]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/infiniband/hw/mlx5/odp.c
Merge tag 'clang-format-for-linus-v5.1-rc5' of git://github.com/ojeda/linux
[thirdparty/kernel/stable.git] / drivers / infiniband / hw / mlx5 / odp.c
1 /*
2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 #include <linux/kernel.h>
36
37 #include "mlx5_ib.h"
38 #include "cmd.h"
39
40 #include <linux/mlx5/eq.h>
41
42 /* Contains the details of a pagefault. */
43 struct mlx5_pagefault {
44 u32 bytes_committed;
45 u32 token;
46 u8 event_subtype;
47 u8 type;
48 union {
49 /* Initiator or send message responder pagefault details. */
50 struct {
51 /* Received packet size, only valid for responders. */
52 u32 packet_size;
53 /*
54 * Number of resource holding WQE, depends on type.
55 */
56 u32 wq_num;
57 /*
58 * WQE index. Refers to either the send queue or
59 * receive queue, according to event_subtype.
60 */
61 u16 wqe_index;
62 } wqe;
63 /* RDMA responder pagefault details */
64 struct {
65 u32 r_key;
66 /*
67 * Received packet size, minimal size page fault
68 * resolution required for forward progress.
69 */
70 u32 packet_size;
71 u32 rdma_op_len;
72 u64 rdma_va;
73 } rdma;
74 };
75
76 struct mlx5_ib_pf_eq *eq;
77 struct work_struct work;
78 };
79
80 #define MAX_PREFETCH_LEN (4*1024*1024U)
81
82 /* Timeout in ms to wait for an active mmu notifier to complete when handling
83 * a pagefault. */
84 #define MMU_NOTIFIER_TIMEOUT 1000
85
86 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
87 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
88 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
89 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
90 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
91
92 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
93
94 static u64 mlx5_imr_ksm_entries;
95
96 static int check_parent(struct ib_umem_odp *odp,
97 struct mlx5_ib_mr *parent)
98 {
99 struct mlx5_ib_mr *mr = odp->private;
100
101 return mr && mr->parent == parent && !odp->dying;
102 }
103
104 static struct ib_ucontext_per_mm *mr_to_per_mm(struct mlx5_ib_mr *mr)
105 {
106 if (WARN_ON(!mr || !is_odp_mr(mr)))
107 return NULL;
108
109 return to_ib_umem_odp(mr->umem)->per_mm;
110 }
111
112 static struct ib_umem_odp *odp_next(struct ib_umem_odp *odp)
113 {
114 struct mlx5_ib_mr *mr = odp->private, *parent = mr->parent;
115 struct ib_ucontext_per_mm *per_mm = odp->per_mm;
116 struct rb_node *rb;
117
118 down_read(&per_mm->umem_rwsem);
119 while (1) {
120 rb = rb_next(&odp->interval_tree.rb);
121 if (!rb)
122 goto not_found;
123 odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
124 if (check_parent(odp, parent))
125 goto end;
126 }
127 not_found:
128 odp = NULL;
129 end:
130 up_read(&per_mm->umem_rwsem);
131 return odp;
132 }
133
134 static struct ib_umem_odp *odp_lookup(u64 start, u64 length,
135 struct mlx5_ib_mr *parent)
136 {
137 struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(parent);
138 struct ib_umem_odp *odp;
139 struct rb_node *rb;
140
141 down_read(&per_mm->umem_rwsem);
142 odp = rbt_ib_umem_lookup(&per_mm->umem_tree, start, length);
143 if (!odp)
144 goto end;
145
146 while (1) {
147 if (check_parent(odp, parent))
148 goto end;
149 rb = rb_next(&odp->interval_tree.rb);
150 if (!rb)
151 goto not_found;
152 odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
153 if (ib_umem_start(&odp->umem) > start + length)
154 goto not_found;
155 }
156 not_found:
157 odp = NULL;
158 end:
159 up_read(&per_mm->umem_rwsem);
160 return odp;
161 }
162
163 void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t offset,
164 size_t nentries, struct mlx5_ib_mr *mr, int flags)
165 {
166 struct ib_pd *pd = mr->ibmr.pd;
167 struct mlx5_ib_dev *dev = to_mdev(pd->device);
168 struct ib_umem_odp *odp;
169 unsigned long va;
170 int i;
171
172 if (flags & MLX5_IB_UPD_XLT_ZAP) {
173 for (i = 0; i < nentries; i++, pklm++) {
174 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
175 pklm->key = cpu_to_be32(dev->null_mkey);
176 pklm->va = 0;
177 }
178 return;
179 }
180
181 odp = odp_lookup(offset * MLX5_IMR_MTT_SIZE,
182 nentries * MLX5_IMR_MTT_SIZE, mr);
183
184 for (i = 0; i < nentries; i++, pklm++) {
185 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
186 va = (offset + i) * MLX5_IMR_MTT_SIZE;
187 if (odp && odp->umem.address == va) {
188 struct mlx5_ib_mr *mtt = odp->private;
189
190 pklm->key = cpu_to_be32(mtt->ibmr.lkey);
191 odp = odp_next(odp);
192 } else {
193 pklm->key = cpu_to_be32(dev->null_mkey);
194 }
195 mlx5_ib_dbg(dev, "[%d] va %lx key %x\n",
196 i, va, be32_to_cpu(pklm->key));
197 }
198 }
199
200 static void mr_leaf_free_action(struct work_struct *work)
201 {
202 struct ib_umem_odp *odp = container_of(work, struct ib_umem_odp, work);
203 int idx = ib_umem_start(&odp->umem) >> MLX5_IMR_MTT_SHIFT;
204 struct mlx5_ib_mr *mr = odp->private, *imr = mr->parent;
205
206 mr->parent = NULL;
207 synchronize_srcu(&mr->dev->mr_srcu);
208
209 ib_umem_release(&odp->umem);
210 if (imr->live)
211 mlx5_ib_update_xlt(imr, idx, 1, 0,
212 MLX5_IB_UPD_XLT_INDIRECT |
213 MLX5_IB_UPD_XLT_ATOMIC);
214 mlx5_mr_cache_free(mr->dev, mr);
215
216 if (atomic_dec_and_test(&imr->num_leaf_free))
217 wake_up(&imr->q_leaf_free);
218 }
219
220 void mlx5_ib_invalidate_range(struct ib_umem_odp *umem_odp, unsigned long start,
221 unsigned long end)
222 {
223 struct mlx5_ib_mr *mr;
224 const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
225 sizeof(struct mlx5_mtt)) - 1;
226 u64 idx = 0, blk_start_idx = 0;
227 struct ib_umem *umem;
228 int in_block = 0;
229 u64 addr;
230
231 if (!umem_odp) {
232 pr_err("invalidation called on NULL umem or non-ODP umem\n");
233 return;
234 }
235 umem = &umem_odp->umem;
236
237 mr = umem_odp->private;
238
239 if (!mr || !mr->ibmr.pd)
240 return;
241
242 start = max_t(u64, ib_umem_start(umem), start);
243 end = min_t(u64, ib_umem_end(umem), end);
244
245 /*
246 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
247 * while we are doing the invalidation, no page fault will attempt to
248 * overwrite the same MTTs. Concurent invalidations might race us,
249 * but they will write 0s as well, so no difference in the end result.
250 */
251
252 for (addr = start; addr < end; addr += BIT(umem->page_shift)) {
253 idx = (addr - ib_umem_start(umem)) >> umem->page_shift;
254 /*
255 * Strive to write the MTTs in chunks, but avoid overwriting
256 * non-existing MTTs. The huristic here can be improved to
257 * estimate the cost of another UMR vs. the cost of bigger
258 * UMR.
259 */
260 if (umem_odp->dma_list[idx] &
261 (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
262 if (!in_block) {
263 blk_start_idx = idx;
264 in_block = 1;
265 }
266 } else {
267 u64 umr_offset = idx & umr_block_mask;
268
269 if (in_block && umr_offset == 0) {
270 mlx5_ib_update_xlt(mr, blk_start_idx,
271 idx - blk_start_idx, 0,
272 MLX5_IB_UPD_XLT_ZAP |
273 MLX5_IB_UPD_XLT_ATOMIC);
274 in_block = 0;
275 }
276 }
277 }
278 if (in_block)
279 mlx5_ib_update_xlt(mr, blk_start_idx,
280 idx - blk_start_idx + 1, 0,
281 MLX5_IB_UPD_XLT_ZAP |
282 MLX5_IB_UPD_XLT_ATOMIC);
283 /*
284 * We are now sure that the device will not access the
285 * memory. We can safely unmap it, and mark it as dirty if
286 * needed.
287 */
288
289 ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
290
291 if (unlikely(!umem->npages && mr->parent &&
292 !umem_odp->dying)) {
293 WRITE_ONCE(umem_odp->dying, 1);
294 atomic_inc(&mr->parent->num_leaf_free);
295 schedule_work(&umem_odp->work);
296 }
297 }
298
299 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
300 {
301 struct ib_odp_caps *caps = &dev->odp_caps;
302
303 memset(caps, 0, sizeof(*caps));
304
305 if (!MLX5_CAP_GEN(dev->mdev, pg))
306 return;
307
308 caps->general_caps = IB_ODP_SUPPORT;
309
310 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
311 dev->odp_max_size = U64_MAX;
312 else
313 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
314
315 if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
316 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
317
318 if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive))
319 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
320
321 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
322 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
323
324 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
325 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
326
327 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
328 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
329
330 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
331 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
332
333 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
334 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
335
336 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive))
337 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
338
339 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send))
340 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
341
342 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive))
343 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
344
345 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write))
346 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
347
348 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read))
349 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
350
351 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic))
352 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
353
354 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive))
355 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
356
357 if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
358 MLX5_CAP_GEN(dev->mdev, null_mkey) &&
359 MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
360 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
361
362 return;
363 }
364
365 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
366 struct mlx5_pagefault *pfault,
367 int error)
368 {
369 int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
370 pfault->wqe.wq_num : pfault->token;
371 u32 out[MLX5_ST_SZ_DW(page_fault_resume_out)] = { };
372 u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = { };
373 int err;
374
375 MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
376 MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
377 MLX5_SET(page_fault_resume_in, in, token, pfault->token);
378 MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
379 MLX5_SET(page_fault_resume_in, in, error, !!error);
380
381 err = mlx5_cmd_exec(dev->mdev, in, sizeof(in), out, sizeof(out));
382 if (err)
383 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
384 wq_num, err);
385 }
386
387 static struct mlx5_ib_mr *implicit_mr_alloc(struct ib_pd *pd,
388 struct ib_umem *umem,
389 bool ksm, int access_flags)
390 {
391 struct mlx5_ib_dev *dev = to_mdev(pd->device);
392 struct mlx5_ib_mr *mr;
393 int err;
394
395 mr = mlx5_mr_cache_alloc(dev, ksm ? MLX5_IMR_KSM_CACHE_ENTRY :
396 MLX5_IMR_MTT_CACHE_ENTRY);
397
398 if (IS_ERR(mr))
399 return mr;
400
401 mr->ibmr.pd = pd;
402
403 mr->dev = dev;
404 mr->access_flags = access_flags;
405 mr->mmkey.iova = 0;
406 mr->umem = umem;
407
408 if (ksm) {
409 err = mlx5_ib_update_xlt(mr, 0,
410 mlx5_imr_ksm_entries,
411 MLX5_KSM_PAGE_SHIFT,
412 MLX5_IB_UPD_XLT_INDIRECT |
413 MLX5_IB_UPD_XLT_ZAP |
414 MLX5_IB_UPD_XLT_ENABLE);
415
416 } else {
417 err = mlx5_ib_update_xlt(mr, 0,
418 MLX5_IMR_MTT_ENTRIES,
419 PAGE_SHIFT,
420 MLX5_IB_UPD_XLT_ZAP |
421 MLX5_IB_UPD_XLT_ENABLE |
422 MLX5_IB_UPD_XLT_ATOMIC);
423 }
424
425 if (err)
426 goto fail;
427
428 mr->ibmr.lkey = mr->mmkey.key;
429 mr->ibmr.rkey = mr->mmkey.key;
430
431 mr->live = 1;
432
433 mlx5_ib_dbg(dev, "key %x dev %p mr %p\n",
434 mr->mmkey.key, dev->mdev, mr);
435
436 return mr;
437
438 fail:
439 mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
440 mlx5_mr_cache_free(dev, mr);
441
442 return ERR_PTR(err);
443 }
444
445 static struct ib_umem_odp *implicit_mr_get_data(struct mlx5_ib_mr *mr,
446 u64 io_virt, size_t bcnt)
447 {
448 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.pd->device);
449 struct ib_umem_odp *odp, *result = NULL;
450 struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem);
451 u64 addr = io_virt & MLX5_IMR_MTT_MASK;
452 int nentries = 0, start_idx = 0, ret;
453 struct mlx5_ib_mr *mtt;
454
455 mutex_lock(&odp_mr->umem_mutex);
456 odp = odp_lookup(addr, 1, mr);
457
458 mlx5_ib_dbg(dev, "io_virt:%llx bcnt:%zx addr:%llx odp:%p\n",
459 io_virt, bcnt, addr, odp);
460
461 next_mr:
462 if (likely(odp)) {
463 if (nentries)
464 nentries++;
465 } else {
466 odp = ib_alloc_odp_umem(odp_mr, addr,
467 MLX5_IMR_MTT_SIZE);
468 if (IS_ERR(odp)) {
469 mutex_unlock(&odp_mr->umem_mutex);
470 return ERR_CAST(odp);
471 }
472
473 mtt = implicit_mr_alloc(mr->ibmr.pd, &odp->umem, 0,
474 mr->access_flags);
475 if (IS_ERR(mtt)) {
476 mutex_unlock(&odp_mr->umem_mutex);
477 ib_umem_release(&odp->umem);
478 return ERR_CAST(mtt);
479 }
480
481 odp->private = mtt;
482 mtt->umem = &odp->umem;
483 mtt->mmkey.iova = addr;
484 mtt->parent = mr;
485 INIT_WORK(&odp->work, mr_leaf_free_action);
486
487 if (!nentries)
488 start_idx = addr >> MLX5_IMR_MTT_SHIFT;
489 nentries++;
490 }
491
492 /* Return first odp if region not covered by single one */
493 if (likely(!result))
494 result = odp;
495
496 addr += MLX5_IMR_MTT_SIZE;
497 if (unlikely(addr < io_virt + bcnt)) {
498 odp = odp_next(odp);
499 if (odp && odp->umem.address != addr)
500 odp = NULL;
501 goto next_mr;
502 }
503
504 if (unlikely(nentries)) {
505 ret = mlx5_ib_update_xlt(mr, start_idx, nentries, 0,
506 MLX5_IB_UPD_XLT_INDIRECT |
507 MLX5_IB_UPD_XLT_ATOMIC);
508 if (ret) {
509 mlx5_ib_err(dev, "Failed to update PAS\n");
510 result = ERR_PTR(ret);
511 }
512 }
513
514 mutex_unlock(&odp_mr->umem_mutex);
515 return result;
516 }
517
518 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
519 struct ib_udata *udata,
520 int access_flags)
521 {
522 struct mlx5_ib_mr *imr;
523 struct ib_umem *umem;
524
525 umem = ib_umem_get(udata, 0, 0, access_flags, 0);
526 if (IS_ERR(umem))
527 return ERR_CAST(umem);
528
529 imr = implicit_mr_alloc(&pd->ibpd, umem, 1, access_flags);
530 if (IS_ERR(imr)) {
531 ib_umem_release(umem);
532 return ERR_CAST(imr);
533 }
534
535 imr->umem = umem;
536 init_waitqueue_head(&imr->q_leaf_free);
537 atomic_set(&imr->num_leaf_free, 0);
538 atomic_set(&imr->num_pending_prefetch, 0);
539
540 return imr;
541 }
542
543 static int mr_leaf_free(struct ib_umem_odp *umem_odp, u64 start, u64 end,
544 void *cookie)
545 {
546 struct mlx5_ib_mr *mr = umem_odp->private, *imr = cookie;
547 struct ib_umem *umem = &umem_odp->umem;
548
549 if (mr->parent != imr)
550 return 0;
551
552 ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem),
553 ib_umem_end(umem));
554
555 if (umem_odp->dying)
556 return 0;
557
558 WRITE_ONCE(umem_odp->dying, 1);
559 atomic_inc(&imr->num_leaf_free);
560 schedule_work(&umem_odp->work);
561
562 return 0;
563 }
564
565 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
566 {
567 struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(imr);
568
569 down_read(&per_mm->umem_rwsem);
570 rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, 0, ULLONG_MAX,
571 mr_leaf_free, true, imr);
572 up_read(&per_mm->umem_rwsem);
573
574 wait_event(imr->q_leaf_free, !atomic_read(&imr->num_leaf_free));
575 }
576
577 #define MLX5_PF_FLAGS_PREFETCH BIT(0)
578 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
579 static int pagefault_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
580 u64 io_virt, size_t bcnt, u32 *bytes_mapped,
581 u32 flags)
582 {
583 int npages = 0, current_seq, page_shift, ret, np;
584 bool implicit = false;
585 struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem);
586 bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
587 bool prefetch = flags & MLX5_PF_FLAGS_PREFETCH;
588 u64 access_mask;
589 u64 start_idx, page_mask;
590 struct ib_umem_odp *odp;
591 size_t size;
592
593 if (!odp_mr->page_list) {
594 odp = implicit_mr_get_data(mr, io_virt, bcnt);
595
596 if (IS_ERR(odp))
597 return PTR_ERR(odp);
598 mr = odp->private;
599 implicit = true;
600 } else {
601 odp = odp_mr;
602 }
603
604 next_mr:
605 size = min_t(size_t, bcnt, ib_umem_end(&odp->umem) - io_virt);
606
607 page_shift = mr->umem->page_shift;
608 page_mask = ~(BIT(page_shift) - 1);
609 start_idx = (io_virt - (mr->mmkey.iova & page_mask)) >> page_shift;
610 access_mask = ODP_READ_ALLOWED_BIT;
611
612 if (prefetch && !downgrade && !mr->umem->writable) {
613 /* prefetch with write-access must
614 * be supported by the MR
615 */
616 ret = -EINVAL;
617 goto out;
618 }
619
620 if (mr->umem->writable && !downgrade)
621 access_mask |= ODP_WRITE_ALLOWED_BIT;
622
623 current_seq = READ_ONCE(odp->notifiers_seq);
624 /*
625 * Ensure the sequence number is valid for some time before we call
626 * gup.
627 */
628 smp_rmb();
629
630 ret = ib_umem_odp_map_dma_pages(to_ib_umem_odp(mr->umem), io_virt, size,
631 access_mask, current_seq);
632
633 if (ret < 0)
634 goto out;
635
636 np = ret;
637
638 mutex_lock(&odp->umem_mutex);
639 if (!ib_umem_mmu_notifier_retry(to_ib_umem_odp(mr->umem),
640 current_seq)) {
641 /*
642 * No need to check whether the MTTs really belong to
643 * this MR, since ib_umem_odp_map_dma_pages already
644 * checks this.
645 */
646 ret = mlx5_ib_update_xlt(mr, start_idx, np,
647 page_shift, MLX5_IB_UPD_XLT_ATOMIC);
648 } else {
649 ret = -EAGAIN;
650 }
651 mutex_unlock(&odp->umem_mutex);
652
653 if (ret < 0) {
654 if (ret != -EAGAIN)
655 mlx5_ib_err(dev, "Failed to update mkey page tables\n");
656 goto out;
657 }
658
659 if (bytes_mapped) {
660 u32 new_mappings = (np << page_shift) -
661 (io_virt - round_down(io_virt, 1 << page_shift));
662 *bytes_mapped += min_t(u32, new_mappings, size);
663 }
664
665 npages += np << (page_shift - PAGE_SHIFT);
666 bcnt -= size;
667
668 if (unlikely(bcnt)) {
669 struct ib_umem_odp *next;
670
671 io_virt += size;
672 next = odp_next(odp);
673 if (unlikely(!next || next->umem.address != io_virt)) {
674 mlx5_ib_dbg(dev, "next implicit leaf removed at 0x%llx. got %p\n",
675 io_virt, next);
676 return -EAGAIN;
677 }
678 odp = next;
679 mr = odp->private;
680 goto next_mr;
681 }
682
683 return npages;
684
685 out:
686 if (ret == -EAGAIN) {
687 if (implicit || !odp->dying) {
688 unsigned long timeout =
689 msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT);
690
691 if (!wait_for_completion_timeout(
692 &odp->notifier_completion,
693 timeout)) {
694 mlx5_ib_warn(dev, "timeout waiting for mmu notifier. seq %d against %d. notifiers_count=%d\n",
695 current_seq, odp->notifiers_seq, odp->notifiers_count);
696 }
697 } else {
698 /* The MR is being killed, kill the QP as well. */
699 ret = -EFAULT;
700 }
701 }
702
703 return ret;
704 }
705
706 struct pf_frame {
707 struct pf_frame *next;
708 u32 key;
709 u64 io_virt;
710 size_t bcnt;
711 int depth;
712 };
713
714 static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey)
715 {
716 struct mlx5_ib_mw *mw;
717 struct mlx5_ib_devx_mr *devx_mr;
718
719 if (mmkey->type == MLX5_MKEY_MW) {
720 mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
721 return mw->ndescs;
722 }
723
724 devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr,
725 mmkey);
726 return devx_mr->ndescs;
727 }
728
729 /*
730 * Handle a single data segment in a page-fault WQE or RDMA region.
731 *
732 * Returns number of OS pages retrieved on success. The caller may continue to
733 * the next data segment.
734 * Can return the following error codes:
735 * -EAGAIN to designate a temporary error. The caller will abort handling the
736 * page fault and resolve it.
737 * -EFAULT when there's an error mapping the requested pages. The caller will
738 * abort the page fault handling.
739 */
740 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
741 struct ib_pd *pd, u32 key,
742 u64 io_virt, size_t bcnt,
743 u32 *bytes_committed,
744 u32 *bytes_mapped, u32 flags)
745 {
746 int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
747 bool prefetch = flags & MLX5_PF_FLAGS_PREFETCH;
748 struct pf_frame *head = NULL, *frame;
749 struct mlx5_core_mkey *mmkey;
750 struct mlx5_ib_mr *mr;
751 struct mlx5_klm *pklm;
752 u32 *out = NULL;
753 size_t offset;
754 int ndescs;
755
756 srcu_key = srcu_read_lock(&dev->mr_srcu);
757
758 io_virt += *bytes_committed;
759 bcnt -= *bytes_committed;
760
761 next_mr:
762 mmkey = __mlx5_mr_lookup(dev->mdev, mlx5_base_mkey(key));
763 if (!mmkey || mmkey->key != key) {
764 mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
765 ret = -EFAULT;
766 goto srcu_unlock;
767 }
768
769 if (prefetch && mmkey->type != MLX5_MKEY_MR) {
770 mlx5_ib_dbg(dev, "prefetch is allowed only for MR\n");
771 ret = -EINVAL;
772 goto srcu_unlock;
773 }
774
775 switch (mmkey->type) {
776 case MLX5_MKEY_MR:
777 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
778 if (!mr->live || !mr->ibmr.pd) {
779 mlx5_ib_dbg(dev, "got dead MR\n");
780 ret = -EFAULT;
781 goto srcu_unlock;
782 }
783
784 if (prefetch) {
785 if (!is_odp_mr(mr) ||
786 mr->ibmr.pd != pd) {
787 mlx5_ib_dbg(dev, "Invalid prefetch request: %s\n",
788 is_odp_mr(mr) ? "MR is not ODP" :
789 "PD is not of the MR");
790 ret = -EINVAL;
791 goto srcu_unlock;
792 }
793 }
794
795 if (!is_odp_mr(mr)) {
796 mlx5_ib_dbg(dev, "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
797 key);
798 if (bytes_mapped)
799 *bytes_mapped += bcnt;
800 ret = 0;
801 goto srcu_unlock;
802 }
803
804 ret = pagefault_mr(dev, mr, io_virt, bcnt, bytes_mapped, flags);
805 if (ret < 0)
806 goto srcu_unlock;
807
808 npages += ret;
809 ret = 0;
810 break;
811
812 case MLX5_MKEY_MW:
813 case MLX5_MKEY_INDIRECT_DEVX:
814 ndescs = get_indirect_num_descs(mmkey);
815
816 if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
817 mlx5_ib_dbg(dev, "indirection level exceeded\n");
818 ret = -EFAULT;
819 goto srcu_unlock;
820 }
821
822 outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
823 sizeof(*pklm) * (ndescs - 2);
824
825 if (outlen > cur_outlen) {
826 kfree(out);
827 out = kzalloc(outlen, GFP_KERNEL);
828 if (!out) {
829 ret = -ENOMEM;
830 goto srcu_unlock;
831 }
832 cur_outlen = outlen;
833 }
834
835 pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
836 bsf0_klm0_pas_mtt0_1);
837
838 ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen);
839 if (ret)
840 goto srcu_unlock;
841
842 offset = io_virt - MLX5_GET64(query_mkey_out, out,
843 memory_key_mkey_entry.start_addr);
844
845 for (i = 0; bcnt && i < ndescs; i++, pklm++) {
846 if (offset >= be32_to_cpu(pklm->bcount)) {
847 offset -= be32_to_cpu(pklm->bcount);
848 continue;
849 }
850
851 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
852 if (!frame) {
853 ret = -ENOMEM;
854 goto srcu_unlock;
855 }
856
857 frame->key = be32_to_cpu(pklm->key);
858 frame->io_virt = be64_to_cpu(pklm->va) + offset;
859 frame->bcnt = min_t(size_t, bcnt,
860 be32_to_cpu(pklm->bcount) - offset);
861 frame->depth = depth + 1;
862 frame->next = head;
863 head = frame;
864
865 bcnt -= frame->bcnt;
866 offset = 0;
867 }
868 break;
869
870 default:
871 mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
872 ret = -EFAULT;
873 goto srcu_unlock;
874 }
875
876 if (head) {
877 frame = head;
878 head = frame->next;
879
880 key = frame->key;
881 io_virt = frame->io_virt;
882 bcnt = frame->bcnt;
883 depth = frame->depth;
884 kfree(frame);
885
886 goto next_mr;
887 }
888
889 srcu_unlock:
890 while (head) {
891 frame = head;
892 head = frame->next;
893 kfree(frame);
894 }
895 kfree(out);
896
897 srcu_read_unlock(&dev->mr_srcu, srcu_key);
898 *bytes_committed = 0;
899 return ret ? ret : npages;
900 }
901
902 /**
903 * Parse a series of data segments for page fault handling.
904 *
905 * @pfault contains page fault information.
906 * @wqe points at the first data segment in the WQE.
907 * @wqe_end points after the end of the WQE.
908 * @bytes_mapped receives the number of bytes that the function was able to
909 * map. This allows the caller to decide intelligently whether
910 * enough memory was mapped to resolve the page fault
911 * successfully (e.g. enough for the next MTU, or the entire
912 * WQE).
913 * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
914 * the committed bytes).
915 *
916 * Returns the number of pages loaded if positive, zero for an empty WQE, or a
917 * negative error code.
918 */
919 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
920 struct mlx5_pagefault *pfault,
921 void *wqe,
922 void *wqe_end, u32 *bytes_mapped,
923 u32 *total_wqe_bytes, int receive_queue)
924 {
925 int ret = 0, npages = 0;
926 u64 io_virt;
927 u32 key;
928 u32 byte_count;
929 size_t bcnt;
930 int inline_segment;
931
932 if (bytes_mapped)
933 *bytes_mapped = 0;
934 if (total_wqe_bytes)
935 *total_wqe_bytes = 0;
936
937 while (wqe < wqe_end) {
938 struct mlx5_wqe_data_seg *dseg = wqe;
939
940 io_virt = be64_to_cpu(dseg->addr);
941 key = be32_to_cpu(dseg->lkey);
942 byte_count = be32_to_cpu(dseg->byte_count);
943 inline_segment = !!(byte_count & MLX5_INLINE_SEG);
944 bcnt = byte_count & ~MLX5_INLINE_SEG;
945
946 if (inline_segment) {
947 bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
948 wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
949 16);
950 } else {
951 wqe += sizeof(*dseg);
952 }
953
954 /* receive WQE end of sg list. */
955 if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
956 io_virt == 0)
957 break;
958
959 if (!inline_segment && total_wqe_bytes) {
960 *total_wqe_bytes += bcnt - min_t(size_t, bcnt,
961 pfault->bytes_committed);
962 }
963
964 /* A zero length data segment designates a length of 2GB. */
965 if (bcnt == 0)
966 bcnt = 1U << 31;
967
968 if (inline_segment || bcnt <= pfault->bytes_committed) {
969 pfault->bytes_committed -=
970 min_t(size_t, bcnt,
971 pfault->bytes_committed);
972 continue;
973 }
974
975 ret = pagefault_single_data_segment(dev, NULL, key,
976 io_virt, bcnt,
977 &pfault->bytes_committed,
978 bytes_mapped, 0);
979 if (ret < 0)
980 break;
981 npages += ret;
982 }
983
984 return ret < 0 ? ret : npages;
985 }
986
987 static const u32 mlx5_ib_odp_opcode_cap[] = {
988 [MLX5_OPCODE_SEND] = IB_ODP_SUPPORT_SEND,
989 [MLX5_OPCODE_SEND_IMM] = IB_ODP_SUPPORT_SEND,
990 [MLX5_OPCODE_SEND_INVAL] = IB_ODP_SUPPORT_SEND,
991 [MLX5_OPCODE_RDMA_WRITE] = IB_ODP_SUPPORT_WRITE,
992 [MLX5_OPCODE_RDMA_WRITE_IMM] = IB_ODP_SUPPORT_WRITE,
993 [MLX5_OPCODE_RDMA_READ] = IB_ODP_SUPPORT_READ,
994 [MLX5_OPCODE_ATOMIC_CS] = IB_ODP_SUPPORT_ATOMIC,
995 [MLX5_OPCODE_ATOMIC_FA] = IB_ODP_SUPPORT_ATOMIC,
996 };
997
998 /*
999 * Parse initiator WQE. Advances the wqe pointer to point at the
1000 * scatter-gather list, and set wqe_end to the end of the WQE.
1001 */
1002 static int mlx5_ib_mr_initiator_pfault_handler(
1003 struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1004 struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1005 {
1006 struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1007 u16 wqe_index = pfault->wqe.wqe_index;
1008 u32 transport_caps;
1009 struct mlx5_base_av *av;
1010 unsigned ds, opcode;
1011 #if defined(DEBUG)
1012 u32 ctrl_wqe_index, ctrl_qpn;
1013 #endif
1014 u32 qpn = qp->trans_qp.base.mqp.qpn;
1015
1016 ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1017 if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1018 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1019 ds, wqe_length);
1020 return -EFAULT;
1021 }
1022
1023 if (ds == 0) {
1024 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1025 wqe_index, qpn);
1026 return -EFAULT;
1027 }
1028
1029 #if defined(DEBUG)
1030 ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) &
1031 MLX5_WQE_CTRL_WQE_INDEX_MASK) >>
1032 MLX5_WQE_CTRL_WQE_INDEX_SHIFT;
1033 if (wqe_index != ctrl_wqe_index) {
1034 mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n",
1035 wqe_index, qpn,
1036 ctrl_wqe_index);
1037 return -EFAULT;
1038 }
1039
1040 ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >>
1041 MLX5_WQE_CTRL_QPN_SHIFT;
1042 if (qpn != ctrl_qpn) {
1043 mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n",
1044 wqe_index, qpn,
1045 ctrl_qpn);
1046 return -EFAULT;
1047 }
1048 #endif /* DEBUG */
1049
1050 *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1051 *wqe += sizeof(*ctrl);
1052
1053 opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1054 MLX5_WQE_CTRL_OPCODE_MASK;
1055
1056 switch (qp->ibqp.qp_type) {
1057 case IB_QPT_XRC_INI:
1058 *wqe += sizeof(struct mlx5_wqe_xrc_seg);
1059 transport_caps = dev->odp_caps.per_transport_caps.xrc_odp_caps;
1060 break;
1061 case IB_QPT_RC:
1062 transport_caps = dev->odp_caps.per_transport_caps.rc_odp_caps;
1063 break;
1064 case IB_QPT_UD:
1065 transport_caps = dev->odp_caps.per_transport_caps.ud_odp_caps;
1066 break;
1067 default:
1068 mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport 0x%x\n",
1069 qp->ibqp.qp_type);
1070 return -EFAULT;
1071 }
1072
1073 if (unlikely(opcode >= ARRAY_SIZE(mlx5_ib_odp_opcode_cap) ||
1074 !(transport_caps & mlx5_ib_odp_opcode_cap[opcode]))) {
1075 mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode 0x%x\n",
1076 opcode);
1077 return -EFAULT;
1078 }
1079
1080 if (qp->ibqp.qp_type == IB_QPT_UD) {
1081 av = *wqe;
1082 if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1083 *wqe += sizeof(struct mlx5_av);
1084 else
1085 *wqe += sizeof(struct mlx5_base_av);
1086 }
1087
1088 switch (opcode) {
1089 case MLX5_OPCODE_RDMA_WRITE:
1090 case MLX5_OPCODE_RDMA_WRITE_IMM:
1091 case MLX5_OPCODE_RDMA_READ:
1092 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1093 break;
1094 case MLX5_OPCODE_ATOMIC_CS:
1095 case MLX5_OPCODE_ATOMIC_FA:
1096 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1097 *wqe += sizeof(struct mlx5_wqe_atomic_seg);
1098 break;
1099 }
1100
1101 return 0;
1102 }
1103
1104 /*
1105 * Parse responder WQE and set wqe_end to the end of the WQE.
1106 */
1107 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1108 struct mlx5_ib_srq *srq,
1109 void **wqe, void **wqe_end,
1110 int wqe_length)
1111 {
1112 int wqe_size = 1 << srq->msrq.wqe_shift;
1113
1114 if (wqe_size > wqe_length) {
1115 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1116 return -EFAULT;
1117 }
1118
1119 *wqe_end = *wqe + wqe_size;
1120 *wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1121
1122 return 0;
1123 }
1124
1125 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1126 struct mlx5_ib_qp *qp,
1127 void *wqe, void **wqe_end,
1128 int wqe_length)
1129 {
1130 struct mlx5_ib_wq *wq = &qp->rq;
1131 int wqe_size = 1 << wq->wqe_shift;
1132
1133 if (qp->wq_sig) {
1134 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1135 return -EFAULT;
1136 }
1137
1138 if (wqe_size > wqe_length) {
1139 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1140 return -EFAULT;
1141 }
1142
1143 switch (qp->ibqp.qp_type) {
1144 case IB_QPT_RC:
1145 if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
1146 IB_ODP_SUPPORT_RECV))
1147 goto invalid_transport_or_opcode;
1148 break;
1149 default:
1150 invalid_transport_or_opcode:
1151 mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n",
1152 qp->ibqp.qp_type);
1153 return -EFAULT;
1154 }
1155
1156 *wqe_end = wqe + wqe_size;
1157
1158 return 0;
1159 }
1160
1161 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1162 u32 wq_num, int pf_type)
1163 {
1164 struct mlx5_core_rsc_common *common = NULL;
1165 struct mlx5_core_srq *srq;
1166
1167 switch (pf_type) {
1168 case MLX5_WQE_PF_TYPE_RMP:
1169 srq = mlx5_cmd_get_srq(dev, wq_num);
1170 if (srq)
1171 common = &srq->common;
1172 break;
1173 case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1174 case MLX5_WQE_PF_TYPE_RESP:
1175 case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1176 common = mlx5_core_res_hold(dev->mdev, wq_num, MLX5_RES_QP);
1177 break;
1178 default:
1179 break;
1180 }
1181
1182 return common;
1183 }
1184
1185 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1186 {
1187 struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1188
1189 return to_mibqp(mqp);
1190 }
1191
1192 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1193 {
1194 struct mlx5_core_srq *msrq =
1195 container_of(res, struct mlx5_core_srq, common);
1196
1197 return to_mibsrq(msrq);
1198 }
1199
1200 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1201 struct mlx5_pagefault *pfault)
1202 {
1203 int ret;
1204 void *wqe, *wqe_end;
1205 u32 bytes_mapped, total_wqe_bytes;
1206 char *buffer = NULL;
1207 int resume_with_error = 1;
1208 u16 wqe_index = pfault->wqe.wqe_index;
1209 int requestor = pfault->type & MLX5_PFAULT_REQUESTOR;
1210 struct mlx5_core_rsc_common *res = NULL;
1211 struct mlx5_ib_qp *qp = NULL;
1212 struct mlx5_ib_srq *srq = NULL;
1213 size_t bytes_copied;
1214
1215 res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1216 if (!res) {
1217 mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1218 return;
1219 }
1220
1221 switch (res->res) {
1222 case MLX5_RES_QP:
1223 qp = res_to_qp(res);
1224 break;
1225 case MLX5_RES_SRQ:
1226 case MLX5_RES_XSRQ:
1227 srq = res_to_srq(res);
1228 break;
1229 default:
1230 mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n", pfault->type);
1231 goto resolve_page_fault;
1232 }
1233
1234 buffer = (char *)__get_free_page(GFP_KERNEL);
1235 if (!buffer) {
1236 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1237 goto resolve_page_fault;
1238 }
1239
1240 if (qp) {
1241 if (requestor) {
1242 ret = mlx5_ib_read_user_wqe_sq(qp, wqe_index,
1243 buffer, PAGE_SIZE,
1244 &bytes_copied);
1245 } else {
1246 ret = mlx5_ib_read_user_wqe_rq(qp, wqe_index,
1247 buffer, PAGE_SIZE,
1248 &bytes_copied);
1249 }
1250 } else {
1251 ret = mlx5_ib_read_user_wqe_srq(srq, wqe_index,
1252 buffer, PAGE_SIZE,
1253 &bytes_copied);
1254 }
1255
1256 if (ret) {
1257 mlx5_ib_err(dev, "Failed reading a WQE following page fault, error=%d, wqe_index=%x, qpn=%x\n",
1258 ret, wqe_index, pfault->token);
1259 goto resolve_page_fault;
1260 }
1261
1262 wqe = buffer;
1263 if (requestor)
1264 ret = mlx5_ib_mr_initiator_pfault_handler(dev, pfault, qp,
1265 &wqe, &wqe_end,
1266 bytes_copied);
1267 else if (qp)
1268 ret = mlx5_ib_mr_responder_pfault_handler_rq(dev, qp,
1269 wqe, &wqe_end,
1270 bytes_copied);
1271 else
1272 ret = mlx5_ib_mr_responder_pfault_handler_srq(dev, srq,
1273 &wqe, &wqe_end,
1274 bytes_copied);
1275
1276 if (ret < 0)
1277 goto resolve_page_fault;
1278
1279 if (wqe >= wqe_end) {
1280 mlx5_ib_err(dev, "ODP fault on invalid WQE.\n");
1281 goto resolve_page_fault;
1282 }
1283
1284 ret = pagefault_data_segments(dev, pfault, wqe, wqe_end,
1285 &bytes_mapped, &total_wqe_bytes,
1286 !requestor);
1287 if (ret == -EAGAIN) {
1288 resume_with_error = 0;
1289 goto resolve_page_fault;
1290 } else if (ret < 0 || total_wqe_bytes > bytes_mapped) {
1291 goto resolve_page_fault;
1292 }
1293
1294 resume_with_error = 0;
1295 resolve_page_fault:
1296 mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1297 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1298 pfault->wqe.wq_num, resume_with_error,
1299 pfault->type);
1300 mlx5_core_res_put(res);
1301 free_page((unsigned long)buffer);
1302 }
1303
1304 static int pages_in_range(u64 address, u32 length)
1305 {
1306 return (ALIGN(address + length, PAGE_SIZE) -
1307 (address & PAGE_MASK)) >> PAGE_SHIFT;
1308 }
1309
1310 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1311 struct mlx5_pagefault *pfault)
1312 {
1313 u64 address;
1314 u32 length;
1315 u32 prefetch_len = pfault->bytes_committed;
1316 int prefetch_activated = 0;
1317 u32 rkey = pfault->rdma.r_key;
1318 int ret;
1319
1320 /* The RDMA responder handler handles the page fault in two parts.
1321 * First it brings the necessary pages for the current packet
1322 * (and uses the pfault context), and then (after resuming the QP)
1323 * prefetches more pages. The second operation cannot use the pfault
1324 * context and therefore uses the dummy_pfault context allocated on
1325 * the stack */
1326 pfault->rdma.rdma_va += pfault->bytes_committed;
1327 pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1328 pfault->rdma.rdma_op_len);
1329 pfault->bytes_committed = 0;
1330
1331 address = pfault->rdma.rdma_va;
1332 length = pfault->rdma.rdma_op_len;
1333
1334 /* For some operations, the hardware cannot tell the exact message
1335 * length, and in those cases it reports zero. Use prefetch
1336 * logic. */
1337 if (length == 0) {
1338 prefetch_activated = 1;
1339 length = pfault->rdma.packet_size;
1340 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1341 }
1342
1343 ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1344 &pfault->bytes_committed, NULL,
1345 0);
1346 if (ret == -EAGAIN) {
1347 /* We're racing with an invalidation, don't prefetch */
1348 prefetch_activated = 0;
1349 } else if (ret < 0 || pages_in_range(address, length) > ret) {
1350 mlx5_ib_page_fault_resume(dev, pfault, 1);
1351 if (ret != -ENOENT)
1352 mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1353 ret, pfault->token, pfault->type);
1354 return;
1355 }
1356
1357 mlx5_ib_page_fault_resume(dev, pfault, 0);
1358 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1359 pfault->token, pfault->type,
1360 prefetch_activated);
1361
1362 /* At this point, there might be a new pagefault already arriving in
1363 * the eq, switch to the dummy pagefault for the rest of the
1364 * processing. We're still OK with the objects being alive as the
1365 * work-queue is being fenced. */
1366
1367 if (prefetch_activated) {
1368 u32 bytes_committed = 0;
1369
1370 ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1371 prefetch_len,
1372 &bytes_committed, NULL,
1373 0);
1374 if (ret < 0 && ret != -EAGAIN) {
1375 mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1376 ret, pfault->token, address, prefetch_len);
1377 }
1378 }
1379 }
1380
1381 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1382 {
1383 u8 event_subtype = pfault->event_subtype;
1384
1385 switch (event_subtype) {
1386 case MLX5_PFAULT_SUBTYPE_WQE:
1387 mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1388 break;
1389 case MLX5_PFAULT_SUBTYPE_RDMA:
1390 mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1391 break;
1392 default:
1393 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1394 event_subtype);
1395 mlx5_ib_page_fault_resume(dev, pfault, 1);
1396 }
1397 }
1398
1399 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1400 {
1401 struct mlx5_pagefault *pfault = container_of(work,
1402 struct mlx5_pagefault,
1403 work);
1404 struct mlx5_ib_pf_eq *eq = pfault->eq;
1405
1406 mlx5_ib_pfault(eq->dev, pfault);
1407 mempool_free(pfault, eq->pool);
1408 }
1409
1410 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1411 {
1412 struct mlx5_eqe_page_fault *pf_eqe;
1413 struct mlx5_pagefault *pfault;
1414 struct mlx5_eqe *eqe;
1415 int cc = 0;
1416
1417 while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1418 pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1419 if (!pfault) {
1420 schedule_work(&eq->work);
1421 break;
1422 }
1423
1424 pf_eqe = &eqe->data.page_fault;
1425 pfault->event_subtype = eqe->sub_type;
1426 pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
1427
1428 mlx5_ib_dbg(eq->dev,
1429 "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
1430 eqe->sub_type, pfault->bytes_committed);
1431
1432 switch (eqe->sub_type) {
1433 case MLX5_PFAULT_SUBTYPE_RDMA:
1434 /* RDMA based event */
1435 pfault->type =
1436 be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1437 pfault->token =
1438 be32_to_cpu(pf_eqe->rdma.pftype_token) &
1439 MLX5_24BIT_MASK;
1440 pfault->rdma.r_key =
1441 be32_to_cpu(pf_eqe->rdma.r_key);
1442 pfault->rdma.packet_size =
1443 be16_to_cpu(pf_eqe->rdma.packet_length);
1444 pfault->rdma.rdma_op_len =
1445 be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1446 pfault->rdma.rdma_va =
1447 be64_to_cpu(pf_eqe->rdma.rdma_va);
1448 mlx5_ib_dbg(eq->dev,
1449 "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
1450 pfault->type, pfault->token,
1451 pfault->rdma.r_key);
1452 mlx5_ib_dbg(eq->dev,
1453 "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1454 pfault->rdma.rdma_op_len,
1455 pfault->rdma.rdma_va);
1456 break;
1457
1458 case MLX5_PFAULT_SUBTYPE_WQE:
1459 /* WQE based event */
1460 pfault->type =
1461 (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1462 pfault->token =
1463 be32_to_cpu(pf_eqe->wqe.token);
1464 pfault->wqe.wq_num =
1465 be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1466 MLX5_24BIT_MASK;
1467 pfault->wqe.wqe_index =
1468 be16_to_cpu(pf_eqe->wqe.wqe_index);
1469 pfault->wqe.packet_size =
1470 be16_to_cpu(pf_eqe->wqe.packet_length);
1471 mlx5_ib_dbg(eq->dev,
1472 "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1473 pfault->type, pfault->token,
1474 pfault->wqe.wq_num,
1475 pfault->wqe.wqe_index);
1476 break;
1477
1478 default:
1479 mlx5_ib_warn(eq->dev,
1480 "Unsupported page fault event sub-type: 0x%02hhx\n",
1481 eqe->sub_type);
1482 /* Unsupported page faults should still be
1483 * resolved by the page fault handler
1484 */
1485 }
1486
1487 pfault->eq = eq;
1488 INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1489 queue_work(eq->wq, &pfault->work);
1490
1491 cc = mlx5_eq_update_cc(eq->core, ++cc);
1492 }
1493
1494 mlx5_eq_update_ci(eq->core, cc, 1);
1495 }
1496
1497 static irqreturn_t mlx5_ib_eq_pf_int(int irq, void *eq_ptr)
1498 {
1499 struct mlx5_ib_pf_eq *eq = eq_ptr;
1500 unsigned long flags;
1501
1502 if (spin_trylock_irqsave(&eq->lock, flags)) {
1503 mlx5_ib_eq_pf_process(eq);
1504 spin_unlock_irqrestore(&eq->lock, flags);
1505 } else {
1506 schedule_work(&eq->work);
1507 }
1508
1509 return IRQ_HANDLED;
1510 }
1511
1512 /* mempool_refill() was proposed but unfortunately wasn't accepted
1513 * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1514 * Cheap workaround.
1515 */
1516 static void mempool_refill(mempool_t *pool)
1517 {
1518 while (pool->curr_nr < pool->min_nr)
1519 mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1520 }
1521
1522 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1523 {
1524 struct mlx5_ib_pf_eq *eq =
1525 container_of(work, struct mlx5_ib_pf_eq, work);
1526
1527 mempool_refill(eq->pool);
1528
1529 spin_lock_irq(&eq->lock);
1530 mlx5_ib_eq_pf_process(eq);
1531 spin_unlock_irq(&eq->lock);
1532 }
1533
1534 enum {
1535 MLX5_IB_NUM_PF_EQE = 0x1000,
1536 MLX5_IB_NUM_PF_DRAIN = 64,
1537 };
1538
1539 static int
1540 mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1541 {
1542 struct mlx5_eq_param param = {};
1543 int err;
1544
1545 INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1546 spin_lock_init(&eq->lock);
1547 eq->dev = dev;
1548
1549 eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1550 sizeof(struct mlx5_pagefault));
1551 if (!eq->pool)
1552 return -ENOMEM;
1553
1554 eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1555 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1556 MLX5_NUM_CMD_EQE);
1557 if (!eq->wq) {
1558 err = -ENOMEM;
1559 goto err_mempool;
1560 }
1561
1562 param = (struct mlx5_eq_param) {
1563 .index = MLX5_EQ_PFAULT_IDX,
1564 .mask = 1 << MLX5_EVENT_TYPE_PAGE_FAULT,
1565 .nent = MLX5_IB_NUM_PF_EQE,
1566 .context = eq,
1567 .handler = mlx5_ib_eq_pf_int
1568 };
1569 eq->core = mlx5_eq_create_generic(dev->mdev, "mlx5_ib_page_fault_eq", &param);
1570 if (IS_ERR(eq->core)) {
1571 err = PTR_ERR(eq->core);
1572 goto err_wq;
1573 }
1574
1575 return 0;
1576 err_wq:
1577 destroy_workqueue(eq->wq);
1578 err_mempool:
1579 mempool_destroy(eq->pool);
1580 return err;
1581 }
1582
1583 static int
1584 mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1585 {
1586 int err;
1587
1588 err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1589 cancel_work_sync(&eq->work);
1590 destroy_workqueue(eq->wq);
1591 mempool_destroy(eq->pool);
1592
1593 return err;
1594 }
1595
1596 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1597 {
1598 if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1599 return;
1600
1601 switch (ent->order - 2) {
1602 case MLX5_IMR_MTT_CACHE_ENTRY:
1603 ent->page = PAGE_SHIFT;
1604 ent->xlt = MLX5_IMR_MTT_ENTRIES *
1605 sizeof(struct mlx5_mtt) /
1606 MLX5_IB_UMR_OCTOWORD;
1607 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1608 ent->limit = 0;
1609 break;
1610
1611 case MLX5_IMR_KSM_CACHE_ENTRY:
1612 ent->page = MLX5_KSM_PAGE_SHIFT;
1613 ent->xlt = mlx5_imr_ksm_entries *
1614 sizeof(struct mlx5_klm) /
1615 MLX5_IB_UMR_OCTOWORD;
1616 ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1617 ent->limit = 0;
1618 break;
1619 }
1620 }
1621
1622 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1623 .advise_mr = mlx5_ib_advise_mr,
1624 };
1625
1626 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1627 {
1628 int ret = 0;
1629
1630 if (dev->odp_caps.general_caps & IB_ODP_SUPPORT)
1631 ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1632
1633 if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1634 ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1635 if (ret) {
1636 mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1637 return ret;
1638 }
1639 }
1640
1641 if (!MLX5_CAP_GEN(dev->mdev, pg))
1642 return ret;
1643
1644 ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq);
1645
1646 return ret;
1647 }
1648
1649 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1650 {
1651 if (!MLX5_CAP_GEN(dev->mdev, pg))
1652 return;
1653
1654 mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq);
1655 }
1656
1657 int mlx5_ib_odp_init(void)
1658 {
1659 mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1660 MLX5_IMR_MTT_BITS);
1661
1662 return 0;
1663 }
1664
1665 struct prefetch_mr_work {
1666 struct work_struct work;
1667 struct ib_pd *pd;
1668 u32 pf_flags;
1669 u32 num_sge;
1670 struct ib_sge sg_list[0];
1671 };
1672
1673 static void num_pending_prefetch_dec(struct mlx5_ib_dev *dev,
1674 struct ib_sge *sg_list, u32 num_sge,
1675 u32 from)
1676 {
1677 u32 i;
1678 int srcu_key;
1679
1680 srcu_key = srcu_read_lock(&dev->mr_srcu);
1681
1682 for (i = from; i < num_sge; ++i) {
1683 struct mlx5_core_mkey *mmkey;
1684 struct mlx5_ib_mr *mr;
1685
1686 mmkey = __mlx5_mr_lookup(dev->mdev,
1687 mlx5_base_mkey(sg_list[i].lkey));
1688 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1689 atomic_dec(&mr->num_pending_prefetch);
1690 }
1691
1692 srcu_read_unlock(&dev->mr_srcu, srcu_key);
1693 }
1694
1695 static bool num_pending_prefetch_inc(struct ib_pd *pd,
1696 struct ib_sge *sg_list, u32 num_sge)
1697 {
1698 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1699 bool ret = true;
1700 u32 i;
1701
1702 for (i = 0; i < num_sge; ++i) {
1703 struct mlx5_core_mkey *mmkey;
1704 struct mlx5_ib_mr *mr;
1705
1706 mmkey = __mlx5_mr_lookup(dev->mdev,
1707 mlx5_base_mkey(sg_list[i].lkey));
1708 if (!mmkey || mmkey->key != sg_list[i].lkey) {
1709 ret = false;
1710 break;
1711 }
1712
1713 if (mmkey->type != MLX5_MKEY_MR) {
1714 ret = false;
1715 break;
1716 }
1717
1718 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1719
1720 if (mr->ibmr.pd != pd) {
1721 ret = false;
1722 break;
1723 }
1724
1725 if (!mr->live) {
1726 ret = false;
1727 break;
1728 }
1729
1730 atomic_inc(&mr->num_pending_prefetch);
1731 }
1732
1733 if (!ret)
1734 num_pending_prefetch_dec(dev, sg_list, i, 0);
1735
1736 return ret;
1737 }
1738
1739 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd, u32 pf_flags,
1740 struct ib_sge *sg_list, u32 num_sge)
1741 {
1742 u32 i;
1743 int ret = 0;
1744 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1745
1746 for (i = 0; i < num_sge; ++i) {
1747 struct ib_sge *sg = &sg_list[i];
1748 int bytes_committed = 0;
1749
1750 ret = pagefault_single_data_segment(dev, pd, sg->lkey, sg->addr,
1751 sg->length,
1752 &bytes_committed, NULL,
1753 pf_flags);
1754 if (ret < 0)
1755 break;
1756 }
1757
1758 return ret < 0 ? ret : 0;
1759 }
1760
1761 static void mlx5_ib_prefetch_mr_work(struct work_struct *work)
1762 {
1763 struct prefetch_mr_work *w =
1764 container_of(work, struct prefetch_mr_work, work);
1765
1766 if (ib_device_try_get(w->pd->device)) {
1767 mlx5_ib_prefetch_sg_list(w->pd, w->pf_flags, w->sg_list,
1768 w->num_sge);
1769 ib_device_put(w->pd->device);
1770 }
1771
1772 num_pending_prefetch_dec(to_mdev(w->pd->device), w->sg_list,
1773 w->num_sge, 0);
1774 kfree(w);
1775 }
1776
1777 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
1778 enum ib_uverbs_advise_mr_advice advice,
1779 u32 flags, struct ib_sge *sg_list, u32 num_sge)
1780 {
1781 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1782 u32 pf_flags = MLX5_PF_FLAGS_PREFETCH;
1783 struct prefetch_mr_work *work;
1784 bool valid_req;
1785 int srcu_key;
1786
1787 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
1788 pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
1789
1790 if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
1791 return mlx5_ib_prefetch_sg_list(pd, pf_flags, sg_list,
1792 num_sge);
1793
1794 work = kvzalloc(struct_size(work, sg_list, num_sge), GFP_KERNEL);
1795 if (!work)
1796 return -ENOMEM;
1797
1798 memcpy(work->sg_list, sg_list, num_sge * sizeof(struct ib_sge));
1799
1800 /* It is guaranteed that the pd when work is executed is the pd when
1801 * work was queued since pd can't be destroyed while it holds MRs and
1802 * destroying a MR leads to flushing the workquque
1803 */
1804 work->pd = pd;
1805 work->pf_flags = pf_flags;
1806 work->num_sge = num_sge;
1807
1808 INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1809
1810 srcu_key = srcu_read_lock(&dev->mr_srcu);
1811
1812 valid_req = num_pending_prefetch_inc(pd, sg_list, num_sge);
1813 if (valid_req)
1814 queue_work(system_unbound_wq, &work->work);
1815 else
1816 kfree(work);
1817
1818 srcu_read_unlock(&dev->mr_srcu, srcu_key);
1819
1820 return valid_req ? 0 : -EINVAL;
1821 }