]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/md/bcache/btree.c
bcache: optimize barrier usage for atomic operations
[thirdparty/kernel/stable.git] / drivers / md / bcache / btree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4 *
5 * Uses a block device as cache for other block devices; optimized for SSDs.
6 * All allocation is done in buckets, which should match the erase block size
7 * of the device.
8 *
9 * Buckets containing cached data are kept on a heap sorted by priority;
10 * bucket priority is increased on cache hit, and periodically all the buckets
11 * on the heap have their priority scaled down. This currently is just used as
12 * an LRU but in the future should allow for more intelligent heuristics.
13 *
14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15 * counter. Garbage collection is used to remove stale pointers.
16 *
17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18 * as keys are inserted we only sort the pages that have not yet been written.
19 * When garbage collection is run, we resort the entire node.
20 *
21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
22 */
23
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
28
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
38 #include <linux/delay.h>
39 #include <trace/events/bcache.h>
40
41 /*
42 * Todo:
43 * register_bcache: Return errors out to userspace correctly
44 *
45 * Writeback: don't undirty key until after a cache flush
46 *
47 * Create an iterator for key pointers
48 *
49 * On btree write error, mark bucket such that it won't be freed from the cache
50 *
51 * Journalling:
52 * Check for bad keys in replay
53 * Propagate barriers
54 * Refcount journal entries in journal_replay
55 *
56 * Garbage collection:
57 * Finish incremental gc
58 * Gc should free old UUIDs, data for invalid UUIDs
59 *
60 * Provide a way to list backing device UUIDs we have data cached for, and
61 * probably how long it's been since we've seen them, and a way to invalidate
62 * dirty data for devices that will never be attached again
63 *
64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65 * that based on that and how much dirty data we have we can keep writeback
66 * from being starved
67 *
68 * Add a tracepoint or somesuch to watch for writeback starvation
69 *
70 * When btree depth > 1 and splitting an interior node, we have to make sure
71 * alloc_bucket() cannot fail. This should be true but is not completely
72 * obvious.
73 *
74 * Plugging?
75 *
76 * If data write is less than hard sector size of ssd, round up offset in open
77 * bucket to the next whole sector
78 *
79 * Superblock needs to be fleshed out for multiple cache devices
80 *
81 * Add a sysfs tunable for the number of writeback IOs in flight
82 *
83 * Add a sysfs tunable for the number of open data buckets
84 *
85 * IO tracking: Can we track when one process is doing io on behalf of another?
86 * IO tracking: Don't use just an average, weigh more recent stuff higher
87 *
88 * Test module load/unload
89 */
90
91 #define MAX_NEED_GC 64
92 #define MAX_SAVE_PRIO 72
93 #define MAX_GC_TIMES 100
94 #define MIN_GC_NODES 100
95 #define GC_SLEEP_MS 100
96
97 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
98
99 #define PTR_HASH(c, k) \
100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
101
102 #define insert_lock(s, b) ((b)->level <= (s)->lock)
103
104
105 static inline struct bset *write_block(struct btree *b)
106 {
107 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
108 }
109
110 static void bch_btree_init_next(struct btree *b)
111 {
112 /* If not a leaf node, always sort */
113 if (b->level && b->keys.nsets)
114 bch_btree_sort(&b->keys, &b->c->sort);
115 else
116 bch_btree_sort_lazy(&b->keys, &b->c->sort);
117
118 if (b->written < btree_blocks(b))
119 bch_bset_init_next(&b->keys, write_block(b),
120 bset_magic(&b->c->sb));
121
122 }
123
124 /* Btree key manipulation */
125
126 void bkey_put(struct cache_set *c, struct bkey *k)
127 {
128 unsigned int i;
129
130 for (i = 0; i < KEY_PTRS(k); i++)
131 if (ptr_available(c, k, i))
132 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
133 }
134
135 /* Btree IO */
136
137 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
138 {
139 uint64_t crc = b->key.ptr[0];
140 void *data = (void *) i + 8, *end = bset_bkey_last(i);
141
142 crc = bch_crc64_update(crc, data, end - data);
143 return crc ^ 0xffffffffffffffffULL;
144 }
145
146 void bch_btree_node_read_done(struct btree *b)
147 {
148 const char *err = "bad btree header";
149 struct bset *i = btree_bset_first(b);
150 struct btree_iter *iter;
151
152 /*
153 * c->fill_iter can allocate an iterator with more memory space
154 * than static MAX_BSETS.
155 * See the comment arount cache_set->fill_iter.
156 */
157 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
158 iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
159 iter->used = 0;
160
161 #ifdef CONFIG_BCACHE_DEBUG
162 iter->b = &b->keys;
163 #endif
164
165 if (!i->seq)
166 goto err;
167
168 for (;
169 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
170 i = write_block(b)) {
171 err = "unsupported bset version";
172 if (i->version > BCACHE_BSET_VERSION)
173 goto err;
174
175 err = "bad btree header";
176 if (b->written + set_blocks(i, block_bytes(b->c)) >
177 btree_blocks(b))
178 goto err;
179
180 err = "bad magic";
181 if (i->magic != bset_magic(&b->c->sb))
182 goto err;
183
184 err = "bad checksum";
185 switch (i->version) {
186 case 0:
187 if (i->csum != csum_set(i))
188 goto err;
189 break;
190 case BCACHE_BSET_VERSION:
191 if (i->csum != btree_csum_set(b, i))
192 goto err;
193 break;
194 }
195
196 err = "empty set";
197 if (i != b->keys.set[0].data && !i->keys)
198 goto err;
199
200 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
201
202 b->written += set_blocks(i, block_bytes(b->c));
203 }
204
205 err = "corrupted btree";
206 for (i = write_block(b);
207 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
208 i = ((void *) i) + block_bytes(b->c))
209 if (i->seq == b->keys.set[0].data->seq)
210 goto err;
211
212 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
213
214 i = b->keys.set[0].data;
215 err = "short btree key";
216 if (b->keys.set[0].size &&
217 bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
218 goto err;
219
220 if (b->written < btree_blocks(b))
221 bch_bset_init_next(&b->keys, write_block(b),
222 bset_magic(&b->c->sb));
223 out:
224 mempool_free(iter, &b->c->fill_iter);
225 return;
226 err:
227 set_btree_node_io_error(b);
228 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
229 err, PTR_BUCKET_NR(b->c, &b->key, 0),
230 bset_block_offset(b, i), i->keys);
231 goto out;
232 }
233
234 static void btree_node_read_endio(struct bio *bio)
235 {
236 struct closure *cl = bio->bi_private;
237
238 closure_put(cl);
239 }
240
241 static void bch_btree_node_read(struct btree *b)
242 {
243 uint64_t start_time = local_clock();
244 struct closure cl;
245 struct bio *bio;
246
247 trace_bcache_btree_read(b);
248
249 closure_init_stack(&cl);
250
251 bio = bch_bbio_alloc(b->c);
252 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
253 bio->bi_end_io = btree_node_read_endio;
254 bio->bi_private = &cl;
255 bio->bi_opf = REQ_OP_READ | REQ_META;
256
257 bch_bio_map(bio, b->keys.set[0].data);
258
259 bch_submit_bbio(bio, b->c, &b->key, 0);
260 closure_sync(&cl);
261
262 if (bio->bi_status)
263 set_btree_node_io_error(b);
264
265 bch_bbio_free(bio, b->c);
266
267 if (btree_node_io_error(b))
268 goto err;
269
270 bch_btree_node_read_done(b);
271 bch_time_stats_update(&b->c->btree_read_time, start_time);
272
273 return;
274 err:
275 bch_cache_set_error(b->c, "io error reading bucket %zu",
276 PTR_BUCKET_NR(b->c, &b->key, 0));
277 }
278
279 static void btree_complete_write(struct btree *b, struct btree_write *w)
280 {
281 if (w->prio_blocked &&
282 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
283 wake_up_allocators(b->c);
284
285 if (w->journal) {
286 atomic_dec_bug(w->journal);
287 __closure_wake_up(&b->c->journal.wait);
288 }
289
290 w->prio_blocked = 0;
291 w->journal = NULL;
292 }
293
294 static void btree_node_write_unlock(struct closure *cl)
295 {
296 struct btree *b = container_of(cl, struct btree, io);
297
298 up(&b->io_mutex);
299 }
300
301 static void __btree_node_write_done(struct closure *cl)
302 {
303 struct btree *b = container_of(cl, struct btree, io);
304 struct btree_write *w = btree_prev_write(b);
305
306 bch_bbio_free(b->bio, b->c);
307 b->bio = NULL;
308 btree_complete_write(b, w);
309
310 if (btree_node_dirty(b))
311 schedule_delayed_work(&b->work, 30 * HZ);
312
313 closure_return_with_destructor(cl, btree_node_write_unlock);
314 }
315
316 static void btree_node_write_done(struct closure *cl)
317 {
318 struct btree *b = container_of(cl, struct btree, io);
319
320 bio_free_pages(b->bio);
321 __btree_node_write_done(cl);
322 }
323
324 static void btree_node_write_endio(struct bio *bio)
325 {
326 struct closure *cl = bio->bi_private;
327 struct btree *b = container_of(cl, struct btree, io);
328
329 if (bio->bi_status)
330 set_btree_node_io_error(b);
331
332 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
333 closure_put(cl);
334 }
335
336 static void do_btree_node_write(struct btree *b)
337 {
338 struct closure *cl = &b->io;
339 struct bset *i = btree_bset_last(b);
340 BKEY_PADDED(key) k;
341
342 i->version = BCACHE_BSET_VERSION;
343 i->csum = btree_csum_set(b, i);
344
345 BUG_ON(b->bio);
346 b->bio = bch_bbio_alloc(b->c);
347
348 b->bio->bi_end_io = btree_node_write_endio;
349 b->bio->bi_private = cl;
350 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
351 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA;
352 bch_bio_map(b->bio, i);
353
354 /*
355 * If we're appending to a leaf node, we don't technically need FUA -
356 * this write just needs to be persisted before the next journal write,
357 * which will be marked FLUSH|FUA.
358 *
359 * Similarly if we're writing a new btree root - the pointer is going to
360 * be in the next journal entry.
361 *
362 * But if we're writing a new btree node (that isn't a root) or
363 * appending to a non leaf btree node, we need either FUA or a flush
364 * when we write the parent with the new pointer. FUA is cheaper than a
365 * flush, and writes appending to leaf nodes aren't blocking anything so
366 * just make all btree node writes FUA to keep things sane.
367 */
368
369 bkey_copy(&k.key, &b->key);
370 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
371 bset_sector_offset(&b->keys, i));
372
373 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
374 struct bio_vec *bv;
375 void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
376 struct bvec_iter_all iter_all;
377
378 bio_for_each_segment_all(bv, b->bio, iter_all) {
379 memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
380 addr += PAGE_SIZE;
381 }
382
383 bch_submit_bbio(b->bio, b->c, &k.key, 0);
384
385 continue_at(cl, btree_node_write_done, NULL);
386 } else {
387 /*
388 * No problem for multipage bvec since the bio is
389 * just allocated
390 */
391 b->bio->bi_vcnt = 0;
392 bch_bio_map(b->bio, i);
393
394 bch_submit_bbio(b->bio, b->c, &k.key, 0);
395
396 closure_sync(cl);
397 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
398 }
399 }
400
401 void __bch_btree_node_write(struct btree *b, struct closure *parent)
402 {
403 struct bset *i = btree_bset_last(b);
404
405 lockdep_assert_held(&b->write_lock);
406
407 trace_bcache_btree_write(b);
408
409 BUG_ON(current->bio_list);
410 BUG_ON(b->written >= btree_blocks(b));
411 BUG_ON(b->written && !i->keys);
412 BUG_ON(btree_bset_first(b)->seq != i->seq);
413 bch_check_keys(&b->keys, "writing");
414
415 cancel_delayed_work(&b->work);
416
417 /* If caller isn't waiting for write, parent refcount is cache set */
418 down(&b->io_mutex);
419 closure_init(&b->io, parent ?: &b->c->cl);
420
421 clear_bit(BTREE_NODE_dirty, &b->flags);
422 change_bit(BTREE_NODE_write_idx, &b->flags);
423
424 do_btree_node_write(b);
425
426 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
427 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
428
429 b->written += set_blocks(i, block_bytes(b->c));
430 }
431
432 void bch_btree_node_write(struct btree *b, struct closure *parent)
433 {
434 unsigned int nsets = b->keys.nsets;
435
436 lockdep_assert_held(&b->lock);
437
438 __bch_btree_node_write(b, parent);
439
440 /*
441 * do verify if there was more than one set initially (i.e. we did a
442 * sort) and we sorted down to a single set:
443 */
444 if (nsets && !b->keys.nsets)
445 bch_btree_verify(b);
446
447 bch_btree_init_next(b);
448 }
449
450 static void bch_btree_node_write_sync(struct btree *b)
451 {
452 struct closure cl;
453
454 closure_init_stack(&cl);
455
456 mutex_lock(&b->write_lock);
457 bch_btree_node_write(b, &cl);
458 mutex_unlock(&b->write_lock);
459
460 closure_sync(&cl);
461 }
462
463 static void btree_node_write_work(struct work_struct *w)
464 {
465 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
466
467 mutex_lock(&b->write_lock);
468 if (btree_node_dirty(b))
469 __bch_btree_node_write(b, NULL);
470 mutex_unlock(&b->write_lock);
471 }
472
473 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
474 {
475 struct bset *i = btree_bset_last(b);
476 struct btree_write *w = btree_current_write(b);
477
478 lockdep_assert_held(&b->write_lock);
479
480 BUG_ON(!b->written);
481 BUG_ON(!i->keys);
482
483 if (!btree_node_dirty(b))
484 schedule_delayed_work(&b->work, 30 * HZ);
485
486 set_btree_node_dirty(b);
487
488 /*
489 * w->journal is always the oldest journal pin of all bkeys
490 * in the leaf node, to make sure the oldest jset seq won't
491 * be increased before this btree node is flushed.
492 */
493 if (journal_ref) {
494 if (w->journal &&
495 journal_pin_cmp(b->c, w->journal, journal_ref)) {
496 atomic_dec_bug(w->journal);
497 w->journal = NULL;
498 }
499
500 if (!w->journal) {
501 w->journal = journal_ref;
502 atomic_inc(w->journal);
503 }
504 }
505
506 /* Force write if set is too big */
507 if (set_bytes(i) > PAGE_SIZE - 48 &&
508 !current->bio_list)
509 bch_btree_node_write(b, NULL);
510 }
511
512 /*
513 * Btree in memory cache - allocation/freeing
514 * mca -> memory cache
515 */
516
517 #define mca_reserve(c) (((c->root && c->root->level) \
518 ? c->root->level : 1) * 8 + 16)
519 #define mca_can_free(c) \
520 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
521
522 static void mca_data_free(struct btree *b)
523 {
524 BUG_ON(b->io_mutex.count != 1);
525
526 bch_btree_keys_free(&b->keys);
527
528 b->c->btree_cache_used--;
529 list_move(&b->list, &b->c->btree_cache_freed);
530 }
531
532 static void mca_bucket_free(struct btree *b)
533 {
534 BUG_ON(btree_node_dirty(b));
535
536 b->key.ptr[0] = 0;
537 hlist_del_init_rcu(&b->hash);
538 list_move(&b->list, &b->c->btree_cache_freeable);
539 }
540
541 static unsigned int btree_order(struct bkey *k)
542 {
543 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
544 }
545
546 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
547 {
548 if (!bch_btree_keys_alloc(&b->keys,
549 max_t(unsigned int,
550 ilog2(b->c->btree_pages),
551 btree_order(k)),
552 gfp)) {
553 b->c->btree_cache_used++;
554 list_move(&b->list, &b->c->btree_cache);
555 } else {
556 list_move(&b->list, &b->c->btree_cache_freed);
557 }
558 }
559
560 static struct btree *mca_bucket_alloc(struct cache_set *c,
561 struct bkey *k, gfp_t gfp)
562 {
563 /*
564 * kzalloc() is necessary here for initialization,
565 * see code comments in bch_btree_keys_init().
566 */
567 struct btree *b = kzalloc(sizeof(struct btree), gfp);
568
569 if (!b)
570 return NULL;
571
572 init_rwsem(&b->lock);
573 lockdep_set_novalidate_class(&b->lock);
574 mutex_init(&b->write_lock);
575 lockdep_set_novalidate_class(&b->write_lock);
576 INIT_LIST_HEAD(&b->list);
577 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
578 b->c = c;
579 sema_init(&b->io_mutex, 1);
580
581 mca_data_alloc(b, k, gfp);
582 return b;
583 }
584
585 static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
586 {
587 struct closure cl;
588
589 closure_init_stack(&cl);
590 lockdep_assert_held(&b->c->bucket_lock);
591
592 if (!down_write_trylock(&b->lock))
593 return -ENOMEM;
594
595 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
596
597 if (b->keys.page_order < min_order)
598 goto out_unlock;
599
600 if (!flush) {
601 if (btree_node_dirty(b))
602 goto out_unlock;
603
604 if (down_trylock(&b->io_mutex))
605 goto out_unlock;
606 up(&b->io_mutex);
607 }
608
609 retry:
610 /*
611 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
612 * __bch_btree_node_write(). To avoid an extra flush, acquire
613 * b->write_lock before checking BTREE_NODE_dirty bit.
614 */
615 mutex_lock(&b->write_lock);
616 /*
617 * If this btree node is selected in btree_flush_write() by journal
618 * code, delay and retry until the node is flushed by journal code
619 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
620 */
621 if (btree_node_journal_flush(b)) {
622 pr_debug("bnode %p is flushing by journal, retry", b);
623 mutex_unlock(&b->write_lock);
624 udelay(1);
625 goto retry;
626 }
627
628 if (btree_node_dirty(b))
629 __bch_btree_node_write(b, &cl);
630 mutex_unlock(&b->write_lock);
631
632 closure_sync(&cl);
633
634 /* wait for any in flight btree write */
635 down(&b->io_mutex);
636 up(&b->io_mutex);
637
638 return 0;
639 out_unlock:
640 rw_unlock(true, b);
641 return -ENOMEM;
642 }
643
644 static unsigned long bch_mca_scan(struct shrinker *shrink,
645 struct shrink_control *sc)
646 {
647 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
648 struct btree *b, *t;
649 unsigned long i, nr = sc->nr_to_scan;
650 unsigned long freed = 0;
651 unsigned int btree_cache_used;
652
653 if (c->shrinker_disabled)
654 return SHRINK_STOP;
655
656 if (c->btree_cache_alloc_lock)
657 return SHRINK_STOP;
658
659 /* Return -1 if we can't do anything right now */
660 if (sc->gfp_mask & __GFP_IO)
661 mutex_lock(&c->bucket_lock);
662 else if (!mutex_trylock(&c->bucket_lock))
663 return -1;
664
665 /*
666 * It's _really_ critical that we don't free too many btree nodes - we
667 * have to always leave ourselves a reserve. The reserve is how we
668 * guarantee that allocating memory for a new btree node can always
669 * succeed, so that inserting keys into the btree can always succeed and
670 * IO can always make forward progress:
671 */
672 nr /= c->btree_pages;
673 if (nr == 0)
674 nr = 1;
675 nr = min_t(unsigned long, nr, mca_can_free(c));
676
677 i = 0;
678 btree_cache_used = c->btree_cache_used;
679 list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) {
680 if (nr <= 0)
681 goto out;
682
683 if (!mca_reap(b, 0, false)) {
684 mca_data_free(b);
685 rw_unlock(true, b);
686 freed++;
687 }
688 nr--;
689 i++;
690 }
691
692 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
693 if (nr <= 0 || i >= btree_cache_used)
694 goto out;
695
696 if (!mca_reap(b, 0, false)) {
697 mca_bucket_free(b);
698 mca_data_free(b);
699 rw_unlock(true, b);
700 freed++;
701 }
702
703 nr--;
704 i++;
705 }
706 out:
707 mutex_unlock(&c->bucket_lock);
708 return freed * c->btree_pages;
709 }
710
711 static unsigned long bch_mca_count(struct shrinker *shrink,
712 struct shrink_control *sc)
713 {
714 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
715
716 if (c->shrinker_disabled)
717 return 0;
718
719 if (c->btree_cache_alloc_lock)
720 return 0;
721
722 return mca_can_free(c) * c->btree_pages;
723 }
724
725 void bch_btree_cache_free(struct cache_set *c)
726 {
727 struct btree *b;
728 struct closure cl;
729
730 closure_init_stack(&cl);
731
732 if (c->shrink.list.next)
733 unregister_shrinker(&c->shrink);
734
735 mutex_lock(&c->bucket_lock);
736
737 #ifdef CONFIG_BCACHE_DEBUG
738 if (c->verify_data)
739 list_move(&c->verify_data->list, &c->btree_cache);
740
741 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
742 #endif
743
744 list_splice(&c->btree_cache_freeable,
745 &c->btree_cache);
746
747 while (!list_empty(&c->btree_cache)) {
748 b = list_first_entry(&c->btree_cache, struct btree, list);
749
750 /*
751 * This function is called by cache_set_free(), no I/O
752 * request on cache now, it is unnecessary to acquire
753 * b->write_lock before clearing BTREE_NODE_dirty anymore.
754 */
755 if (btree_node_dirty(b)) {
756 btree_complete_write(b, btree_current_write(b));
757 clear_bit(BTREE_NODE_dirty, &b->flags);
758 }
759 mca_data_free(b);
760 }
761
762 while (!list_empty(&c->btree_cache_freed)) {
763 b = list_first_entry(&c->btree_cache_freed,
764 struct btree, list);
765 list_del(&b->list);
766 cancel_delayed_work_sync(&b->work);
767 kfree(b);
768 }
769
770 mutex_unlock(&c->bucket_lock);
771 }
772
773 int bch_btree_cache_alloc(struct cache_set *c)
774 {
775 unsigned int i;
776
777 for (i = 0; i < mca_reserve(c); i++)
778 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
779 return -ENOMEM;
780
781 list_splice_init(&c->btree_cache,
782 &c->btree_cache_freeable);
783
784 #ifdef CONFIG_BCACHE_DEBUG
785 mutex_init(&c->verify_lock);
786
787 c->verify_ondisk = (void *)
788 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
789
790 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
791
792 if (c->verify_data &&
793 c->verify_data->keys.set->data)
794 list_del_init(&c->verify_data->list);
795 else
796 c->verify_data = NULL;
797 #endif
798
799 c->shrink.count_objects = bch_mca_count;
800 c->shrink.scan_objects = bch_mca_scan;
801 c->shrink.seeks = 4;
802 c->shrink.batch = c->btree_pages * 2;
803
804 if (register_shrinker(&c->shrink))
805 pr_warn("bcache: %s: could not register shrinker",
806 __func__);
807
808 return 0;
809 }
810
811 /* Btree in memory cache - hash table */
812
813 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
814 {
815 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
816 }
817
818 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
819 {
820 struct btree *b;
821
822 rcu_read_lock();
823 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
824 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
825 goto out;
826 b = NULL;
827 out:
828 rcu_read_unlock();
829 return b;
830 }
831
832 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
833 {
834 spin_lock(&c->btree_cannibalize_lock);
835 if (likely(c->btree_cache_alloc_lock == NULL)) {
836 c->btree_cache_alloc_lock = current;
837 } else if (c->btree_cache_alloc_lock != current) {
838 if (op)
839 prepare_to_wait(&c->btree_cache_wait, &op->wait,
840 TASK_UNINTERRUPTIBLE);
841 spin_unlock(&c->btree_cannibalize_lock);
842 return -EINTR;
843 }
844 spin_unlock(&c->btree_cannibalize_lock);
845
846 return 0;
847 }
848
849 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
850 struct bkey *k)
851 {
852 struct btree *b;
853
854 trace_bcache_btree_cache_cannibalize(c);
855
856 if (mca_cannibalize_lock(c, op))
857 return ERR_PTR(-EINTR);
858
859 list_for_each_entry_reverse(b, &c->btree_cache, list)
860 if (!mca_reap(b, btree_order(k), false))
861 return b;
862
863 list_for_each_entry_reverse(b, &c->btree_cache, list)
864 if (!mca_reap(b, btree_order(k), true))
865 return b;
866
867 WARN(1, "btree cache cannibalize failed\n");
868 return ERR_PTR(-ENOMEM);
869 }
870
871 /*
872 * We can only have one thread cannibalizing other cached btree nodes at a time,
873 * or we'll deadlock. We use an open coded mutex to ensure that, which a
874 * cannibalize_bucket() will take. This means every time we unlock the root of
875 * the btree, we need to release this lock if we have it held.
876 */
877 static void bch_cannibalize_unlock(struct cache_set *c)
878 {
879 spin_lock(&c->btree_cannibalize_lock);
880 if (c->btree_cache_alloc_lock == current) {
881 c->btree_cache_alloc_lock = NULL;
882 wake_up(&c->btree_cache_wait);
883 }
884 spin_unlock(&c->btree_cannibalize_lock);
885 }
886
887 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
888 struct bkey *k, int level)
889 {
890 struct btree *b;
891
892 BUG_ON(current->bio_list);
893
894 lockdep_assert_held(&c->bucket_lock);
895
896 if (mca_find(c, k))
897 return NULL;
898
899 /* btree_free() doesn't free memory; it sticks the node on the end of
900 * the list. Check if there's any freed nodes there:
901 */
902 list_for_each_entry(b, &c->btree_cache_freeable, list)
903 if (!mca_reap(b, btree_order(k), false))
904 goto out;
905
906 /* We never free struct btree itself, just the memory that holds the on
907 * disk node. Check the freed list before allocating a new one:
908 */
909 list_for_each_entry(b, &c->btree_cache_freed, list)
910 if (!mca_reap(b, 0, false)) {
911 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
912 if (!b->keys.set[0].data)
913 goto err;
914 else
915 goto out;
916 }
917
918 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
919 if (!b)
920 goto err;
921
922 BUG_ON(!down_write_trylock(&b->lock));
923 if (!b->keys.set->data)
924 goto err;
925 out:
926 BUG_ON(b->io_mutex.count != 1);
927
928 bkey_copy(&b->key, k);
929 list_move(&b->list, &c->btree_cache);
930 hlist_del_init_rcu(&b->hash);
931 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
932
933 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
934 b->parent = (void *) ~0UL;
935 b->flags = 0;
936 b->written = 0;
937 b->level = level;
938
939 if (!b->level)
940 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
941 &b->c->expensive_debug_checks);
942 else
943 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
944 &b->c->expensive_debug_checks);
945
946 return b;
947 err:
948 if (b)
949 rw_unlock(true, b);
950
951 b = mca_cannibalize(c, op, k);
952 if (!IS_ERR(b))
953 goto out;
954
955 return b;
956 }
957
958 /*
959 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
960 * in from disk if necessary.
961 *
962 * If IO is necessary and running under generic_make_request, returns -EAGAIN.
963 *
964 * The btree node will have either a read or a write lock held, depending on
965 * level and op->lock.
966 */
967 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
968 struct bkey *k, int level, bool write,
969 struct btree *parent)
970 {
971 int i = 0;
972 struct btree *b;
973
974 BUG_ON(level < 0);
975 retry:
976 b = mca_find(c, k);
977
978 if (!b) {
979 if (current->bio_list)
980 return ERR_PTR(-EAGAIN);
981
982 mutex_lock(&c->bucket_lock);
983 b = mca_alloc(c, op, k, level);
984 mutex_unlock(&c->bucket_lock);
985
986 if (!b)
987 goto retry;
988 if (IS_ERR(b))
989 return b;
990
991 bch_btree_node_read(b);
992
993 if (!write)
994 downgrade_write(&b->lock);
995 } else {
996 rw_lock(write, b, level);
997 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
998 rw_unlock(write, b);
999 goto retry;
1000 }
1001 BUG_ON(b->level != level);
1002 }
1003
1004 if (btree_node_io_error(b)) {
1005 rw_unlock(write, b);
1006 return ERR_PTR(-EIO);
1007 }
1008
1009 BUG_ON(!b->written);
1010
1011 b->parent = parent;
1012
1013 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1014 prefetch(b->keys.set[i].tree);
1015 prefetch(b->keys.set[i].data);
1016 }
1017
1018 for (; i <= b->keys.nsets; i++)
1019 prefetch(b->keys.set[i].data);
1020
1021 return b;
1022 }
1023
1024 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1025 {
1026 struct btree *b;
1027
1028 mutex_lock(&parent->c->bucket_lock);
1029 b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1030 mutex_unlock(&parent->c->bucket_lock);
1031
1032 if (!IS_ERR_OR_NULL(b)) {
1033 b->parent = parent;
1034 bch_btree_node_read(b);
1035 rw_unlock(true, b);
1036 }
1037 }
1038
1039 /* Btree alloc */
1040
1041 static void btree_node_free(struct btree *b)
1042 {
1043 trace_bcache_btree_node_free(b);
1044
1045 BUG_ON(b == b->c->root);
1046
1047 retry:
1048 mutex_lock(&b->write_lock);
1049 /*
1050 * If the btree node is selected and flushing in btree_flush_write(),
1051 * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1052 * then it is safe to free the btree node here. Otherwise this btree
1053 * node will be in race condition.
1054 */
1055 if (btree_node_journal_flush(b)) {
1056 mutex_unlock(&b->write_lock);
1057 pr_debug("bnode %p journal_flush set, retry", b);
1058 udelay(1);
1059 goto retry;
1060 }
1061
1062 if (btree_node_dirty(b)) {
1063 btree_complete_write(b, btree_current_write(b));
1064 clear_bit(BTREE_NODE_dirty, &b->flags);
1065 }
1066
1067 mutex_unlock(&b->write_lock);
1068
1069 cancel_delayed_work(&b->work);
1070
1071 mutex_lock(&b->c->bucket_lock);
1072 bch_bucket_free(b->c, &b->key);
1073 mca_bucket_free(b);
1074 mutex_unlock(&b->c->bucket_lock);
1075 }
1076
1077 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1078 int level, bool wait,
1079 struct btree *parent)
1080 {
1081 BKEY_PADDED(key) k;
1082 struct btree *b = ERR_PTR(-EAGAIN);
1083
1084 mutex_lock(&c->bucket_lock);
1085 retry:
1086 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1087 goto err;
1088
1089 bkey_put(c, &k.key);
1090 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1091
1092 b = mca_alloc(c, op, &k.key, level);
1093 if (IS_ERR(b))
1094 goto err_free;
1095
1096 if (!b) {
1097 cache_bug(c,
1098 "Tried to allocate bucket that was in btree cache");
1099 goto retry;
1100 }
1101
1102 b->parent = parent;
1103 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1104
1105 mutex_unlock(&c->bucket_lock);
1106
1107 trace_bcache_btree_node_alloc(b);
1108 return b;
1109 err_free:
1110 bch_bucket_free(c, &k.key);
1111 err:
1112 mutex_unlock(&c->bucket_lock);
1113
1114 trace_bcache_btree_node_alloc_fail(c);
1115 return b;
1116 }
1117
1118 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1119 struct btree_op *op, int level,
1120 struct btree *parent)
1121 {
1122 return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1123 }
1124
1125 static struct btree *btree_node_alloc_replacement(struct btree *b,
1126 struct btree_op *op)
1127 {
1128 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1129
1130 if (!IS_ERR_OR_NULL(n)) {
1131 mutex_lock(&n->write_lock);
1132 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1133 bkey_copy_key(&n->key, &b->key);
1134 mutex_unlock(&n->write_lock);
1135 }
1136
1137 return n;
1138 }
1139
1140 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1141 {
1142 unsigned int i;
1143
1144 mutex_lock(&b->c->bucket_lock);
1145
1146 atomic_inc(&b->c->prio_blocked);
1147
1148 bkey_copy(k, &b->key);
1149 bkey_copy_key(k, &ZERO_KEY);
1150
1151 for (i = 0; i < KEY_PTRS(k); i++)
1152 SET_PTR_GEN(k, i,
1153 bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1154 PTR_BUCKET(b->c, &b->key, i)));
1155
1156 mutex_unlock(&b->c->bucket_lock);
1157 }
1158
1159 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1160 {
1161 struct cache_set *c = b->c;
1162 struct cache *ca;
1163 unsigned int i, reserve = (c->root->level - b->level) * 2 + 1;
1164
1165 mutex_lock(&c->bucket_lock);
1166
1167 for_each_cache(ca, c, i)
1168 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1169 if (op)
1170 prepare_to_wait(&c->btree_cache_wait, &op->wait,
1171 TASK_UNINTERRUPTIBLE);
1172 mutex_unlock(&c->bucket_lock);
1173 return -EINTR;
1174 }
1175
1176 mutex_unlock(&c->bucket_lock);
1177
1178 return mca_cannibalize_lock(b->c, op);
1179 }
1180
1181 /* Garbage collection */
1182
1183 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1184 struct bkey *k)
1185 {
1186 uint8_t stale = 0;
1187 unsigned int i;
1188 struct bucket *g;
1189
1190 /*
1191 * ptr_invalid() can't return true for the keys that mark btree nodes as
1192 * freed, but since ptr_bad() returns true we'll never actually use them
1193 * for anything and thus we don't want mark their pointers here
1194 */
1195 if (!bkey_cmp(k, &ZERO_KEY))
1196 return stale;
1197
1198 for (i = 0; i < KEY_PTRS(k); i++) {
1199 if (!ptr_available(c, k, i))
1200 continue;
1201
1202 g = PTR_BUCKET(c, k, i);
1203
1204 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1205 g->last_gc = PTR_GEN(k, i);
1206
1207 if (ptr_stale(c, k, i)) {
1208 stale = max(stale, ptr_stale(c, k, i));
1209 continue;
1210 }
1211
1212 cache_bug_on(GC_MARK(g) &&
1213 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1214 c, "inconsistent ptrs: mark = %llu, level = %i",
1215 GC_MARK(g), level);
1216
1217 if (level)
1218 SET_GC_MARK(g, GC_MARK_METADATA);
1219 else if (KEY_DIRTY(k))
1220 SET_GC_MARK(g, GC_MARK_DIRTY);
1221 else if (!GC_MARK(g))
1222 SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1223
1224 /* guard against overflow */
1225 SET_GC_SECTORS_USED(g, min_t(unsigned int,
1226 GC_SECTORS_USED(g) + KEY_SIZE(k),
1227 MAX_GC_SECTORS_USED));
1228
1229 BUG_ON(!GC_SECTORS_USED(g));
1230 }
1231
1232 return stale;
1233 }
1234
1235 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1236
1237 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1238 {
1239 unsigned int i;
1240
1241 for (i = 0; i < KEY_PTRS(k); i++)
1242 if (ptr_available(c, k, i) &&
1243 !ptr_stale(c, k, i)) {
1244 struct bucket *b = PTR_BUCKET(c, k, i);
1245
1246 b->gen = PTR_GEN(k, i);
1247
1248 if (level && bkey_cmp(k, &ZERO_KEY))
1249 b->prio = BTREE_PRIO;
1250 else if (!level && b->prio == BTREE_PRIO)
1251 b->prio = INITIAL_PRIO;
1252 }
1253
1254 __bch_btree_mark_key(c, level, k);
1255 }
1256
1257 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1258 {
1259 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1260 }
1261
1262 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1263 {
1264 uint8_t stale = 0;
1265 unsigned int keys = 0, good_keys = 0;
1266 struct bkey *k;
1267 struct btree_iter iter;
1268 struct bset_tree *t;
1269
1270 gc->nodes++;
1271
1272 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1273 stale = max(stale, btree_mark_key(b, k));
1274 keys++;
1275
1276 if (bch_ptr_bad(&b->keys, k))
1277 continue;
1278
1279 gc->key_bytes += bkey_u64s(k);
1280 gc->nkeys++;
1281 good_keys++;
1282
1283 gc->data += KEY_SIZE(k);
1284 }
1285
1286 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1287 btree_bug_on(t->size &&
1288 bset_written(&b->keys, t) &&
1289 bkey_cmp(&b->key, &t->end) < 0,
1290 b, "found short btree key in gc");
1291
1292 if (b->c->gc_always_rewrite)
1293 return true;
1294
1295 if (stale > 10)
1296 return true;
1297
1298 if ((keys - good_keys) * 2 > keys)
1299 return true;
1300
1301 return false;
1302 }
1303
1304 #define GC_MERGE_NODES 4U
1305
1306 struct gc_merge_info {
1307 struct btree *b;
1308 unsigned int keys;
1309 };
1310
1311 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1312 struct keylist *insert_keys,
1313 atomic_t *journal_ref,
1314 struct bkey *replace_key);
1315
1316 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1317 struct gc_stat *gc, struct gc_merge_info *r)
1318 {
1319 unsigned int i, nodes = 0, keys = 0, blocks;
1320 struct btree *new_nodes[GC_MERGE_NODES];
1321 struct keylist keylist;
1322 struct closure cl;
1323 struct bkey *k;
1324
1325 bch_keylist_init(&keylist);
1326
1327 if (btree_check_reserve(b, NULL))
1328 return 0;
1329
1330 memset(new_nodes, 0, sizeof(new_nodes));
1331 closure_init_stack(&cl);
1332
1333 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1334 keys += r[nodes++].keys;
1335
1336 blocks = btree_default_blocks(b->c) * 2 / 3;
1337
1338 if (nodes < 2 ||
1339 __set_blocks(b->keys.set[0].data, keys,
1340 block_bytes(b->c)) > blocks * (nodes - 1))
1341 return 0;
1342
1343 for (i = 0; i < nodes; i++) {
1344 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1345 if (IS_ERR_OR_NULL(new_nodes[i]))
1346 goto out_nocoalesce;
1347 }
1348
1349 /*
1350 * We have to check the reserve here, after we've allocated our new
1351 * nodes, to make sure the insert below will succeed - we also check
1352 * before as an optimization to potentially avoid a bunch of expensive
1353 * allocs/sorts
1354 */
1355 if (btree_check_reserve(b, NULL))
1356 goto out_nocoalesce;
1357
1358 for (i = 0; i < nodes; i++)
1359 mutex_lock(&new_nodes[i]->write_lock);
1360
1361 for (i = nodes - 1; i > 0; --i) {
1362 struct bset *n1 = btree_bset_first(new_nodes[i]);
1363 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1364 struct bkey *k, *last = NULL;
1365
1366 keys = 0;
1367
1368 if (i > 1) {
1369 for (k = n2->start;
1370 k < bset_bkey_last(n2);
1371 k = bkey_next(k)) {
1372 if (__set_blocks(n1, n1->keys + keys +
1373 bkey_u64s(k),
1374 block_bytes(b->c)) > blocks)
1375 break;
1376
1377 last = k;
1378 keys += bkey_u64s(k);
1379 }
1380 } else {
1381 /*
1382 * Last node we're not getting rid of - we're getting
1383 * rid of the node at r[0]. Have to try and fit all of
1384 * the remaining keys into this node; we can't ensure
1385 * they will always fit due to rounding and variable
1386 * length keys (shouldn't be possible in practice,
1387 * though)
1388 */
1389 if (__set_blocks(n1, n1->keys + n2->keys,
1390 block_bytes(b->c)) >
1391 btree_blocks(new_nodes[i]))
1392 goto out_nocoalesce;
1393
1394 keys = n2->keys;
1395 /* Take the key of the node we're getting rid of */
1396 last = &r->b->key;
1397 }
1398
1399 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1400 btree_blocks(new_nodes[i]));
1401
1402 if (last)
1403 bkey_copy_key(&new_nodes[i]->key, last);
1404
1405 memcpy(bset_bkey_last(n1),
1406 n2->start,
1407 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1408
1409 n1->keys += keys;
1410 r[i].keys = n1->keys;
1411
1412 memmove(n2->start,
1413 bset_bkey_idx(n2, keys),
1414 (void *) bset_bkey_last(n2) -
1415 (void *) bset_bkey_idx(n2, keys));
1416
1417 n2->keys -= keys;
1418
1419 if (__bch_keylist_realloc(&keylist,
1420 bkey_u64s(&new_nodes[i]->key)))
1421 goto out_nocoalesce;
1422
1423 bch_btree_node_write(new_nodes[i], &cl);
1424 bch_keylist_add(&keylist, &new_nodes[i]->key);
1425 }
1426
1427 for (i = 0; i < nodes; i++)
1428 mutex_unlock(&new_nodes[i]->write_lock);
1429
1430 closure_sync(&cl);
1431
1432 /* We emptied out this node */
1433 BUG_ON(btree_bset_first(new_nodes[0])->keys);
1434 btree_node_free(new_nodes[0]);
1435 rw_unlock(true, new_nodes[0]);
1436 new_nodes[0] = NULL;
1437
1438 for (i = 0; i < nodes; i++) {
1439 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1440 goto out_nocoalesce;
1441
1442 make_btree_freeing_key(r[i].b, keylist.top);
1443 bch_keylist_push(&keylist);
1444 }
1445
1446 bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1447 BUG_ON(!bch_keylist_empty(&keylist));
1448
1449 for (i = 0; i < nodes; i++) {
1450 btree_node_free(r[i].b);
1451 rw_unlock(true, r[i].b);
1452
1453 r[i].b = new_nodes[i];
1454 }
1455
1456 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1457 r[nodes - 1].b = ERR_PTR(-EINTR);
1458
1459 trace_bcache_btree_gc_coalesce(nodes);
1460 gc->nodes--;
1461
1462 bch_keylist_free(&keylist);
1463
1464 /* Invalidated our iterator */
1465 return -EINTR;
1466
1467 out_nocoalesce:
1468 closure_sync(&cl);
1469
1470 while ((k = bch_keylist_pop(&keylist)))
1471 if (!bkey_cmp(k, &ZERO_KEY))
1472 atomic_dec(&b->c->prio_blocked);
1473 bch_keylist_free(&keylist);
1474
1475 for (i = 0; i < nodes; i++)
1476 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1477 btree_node_free(new_nodes[i]);
1478 rw_unlock(true, new_nodes[i]);
1479 }
1480 return 0;
1481 }
1482
1483 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1484 struct btree *replace)
1485 {
1486 struct keylist keys;
1487 struct btree *n;
1488
1489 if (btree_check_reserve(b, NULL))
1490 return 0;
1491
1492 n = btree_node_alloc_replacement(replace, NULL);
1493
1494 /* recheck reserve after allocating replacement node */
1495 if (btree_check_reserve(b, NULL)) {
1496 btree_node_free(n);
1497 rw_unlock(true, n);
1498 return 0;
1499 }
1500
1501 bch_btree_node_write_sync(n);
1502
1503 bch_keylist_init(&keys);
1504 bch_keylist_add(&keys, &n->key);
1505
1506 make_btree_freeing_key(replace, keys.top);
1507 bch_keylist_push(&keys);
1508
1509 bch_btree_insert_node(b, op, &keys, NULL, NULL);
1510 BUG_ON(!bch_keylist_empty(&keys));
1511
1512 btree_node_free(replace);
1513 rw_unlock(true, n);
1514
1515 /* Invalidated our iterator */
1516 return -EINTR;
1517 }
1518
1519 static unsigned int btree_gc_count_keys(struct btree *b)
1520 {
1521 struct bkey *k;
1522 struct btree_iter iter;
1523 unsigned int ret = 0;
1524
1525 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1526 ret += bkey_u64s(k);
1527
1528 return ret;
1529 }
1530
1531 static size_t btree_gc_min_nodes(struct cache_set *c)
1532 {
1533 size_t min_nodes;
1534
1535 /*
1536 * Since incremental GC would stop 100ms when front
1537 * side I/O comes, so when there are many btree nodes,
1538 * if GC only processes constant (100) nodes each time,
1539 * GC would last a long time, and the front side I/Os
1540 * would run out of the buckets (since no new bucket
1541 * can be allocated during GC), and be blocked again.
1542 * So GC should not process constant nodes, but varied
1543 * nodes according to the number of btree nodes, which
1544 * realized by dividing GC into constant(100) times,
1545 * so when there are many btree nodes, GC can process
1546 * more nodes each time, otherwise, GC will process less
1547 * nodes each time (but no less than MIN_GC_NODES)
1548 */
1549 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1550 if (min_nodes < MIN_GC_NODES)
1551 min_nodes = MIN_GC_NODES;
1552
1553 return min_nodes;
1554 }
1555
1556
1557 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1558 struct closure *writes, struct gc_stat *gc)
1559 {
1560 int ret = 0;
1561 bool should_rewrite;
1562 struct bkey *k;
1563 struct btree_iter iter;
1564 struct gc_merge_info r[GC_MERGE_NODES];
1565 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1566
1567 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1568
1569 for (i = r; i < r + ARRAY_SIZE(r); i++)
1570 i->b = ERR_PTR(-EINTR);
1571
1572 while (1) {
1573 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1574 if (k) {
1575 r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1576 true, b);
1577 if (IS_ERR(r->b)) {
1578 ret = PTR_ERR(r->b);
1579 break;
1580 }
1581
1582 r->keys = btree_gc_count_keys(r->b);
1583
1584 ret = btree_gc_coalesce(b, op, gc, r);
1585 if (ret)
1586 break;
1587 }
1588
1589 if (!last->b)
1590 break;
1591
1592 if (!IS_ERR(last->b)) {
1593 should_rewrite = btree_gc_mark_node(last->b, gc);
1594 if (should_rewrite) {
1595 ret = btree_gc_rewrite_node(b, op, last->b);
1596 if (ret)
1597 break;
1598 }
1599
1600 if (last->b->level) {
1601 ret = btree_gc_recurse(last->b, op, writes, gc);
1602 if (ret)
1603 break;
1604 }
1605
1606 bkey_copy_key(&b->c->gc_done, &last->b->key);
1607
1608 /*
1609 * Must flush leaf nodes before gc ends, since replace
1610 * operations aren't journalled
1611 */
1612 mutex_lock(&last->b->write_lock);
1613 if (btree_node_dirty(last->b))
1614 bch_btree_node_write(last->b, writes);
1615 mutex_unlock(&last->b->write_lock);
1616 rw_unlock(true, last->b);
1617 }
1618
1619 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1620 r->b = NULL;
1621
1622 if (atomic_read(&b->c->search_inflight) &&
1623 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1624 gc->nodes_pre = gc->nodes;
1625 ret = -EAGAIN;
1626 break;
1627 }
1628
1629 if (need_resched()) {
1630 ret = -EAGAIN;
1631 break;
1632 }
1633 }
1634
1635 for (i = r; i < r + ARRAY_SIZE(r); i++)
1636 if (!IS_ERR_OR_NULL(i->b)) {
1637 mutex_lock(&i->b->write_lock);
1638 if (btree_node_dirty(i->b))
1639 bch_btree_node_write(i->b, writes);
1640 mutex_unlock(&i->b->write_lock);
1641 rw_unlock(true, i->b);
1642 }
1643
1644 return ret;
1645 }
1646
1647 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1648 struct closure *writes, struct gc_stat *gc)
1649 {
1650 struct btree *n = NULL;
1651 int ret = 0;
1652 bool should_rewrite;
1653
1654 should_rewrite = btree_gc_mark_node(b, gc);
1655 if (should_rewrite) {
1656 n = btree_node_alloc_replacement(b, NULL);
1657
1658 if (!IS_ERR_OR_NULL(n)) {
1659 bch_btree_node_write_sync(n);
1660
1661 bch_btree_set_root(n);
1662 btree_node_free(b);
1663 rw_unlock(true, n);
1664
1665 return -EINTR;
1666 }
1667 }
1668
1669 __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1670
1671 if (b->level) {
1672 ret = btree_gc_recurse(b, op, writes, gc);
1673 if (ret)
1674 return ret;
1675 }
1676
1677 bkey_copy_key(&b->c->gc_done, &b->key);
1678
1679 return ret;
1680 }
1681
1682 static void btree_gc_start(struct cache_set *c)
1683 {
1684 struct cache *ca;
1685 struct bucket *b;
1686 unsigned int i;
1687
1688 if (!c->gc_mark_valid)
1689 return;
1690
1691 mutex_lock(&c->bucket_lock);
1692
1693 c->gc_mark_valid = 0;
1694 c->gc_done = ZERO_KEY;
1695
1696 for_each_cache(ca, c, i)
1697 for_each_bucket(b, ca) {
1698 b->last_gc = b->gen;
1699 if (!atomic_read(&b->pin)) {
1700 SET_GC_MARK(b, 0);
1701 SET_GC_SECTORS_USED(b, 0);
1702 }
1703 }
1704
1705 mutex_unlock(&c->bucket_lock);
1706 }
1707
1708 static void bch_btree_gc_finish(struct cache_set *c)
1709 {
1710 struct bucket *b;
1711 struct cache *ca;
1712 unsigned int i;
1713
1714 mutex_lock(&c->bucket_lock);
1715
1716 set_gc_sectors(c);
1717 c->gc_mark_valid = 1;
1718 c->need_gc = 0;
1719
1720 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1721 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1722 GC_MARK_METADATA);
1723
1724 /* don't reclaim buckets to which writeback keys point */
1725 rcu_read_lock();
1726 for (i = 0; i < c->devices_max_used; i++) {
1727 struct bcache_device *d = c->devices[i];
1728 struct cached_dev *dc;
1729 struct keybuf_key *w, *n;
1730 unsigned int j;
1731
1732 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1733 continue;
1734 dc = container_of(d, struct cached_dev, disk);
1735
1736 spin_lock(&dc->writeback_keys.lock);
1737 rbtree_postorder_for_each_entry_safe(w, n,
1738 &dc->writeback_keys.keys, node)
1739 for (j = 0; j < KEY_PTRS(&w->key); j++)
1740 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1741 GC_MARK_DIRTY);
1742 spin_unlock(&dc->writeback_keys.lock);
1743 }
1744 rcu_read_unlock();
1745
1746 c->avail_nbuckets = 0;
1747 for_each_cache(ca, c, i) {
1748 uint64_t *i;
1749
1750 ca->invalidate_needs_gc = 0;
1751
1752 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1753 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1754
1755 for (i = ca->prio_buckets;
1756 i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1757 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1758
1759 for_each_bucket(b, ca) {
1760 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1761
1762 if (atomic_read(&b->pin))
1763 continue;
1764
1765 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1766
1767 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1768 c->avail_nbuckets++;
1769 }
1770 }
1771
1772 mutex_unlock(&c->bucket_lock);
1773 }
1774
1775 static void bch_btree_gc(struct cache_set *c)
1776 {
1777 int ret;
1778 struct gc_stat stats;
1779 struct closure writes;
1780 struct btree_op op;
1781 uint64_t start_time = local_clock();
1782
1783 trace_bcache_gc_start(c);
1784
1785 memset(&stats, 0, sizeof(struct gc_stat));
1786 closure_init_stack(&writes);
1787 bch_btree_op_init(&op, SHRT_MAX);
1788
1789 btree_gc_start(c);
1790
1791 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1792 do {
1793 ret = bcache_btree_root(gc_root, c, &op, &writes, &stats);
1794 closure_sync(&writes);
1795 cond_resched();
1796
1797 if (ret == -EAGAIN)
1798 schedule_timeout_interruptible(msecs_to_jiffies
1799 (GC_SLEEP_MS));
1800 else if (ret)
1801 pr_warn("gc failed!");
1802 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1803
1804 bch_btree_gc_finish(c);
1805 wake_up_allocators(c);
1806
1807 bch_time_stats_update(&c->btree_gc_time, start_time);
1808
1809 stats.key_bytes *= sizeof(uint64_t);
1810 stats.data <<= 9;
1811 bch_update_bucket_in_use(c, &stats);
1812 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1813
1814 trace_bcache_gc_end(c);
1815
1816 bch_moving_gc(c);
1817 }
1818
1819 static bool gc_should_run(struct cache_set *c)
1820 {
1821 struct cache *ca;
1822 unsigned int i;
1823
1824 for_each_cache(ca, c, i)
1825 if (ca->invalidate_needs_gc)
1826 return true;
1827
1828 if (atomic_read(&c->sectors_to_gc) < 0)
1829 return true;
1830
1831 return false;
1832 }
1833
1834 static int bch_gc_thread(void *arg)
1835 {
1836 struct cache_set *c = arg;
1837
1838 while (1) {
1839 wait_event_interruptible(c->gc_wait,
1840 kthread_should_stop() ||
1841 test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1842 gc_should_run(c));
1843
1844 if (kthread_should_stop() ||
1845 test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1846 break;
1847
1848 set_gc_sectors(c);
1849 bch_btree_gc(c);
1850 }
1851
1852 wait_for_kthread_stop();
1853 return 0;
1854 }
1855
1856 int bch_gc_thread_start(struct cache_set *c)
1857 {
1858 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1859 return PTR_ERR_OR_ZERO(c->gc_thread);
1860 }
1861
1862 /* Initial partial gc */
1863
1864 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1865 {
1866 int ret = 0;
1867 struct bkey *k, *p = NULL;
1868 struct btree_iter iter;
1869
1870 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1871 bch_initial_mark_key(b->c, b->level, k);
1872
1873 bch_initial_mark_key(b->c, b->level + 1, &b->key);
1874
1875 if (b->level) {
1876 bch_btree_iter_init(&b->keys, &iter, NULL);
1877
1878 do {
1879 k = bch_btree_iter_next_filter(&iter, &b->keys,
1880 bch_ptr_bad);
1881 if (k) {
1882 btree_node_prefetch(b, k);
1883 /*
1884 * initiallize c->gc_stats.nodes
1885 * for incremental GC
1886 */
1887 b->c->gc_stats.nodes++;
1888 }
1889
1890 if (p)
1891 ret = bcache_btree(check_recurse, p, b, op);
1892
1893 p = k;
1894 } while (p && !ret);
1895 }
1896
1897 return ret;
1898 }
1899
1900
1901 static int bch_btree_check_thread(void *arg)
1902 {
1903 int ret;
1904 struct btree_check_info *info = arg;
1905 struct btree_check_state *check_state = info->state;
1906 struct cache_set *c = check_state->c;
1907 struct btree_iter iter;
1908 struct bkey *k, *p;
1909 int cur_idx, prev_idx, skip_nr;
1910 int i, n;
1911
1912 k = p = NULL;
1913 i = n = 0;
1914 cur_idx = prev_idx = 0;
1915 ret = 0;
1916
1917 /* root node keys are checked before thread created */
1918 bch_btree_iter_init(&c->root->keys, &iter, NULL);
1919 k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
1920 BUG_ON(!k);
1921
1922 p = k;
1923 while (k) {
1924 /*
1925 * Fetch a root node key index, skip the keys which
1926 * should be fetched by other threads, then check the
1927 * sub-tree indexed by the fetched key.
1928 */
1929 spin_lock(&check_state->idx_lock);
1930 cur_idx = check_state->key_idx;
1931 check_state->key_idx++;
1932 spin_unlock(&check_state->idx_lock);
1933
1934 skip_nr = cur_idx - prev_idx;
1935
1936 while (skip_nr) {
1937 k = bch_btree_iter_next_filter(&iter,
1938 &c->root->keys,
1939 bch_ptr_bad);
1940 if (k)
1941 p = k;
1942 else {
1943 /*
1944 * No more keys to check in root node,
1945 * current checking threads are enough,
1946 * stop creating more.
1947 */
1948 atomic_set(&check_state->enough, 1);
1949 /* Update check_state->enough earlier */
1950 smp_mb__after_atomic();
1951 goto out;
1952 }
1953 skip_nr--;
1954 cond_resched();
1955 }
1956
1957 if (p) {
1958 struct btree_op op;
1959
1960 btree_node_prefetch(c->root, p);
1961 c->gc_stats.nodes++;
1962 bch_btree_op_init(&op, 0);
1963 ret = bcache_btree(check_recurse, p, c->root, &op);
1964 if (ret)
1965 goto out;
1966 }
1967 p = NULL;
1968 prev_idx = cur_idx;
1969 cond_resched();
1970 }
1971
1972 out:
1973 info->result = ret;
1974 /* update check_state->started among all CPUs */
1975 smp_mb__before_atomic();
1976 if (atomic_dec_and_test(&check_state->started))
1977 wake_up(&check_state->wait);
1978
1979 return ret;
1980 }
1981
1982
1983
1984 static int bch_btree_chkthread_nr(void)
1985 {
1986 int n = num_online_cpus()/2;
1987
1988 if (n == 0)
1989 n = 1;
1990 else if (n > BCH_BTR_CHKTHREAD_MAX)
1991 n = BCH_BTR_CHKTHREAD_MAX;
1992
1993 return n;
1994 }
1995
1996 int bch_btree_check(struct cache_set *c)
1997 {
1998 int ret = 0;
1999 int i;
2000 struct bkey *k = NULL;
2001 struct btree_iter iter;
2002 struct btree_check_state *check_state;
2003 char name[32];
2004
2005 /* check and mark root node keys */
2006 for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid)
2007 bch_initial_mark_key(c, c->root->level, k);
2008
2009 bch_initial_mark_key(c, c->root->level + 1, &c->root->key);
2010
2011 if (c->root->level == 0)
2012 return 0;
2013
2014 check_state = kzalloc(sizeof(struct btree_check_state), GFP_KERNEL);
2015 if (!check_state)
2016 return -ENOMEM;
2017
2018 check_state->c = c;
2019 check_state->total_threads = bch_btree_chkthread_nr();
2020 check_state->key_idx = 0;
2021 spin_lock_init(&check_state->idx_lock);
2022 atomic_set(&check_state->started, 0);
2023 atomic_set(&check_state->enough, 0);
2024 init_waitqueue_head(&check_state->wait);
2025
2026 /*
2027 * Run multiple threads to check btree nodes in parallel,
2028 * if check_state->enough is non-zero, it means current
2029 * running check threads are enough, unncessary to create
2030 * more.
2031 */
2032 for (i = 0; i < check_state->total_threads; i++) {
2033 /* fetch latest check_state->enough earlier */
2034 smp_mb__before_atomic();
2035 if (atomic_read(&check_state->enough))
2036 break;
2037
2038 check_state->infos[i].result = 0;
2039 check_state->infos[i].state = check_state;
2040 snprintf(name, sizeof(name), "bch_btrchk[%u]", i);
2041 atomic_inc(&check_state->started);
2042
2043 check_state->infos[i].thread =
2044 kthread_run(bch_btree_check_thread,
2045 &check_state->infos[i],
2046 name);
2047 if (IS_ERR(check_state->infos[i].thread)) {
2048 pr_err("fails to run thread bch_btrchk[%d]", i);
2049 for (--i; i >= 0; i--)
2050 kthread_stop(check_state->infos[i].thread);
2051 ret = -ENOMEM;
2052 goto out;
2053 }
2054 }
2055
2056 wait_event_interruptible(check_state->wait,
2057 atomic_read(&check_state->started) == 0 ||
2058 test_bit(CACHE_SET_IO_DISABLE, &c->flags));
2059
2060 for (i = 0; i < check_state->total_threads; i++) {
2061 if (check_state->infos[i].result) {
2062 ret = check_state->infos[i].result;
2063 goto out;
2064 }
2065 }
2066
2067 out:
2068 kfree(check_state);
2069 return ret;
2070 }
2071
2072 void bch_initial_gc_finish(struct cache_set *c)
2073 {
2074 struct cache *ca;
2075 struct bucket *b;
2076 unsigned int i;
2077
2078 bch_btree_gc_finish(c);
2079
2080 mutex_lock(&c->bucket_lock);
2081
2082 /*
2083 * We need to put some unused buckets directly on the prio freelist in
2084 * order to get the allocator thread started - it needs freed buckets in
2085 * order to rewrite the prios and gens, and it needs to rewrite prios
2086 * and gens in order to free buckets.
2087 *
2088 * This is only safe for buckets that have no live data in them, which
2089 * there should always be some of.
2090 */
2091 for_each_cache(ca, c, i) {
2092 for_each_bucket(b, ca) {
2093 if (fifo_full(&ca->free[RESERVE_PRIO]) &&
2094 fifo_full(&ca->free[RESERVE_BTREE]))
2095 break;
2096
2097 if (bch_can_invalidate_bucket(ca, b) &&
2098 !GC_MARK(b)) {
2099 __bch_invalidate_one_bucket(ca, b);
2100 if (!fifo_push(&ca->free[RESERVE_PRIO],
2101 b - ca->buckets))
2102 fifo_push(&ca->free[RESERVE_BTREE],
2103 b - ca->buckets);
2104 }
2105 }
2106 }
2107
2108 mutex_unlock(&c->bucket_lock);
2109 }
2110
2111 /* Btree insertion */
2112
2113 static bool btree_insert_key(struct btree *b, struct bkey *k,
2114 struct bkey *replace_key)
2115 {
2116 unsigned int status;
2117
2118 BUG_ON(bkey_cmp(k, &b->key) > 0);
2119
2120 status = bch_btree_insert_key(&b->keys, k, replace_key);
2121 if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2122 bch_check_keys(&b->keys, "%u for %s", status,
2123 replace_key ? "replace" : "insert");
2124
2125 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
2126 status);
2127 return true;
2128 } else
2129 return false;
2130 }
2131
2132 static size_t insert_u64s_remaining(struct btree *b)
2133 {
2134 long ret = bch_btree_keys_u64s_remaining(&b->keys);
2135
2136 /*
2137 * Might land in the middle of an existing extent and have to split it
2138 */
2139 if (b->keys.ops->is_extents)
2140 ret -= KEY_MAX_U64S;
2141
2142 return max(ret, 0L);
2143 }
2144
2145 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2146 struct keylist *insert_keys,
2147 struct bkey *replace_key)
2148 {
2149 bool ret = false;
2150 int oldsize = bch_count_data(&b->keys);
2151
2152 while (!bch_keylist_empty(insert_keys)) {
2153 struct bkey *k = insert_keys->keys;
2154
2155 if (bkey_u64s(k) > insert_u64s_remaining(b))
2156 break;
2157
2158 if (bkey_cmp(k, &b->key) <= 0) {
2159 if (!b->level)
2160 bkey_put(b->c, k);
2161
2162 ret |= btree_insert_key(b, k, replace_key);
2163 bch_keylist_pop_front(insert_keys);
2164 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2165 BKEY_PADDED(key) temp;
2166 bkey_copy(&temp.key, insert_keys->keys);
2167
2168 bch_cut_back(&b->key, &temp.key);
2169 bch_cut_front(&b->key, insert_keys->keys);
2170
2171 ret |= btree_insert_key(b, &temp.key, replace_key);
2172 break;
2173 } else {
2174 break;
2175 }
2176 }
2177
2178 if (!ret)
2179 op->insert_collision = true;
2180
2181 BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2182
2183 BUG_ON(bch_count_data(&b->keys) < oldsize);
2184 return ret;
2185 }
2186
2187 static int btree_split(struct btree *b, struct btree_op *op,
2188 struct keylist *insert_keys,
2189 struct bkey *replace_key)
2190 {
2191 bool split;
2192 struct btree *n1, *n2 = NULL, *n3 = NULL;
2193 uint64_t start_time = local_clock();
2194 struct closure cl;
2195 struct keylist parent_keys;
2196
2197 closure_init_stack(&cl);
2198 bch_keylist_init(&parent_keys);
2199
2200 if (btree_check_reserve(b, op)) {
2201 if (!b->level)
2202 return -EINTR;
2203 else
2204 WARN(1, "insufficient reserve for split\n");
2205 }
2206
2207 n1 = btree_node_alloc_replacement(b, op);
2208 if (IS_ERR(n1))
2209 goto err;
2210
2211 split = set_blocks(btree_bset_first(n1),
2212 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
2213
2214 if (split) {
2215 unsigned int keys = 0;
2216
2217 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2218
2219 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2220 if (IS_ERR(n2))
2221 goto err_free1;
2222
2223 if (!b->parent) {
2224 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2225 if (IS_ERR(n3))
2226 goto err_free2;
2227 }
2228
2229 mutex_lock(&n1->write_lock);
2230 mutex_lock(&n2->write_lock);
2231
2232 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2233
2234 /*
2235 * Has to be a linear search because we don't have an auxiliary
2236 * search tree yet
2237 */
2238
2239 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2240 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2241 keys));
2242
2243 bkey_copy_key(&n1->key,
2244 bset_bkey_idx(btree_bset_first(n1), keys));
2245 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2246
2247 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2248 btree_bset_first(n1)->keys = keys;
2249
2250 memcpy(btree_bset_first(n2)->start,
2251 bset_bkey_last(btree_bset_first(n1)),
2252 btree_bset_first(n2)->keys * sizeof(uint64_t));
2253
2254 bkey_copy_key(&n2->key, &b->key);
2255
2256 bch_keylist_add(&parent_keys, &n2->key);
2257 bch_btree_node_write(n2, &cl);
2258 mutex_unlock(&n2->write_lock);
2259 rw_unlock(true, n2);
2260 } else {
2261 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2262
2263 mutex_lock(&n1->write_lock);
2264 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2265 }
2266
2267 bch_keylist_add(&parent_keys, &n1->key);
2268 bch_btree_node_write(n1, &cl);
2269 mutex_unlock(&n1->write_lock);
2270
2271 if (n3) {
2272 /* Depth increases, make a new root */
2273 mutex_lock(&n3->write_lock);
2274 bkey_copy_key(&n3->key, &MAX_KEY);
2275 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2276 bch_btree_node_write(n3, &cl);
2277 mutex_unlock(&n3->write_lock);
2278
2279 closure_sync(&cl);
2280 bch_btree_set_root(n3);
2281 rw_unlock(true, n3);
2282 } else if (!b->parent) {
2283 /* Root filled up but didn't need to be split */
2284 closure_sync(&cl);
2285 bch_btree_set_root(n1);
2286 } else {
2287 /* Split a non root node */
2288 closure_sync(&cl);
2289 make_btree_freeing_key(b, parent_keys.top);
2290 bch_keylist_push(&parent_keys);
2291
2292 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2293 BUG_ON(!bch_keylist_empty(&parent_keys));
2294 }
2295
2296 btree_node_free(b);
2297 rw_unlock(true, n1);
2298
2299 bch_time_stats_update(&b->c->btree_split_time, start_time);
2300
2301 return 0;
2302 err_free2:
2303 bkey_put(b->c, &n2->key);
2304 btree_node_free(n2);
2305 rw_unlock(true, n2);
2306 err_free1:
2307 bkey_put(b->c, &n1->key);
2308 btree_node_free(n1);
2309 rw_unlock(true, n1);
2310 err:
2311 WARN(1, "bcache: btree split failed (level %u)", b->level);
2312
2313 if (n3 == ERR_PTR(-EAGAIN) ||
2314 n2 == ERR_PTR(-EAGAIN) ||
2315 n1 == ERR_PTR(-EAGAIN))
2316 return -EAGAIN;
2317
2318 return -ENOMEM;
2319 }
2320
2321 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2322 struct keylist *insert_keys,
2323 atomic_t *journal_ref,
2324 struct bkey *replace_key)
2325 {
2326 struct closure cl;
2327
2328 BUG_ON(b->level && replace_key);
2329
2330 closure_init_stack(&cl);
2331
2332 mutex_lock(&b->write_lock);
2333
2334 if (write_block(b) != btree_bset_last(b) &&
2335 b->keys.last_set_unwritten)
2336 bch_btree_init_next(b); /* just wrote a set */
2337
2338 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2339 mutex_unlock(&b->write_lock);
2340 goto split;
2341 }
2342
2343 BUG_ON(write_block(b) != btree_bset_last(b));
2344
2345 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2346 if (!b->level)
2347 bch_btree_leaf_dirty(b, journal_ref);
2348 else
2349 bch_btree_node_write(b, &cl);
2350 }
2351
2352 mutex_unlock(&b->write_lock);
2353
2354 /* wait for btree node write if necessary, after unlock */
2355 closure_sync(&cl);
2356
2357 return 0;
2358 split:
2359 if (current->bio_list) {
2360 op->lock = b->c->root->level + 1;
2361 return -EAGAIN;
2362 } else if (op->lock <= b->c->root->level) {
2363 op->lock = b->c->root->level + 1;
2364 return -EINTR;
2365 } else {
2366 /* Invalidated all iterators */
2367 int ret = btree_split(b, op, insert_keys, replace_key);
2368
2369 if (bch_keylist_empty(insert_keys))
2370 return 0;
2371 else if (!ret)
2372 return -EINTR;
2373 return ret;
2374 }
2375 }
2376
2377 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2378 struct bkey *check_key)
2379 {
2380 int ret = -EINTR;
2381 uint64_t btree_ptr = b->key.ptr[0];
2382 unsigned long seq = b->seq;
2383 struct keylist insert;
2384 bool upgrade = op->lock == -1;
2385
2386 bch_keylist_init(&insert);
2387
2388 if (upgrade) {
2389 rw_unlock(false, b);
2390 rw_lock(true, b, b->level);
2391
2392 if (b->key.ptr[0] != btree_ptr ||
2393 b->seq != seq + 1) {
2394 op->lock = b->level;
2395 goto out;
2396 }
2397 }
2398
2399 SET_KEY_PTRS(check_key, 1);
2400 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2401
2402 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2403
2404 bch_keylist_add(&insert, check_key);
2405
2406 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2407
2408 BUG_ON(!ret && !bch_keylist_empty(&insert));
2409 out:
2410 if (upgrade)
2411 downgrade_write(&b->lock);
2412 return ret;
2413 }
2414
2415 struct btree_insert_op {
2416 struct btree_op op;
2417 struct keylist *keys;
2418 atomic_t *journal_ref;
2419 struct bkey *replace_key;
2420 };
2421
2422 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2423 {
2424 struct btree_insert_op *op = container_of(b_op,
2425 struct btree_insert_op, op);
2426
2427 int ret = bch_btree_insert_node(b, &op->op, op->keys,
2428 op->journal_ref, op->replace_key);
2429 if (ret && !bch_keylist_empty(op->keys))
2430 return ret;
2431 else
2432 return MAP_DONE;
2433 }
2434
2435 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2436 atomic_t *journal_ref, struct bkey *replace_key)
2437 {
2438 struct btree_insert_op op;
2439 int ret = 0;
2440
2441 BUG_ON(current->bio_list);
2442 BUG_ON(bch_keylist_empty(keys));
2443
2444 bch_btree_op_init(&op.op, 0);
2445 op.keys = keys;
2446 op.journal_ref = journal_ref;
2447 op.replace_key = replace_key;
2448
2449 while (!ret && !bch_keylist_empty(keys)) {
2450 op.op.lock = 0;
2451 ret = bch_btree_map_leaf_nodes(&op.op, c,
2452 &START_KEY(keys->keys),
2453 btree_insert_fn);
2454 }
2455
2456 if (ret) {
2457 struct bkey *k;
2458
2459 pr_err("error %i", ret);
2460
2461 while ((k = bch_keylist_pop(keys)))
2462 bkey_put(c, k);
2463 } else if (op.op.insert_collision)
2464 ret = -ESRCH;
2465
2466 return ret;
2467 }
2468
2469 void bch_btree_set_root(struct btree *b)
2470 {
2471 unsigned int i;
2472 struct closure cl;
2473
2474 closure_init_stack(&cl);
2475
2476 trace_bcache_btree_set_root(b);
2477
2478 BUG_ON(!b->written);
2479
2480 for (i = 0; i < KEY_PTRS(&b->key); i++)
2481 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2482
2483 mutex_lock(&b->c->bucket_lock);
2484 list_del_init(&b->list);
2485 mutex_unlock(&b->c->bucket_lock);
2486
2487 b->c->root = b;
2488
2489 bch_journal_meta(b->c, &cl);
2490 closure_sync(&cl);
2491 }
2492
2493 /* Map across nodes or keys */
2494
2495 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2496 struct bkey *from,
2497 btree_map_nodes_fn *fn, int flags)
2498 {
2499 int ret = MAP_CONTINUE;
2500
2501 if (b->level) {
2502 struct bkey *k;
2503 struct btree_iter iter;
2504
2505 bch_btree_iter_init(&b->keys, &iter, from);
2506
2507 while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2508 bch_ptr_bad))) {
2509 ret = bcache_btree(map_nodes_recurse, k, b,
2510 op, from, fn, flags);
2511 from = NULL;
2512
2513 if (ret != MAP_CONTINUE)
2514 return ret;
2515 }
2516 }
2517
2518 if (!b->level || flags == MAP_ALL_NODES)
2519 ret = fn(op, b);
2520
2521 return ret;
2522 }
2523
2524 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2525 struct bkey *from, btree_map_nodes_fn *fn, int flags)
2526 {
2527 return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags);
2528 }
2529
2530 int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2531 struct bkey *from, btree_map_keys_fn *fn,
2532 int flags)
2533 {
2534 int ret = MAP_CONTINUE;
2535 struct bkey *k;
2536 struct btree_iter iter;
2537
2538 bch_btree_iter_init(&b->keys, &iter, from);
2539
2540 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2541 ret = !b->level
2542 ? fn(op, b, k)
2543 : bcache_btree(map_keys_recurse, k,
2544 b, op, from, fn, flags);
2545 from = NULL;
2546
2547 if (ret != MAP_CONTINUE)
2548 return ret;
2549 }
2550
2551 if (!b->level && (flags & MAP_END_KEY))
2552 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2553 KEY_OFFSET(&b->key), 0));
2554
2555 return ret;
2556 }
2557
2558 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2559 struct bkey *from, btree_map_keys_fn *fn, int flags)
2560 {
2561 return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags);
2562 }
2563
2564 /* Keybuf code */
2565
2566 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2567 {
2568 /* Overlapping keys compare equal */
2569 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2570 return -1;
2571 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2572 return 1;
2573 return 0;
2574 }
2575
2576 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2577 struct keybuf_key *r)
2578 {
2579 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2580 }
2581
2582 struct refill {
2583 struct btree_op op;
2584 unsigned int nr_found;
2585 struct keybuf *buf;
2586 struct bkey *end;
2587 keybuf_pred_fn *pred;
2588 };
2589
2590 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2591 struct bkey *k)
2592 {
2593 struct refill *refill = container_of(op, struct refill, op);
2594 struct keybuf *buf = refill->buf;
2595 int ret = MAP_CONTINUE;
2596
2597 if (bkey_cmp(k, refill->end) > 0) {
2598 ret = MAP_DONE;
2599 goto out;
2600 }
2601
2602 if (!KEY_SIZE(k)) /* end key */
2603 goto out;
2604
2605 if (refill->pred(buf, k)) {
2606 struct keybuf_key *w;
2607
2608 spin_lock(&buf->lock);
2609
2610 w = array_alloc(&buf->freelist);
2611 if (!w) {
2612 spin_unlock(&buf->lock);
2613 return MAP_DONE;
2614 }
2615
2616 w->private = NULL;
2617 bkey_copy(&w->key, k);
2618
2619 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2620 array_free(&buf->freelist, w);
2621 else
2622 refill->nr_found++;
2623
2624 if (array_freelist_empty(&buf->freelist))
2625 ret = MAP_DONE;
2626
2627 spin_unlock(&buf->lock);
2628 }
2629 out:
2630 buf->last_scanned = *k;
2631 return ret;
2632 }
2633
2634 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2635 struct bkey *end, keybuf_pred_fn *pred)
2636 {
2637 struct bkey start = buf->last_scanned;
2638 struct refill refill;
2639
2640 cond_resched();
2641
2642 bch_btree_op_init(&refill.op, -1);
2643 refill.nr_found = 0;
2644 refill.buf = buf;
2645 refill.end = end;
2646 refill.pred = pred;
2647
2648 bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2649 refill_keybuf_fn, MAP_END_KEY);
2650
2651 trace_bcache_keyscan(refill.nr_found,
2652 KEY_INODE(&start), KEY_OFFSET(&start),
2653 KEY_INODE(&buf->last_scanned),
2654 KEY_OFFSET(&buf->last_scanned));
2655
2656 spin_lock(&buf->lock);
2657
2658 if (!RB_EMPTY_ROOT(&buf->keys)) {
2659 struct keybuf_key *w;
2660
2661 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2662 buf->start = START_KEY(&w->key);
2663
2664 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2665 buf->end = w->key;
2666 } else {
2667 buf->start = MAX_KEY;
2668 buf->end = MAX_KEY;
2669 }
2670
2671 spin_unlock(&buf->lock);
2672 }
2673
2674 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2675 {
2676 rb_erase(&w->node, &buf->keys);
2677 array_free(&buf->freelist, w);
2678 }
2679
2680 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2681 {
2682 spin_lock(&buf->lock);
2683 __bch_keybuf_del(buf, w);
2684 spin_unlock(&buf->lock);
2685 }
2686
2687 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2688 struct bkey *end)
2689 {
2690 bool ret = false;
2691 struct keybuf_key *p, *w, s;
2692
2693 s.key = *start;
2694
2695 if (bkey_cmp(end, &buf->start) <= 0 ||
2696 bkey_cmp(start, &buf->end) >= 0)
2697 return false;
2698
2699 spin_lock(&buf->lock);
2700 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2701
2702 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2703 p = w;
2704 w = RB_NEXT(w, node);
2705
2706 if (p->private)
2707 ret = true;
2708 else
2709 __bch_keybuf_del(buf, p);
2710 }
2711
2712 spin_unlock(&buf->lock);
2713 return ret;
2714 }
2715
2716 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2717 {
2718 struct keybuf_key *w;
2719
2720 spin_lock(&buf->lock);
2721
2722 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2723
2724 while (w && w->private)
2725 w = RB_NEXT(w, node);
2726
2727 if (w)
2728 w->private = ERR_PTR(-EINTR);
2729
2730 spin_unlock(&buf->lock);
2731 return w;
2732 }
2733
2734 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2735 struct keybuf *buf,
2736 struct bkey *end,
2737 keybuf_pred_fn *pred)
2738 {
2739 struct keybuf_key *ret;
2740
2741 while (1) {
2742 ret = bch_keybuf_next(buf);
2743 if (ret)
2744 break;
2745
2746 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2747 pr_debug("scan finished");
2748 break;
2749 }
2750
2751 bch_refill_keybuf(c, buf, end, pred);
2752 }
2753
2754 return ret;
2755 }
2756
2757 void bch_keybuf_init(struct keybuf *buf)
2758 {
2759 buf->last_scanned = MAX_KEY;
2760 buf->keys = RB_ROOT;
2761
2762 spin_lock_init(&buf->lock);
2763 array_allocator_init(&buf->freelist);
2764 }