_dp *intel_dp)
969 {
970 struct pps_registers regs;
971
972 intel_pps_get_registers(intel_dp, &regs);
973
974 return regs.pp_stat;
975 }
976
977 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
978 This function only applicable when panel PM state is not to be tracked */
979 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
980 void *unused)
981 {
982 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
983 edp_notifier);
984 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
985 intel_wakeref_t wakeref;
986
987 if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
988 return 0;
989
990 with_pps_lock(intel_dp, wakeref) {
991 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
992 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
993 i915_reg_t pp_ctrl_reg, pp_div_reg;
994 u32 pp_div;
995
996 pp_ctrl_reg = PP_CONTROL(pipe);
997 pp_div_reg = PP_DIVISOR(pipe);
998 pp_div = I915_READ(pp_div_reg);
999 pp_div &= PP_REFERENCE_DIVIDER_MASK;
1000
1001 /* 0x1F write to PP_DIV_REG sets max cycle delay */
1002 I915_WRITE(pp_div_reg, pp_div | 0x1F);
1003 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS);
1004 msleep(intel_dp->panel_power_cycle_delay);
1005 }
1006 }
1007
1008 return 0;
1009 }
1010
1011 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1012 {
1013 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1014
1015 lockdep_assert_held(&dev_priv->pps_mutex);
1016
1017 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1018 intel_dp->pps_pipe == INVALID_PIPE)
1019 return false;
1020
1021 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
1022 }
1023
1024 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1025 {
1026 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1027
1028 lockdep_assert_held(&dev_priv->pps_mutex);
1029
1030 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1031 intel_dp->pps_pipe == INVALID_PIPE)
1032 return false;
1033
1034 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1035 }
1036
1037 static void
1038 intel_dp_check_edp(struct intel_dp *intel_dp)
1039 {
1040 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1041
1042 if (!intel_dp_is_edp(intel_dp))
1043 return;
1044
1045 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1046 WARN(1, "eDP powered off while attempting aux channel communication.\n");
1047 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
1048 I915_READ(_pp_stat_reg(intel_dp)),
1049 I915_READ(_pp_ctrl_reg(intel_dp)));
1050 }
1051 }
1052
1053 static u32
1054 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1055 {
1056 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1057 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1058 u32 status;
1059 bool done;
1060
1061 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1062 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
1063 msecs_to_jiffies_timeout(10));
1064
1065 /* just trace the final value */
1066 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1067
1068 if (!done)
1069 DRM_ERROR("dp aux hw did not signal timeout!\n");
1070 #undef C
1071
1072 return status;
1073 }
1074
1075 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1076 {
1077 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1078
1079 if (index)
1080 return 0;
1081
1082 /*
1083 * The clock divider is based off the hrawclk, and would like to run at
1084 * 2MHz. So, take the hrawclk value and divide by 2000 and use that
1085 */
1086 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1087 }
1088
1089 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1090 {
1091 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1092 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1093
1094 if (index)
1095 return 0;
1096
1097 /*
1098 * The clock divider is based off the cdclk or PCH rawclk, and would
1099 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and
1100 * divide by 2000 and use that
1101 */
1102 if (dig_port->aux_ch == AUX_CH_A)
1103 return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
1104 else
1105 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1106 }
1107
1108 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1109 {
1110 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1111 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1112
1113 if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1114 /* Workaround for non-ULT HSW */
1115 switch (index) {
1116 case 0: return 63;
1117 case 1: return 72;
1118 default: return 0;
1119 }
1120 }
1121
1122 return ilk_get_aux_clock_divider(intel_dp, index);
1123 }
1124
1125 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1126 {
1127 /*
1128 * SKL doesn't need us to program the AUX clock divider (Hardware will
1129 * derive the clock from CDCLK automatically). We still implement the
1130 * get_aux_clock_divider vfunc to plug-in into the existing code.
1131 */
1132 return index ? 0 : 1;
1133 }
1134
1135 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1136 int send_bytes,
1137 u32 aux_clock_divider)
1138 {
1139 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1140 struct drm_i915_private *dev_priv =
1141 to_i915(intel_dig_port->base.base.dev);
1142 u32 precharge, timeout;
1143
1144 if (IS_GEN(dev_priv, 6))
1145 precharge = 3;
1146 else
1147 precharge = 5;
1148
1149 if (IS_BROADWELL(dev_priv))
1150 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1151 else
1152 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1153
1154 return DP_AUX_CH_CTL_SEND_BUSY |
1155 DP_AUX_CH_CTL_DONE |
1156 DP_AUX_CH_CTL_INTERRUPT |
1157 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1158 timeout |
1159 DP_AUX_CH_CTL_RECEIVE_ERROR |
1160 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1161 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1162 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1163 }
1164
1165 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1166 int send_bytes,
1167 u32 unused)
1168 {
1169 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1170 u32 ret;
1171
1172 ret = DP_AUX_CH_CTL_SEND_BUSY |
1173 DP_AUX_CH_CTL_DONE |
1174 DP_AUX_CH_CTL_INTERRUPT |
1175 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1176 DP_AUX_CH_CTL_TIME_OUT_MAX |
1177 DP_AUX_CH_CTL_RECEIVE_ERROR |
1178 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1179 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1180 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1181
1182 if (intel_dig_port->tc_type == TC_PORT_TBT)
1183 ret |= DP_AUX_CH_CTL_TBT_IO;
1184
1185 return ret;
1186 }
1187
1188 static int
1189 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1190 const u8 *send, int send_bytes,
1191 u8 *recv, int recv_size,
1192 u32 aux_send_ctl_flags)
1193 {
1194 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1195 struct drm_i915_private *dev_priv =
1196 to_i915(intel_dig_port->base.base.dev);
1197 i915_reg_t ch_ctl, ch_data[5];
1198 u32 aux_clock_divider;
1199 intel_wakeref_t wakeref;
1200 int i, ret, recv_bytes;
1201 int try, clock = 0;
1202 u32 status;
1203 bool vdd;
1204
1205 ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1206 for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1207 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1208
1209 wakeref = pps_lock(intel_dp);
1210
1211 /*
1212 * We will be called with VDD already enabled for dpcd/edid/oui reads.
1213 * In such cases we want to leave VDD enabled and it's up to upper layers
1214 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1215 * ourselves.
1216 */
1217 vdd = edp_panel_vdd_on(intel_dp);
1218
1219 /* dp aux is extremely sensitive to irq latency, hence request the
1220 * lowest possible wakeup latency and so prevent the cpu from going into
1221 * deep sleep states.
1222 */
1223 pm_qos_update_request(&dev_priv->pm_qos, 0);
1224
1225 intel_dp_check_edp(intel_dp);
1226
1227 /* Try to wait for any previous AUX channel activity */
1228 for (try = 0; try < 3; try++) {
1229 status = I915_READ_NOTRACE(ch_ctl);
1230 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1231 break;
1232 msleep(1);
1233 }
1234 /* just trace the final value */
1235 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1236
1237 if (try == 3) {
1238 static u32 last_status = -1;
1239 const u32 status = I915_READ(ch_ctl);
1240
1241 if (status != last_status) {
1242 WARN(1, "dp_aux_ch not started status 0x%08x\n",
1243 status);
1244 last_status = status;
1245 }
1246
1247 ret = -EBUSY;
1248 goto out;
1249 }
1250
1251 /* Only 5 data registers! */
1252 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
1253 ret = -E2BIG;
1254 goto out;
1255 }
1256
1257 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1258 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1259 send_bytes,
1260 aux_clock_divider);
1261
1262 send_ctl |= aux_send_ctl_flags;
1263
1264 /* Must try at least 3 times according to DP spec */
1265 for (try = 0; try < 5; try++) {
1266 /* Load the send data into the aux channel data registers */
1267 for (i = 0; i < send_bytes; i += 4)
1268 I915_WRITE(ch_data[i >> 2],
1269 intel_dp_pack_aux(send + i,
1270 send_bytes - i));
1271
1272 /* Send the command and wait for it to complete */
1273 I915_WRITE(ch_ctl, send_ctl);
1274
1275 status = intel_dp_aux_wait_done(intel_dp);
1276
1277 /* Clear done status and any errors */
1278 I915_WRITE(ch_ctl,
1279 status |
1280 DP_AUX_CH_CTL_DONE |
1281 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1282 DP_AUX_CH_CTL_RECEIVE_ERROR);
1283
1284 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1285 * 400us delay required for errors and timeouts
1286 * Timeout errors from the HW already meet this
1287 * requirement so skip to next iteration
1288 */
1289 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1290 continue;
1291
1292 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1293 usleep_range(400, 500);
1294 continue;
1295 }
1296 if (status & DP_AUX_CH_CTL_DONE)
1297 goto done;
1298 }
1299 }
1300
1301 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1302 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1303 ret = -EBUSY;
1304 goto out;
1305 }
1306
1307 done:
1308 /* Check for timeout or receive error.
1309 * Timeouts occur when the sink is not connected
1310 */
1311 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1312 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1313 ret = -EIO;
1314 goto out;
1315 }
1316
1317 /* Timeouts occur when the device isn't connected, so they're
1318 * "normal" -- don't fill the kernel log with these */
1319 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1320 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1321 ret = -ETIMEDOUT;
1322 goto out;
1323 }
1324
1325 /* Unload any bytes sent back from the other side */
1326 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1327 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1328
1329 /*
1330 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1331 * We have no idea of what happened so we return -EBUSY so
1332 * drm layer takes care for the necessary retries.
1333 */
1334 if (recv_bytes == 0 || recv_bytes > 20) {
1335 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1336 recv_bytes);
1337 ret = -EBUSY;
1338 goto out;
1339 }
1340
1341 if (recv_bytes > recv_size)
1342 recv_bytes = recv_size;
1343
1344 for (i = 0; i < recv_bytes; i += 4)
1345 intel_dp_unpack_aux(I915_READ(ch_data[i >> 2]),
1346 recv + i, recv_bytes - i);
1347
1348 ret = recv_bytes;
1349 out:
1350 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
1351
1352 if (vdd)
1353 edp_panel_vdd_off(intel_dp, false);
1354
1355 pps_unlock(intel_dp, wakeref);
1356
1357 return ret;
1358 }
1359
1360 #define BARE_ADDRESS_SIZE 3
1361 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
1362
1363 static void
1364 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1365 const struct drm_dp_aux_msg *msg)
1366 {
1367 txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1368 txbuf[1] = (msg->address >> 8) & 0xff;
1369 txbuf[2] = msg->address & 0xff;
1370 txbuf[3] = msg->size - 1;
1371 }
1372
1373 static ssize_t
1374 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1375 {
1376 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1377 u8 txbuf[20], rxbuf[20];
1378 size_t txsize, rxsize;
1379 int ret;
1380
1381 intel_dp_aux_header(txbuf, msg);
1382
1383 switch (msg->request & ~DP_AUX_I2C_MOT) {
1384 case DP_AUX_NATIVE_WRITE:
1385 case DP_AUX_I2C_WRITE:
1386 case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1387 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1388 rxsize = 2; /* 0 or 1 data bytes */
1389
1390 if (WARN_ON(txsize > 20))
1391 return -E2BIG;
1392
1393 WARN_ON(!msg->buffer != !msg->size);
1394
1395 if (msg->buffer)
1396 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1397
1398 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1399 rxbuf, rxsize, 0);
1400 if (ret > 0) {
1401 msg->reply = rxbuf[0] >> 4;
1402
1403 if (ret > 1) {
1404 /* Number of bytes written in a short write. */
1405 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1406 } else {
1407 /* Return payload size. */
1408 ret = msg->size;
1409 }
1410 }
1411 break;
1412
1413 case DP_AUX_NATIVE_READ:
1414 case DP_AUX_I2C_READ:
1415 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1416 rxsize = msg->size + 1;
1417
1418 if (WARN_ON(rxsize > 20))
1419 return -E2BIG;
1420
1421 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1422 rxbuf, rxsize, 0);
1423 if (ret > 0) {
1424 msg->reply = rxbuf[0] >> 4;
1425 /*
1426 * Assume happy day, and copy the data. The caller is
1427 * expected to check msg->reply before touching it.
1428 *
1429 * Return payload size.
1430 */
1431 ret--;
1432 memcpy(msg->buffer, rxbuf + 1, ret);
1433 }
1434 break;
1435
1436 default:
1437 ret = -EINVAL;
1438 break;
1439 }
1440
1441 return ret;
1442 }
1443
1444
1445 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1446 {
1447 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1448 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1449 enum aux_ch aux_ch = dig_port->aux_ch;
1450
1451 switch (aux_ch) {
1452 case AUX_CH_B:
1453 case AUX_CH_C:
1454 case AUX_CH_D:
1455 return DP_AUX_CH_CTL(aux_ch);
1456 default:
1457 MISSING_CASE(aux_ch);
1458 return DP_AUX_CH_CTL(AUX_CH_B);
1459 }
1460 }
1461
1462 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1463 {
1464 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1465 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1466 enum aux_ch aux_ch = dig_port->aux_ch;
1467
1468 switch (aux_ch) {
1469 case AUX_CH_B:
1470 case AUX_CH_C:
1471 case AUX_CH_D:
1472 return DP_AUX_CH_DATA(aux_ch, index);
1473 default:
1474 MISSING_CASE(aux_ch);
1475 return DP_AUX_CH_DATA(AUX_CH_B, index);
1476 }
1477 }
1478
1479 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1480 {
1481 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1482 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1483 enum aux_ch aux_ch = dig_port->aux_ch;
1484
1485 switch (aux_ch) {
1486 case AUX_CH_A:
1487 return DP_AUX_CH_CTL(aux_ch);
1488 case AUX_CH_B:
1489 case AUX_CH_C:
1490 case AUX_CH_D:
1491 return PCH_DP_AUX_CH_CTL(aux_ch);
1492 default:
1493 MISSING_CASE(aux_ch);
1494 return DP_AUX_CH_CTL(AUX_CH_A);
1495 }
1496 }
1497
1498 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1499 {
1500 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1501 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1502 enum aux_ch aux_ch = dig_port->aux_ch;
1503
1504 switch (aux_ch) {
1505 case AUX_CH_A:
1506 return DP_AUX_CH_DATA(aux_ch, index);
1507 case AUX_CH_B:
1508 case AUX_CH_C:
1509 case AUX_CH_D:
1510 return PCH_DP_AUX_CH_DATA(aux_ch, index);
1511 default:
1512 MISSING_CASE(aux_ch);
1513 return DP_AUX_CH_DATA(AUX_CH_A, index);
1514 }
1515 }
1516
1517 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1518 {
1519 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1520 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1521 enum aux_ch aux_ch = dig_port->aux_ch;
1522
1523 switch (aux_ch) {
1524 case AUX_CH_A:
1525 case AUX_CH_B:
1526 case AUX_CH_C:
1527 case AUX_CH_D:
1528 case AUX_CH_E:
1529 case AUX_CH_F:
1530 return DP_AUX_CH_CTL(aux_ch);
1531 default:
1532 MISSING_CASE(aux_ch);
1533 return DP_AUX_CH_CTL(AUX_CH_A);
1534 }
1535 }
1536
1537 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1538 {
1539 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1540 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1541 enum aux_ch aux_ch = dig_port->aux_ch;
1542
1543 switch (aux_ch) {
1544 case AUX_CH_A:
1545 case AUX_CH_B:
1546 case AUX_CH_C:
1547 case AUX_CH_D:
1548 case AUX_CH_E:
1549 case AUX_CH_F:
1550 return DP_AUX_CH_DATA(aux_ch, index);
1551 default:
1552 MISSING_CASE(aux_ch);
1553 return DP_AUX_CH_DATA(AUX_CH_A, index);
1554 }
1555 }
1556
1557 static void
1558 intel_dp_aux_fini(struct intel_dp *intel_dp)
1559 {
1560 kfree(intel_dp->aux.name);
1561 }
1562
1563 static void
1564 intel_dp_aux_init(struct intel_dp *intel_dp)
1565 {
1566 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1567 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1568 struct intel_encoder *encoder = &dig_port->base;
1569
1570 if (INTEL_GEN(dev_priv) >= 9) {
1571 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1572 intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1573 } else if (HAS_PCH_SPLIT(dev_priv)) {
1574 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1575 intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1576 } else {
1577 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1578 intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1579 }
1580
1581 if (INTEL_GEN(dev_priv) >= 9)
1582 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1583 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1584 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1585 else if (HAS_PCH_SPLIT(dev_priv))
1586 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1587 else
1588 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1589
1590 if (INTEL_GEN(dev_priv) >= 9)
1591 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1592 else
1593 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1594
1595 drm_dp_aux_init(&intel_dp->aux);
1596
1597 /* Failure to allocate our preferred name is not critical */
1598 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
1599 port_name(encoder->port));
1600 intel_dp->aux.transfer = intel_dp_aux_transfer;
1601 }
1602
1603 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1604 {
1605 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1606
1607 return max_rate >= 540000;
1608 }
1609
1610 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1611 {
1612 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1613
1614 return max_rate >= 810000;
1615 }
1616
1617 static void
1618 intel_dp_set_clock(struct intel_encoder *encoder,
1619 struct intel_crtc_state *pipe_config)
1620 {
1621 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1622 const struct dp_link_dpll *divisor = NULL;
1623 int i, count = 0;
1624
1625 if (IS_G4X(dev_priv)) {
1626 divisor = g4x_dpll;
1627 count = ARRAY_SIZE(g4x_dpll);
1628 } else if (HAS_PCH_SPLIT(dev_priv)) {
1629 divisor = pch_dpll;
1630 count = ARRAY_SIZE(pch_dpll);
1631 } else if (IS_CHERRYVIEW(dev_priv)) {
1632 divisor = chv_dpll;
1633 count = ARRAY_SIZE(chv_dpll);
1634 } else if (IS_VALLEYVIEW(dev_priv)) {
1635 divisor = vlv_dpll;
1636 count = ARRAY_SIZE(vlv_dpll);
1637 }
1638
1639 if (divisor && count) {
1640 for (i = 0; i < count; i++) {
1641 if (pipe_config->port_clock == divisor[i].clock) {
1642 pipe_config->dpll = divisor[i].dpll;
1643 pipe_config->clock_set = true;
1644 break;
1645 }
1646 }
1647 }
1648 }
1649
1650 static void snprintf_int_array(char *str, size_t len,
1651 const int *array, int nelem)
1652 {
1653 int i;
1654
1655 str[0] = '\0';
1656
1657 for (i = 0; i < nelem; i++) {
1658 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1659 if (r >= len)
1660 return;
1661 str += r;
1662 len -= r;
1663 }
1664 }
1665
1666 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1667 {
1668 char str[128]; /* FIXME: too big for stack? */
1669
1670 if ((drm_debug & DRM_UT_KMS) == 0)
1671 return;
1672
1673 snprintf_int_array(str, sizeof(str),
1674 intel_dp->source_rates, intel_dp->num_source_rates);
1675 DRM_DEBUG_KMS("source rates: %s\n", str);
1676
1677 snprintf_int_array(str, sizeof(str),
1678 intel_dp->sink_rates, intel_dp->num_sink_rates);
1679 DRM_DEBUG_KMS("sink rates: %s\n", str);
1680
1681 snprintf_int_array(str, sizeof(str),
1682 intel_dp->common_rates, intel_dp->num_common_rates);
1683 DRM_DEBUG_KMS("common rates: %s\n", str);
1684 }
1685
1686 int
1687 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1688 {
1689 int len;
1690
1691 len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1692 if (WARN_ON(len <= 0))
1693 return 162000;
1694
1695 return intel_dp->common_rates[len - 1];
1696 }
1697
1698 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1699 {
1700 int i = intel_dp_rate_index(intel_dp->sink_rates,
1701 intel_dp->num_sink_rates, rate);
1702
1703 if (WARN_ON(i < 0))
1704 i = 0;
1705
1706 return i;
1707 }
1708
1709 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1710 u8 *link_bw, u8 *rate_select)
1711 {
1712 /* eDP 1.4 rate select method. */
1713 if (intel_dp->use_rate_select) {
1714 *link_bw = 0;
1715 *rate_select =
1716 intel_dp_rate_select(intel_dp, port_clock);
1717 } else {
1718 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1719 *rate_select = 0;
1720 }
1721 }
1722
1723 struct link_config_limits {
1724 int min_clock, max_clock;
1725 int min_lane_count, max_lane_count;
1726 int min_bpp, max_bpp;
1727 };
1728
1729 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1730 const struct intel_crtc_state *pipe_config)
1731 {
1732 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1733
1734 return INTEL_GEN(dev_priv) >= 11 &&
1735 pipe_config->cpu_transcoder != TRANSCODER_A;
1736 }
1737
1738 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1739 const struct intel_crtc_state *pipe_config)
1740 {
1741 return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1742 drm_dp_sink_supports_fec(intel_dp->fec_capable);
1743 }
1744
1745 static bool intel_dp_source_supports_dsc(struct intel_dp *intel_dp,
1746 const struct intel_crtc_state *pipe_config)
1747 {
1748 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1749
1750 return INTEL_GEN(dev_priv) >= 10 &&
1751 pipe_config->cpu_transcoder != TRANSCODER_A;
1752 }
1753
1754 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1755 const struct intel_crtc_state *pipe_config)
1756 {
1757 if (!intel_dp_is_edp(intel_dp) && !pipe_config->fec_enable)
1758 return false;
1759
1760 return intel_dp_source_supports_dsc(intel_dp, pipe_config) &&
1761 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1762 }
1763
1764 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1765 struct intel_crtc_state *pipe_config)
1766 {
1767 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1768 struct intel_connector *intel_connector = intel_dp->attached_connector;
1769 int bpp, bpc;
1770
1771 bpp = pipe_config->pipe_bpp;
1772 bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1773
1774 if (bpc > 0)
1775 bpp = min(bpp, 3*bpc);
1776
1777 if (intel_dp_is_edp(intel_dp)) {
1778 /* Get bpp from vbt only for panels that dont have bpp in edid */
1779 if (intel_connector->base.display_info.bpc == 0 &&
1780 dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1781 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1782 dev_priv->vbt.edp.bpp);
1783 bpp = dev_priv->vbt.edp.bpp;
1784 }
1785 }
1786
1787 return bpp;
1788 }
1789
1790 /* Adjust link config limits based on compliance test requests. */
1791 static void
1792 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
1793 struct intel_crtc_state *pipe_config,
1794 struct link_config_limits *limits)
1795 {
1796 /* For DP Compliance we override the computed bpp for the pipe */
1797 if (intel_dp->compliance.test_data.bpc != 0) {
1798 int bpp = 3 * intel_dp->compliance.test_data.bpc;
1799
1800 limits->min_bpp = limits->max_bpp = bpp;
1801 pipe_config->dither_force_disable = bpp == 6 * 3;
1802
1803 DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
1804 }
1805
1806 /* Use values requested by Compliance Test Request */
1807 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1808 int index;
1809
1810 /* Validate the compliance test data since max values
1811 * might have changed due to link train fallback.
1812 */
1813 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1814 intel_dp->compliance.test_lane_count)) {
1815 index = intel_dp_rate_index(intel_dp->common_rates,
1816 intel_dp->num_common_rates,
1817 intel_dp->compliance.test_link_rate);
1818 if (index >= 0)
1819 limits->min_clock = limits->max_clock = index;
1820 limits->min_lane_count = limits->max_lane_count =
1821 intel_dp->compliance.test_lane_count;
1822 }
1823 }
1824 }
1825
1826 /* Optimize link config in order: max bpp, min clock, min lanes */
1827 static int
1828 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
1829 struct intel_crtc_state *pipe_config,
1830 const struct link_config_limits *limits)
1831 {
1832 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1833 int bpp, clock, lane_count;
1834 int mode_rate, link_clock, link_avail;
1835
1836 for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
1837 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1838 bpp);
1839
1840 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
1841 for (lane_count = limits->min_lane_count;
1842 lane_count <= limits->max_lane_count;
1843 lane_count <<= 1) {
1844 link_clock = intel_dp->common_rates[clock];
1845 link_avail = intel_dp_max_data_rate(link_clock,
1846 lane_count);
1847
1848 if (mode_rate <= link_avail) {
1849 pipe_config->lane_count = lane_count;
1850 pipe_config->pipe_bpp = bpp;
1851 pipe_config->port_clock = link_clock;
1852
1853 return 0;
1854 }
1855 }
1856 }
1857 }
1858
1859 return -EINVAL;
1860 }
1861
1862 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
1863 {
1864 int i, num_bpc;
1865 u8 dsc_bpc[3] = {0};
1866
1867 num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
1868 dsc_bpc);
1869 for (i = 0; i < num_bpc; i++) {
1870 if (dsc_max_bpc >= dsc_bpc[i])
1871 return dsc_bpc[i] * 3;
1872 }
1873
1874 return 0;
1875 }
1876
1877 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
1878 struct intel_crtc_state *pipe_config,
1879 struct drm_connector_state *conn_state,
1880 struct link_config_limits *limits)
1881 {
1882 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1883 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
1884 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1885 u8 dsc_max_bpc;
1886 int pipe_bpp;
1887 int ret;
1888
1889 if (!intel_dp_supports_dsc(intel_dp, pipe_config))
1890 return -EINVAL;
1891
1892 dsc_max_bpc = min_t(u8, DP_DSC_MAX_SUPPORTED_BPC,
1893 conn_state->max_requested_bpc);
1894
1895 pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
1896 if (pipe_bpp < DP_DSC_MIN_SUPPORTED_BPC * 3) {
1897 DRM_DEBUG_KMS("No DSC support for less than 8bpc\n");
1898 return -EINVAL;
1899 }
1900
1901 /*
1902 * For now enable DSC for max bpp, max link rate, max lane count.
1903 * Optimize this later for the minimum possible link rate/lane count
1904 * with DSC enabled for the requested mode.
1905 */
1906 pipe_config->pipe_bpp = pipe_bpp;
1907 pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
1908 pipe_config->lane_count = limits->max_lane_count;
1909
1910 if (intel_dp_is_edp(intel_dp)) {
1911 pipe_config->dsc_params.compressed_bpp =
1912 min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
1913 pipe_config->pipe_bpp);
1914 pipe_config->dsc_params.slice_count =
1915 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
1916 true);
1917 } else {
1918 u16 dsc_max_output_bpp;
1919 u8 dsc_dp_slice_count;
1920
1921 dsc_max_output_bpp =
1922 intel_dp_dsc_get_output_bpp(pipe_config->port_clock,
1923 pipe_config->lane_count,
1924 adjusted_mode->crtc_clock,
1925 adjusted_mode->crtc_hdisplay);
1926 dsc_dp_slice_count =
1927 intel_dp_dsc_get_slice_count(intel_dp,
1928 adjusted_mode->crtc_clock,
1929 adjusted_mode->crtc_hdisplay);
1930 if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
1931 DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n");
1932 return -EINVAL;
1933 }
1934 pipe_config->dsc_params.compressed_bpp = min_t(u16,
1935 dsc_max_output_bpp >> 4,
1936 pipe_config->pipe_bpp);
1937 pipe_config->dsc_params.slice_count = dsc_dp_slice_count;
1938 }
1939 /*
1940 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
1941 * is greater than the maximum Cdclock and if slice count is even
1942 * then we need to use 2 VDSC instances.
1943 */
1944 if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
1945 if (pipe_config->dsc_params.slice_count > 1) {
1946 pipe_config->dsc_params.dsc_split = true;
1947 } else {
1948 DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n");
1949 return -EINVAL;
1950 }
1951 }
1952
1953 ret = intel_dp_compute_dsc_params(intel_dp, pipe_config);
1954 if (ret < 0) {
1955 DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d "
1956 "Compressed BPP = %d\n",
1957 pipe_config->pipe_bpp,
1958 pipe_config->dsc_params.compressed_bpp);
1959 return ret;
1960 }
1961
1962 pipe_config->dsc_params.compression_enable = true;
1963 DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d "
1964 "Compressed Bpp = %d Slice Count = %d\n",
1965 pipe_config->pipe_bpp,
1966 pipe_config->dsc_params.compressed_bpp,
1967 pipe_config->dsc_params.slice_count);
1968
1969 return 0;
1970 }
1971
1972 static int
1973 intel_dp_compute_link_config(struct intel_encoder *encoder,
1974 struct intel_crtc_state *pipe_config,
1975 struct drm_connector_state *conn_state)
1976 {
1977 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1978 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1979 struct link_config_limits limits;
1980 int common_len;
1981 int ret;
1982
1983 common_len = intel_dp_common_len_rate_limit(intel_dp,
1984 intel_dp->max_link_rate);
1985
1986 /* No common link rates between source and sink */
1987 WARN_ON(common_len <= 0);
1988
1989 limits.min_clock = 0;
1990 limits.max_clock = common_len - 1;
1991
1992 limits.min_lane_count = 1;
1993 limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
1994
1995 limits.min_bpp = 6 * 3;
1996 limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
1997
1998 if (intel_dp_is_edp(intel_dp)) {
1999 /*
2000 * Use the maximum clock and number of lanes the eDP panel
2001 * advertizes being capable of. The panels are generally
2002 * designed to support only a single clock and lane
2003 * configuration, and typically these values correspond to the
2004 * native resolution of the panel.
2005 */
2006 limits.min_lane_count = limits.max_lane_count;
2007 limits.min_clock = limits.max_clock;
2008 }
2009
2010 intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2011
2012 DRM_DEBUG_KMS("DP link computation with max lane count %i "
2013 "max rate %d max bpp %d pixel clock %iKHz\n",
2014 limits.max_lane_count,
2015 intel_dp->common_rates[limits.max_clock],
2016 limits.max_bpp, adjusted_mode->crtc_clock);
2017
2018 /*
2019 * Optimize for slow and wide. This is the place to add alternative
2020 * optimization policy.
2021 */
2022 ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2023
2024 /* enable compression if the mode doesn't fit available BW */
2025 DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
2026 if (ret || intel_dp->force_dsc_en) {
2027 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2028 conn_state, &limits);
2029 if (ret < 0)
2030 return ret;
2031 }
2032
2033 if (pipe_config->dsc_params.compression_enable) {
2034 DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2035 pipe_config->lane_count, pipe_config->port_clock,
2036 pipe_config->pipe_bpp,
2037 pipe_config->dsc_params.compressed_bpp);
2038
2039 DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2040 intel_dp_link_required(adjusted_mode->crtc_clock,
2041 pipe_config->dsc_params.compressed_bpp),
2042 intel_dp_max_data_rate(pipe_config->port_clock,
2043 pipe_config->lane_count));
2044 } else {
2045 DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
2046 pipe_config->lane_count, pipe_config->port_clock,
2047 pipe_config->pipe_bpp);
2048
2049 DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2050 intel_dp_link_required(adjusted_mode->crtc_clock,
2051 pipe_config->pipe_bpp),
2052 intel_dp_max_data_rate(pipe_config->port_clock,
2053 pipe_config->lane_count));
2054 }
2055 return 0;
2056 }
2057
2058 int
2059 intel_dp_compute_config(struct intel_encoder *encoder,
2060 struct intel_crtc_state *pipe_config,
2061 struct drm_connector_state *conn_state)
2062 {
2063 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2064 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2065 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2066 struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base);
2067 enum port port = encoder->port;
2068 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
2069 struct intel_connector *intel_connector = intel_dp->attached_connector;
2070 struct intel_digital_connector_state *intel_conn_state =
2071 to_intel_digital_connector_state(conn_state);
2072 bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
2073 DP_DPCD_QUIRK_CONSTANT_N);
2074 int ret;
2075
2076 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2077 pipe_config->has_pch_encoder = true;
2078
2079 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2080 if (lspcon->active)
2081 lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2082
2083 pipe_config->has_drrs = false;
2084 if (IS_G4X(dev_priv) || port == PORT_A)
2085 pipe_config->has_audio = false;
2086 else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2087 pipe_config->has_audio = intel_dp->has_audio;
2088 else
2089 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2090
2091 if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2092 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2093 adjusted_mode);
2094
2095 if (INTEL_GEN(dev_priv) >= 9) {
2096 ret = skl_update_scaler_crtc(pipe_config);
2097 if (ret)
2098 return ret;
2099 }
2100
2101 if (HAS_GMCH(dev_priv))
2102 intel_gmch_panel_fitting(intel_crtc, pipe_config,
2103 conn_state->scaling_mode);
2104 else
2105 intel_pch_panel_fitting(intel_crtc, pipe_config,
2106 conn_state->scaling_mode);
2107 }
2108
2109 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2110 return -EINVAL;
2111
2112 if (HAS_GMCH(dev_priv) &&
2113 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2114 return -EINVAL;
2115
2116 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2117 return -EINVAL;
2118
2119 pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
2120 intel_dp_supports_fec(intel_dp, pipe_config);
2121
2122 ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2123 if (ret < 0)
2124 return ret;
2125
2126 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2127 /*
2128 * See:
2129 * CEA-861-E - 5.1 Default Encoding Parameters
2130 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2131 */
2132 pipe_config->limited_color_range =
2133 pipe_config->pipe_bpp != 18 &&
2134 drm_default_rgb_quant_range(adjusted_mode) ==
2135 HDMI_QUANTIZATION_RANGE_LIMITED;
2136 } else {
2137 pipe_config->limited_color_range =
2138 intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2139 }
2140
2141 if (!pipe_config->dsc_params.compression_enable)
2142 intel_link_compute_m_n(pipe_config->pipe_bpp,
2143 pipe_config->lane_count,
2144 adjusted_mode->crtc_clock,
2145 pipe_config->port_clock,
2146 &pipe_config->dp_m_n,
2147 constant_n);
2148 else
2149 intel_link_compute_m_n(pipe_config->dsc_params.compressed_bpp,
2150 pipe_config->lane_count,
2151 adjusted_mode->crtc_clock,
2152 pipe_config->port_clock,
2153 &pipe_config->dp_m_n,
2154 constant_n);
2155
2156 if (intel_connector->panel.downclock_mode != NULL &&
2157 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2158 pipe_config->has_drrs = true;
2159 intel_link_compute_m_n(pipe_config->pipe_bpp,
2160 pipe_config->lane_count,
2161 intel_connector->panel.downclock_mode->clock,
2162 pipe_config->port_clock,
2163 &pipe_config->dp_m2_n2,
2164 constant_n);
2165 }
2166
2167 if (!HAS_DDI(dev_priv))
2168 intel_dp_set_clock(encoder, pipe_config);
2169
2170 intel_psr_compute_config(intel_dp, pipe_config);
2171
2172 return 0;
2173 }
2174
2175 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2176 int link_rate, u8 lane_count,
2177 bool link_mst)
2178 {
2179 intel_dp->link_trained = false;
2180 intel_dp->link_rate = link_rate;
2181 intel_dp->lane_count = lane_count;
2182 intel_dp->link_mst = link_mst;
2183 }
2184
2185 static void intel_dp_prepare(struct intel_encoder *encoder,
2186 const struct intel_crtc_state *pipe_config)
2187 {
2188 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2189 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2190 enum port port = encoder->port;
2191 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2192 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2193
2194 intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2195 pipe_config->lane_count,
2196 intel_crtc_has_type(pipe_config,
2197 INTEL_OUTPUT_DP_MST));
2198
2199 /*
2200 * There are four kinds of DP registers:
2201 *
2202 * IBX PCH
2203 * SNB CPU
2204 * IVB CPU
2205 * CPT PCH
2206 *
2207 * IBX PCH and CPU are the same for almost everything,
2208 * except that the CPU DP PLL is configured in this
2209 * register
2210 *
2211 * CPT PCH is quite different, having many bits moved
2212 * to the TRANS_DP_CTL register instead. That
2213 * configuration happens (oddly) in ironlake_pch_enable
2214 */
2215
2216 /* Preserve the BIOS-computed detected bit. This is
2217 * supposed to be read-only.
2218 */
2219 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2220
2221 /* Handle DP bits in common between all three register formats */
2222 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2223 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2224
2225 /* Split out the IBX/CPU vs CPT settings */
2226
2227 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2228 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2229 intel_dp->DP |= DP_SYNC_HS_HIGH;
2230 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2231 intel_dp->DP |= DP_SYNC_VS_HIGH;
2232 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2233
2234 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2235 intel_dp->DP |= DP_ENHANCED_FRAMING;
2236
2237 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2238 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2239 u32 trans_dp;
2240
2241 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2242
2243 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2244 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2245 trans_dp |= TRANS_DP_ENH_FRAMING;
2246 else
2247 trans_dp &= ~TRANS_DP_ENH_FRAMING;
2248 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
2249 } else {
2250 if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2251 intel_dp->DP |= DP_COLOR_RANGE_16_235;
2252
2253 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2254 intel_dp->DP |= DP_SYNC_HS_HIGH;
2255 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2256 intel_dp->DP |= DP_SYNC_VS_HIGH;
2257 intel_dp->DP |= DP_LINK_TRAIN_OFF;
2258
2259 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2260 intel_dp->DP |= DP_ENHANCED_FRAMING;
2261
2262 if (IS_CHERRYVIEW(dev_priv))
2263 intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2264 else
2265 intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2266 }
2267 }
2268
2269 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
2270 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
2271
2272 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
2273 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
2274
2275 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2276 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
2277
2278 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2279
2280 static void wait_panel_status(struct intel_dp *intel_dp,
2281 u32 mask,
2282 u32 value)
2283 {
2284 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2285 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2286
2287 lockdep_assert_held(&dev_priv->pps_mutex);
2288
2289 intel_pps_verify_state(intel_dp);
2290
2291 pp_stat_reg = _pp_stat_reg(intel_dp);
2292 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2293
2294 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2295 mask, value,
2296 I915_READ(pp_stat_reg),
2297 I915_READ(pp_ctrl_reg));
2298
2299 if (intel_wait_for_register(dev_priv,
2300 pp_stat_reg, mask, value,
2301 5000))
2302 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2303 I915_READ(pp_stat_reg),
2304 I915_READ(pp_ctrl_reg));
2305
2306 DRM_DEBUG_KMS("Wait complete\n");
2307 }
2308
2309 static void wait_panel_on(struct intel_dp *intel_dp)
2310 {
2311 DRM_DEBUG_KMS("Wait for panel power on\n");
2312 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2313 }
2314
2315 static void wait_panel_off(struct intel_dp *intel_dp)
2316 {
2317 DRM_DEBUG_KMS("Wait for panel power off time\n");
2318 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2319 }
2320
2321 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2322 {
2323 ktime_t panel_power_on_time;
2324 s64 panel_power_off_duration;
2325
2326 DRM_DEBUG_KMS("Wait for panel power cycle\n");
2327
2328 /* take the difference of currrent time and panel power off time
2329 * and then make panel wait for t11_t12 if needed. */
2330 panel_power_on_time = ktime_get_boottime();
2331 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2332
2333 /* When we disable the VDD override bit last we have to do the manual
2334 * wait. */
2335 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2336 wait_remaining_ms_from_jiffies(jiffies,
2337 intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2338
2339 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2340 }
2341
2342 static void wait_backlight_on(struct intel_dp *intel_dp)
2343 {
2344 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2345 intel_dp->backlight_on_delay);
2346 }
2347
2348 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2349 {
2350 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2351 intel_dp->backlight_off_delay);
2352 }
2353
2354 /* Read the current pp_control value, unlocking the register if it
2355 * is locked
2356 */
2357
2358 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2359 {
2360 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2361 u32 control;
2362
2363 lockdep_assert_held(&dev_priv->pps_mutex);
2364
2365 control = I915_READ(_pp_ctrl_reg(intel_dp));
2366 if (WARN_ON(!HAS_DDI(dev_priv) &&
2367 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2368 control &= ~PANEL_UNLOCK_MASK;
2369 control |= PANEL_UNLOCK_REGS;
2370 }
2371 return control;
2372 }
2373
2374 /*
2375 * Must be paired with edp_panel_vdd_off().
2376 * Must hold pps_mutex around the whole on/off sequence.
2377 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2378 */
2379 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2380 {
2381 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2382 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2383 u32 pp;
2384 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2385 bool need_to_disable = !intel_dp->want_panel_vdd;
2386
2387 lockdep_assert_held(&dev_priv->pps_mutex);
2388
2389 if (!intel_dp_is_edp(intel_dp))
2390 return false;
2391
2392 cancel_delayed_work(&intel_dp->panel_vdd_work);
2393 intel_dp->want_panel_vdd = true;
2394
2395 if (edp_have_panel_vdd(intel_dp))
2396 return need_to_disable;
2397
2398 intel_display_power_get(dev_priv,
2399 intel_aux_power_domain(intel_dig_port));
2400
2401 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
2402 port_name(intel_dig_port->base.port));
2403
2404 if (!edp_have_panel_power(intel_dp))
2405 wait_panel_power_cycle(intel_dp);
2406
2407 pp = ironlake_get_pp_control(intel_dp);
2408 pp |= EDP_FORCE_VDD;
2409
2410 pp_stat_reg = _pp_stat_reg(intel_dp);
2411 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2412
2413 I915_WRITE(pp_ctrl_reg, pp);
2414 POSTING_READ(pp_ctrl_reg);
2415 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2416 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2417 /*
2418 * If the panel wasn't on, delay before accessing aux channel
2419 */
2420 if (!edp_have_panel_power(intel_dp)) {
2421 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
2422 port_name(intel_dig_port->base.port));
2423 msleep(intel_dp->panel_power_up_delay);
2424 }
2425
2426 return need_to_disable;
2427 }
2428
2429 /*
2430 * Must be paired with intel_edp_panel_vdd_off() or
2431 * intel_edp_panel_off().
2432 * Nested calls to these functions are not allowed since
2433 * we drop the lock. Caller must use some higher level
2434 * locking to prevent nested calls from other threads.
2435 */
2436 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2437 {
2438 intel_wakeref_t wakeref;
2439 bool vdd;
2440
2441 if (!intel_dp_is_edp(intel_dp))
2442 return;
2443
2444 vdd = false;
2445 with_pps_lock(intel_dp, wakeref)
2446 vdd = edp_panel_vdd_on(intel_dp);
2447 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2448 port_name(dp_to_dig_port(intel_dp)->base.port));
2449 }
2450
2451 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2452 {
2453 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2454 struct intel_digital_port *intel_dig_port =
2455 dp_to_dig_port(intel_dp);
2456 u32 pp;
2457 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2458
2459 lockdep_assert_held(&dev_priv->pps_mutex);
2460
2461 WARN_ON(intel_dp->want_panel_vdd);
2462
2463 if (!edp_have_panel_vdd(intel_dp))
2464 return;
2465
2466 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2467 port_name(intel_dig_port->base.port));
2468
2469 pp = ironlake_get_pp_control(intel_dp);
2470 pp &= ~EDP_FORCE_VDD;
2471
2472 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2473 pp_stat_reg = _pp_stat_reg(intel_dp);
2474
2475 I915_WRITE(pp_ctrl_reg, pp);
2476 POSTING_READ(pp_ctrl_reg);
2477
2478 /* Make sure sequencer is idle before allowing subsequent activity */
2479 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2480 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2481
2482 if ((pp & PANEL_POWER_ON) == 0)
2483 intel_dp->panel_power_off_time = ktime_get_boottime();
2484
2485 intel_display_power_put_unchecked(dev_priv,
2486 intel_aux_power_domain(intel_dig_port));
2487 }
2488
2489 static void edp_panel_vdd_work(struct work_struct *__work)
2490 {
2491 struct intel_dp *intel_dp =
2492 container_of(to_delayed_work(__work),
2493 struct intel_dp, panel_vdd_work);
2494 intel_wakeref_t wakeref;
2495
2496 with_pps_lock(intel_dp, wakeref) {
2497 if (!intel_dp->want_panel_vdd)
2498 edp_panel_vdd_off_sync(intel_dp);
2499 }
2500 }
2501
2502 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2503 {
2504 unsigned long delay;
2505
2506 /*
2507 * Queue the timer to fire a long time from now (relative to the power
2508 * down delay) to keep the panel power up across a sequence of
2509 * operations.
2510 */
2511 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2512 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2513 }
2514
2515 /*
2516 * Must be paired with edp_panel_vdd_on().
2517 * Must hold pps_mutex around the whole on/off sequence.
2518 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2519 */
2520 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2521 {
2522 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2523
2524 lockdep_assert_held(&dev_priv->pps_mutex);
2525
2526 if (!intel_dp_is_edp(intel_dp))
2527 return;
2528
2529 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2530 port_name(dp_to_dig_port(intel_dp)->base.port));
2531
2532 intel_dp->want_panel_vdd = false;
2533
2534 if (sync)
2535 edp_panel_vdd_off_sync(intel_dp);
2536 else
2537 edp_panel_vdd_schedule_off(intel_dp);
2538 }
2539
2540 static void edp_panel_on(struct intel_dp *intel_dp)
2541 {
2542 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2543 u32 pp;
2544 i915_reg_t pp_ctrl_reg;
2545
2546 lockdep_assert_held(&dev_priv->pps_mutex);
2547
2548 if (!intel_dp_is_edp(intel_dp))
2549 return;
2550
2551 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2552 port_name(dp_to_dig_port(intel_dp)->base.port));
2553
2554 if (WARN(edp_have_panel_power(intel_dp),
2555 "eDP port %c panel power already on\n",
2556 port_name(dp_to_dig_port(intel_dp)->base.port)))
2557 return;
2558
2559 wait_panel_power_cycle(intel_dp);
2560
2561 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2562 pp = ironlake_get_pp_control(intel_dp);
2563 if (IS_GEN(dev_priv, 5)) {
2564 /* ILK workaround: disable reset around power sequence */
2565 pp &= ~PANEL_POWER_RESET;
2566 I915_WRITE(pp_ctrl_reg, pp);
2567 POSTING_READ(pp_ctrl_reg);
2568 }
2569
2570 pp |= PANEL_POWER_ON;
2571 if (!IS_GEN(dev_priv, 5))
2572 pp |= PANEL_POWER_RESET;
2573
2574 I915_WRITE(pp_ctrl_reg, pp);
2575 POSTING_READ(pp_ctrl_reg);
2576
2577 wait_panel_on(intel_dp);
2578 intel_dp->last_power_on = jiffies;
2579
2580 if (IS_GEN(dev_priv, 5)) {
2581 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2582 I915_WRITE(pp_ctrl_reg, pp);
2583 POSTING_READ(pp_ctrl_reg);
2584 }
2585 }
2586
2587 void intel_edp_panel_on(struct intel_dp *intel_dp)
2588 {
2589 intel_wakeref_t wakeref;
2590
2591 if (!intel_dp_is_edp(intel_dp))
2592 return;
2593
2594 with_pps_lock(intel_dp, wakeref)
2595 edp_panel_on(intel_dp);
2596 }
2597
2598
2599 static void edp_panel_off(struct intel_dp *intel_dp)
2600 {
2601 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2602 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2603 u32 pp;
2604 i915_reg_t pp_ctrl_reg;
2605
2606 lockdep_assert_held(&dev_priv->pps_mutex);
2607
2608 if (!intel_dp_is_edp(intel_dp))
2609 return;
2610
2611 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2612 port_name(dig_port->base.port));
2613
2614 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2615 port_name(dig_port->base.port));
2616
2617 pp = ironlake_get_pp_control(intel_dp);
2618 /* We need to switch off panel power _and_ force vdd, for otherwise some
2619 * panels get very unhappy and cease to work. */
2620 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2621 EDP_BLC_ENABLE);
2622
2623 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2624
2625 intel_dp->want_panel_vdd = false;
2626
2627 I915_WRITE(pp_ctrl_reg, pp);
2628 POSTING_READ(pp_ctrl_reg);
2629
2630 wait_panel_off(intel_dp);
2631 intel_dp->panel_power_off_time = ktime_get_boottime();
2632
2633 /* We got a reference when we enabled the VDD. */
2634 intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
2635 }
2636
2637 void intel_edp_panel_off(struct intel_dp *intel_dp)
2638 {
2639 intel_wakeref_t wakeref;
2640
2641 if (!intel_dp_is_edp(intel_dp))
2642 return;
2643
2644 with_pps_lock(intel_dp, wakeref)
2645 edp_panel_off(intel_dp);
2646 }
2647
2648 /* Enable backlight in the panel power control. */
2649 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2650 {
2651 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2652 intel_wakeref_t wakeref;
2653
2654 /*
2655 * If we enable the backlight right away following a panel power
2656 * on, we may see slight flicker as the panel syncs with the eDP
2657 * link. So delay a bit to make sure the image is solid before
2658 * allowing it to appear.
2659 */
2660 wait_backlight_on(intel_dp);
2661
2662 with_pps_lock(intel_dp, wakeref) {
2663 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2664 u32 pp;
2665
2666 pp = ironlake_get_pp_control(intel_dp);
2667 pp |= EDP_BLC_ENABLE;
2668
2669 I915_WRITE(pp_ctrl_reg, pp);
2670 POSTING_READ(pp_ctrl_reg);
2671 }
2672 }
2673
2674 /* Enable backlight PWM and backlight PP control. */
2675 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
2676 const struct drm_connector_state *conn_state)
2677 {
2678 struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);
2679
2680 if (!intel_dp_is_edp(intel_dp))
2681 return;
2682
2683 DRM_DEBUG_KMS("\n");
2684
2685 intel_panel_enable_backlight(crtc_state, conn_state);
2686 _intel_edp_backlight_on(intel_dp);
2687 }
2688
2689 /* Disable backlight in the panel power control. */
2690 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2691 {
2692 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2693 intel_wakeref_t wakeref;
2694
2695 if (!intel_dp_is_edp(intel_dp))
2696 return;
2697
2698 with_pps_lock(intel_dp, wakeref) {
2699 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2700 u32 pp;
2701
2702 pp = ironlake_get_pp_control(intel_dp);
2703 pp &= ~EDP_BLC_ENABLE;
2704
2705 I915_WRITE(pp_ctrl_reg, pp);
2706 POSTING_READ(pp_ctrl_reg);
2707 }
2708
2709 intel_dp->last_backlight_off = jiffies;
2710 edp_wait_backlight_off(intel_dp);
2711 }
2712
2713 /* Disable backlight PP control and backlight PWM. */
2714 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2715 {
2716 struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);
2717
2718 if (!intel_dp_is_edp(intel_dp))
2719 return;
2720
2721 DRM_DEBUG_KMS("\n");
2722
2723 _intel_edp_backlight_off(intel_dp);
2724 intel_panel_disable_backlight(old_conn_state);
2725 }
2726
2727 /*
2728 * Hook for controlling the panel power control backlight through the bl_power
2729 * sysfs attribute. Take care to handle multiple calls.
2730 */
2731 static void intel_edp_backlight_power(struct intel_connector *connector,
2732 bool enable)
2733 {
2734 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2735 intel_wakeref_t wakeref;
2736 bool is_enabled;
2737
2738 is_enabled = false;
2739 with_pps_lock(intel_dp, wakeref)
2740 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2741 if (is_enabled == enable)
2742 return;
2743
2744 DRM_DEBUG_KMS("panel power control backlight %s\n",
2745 enable ? "enable" : "disable");
2746
2747 if (enable)
2748 _intel_edp_backlight_on(intel_dp);
2749 else
2750 _intel_edp_backlight_off(intel_dp);
2751 }
2752
2753 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2754 {
2755 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2756 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2757 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2758
2759 I915_STATE_WARN(cur_state != state,
2760 "DP port %c state assertion failure (expected %s, current %s)\n",
2761 port_name(dig_port->base.port),
2762 onoff(state), onoff(cur_state));
2763 }
2764 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2765
2766 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2767 {
2768 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2769
2770 I915_STATE_WARN(cur_state != state,
2771 "eDP PLL state assertion failure (expected %s, current %s)\n",
2772 onoff(state), onoff(cur_state));
2773 }
2774 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2775 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2776
2777 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2778 const struct intel_crtc_state *pipe_config)
2779 {
2780 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2781 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2782
2783 assert_pipe_disabled(dev_priv, crtc->pipe);
2784 assert_dp_port_disabled(intel_dp);
2785 assert_edp_pll_disabled(dev_priv);
2786
2787 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2788 pipe_config->port_clock);
2789
2790 intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2791
2792 if (pipe_config->port_clock == 162000)
2793 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2794 else
2795 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2796
2797 I915_WRITE(DP_A, intel_dp->DP);
2798 POSTING_READ(DP_A);
2799 udelay(500);
2800
2801 /*
2802 * [DevILK] Work around required when enabling DP PLL
2803 * while a pipe is enabled going to FDI:
2804 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2805 * 2. Program DP PLL enable
2806 */
2807 if (IS_GEN(dev_priv, 5))
2808 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
2809
2810 intel_dp->DP |= DP_PLL_ENABLE;
2811
2812 I915_WRITE(DP_A, intel_dp->DP);
2813 POSTING_READ(DP_A);
2814 udelay(200);
2815 }
2816
2817 static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
2818 const struct intel_crtc_state *old_crtc_state)
2819 {
2820 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
2821 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2822
2823 assert_pipe_disabled(dev_priv, crtc->pipe);
2824 assert_dp_port_disabled(intel_dp);
2825 assert_edp_pll_enabled(dev_priv);
2826
2827 DRM_DEBUG_KMS("disabling eDP PLL\n");
2828
2829 intel_dp->DP &= ~DP_PLL_ENABLE;
2830
2831 I915_WRITE(DP_A, intel_dp->DP);
2832 POSTING_READ(DP_A);
2833 udelay(200);
2834 }
2835
2836 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
2837 {
2838 /*
2839 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
2840 * be capable of signalling downstream hpd with a long pulse.
2841 * Whether or not that means D3 is safe to use is not clear,
2842 * but let's assume so until proven otherwise.
2843 *
2844 * FIXME should really check all downstream ports...
2845 */
2846 return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
2847 intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
2848 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
2849 }
2850
2851 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
2852 const struct intel_crtc_state *crtc_state,
2853 bool enable)
2854 {
2855 int ret;
2856
2857 if (!crtc_state->dsc_params.compression_enable)
2858 return;
2859
2860 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
2861 enable ? DP_DECOMPRESSION_EN : 0);
2862 if (ret < 0)
2863 DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
2864 enable ? "enable" : "disable");
2865 }
2866
2867 /* If the sink supports it, try to set the power state appropriately */
2868 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2869 {
2870 int ret, i;
2871
2872 /* Should have a valid DPCD by this point */
2873 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2874 return;
2875
2876 if (mode != DRM_MODE_DPMS_ON) {
2877 if (downstream_hpd_needs_d0(intel_dp))
2878 return;
2879
2880 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2881 DP_SET_POWER_D3);
2882 } else {
2883 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
2884
2885 /*
2886 * When turning on, we need to retry for 1ms to give the sink
2887 * time to wake up.
2888 */
2889 for (i = 0; i < 3; i++) {
2890 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2891 DP_SET_POWER_D0);
2892 if (ret == 1)
2893 break;
2894 msleep(1);
2895 }
2896
2897 if (ret == 1 && lspcon->active)
2898 lspcon_wait_pcon_mode(lspcon);
2899 }
2900
2901 if (ret != 1)
2902 DRM_DEBUG_KMS("failed to %s sink power state\n",
2903 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2904 }
2905
2906 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
2907 enum port port, enum pipe *pipe)
2908 {
2909 enum pipe p;
2910
2911 for_each_pipe(dev_priv, p) {
2912 u32 val = I915_READ(TRANS_DP_CTL(p));
2913
2914 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
2915 *pipe = p;
2916 return true;
2917 }
2918 }
2919
2920 DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));
2921
2922 /* must initialize pipe to something for the asserts */
2923 *pipe = PIPE_A;
2924
2925 return false;
2926 }
2927
2928 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
2929 i915_reg_t dp_reg, enum port port,
2930 enum pipe *pipe)
2931 {
2932 bool ret;
2933 u32 val;
2934
2935 val = I915_READ(dp_reg);
2936
2937 ret = val & DP_PORT_EN;
2938
2939 /* asserts want to know the pipe even if the port is disabled */
2940 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
2941 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
2942 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
2943 ret &= cpt_dp_port_selected(dev_priv, port, pipe);
2944 else if (IS_CHERRYVIEW(dev_priv))
2945 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
2946 else
2947 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
2948
2949 return ret;
2950 }
2951
2952 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2953 enum pipe *pipe)
2954 {
2955 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2956 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2957 intel_wakeref_t wakeref;
2958 bool ret;
2959
2960 wakeref = intel_display_power_get_if_enabled(dev_priv,
2961 encoder->power_domain);
2962 if (!wakeref)
2963 return false;
2964
2965 ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
2966 encoder->port, pipe);
2967
2968 intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
2969
2970 return ret;
2971 }
2972
2973 static void intel_dp_get_config(struct intel_encoder *encoder,
2974 struct intel_crtc_state *pipe_config)
2975 {
2976 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2977 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2978 u32 tmp, flags = 0;
2979 enum port port = encoder->port;
2980 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2981
2982 if (encoder->type == INTEL_OUTPUT_EDP)
2983 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
2984 else
2985 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
2986
2987 tmp = I915_READ(intel_dp->output_reg);
2988
2989 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2990
2991 if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2992 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2993
2994 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2995 flags |= DRM_MODE_FLAG_PHSYNC;
2996 else
2997 flags |= DRM_MODE_FLAG_NHSYNC;
2998
2999 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3000 flags |= DRM_MODE_FLAG_PVSYNC;
3001 else
3002 flags |= DRM_MODE_FLAG_NVSYNC;
3003 } else {
3004 if (tmp & DP_SYNC_HS_HIGH)
3005 flags |= DRM_MODE_FLAG_PHSYNC;
3006 else
3007 flags |= DRM_MODE_FLAG_NHSYNC;
3008
3009 if (tmp & DP_SYNC_VS_HIGH)
3010 flags |= DRM_MODE_FLAG_PVSYNC;
3011 else
3012 flags |= DRM_MODE_FLAG_NVSYNC;
3013 }
3014
3015 pipe_config->base.adjusted_mode.flags |= flags;
3016
3017 if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3018 pipe_config->limited_color_range = true;
3019
3020 pipe_config->lane_count =
3021 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3022
3023 intel_dp_get_m_n(crtc, pipe_config);
3024
3025 if (port == PORT_A) {
3026 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3027 pipe_config->port_clock = 162000;
3028 else
3029 pipe_config->port_clock = 270000;
3030 }
3031
3032 pipe_config->base.adjusted_mode.crtc_clock =
3033 intel_dotclock_calculate(pipe_config->port_clock,
3034 &pipe_config->dp_m_n);
3035
3036 if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3037 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3038 /*
3039 * This is a big fat ugly hack.
3040 *
3041 * Some machines in UEFI boot mode provide us a VBT that has 18
3042 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3043 * unknown we fail to light up. Yet the same BIOS boots up with
3044 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3045 * max, not what it tells us to use.
3046 *
3047 * Note: This will still be broken if the eDP panel is not lit
3048 * up by the BIOS, and thus we can't get the mode at module
3049 * load.
3050 */
3051 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3052 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3053 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3054 }
3055 }
3056
3057 static void intel_disable_dp(struct intel_encoder *encoder,
3058 const struct intel_crtc_state *old_crtc_state,
3059 const struct drm_connector_state *old_conn_state)
3060 {
3061 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3062
3063 intel_dp->link_trained = false;
3064
3065 if (old_crtc_state->has_audio)
3066 intel_audio_codec_disable(encoder,
3067 old_crtc_state, old_conn_state);
3068
3069 /* Make sure the panel is off before trying to change the mode. But also
3070 * ensure that we have vdd while we switch off the panel. */
3071 intel_edp_panel_vdd_on(intel_dp);
3072 intel_edp_backlight_off(old_conn_state);
3073 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3074 intel_edp_panel_off(intel_dp);
3075 }
3076
3077 static void g4x_disable_dp(struct intel_encoder *encoder,
3078 const struct intel_crtc_state *old_crtc_state,
3079 const struct drm_connector_state *old_conn_state)
3080 {
3081 intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3082 }
3083
3084 static void vlv_disable_dp(struct intel_encoder *encoder,
3085 const struct intel_crtc_state *old_crtc_state,
3086 const struct drm_connector_state *old_conn_state)
3087 {
3088 intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3089 }
3090
3091 static void g4x_post_disable_dp(struct intel_encoder *encoder,
3092 const struct intel_crtc_state *old_crtc_state,
3093 const struct drm_connector_state *old_conn_state)
3094 {
3095 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3096 enum port port = encoder->port;
3097
3098 /*
3099 * Bspec does not list a specific disable sequence for g4x DP.
3100 * Follow the ilk+ sequence (disable pipe before the port) for
3101 * g4x DP as it does not suffer from underruns like the normal
3102 * g4x modeset sequence (disable pipe after the port).
3103 */
3104 intel_dp_link_down(encoder, old_crtc_state);
3105
3106 /* Only ilk+ has port A */
3107 if (port == PORT_A)
3108 ironlake_edp_pll_off(intel_dp, old_crtc_state);
3109 }
3110
3111 static void vlv_post_disable_dp(struct intel_encoder *encoder,
3112 const struct intel_crtc_state *old_crtc_state,
3113 const struct drm_connector_state *old_conn_state)
3114 {
3115 intel_dp_link_down(encoder, old_crtc_state);
3116 }
3117
3118 static void chv_post_disable_dp(struct intel_encoder *encoder,
3119 const struct intel_crtc_state *old_crtc_state,
3120 const struct drm_connector_state *old_conn_state)
3121 {
3122 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3123
3124 intel_dp_link_down(encoder, old_crtc_state);
3125
3126 mutex_lock(&dev_priv->sb_lock);
3127
3128 /* Assert data lane reset */
3129 chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3130
3131 mutex_unlock(&dev_priv->sb_lock);
3132 }
3133
3134 static void
3135 _intel_dp_set_link_train(struct intel_dp *intel_dp,
3136 u32 *DP,
3137 u8 dp_train_pat)
3138 {
3139 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3140 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3141 enum port port = intel_dig_port->base.port;
3142 u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3143
3144 if (dp_train_pat & train_pat_mask)
3145 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
3146 dp_train_pat & train_pat_mask);
3147
3148 if (HAS_DDI(dev_priv)) {
3149 u32 temp = I915_READ(DP_TP_CTL(port));
3150
3151 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
3152 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
3153 else
3154 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
3155
3156 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3157 switch (dp_train_pat & train_pat_mask) {
3158 case DP_TRAINING_PATTERN_DISABLE:
3159 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
3160
3161 break;
3162 case DP_TRAINING_PATTERN_1:
3163 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
3164 break;
3165 case DP_TRAINING_PATTERN_2:
3166 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
3167 break;
3168 case DP_TRAINING_PATTERN_3:
3169 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
3170 break;
3171 case DP_TRAINING_PATTERN_4:
3172 temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
3173 break;
3174 }
3175 I915_WRITE(DP_TP_CTL(port), temp);
3176
3177 } else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3178 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3179 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
3180
3181 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3182 case DP_TRAINING_PATTERN_DISABLE:
3183 *DP |= DP_LINK_TRAIN_OFF_CPT;
3184 break;
3185 case DP_TRAINING_PATTERN_1:
3186 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
3187 break;
3188 case DP_TRAINING_PATTERN_2:
3189 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3190 break;
3191 case DP_TRAINING_PATTERN_3:
3192 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3193 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3194 break;
3195 }
3196
3197 } else {
3198 *DP &= ~DP_LINK_TRAIN_MASK;
3199
3200 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3201 case DP_TRAINING_PATTERN_DISABLE:
3202 *DP |= DP_LINK_TRAIN_OFF;
3203 break;
3204 case DP_TRAINING_PATTERN_1:
3205 *DP |= DP_LINK_TRAIN_PAT_1;
3206 break;
3207 case DP_TRAINING_PATTERN_2:
3208 *DP |= DP_LINK_TRAIN_PAT_2;
3209 break;
3210 case DP_TRAINING_PATTERN_3:
3211 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3212 *DP |= DP_LINK_TRAIN_PAT_2;
3213 break;
3214 }
3215 }
3216 }
3217
3218 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3219 const struct intel_crtc_state *old_crtc_state)
3220 {
3221 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3222
3223 /* enable with pattern 1 (as per spec) */
3224
3225 intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3226
3227 /*
3228 * Magic for VLV/CHV. We _must_ first set up the register
3229 * without actually enabling the port, and then do another
3230 * write to enable the port. Otherwise link training will
3231 * fail when the power sequencer is freshly used for this port.
3232 */
3233 intel_dp->DP |= DP_PORT_EN;
3234 if (old_crtc_state->has_audio)
3235 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3236
3237 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3238 POSTING_READ(intel_dp->output_reg);
3239 }
3240
3241 static void intel_enable_dp(struct intel_encoder *encoder,
3242 const struct intel_crtc_state *pipe_config,
3243 const struct drm_connector_state *conn_state)
3244 {
3245 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3246 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3247 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3248 u32 dp_reg = I915_READ(intel_dp->output_reg);
3249 enum pipe pipe = crtc->pipe;
3250 intel_wakeref_t wakeref;
3251
3252 if (WARN_ON(dp_reg & DP_PORT_EN))
3253 return;
3254
3255 with_pps_lock(intel_dp, wakeref) {
3256 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3257 vlv_init_panel_power_sequencer(encoder, pipe_config);
3258
3259 intel_dp_enable_port(intel_dp, pipe_config);
3260
3261 edp_panel_vdd_on(intel_dp);
3262 edp_panel_on(intel_dp);
3263 edp_panel_vdd_off(intel_dp, true);
3264 }
3265
3266 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3267 unsigned int lane_mask = 0x0;
3268
3269 if (IS_CHERRYVIEW(dev_priv))
3270 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3271
3272 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3273 lane_mask);
3274 }
3275
3276 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3277 intel_dp_start_link_train(intel_dp);
3278 intel_dp_stop_link_train(intel_dp);
3279
3280 if (pipe_config->has_audio) {
3281 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3282 pipe_name(pipe));
3283 intel_audio_codec_enable(encoder, pipe_config, conn_state);
3284 }
3285 }
3286
3287 static void g4x_enable_dp(struct intel_encoder *encoder,
3288 const struct intel_crtc_state *pipe_config,
3289 const struct drm_connector_state *conn_state)
3290 {
3291 intel_enable_dp(encoder, pipe_config, conn_state);
3292 intel_edp_backlight_on(pipe_config, conn_state);
3293 }
3294
3295 static void vlv_enable_dp(struct intel_encoder *encoder,
3296 const struct intel_crtc_state *pipe_config,
3297 const struct drm_connector_state *conn_state)
3298 {
3299 intel_edp_backlight_on(pipe_config, conn_state);
3300 }
3301
3302 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3303 const struct intel_crtc_state *pipe_config,
3304 const struct drm_connector_state *conn_state)
3305 {
3306 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3307 enum port port = encoder->port;
3308
3309 intel_dp_prepare(encoder, pipe_config);
3310
3311 /* Only ilk+ has port A */
3312 if (port == PORT_A)
3313 ironlake_edp_pll_on(intel_dp, pipe_config);
3314 }
3315
3316 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3317 {
3318 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3319 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3320 enum pipe pipe = intel_dp->pps_pipe;
3321 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3322
3323 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3324
3325 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
3326 return;
3327
3328 edp_panel_vdd_off_sync(intel_dp);
3329
3330 /*
3331 * VLV seems to get confused when multiple power sequencers
3332 * have the same port selected (even if only one has power/vdd
3333 * enabled). The failure manifests as vlv_wait_port_ready() failing
3334 * CHV on the other hand doesn't seem to mind having the same port
3335 * selected in multiple power sequencers, but let's clear the
3336 * port select always when logically disconnecting a power sequencer
3337 * from a port.
3338 */
3339 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
3340 pipe_name(pipe), port_name(intel_dig_port->base.port));
3341 I915_WRITE(pp_on_reg, 0);
3342 POSTING_READ(pp_on_reg);
3343
3344 intel_dp->pps_pipe = INVALID_PIPE;
3345 }
3346
3347 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3348 enum pipe pipe)
3349 {
3350 struct intel_encoder *encoder;
3351
3352 lockdep_assert_held(&dev_priv->pps_mutex);
3353
3354 for_each_intel_dp(&dev_priv->drm, encoder) {
3355 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3356 enum port port = encoder->port;
3357
3358 WARN(intel_dp->active_pipe == pipe,
3359 "stealing pipe %c power sequencer from active (e)DP port %c\n",
3360 pipe_name(pipe), port_name(port));
3361
3362 if (intel_dp->pps_pipe != pipe)
3363 continue;
3364
3365 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
3366 pipe_name(pipe), port_name(port));
3367
3368 /* make sure vdd is off before we steal it */
3369 vlv_detach_power_sequencer(intel_dp);
3370 }
3371 }
3372
3373 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3374 const struct intel_crtc_state *crtc_state)
3375 {
3376 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3377 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3378 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3379
3380 lockdep_assert_held(&dev_priv->pps_mutex);
3381
3382 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3383
3384 if (intel_dp->pps_pipe != INVALID_PIPE &&
3385 intel_dp->pps_pipe != crtc->pipe) {
3386 /*
3387 * If another power sequencer was being used on this
3388 * port previously make sure to turn off vdd there while
3389 * we still have control of it.
3390 */
3391 vlv_detach_power_sequencer(intel_dp);
3392 }
3393
3394 /*
3395 * We may be stealing the power
3396 * sequencer from another port.
3397 */
3398 vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3399
3400 intel_dp->active_pipe = crtc->pipe;
3401
3402 if (!intel_dp_is_edp(intel_dp))
3403 return;
3404
3405 /* now it's all ours */
3406 intel_dp->pps_pipe = crtc->pipe;
3407
3408 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
3409 pipe_name(intel_dp->pps_pipe), port_name(encoder->port));
3410
3411 /* init power sequencer on this pipe and port */
3412 intel_dp_init_panel_power_sequencer(intel_dp);
3413 intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3414 }
3415
3416 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3417 const struct intel_crtc_state *pipe_config,
3418 const struct drm_connector_state *conn_state)
3419 {
3420 vlv_phy_pre_encoder_enable(encoder, pipe_config);
3421
3422 intel_enable_dp(encoder, pipe_config, conn_state);
3423 }
3424
3425 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3426 const struct intel_crtc_state *pipe_config,
3427 const struct drm_connector_state *conn_state)
3428 {
3429 intel_dp_prepare(encoder, pipe_config);
3430
3431 vlv_phy_pre_pll_enable(encoder, pipe_config);
3432 }
3433
3434 static void chv_pre_enable_dp(struct intel_encoder *encoder,
3435 const struct intel_crtc_state *pipe_config,
3436 const struct drm_connector_state *conn_state)
3437 {
3438 chv_phy_pre_encoder_enable(encoder, pipe_config);
3439
3440 intel_enable_dp(encoder, pipe_config, conn_state);
3441
3442 /* Second common lane will stay alive on its own now */
3443 chv_phy_release_cl2_override(encoder);
3444 }
3445
3446 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3447 const struct intel_crtc_state *pipe_config,
3448 const struct drm_connector_state *conn_state)
3449 {
3450 intel_dp_prepare(encoder, pipe_config);
3451
3452 chv_phy_pre_pll_enable(encoder, pipe_config);
3453 }
3454
3455 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3456 const struct intel_crtc_state *old_crtc_state,
3457 const struct drm_connector_state *old_conn_state)
3458 {
3459 chv_phy_post_pll_disable(encoder, old_crtc_state);
3460 }
3461
3462 /*
3463 * Fetch AUX CH registers 0x202 - 0x207 which contain
3464 * link status information
3465 */
3466 bool
3467 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3468 {
3469 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3470 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3471 }
3472
3473 /* These are source-specific values. */
3474 u8
3475 intel_dp_voltage_max(struct intel_dp *intel_dp)
3476 {
3477 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3478 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3479 enum port port = encoder->port;
3480
3481 if (HAS_DDI(dev_priv))
3482 return intel_ddi_dp_voltage_max(encoder);
3483 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3484 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3485 else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3486 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3487 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3488 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3489 else
3490 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3491 }
3492
3493 u8
3494 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
3495 {
3496 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3497 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3498 enum port port = encoder->port;
3499
3500 if (HAS_DDI(dev_priv)) {
3501 return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3502 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3503 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3504 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3505 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3506 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3507 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3508 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3509 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3510 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3511 default:
3512 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3513 }
3514 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3515 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3516 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3517 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3518 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3519 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3520 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3521 default:
3522 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3523 }
3524 } else {
3525 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3526 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3527 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3528 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3529 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3530 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3531 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3532 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3533 default:
3534 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3535 }
3536 }
3537 }
3538
3539 static u32 vlv_signal_levels(struct intel_dp *intel_dp)
3540 {
3541 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3542 unsigned long demph_reg_value, preemph_reg_value,
3543 uniqtranscale_reg_value;
3544 u8 train_set = intel_dp->train_set[0];
3545
3546 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3547 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3548 preemph_reg_value = 0x0004000;
3549 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3550 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3551 demph_reg_value = 0x2B405555;
3552 uniqtranscale_reg_value = 0x552AB83A;
3553 break;
3554 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3555 demph_reg_value = 0x2B404040;
3556 uniqtranscale_reg_value = 0x5548B83A;
3557 break;
3558 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3559 demph_reg_value = 0x2B245555;
3560 uniqtranscale_reg_value = 0x5560B83A;
3561 break;
3562 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3563 demph_reg_value = 0x2B405555;
3564 uniqtranscale_reg_value = 0x5598DA3A;
3565 break;
3566 default:
3567 return 0;
3568 }
3569 break;
3570 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3571 preemph_reg_value = 0x0002000;
3572 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3573 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3574 demph_reg_value = 0x2B404040;
3575 uniqtranscale_reg_value = 0x5552B83A;
3576 break;
3577 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3578 demph_reg_value = 0x2B404848;
3579 uniqtranscale_reg_value = 0x5580B83A;
3580 break;
3581 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3582 demph_reg_value = 0x2B404040;
3583 uniqtranscale_reg_value = 0x55ADDA3A;
3584 break;
3585 default:
3586 return 0;
3587 }
3588 break;
3589 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3590 preemph_reg_value = 0x0000000;
3591 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3592 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3593 demph_reg_value = 0x2B305555;
3594 uniqtranscale_reg_value = 0x5570B83A;
3595 break;
3596 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3597 demph_reg_value = 0x2B2B4040;
3598 uniqtranscale_reg_value = 0x55ADDA3A;
3599 break;
3600 default:
3601 return 0;
3602 }
3603 break;
3604 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3605 preemph_reg_value = 0x0006000;
3606 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3607 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3608 demph_reg_value = 0x1B405555;
3609 uniqtranscale_reg_value = 0x55ADDA3A;
3610 break;
3611 default:
3612 return 0;
3613 }
3614 break;
3615 default:
3616 return 0;
3617 }
3618
3619 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3620 uniqtranscale_reg_value, 0);
3621
3622 return 0;
3623 }
3624
3625 static u32 chv_signal_levels(struct intel_dp *intel_dp)
3626 {
3627 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3628 u32 deemph_reg_value, margin_reg_value;
3629 bool uniq_trans_scale = false;
3630 u8 train_set = intel_dp->train_set[0];
3631
3632 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3633 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3634 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3635 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3636 deemph_reg_value = 128;
3637 margin_reg_value = 52;
3638 break;
3639 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3640 deemph_reg_value = 128;
3641 margin_reg_value = 77;
3642 break;
3643 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3644 deemph_reg_value = 128;
3645 margin_reg_value = 102;
3646 break;
3647 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3648 deemph_reg_value = 128;
3649 margin_reg_value = 154;
3650 uniq_trans_scale = true;
3651 break;
3652 default:
3653 return 0;
3654 }
3655 break;
3656 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3657 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3658 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3659 deemph_reg_value = 85;
3660 margin_reg_value = 78;
3661 break;
3662 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3663 deemph_reg_value = 85;
3664 margin_reg_value = 116;
3665 break;
3666 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3667 deemph_reg_value = 85;
3668 margin_reg_value = 154;
3669 break;
3670 default:
3671 return 0;
3672 }
3673 break;
3674 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3675 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3676 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3677 deemph_reg_value = 64;
3678 margin_reg_value = 104;
3679 break;
3680 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3681 deemph_reg_value = 64;
3682 margin_reg_value = 154;
3683 break;
3684 default:
3685 return 0;
3686 }
3687 break;
3688 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3689 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3690 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3691 deemph_reg_value = 43;
3692 margin_reg_value = 154;
3693 break;
3694 default:
3695 return 0;
3696 }
3697 break;
3698 default:
3699 return 0;
3700 }
3701
3702 chv_set_phy_signal_level(encoder, deemph_reg_value,
3703 margin_reg_value, uniq_trans_scale);
3704
3705 return 0;
3706 }
3707
3708 static u32
3709 g4x_signal_levels(u8 train_set)
3710 {
3711 u32 signal_levels = 0;
3712
3713 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3714 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3715 default:
3716 signal_levels |= DP_VOLTAGE_0_4;
3717 break;
3718 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3719 signal_levels |= DP_VOLTAGE_0_6;
3720 break;
3721 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3722 signal_levels |= DP_VOLTAGE_0_8;
3723 break;
3724 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3725 signal_levels |= DP_VOLTAGE_1_2;
3726 break;
3727 }
3728 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3729 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3730 default:
3731 signal_levels |= DP_PRE_EMPHASIS_0;
3732 break;
3733 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3734 signal_levels |= DP_PRE_EMPHASIS_3_5;
3735 break;
3736 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3737 signal_levels |= DP_PRE_EMPHASIS_6;
3738 break;
3739 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3740 signal_levels |= DP_PRE_EMPHASIS_9_5;
3741 break;
3742 }
3743 return signal_levels;
3744 }
3745
3746 /* SNB CPU eDP voltage swing and pre-emphasis control */
3747 static u32
3748 snb_cpu_edp_signal_levels(u8 train_set)
3749 {
3750 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3751 DP_TRAIN_PRE_EMPHASIS_MASK);
3752 switch (signal_levels) {
3753 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3754 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3755 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3756 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3757 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3758 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3759 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3760 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3761 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3762 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3763 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3764 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3765 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3766 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3767 default:
3768 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3769 "0x%x\n", signal_levels);
3770 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3771 }
3772 }
3773
3774 /* IVB CPU eDP voltage swing and pre-emphasis control */
3775 static u32
3776 ivb_cpu_edp_signal_levels(u8 train_set)
3777 {
3778 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3779 DP_TRAIN_PRE_EMPHASIS_MASK);
3780 switch (signal_levels) {
3781 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3782 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3783 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3784 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3785 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3786 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3787
3788 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3789 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3790 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3791 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3792
3793 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3794 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3795 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3796 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3797
3798 default:
3799 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3800 "0x%x\n", signal_levels);
3801 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3802 }
3803 }
3804
3805 void
3806 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3807 {
3808 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3809 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3810 enum port port = intel_dig_port->base.port;
3811 u32 signal_levels, mask = 0;
3812 u8 train_set = intel_dp->train_set[0];
3813
3814 if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
3815 signal_levels = bxt_signal_levels(intel_dp);
3816 } else if (HAS_DDI(dev_priv)) {
3817 signal_levels = ddi_signal_levels(intel_dp);
3818 mask = DDI_BUF_EMP_MASK;
3819 } else if (IS_CHERRYVIEW(dev_priv)) {
3820 signal_levels = chv_signal_levels(intel_dp);
3821 } else if (IS_VALLEYVIEW(dev_priv)) {
3822 signal_levels = vlv_signal_levels(intel_dp);
3823 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3824 signal_levels = ivb_cpu_edp_signal_levels(train_set);
3825 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3826 } else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
3827 signal_levels = snb_cpu_edp_signal_levels(train_set);
3828 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3829 } else {
3830 signal_levels = g4x_signal_levels(train_set);
3831 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3832 }
3833
3834 if (mask)
3835 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3836
3837 DRM_DEBUG_KMS("Using vswing level %d\n",
3838 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3839 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3840 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3841 DP_TRAIN_PRE_EMPHASIS_SHIFT);
3842
3843 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3844
3845 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3846 POSTING_READ(intel_dp->output_reg);
3847 }
3848
3849 void
3850 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3851 u8 dp_train_pat)
3852 {
3853 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3854 struct drm_i915_private *dev_priv =
3855 to_i915(intel_dig_port->base.base.dev);
3856
3857 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3858
3859 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3860 POSTING_READ(intel_dp->output_reg);
3861 }
3862
3863 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3864 {
3865 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3866 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3867 enum port port = intel_dig_port->base.port;
3868 u32 val;
3869
3870 if (!HAS_DDI(dev_priv))
3871 return;
3872
3873 val = I915_READ(DP_TP_CTL(port));
3874 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3875 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3876 I915_WRITE(DP_TP_CTL(port), val);
3877
3878 /*
3879 * On PORT_A we can have only eDP in SST mode. There the only reason
3880 * we need to set idle transmission mode is to work around a HW issue
3881 * where we enable the pipe while not in idle link-training mode.
3882 * In this case there is requirement to wait for a minimum number of
3883 * idle patterns to be sent.
3884 */
3885 if (port == PORT_A)
3886 return;
3887
3888 if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
3889 DP_TP_STATUS_IDLE_DONE,
3890 DP_TP_STATUS_IDLE_DONE,
3891 1))
3892 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3893 }
3894
3895 static void
3896 intel_dp_link_down(struct intel_encoder *encoder,
3897 const struct intel_crtc_state *old_crtc_state)
3898 {
3899 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3900 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3901 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
3902 enum port port = encoder->port;
3903 u32 DP = intel_dp->DP;
3904
3905 if (WARN_ON(HAS_DDI(dev_priv)))
3906 return;
3907
3908 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3909 return;
3910
3911 DRM_DEBUG_KMS("\n");
3912
3913 if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3914 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3915 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3916 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3917 } else {
3918 DP &= ~DP_LINK_TRAIN_MASK;
3919 DP |= DP_LINK_TRAIN_PAT_IDLE;
3920 }
3921 I915_WRITE(intel_dp->output_reg, DP);
3922 POSTING_READ(intel_dp->output_reg);
3923
3924 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3925 I915_WRITE(intel_dp->output_reg, DP);
3926 POSTING_READ(intel_dp->output_reg);
3927
3928 /*
3929 * HW workaround for IBX, we need to move the port
3930 * to transcoder A after disabling it to allow the
3931 * matching HDMI port to be enabled on transcoder A.
3932 */
3933 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
3934 /*
3935 * We get CPU/PCH FIFO underruns on the other pipe when
3936 * doing the workaround. Sweep them under the rug.
3937 */
3938 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3939 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3940
3941 /* always enable with pattern 1 (as per spec) */
3942 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
3943 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
3944 DP_LINK_TRAIN_PAT_1;
3945 I915_WRITE(intel_dp->output_reg, DP);
3946 POSTING_READ(intel_dp->output_reg);
3947
3948 DP &= ~DP_PORT_EN;
3949 I915_WRITE(intel_dp->output_reg, DP);
3950 POSTING_READ(intel_dp->output_reg);
3951
3952 intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
3953 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3954 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3955 }
3956
3957 msleep(intel_dp->panel_power_down_delay);
3958
3959 intel_dp->DP = DP;
3960
3961 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3962 intel_wakeref_t wakeref;
3963
3964 with_pps_lock(intel_dp, wakeref)
3965 intel_dp->active_pipe = INVALID_PIPE;
3966 }
3967 }
3968
3969 static void
3970 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
3971 {
3972 u8 dpcd_ext[6];
3973
3974 /*
3975 * Prior to DP1.3 the bit represented by
3976 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
3977 * if it is set DP_DPCD_REV at 0000h could be at a value less than
3978 * the true capability of the panel. The only way to check is to
3979 * then compare 0000h and 2200h.
3980 */
3981 if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
3982 DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
3983 return;
3984
3985 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
3986 &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
3987 DRM_ERROR("DPCD failed read at extended capabilities\n");
3988 return;
3989 }
3990
3991 if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
3992 DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
3993 return;
3994 }
3995
3996 if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
3997 return;
3998
3999 DRM_DEBUG_KMS("Base DPCD: %*ph\n",
4000 (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
4001
4002 memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
4003 }
4004
4005 bool
4006 intel_dp_read_dpcd(struct intel_dp *intel_dp)
4007 {
4008 if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
4009 sizeof(intel_dp->dpcd)) < 0)
4010 return false; /* aux transfer failed */
4011
4012 intel_dp_extended_receiver_capabilities(intel_dp);
4013
4014 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4015
4016 return intel_dp->dpcd[DP_DPCD_REV] != 0;
4017 }
4018
4019 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4020 {
4021 /*
4022 * Clear the cached register set to avoid using stale values
4023 * for the sinks that do not support DSC.
4024 */
4025 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4026
4027 /* Clear fec_capable to avoid using stale values */
4028 intel_dp->fec_capable = 0;
4029
4030 /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4031 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4032 intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4033 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4034 intel_dp->dsc_dpcd,
4035 sizeof(intel_dp->dsc_dpcd)) < 0)
4036 DRM_ERROR("Failed to read DPCD register 0x%x\n",
4037 DP_DSC_SUPPORT);
4038
4039 DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
4040 (int)sizeof(intel_dp->dsc_dpcd),
4041 intel_dp->dsc_dpcd);
4042
4043 /* FEC is supported only on DP 1.4 */
4044 if (!intel_dp_is_edp(intel_dp) &&
4045 drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4046 &intel_dp->fec_capable) < 0)
4047 DRM_ERROR("Failed to read FEC DPCD register\n");
4048
4049 DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4050 }
4051 }
4052
4053 static bool
4054 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4055 {
4056 struct drm_i915_private *dev_priv =
4057 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4058
4059 /* this function is meant to be called only once */
4060 WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
4061
4062 if (!intel_dp_read_dpcd(intel_dp))
4063 return false;
4064
4065 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4066 drm_dp_is_branch(intel_dp->dpcd));
4067
4068 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4069 dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4070 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4071
4072 /*
4073 * Read the eDP display control registers.
4074 *
4075 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4076 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4077 * set, but require eDP 1.4+ detection (e.g. for supported link rates
4078 * method). The display control registers should read zero if they're
4079 * not supported anyway.
4080 */
4081 if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4082 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4083 sizeof(intel_dp->edp_dpcd))
4084 DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
4085 intel_dp->edp_dpcd);
4086
4087 /*
4088 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4089 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4090 */
4091 intel_psr_init_dpcd(intel_dp);
4092
4093 /* Read the eDP 1.4+ supported link rates. */
4094 if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4095 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4096 int i;
4097
4098 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4099 sink_rates, sizeof(sink_rates));
4100
4101 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4102 int val = le16_to_cpu(sink_rates[i]);
4103
4104 if (val == 0)
4105 break;
4106
4107 /* Value read multiplied by 200kHz gives the per-lane
4108 * link rate in kHz. The source rates are, however,
4109 * stored in terms of LS_Clk kHz. The full conversion
4110 * back to symbols is
4111 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4112 */
4113 intel_dp->sink_rates[i] = (val * 200) / 10;
4114 }
4115 intel_dp->num_sink_rates = i;
4116 }
4117
4118 /*
4119 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4120 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4121 */
4122 if (intel_dp->num_sink_rates)
4123 intel_dp->use_rate_select = true;
4124 else
4125 intel_dp_set_sink_rates(intel_dp);
4126
4127 intel_dp_set_common_rates(intel_dp);
4128
4129 /* Read the eDP DSC DPCD registers */
4130 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4131 intel_dp_get_dsc_sink_cap(intel_dp);
4132
4133 return true;
4134 }
4135
4136
4137 static bool
4138 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4139 {
4140 if (!intel_dp_read_dpcd(intel_dp))
4141 return false;
4142
4143 /* Don't clobber cached eDP rates. */
4144 if (!intel_dp_is_edp(intel_dp)) {
4145 intel_dp_set_sink_rates(intel_dp);
4146 intel_dp_set_common_rates(intel_dp);
4147 }
4148
4149 /*
4150 * Some eDP panels do not set a valid value for sink count, that is why
4151 * it don't care about read it here and in intel_edp_init_dpcd().
4152 */
4153 if (!intel_dp_is_edp(intel_dp)) {
4154 u8 count;
4155 ssize_t r;
4156
4157 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
4158 if (r < 1)
4159 return false;
4160
4161 /*
4162 * Sink count can change between short pulse hpd hence
4163 * a member variable in intel_dp will track any changes
4164 * between short pulse interrupts.
4165 */
4166 intel_dp->sink_count = DP_GET_SINK_COUNT(count);
4167
4168 /*
4169 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4170 * a dongle is present but no display. Unless we require to know
4171 * if a dongle is present or not, we don't need to update
4172 * downstream port information. So, an early return here saves
4173 * time from performing other operations which are not required.
4174 */
4175 if (!intel_dp->sink_count)
4176 return false;
4177 }
4178
4179 if (!drm_dp_is_branch(intel_dp->dpcd))
4180 return true; /* native DP sink */
4181
4182 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
4183 return true; /* no per-port downstream info */
4184
4185 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
4186 intel_dp->downstream_ports,
4187 DP_MAX_DOWNSTREAM_PORTS) < 0)
4188 return false; /* downstream port status fetch failed */
4189
4190 return true;
4191 }
4192
4193 static bool
4194 intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4195 {
4196 u8 mstm_cap;
4197
4198 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4199 return false;
4200
4201 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4202 return false;
4203
4204 return mstm_cap & DP_MST_CAP;
4205 }
4206
4207 static bool
4208 intel_dp_can_mst(struct intel_dp *intel_dp)
4209 {
4210 return i915_modparams.enable_dp_mst &&
4211 intel_dp->can_mst &&
4212 intel_dp_sink_can_mst(intel_dp);
4213 }
4214
4215 static void
4216 intel_dp_configure_mst(struct intel_dp *intel_dp)
4217 {
4218 struct intel_encoder *encoder =
4219 &dp_to_dig_port(intel_dp)->base;
4220 bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);
4221
4222 DRM_DEBUG_KMS("MST support? port %c: %s, sink: %s, modparam: %s\n",
4223 port_name(encoder->port), yesno(intel_dp->can_mst),
4224 yesno(sink_can_mst), yesno(i915_modparams.enable_dp_mst));
4225
4226 if (!intel_dp->can_mst)
4227 return;
4228
4229 intel_dp->is_mst = sink_can_mst &&
4230 i915_modparams.enable_dp_mst;
4231
4232 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4233 intel_dp->is_mst);
4234 }
4235
4236 static bool
4237 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4238 {
4239 return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4240 sink_irq_vector, DP_DPRX_ESI_LEN) ==
4241 DP_DPRX_ESI_LEN;
4242 }
4243
4244 u16 intel_dp_dsc_get_output_bpp(int link_clock, u8 lane_count,
4245 int mode_clock, int mode_hdisplay)
4246 {
4247 u16 bits_per_pixel, max_bpp_small_joiner_ram;
4248 int i;
4249
4250 /*
4251 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
4252 * (LinkSymbolClock)* 8 * ((100-FECOverhead)/100)*(TimeSlotsPerMTP)
4253 * FECOverhead = 2.4%, for SST -> TimeSlotsPerMTP is 1,
4254 * for MST -> TimeSlotsPerMTP has to be calculated
4255 */
4256 bits_per_pixel = (link_clock * lane_count * 8 *
4257 DP_DSC_FEC_OVERHEAD_FACTOR) /
4258 mode_clock;
4259
4260 /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
4261 max_bpp_small_joiner_ram = DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER /
4262 mode_hdisplay;
4263
4264 /*
4265 * Greatest allowed DSC BPP = MIN (output BPP from avaialble Link BW
4266 * check, output bpp from small joiner RAM check)
4267 */
4268 bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
4269
4270 /* Error out if the max bpp is less than smallest allowed valid bpp */
4271 if (bits_per_pixel < valid_dsc_bpp[0]) {
4272 DRM_DEBUG_KMS("Unsupported BPP %d\n", bits_per_pixel);
4273 return 0;
4274 }
4275
4276 /* Find the nearest match in the array of known BPPs from VESA */
4277 for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
4278 if (bits_per_pixel < valid_dsc_bpp[i + 1])
4279 break;
4280 }
4281 bits_per_pixel = valid_dsc_bpp[i];
4282
4283 /*
4284 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
4285 * fractional part is 0
4286 */
4287 return bits_per_pixel << 4;
4288 }
4289
4290 u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
4291 int mode_clock,
4292 int mode_hdisplay)
4293 {
4294 u8 min_slice_count, i;
4295 int max_slice_width;
4296
4297 if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
4298 min_slice_count = DIV_ROUND_UP(mode_clock,
4299 DP_DSC_MAX_ENC_THROUGHPUT_0);
4300 else
4301 min_slice_count = DIV_ROUND_UP(mode_clock,
4302 DP_DSC_MAX_ENC_THROUGHPUT_1);
4303
4304 max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
4305 if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
4306 DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
4307 max_slice_width);
4308 return 0;
4309 }
4310 /* Also take into account max slice width */
4311 min_slice_count = min_t(u8, min_slice_count,
4312 DIV_ROUND_UP(mode_hdisplay,
4313 max_slice_width));
4314
4315 /* Find the closest match to the valid slice count values */
4316 for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
4317 if (valid_dsc_slicecount[i] >
4318 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
4319 false))
4320 break;
4321 if (min_slice_count <= valid_dsc_slicecount[i])
4322 return valid_dsc_slicecount[i];
4323 }
4324
4325 DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
4326 return 0;
4327 }
4328
4329 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4330 {
4331 int status = 0;
4332 int test_link_rate;
4333 u8 test_lane_count, test_link_bw;
4334 /* (DP CTS 1.2)
4335 * 4.3.1.11
4336 */
4337 /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
4338 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
4339 &test_lane_count);
4340
4341 if (status <= 0) {
4342 DRM_DEBUG_KMS("Lane count read failed\n");
4343 return DP_TEST_NAK;
4344 }
4345 test_lane_count &= DP_MAX_LANE_COUNT_MASK;
4346
4347 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
4348 &test_link_bw);
4349 if (status <= 0) {
4350 DRM_DEBUG_KMS("Link Rate read failed\n");
4351 return DP_TEST_NAK;
4352 }
4353 test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4354
4355 /* Validate the requested link rate and lane count */
4356 if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
4357 test_lane_count))
4358 return DP_TEST_NAK;
4359
4360 intel_dp->compliance.test_lane_count = test_lane_count;
4361 intel_dp->compliance.test_link_rate = test_link_rate;
4362
4363 return DP_TEST_ACK;
4364 }
4365
4366 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4367 {
4368 u8 test_pattern;
4369 u8 test_misc;
4370 __be16 h_width, v_height;
4371 int status = 0;
4372
4373 /* Read the TEST_PATTERN (DP CTS 3.1.5) */
4374 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
4375 &test_pattern);
4376 if (status <= 0) {
4377 DRM_DEBUG_KMS("Test pattern read failed\n");
4378 return DP_TEST_NAK;
4379 }
4380 if (test_pattern != DP_COLOR_RAMP)
4381 return DP_TEST_NAK;
4382
4383 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
4384 &h_width, 2);
4385 if (status <= 0) {
4386 DRM_DEBUG_KMS("H Width read failed\n");
4387 return DP_TEST_NAK;
4388 }
4389
4390 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
4391 &v_height, 2);
4392 if (status <= 0) {
4393 DRM_DEBUG_KMS("V Height read failed\n");
4394 return DP_TEST_NAK;
4395 }
4396
4397 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
4398 &test_misc);
4399 if (status <= 0) {
4400 DRM_DEBUG_KMS("TEST MISC read failed\n");
4401 return DP_TEST_NAK;
4402 }
4403 if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
4404 return DP_TEST_NAK;
4405 if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
4406 return DP_TEST_NAK;
4407 switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
4408 case DP_TEST_BIT_DEPTH_6:
4409 intel_dp->compliance.test_data.bpc = 6;
4410 break;
4411 case DP_TEST_BIT_DEPTH_8:
4412 intel_dp->compliance.test_data.bpc = 8;
4413 break;
4414 default:
4415 return DP_TEST_NAK;
4416 }
4417
4418 intel_dp->compliance.test_data.video_pattern = test_pattern;
4419 intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
4420 intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
4421 /* Set test active flag here so userspace doesn't interrupt things */
4422 intel_dp->compliance.test_active = 1;
4423
4424 return DP_TEST_ACK;
4425 }
4426
4427 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
4428 {
4429 u8 test_result = DP_TEST_ACK;
4430 struct intel_connector *intel_connector = intel_dp->attached_connector;
4431 struct drm_connector *connector = &intel_connector->base;
4432
4433 if (intel_connector->detect_edid == NULL ||
4434 connector->edid_corrupt ||
4435 intel_dp->aux.i2c_defer_count > 6) {
4436 /* Check EDID read for NACKs, DEFERs and corruption
4437 * (DP CTS 1.2 Core r1.1)
4438 * 4.2.2.4 : Failed EDID read, I2C_NAK
4439 * 4.2.2.5 : Failed EDID read, I2C_DEFER
4440 * 4.2.2.6 : EDID corruption detected
4441 * Use failsafe mode for all cases
4442 */
4443 if (intel_dp->aux.i2c_nack_count > 0 ||
4444 intel_dp->aux.i2c_defer_count > 0)
4445 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4446 intel_dp->aux.i2c_nack_count,
4447 intel_dp->aux.i2c_defer_count);
4448 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4449 } else {
4450 struct edid *block = intel_connector->detect_edid;
4451
4452 /* We have to write the checksum
4453 * of the last block read
4454 */
4455 block += intel_connector->detect_edid->extensions;
4456
4457 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
4458 block->checksum) <= 0)
4459 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4460
4461 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4462 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4463 }
4464
4465 /* Set test active flag here so userspace doesn't interrupt things */
4466 intel_dp->compliance.test_active = 1;
4467
4468 return test_result;
4469 }
4470
4471 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4472 {
4473 u8 test_result = DP_TEST_NAK;
4474 return test_result;
4475 }
4476
4477 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4478 {
4479 u8 response = DP_TEST_NAK;
4480 u8 request = 0;
4481 int status;
4482
4483 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4484 if (status <= 0) {
4485 DRM_DEBUG_KMS("Could not read test request from sink\n");
4486 goto update_status;
4487 }
4488
4489 switch (request) {
4490 case DP_TEST_LINK_TRAINING:
4491 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4492 response = intel_dp_autotest_link_training(intel_dp);
4493 break;
4494 case DP_TEST_LINK_VIDEO_PATTERN:
4495 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4496 response = intel_dp_autotest_video_pattern(intel_dp);
4497 break;
4498 case DP_TEST_LINK_EDID_READ:
4499 DRM_DEBUG_KMS("EDID test requested\n");
4500 response = intel_dp_autotest_edid(intel_dp);
4501 break;
4502 case DP_TEST_LINK_PHY_TEST_PATTERN:
4503 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4504 response = intel_dp_autotest_phy_pattern(intel_dp);
4505 break;
4506 default:
4507 DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4508 break;
4509 }
4510
4511 if (response & DP_TEST_ACK)
4512 intel_dp->compliance.test_type = request;
4513
4514 update_status:
4515 status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4516 if (status <= 0)
4517 DRM_DEBUG_KMS("Could not write test response to sink\n");
4518 }
4519
4520 static int
4521 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4522 {
4523 bool bret;
4524
4525 if (intel_dp->is_mst) {
4526 u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4527 int ret = 0;
4528 int retry;
4529 bool handled;
4530
4531 WARN_ON_ONCE(intel_dp->active_mst_links < 0);
4532 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4533 go_again:
4534 if (bret == true) {
4535
4536 /* check link status - esi[10] = 0x200c */
4537 if (intel_dp->active_mst_links > 0 &&
4538 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4539 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4540 intel_dp_start_link_train(intel_dp);
4541 intel_dp_stop_link_train(intel_dp);
4542 }
4543
4544 DRM_DEBUG_KMS("got esi %3ph\n", esi);
4545 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4546
4547 if (handled) {
4548 for (retry = 0; retry < 3; retry++) {
4549 int wret;
4550 wret = drm_dp_dpcd_write(&intel_dp->aux,
4551 DP_SINK_COUNT_ESI+1,
4552 &esi[1], 3);
4553 if (wret == 3) {
4554 break;
4555 }
4556 }
4557
4558 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4559 if (bret == true) {
4560 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4561 goto go_again;
4562 }
4563 } else
4564 ret = 0;
4565
4566 return ret;
4567 } else {
4568 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4569 intel_dp->is_mst = false;
4570 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4571 intel_dp->is_mst);
4572 }
4573 }
4574 return -EINVAL;
4575 }
4576
4577 static bool
4578 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
4579 {
4580 u8 link_status[DP_LINK_STATUS_SIZE];
4581
4582 if (!intel_dp->link_trained)
4583 return false;
4584
4585 /*
4586 * While PSR source HW is enabled, it will control main-link sending
4587 * frames, enabling and disabling it so trying to do a retrain will fail
4588 * as the link would or not be on or it could mix training patterns
4589 * and frame data at the same time causing retrain to fail.
4590 * Also when exiting PSR, HW will retrain the link anyways fixing
4591 * any link status error.
4592 */
4593 if (intel_psr_enabled(intel_dp))
4594 return false;
4595
4596 if (!intel_dp_get_link_status(intel_dp, link_status))
4597 return false;
4598
4599 /*
4600 * Validate the cached values of intel_dp->link_rate and
4601 * intel_dp->lane_count before attempting to retrain.
4602 */
4603 if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
4604 intel_dp->lane_count))
4605 return false;
4606
4607 /* Retrain if Channel EQ or CR not ok */
4608 return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
4609 }
4610
4611 int intel_dp_retrain_link(struct intel_encoder *encoder,
4612 struct drm_modeset_acquire_ctx *ctx)
4613 {
4614 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4615 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4616 struct intel_connector *connector = intel_dp->attached_connector;
4617 struct drm_connector_state *conn_state;
4618 struct intel_crtc_state *crtc_state;
4619 struct intel_crtc *crtc;
4620 int ret;
4621
4622 /* FIXME handle the MST connectors as well */
4623
4624 if (!connector || connector->base.status != connector_status_connected)
4625 return 0;
4626
4627 ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
4628 ctx);
4629 if (ret)
4630 return ret;
4631
4632 conn_state = connector->base.state;
4633
4634 crtc = to_intel_crtc(conn_state->crtc);
4635 if (!crtc)
4636 return 0;
4637
4638 ret = drm_modeset_lock(&crtc->base.mutex, ctx);
4639 if (ret)
4640 return ret;
4641
4642 crtc_state = to_intel_crtc_state(crtc->base.state);
4643
4644 WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));
4645
4646 if (!crtc_state->base.active)
4647 return 0;
4648
4649 if (conn_state->commit &&
4650 !try_wait_for_completion(&conn_state->commit->hw_done))
4651 return 0;
4652
4653 if (!intel_dp_needs_link_retrain(intel_dp))
4654 return 0;
4655
4656 /* Suppress underruns caused by re-training */
4657 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
4658 if (crtc_state->has_pch_encoder)
4659 intel_set_pch_fifo_underrun_reporting(dev_priv,
4660 intel_crtc_pch_transcoder(crtc), false);
4661
4662 intel_dp_start_link_train(intel_dp);
4663 intel_dp_stop_link_train(intel_dp);
4664
4665 /* Keep underrun reporting disabled until things are stable */
4666 intel_wait_for_vblank(dev_priv, crtc->pipe);
4667
4668 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
4669 if (crtc_state->has_pch_encoder)
4670 intel_set_pch_fifo_underrun_reporting(dev_priv,
4671 intel_crtc_pch_transcoder(crtc), true);
4672
4673 return 0;
4674 }
4675
4676 /*
4677 * If display is now connected check links status,
4678 * there has been known issues of link loss triggering
4679 * long pulse.
4680 *
4681 * Some sinks (eg. ASUS PB287Q) seem to perform some
4682 * weird HPD ping pong during modesets. So we can apparently
4683 * end up with HPD going low during a modeset, and then
4684 * going back up soon after. And once that happens we must
4685 * retrain the link to get a picture. That's in case no
4686 * userspace component reacted to intermittent HPD dip.
4687 */
4688 static bool intel_dp_hotplug(struct intel_encoder *encoder,
4689 struct intel_connector *connector)
4690 {
4691 struct drm_modeset_acquire_ctx ctx;
4692 bool changed;
4693 int ret;
4694
4695 changed = intel_encoder_hotplug(encoder, connector);
4696
4697 drm_modeset_acquire_init(&ctx, 0);
4698
4699 for (;;) {
4700 ret = intel_dp_retrain_link(encoder, &ctx);
4701
4702 if (ret == -EDEADLK) {
4703 drm_modeset_backoff(&ctx);
4704 continue;
4705 }
4706
4707 break;
4708 }
4709
4710 drm_modeset_drop_locks(&ctx);
4711 drm_modeset_acquire_fini(&ctx);
4712 WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
4713
4714 return changed;
4715 }
4716
4717 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
4718 {
4719 u8 val;
4720
4721 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
4722 return;
4723
4724 if (drm_dp_dpcd_readb(&intel_dp->aux,
4725 DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
4726 return;
4727
4728 drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
4729
4730 if (val & DP_AUTOMATED_TEST_REQUEST)
4731 intel_dp_handle_test_request(intel_dp);
4732
4733 if (val & DP_CP_IRQ)
4734 intel_hdcp_check_link(intel_dp->attached_connector);
4735
4736 if (val & DP_SINK_SPECIFIC_IRQ)
4737 DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
4738 }
4739
4740 /*
4741 * According to DP spec
4742 * 5.1.2:
4743 * 1. Read DPCD
4744 * 2. Configure link according to Receiver Capabilities
4745 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4746 * 4. Check link status on receipt of hot-plug interrupt
4747 *
4748 * intel_dp_short_pulse - handles short pulse interrupts
4749 * when full detection is not required.
4750 * Returns %true if short pulse is handled and full detection
4751 * is NOT required and %false otherwise.
4752 */
4753 static bool
4754 intel_dp_short_pulse(struct intel_dp *intel_dp)
4755 {
4756 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4757 u8 old_sink_count = intel_dp->sink_count;
4758 bool ret;
4759
4760 /*
4761 * Clearing compliance test variables to allow capturing
4762 * of values for next automated test request.
4763 */
4764 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4765
4766 /*
4767 * Now read the DPCD to see if it's actually running
4768 * If the current value of sink count doesn't match with
4769 * the value that was stored earlier or dpcd read failed
4770 * we need to do full detection
4771 */
4772 ret = intel_dp_get_dpcd(intel_dp);
4773
4774 if ((old_sink_count != intel_dp->sink_count) || !ret) {
4775 /* No need to proceed if we are going to do full detect */
4776 return false;
4777 }
4778
4779 intel_dp_check_service_irq(intel_dp);
4780
4781 /* Handle CEC interrupts, if any */
4782 drm_dp_cec_irq(&intel_dp->aux);
4783
4784 /* defer to the hotplug work for link retraining if needed */
4785 if (intel_dp_needs_link_retrain(intel_dp))
4786 return false;
4787
4788 intel_psr_short_pulse(intel_dp);
4789
4790 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
4791 DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
4792 /* Send a Hotplug Uevent to userspace to start modeset */
4793 drm_kms_helper_hotplug_event(&dev_priv->drm);
4794 }
4795
4796 return true;
4797 }
4798
4799 /* XXX this is probably wrong for multiple downstream ports */
4800 static enum drm_connector_status
4801 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4802 {
4803 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
4804 u8 *dpcd = intel_dp->dpcd;
4805 u8 type;
4806
4807 if (lspcon->active)
4808 lspcon_resume(lspcon);
4809
4810 if (!intel_dp_get_dpcd(intel_dp))
4811 return connector_status_disconnected;
4812
4813 if (intel_dp_is_edp(intel_dp))
4814 return connector_status_connected;
4815
4816 /* if there's no downstream port, we're done */
4817 if (!drm_dp_is_branch(dpcd))
4818 return connector_status_connected;
4819
4820 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4821 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4822 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4823
4824 return intel_dp->sink_count ?
4825 connector_status_connected : connector_status_disconnected;
4826 }
4827
4828 if (intel_dp_can_mst(intel_dp))
4829 return connector_status_connected;
4830
4831 /* If no HPD, poke DDC gently */
4832 if (drm_probe_ddc(&intel_dp->aux.ddc))
4833 return connector_status_connected;
4834
4835 /* Well we tried, say unknown for unreliable port types */
4836 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4837 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4838 if (type == DP_DS_PORT_TYPE_VGA ||
4839 type == DP_DS_PORT_TYPE_NON_EDID)
4840 return connector_status_unknown;
4841 } else {
4842 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4843 DP_DWN_STRM_PORT_TYPE_MASK;
4844 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4845 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4846 return connector_status_unknown;
4847 }
4848
4849 /* Anything else is out of spec, warn and ignore */
4850 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4851 return connector_status_disconnected;
4852 }
4853
4854 static enum drm_connector_status
4855 edp_detect(struct intel_dp *intel_dp)
4856 {
4857 return connector_status_connected;
4858 }
4859
4860 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
4861 {
4862 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4863 u32 bit;
4864
4865 switch (encoder->hpd_pin) {
4866 case HPD_PORT_B:
4867 bit = SDE_PORTB_HOTPLUG;
4868 break;
4869 case HPD_PORT_C:
4870 bit = SDE_PORTC_HOTPLUG;
4871 break;
4872 case HPD_PORT_D:
4873 bit = SDE_PORTD_HOTPLUG;
4874 break;
4875 default:
4876 MISSING_CASE(encoder->hpd_pin);
4877 return false;
4878 }
4879
4880 return I915_READ(SDEISR) & bit;
4881 }
4882
4883 static bool cpt_digital_port_connected(struct intel_encoder *encoder)
4884 {
4885 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4886 u32 bit;
4887
4888 switch (encoder->hpd_pin) {
4889 case HPD_PORT_B:
4890 bit = SDE_PORTB_HOTPLUG_CPT;
4891 break;
4892 case HPD_PORT_C:
4893 bit = SDE_PORTC_HOTPLUG_CPT;
4894 break;
4895 case HPD_PORT_D:
4896 bit = SDE_PORTD_HOTPLUG_CPT;
4897 break;
4898 default:
4899 MISSING_CASE(encoder->hpd_pin);
4900 return false;
4901 }
4902
4903 return I915_READ(SDEISR) & bit;
4904 }
4905
4906 static bool spt_digital_port_connected(struct intel_encoder *encoder)
4907 {
4908 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4909 u32 bit;
4910
4911 switch (encoder->hpd_pin) {
4912 case HPD_PORT_A:
4913 bit = SDE_PORTA_HOTPLUG_SPT;
4914 break;
4915 case HPD_PORT_E:
4916 bit = SDE_PORTE_HOTPLUG_SPT;
4917 break;
4918 default:
4919 return cpt_digital_port_connected(encoder);
4920 }
4921
4922 return I915_READ(SDEISR) & bit;
4923 }
4924
4925 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
4926 {
4927 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4928 u32 bit;
4929
4930 switch (encoder->hpd_pin) {
4931 case HPD_PORT_B:
4932 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4933 break;
4934 case HPD_PORT_C:
4935 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4936 break;
4937 case HPD_PORT_D:
4938 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4939 break;
4940 default:
4941 MISSING_CASE(encoder->hpd_pin);
4942 return false;
4943 }
4944
4945 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4946 }
4947
4948 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
4949 {
4950 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4951 u32 bit;
4952
4953 switch (encoder->hpd_pin) {
4954 case HPD_PORT_B:
4955 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4956 break;
4957 case HPD_PORT_C:
4958 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4959 break;
4960 case HPD_PORT_D:
4961 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4962 break;
4963 default:
4964 MISSING_CASE(encoder->hpd_pin);
4965 return false;
4966 }
4967
4968 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4969 }
4970
4971 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
4972 {
4973 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4974
4975 if (encoder->hpd_pin == HPD_PORT_A)
4976 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
4977 else
4978 return ibx_digital_port_connected(encoder);
4979 }
4980
4981 static bool snb_digital_port_connected(struct intel_encoder *encoder)
4982 {
4983 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4984
4985 if (encoder->hpd_pin == HPD_PORT_A)
4986 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
4987 else
4988 return cpt_digital_port_connected(encoder);
4989 }
4990
4991 static bool ivb_digital_port_connected(struct intel_encoder *encoder)
4992 {
4993 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4994
4995 if (encoder->hpd_pin == HPD_PORT_A)
4996 return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
4997 else
4998 return cpt_digital_port_connected(encoder);
4999 }
5000
5001 static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5002 {
5003 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5004
5005 if (encoder->hpd_pin == HPD_PORT_A)
5006 return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
5007 else
5008 return cpt_digital_port_connected(encoder);
5009 }
5010
5011 static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5012 {
5013 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5014 u32 bit;
5015
5016 switch (encoder->hpd_pin) {
5017 case HPD_PORT_A:
5018 bit = BXT_DE_PORT_HP_DDIA;
5019 break;
5020 case HPD_PORT_B:
5021 bit = BXT_DE_PORT_HP_DDIB;
5022 break;
5023 case HPD_PORT_C:
5024 bit = BXT_DE_PORT_HP_DDIC;
5025 break;
5026 default:
5027 MISSING_CASE(encoder->hpd_pin);
5028 return false;
5029 }
5030
5031 return I915_READ(GEN8_DE_PORT_ISR) & bit;
5032 }
5033
5034 static bool icl_combo_port_connected(struct drm_i915_private *dev_priv,
5035 struct intel_digital_port *intel_dig_port)
5036 {
5037 enum port port = intel_dig_port->base.port;
5038
5039 return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(port);
5040 }
5041
5042 static const char *tc_type_name(enum tc_port_type type)
5043 {
5044 static const char * const names[] = {
5045 [TC_PORT_UNKNOWN] = "unknown",
5046 [TC_PORT_LEGACY] = "legacy",
5047 [TC_PORT_TYPEC] = "typec",
5048 [TC_PORT_TBT] = "tbt",
5049 };
5050
5051 if (WARN_ON(type >= ARRAY_SIZE(names)))
5052 type = TC_PORT_UNKNOWN;
5053
5054 return names[type];
5055 }
5056
5057 static void icl_update_tc_port_type(struct drm_i915_private *dev_priv,
5058 struct intel_digital_port *intel_dig_port,
5059 bool is_legacy, bool is_typec, bool is_tbt)
5060 {
5061 enum port port = intel_dig_port->base.port;
5062 enum tc_port_type old_type = intel_dig_port->tc_type;
5063
5064 WARN_ON(is_legacy + is_typec + is_tbt != 1);
5065
5066 if (is_legacy)
5067 intel_dig_port->tc_type = TC_PORT_LEGACY;
5068 else if (is_typec)
5069 intel_dig_port->tc_type = TC_PORT_TYPEC;
5070 else if (is_tbt)
5071 intel_dig_port->tc_type = TC_PORT_TBT;
5072 else
5073 return;
5074
5075 /* Types are not supposed to be changed at runtime. */
5076 WARN_ON(old_type != TC_PORT_UNKNOWN &&
5077 old_type != intel_dig_port->tc_type);
5078
5079 if (old_type != intel_dig_port->tc_type)
5080 DRM_DEBUG_KMS("Port %c has TC type %s\n", port_name(port),
5081 tc_type_name(intel_dig_port->tc_type));
5082 }
5083
5084 /*
5085 * This function implements the first part of the Connect Flow described by our
5086 * specification, Gen11 TypeC Programming chapter. The rest of the flow (reading
5087 * lanes, EDID, etc) is done as needed in the typical places.
5088 *
5089 * Unlike the other ports, type-C ports are not available to use as soon as we
5090 * get a hotplug. The type-C PHYs can be shared between multiple controllers:
5091 * display, USB, etc. As a result, handshaking through FIA is required around
5092 * connect and disconnect to cleanly transfer ownership with the controller and
5093 * set the type-C power state.
5094 *
5095 * We could opt to only do the connect flow when we actually try to use the AUX
5096 * channels or do a modeset, then immediately run the disconnect flow after
5097 * usage, but there are some implications on this for a dynamic environment:
5098 * things may go away or change behind our backs. So for now our driver is
5099 * always trying to acquire ownership of the controller as soon as it gets an
5100 * interrupt (or polls state and sees a port is connected) and only gives it
5101 * back when it sees a disconnect. Implementation of a more fine-grained model
5102 * will require a lot of coordination with user space and thorough testing for
5103 * the extra possible cases.
5104 */
5105 static bool icl_tc_phy_connect(struct drm_i915_private *dev_priv,
5106 struct intel_digital_port *dig_port)
5107 {
5108 enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
5109 u32 val;
5110
5111 if (dig_port->tc_type != TC_PORT_LEGACY &&
5112 dig_port->tc_type != TC_PORT_TYPEC)
5113 return true;
5114
5115 val = I915_READ(PORT_TX_DFLEXDPPMS);
5116 if (!(val & DP_PHY_MODE_STATUS_COMPLETED(tc_port))) {
5117 DRM_DEBUG_KMS("DP PHY for TC port %d not ready\n", tc_port);
5118 WARN_ON(dig_port->tc_legacy_port);
5119 return false;
5120 }
5121
5122 /*
5123 * This function may be called many times in a row without an HPD event
5124 * in between, so try to avoid the write when we can.
5125 */
5126 val = I915_READ(PORT_TX_DFLEXDPCSSS);
5127 if (!(val & DP_PHY_MODE_STATUS_NOT_SAFE(tc_port))) {
5128 val |= DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
5129 I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
5130 }
5131
5132 /*
5133 * Now we have to re-check the live state, in case the port recently
5134 * became disconnected. Not necessary for legacy mode.
5135 */
5136 if (dig_port->tc_type == TC_PORT_TYPEC &&
5137 !(I915_READ(PORT_TX_DFLEXDPSP) & TC_LIVE_STATE_TC(tc_port))) {
5138 DRM_DEBUG_KMS("TC PHY %d sudden disconnect.\n", tc_port);
5139 icl_tc_phy_disconnect(dev_priv, dig_port);
5140 return false;
5141 }
5142
5143 return true;
5144 }
5145
5146 /*
5147 * See the comment at the connect function. This implements the Disconnect
5148 * Flow.
5149 */
5150 void icl_tc_phy_disconnect(struct drm_i915_private *dev_priv,
5151 struct intel_digital_port *dig_port)
5152 {
5153 enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
5154
5155 if (dig_port->tc_type == TC_PORT_UNKNOWN)
5156 return;
5157
5158 /*
5159 * TBT disconnection flow is read the live status, what was done in
5160 * caller.
5161 */
5162 if (dig_port->tc_type == TC_PORT_TYPEC ||
5163 dig_port->tc_type == TC_PORT_LEGACY) {
5164 u32 val;
5165
5166 val = I915_READ(PORT_TX_DFLEXDPCSSS);
5167 val &= ~DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
5168 I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
5169 }
5170
5171 DRM_DEBUG_KMS("Port %c TC type %s disconnected\n",
5172 port_name(dig_port->base.port),
5173 tc_type_name(dig_port->tc_type));
5174
5175 dig_port->tc_type = TC_PORT_UNKNOWN;
5176 }
5177
5178 /*
5179 * The type-C ports are different because even when they are connected, they may
5180 * not be available/usable by the graphics driver: see the comment on
5181 * icl_tc_phy_connect(). So in our driver instead of adding the additional
5182 * concept of "usable" and make everything check for "connected and usable" we
5183 * define a port as "connected" when it is not only connected, but also when it
5184 * is usable by the rest of the driver. That maintains the old assumption that
5185 * connected ports are usable, and avoids exposing to the users objects they
5186 * can't really use.
5187 */
5188 static bool icl_tc_port_connected(struct drm_i915_private *dev_priv,
5189 struct intel_digital_port *intel_dig_port)
5190 {
5191 enum port port = intel_dig_port->base.port;
5192 enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
5193 bool is_legacy, is_typec, is_tbt;
5194 u32 dpsp;
5195
5196 /*
5197 * WARN if we got a legacy port HPD, but VBT didn't mark the port as
5198 * legacy. Treat the port as legacy from now on.
5199 */
5200 if (WARN_ON(!intel_dig_port->tc_legacy_port &&
5201 I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(tc_port)))
5202 intel_dig_port->tc_legacy_port = true;
5203 is_legacy = intel_dig_port->tc_legacy_port;
5204
5205 /*
5206 * The spec says we shouldn't be using the ISR bits for detecting
5207 * between TC and TBT. We should use DFLEXDPSP.
5208 */
5209 dpsp = I915_READ(PORT_TX_DFLEXDPSP);
5210 is_typec = dpsp & TC_LIVE_STATE_TC(tc_port);
5211 is_tbt = dpsp & TC_LIVE_STATE_TBT(tc_port);
5212
5213 if (!is_legacy && !is_typec && !is_tbt) {
5214 icl_tc_phy_disconnect(dev_priv, intel_dig_port);
5215
5216 return false;
5217 }
5218
5219 icl_update_tc_port_type(dev_priv, intel_dig_port, is_legacy, is_typec,
5220 is_tbt);
5221
5222 if (!icl_tc_phy_connect(dev_priv, intel_dig_port))
5223 return false;
5224
5225 return true;
5226 }
5227
5228 static bool icl_digital_port_connected(struct intel_encoder *encoder)
5229 {
5230 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5231 struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
5232
5233 if (intel_port_is_combophy(dev_priv, encoder->port))
5234 return icl_combo_port_connected(dev_priv, dig_port);
5235 else if (intel_port_is_tc(dev_priv, encoder->port))
5236 return icl_tc_port_connected(dev_priv, dig_port);
5237 else
5238 MISSING_CASE(encoder->hpd_pin);
5239
5240 return false;
5241 }
5242
5243 /*
5244 * intel_digital_port_connected - is the specified port connected?
5245 * @encoder: intel_encoder
5246 *
5247 * In cases where there's a connector physically connected but it can't be used
5248 * by our hardware we also return false, since the rest of the driver should
5249 * pretty much treat the port as disconnected. This is relevant for type-C
5250 * (starting on ICL) where there's ownership involved.
5251 *
5252 * Return %true if port is connected, %false otherwise.
5253 */
5254 bool intel_digital_port_connected(struct intel_encoder *encoder)
5255 {
5256 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5257
5258 if (HAS_GMCH(dev_priv)) {
5259 if (IS_GM45(dev_priv))
5260 return gm45_digital_port_connected(encoder);
5261 else
5262 return g4x_digital_port_connected(encoder);
5263 }
5264
5265 if (INTEL_GEN(dev_priv) >= 11)
5266 return icl_digital_port_connected(encoder);
5267 else if (IS_GEN(dev_priv, 10) || IS_GEN9_BC(dev_priv))
5268 return spt_digital_port_connected(encoder);
5269 else if (IS_GEN9_LP(dev_priv))
5270 return bxt_digital_port_connected(encoder);
5271 else if (IS_GEN(dev_priv, 8))
5272 return bdw_digital_port_connected(encoder);
5273 else if (IS_GEN(dev_priv, 7))
5274 return ivb_digital_port_connected(encoder);
5275 else if (IS_GEN(dev_priv, 6))
5276 return snb_digital_port_connected(encoder);
5277 else if (IS_GEN(dev_priv, 5))
5278 return ilk_digital_port_connected(encoder);
5279
5280 MISSING_CASE(INTEL_GEN(dev_priv));
5281 return false;
5282 }
5283
5284 static struct edid *
5285 intel_dp_get_edid(struct intel_dp *intel_dp)
5286 {
5287 struct intel_connector *intel_connector = intel_dp->attached_connector;
5288
5289 /* use cached edid if we have one */
5290 if (intel_connector->edid) {
5291 /* invalid edid */
5292 if (IS_ERR(intel_connector->edid))
5293 return NULL;
5294
5295 return drm_edid_duplicate(intel_connector->edid);
5296 } else
5297 return drm_get_edid(&intel_connector->base,
5298 &intel_dp->aux.ddc);
5299 }
5300
5301 static void
5302 intel_dp_set_edid(struct intel_dp *intel_dp)
5303 {
5304 struct intel_connector *intel_connector = intel_dp->attached_connector;
5305 struct edid *edid;
5306
5307 intel_dp_unset_edid(intel_dp);
5308 edid = intel_dp_get_edid(intel_dp);
5309 intel_connector->detect_edid = edid;
5310
5311 intel_dp->has_audio = drm_detect_monitor_audio(edid);
5312 drm_dp_cec_set_edid(&intel_dp->aux, edid);
5313 }
5314
5315 static void
5316 intel_dp_unset_edid(struct intel_dp *intel_dp)
5317 {
5318 struct intel_connector *intel_connector = intel_dp->attached_connector;
5319
5320 drm_dp_cec_unset_edid(&intel_dp->aux);
5321 kfree(intel_connector->detect_edid);
5322 intel_connector->detect_edid = NULL;
5323
5324 intel_dp->has_audio = false;
5325 }
5326
5327 static int
5328 intel_dp_detect(struct drm_connector *connector,
5329 struct drm_modeset_acquire_ctx *ctx,
5330 bool force)
5331 {
5332 struct drm_i915_private *dev_priv = to_i915(connector->dev);
5333 struct intel_dp *intel_dp = intel_attached_dp(connector);
5334 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5335 struct intel_encoder *encoder = &dig_port->base;
5336 enum drm_connector_status status;
5337 enum intel_display_power_domain aux_domain =
5338 intel_aux_power_domain(dig_port);
5339 intel_wakeref_t wakeref;
5340
5341 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5342 connector->base.id, connector->name);
5343 WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5344
5345 wakeref = intel_display_power_get(dev_priv, aux_domain);
5346
5347 /* Can't disconnect eDP */
5348 if (intel_dp_is_edp(intel_dp))
5349 status = edp_detect(intel_dp);
5350 else if (intel_digital_port_connected(encoder))
5351 status = intel_dp_detect_dpcd(intel_dp);
5352 else
5353 status = connector_status_disconnected;
5354
5355 if (status == connector_status_disconnected) {
5356 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5357 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5358
5359 if (intel_dp->is_mst) {
5360 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
5361 intel_dp->is_mst,
5362 intel_dp->mst_mgr.mst_state);
5363 intel_dp->is_mst = false;
5364 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5365 intel_dp->is_mst);
5366 }
5367
5368 goto out;
5369 }
5370
5371 if (intel_dp->reset_link_params) {
5372 /* Initial max link lane count */
5373 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5374
5375 /* Initial max link rate */
5376 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5377
5378 intel_dp->reset_link_params = false;
5379 }
5380
5381 intel_dp_print_rates(intel_dp);
5382
5383 /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
5384 if (INTEL_GEN(dev_priv) >= 11)
5385 intel_dp_get_dsc_sink_cap(intel_dp);
5386
5387 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
5388 drm_dp_is_branch(intel_dp->dpcd));
5389
5390 intel_dp_configure_mst(intel_dp);
5391
5392 if (intel_dp->is_mst) {
5393 /*
5394 * If we are in MST mode then this connector
5395 * won't appear connected or have anything
5396 * with EDID on it
5397 */
5398 status = connector_status_disconnected;
5399 goto out;
5400 }
5401
5402 /*
5403 * Some external monitors do not signal loss of link synchronization
5404 * with an IRQ_HPD, so force a link status check.
5405 */
5406 if (!intel_dp_is_edp(intel_dp)) {
5407 int ret;
5408
5409 ret = intel_dp_retrain_link(encoder, ctx);
5410 if (ret) {
5411 intel_display_power_put(dev_priv, aux_domain, wakeref);
5412 return ret;
5413 }
5414 }
5415
5416 /*
5417 * Clearing NACK and defer counts to get their exact values
5418 * while reading EDID which are required by Compliance tests
5419 * 4.2.2.4 and 4.2.2.5
5420 */
5421 intel_dp->aux.i2c_nack_count = 0;
5422 intel_dp->aux.i2c_defer_count = 0;
5423
5424 intel_dp_set_edid(intel_dp);
5425 if (intel_dp_is_edp(intel_dp) ||
5426 to_intel_connector(connector)->detect_edid)
5427 status = connector_status_connected;
5428
5429 intel_dp_check_service_irq(intel_dp);
5430
5431 out:
5432 if (status != connector_status_connected && !intel_dp->is_mst)
5433 intel_dp_unset_edid(intel_dp);
5434
5435 intel_display_power_put(dev_priv, aux_domain, wakeref);
5436 return status;
5437 }
5438
5439 static void
5440 intel_dp_force(struct drm_connector *connector)
5441 {
5442 struct intel_dp *intel_dp = intel_attached_dp(connector);
5443 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5444 struct intel_encoder *intel_encoder = &dig_port->base;
5445 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5446 enum intel_display_power_domain aux_domain =
5447 intel_aux_power_domain(dig_port);
5448 intel_wakeref_t wakeref;
5449
5450 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5451 connector->base.id, connector->name);
5452 intel_dp_unset_edid(intel_dp);
5453
5454 if (connector->status != connector_status_connected)
5455 return;
5456
5457 wakeref = intel_display_power_get(dev_priv, aux_domain);
5458
5459 intel_dp_set_edid(intel_dp);
5460
5461 intel_display_power_put(dev_priv, aux_domain, wakeref);
5462 }
5463
5464 static int intel_dp_get_modes(struct drm_connector *connector)
5465 {
5466 struct intel_connector *intel_connector = to_intel_connector(connector);
5467 struct edid *edid;
5468
5469 edid = intel_connector->detect_edid;
5470 if (edid) {
5471 int ret = intel_connector_update_modes(connector, edid);
5472 if (ret)
5473 return ret;
5474 }
5475
5476 /* if eDP has no EDID, fall back to fixed mode */
5477 if (intel_dp_is_edp(intel_attached_dp(connector)) &&
5478 intel_connector->panel.fixed_mode) {
5479 struct drm_display_mode *mode;
5480
5481 mode = drm_mode_duplicate(connector->dev,
5482 intel_connector->panel.fixed_mode);
5483 if (mode) {
5484 drm_mode_probed_add(connector, mode);
5485 return 1;
5486 }
5487 }
5488
5489 return 0;
5490 }
5491
5492 static int
5493 intel_dp_connector_register(struct drm_connector *connector)
5494 {
5495 struct intel_dp *intel_dp = intel_attached_dp(connector);
5496 struct drm_device *dev = connector->dev;
5497 int ret;
5498
5499 ret = intel_connector_register(connector);
5500 if (ret)
5501 return ret;
5502
5503 i915_debugfs_connector_add(connector);
5504
5505 DRM_DEBUG_KMS("registering %s bus for %s\n",
5506 intel_dp->aux.name, connector->kdev->kobj.name);
5507
5508 intel_dp->aux.dev = connector->kdev;
5509 ret = drm_dp_aux_register(&intel_dp->aux);
5510 if (!ret)
5511 drm_dp_cec_register_connector(&intel_dp->aux,
5512 connector->name, dev->dev);
5513 return ret;
5514 }
5515
5516 static void
5517 intel_dp_connector_unregister(struct drm_connector *connector)
5518 {
5519 struct intel_dp *intel_dp = intel_attached_dp(connector);
5520
5521 drm_dp_cec_unregister_connector(&intel_dp->aux);
5522 drm_dp_aux_unregister(&intel_dp->aux);
5523 intel_connector_unregister(connector);
5524 }
5525
5526 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
5527 {
5528 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
5529 struct intel_dp *intel_dp = &intel_dig_port->dp;
5530
5531 intel_dp_mst_encoder_cleanup(intel_dig_port);
5532 if (intel_dp_is_edp(intel_dp)) {
5533 intel_wakeref_t wakeref;
5534
5535 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5536 /*
5537 * vdd might still be enabled do to the delayed vdd off.
5538 * Make sure vdd is actually turned off here.
5539 */
5540 with_pps_lock(intel_dp, wakeref)
5541 edp_panel_vdd_off_sync(intel_dp);
5542
5543 if (intel_dp->edp_notifier.notifier_call) {
5544 unregister_reboot_notifier(&intel_dp->edp_notifier);
5545 intel_dp->edp_notifier.notifier_call = NULL;
5546 }
5547 }
5548
5549 intel_dp_aux_fini(intel_dp);
5550 }
5551
5552 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
5553 {
5554 intel_dp_encoder_flush_work(encoder);
5555
5556 drm_encoder_cleanup(encoder);
5557 kfree(enc_to_dig_port(encoder));
5558 }
5559
5560 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5561 {
5562 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
5563 intel_wakeref_t wakeref;
5564
5565 if (!intel_dp_is_edp(intel_dp))
5566 return;
5567
5568 /*
5569 * vdd might still be enabled do to the delayed vdd off.
5570 * Make sure vdd is actually turned off here.
5571 */
5572 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5573 with_pps_lock(intel_dp, wakeref)
5574 edp_panel_vdd_off_sync(intel_dp);
5575 }
5576
5577 static
5578 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
5579 u8 *an)
5580 {
5581 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
5582 static const struct drm_dp_aux_msg msg = {
5583 .request = DP_AUX_NATIVE_WRITE,
5584 .address = DP_AUX_HDCP_AKSV,
5585 .size = DRM_HDCP_KSV_LEN,
5586 };
5587 u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5588 ssize_t dpcd_ret;
5589 int ret;
5590
5591 /* Output An first, that's easy */
5592 dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
5593 an, DRM_HDCP_AN_LEN);
5594 if (dpcd_ret != DRM_HDCP_AN_LEN) {
5595 DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
5596 dpcd_ret);
5597 return dpcd_ret >= 0 ? -EIO : dpcd_ret;
5598 }
5599
5600 /*
5601 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
5602 * order to get it on the wire, we need to create the AUX header as if
5603 * we were writing the data, and then tickle the hardware to output the
5604 * data once the header is sent out.
5605 */
5606 intel_dp_aux_header(txbuf, &msg);
5607
5608 ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5609 rxbuf, sizeof(rxbuf),
5610 DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5611 if (ret < 0) {
5612 DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
5613 return ret;
5614 } else if (ret == 0) {
5615 DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5616 return -EIO;
5617 }
5618
5619 reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
5620 if (reply != DP_AUX_NATIVE_REPLY_ACK) {
5621 DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
5622 reply);
5623 return -EIO;
5624 }
5625 return 0;
5626 }
5627
5628 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
5629 u8 *bksv)
5630 {
5631 ssize_t ret;
5632 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
5633 DRM_HDCP_KSV_LEN);
5634 if (ret != DRM_HDCP_KSV_LEN) {
5635 DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
5636 return ret >= 0 ? -EIO : ret;
5637 }
5638 return 0;
5639 }
5640
5641 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
5642 u8 *bstatus)
5643 {
5644 ssize_t ret;
5645 /*
5646 * For some reason the HDMI and DP HDCP specs call this register
5647 * definition by different names. In the HDMI spec, it's called BSTATUS,
5648 * but in DP it's called BINFO.
5649 */
5650 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
5651 bstatus, DRM_HDCP_BSTATUS_LEN);
5652 if (ret != DRM_HDCP_BSTATUS_LEN) {
5653 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5654 return ret >= 0 ? -EIO : ret;
5655 }
5656 return 0;
5657 }
5658
5659 static
5660 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
5661 u8 *bcaps)
5662 {
5663 ssize_t ret;
5664
5665 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5666 bcaps, 1);
5667 if (ret != 1) {
5668 DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
5669 return ret >= 0 ? -EIO : ret;
5670 }
5671
5672 return 0;
5673 }
5674
5675 static
5676 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
5677 bool *repeater_present)
5678 {
5679 ssize_t ret;
5680 u8 bcaps;
5681
5682 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
5683 if (ret)
5684 return ret;
5685
5686 *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
5687 return 0;
5688 }
5689
5690 static
5691 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
5692 u8 *ri_prime)
5693 {
5694 ssize_t ret;
5695 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
5696 ri_prime, DRM_HDCP_RI_LEN);
5697 if (ret != DRM_HDCP_RI_LEN) {
5698 DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
5699 return ret >= 0 ? -EIO : ret;
5700 }
5701 return 0;
5702 }
5703
5704 static
5705 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
5706 bool *ksv_ready)
5707 {
5708 ssize_t ret;
5709 u8 bstatus;
5710 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
5711 &bstatus, 1);
5712 if (ret != 1) {
5713 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5714 return ret >= 0 ? -EIO : ret;
5715 }
5716 *ksv_ready = bstatus & DP_BSTATUS_READY;
5717 return 0;
5718 }
5719
5720 static
5721 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
5722 int num_downstream, u8 *ksv_fifo)
5723 {
5724 ssize_t ret;
5725 int i;
5726
5727 /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
5728 for (i = 0; i < num_downstream; i += 3) {
5729 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
5730 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
5731 DP_AUX_HDCP_KSV_FIFO,
5732 ksv_fifo + i * DRM_HDCP_KSV_LEN,
5733 len);
5734 if (ret != len) {
5735 DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
5736 i, ret);
5737 return ret >= 0 ? -EIO : ret;
5738 }
5739 }
5740 return 0;
5741 }
5742
5743 static
5744 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
5745 int i, u32 *part)
5746 {
5747 ssize_t ret;
5748
5749 if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
5750 return -EINVAL;
5751
5752 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
5753 DP_AUX_HDCP_V_PRIME(i), part,
5754 DRM_HDCP_V_PRIME_PART_LEN);
5755 if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
5756 DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
5757 return ret >= 0 ? -EIO : ret;
5758 }
5759 return 0;
5760 }
5761
5762 static
5763 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
5764 bool enable)
5765 {
5766 /* Not used for single stream DisplayPort setups */
5767 return 0;
5768 }
5769
5770 static
5771 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
5772 {
5773 ssize_t ret;
5774 u8 bstatus;
5775
5776 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
5777 &bstatus, 1);
5778 if (ret != 1) {
5779 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5780 return false;
5781 }
5782
5783 return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
5784 }
5785
5786 static
5787 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
5788 bool *hdcp_capable)
5789 {
5790 ssize_t ret;
5791 u8 bcaps;
5792
5793 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
5794 if (ret)
5795 return ret;
5796
5797 *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
5798 return 0;
5799 }
5800
5801 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
5802 .write_an_aksv = intel_dp_hdcp_write_an_aksv,
5803 .read_bksv = intel_dp_hdcp_read_bksv,
5804 .read_bstatus = intel_dp_hdcp_read_bstatus,
5805 .repeater_present = intel_dp_hdcp_repeater_present,
5806 .read_ri_prime = intel_dp_hdcp_read_ri_prime,
5807 .read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
5808 .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
5809 .read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
5810 .toggle_signalling = intel_dp_hdcp_toggle_signalling,
5811 .check_link = intel_dp_hdcp_check_link,
5812 .hdcp_capable = intel_dp_hdcp_capable,
5813 };
5814
5815 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
5816 {
5817 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5818 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5819
5820 lockdep_assert_held(&dev_priv->pps_mutex);
5821
5822 if (!edp_have_panel_vdd(intel_dp))
5823 return;
5824
5825 /*
5826 * The VDD bit needs a power domain reference, so if the bit is
5827 * already enabled when we boot or resume, grab this reference and
5828 * schedule a vdd off, so we don't hold on to the reference
5829 * indefinitely.
5830 */
5831 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
5832 intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
5833
5834 edp_panel_vdd_schedule_off(intel_dp);
5835 }
5836
5837 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
5838 {
5839 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5840 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
5841 enum pipe pipe;
5842
5843 if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
5844 encoder->port, &pipe))
5845 return pipe;
5846
5847 return INVALID_PIPE;
5848 }
5849
5850 void intel_dp_encoder_reset(struct drm_encoder *encoder)
5851 {
5852 struct drm_i915_private *dev_priv = to_i915(encoder->dev);
5853 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5854 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5855 intel_wakeref_t wakeref;
5856
5857 if (!HAS_DDI(dev_priv))
5858 intel_dp->DP = I915_READ(intel_dp->output_reg);
5859
5860 if (lspcon->active)
5861 lspcon_resume(lspcon);
5862
5863 intel_dp->reset_link_params = true;
5864
5865 with_pps_lock(intel_dp, wakeref) {
5866 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5867 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
5868
5869 if (intel_dp_is_edp(intel_dp)) {
5870 /*
5871 * Reinit the power sequencer, in case BIOS did
5872 * something nasty with it.
5873 */
5874 intel_dp_pps_init(intel_dp);
5875 intel_edp_panel_vdd_sanitize(intel_dp);
5876 }
5877 }
5878 }
5879
5880 static const struct drm_connector_funcs intel_dp_connector_funcs = {
5881 .force = intel_dp_force,
5882 .fill_modes = drm_helper_probe_single_connector_modes,
5883 .atomic_get_property = intel_digital_connector_atomic_get_property,
5884 .atomic_set_property = intel_digital_connector_atomic_set_property,
5885 .late_register = intel_dp_connector_register,
5886 .early_unregister = intel_dp_connector_unregister,
5887 .destroy = intel_connector_destroy,
5888 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
5889 .atomic_duplicate_state = intel_digital_connector_duplicate_state,
5890 };
5891
5892 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
5893 .detect_ctx = intel_dp_detect,
5894 .get_modes = intel_dp_get_modes,
5895 .mode_valid = intel_dp_mode_valid,
5896 .atomic_check = intel_digital_connector_atomic_check,
5897 };
5898
5899 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
5900 .reset = intel_dp_encoder_reset,
5901 .destroy = intel_dp_encoder_destroy,
5902 };
5903
5904 enum irqreturn
5905 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
5906 {
5907 struct intel_dp *intel_dp = &intel_dig_port->dp;
5908 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5909 enum irqreturn ret = IRQ_NONE;
5910 intel_wakeref_t wakeref;
5911
5912 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
5913 /*
5914 * vdd off can generate a long pulse on eDP which
5915 * would require vdd on to handle it, and thus we
5916 * would end up in an endless cycle of
5917 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
5918 */
5919 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
5920 port_name(intel_dig_port->base.port));
5921 return IRQ_HANDLED;
5922 }
5923
5924 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
5925 port_name(intel_dig_port->base.port),
5926 long_hpd ? "long" : "short");
5927
5928 if (long_hpd) {
5929 intel_dp->reset_link_params = true;
5930 return IRQ_NONE;
5931 }
5932
5933 wakeref = intel_display_power_get(dev_priv,
5934 intel_aux_power_domain(intel_dig_port));
5935
5936 if (intel_dp->is_mst) {
5937 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
5938 /*
5939 * If we were in MST mode, and device is not
5940 * there, get out of MST mode
5941 */
5942 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
5943 intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
5944 intel_dp->is_mst = false;
5945 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5946 intel_dp->is_mst);
5947 goto put_power;
5948 }
5949 }
5950
5951 if (!intel_dp->is_mst) {
5952 bool handled;
5953
5954 handled = intel_dp_short_pulse(intel_dp);
5955
5956 if (!handled)
5957 goto put_power;
5958 }
5959
5960 ret = IRQ_HANDLED;
5961
5962 put_power:
5963 intel_display_power_put(dev_priv,
5964 intel_aux_power_domain(intel_dig_port),
5965 wakeref);
5966
5967 return ret;
5968 }
5969
5970 /* check the VBT to see whether the eDP is on another port */
5971 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
5972 {
5973 /*
5974 * eDP not supported on g4x. so bail out early just
5975 * for a bit extra safety in case the VBT is bonkers.
5976 */
5977 if (INTEL_GEN(dev_priv) < 5)
5978 return false;
5979
5980 if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
5981 return true;
5982
5983 return intel_bios_is_port_edp(dev_priv, port);
5984 }
5985
5986 static void
5987 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
5988 {
5989 struct drm_i915_private *dev_priv = to_i915(connector->dev);
5990 enum port port = dp_to_dig_port(intel_dp)->base.port;
5991
5992 if (!IS_G4X(dev_priv) && port != PORT_A)
5993 intel_attach_force_audio_property(connector);
5994
5995 intel_attach_broadcast_rgb_property(connector);
5996 if (HAS_GMCH(dev_priv))
5997 drm_connector_attach_max_bpc_property(connector, 6, 10);
5998 else if (INTEL_GEN(dev_priv) >= 5)
5999 drm_connector_attach_max_bpc_property(connector, 6, 12);
6000
6001 if (intel_dp_is_edp(intel_dp)) {
6002 u32 allowed_scalers;
6003
6004 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
6005 if (!HAS_GMCH(dev_priv))
6006 allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
6007
6008 drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
6009
6010 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6011
6012 }
6013 }
6014
6015 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
6016 {
6017 intel_dp->panel_power_off_time = ktime_get_boottime();
6018 intel_dp->last_power_on = jiffies;
6019 intel_dp->last_backlight_off = jiffies;
6020 }
6021
6022 static void
6023 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6024 {
6025 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6026 u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
6027 struct pps_registers regs;
6028
6029 intel_pps_get_registers(intel_dp, &regs);
6030
6031 /* Workaround: Need to write PP_CONTROL with the unlock key as
6032 * the very first thing. */
6033 pp_ctl = ironlake_get_pp_control(intel_dp);
6034
6035 pp_on = I915_READ(regs.pp_on);
6036 pp_off = I915_READ(regs.pp_off);
6037 if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv) &&
6038 !HAS_PCH_ICP(dev_priv)) {
6039 I915_WRITE(regs.pp_ctrl, pp_ctl);
6040 pp_div = I915_READ(regs.pp_div);
6041 }
6042
6043 /* Pull timing values out of registers */
6044 seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
6045 PANEL_POWER_UP_DELAY_SHIFT;
6046
6047 seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
6048 PANEL_LIGHT_ON_DELAY_SHIFT;
6049
6050 seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
6051 PANEL_LIGHT_OFF_DELAY_SHIFT;
6052
6053 seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
6054 PANEL_POWER_DOWN_DELAY_SHIFT;
6055
6056 if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
6057 HAS_PCH_ICP(dev_priv)) {
6058 seq->t11_t12 = ((pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
6059 BXT_POWER_CYCLE_DELAY_SHIFT) * 1000;
6060 } else {
6061 seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
6062 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
6063 }
6064 }
6065
6066 static void
6067 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
6068 {
6069 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
6070 state_name,
6071 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
6072 }
6073
6074 static void
6075 intel_pps_verify_state(struct intel_dp *intel_dp)
6076 {
6077 struct edp_power_seq hw;
6078 struct edp_power_seq *sw = &intel_dp->pps_delays;
6079
6080 intel_pps_readout_hw_state(intel_dp, &hw);
6081
6082 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
6083 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
6084 DRM_ERROR("PPS state mismatch\n");
6085 intel_pps_dump_state("sw", sw);
6086 intel_pps_dump_state("hw", &hw);
6087 }
6088 }
6089
6090 static void
6091 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6092 {
6093 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6094 struct edp_power_seq cur, vbt, spec,
6095 *final = &intel_dp->pps_delays;
6096
6097 lockdep_assert_held(&dev_priv->pps_mutex);
6098
6099 /* already initialized? */
6100 if (final->t11_t12 != 0)
6101 return;
6102
6103 intel_pps_readout_hw_state(intel_dp, &cur);
6104
6105 intel_pps_dump_state("cur", &cur);
6106
6107 vbt = dev_priv->vbt.edp.pps;
6108 /* On Toshiba Satellite P50-C-18C system the VBT T12 delay
6109 * of 500ms appears to be too short. Ocassionally the panel
6110 * just fails to power back on. Increasing the delay to 800ms
6111 * seems sufficient to avoid this problem.
6112 */
6113 if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6114 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6115 DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
6116 vbt.t11_t12);
6117 }
6118 /* T11_T12 delay is special and actually in units of 100ms, but zero
6119 * based in the hw (so we need to add 100 ms). But the sw vbt
6120 * table multiplies it with 1000 to make it in units of 100usec,
6121 * too. */
6122 vbt.t11_t12 += 100 * 10;
6123
6124 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
6125 * our hw here, which are all in 100usec. */
6126 spec.t1_t3 = 210 * 10;
6127 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
6128 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
6129 spec.t10 = 500 * 10;
6130 /* This one is special and actually in units of 100ms, but zero
6131 * based in the hw (so we need to add 100 ms). But the sw vbt
6132 * table multiplies it with 1000 to make it in units of 100usec,
6133 * too. */
6134 spec.t11_t12 = (510 + 100) * 10;
6135
6136 intel_pps_dump_state("vbt", &vbt);
6137
6138 /* Use the max of the register settings and vbt. If both are
6139 * unset, fall back to the spec limits. */
6140 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
6141 spec.field : \
6142 max(cur.field, vbt.field))
6143 assign_final(t1_t3);
6144 assign_final(t8);
6145 assign_final(t9);
6146 assign_final(t10);
6147 assign_final(t11_t12);
6148 #undef assign_final
6149
6150 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
6151 intel_dp->panel_power_up_delay = get_delay(t1_t3);
6152 intel_dp->backlight_on_delay = get_delay(t8);
6153 intel_dp->backlight_off_delay = get_delay(t9);
6154 intel_dp->panel_power_down_delay = get_delay(t10);
6155 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
6156 #undef get_delay
6157
6158 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
6159 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
6160 intel_dp->panel_power_cycle_delay);
6161
6162 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
6163 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
6164
6165 /*
6166 * We override the HW backlight delays to 1 because we do manual waits
6167 * on them. For T8, even BSpec recommends doing it. For T9, if we
6168 * don't do this, we'll end up waiting for the backlight off delay
6169 * twice: once when we do the manual sleep, and once when we disable
6170 * the panel and wait for the PP_STATUS bit to become zero.
6171 */
6172 final->t8 = 1;
6173 final->t9 = 1;
6174
6175 /*
6176 * HW has only a 100msec granularity for t11_t12 so round it up
6177 * accordingly.
6178 */
6179 final->t11_t12 = roundup(final->t11_t12, 100 * 10);
6180 }
6181
6182 static void
6183 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
6184 bool force_disable_vdd)
6185 {
6186 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6187 u32 pp_on, pp_off, pp_div, port_sel = 0;
6188 int div = dev_priv->rawclk_freq / 1000;
6189 struct pps_registers regs;
6190 enum port port = dp_to_dig_port(intel_dp)->base.port;
6191 const struct edp_power_seq *seq = &intel_dp->pps_delays;
6192
6193 lockdep_assert_held(&dev_priv->pps_mutex);
6194
6195 intel_pps_get_registers(intel_dp, &regs);
6196
6197 /*
6198 * On some VLV machines the BIOS can leave the VDD
6199 * enabled even on power sequencers which aren't
6200 * hooked up to any port. This would mess up the
6201 * power domain tracking the first time we pick
6202 * one of these power sequencers for use since
6203 * edp_panel_vdd_on() would notice that the VDD was
6204 * already on and therefore wouldn't grab the power
6205 * domain reference. Disable VDD first to avoid this.
6206 * This also avoids spuriously turning the VDD on as
6207 * soon as the new power sequencer gets initialized.
6208 */
6209 if (force_disable_vdd) {
6210 u32 pp = ironlake_get_pp_control(intel_dp);
6211
6212 WARN(pp & PANEL_POWER_ON, "Panel power already on\n");
6213
6214 if (pp & EDP_FORCE_VDD)
6215 DRM_DEBUG_KMS("VDD already on, disabling first\n");
6216
6217 pp &= ~EDP_FORCE_VDD;
6218
6219 I915_WRITE(regs.pp_ctrl, pp);
6220 }
6221
6222 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
6223 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
6224 pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
6225 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
6226 /* Compute the divisor for the pp clock, simply match the Bspec
6227 * formula. */
6228 if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
6229 HAS_PCH_ICP(dev_priv)) {
6230 pp_div = I915_READ(regs.pp_ctrl);
6231 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
6232 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
6233 << BXT_POWER_CYCLE_DELAY_SHIFT);
6234 } else {
6235 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
6236 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
6237 << PANEL_POWER_CYCLE_DELAY_SHIFT);
6238 }
6239
6240 /* Haswell doesn't have any port selection bits for the panel
6241 * power sequencer any more. */
6242 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6243 port_sel = PANEL_PORT_SELECT_VLV(port);
6244 } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
6245 switch (port) {
6246 case PORT_A:
6247 port_sel = PANEL_PORT_SELECT_DPA;
6248 break;
6249 case PORT_C:
6250 port_sel = PANEL_PORT_SELECT_DPC;
6251 break;
6252 case PORT_D:
6253 port_sel = PANEL_PORT_SELECT_DPD;
6254 break;
6255 default:
6256 MISSING_CASE(port);
6257 break;
6258 }
6259 }
6260
6261 pp_on |= port_sel;
6262
6263 I915_WRITE(regs.pp_on, pp_on);
6264 I915_WRITE(regs.pp_off, pp_off);
6265 if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
6266 HAS_PCH_ICP(dev_priv))
6267 I915_WRITE(regs.pp_ctrl, pp_div);
6268 else
6269 I915_WRITE(regs.pp_div, pp_div);
6270
6271 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
6272 I915_READ(regs.pp_on),
6273 I915_READ(regs.pp_off),
6274 (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
6275 HAS_PCH_ICP(dev_priv)) ?
6276 (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
6277 I915_READ(regs.pp_div));
6278 }
6279
6280 static void intel_dp_pps_init(struct intel_dp *intel_dp)
6281 {
6282 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6283
6284 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6285 vlv_initial_power_sequencer_setup(intel_dp);
6286 } else {
6287 intel_dp_init_panel_power_sequencer(intel_dp);
6288 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
6289 }
6290 }
6291
6292 /**
6293 * intel_dp_set_drrs_state - program registers for RR switch to take effect
6294 * @dev_priv: i915 device
6295 * @crtc_state: a pointer to the active intel_crtc_state
6296 * @refresh_rate: RR to be programmed
6297 *
6298 * This function gets called when refresh rate (RR) has to be changed from
6299 * one frequency to another. Switches can be between high and low RR
6300 * supported by the panel or to any other RR based on media playback (in
6301 * this case, RR value needs to be passed from user space).
6302 *
6303 * The caller of this function needs to take a lock on dev_priv->drrs.
6304 */
6305 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
6306 const struct intel_crtc_state *crtc_state,
6307 int refresh_rate)
6308 {
6309 struct intel_encoder *encoder;
6310 struct intel_digital_port *dig_port = NULL;
6311 struct intel_dp *intel_dp = dev_priv->drrs.dp;
6312 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
6313 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
6314
6315 if (refresh_rate <= 0) {
6316 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
6317 return;
6318 }
6319
6320 if (intel_dp == NULL) {
6321 DRM_DEBUG_KMS("DRRS not supported.\n");
6322 return;
6323 }
6324
6325 dig_port = dp_to_dig_port(intel_dp);
6326 encoder = &dig_port->base;
6327
6328 if (!intel_crtc) {
6329 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
6330 return;
6331 }
6332
6333 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
6334 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
6335 return;
6336 }
6337
6338 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
6339 refresh_rate)
6340 index = DRRS_LOW_RR;
6341
6342 if (index == dev_priv->drrs.refresh_rate_type) {
6343 DRM_DEBUG_KMS(
6344 "DRRS requested for previously set RR...ignoring\n");
6345 return;
6346 }
6347
6348 if (!crtc_state->base.active) {
6349 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
6350 return;
6351 }
6352
6353 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
6354 switch (index) {
6355 case DRRS_HIGH_RR:
6356 intel_dp_set_m_n(crtc_state, M1_N1);
6357 break;
6358 case DRRS_LOW_RR:
6359 intel_dp_set_m_n(crtc_state, M2_N2);
6360 break;
6361 case DRRS_MAX_RR:
6362 default:
6363 DRM_ERROR("Unsupported refreshrate type\n");
6364 }
6365 } else if (INTEL_GEN(dev_priv) > 6) {
6366 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
6367 u32 val;
6368
6369 val = I915_READ(reg);
6370 if (index > DRRS_HIGH_RR) {
6371 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6372 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
6373 else
6374 val |= PIPECONF_EDP_RR_MODE_SWITCH;
6375 } else {
6376 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6377 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
6378 else
6379 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
6380 }
6381 I915_WRITE(reg, val);
6382 }
6383
6384 dev_priv->drrs.refresh_rate_type = index;
6385
6386 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
6387 }
6388
6389 /**
6390 * intel_edp_drrs_enable - init drrs struct if supported
6391 * @intel_dp: DP struct
6392 * @crtc_state: A pointer to the active crtc state.
6393 *
6394 * Initializes frontbuffer_bits and drrs.dp
6395 */
6396 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
6397 const struct intel_crtc_state *crtc_state)
6398 {
6399 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6400
6401 if (!crtc_state->has_drrs) {
6402 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
6403 return;
6404 }
6405
6406 if (dev_priv->psr.enabled) {
6407 DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
6408 return;
6409 }
6410
6411 mutex_lock(&dev_priv->drrs.mutex);
6412 if (dev_priv->drrs.dp) {
6413 DRM_DEBUG_KMS("DRRS already enabled\n");
6414 goto unlock;
6415 }
6416
6417 dev_priv->drrs.busy_frontbuffer_bits = 0;
6418
6419 dev_priv->drrs.dp = intel_dp;
6420
6421 unlock:
6422 mutex_unlock(&dev_priv->drrs.mutex);
6423 }
6424
6425 /**
6426 * intel_edp_drrs_disable - Disable DRRS
6427 * @intel_dp: DP struct
6428 * @old_crtc_state: Pointer to old crtc_state.
6429 *
6430 */
6431 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
6432 const struct intel_crtc_state *old_crtc_state)
6433 {
6434 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6435
6436 if (!old_crtc_state->has_drrs)
6437 return;
6438
6439 mutex_lock(&dev_priv->drrs.mutex);
6440 if (!dev_priv->drrs.dp) {
6441 mutex_unlock(&dev_priv->drrs.mutex);
6442 return;
6443 }
6444
6445 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6446 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
6447 intel_dp->attached_connector->panel.fixed_mode->vrefresh);
6448
6449 dev_priv->drrs.dp = NULL;
6450 mutex_unlock(&dev_priv->drrs.mutex);
6451
6452 cancel_delayed_work_sync(&dev_priv->drrs.work);
6453 }
6454
6455 static void intel_edp_drrs_downclock_work(struct work_struct *work)
6456 {
6457 struct drm_i915_private *dev_priv =
6458 container_of(work, typeof(*dev_priv), drrs.work.work);
6459 struct intel_dp *intel_dp;
6460
6461 mutex_lock(&dev_priv->drrs.mutex);
6462
6463 intel_dp = dev_priv->drrs.dp;
6464
6465 if (!intel_dp)
6466 goto unlock;
6467
6468 /*
6469 * The delayed work can race with an invalidate hence we need to
6470 * recheck.
6471 */
6472
6473 if (dev_priv->drrs.busy_frontbuffer_bits)
6474 goto unlock;
6475
6476 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
6477 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
6478
6479 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
6480 intel_dp->attached_connector->panel.downclock_mode->vrefresh);
6481 }
6482
6483 unlock:
6484 mutex_unlock(&dev_priv->drrs.mutex);
6485 }
6486
6487 /**
6488 * intel_edp_drrs_invalidate - Disable Idleness DRRS
6489 * @dev_priv: i915 device
6490 * @frontbuffer_bits: frontbuffer plane tracking bits
6491 *
6492 * This function gets called everytime rendering on the given planes start.
6493 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
6494 *
6495 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
6496 */
6497 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
6498 unsigned int frontbuffer_bits)
6499 {
6500 struct drm_crtc *crtc;
6501 enum pipe pipe;
6502
6503 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6504 return;
6505
6506 cancel_delayed_work(&dev_priv->drrs.work);
6507
6508 mutex_lock(&dev_priv->drrs.mutex);
6509 if (!dev_priv->drrs.dp) {
6510 mutex_unlock(&dev_priv->drrs.mutex);
6511 return;
6512 }
6513
6514 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
6515 pipe = to_intel_crtc(crtc)->pipe;
6516
6517 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
6518 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
6519
6520 /* invalidate means busy screen hence upclock */
6521 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6522 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
6523 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6524
6525 mutex_unlock(&dev_priv->drrs.mutex);
6526 }
6527
6528 /**
6529 * intel_edp_drrs_flush - Restart Idleness DRRS
6530 * @dev_priv: i915 device
6531 * @frontbuffer_bits: frontbuffer plane tracking bits
6532 *
6533 * This function gets called every time rendering on the given planes has
6534 * completed or flip on a crtc is completed. So DRRS should be upclocked
6535 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
6536 * if no other planes are dirty.
6537 *
6538 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
6539 */
6540 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
6541 unsigned int frontbuffer_bits)
6542 {
6543 struct drm_crtc *crtc;
6544 enum pipe pipe;
6545
6546 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6547 return;
6548
6549 cancel_delayed_work(&dev_priv->drrs.work);
6550
6551 mutex_lock(&dev_priv->drrs.mutex);
6552 if (!dev_priv->drrs.dp) {
6553 mutex_unlock(&dev_priv->drrs.mutex);
6554 return;
6555 }
6556
6557 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
6558 pipe = to_intel_crtc(crtc)->pipe;
6559
6560 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
6561 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
6562
6563 /* flush means busy screen hence upclock */
6564 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6565 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
6566 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6567
6568 /*
6569 * flush also means no more activity hence schedule downclock, if all
6570 * other fbs are quiescent too
6571 */
6572 if (!dev_priv->drrs.busy_frontbuffer_bits)
6573 schedule_delayed_work(&dev_priv->drrs.work,
6574 msecs_to_jiffies(1000));
6575 mutex_unlock(&dev_priv->drrs.mutex);
6576 }
6577
6578 /**
6579 * DOC: Display Refresh Rate Switching (DRRS)
6580 *
6581 * Display Refresh Rate Switching (DRRS) is a power conservation feature
6582 * which enables swtching between low and high refresh rates,
6583 * dynamically, based on the usage scenario. This feature is applicable
6584 * for internal panels.
6585 *
6586 * Indication that the panel supports DRRS is given by the panel EDID, which
6587 * would list multiple refresh rates for one resolution.
6588 *
6589 * DRRS is of 2 types - static and seamless.
6590 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
6591 * (may appear as a blink on screen) and is used in dock-undock scenario.
6592 * Seamless DRRS involves changing RR without any visual effect to the user
6593 * and can be used during normal system usage. This is done by programming
6594 * certain registers.
6595 *
6596 * Support for static/seamless DRRS may be indicated in the VBT based on
6597 * inputs from the panel spec.
6598 *
6599 * DRRS saves power by switching to low RR based on usage scenarios.
6600 *
6601 * The implementation is based on frontbuffer tracking implementation. When
6602 * there is a disturbance on the screen triggered by user activity or a periodic
6603 * system activity, DRRS is disabled (RR is changed to high RR). When there is
6604 * no movement on screen, after a timeout of 1 second, a switch to low RR is
6605 * made.
6606 *
6607 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
6608 * and intel_edp_drrs_flush() are called.
6609 *
6610 * DRRS can be further extended to support other internal panels and also
6611 * the scenario of video playback wherein RR is set based on the rate
6612 * requested by userspace.
6613 */
6614
6615 /**
6616 * intel_dp_drrs_init - Init basic DRRS work and mutex.
6617 * @connector: eDP connector
6618 * @fixed_mode: preferred mode of panel
6619 *
6620 * This function is called only once at driver load to initialize basic
6621 * DRRS stuff.
6622 *
6623 * Returns:
6624 * Downclock mode if panel supports it, else return NULL.
6625 * DRRS support is determined by the presence of downclock mode (apart
6626 * from VBT setting).
6627 */
6628 static struct drm_display_mode *
6629 intel_dp_drrs_init(struct intel_connector *connector,
6630 struct drm_display_mode *fixed_mode)
6631 {
6632 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
6633 struct drm_display_mode *downclock_mode = NULL;
6634
6635 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
6636 mutex_init(&dev_priv->drrs.mutex);
6637
6638 if (INTEL_GEN(dev_priv) <= 6) {
6639 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
6640 return NULL;
6641 }
6642
6643 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
6644 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
6645 return NULL;
6646 }
6647
6648 downclock_mode = intel_find_panel_downclock(dev_priv, fixed_mode,
6649 &connector->base);
6650
6651 if (!downclock_mode) {
6652 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
6653 return NULL;
6654 }
6655
6656 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
6657
6658 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
6659 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
6660 return downclock_mode;
6661 }
6662
6663 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
6664 struct intel_connector *intel_connector)
6665 {
6666 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6667 struct drm_device *dev = &dev_priv->drm;
6668 struct drm_connector *connector = &intel_connector->base;
6669 struct drm_display_mode *fixed_mode = NULL;
6670 struct drm_display_mode *downclock_mode = NULL;
6671 bool has_dpcd;
6672 struct drm_display_mode *scan;
6673 enum pipe pipe = INVALID_PIPE;
6674 intel_wakeref_t wakeref;
6675 struct edid *edid;
6676
6677 if (!intel_dp_is_edp(intel_dp))
6678 return true;
6679
6680 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
6681
6682 /*
6683 * On IBX/CPT we may get here with LVDS already registered. Since the
6684 * driver uses the only internal power sequencer available for both
6685 * eDP and LVDS bail out early in this case to prevent interfering
6686 * with an already powered-on LVDS power sequencer.
6687 */
6688 if (intel_get_lvds_encoder(&dev_priv->drm)) {
6689 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
6690 DRM_INFO("LVDS was detected, not registering eDP\n");
6691
6692 return false;
6693 }
6694
6695 with_pps_lock(intel_dp, wakeref) {
6696 intel_dp_init_panel_power_timestamps(intel_dp);
6697 intel_dp_pps_init(intel_dp);
6698 intel_edp_panel_vdd_sanitize(intel_dp);
6699 }
6700
6701 /* Cache DPCD and EDID for edp. */
6702 has_dpcd = intel_edp_init_dpcd(intel_dp);
6703
6704 if (!has_dpcd) {
6705 /* if this fails, presume the device is a ghost */
6706 DRM_INFO("failed to retrieve link info, disabling eDP\n");
6707 goto out_vdd_off;
6708 }
6709
6710 mutex_lock(&dev->mode_config.mutex);
6711 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
6712 if (edid) {
6713 if (drm_add_edid_modes(connector, edid)) {
6714 drm_connector_update_edid_property(connector,
6715 edid);
6716 } else {
6717 kfree(edid);
6718 edid = ERR_PTR(-EINVAL);
6719 }
6720 } else {
6721 edid = ERR_PTR(-ENOENT);
6722 }
6723 intel_connector->edid = edid;
6724
6725 /* prefer fixed mode from EDID if available */
6726 list_for_each_entry(scan, &connector->probed_modes, head) {
6727 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
6728 fixed_mode = drm_mode_duplicate(dev, scan);
6729 downclock_mode = intel_dp_drrs_init(
6730 intel_connector, fixed_mode);
6731 break;
6732 }
6733 }
6734
6735 /* fallback to VBT if available for eDP */
6736 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
6737 fixed_mode = drm_mode_duplicate(dev,
6738 dev_priv->vbt.lfp_lvds_vbt_mode);
6739 if (fixed_mode) {
6740 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
6741 connector->display_info.width_mm = fixed_mode->width_mm;
6742 connector->display_info.height_mm = fixed_mode->height_mm;
6743 }
6744 }
6745 mutex_unlock(&dev->mode_config.mutex);
6746
6747 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6748 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
6749 register_reboot_notifier(&intel_dp->edp_notifier);
6750
6751 /*
6752 * Figure out the current pipe for the initial backlight setup.
6753 * If the current pipe isn't valid, try the PPS pipe, and if that
6754 * fails just assume pipe A.
6755 */
6756 pipe = vlv_active_pipe(intel_dp);
6757
6758 if (pipe != PIPE_A && pipe != PIPE_B)
6759 pipe = intel_dp->pps_pipe;
6760
6761 if (pipe != PIPE_A && pipe != PIPE_B)
6762 pipe = PIPE_A;
6763
6764 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
6765 pipe_name(pipe));
6766 }
6767
6768 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
6769 intel_connector->panel.backlight.power = intel_edp_backlight_power;
6770 intel_panel_setup_backlight(connector, pipe);
6771
6772 if (fixed_mode)
6773 drm_connector_init_panel_orientation_property(
6774 connector, fixed_mode->hdisplay, fixed_mode->vdisplay);
6775
6776 return true;
6777
6778 out_vdd_off:
6779 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6780 /*
6781 * vdd might still be enabled do to the delayed vdd off.
6782 * Make sure vdd is actually turned off here.
6783 */
6784 with_pps_lock(intel_dp, wakeref)
6785 edp_panel_vdd_off_sync(intel_dp);
6786
6787 return false;
6788 }
6789
6790 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
6791 {
6792 struct intel_connector *intel_connector;
6793 struct drm_connector *connector;
6794
6795 intel_connector = container_of(work, typeof(*intel_connector),
6796 modeset_retry_work);
6797 connector = &intel_connector->base;
6798 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
6799 connector->name);
6800
6801 /* Grab the locks before changing connector property*/
6802 mutex_lock(&connector->dev->mode_config.mutex);
6803 /* Set connector link status to BAD and send a Uevent to notify
6804 * userspace to do a modeset.
6805 */
6806 drm_connector_set_link_status_property(connector,
6807 DRM_MODE_LINK_STATUS_BAD);
6808 mutex_unlock(&connector->dev->mode_config.mutex);
6809 /* Send Hotplug uevent so userspace can reprobe */
6810 drm_kms_helper_hotplug_event(connector->dev);
6811 }
6812
6813 bool
6814 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
6815 struct intel_connector *intel_connector)
6816 {
6817 struct drm_connector *connector = &intel_connector->base;
6818 struct intel_dp *intel_dp = &intel_dig_port->dp;
6819 struct intel_encoder *intel_encoder = &intel_dig_port->base;
6820 struct drm_device *dev = intel_encoder->base.dev;
6821 struct drm_i915_private *dev_priv = to_i915(dev);
6822 enum port port = intel_encoder->port;
6823 int type;
6824
6825 /* Initialize the work for modeset in case of link train failure */
6826 INIT_WORK(&intel_connector->modeset_retry_work,
6827 intel_dp_modeset_retry_work_fn);
6828
6829 if (WARN(intel_dig_port->max_lanes < 1,
6830 "Not enough lanes (%d) for DP on port %c\n",
6831 intel_dig_port->max_lanes, port_name(port)))
6832 return false;
6833
6834 intel_dp_set_source_rates(intel_dp);
6835
6836 intel_dp->reset_link_params = true;
6837 intel_dp->pps_pipe = INVALID_PIPE;
6838 intel_dp->active_pipe = INVALID_PIPE;
6839
6840 /* intel_dp vfuncs */
6841 if (HAS_DDI(dev_priv))
6842 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
6843
6844 /* Preserve the current hw state. */
6845 intel_dp->DP = I915_READ(intel_dp->output_reg);
6846 intel_dp->attached_connector = intel_connector;
6847
6848 if (intel_dp_is_port_edp(dev_priv, port))
6849 type = DRM_MODE_CONNECTOR_eDP;
6850 else
6851 type = DRM_MODE_CONNECTOR_DisplayPort;
6852
6853 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6854 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6855
6856 /*
6857 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
6858 * for DP the encoder type can be set by the caller to
6859 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
6860 */
6861 if (type == DRM_MODE_CONNECTOR_eDP)
6862 intel_encoder->type = INTEL_OUTPUT_EDP;
6863
6864 /* eDP only on port B and/or C on vlv/chv */
6865 if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
6866 intel_dp_is_edp(intel_dp) &&
6867 port != PORT_B && port != PORT_C))
6868 return false;
6869
6870 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
6871 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
6872 port_name(port));
6873
6874 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
6875 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
6876
6877 if (!HAS_GMCH(dev_priv))
6878 connector->interlace_allowed = true;
6879 connector->doublescan_allowed = 0;
6880
6881 intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
6882
6883 intel_dp_aux_init(intel_dp);
6884
6885 intel_connector_attach_encoder(intel_connector, intel_encoder);
6886
6887 if (HAS_DDI(dev_priv))
6888 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
6889 else
6890 intel_connector->get_hw_state = intel_connector_get_hw_state;
6891
6892 /* init MST on ports that can support it */
6893 if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) &&
6894 (port == PORT_B || port == PORT_C ||
6895 port == PORT_D || port == PORT_F))
6896 intel_dp_mst_encoder_init(intel_dig_port,
6897 intel_connector->base.base.id);
6898
6899 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
6900 intel_dp_aux_fini(intel_dp);
6901 intel_dp_mst_encoder_cleanup(intel_dig_port);
6902 goto fail;
6903 }
6904
6905 intel_dp_add_properties(intel_dp, connector);
6906
6907 if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
6908 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
6909 if (ret)
6910 DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
6911 }
6912
6913 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
6914 * 0xd. Failure to do so will result in spurious interrupts being
6915 * generated on the port when a cable is not attached.
6916 */
6917 if (IS_G45(dev_priv)) {
6918 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
6919 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
6920 }
6921
6922 return true;
6923
6924 fail:
6925 drm_connector_cleanup(connector);
6926
6927 return false;
6928 }
6929
6930 bool intel_dp_init(struct drm_i915_private *dev_priv,
6931 i915_reg_t output_reg,
6932 enum port port)
6933 {
6934 struct intel_digital_port *intel_dig_port;
6935 struct intel_encoder *intel_encoder;
6936 struct drm_encoder *encoder;
6937 struct intel_connector *intel_connector;
6938
6939 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
6940 if (!intel_dig_port)
6941 return false;
6942
6943 intel_connector = intel_connector_alloc();
6944 if (!intel_connector)
6945 goto err_connector_alloc;
6946
6947 intel_encoder = &intel_dig_port->base;
6948 encoder = &intel_encoder->base;
6949
6950 if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
6951 &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
6952 "DP %c", port_name(port)))
6953 goto err_encoder_init;
6954
6955 intel_encoder->hotplug = intel_dp_hotplug;
6956 intel_encoder->compute_config = intel_dp_compute_config;
6957 intel_encoder->get_hw_state = intel_dp_get_hw_state;
6958 intel_encoder->get_config = intel_dp_get_config;
6959 intel_encoder->update_pipe = intel_panel_update_backlight;
6960 intel_encoder->suspend = intel_dp_encoder_suspend;
6961 if (IS_CHERRYVIEW(dev_priv)) {
6962 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
6963 intel_encoder->pre_enable = chv_pre_enable_dp;
6964 intel_encoder->enable = vlv_enable_dp;
6965 intel_encoder->disable = vlv_disable_dp;
6966 intel_encoder->post_disable = chv_post_disable_dp;
6967 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
6968 } else if (IS_VALLEYVIEW(dev_priv)) {
6969 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
6970 intel_encoder->pre_enable = vlv_pre_enable_dp;
6971 intel_encoder->enable = vlv_enable_dp;
6972 intel_encoder->disable = vlv_disable_dp;
6973 intel_encoder->post_disable = vlv_post_disable_dp;
6974 } else {
6975 intel_encoder->pre_enable = g4x_pre_enable_dp;
6976 intel_encoder->enable = g4x_enable_dp;
6977 intel_encoder->disable = g4x_disable_dp;
6978 intel_encoder->post_disable = g4x_post_disable_dp;
6979 }
6980
6981 intel_dig_port->dp.output_reg = output_reg;
6982 intel_dig_port->max_lanes = 4;
6983
6984 intel_encoder->type = INTEL_OUTPUT_DP;
6985 intel_encoder->power_domain = intel_port_to_power_domain(port);
6986 if (IS_CHERRYVIEW(dev_priv)) {
6987 if (port == PORT_D)
6988 intel_encoder->crtc_mask = 1 << 2;
6989 else
6990 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
6991 } else {
6992 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
6993 }
6994 intel_encoder->cloneable = 0;
6995 intel_encoder->port = port;
6996
6997 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
6998
6999 if (port != PORT_A)
7000 intel_infoframe_init(intel_dig_port);
7001
7002 intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
7003 if (!intel_dp_init_connector(intel_dig_port, intel_connector))
7004 goto err_init_connector;
7005
7006 return true;
7007
7008 err_init_connector:
7009 drm_encoder_cleanup(encoder);
7010 err_encoder_init:
7011 kfree(intel_connector);
7012 err_connector_alloc:
7013 kfree(intel_dig_port);
7014 return false;
7015 }
7016
7017 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7018 {
7019 struct intel_encoder *encoder;
7020
7021 for_each_intel_encoder(&dev_priv->drm, encoder) {
7022 struct intel_dp *intel_dp;
7023
7024 if (encoder->type != INTEL_OUTPUT_DDI)
7025 continue;
7026
7027 intel_dp = enc_to_intel_dp(&encoder->base);
7028
7029 if (!intel_dp->can_mst)
7030 continue;
7031
7032 if (intel_dp->is_mst)
7033 drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
7034 }
7035 }
7036
7037 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
7038 {
7039 struct intel_encoder *encoder;
7040
7041 for_each_intel_encoder(&dev_priv->drm, encoder) {
7042 struct intel_dp *intel_dp;
7043 int ret;
7044
7045 if (encoder->type != INTEL_OUTPUT_DDI)
7046 continue;
7047
7048 intel_dp = enc_to_intel_dp(&encoder->base);
7049
7050 if (!intel_dp->can_mst)
7051 continue;
7052
7053 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr);
7054 if (ret) {
7055 intel_dp->is_mst = false;
7056 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
7057 false);
7058 }
7059 }
7060 }