]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/mtd/chips/cfi_cmdset_0002.c
gpu: host1x: Fix compile error when IOMMU API is not available
[thirdparty/kernel/stable.git] / drivers / mtd / chips / cfi_cmdset_0002.c
1 /*
2 * Common Flash Interface support:
3 * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4 *
5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
8 *
9 * 2_by_8 routines added by Simon Munton
10 *
11 * 4_by_16 work by Carolyn J. Smith
12 *
13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
14 * by Nicolas Pitre)
15 *
16 * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
17 *
18 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
19 *
20 * This code is GPL
21 */
22
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <asm/io.h>
28 #include <asm/byteorder.h>
29
30 #include <linux/errno.h>
31 #include <linux/slab.h>
32 #include <linux/delay.h>
33 #include <linux/interrupt.h>
34 #include <linux/reboot.h>
35 #include <linux/of.h>
36 #include <linux/of_platform.h>
37 #include <linux/mtd/map.h>
38 #include <linux/mtd/mtd.h>
39 #include <linux/mtd/cfi.h>
40 #include <linux/mtd/xip.h>
41
42 #define AMD_BOOTLOC_BUG
43 #define FORCE_WORD_WRITE 0
44
45 #define MAX_RETRIES 3
46
47 #define SST49LF004B 0x0060
48 #define SST49LF040B 0x0050
49 #define SST49LF008A 0x005a
50 #define AT49BV6416 0x00d6
51
52 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
53 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
54 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
55 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
56 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
57 static void cfi_amdstd_sync (struct mtd_info *);
58 static int cfi_amdstd_suspend (struct mtd_info *);
59 static void cfi_amdstd_resume (struct mtd_info *);
60 static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
61 static int cfi_amdstd_get_fact_prot_info(struct mtd_info *, size_t,
62 size_t *, struct otp_info *);
63 static int cfi_amdstd_get_user_prot_info(struct mtd_info *, size_t,
64 size_t *, struct otp_info *);
65 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
66 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *, loff_t, size_t,
67 size_t *, u_char *);
68 static int cfi_amdstd_read_user_prot_reg(struct mtd_info *, loff_t, size_t,
69 size_t *, u_char *);
70 static int cfi_amdstd_write_user_prot_reg(struct mtd_info *, loff_t, size_t,
71 size_t *, u_char *);
72 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *, loff_t, size_t);
73
74 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
75 size_t *retlen, const u_char *buf);
76
77 static void cfi_amdstd_destroy(struct mtd_info *);
78
79 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
80 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
81
82 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
83 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
84 #include "fwh_lock.h"
85
86 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
87 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
88
89 static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
90 static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
91 static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
92
93 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
94 .probe = NULL, /* Not usable directly */
95 .destroy = cfi_amdstd_destroy,
96 .name = "cfi_cmdset_0002",
97 .module = THIS_MODULE
98 };
99
100
101 /* #define DEBUG_CFI_FEATURES */
102
103
104 #ifdef DEBUG_CFI_FEATURES
105 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
106 {
107 const char* erase_suspend[3] = {
108 "Not supported", "Read only", "Read/write"
109 };
110 const char* top_bottom[6] = {
111 "No WP", "8x8KiB sectors at top & bottom, no WP",
112 "Bottom boot", "Top boot",
113 "Uniform, Bottom WP", "Uniform, Top WP"
114 };
115
116 printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1);
117 printk(" Address sensitive unlock: %s\n",
118 (extp->SiliconRevision & 1) ? "Not required" : "Required");
119
120 if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
121 printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
122 else
123 printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
124
125 if (extp->BlkProt == 0)
126 printk(" Block protection: Not supported\n");
127 else
128 printk(" Block protection: %d sectors per group\n", extp->BlkProt);
129
130
131 printk(" Temporary block unprotect: %s\n",
132 extp->TmpBlkUnprotect ? "Supported" : "Not supported");
133 printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
134 printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps);
135 printk(" Burst mode: %s\n",
136 extp->BurstMode ? "Supported" : "Not supported");
137 if (extp->PageMode == 0)
138 printk(" Page mode: Not supported\n");
139 else
140 printk(" Page mode: %d word page\n", extp->PageMode << 2);
141
142 printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
143 extp->VppMin >> 4, extp->VppMin & 0xf);
144 printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
145 extp->VppMax >> 4, extp->VppMax & 0xf);
146
147 if (extp->TopBottom < ARRAY_SIZE(top_bottom))
148 printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
149 else
150 printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
151 }
152 #endif
153
154 #ifdef AMD_BOOTLOC_BUG
155 /* Wheee. Bring me the head of someone at AMD. */
156 static void fixup_amd_bootblock(struct mtd_info *mtd)
157 {
158 struct map_info *map = mtd->priv;
159 struct cfi_private *cfi = map->fldrv_priv;
160 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
161 __u8 major = extp->MajorVersion;
162 __u8 minor = extp->MinorVersion;
163
164 if (((major << 8) | minor) < 0x3131) {
165 /* CFI version 1.0 => don't trust bootloc */
166
167 pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
168 map->name, cfi->mfr, cfi->id);
169
170 /* AFAICS all 29LV400 with a bottom boot block have a device ID
171 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
172 * These were badly detected as they have the 0x80 bit set
173 * so treat them as a special case.
174 */
175 if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
176
177 /* Macronix added CFI to their 2nd generation
178 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
179 * Fujitsu, Spansion, EON, ESI and older Macronix)
180 * has CFI.
181 *
182 * Therefore also check the manufacturer.
183 * This reduces the risk of false detection due to
184 * the 8-bit device ID.
185 */
186 (cfi->mfr == CFI_MFR_MACRONIX)) {
187 pr_debug("%s: Macronix MX29LV400C with bottom boot block"
188 " detected\n", map->name);
189 extp->TopBottom = 2; /* bottom boot */
190 } else
191 if (cfi->id & 0x80) {
192 printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
193 extp->TopBottom = 3; /* top boot */
194 } else {
195 extp->TopBottom = 2; /* bottom boot */
196 }
197
198 pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
199 " deduced %s from Device ID\n", map->name, major, minor,
200 extp->TopBottom == 2 ? "bottom" : "top");
201 }
202 }
203 #endif
204
205 static void fixup_use_write_buffers(struct mtd_info *mtd)
206 {
207 struct map_info *map = mtd->priv;
208 struct cfi_private *cfi = map->fldrv_priv;
209 if (cfi->cfiq->BufWriteTimeoutTyp) {
210 pr_debug("Using buffer write method\n");
211 mtd->_write = cfi_amdstd_write_buffers;
212 }
213 }
214
215 /* Atmel chips don't use the same PRI format as AMD chips */
216 static void fixup_convert_atmel_pri(struct mtd_info *mtd)
217 {
218 struct map_info *map = mtd->priv;
219 struct cfi_private *cfi = map->fldrv_priv;
220 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
221 struct cfi_pri_atmel atmel_pri;
222
223 memcpy(&atmel_pri, extp, sizeof(atmel_pri));
224 memset((char *)extp + 5, 0, sizeof(*extp) - 5);
225
226 if (atmel_pri.Features & 0x02)
227 extp->EraseSuspend = 2;
228
229 /* Some chips got it backwards... */
230 if (cfi->id == AT49BV6416) {
231 if (atmel_pri.BottomBoot)
232 extp->TopBottom = 3;
233 else
234 extp->TopBottom = 2;
235 } else {
236 if (atmel_pri.BottomBoot)
237 extp->TopBottom = 2;
238 else
239 extp->TopBottom = 3;
240 }
241
242 /* burst write mode not supported */
243 cfi->cfiq->BufWriteTimeoutTyp = 0;
244 cfi->cfiq->BufWriteTimeoutMax = 0;
245 }
246
247 static void fixup_use_secsi(struct mtd_info *mtd)
248 {
249 /* Setup for chips with a secsi area */
250 mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
251 mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
252 }
253
254 static void fixup_use_erase_chip(struct mtd_info *mtd)
255 {
256 struct map_info *map = mtd->priv;
257 struct cfi_private *cfi = map->fldrv_priv;
258 if ((cfi->cfiq->NumEraseRegions == 1) &&
259 ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
260 mtd->_erase = cfi_amdstd_erase_chip;
261 }
262
263 }
264
265 /*
266 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
267 * locked by default.
268 */
269 static void fixup_use_atmel_lock(struct mtd_info *mtd)
270 {
271 mtd->_lock = cfi_atmel_lock;
272 mtd->_unlock = cfi_atmel_unlock;
273 mtd->flags |= MTD_POWERUP_LOCK;
274 }
275
276 static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
277 {
278 struct map_info *map = mtd->priv;
279 struct cfi_private *cfi = map->fldrv_priv;
280
281 /*
282 * These flashes report two separate eraseblock regions based on the
283 * sector_erase-size and block_erase-size, although they both operate on the
284 * same memory. This is not allowed according to CFI, so we just pick the
285 * sector_erase-size.
286 */
287 cfi->cfiq->NumEraseRegions = 1;
288 }
289
290 static void fixup_sst39vf(struct mtd_info *mtd)
291 {
292 struct map_info *map = mtd->priv;
293 struct cfi_private *cfi = map->fldrv_priv;
294
295 fixup_old_sst_eraseregion(mtd);
296
297 cfi->addr_unlock1 = 0x5555;
298 cfi->addr_unlock2 = 0x2AAA;
299 }
300
301 static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
302 {
303 struct map_info *map = mtd->priv;
304 struct cfi_private *cfi = map->fldrv_priv;
305
306 fixup_old_sst_eraseregion(mtd);
307
308 cfi->addr_unlock1 = 0x555;
309 cfi->addr_unlock2 = 0x2AA;
310
311 cfi->sector_erase_cmd = CMD(0x50);
312 }
313
314 static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
315 {
316 struct map_info *map = mtd->priv;
317 struct cfi_private *cfi = map->fldrv_priv;
318
319 fixup_sst39vf_rev_b(mtd);
320
321 /*
322 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
323 * it should report a size of 8KBytes (0x0020*256).
324 */
325 cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
326 pr_warn("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n",
327 mtd->name);
328 }
329
330 static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
331 {
332 struct map_info *map = mtd->priv;
333 struct cfi_private *cfi = map->fldrv_priv;
334
335 if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
336 cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
337 pr_warn("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n",
338 mtd->name);
339 }
340 }
341
342 static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
343 {
344 struct map_info *map = mtd->priv;
345 struct cfi_private *cfi = map->fldrv_priv;
346
347 if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
348 cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
349 pr_warn("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n",
350 mtd->name);
351 }
352 }
353
354 static void fixup_s29ns512p_sectors(struct mtd_info *mtd)
355 {
356 struct map_info *map = mtd->priv;
357 struct cfi_private *cfi = map->fldrv_priv;
358
359 /*
360 * S29NS512P flash uses more than 8bits to report number of sectors,
361 * which is not permitted by CFI.
362 */
363 cfi->cfiq->EraseRegionInfo[0] = 0x020001ff;
364 pr_warn("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n",
365 mtd->name);
366 }
367
368 /* Used to fix CFI-Tables of chips without Extended Query Tables */
369 static struct cfi_fixup cfi_nopri_fixup_table[] = {
370 { CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
371 { CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
372 { CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
373 { CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
374 { CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
375 { CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
376 { CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
377 { CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
378 { 0, 0, NULL }
379 };
380
381 static struct cfi_fixup cfi_fixup_table[] = {
382 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
383 #ifdef AMD_BOOTLOC_BUG
384 { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
385 { CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
386 { CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
387 #endif
388 { CFI_MFR_AMD, 0x0050, fixup_use_secsi },
389 { CFI_MFR_AMD, 0x0053, fixup_use_secsi },
390 { CFI_MFR_AMD, 0x0055, fixup_use_secsi },
391 { CFI_MFR_AMD, 0x0056, fixup_use_secsi },
392 { CFI_MFR_AMD, 0x005C, fixup_use_secsi },
393 { CFI_MFR_AMD, 0x005F, fixup_use_secsi },
394 { CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
395 { CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
396 { CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
397 { CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
398 { CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors },
399 { CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
400 { CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
401 { CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
402 { CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
403 #if !FORCE_WORD_WRITE
404 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
405 #endif
406 { 0, 0, NULL }
407 };
408 static struct cfi_fixup jedec_fixup_table[] = {
409 { CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
410 { CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
411 { CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
412 { 0, 0, NULL }
413 };
414
415 static struct cfi_fixup fixup_table[] = {
416 /* The CFI vendor ids and the JEDEC vendor IDs appear
417 * to be common. It is like the devices id's are as
418 * well. This table is to pick all cases where
419 * we know that is the case.
420 */
421 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
422 { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
423 { 0, 0, NULL }
424 };
425
426
427 static void cfi_fixup_major_minor(struct cfi_private *cfi,
428 struct cfi_pri_amdstd *extp)
429 {
430 if (cfi->mfr == CFI_MFR_SAMSUNG) {
431 if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
432 (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
433 /*
434 * Samsung K8P2815UQB and K8D6x16UxM chips
435 * report major=0 / minor=0.
436 * K8D3x16UxC chips report major=3 / minor=3.
437 */
438 printk(KERN_NOTICE " Fixing Samsung's Amd/Fujitsu"
439 " Extended Query version to 1.%c\n",
440 extp->MinorVersion);
441 extp->MajorVersion = '1';
442 }
443 }
444
445 /*
446 * SST 38VF640x chips report major=0xFF / minor=0xFF.
447 */
448 if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
449 extp->MajorVersion = '1';
450 extp->MinorVersion = '0';
451 }
452 }
453
454 static int is_m29ew(struct cfi_private *cfi)
455 {
456 if (cfi->mfr == CFI_MFR_INTEL &&
457 ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) ||
458 (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e)))
459 return 1;
460 return 0;
461 }
462
463 /*
464 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20:
465 * Some revisions of the M29EW suffer from erase suspend hang ups. In
466 * particular, it can occur when the sequence
467 * Erase Confirm -> Suspend -> Program -> Resume
468 * causes a lockup due to internal timing issues. The consequence is that the
469 * erase cannot be resumed without inserting a dummy command after programming
470 * and prior to resuming. [...] The work-around is to issue a dummy write cycle
471 * that writes an F0 command code before the RESUME command.
472 */
473 static void cfi_fixup_m29ew_erase_suspend(struct map_info *map,
474 unsigned long adr)
475 {
476 struct cfi_private *cfi = map->fldrv_priv;
477 /* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */
478 if (is_m29ew(cfi))
479 map_write(map, CMD(0xF0), adr);
480 }
481
482 /*
483 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22:
484 *
485 * Some revisions of the M29EW (for example, A1 and A2 step revisions)
486 * are affected by a problem that could cause a hang up when an ERASE SUSPEND
487 * command is issued after an ERASE RESUME operation without waiting for a
488 * minimum delay. The result is that once the ERASE seems to be completed
489 * (no bits are toggling), the contents of the Flash memory block on which
490 * the erase was ongoing could be inconsistent with the expected values
491 * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84
492 * values), causing a consequent failure of the ERASE operation.
493 * The occurrence of this issue could be high, especially when file system
494 * operations on the Flash are intensive. As a result, it is recommended
495 * that a patch be applied. Intensive file system operations can cause many
496 * calls to the garbage routine to free Flash space (also by erasing physical
497 * Flash blocks) and as a result, many consecutive SUSPEND and RESUME
498 * commands can occur. The problem disappears when a delay is inserted after
499 * the RESUME command by using the udelay() function available in Linux.
500 * The DELAY value must be tuned based on the customer's platform.
501 * The maximum value that fixes the problem in all cases is 500us.
502 * But, in our experience, a delay of 30 µs to 50 µs is sufficient
503 * in most cases.
504 * We have chosen 500µs because this latency is acceptable.
505 */
506 static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi)
507 {
508 /*
509 * Resolving the Delay After Resume Issue see Micron TN-13-07
510 * Worst case delay must be 500µs but 30-50µs should be ok as well
511 */
512 if (is_m29ew(cfi))
513 cfi_udelay(500);
514 }
515
516 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
517 {
518 struct cfi_private *cfi = map->fldrv_priv;
519 struct device_node __maybe_unused *np = map->device_node;
520 struct mtd_info *mtd;
521 int i;
522
523 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
524 if (!mtd)
525 return NULL;
526 mtd->priv = map;
527 mtd->type = MTD_NORFLASH;
528
529 /* Fill in the default mtd operations */
530 mtd->_erase = cfi_amdstd_erase_varsize;
531 mtd->_write = cfi_amdstd_write_words;
532 mtd->_read = cfi_amdstd_read;
533 mtd->_sync = cfi_amdstd_sync;
534 mtd->_suspend = cfi_amdstd_suspend;
535 mtd->_resume = cfi_amdstd_resume;
536 mtd->_read_user_prot_reg = cfi_amdstd_read_user_prot_reg;
537 mtd->_read_fact_prot_reg = cfi_amdstd_read_fact_prot_reg;
538 mtd->_get_fact_prot_info = cfi_amdstd_get_fact_prot_info;
539 mtd->_get_user_prot_info = cfi_amdstd_get_user_prot_info;
540 mtd->_write_user_prot_reg = cfi_amdstd_write_user_prot_reg;
541 mtd->_lock_user_prot_reg = cfi_amdstd_lock_user_prot_reg;
542 mtd->flags = MTD_CAP_NORFLASH;
543 mtd->name = map->name;
544 mtd->writesize = 1;
545 mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
546
547 pr_debug("MTD %s(): write buffer size %d\n", __func__,
548 mtd->writebufsize);
549
550 mtd->_panic_write = cfi_amdstd_panic_write;
551 mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
552
553 if (cfi->cfi_mode==CFI_MODE_CFI){
554 unsigned char bootloc;
555 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
556 struct cfi_pri_amdstd *extp;
557
558 extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
559 if (extp) {
560 /*
561 * It's a real CFI chip, not one for which the probe
562 * routine faked a CFI structure.
563 */
564 cfi_fixup_major_minor(cfi, extp);
565
566 /*
567 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
568 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
569 * http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
570 * http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
571 * http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
572 */
573 if (extp->MajorVersion != '1' ||
574 (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
575 printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query "
576 "version %c.%c (%#02x/%#02x).\n",
577 extp->MajorVersion, extp->MinorVersion,
578 extp->MajorVersion, extp->MinorVersion);
579 kfree(extp);
580 kfree(mtd);
581 return NULL;
582 }
583
584 printk(KERN_INFO " Amd/Fujitsu Extended Query version %c.%c.\n",
585 extp->MajorVersion, extp->MinorVersion);
586
587 /* Install our own private info structure */
588 cfi->cmdset_priv = extp;
589
590 /* Apply cfi device specific fixups */
591 cfi_fixup(mtd, cfi_fixup_table);
592
593 #ifdef DEBUG_CFI_FEATURES
594 /* Tell the user about it in lots of lovely detail */
595 cfi_tell_features(extp);
596 #endif
597
598 #ifdef CONFIG_OF
599 if (np && of_property_read_bool(
600 np, "use-advanced-sector-protection")
601 && extp->BlkProtUnprot == 8) {
602 printk(KERN_INFO " Advanced Sector Protection (PPB Locking) supported\n");
603 mtd->_lock = cfi_ppb_lock;
604 mtd->_unlock = cfi_ppb_unlock;
605 mtd->_is_locked = cfi_ppb_is_locked;
606 }
607 #endif
608
609 bootloc = extp->TopBottom;
610 if ((bootloc < 2) || (bootloc > 5)) {
611 printk(KERN_WARNING "%s: CFI contains unrecognised boot "
612 "bank location (%d). Assuming bottom.\n",
613 map->name, bootloc);
614 bootloc = 2;
615 }
616
617 if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
618 printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
619
620 for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
621 int j = (cfi->cfiq->NumEraseRegions-1)-i;
622
623 swap(cfi->cfiq->EraseRegionInfo[i],
624 cfi->cfiq->EraseRegionInfo[j]);
625 }
626 }
627 /* Set the default CFI lock/unlock addresses */
628 cfi->addr_unlock1 = 0x555;
629 cfi->addr_unlock2 = 0x2aa;
630 }
631 cfi_fixup(mtd, cfi_nopri_fixup_table);
632
633 if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
634 kfree(mtd);
635 return NULL;
636 }
637
638 } /* CFI mode */
639 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
640 /* Apply jedec specific fixups */
641 cfi_fixup(mtd, jedec_fixup_table);
642 }
643 /* Apply generic fixups */
644 cfi_fixup(mtd, fixup_table);
645
646 for (i=0; i< cfi->numchips; i++) {
647 cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
648 cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
649 cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
650 /*
651 * First calculate the timeout max according to timeout field
652 * of struct cfi_ident that probed from chip's CFI aera, if
653 * available. Specify a minimum of 2000us, in case the CFI data
654 * is wrong.
655 */
656 if (cfi->cfiq->BufWriteTimeoutTyp &&
657 cfi->cfiq->BufWriteTimeoutMax)
658 cfi->chips[i].buffer_write_time_max =
659 1 << (cfi->cfiq->BufWriteTimeoutTyp +
660 cfi->cfiq->BufWriteTimeoutMax);
661 else
662 cfi->chips[i].buffer_write_time_max = 0;
663
664 cfi->chips[i].buffer_write_time_max =
665 max(cfi->chips[i].buffer_write_time_max, 2000);
666
667 cfi->chips[i].ref_point_counter = 0;
668 init_waitqueue_head(&(cfi->chips[i].wq));
669 }
670
671 map->fldrv = &cfi_amdstd_chipdrv;
672
673 return cfi_amdstd_setup(mtd);
674 }
675 struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
676 struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
677 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
678 EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
679 EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
680
681 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
682 {
683 struct map_info *map = mtd->priv;
684 struct cfi_private *cfi = map->fldrv_priv;
685 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
686 unsigned long offset = 0;
687 int i,j;
688
689 printk(KERN_NOTICE "number of %s chips: %d\n",
690 (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
691 /* Select the correct geometry setup */
692 mtd->size = devsize * cfi->numchips;
693
694 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
695 mtd->eraseregions = kmalloc_array(mtd->numeraseregions,
696 sizeof(struct mtd_erase_region_info),
697 GFP_KERNEL);
698 if (!mtd->eraseregions)
699 goto setup_err;
700
701 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
702 unsigned long ernum, ersize;
703 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
704 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
705
706 if (mtd->erasesize < ersize) {
707 mtd->erasesize = ersize;
708 }
709 for (j=0; j<cfi->numchips; j++) {
710 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
711 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
712 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
713 }
714 offset += (ersize * ernum);
715 }
716 if (offset != devsize) {
717 /* Argh */
718 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
719 goto setup_err;
720 }
721
722 __module_get(THIS_MODULE);
723 register_reboot_notifier(&mtd->reboot_notifier);
724 return mtd;
725
726 setup_err:
727 kfree(mtd->eraseregions);
728 kfree(mtd);
729 kfree(cfi->cmdset_priv);
730 kfree(cfi->cfiq);
731 return NULL;
732 }
733
734 /*
735 * Return true if the chip is ready.
736 *
737 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
738 * non-suspended sector) and is indicated by no toggle bits toggling.
739 *
740 * Note that anything more complicated than checking if no bits are toggling
741 * (including checking DQ5 for an error status) is tricky to get working
742 * correctly and is therefore not done (particularly with interleaved chips
743 * as each chip must be checked independently of the others).
744 */
745 static int __xipram chip_ready(struct map_info *map, unsigned long addr)
746 {
747 map_word d, t;
748
749 d = map_read(map, addr);
750 t = map_read(map, addr);
751
752 return map_word_equal(map, d, t);
753 }
754
755 /*
756 * Return true if the chip is ready and has the correct value.
757 *
758 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
759 * non-suspended sector) and it is indicated by no bits toggling.
760 *
761 * Error are indicated by toggling bits or bits held with the wrong value,
762 * or with bits toggling.
763 *
764 * Note that anything more complicated than checking if no bits are toggling
765 * (including checking DQ5 for an error status) is tricky to get working
766 * correctly and is therefore not done (particularly with interleaved chips
767 * as each chip must be checked independently of the others).
768 *
769 */
770 static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
771 {
772 map_word oldd, curd;
773
774 oldd = map_read(map, addr);
775 curd = map_read(map, addr);
776
777 return map_word_equal(map, oldd, curd) &&
778 map_word_equal(map, curd, expected);
779 }
780
781 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
782 {
783 DECLARE_WAITQUEUE(wait, current);
784 struct cfi_private *cfi = map->fldrv_priv;
785 unsigned long timeo;
786 struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
787
788 resettime:
789 timeo = jiffies + HZ;
790 retry:
791 switch (chip->state) {
792
793 case FL_STATUS:
794 for (;;) {
795 if (chip_ready(map, adr))
796 break;
797
798 if (time_after(jiffies, timeo)) {
799 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
800 return -EIO;
801 }
802 mutex_unlock(&chip->mutex);
803 cfi_udelay(1);
804 mutex_lock(&chip->mutex);
805 /* Someone else might have been playing with it. */
806 goto retry;
807 }
808
809 case FL_READY:
810 case FL_CFI_QUERY:
811 case FL_JEDEC_QUERY:
812 return 0;
813
814 case FL_ERASING:
815 if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
816 !(mode == FL_READY || mode == FL_POINT ||
817 (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
818 goto sleep;
819
820 /* Do not allow suspend iff read/write to EB address */
821 if ((adr & chip->in_progress_block_mask) ==
822 chip->in_progress_block_addr)
823 goto sleep;
824
825 /* Erase suspend */
826 /* It's harmless to issue the Erase-Suspend and Erase-Resume
827 * commands when the erase algorithm isn't in progress. */
828 map_write(map, CMD(0xB0), chip->in_progress_block_addr);
829 chip->oldstate = FL_ERASING;
830 chip->state = FL_ERASE_SUSPENDING;
831 chip->erase_suspended = 1;
832 for (;;) {
833 if (chip_ready(map, adr))
834 break;
835
836 if (time_after(jiffies, timeo)) {
837 /* Should have suspended the erase by now.
838 * Send an Erase-Resume command as either
839 * there was an error (so leave the erase
840 * routine to recover from it) or we trying to
841 * use the erase-in-progress sector. */
842 put_chip(map, chip, adr);
843 printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
844 return -EIO;
845 }
846
847 mutex_unlock(&chip->mutex);
848 cfi_udelay(1);
849 mutex_lock(&chip->mutex);
850 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
851 So we can just loop here. */
852 }
853 chip->state = FL_READY;
854 return 0;
855
856 case FL_XIP_WHILE_ERASING:
857 if (mode != FL_READY && mode != FL_POINT &&
858 (!cfip || !(cfip->EraseSuspend&2)))
859 goto sleep;
860 chip->oldstate = chip->state;
861 chip->state = FL_READY;
862 return 0;
863
864 case FL_SHUTDOWN:
865 /* The machine is rebooting */
866 return -EIO;
867
868 case FL_POINT:
869 /* Only if there's no operation suspended... */
870 if (mode == FL_READY && chip->oldstate == FL_READY)
871 return 0;
872
873 default:
874 sleep:
875 set_current_state(TASK_UNINTERRUPTIBLE);
876 add_wait_queue(&chip->wq, &wait);
877 mutex_unlock(&chip->mutex);
878 schedule();
879 remove_wait_queue(&chip->wq, &wait);
880 mutex_lock(&chip->mutex);
881 goto resettime;
882 }
883 }
884
885
886 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
887 {
888 struct cfi_private *cfi = map->fldrv_priv;
889
890 switch(chip->oldstate) {
891 case FL_ERASING:
892 cfi_fixup_m29ew_erase_suspend(map,
893 chip->in_progress_block_addr);
894 map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
895 cfi_fixup_m29ew_delay_after_resume(cfi);
896 chip->oldstate = FL_READY;
897 chip->state = FL_ERASING;
898 break;
899
900 case FL_XIP_WHILE_ERASING:
901 chip->state = chip->oldstate;
902 chip->oldstate = FL_READY;
903 break;
904
905 case FL_READY:
906 case FL_STATUS:
907 break;
908 default:
909 printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
910 }
911 wake_up(&chip->wq);
912 }
913
914 #ifdef CONFIG_MTD_XIP
915
916 /*
917 * No interrupt what so ever can be serviced while the flash isn't in array
918 * mode. This is ensured by the xip_disable() and xip_enable() functions
919 * enclosing any code path where the flash is known not to be in array mode.
920 * And within a XIP disabled code path, only functions marked with __xipram
921 * may be called and nothing else (it's a good thing to inspect generated
922 * assembly to make sure inline functions were actually inlined and that gcc
923 * didn't emit calls to its own support functions). Also configuring MTD CFI
924 * support to a single buswidth and a single interleave is also recommended.
925 */
926
927 static void xip_disable(struct map_info *map, struct flchip *chip,
928 unsigned long adr)
929 {
930 /* TODO: chips with no XIP use should ignore and return */
931 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
932 local_irq_disable();
933 }
934
935 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
936 unsigned long adr)
937 {
938 struct cfi_private *cfi = map->fldrv_priv;
939
940 if (chip->state != FL_POINT && chip->state != FL_READY) {
941 map_write(map, CMD(0xf0), adr);
942 chip->state = FL_READY;
943 }
944 (void) map_read(map, adr);
945 xip_iprefetch();
946 local_irq_enable();
947 }
948
949 /*
950 * When a delay is required for the flash operation to complete, the
951 * xip_udelay() function is polling for both the given timeout and pending
952 * (but still masked) hardware interrupts. Whenever there is an interrupt
953 * pending then the flash erase operation is suspended, array mode restored
954 * and interrupts unmasked. Task scheduling might also happen at that
955 * point. The CPU eventually returns from the interrupt or the call to
956 * schedule() and the suspended flash operation is resumed for the remaining
957 * of the delay period.
958 *
959 * Warning: this function _will_ fool interrupt latency tracing tools.
960 */
961
962 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
963 unsigned long adr, int usec)
964 {
965 struct cfi_private *cfi = map->fldrv_priv;
966 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
967 map_word status, OK = CMD(0x80);
968 unsigned long suspended, start = xip_currtime();
969 flstate_t oldstate;
970
971 do {
972 cpu_relax();
973 if (xip_irqpending() && extp &&
974 ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
975 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
976 /*
977 * Let's suspend the erase operation when supported.
978 * Note that we currently don't try to suspend
979 * interleaved chips if there is already another
980 * operation suspended (imagine what happens
981 * when one chip was already done with the current
982 * operation while another chip suspended it, then
983 * we resume the whole thing at once). Yes, it
984 * can happen!
985 */
986 map_write(map, CMD(0xb0), adr);
987 usec -= xip_elapsed_since(start);
988 suspended = xip_currtime();
989 do {
990 if (xip_elapsed_since(suspended) > 100000) {
991 /*
992 * The chip doesn't want to suspend
993 * after waiting for 100 msecs.
994 * This is a critical error but there
995 * is not much we can do here.
996 */
997 return;
998 }
999 status = map_read(map, adr);
1000 } while (!map_word_andequal(map, status, OK, OK));
1001
1002 /* Suspend succeeded */
1003 oldstate = chip->state;
1004 if (!map_word_bitsset(map, status, CMD(0x40)))
1005 break;
1006 chip->state = FL_XIP_WHILE_ERASING;
1007 chip->erase_suspended = 1;
1008 map_write(map, CMD(0xf0), adr);
1009 (void) map_read(map, adr);
1010 xip_iprefetch();
1011 local_irq_enable();
1012 mutex_unlock(&chip->mutex);
1013 xip_iprefetch();
1014 cond_resched();
1015
1016 /*
1017 * We're back. However someone else might have
1018 * decided to go write to the chip if we are in
1019 * a suspended erase state. If so let's wait
1020 * until it's done.
1021 */
1022 mutex_lock(&chip->mutex);
1023 while (chip->state != FL_XIP_WHILE_ERASING) {
1024 DECLARE_WAITQUEUE(wait, current);
1025 set_current_state(TASK_UNINTERRUPTIBLE);
1026 add_wait_queue(&chip->wq, &wait);
1027 mutex_unlock(&chip->mutex);
1028 schedule();
1029 remove_wait_queue(&chip->wq, &wait);
1030 mutex_lock(&chip->mutex);
1031 }
1032 /* Disallow XIP again */
1033 local_irq_disable();
1034
1035 /* Correct Erase Suspend Hangups for M29EW */
1036 cfi_fixup_m29ew_erase_suspend(map, adr);
1037 /* Resume the write or erase operation */
1038 map_write(map, cfi->sector_erase_cmd, adr);
1039 chip->state = oldstate;
1040 start = xip_currtime();
1041 } else if (usec >= 1000000/HZ) {
1042 /*
1043 * Try to save on CPU power when waiting delay
1044 * is at least a system timer tick period.
1045 * No need to be extremely accurate here.
1046 */
1047 xip_cpu_idle();
1048 }
1049 status = map_read(map, adr);
1050 } while (!map_word_andequal(map, status, OK, OK)
1051 && xip_elapsed_since(start) < usec);
1052 }
1053
1054 #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
1055
1056 /*
1057 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1058 * the flash is actively programming or erasing since we have to poll for
1059 * the operation to complete anyway. We can't do that in a generic way with
1060 * a XIP setup so do it before the actual flash operation in this case
1061 * and stub it out from INVALIDATE_CACHE_UDELAY.
1062 */
1063 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
1064 INVALIDATE_CACHED_RANGE(map, from, size)
1065
1066 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
1067 UDELAY(map, chip, adr, usec)
1068
1069 /*
1070 * Extra notes:
1071 *
1072 * Activating this XIP support changes the way the code works a bit. For
1073 * example the code to suspend the current process when concurrent access
1074 * happens is never executed because xip_udelay() will always return with the
1075 * same chip state as it was entered with. This is why there is no care for
1076 * the presence of add_wait_queue() or schedule() calls from within a couple
1077 * xip_disable()'d areas of code, like in do_erase_oneblock for example.
1078 * The queueing and scheduling are always happening within xip_udelay().
1079 *
1080 * Similarly, get_chip() and put_chip() just happen to always be executed
1081 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
1082 * is in array mode, therefore never executing many cases therein and not
1083 * causing any problem with XIP.
1084 */
1085
1086 #else
1087
1088 #define xip_disable(map, chip, adr)
1089 #define xip_enable(map, chip, adr)
1090 #define XIP_INVAL_CACHED_RANGE(x...)
1091
1092 #define UDELAY(map, chip, adr, usec) \
1093 do { \
1094 mutex_unlock(&chip->mutex); \
1095 cfi_udelay(usec); \
1096 mutex_lock(&chip->mutex); \
1097 } while (0)
1098
1099 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
1100 do { \
1101 mutex_unlock(&chip->mutex); \
1102 INVALIDATE_CACHED_RANGE(map, adr, len); \
1103 cfi_udelay(usec); \
1104 mutex_lock(&chip->mutex); \
1105 } while (0)
1106
1107 #endif
1108
1109 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1110 {
1111 unsigned long cmd_addr;
1112 struct cfi_private *cfi = map->fldrv_priv;
1113 int ret;
1114
1115 adr += chip->start;
1116
1117 /* Ensure cmd read/writes are aligned. */
1118 cmd_addr = adr & ~(map_bankwidth(map)-1);
1119
1120 mutex_lock(&chip->mutex);
1121 ret = get_chip(map, chip, cmd_addr, FL_READY);
1122 if (ret) {
1123 mutex_unlock(&chip->mutex);
1124 return ret;
1125 }
1126
1127 if (chip->state != FL_POINT && chip->state != FL_READY) {
1128 map_write(map, CMD(0xf0), cmd_addr);
1129 chip->state = FL_READY;
1130 }
1131
1132 map_copy_from(map, buf, adr, len);
1133
1134 put_chip(map, chip, cmd_addr);
1135
1136 mutex_unlock(&chip->mutex);
1137 return 0;
1138 }
1139
1140
1141 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1142 {
1143 struct map_info *map = mtd->priv;
1144 struct cfi_private *cfi = map->fldrv_priv;
1145 unsigned long ofs;
1146 int chipnum;
1147 int ret = 0;
1148
1149 /* ofs: offset within the first chip that the first read should start */
1150 chipnum = (from >> cfi->chipshift);
1151 ofs = from - (chipnum << cfi->chipshift);
1152
1153 while (len) {
1154 unsigned long thislen;
1155
1156 if (chipnum >= cfi->numchips)
1157 break;
1158
1159 if ((len + ofs -1) >> cfi->chipshift)
1160 thislen = (1<<cfi->chipshift) - ofs;
1161 else
1162 thislen = len;
1163
1164 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1165 if (ret)
1166 break;
1167
1168 *retlen += thislen;
1169 len -= thislen;
1170 buf += thislen;
1171
1172 ofs = 0;
1173 chipnum++;
1174 }
1175 return ret;
1176 }
1177
1178 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
1179 loff_t adr, size_t len, u_char *buf, size_t grouplen);
1180
1181 static inline void otp_enter(struct map_info *map, struct flchip *chip,
1182 loff_t adr, size_t len)
1183 {
1184 struct cfi_private *cfi = map->fldrv_priv;
1185
1186 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1187 cfi->device_type, NULL);
1188 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1189 cfi->device_type, NULL);
1190 cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi,
1191 cfi->device_type, NULL);
1192
1193 INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1194 }
1195
1196 static inline void otp_exit(struct map_info *map, struct flchip *chip,
1197 loff_t adr, size_t len)
1198 {
1199 struct cfi_private *cfi = map->fldrv_priv;
1200
1201 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1202 cfi->device_type, NULL);
1203 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1204 cfi->device_type, NULL);
1205 cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi,
1206 cfi->device_type, NULL);
1207 cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi,
1208 cfi->device_type, NULL);
1209
1210 INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1211 }
1212
1213 static inline int do_read_secsi_onechip(struct map_info *map,
1214 struct flchip *chip, loff_t adr,
1215 size_t len, u_char *buf,
1216 size_t grouplen)
1217 {
1218 DECLARE_WAITQUEUE(wait, current);
1219
1220 retry:
1221 mutex_lock(&chip->mutex);
1222
1223 if (chip->state != FL_READY){
1224 set_current_state(TASK_UNINTERRUPTIBLE);
1225 add_wait_queue(&chip->wq, &wait);
1226
1227 mutex_unlock(&chip->mutex);
1228
1229 schedule();
1230 remove_wait_queue(&chip->wq, &wait);
1231
1232 goto retry;
1233 }
1234
1235 adr += chip->start;
1236
1237 chip->state = FL_READY;
1238
1239 otp_enter(map, chip, adr, len);
1240 map_copy_from(map, buf, adr, len);
1241 otp_exit(map, chip, adr, len);
1242
1243 wake_up(&chip->wq);
1244 mutex_unlock(&chip->mutex);
1245
1246 return 0;
1247 }
1248
1249 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1250 {
1251 struct map_info *map = mtd->priv;
1252 struct cfi_private *cfi = map->fldrv_priv;
1253 unsigned long ofs;
1254 int chipnum;
1255 int ret = 0;
1256
1257 /* ofs: offset within the first chip that the first read should start */
1258 /* 8 secsi bytes per chip */
1259 chipnum=from>>3;
1260 ofs=from & 7;
1261
1262 while (len) {
1263 unsigned long thislen;
1264
1265 if (chipnum >= cfi->numchips)
1266 break;
1267
1268 if ((len + ofs -1) >> 3)
1269 thislen = (1<<3) - ofs;
1270 else
1271 thislen = len;
1272
1273 ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs,
1274 thislen, buf, 0);
1275 if (ret)
1276 break;
1277
1278 *retlen += thislen;
1279 len -= thislen;
1280 buf += thislen;
1281
1282 ofs = 0;
1283 chipnum++;
1284 }
1285 return ret;
1286 }
1287
1288 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1289 unsigned long adr, map_word datum,
1290 int mode);
1291
1292 static int do_otp_write(struct map_info *map, struct flchip *chip, loff_t adr,
1293 size_t len, u_char *buf, size_t grouplen)
1294 {
1295 int ret;
1296 while (len) {
1297 unsigned long bus_ofs = adr & ~(map_bankwidth(map)-1);
1298 int gap = adr - bus_ofs;
1299 int n = min_t(int, len, map_bankwidth(map) - gap);
1300 map_word datum = map_word_ff(map);
1301
1302 if (n != map_bankwidth(map)) {
1303 /* partial write of a word, load old contents */
1304 otp_enter(map, chip, bus_ofs, map_bankwidth(map));
1305 datum = map_read(map, bus_ofs);
1306 otp_exit(map, chip, bus_ofs, map_bankwidth(map));
1307 }
1308
1309 datum = map_word_load_partial(map, datum, buf, gap, n);
1310 ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
1311 if (ret)
1312 return ret;
1313
1314 adr += n;
1315 buf += n;
1316 len -= n;
1317 }
1318
1319 return 0;
1320 }
1321
1322 static int do_otp_lock(struct map_info *map, struct flchip *chip, loff_t adr,
1323 size_t len, u_char *buf, size_t grouplen)
1324 {
1325 struct cfi_private *cfi = map->fldrv_priv;
1326 uint8_t lockreg;
1327 unsigned long timeo;
1328 int ret;
1329
1330 /* make sure area matches group boundaries */
1331 if ((adr != 0) || (len != grouplen))
1332 return -EINVAL;
1333
1334 mutex_lock(&chip->mutex);
1335 ret = get_chip(map, chip, chip->start, FL_LOCKING);
1336 if (ret) {
1337 mutex_unlock(&chip->mutex);
1338 return ret;
1339 }
1340 chip->state = FL_LOCKING;
1341
1342 /* Enter lock register command */
1343 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1344 cfi->device_type, NULL);
1345 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1346 cfi->device_type, NULL);
1347 cfi_send_gen_cmd(0x40, cfi->addr_unlock1, chip->start, map, cfi,
1348 cfi->device_type, NULL);
1349
1350 /* read lock register */
1351 lockreg = cfi_read_query(map, 0);
1352
1353 /* set bit 0 to protect extended memory block */
1354 lockreg &= ~0x01;
1355
1356 /* set bit 0 to protect extended memory block */
1357 /* write lock register */
1358 map_write(map, CMD(0xA0), chip->start);
1359 map_write(map, CMD(lockreg), chip->start);
1360
1361 /* wait for chip to become ready */
1362 timeo = jiffies + msecs_to_jiffies(2);
1363 for (;;) {
1364 if (chip_ready(map, adr))
1365 break;
1366
1367 if (time_after(jiffies, timeo)) {
1368 pr_err("Waiting for chip to be ready timed out.\n");
1369 ret = -EIO;
1370 break;
1371 }
1372 UDELAY(map, chip, 0, 1);
1373 }
1374
1375 /* exit protection commands */
1376 map_write(map, CMD(0x90), chip->start);
1377 map_write(map, CMD(0x00), chip->start);
1378
1379 chip->state = FL_READY;
1380 put_chip(map, chip, chip->start);
1381 mutex_unlock(&chip->mutex);
1382
1383 return ret;
1384 }
1385
1386 static int cfi_amdstd_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
1387 size_t *retlen, u_char *buf,
1388 otp_op_t action, int user_regs)
1389 {
1390 struct map_info *map = mtd->priv;
1391 struct cfi_private *cfi = map->fldrv_priv;
1392 int ofs_factor = cfi->interleave * cfi->device_type;
1393 unsigned long base;
1394 int chipnum;
1395 struct flchip *chip;
1396 uint8_t otp, lockreg;
1397 int ret;
1398
1399 size_t user_size, factory_size, otpsize;
1400 loff_t user_offset, factory_offset, otpoffset;
1401 int user_locked = 0, otplocked;
1402
1403 *retlen = 0;
1404
1405 for (chipnum = 0; chipnum < cfi->numchips; chipnum++) {
1406 chip = &cfi->chips[chipnum];
1407 factory_size = 0;
1408 user_size = 0;
1409
1410 /* Micron M29EW family */
1411 if (is_m29ew(cfi)) {
1412 base = chip->start;
1413
1414 /* check whether secsi area is factory locked
1415 or user lockable */
1416 mutex_lock(&chip->mutex);
1417 ret = get_chip(map, chip, base, FL_CFI_QUERY);
1418 if (ret) {
1419 mutex_unlock(&chip->mutex);
1420 return ret;
1421 }
1422 cfi_qry_mode_on(base, map, cfi);
1423 otp = cfi_read_query(map, base + 0x3 * ofs_factor);
1424 cfi_qry_mode_off(base, map, cfi);
1425 put_chip(map, chip, base);
1426 mutex_unlock(&chip->mutex);
1427
1428 if (otp & 0x80) {
1429 /* factory locked */
1430 factory_offset = 0;
1431 factory_size = 0x100;
1432 } else {
1433 /* customer lockable */
1434 user_offset = 0;
1435 user_size = 0x100;
1436
1437 mutex_lock(&chip->mutex);
1438 ret = get_chip(map, chip, base, FL_LOCKING);
1439 if (ret) {
1440 mutex_unlock(&chip->mutex);
1441 return ret;
1442 }
1443
1444 /* Enter lock register command */
1445 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1,
1446 chip->start, map, cfi,
1447 cfi->device_type, NULL);
1448 cfi_send_gen_cmd(0x55, cfi->addr_unlock2,
1449 chip->start, map, cfi,
1450 cfi->device_type, NULL);
1451 cfi_send_gen_cmd(0x40, cfi->addr_unlock1,
1452 chip->start, map, cfi,
1453 cfi->device_type, NULL);
1454 /* read lock register */
1455 lockreg = cfi_read_query(map, 0);
1456 /* exit protection commands */
1457 map_write(map, CMD(0x90), chip->start);
1458 map_write(map, CMD(0x00), chip->start);
1459 put_chip(map, chip, chip->start);
1460 mutex_unlock(&chip->mutex);
1461
1462 user_locked = ((lockreg & 0x01) == 0x00);
1463 }
1464 }
1465
1466 otpsize = user_regs ? user_size : factory_size;
1467 if (!otpsize)
1468 continue;
1469 otpoffset = user_regs ? user_offset : factory_offset;
1470 otplocked = user_regs ? user_locked : 1;
1471
1472 if (!action) {
1473 /* return otpinfo */
1474 struct otp_info *otpinfo;
1475 len -= sizeof(*otpinfo);
1476 if (len <= 0)
1477 return -ENOSPC;
1478 otpinfo = (struct otp_info *)buf;
1479 otpinfo->start = from;
1480 otpinfo->length = otpsize;
1481 otpinfo->locked = otplocked;
1482 buf += sizeof(*otpinfo);
1483 *retlen += sizeof(*otpinfo);
1484 from += otpsize;
1485 } else if ((from < otpsize) && (len > 0)) {
1486 size_t size;
1487 size = (len < otpsize - from) ? len : otpsize - from;
1488 ret = action(map, chip, otpoffset + from, size, buf,
1489 otpsize);
1490 if (ret < 0)
1491 return ret;
1492
1493 buf += size;
1494 len -= size;
1495 *retlen += size;
1496 from = 0;
1497 } else {
1498 from -= otpsize;
1499 }
1500 }
1501 return 0;
1502 }
1503
1504 static int cfi_amdstd_get_fact_prot_info(struct mtd_info *mtd, size_t len,
1505 size_t *retlen, struct otp_info *buf)
1506 {
1507 return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1508 NULL, 0);
1509 }
1510
1511 static int cfi_amdstd_get_user_prot_info(struct mtd_info *mtd, size_t len,
1512 size_t *retlen, struct otp_info *buf)
1513 {
1514 return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1515 NULL, 1);
1516 }
1517
1518 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
1519 size_t len, size_t *retlen,
1520 u_char *buf)
1521 {
1522 return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1523 buf, do_read_secsi_onechip, 0);
1524 }
1525
1526 static int cfi_amdstd_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
1527 size_t len, size_t *retlen,
1528 u_char *buf)
1529 {
1530 return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1531 buf, do_read_secsi_onechip, 1);
1532 }
1533
1534 static int cfi_amdstd_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
1535 size_t len, size_t *retlen,
1536 u_char *buf)
1537 {
1538 return cfi_amdstd_otp_walk(mtd, from, len, retlen, buf,
1539 do_otp_write, 1);
1540 }
1541
1542 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
1543 size_t len)
1544 {
1545 size_t retlen;
1546 return cfi_amdstd_otp_walk(mtd, from, len, &retlen, NULL,
1547 do_otp_lock, 1);
1548 }
1549
1550 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1551 unsigned long adr, map_word datum,
1552 int mode)
1553 {
1554 struct cfi_private *cfi = map->fldrv_priv;
1555 unsigned long timeo = jiffies + HZ;
1556 /*
1557 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1558 * have a max write time of a few hundreds usec). However, we should
1559 * use the maximum timeout value given by the chip at probe time
1560 * instead. Unfortunately, struct flchip does have a field for
1561 * maximum timeout, only for typical which can be far too short
1562 * depending of the conditions. The ' + 1' is to avoid having a
1563 * timeout of 0 jiffies if HZ is smaller than 1000.
1564 */
1565 unsigned long uWriteTimeout = (HZ / 1000) + 1;
1566 int ret = 0;
1567 map_word oldd;
1568 int retry_cnt = 0;
1569
1570 adr += chip->start;
1571
1572 mutex_lock(&chip->mutex);
1573 ret = get_chip(map, chip, adr, mode);
1574 if (ret) {
1575 mutex_unlock(&chip->mutex);
1576 return ret;
1577 }
1578
1579 pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1580 __func__, adr, datum.x[0]);
1581
1582 if (mode == FL_OTP_WRITE)
1583 otp_enter(map, chip, adr, map_bankwidth(map));
1584
1585 /*
1586 * Check for a NOP for the case when the datum to write is already
1587 * present - it saves time and works around buggy chips that corrupt
1588 * data at other locations when 0xff is written to a location that
1589 * already contains 0xff.
1590 */
1591 oldd = map_read(map, adr);
1592 if (map_word_equal(map, oldd, datum)) {
1593 pr_debug("MTD %s(): NOP\n",
1594 __func__);
1595 goto op_done;
1596 }
1597
1598 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1599 ENABLE_VPP(map);
1600 xip_disable(map, chip, adr);
1601
1602 retry:
1603 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1604 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1605 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1606 map_write(map, datum, adr);
1607 chip->state = mode;
1608
1609 INVALIDATE_CACHE_UDELAY(map, chip,
1610 adr, map_bankwidth(map),
1611 chip->word_write_time);
1612
1613 /* See comment above for timeout value. */
1614 timeo = jiffies + uWriteTimeout;
1615 for (;;) {
1616 if (chip->state != mode) {
1617 /* Someone's suspended the write. Sleep */
1618 DECLARE_WAITQUEUE(wait, current);
1619
1620 set_current_state(TASK_UNINTERRUPTIBLE);
1621 add_wait_queue(&chip->wq, &wait);
1622 mutex_unlock(&chip->mutex);
1623 schedule();
1624 remove_wait_queue(&chip->wq, &wait);
1625 timeo = jiffies + (HZ / 2); /* FIXME */
1626 mutex_lock(&chip->mutex);
1627 continue;
1628 }
1629
1630 if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
1631 xip_enable(map, chip, adr);
1632 printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1633 xip_disable(map, chip, adr);
1634 break;
1635 }
1636
1637 if (chip_ready(map, adr))
1638 break;
1639
1640 /* Latency issues. Drop the lock, wait a while and retry */
1641 UDELAY(map, chip, adr, 1);
1642 }
1643 /* Did we succeed? */
1644 if (!chip_good(map, adr, datum)) {
1645 /* reset on all failures. */
1646 map_write(map, CMD(0xF0), chip->start);
1647 /* FIXME - should have reset delay before continuing */
1648
1649 if (++retry_cnt <= MAX_RETRIES)
1650 goto retry;
1651
1652 ret = -EIO;
1653 }
1654 xip_enable(map, chip, adr);
1655 op_done:
1656 if (mode == FL_OTP_WRITE)
1657 otp_exit(map, chip, adr, map_bankwidth(map));
1658 chip->state = FL_READY;
1659 DISABLE_VPP(map);
1660 put_chip(map, chip, adr);
1661 mutex_unlock(&chip->mutex);
1662
1663 return ret;
1664 }
1665
1666
1667 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1668 size_t *retlen, const u_char *buf)
1669 {
1670 struct map_info *map = mtd->priv;
1671 struct cfi_private *cfi = map->fldrv_priv;
1672 int ret = 0;
1673 int chipnum;
1674 unsigned long ofs, chipstart;
1675 DECLARE_WAITQUEUE(wait, current);
1676
1677 chipnum = to >> cfi->chipshift;
1678 ofs = to - (chipnum << cfi->chipshift);
1679 chipstart = cfi->chips[chipnum].start;
1680
1681 /* If it's not bus-aligned, do the first byte write */
1682 if (ofs & (map_bankwidth(map)-1)) {
1683 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1684 int i = ofs - bus_ofs;
1685 int n = 0;
1686 map_word tmp_buf;
1687
1688 retry:
1689 mutex_lock(&cfi->chips[chipnum].mutex);
1690
1691 if (cfi->chips[chipnum].state != FL_READY) {
1692 set_current_state(TASK_UNINTERRUPTIBLE);
1693 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1694
1695 mutex_unlock(&cfi->chips[chipnum].mutex);
1696
1697 schedule();
1698 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1699 goto retry;
1700 }
1701
1702 /* Load 'tmp_buf' with old contents of flash */
1703 tmp_buf = map_read(map, bus_ofs+chipstart);
1704
1705 mutex_unlock(&cfi->chips[chipnum].mutex);
1706
1707 /* Number of bytes to copy from buffer */
1708 n = min_t(int, len, map_bankwidth(map)-i);
1709
1710 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1711
1712 ret = do_write_oneword(map, &cfi->chips[chipnum],
1713 bus_ofs, tmp_buf, FL_WRITING);
1714 if (ret)
1715 return ret;
1716
1717 ofs += n;
1718 buf += n;
1719 (*retlen) += n;
1720 len -= n;
1721
1722 if (ofs >> cfi->chipshift) {
1723 chipnum ++;
1724 ofs = 0;
1725 if (chipnum == cfi->numchips)
1726 return 0;
1727 }
1728 }
1729
1730 /* We are now aligned, write as much as possible */
1731 while(len >= map_bankwidth(map)) {
1732 map_word datum;
1733
1734 datum = map_word_load(map, buf);
1735
1736 ret = do_write_oneword(map, &cfi->chips[chipnum],
1737 ofs, datum, FL_WRITING);
1738 if (ret)
1739 return ret;
1740
1741 ofs += map_bankwidth(map);
1742 buf += map_bankwidth(map);
1743 (*retlen) += map_bankwidth(map);
1744 len -= map_bankwidth(map);
1745
1746 if (ofs >> cfi->chipshift) {
1747 chipnum ++;
1748 ofs = 0;
1749 if (chipnum == cfi->numchips)
1750 return 0;
1751 chipstart = cfi->chips[chipnum].start;
1752 }
1753 }
1754
1755 /* Write the trailing bytes if any */
1756 if (len & (map_bankwidth(map)-1)) {
1757 map_word tmp_buf;
1758
1759 retry1:
1760 mutex_lock(&cfi->chips[chipnum].mutex);
1761
1762 if (cfi->chips[chipnum].state != FL_READY) {
1763 set_current_state(TASK_UNINTERRUPTIBLE);
1764 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1765
1766 mutex_unlock(&cfi->chips[chipnum].mutex);
1767
1768 schedule();
1769 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1770 goto retry1;
1771 }
1772
1773 tmp_buf = map_read(map, ofs + chipstart);
1774
1775 mutex_unlock(&cfi->chips[chipnum].mutex);
1776
1777 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1778
1779 ret = do_write_oneword(map, &cfi->chips[chipnum],
1780 ofs, tmp_buf, FL_WRITING);
1781 if (ret)
1782 return ret;
1783
1784 (*retlen) += len;
1785 }
1786
1787 return 0;
1788 }
1789
1790
1791 /*
1792 * FIXME: interleaved mode not tested, and probably not supported!
1793 */
1794 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1795 unsigned long adr, const u_char *buf,
1796 int len)
1797 {
1798 struct cfi_private *cfi = map->fldrv_priv;
1799 unsigned long timeo = jiffies + HZ;
1800 /*
1801 * Timeout is calculated according to CFI data, if available.
1802 * See more comments in cfi_cmdset_0002().
1803 */
1804 unsigned long uWriteTimeout =
1805 usecs_to_jiffies(chip->buffer_write_time_max);
1806 int ret = -EIO;
1807 unsigned long cmd_adr;
1808 int z, words;
1809 map_word datum;
1810
1811 adr += chip->start;
1812 cmd_adr = adr;
1813
1814 mutex_lock(&chip->mutex);
1815 ret = get_chip(map, chip, adr, FL_WRITING);
1816 if (ret) {
1817 mutex_unlock(&chip->mutex);
1818 return ret;
1819 }
1820
1821 datum = map_word_load(map, buf);
1822
1823 pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1824 __func__, adr, datum.x[0]);
1825
1826 XIP_INVAL_CACHED_RANGE(map, adr, len);
1827 ENABLE_VPP(map);
1828 xip_disable(map, chip, cmd_adr);
1829
1830 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1831 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1832
1833 /* Write Buffer Load */
1834 map_write(map, CMD(0x25), cmd_adr);
1835
1836 chip->state = FL_WRITING_TO_BUFFER;
1837
1838 /* Write length of data to come */
1839 words = len / map_bankwidth(map);
1840 map_write(map, CMD(words - 1), cmd_adr);
1841 /* Write data */
1842 z = 0;
1843 while(z < words * map_bankwidth(map)) {
1844 datum = map_word_load(map, buf);
1845 map_write(map, datum, adr + z);
1846
1847 z += map_bankwidth(map);
1848 buf += map_bankwidth(map);
1849 }
1850 z -= map_bankwidth(map);
1851
1852 adr += z;
1853
1854 /* Write Buffer Program Confirm: GO GO GO */
1855 map_write(map, CMD(0x29), cmd_adr);
1856 chip->state = FL_WRITING;
1857
1858 INVALIDATE_CACHE_UDELAY(map, chip,
1859 adr, map_bankwidth(map),
1860 chip->word_write_time);
1861
1862 timeo = jiffies + uWriteTimeout;
1863
1864 for (;;) {
1865 if (chip->state != FL_WRITING) {
1866 /* Someone's suspended the write. Sleep */
1867 DECLARE_WAITQUEUE(wait, current);
1868
1869 set_current_state(TASK_UNINTERRUPTIBLE);
1870 add_wait_queue(&chip->wq, &wait);
1871 mutex_unlock(&chip->mutex);
1872 schedule();
1873 remove_wait_queue(&chip->wq, &wait);
1874 timeo = jiffies + (HZ / 2); /* FIXME */
1875 mutex_lock(&chip->mutex);
1876 continue;
1877 }
1878
1879 if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1880 break;
1881
1882 if (chip_good(map, adr, datum)) {
1883 xip_enable(map, chip, adr);
1884 goto op_done;
1885 }
1886
1887 /* Latency issues. Drop the lock, wait a while and retry */
1888 UDELAY(map, chip, adr, 1);
1889 }
1890
1891 /*
1892 * Recovery from write-buffer programming failures requires
1893 * the write-to-buffer-reset sequence. Since the last part
1894 * of the sequence also works as a normal reset, we can run
1895 * the same commands regardless of why we are here.
1896 * See e.g.
1897 * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf
1898 */
1899 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1900 cfi->device_type, NULL);
1901 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1902 cfi->device_type, NULL);
1903 cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi,
1904 cfi->device_type, NULL);
1905 xip_enable(map, chip, adr);
1906 /* FIXME - should have reset delay before continuing */
1907
1908 printk(KERN_WARNING "MTD %s(): software timeout, address:0x%.8lx.\n",
1909 __func__, adr);
1910
1911 ret = -EIO;
1912 op_done:
1913 chip->state = FL_READY;
1914 DISABLE_VPP(map);
1915 put_chip(map, chip, adr);
1916 mutex_unlock(&chip->mutex);
1917
1918 return ret;
1919 }
1920
1921
1922 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1923 size_t *retlen, const u_char *buf)
1924 {
1925 struct map_info *map = mtd->priv;
1926 struct cfi_private *cfi = map->fldrv_priv;
1927 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1928 int ret = 0;
1929 int chipnum;
1930 unsigned long ofs;
1931
1932 chipnum = to >> cfi->chipshift;
1933 ofs = to - (chipnum << cfi->chipshift);
1934
1935 /* If it's not bus-aligned, do the first word write */
1936 if (ofs & (map_bankwidth(map)-1)) {
1937 size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1938 if (local_len > len)
1939 local_len = len;
1940 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1941 local_len, retlen, buf);
1942 if (ret)
1943 return ret;
1944 ofs += local_len;
1945 buf += local_len;
1946 len -= local_len;
1947
1948 if (ofs >> cfi->chipshift) {
1949 chipnum ++;
1950 ofs = 0;
1951 if (chipnum == cfi->numchips)
1952 return 0;
1953 }
1954 }
1955
1956 /* Write buffer is worth it only if more than one word to write... */
1957 while (len >= map_bankwidth(map) * 2) {
1958 /* We must not cross write block boundaries */
1959 int size = wbufsize - (ofs & (wbufsize-1));
1960
1961 if (size > len)
1962 size = len;
1963 if (size % map_bankwidth(map))
1964 size -= size % map_bankwidth(map);
1965
1966 ret = do_write_buffer(map, &cfi->chips[chipnum],
1967 ofs, buf, size);
1968 if (ret)
1969 return ret;
1970
1971 ofs += size;
1972 buf += size;
1973 (*retlen) += size;
1974 len -= size;
1975
1976 if (ofs >> cfi->chipshift) {
1977 chipnum ++;
1978 ofs = 0;
1979 if (chipnum == cfi->numchips)
1980 return 0;
1981 }
1982 }
1983
1984 if (len) {
1985 size_t retlen_dregs = 0;
1986
1987 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1988 len, &retlen_dregs, buf);
1989
1990 *retlen += retlen_dregs;
1991 return ret;
1992 }
1993
1994 return 0;
1995 }
1996
1997 /*
1998 * Wait for the flash chip to become ready to write data
1999 *
2000 * This is only called during the panic_write() path. When panic_write()
2001 * is called, the kernel is in the process of a panic, and will soon be
2002 * dead. Therefore we don't take any locks, and attempt to get access
2003 * to the chip as soon as possible.
2004 */
2005 static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
2006 unsigned long adr)
2007 {
2008 struct cfi_private *cfi = map->fldrv_priv;
2009 int retries = 10;
2010 int i;
2011
2012 /*
2013 * If the driver thinks the chip is idle, and no toggle bits
2014 * are changing, then the chip is actually idle for sure.
2015 */
2016 if (chip->state == FL_READY && chip_ready(map, adr))
2017 return 0;
2018
2019 /*
2020 * Try several times to reset the chip and then wait for it
2021 * to become idle. The upper limit of a few milliseconds of
2022 * delay isn't a big problem: the kernel is dying anyway. It
2023 * is more important to save the messages.
2024 */
2025 while (retries > 0) {
2026 const unsigned long timeo = (HZ / 1000) + 1;
2027
2028 /* send the reset command */
2029 map_write(map, CMD(0xF0), chip->start);
2030
2031 /* wait for the chip to become ready */
2032 for (i = 0; i < jiffies_to_usecs(timeo); i++) {
2033 if (chip_ready(map, adr))
2034 return 0;
2035
2036 udelay(1);
2037 }
2038
2039 retries--;
2040 }
2041
2042 /* the chip never became ready */
2043 return -EBUSY;
2044 }
2045
2046 /*
2047 * Write out one word of data to a single flash chip during a kernel panic
2048 *
2049 * This is only called during the panic_write() path. When panic_write()
2050 * is called, the kernel is in the process of a panic, and will soon be
2051 * dead. Therefore we don't take any locks, and attempt to get access
2052 * to the chip as soon as possible.
2053 *
2054 * The implementation of this routine is intentionally similar to
2055 * do_write_oneword(), in order to ease code maintenance.
2056 */
2057 static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
2058 unsigned long adr, map_word datum)
2059 {
2060 const unsigned long uWriteTimeout = (HZ / 1000) + 1;
2061 struct cfi_private *cfi = map->fldrv_priv;
2062 int retry_cnt = 0;
2063 map_word oldd;
2064 int ret = 0;
2065 int i;
2066
2067 adr += chip->start;
2068
2069 ret = cfi_amdstd_panic_wait(map, chip, adr);
2070 if (ret)
2071 return ret;
2072
2073 pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
2074 __func__, adr, datum.x[0]);
2075
2076 /*
2077 * Check for a NOP for the case when the datum to write is already
2078 * present - it saves time and works around buggy chips that corrupt
2079 * data at other locations when 0xff is written to a location that
2080 * already contains 0xff.
2081 */
2082 oldd = map_read(map, adr);
2083 if (map_word_equal(map, oldd, datum)) {
2084 pr_debug("MTD %s(): NOP\n", __func__);
2085 goto op_done;
2086 }
2087
2088 ENABLE_VPP(map);
2089
2090 retry:
2091 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2092 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2093 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2094 map_write(map, datum, adr);
2095
2096 for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
2097 if (chip_ready(map, adr))
2098 break;
2099
2100 udelay(1);
2101 }
2102
2103 if (!chip_good(map, adr, datum)) {
2104 /* reset on all failures. */
2105 map_write(map, CMD(0xF0), chip->start);
2106 /* FIXME - should have reset delay before continuing */
2107
2108 if (++retry_cnt <= MAX_RETRIES)
2109 goto retry;
2110
2111 ret = -EIO;
2112 }
2113
2114 op_done:
2115 DISABLE_VPP(map);
2116 return ret;
2117 }
2118
2119 /*
2120 * Write out some data during a kernel panic
2121 *
2122 * This is used by the mtdoops driver to save the dying messages from a
2123 * kernel which has panic'd.
2124 *
2125 * This routine ignores all of the locking used throughout the rest of the
2126 * driver, in order to ensure that the data gets written out no matter what
2127 * state this driver (and the flash chip itself) was in when the kernel crashed.
2128 *
2129 * The implementation of this routine is intentionally similar to
2130 * cfi_amdstd_write_words(), in order to ease code maintenance.
2131 */
2132 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
2133 size_t *retlen, const u_char *buf)
2134 {
2135 struct map_info *map = mtd->priv;
2136 struct cfi_private *cfi = map->fldrv_priv;
2137 unsigned long ofs, chipstart;
2138 int ret = 0;
2139 int chipnum;
2140
2141 chipnum = to >> cfi->chipshift;
2142 ofs = to - (chipnum << cfi->chipshift);
2143 chipstart = cfi->chips[chipnum].start;
2144
2145 /* If it's not bus aligned, do the first byte write */
2146 if (ofs & (map_bankwidth(map) - 1)) {
2147 unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
2148 int i = ofs - bus_ofs;
2149 int n = 0;
2150 map_word tmp_buf;
2151
2152 ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
2153 if (ret)
2154 return ret;
2155
2156 /* Load 'tmp_buf' with old contents of flash */
2157 tmp_buf = map_read(map, bus_ofs + chipstart);
2158
2159 /* Number of bytes to copy from buffer */
2160 n = min_t(int, len, map_bankwidth(map) - i);
2161
2162 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
2163
2164 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2165 bus_ofs, tmp_buf);
2166 if (ret)
2167 return ret;
2168
2169 ofs += n;
2170 buf += n;
2171 (*retlen) += n;
2172 len -= n;
2173
2174 if (ofs >> cfi->chipshift) {
2175 chipnum++;
2176 ofs = 0;
2177 if (chipnum == cfi->numchips)
2178 return 0;
2179 }
2180 }
2181
2182 /* We are now aligned, write as much as possible */
2183 while (len >= map_bankwidth(map)) {
2184 map_word datum;
2185
2186 datum = map_word_load(map, buf);
2187
2188 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2189 ofs, datum);
2190 if (ret)
2191 return ret;
2192
2193 ofs += map_bankwidth(map);
2194 buf += map_bankwidth(map);
2195 (*retlen) += map_bankwidth(map);
2196 len -= map_bankwidth(map);
2197
2198 if (ofs >> cfi->chipshift) {
2199 chipnum++;
2200 ofs = 0;
2201 if (chipnum == cfi->numchips)
2202 return 0;
2203
2204 chipstart = cfi->chips[chipnum].start;
2205 }
2206 }
2207
2208 /* Write the trailing bytes if any */
2209 if (len & (map_bankwidth(map) - 1)) {
2210 map_word tmp_buf;
2211
2212 ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
2213 if (ret)
2214 return ret;
2215
2216 tmp_buf = map_read(map, ofs + chipstart);
2217
2218 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
2219
2220 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2221 ofs, tmp_buf);
2222 if (ret)
2223 return ret;
2224
2225 (*retlen) += len;
2226 }
2227
2228 return 0;
2229 }
2230
2231
2232 /*
2233 * Handle devices with one erase region, that only implement
2234 * the chip erase command.
2235 */
2236 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
2237 {
2238 struct cfi_private *cfi = map->fldrv_priv;
2239 unsigned long timeo = jiffies + HZ;
2240 unsigned long int adr;
2241 DECLARE_WAITQUEUE(wait, current);
2242 int ret = 0;
2243 int retry_cnt = 0;
2244
2245 adr = cfi->addr_unlock1;
2246
2247 mutex_lock(&chip->mutex);
2248 ret = get_chip(map, chip, adr, FL_WRITING);
2249 if (ret) {
2250 mutex_unlock(&chip->mutex);
2251 return ret;
2252 }
2253
2254 pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2255 __func__, chip->start);
2256
2257 XIP_INVAL_CACHED_RANGE(map, adr, map->size);
2258 ENABLE_VPP(map);
2259 xip_disable(map, chip, adr);
2260
2261 retry:
2262 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2263 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2264 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2265 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2266 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2267 cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2268
2269 chip->state = FL_ERASING;
2270 chip->erase_suspended = 0;
2271 chip->in_progress_block_addr = adr;
2272 chip->in_progress_block_mask = ~(map->size - 1);
2273
2274 INVALIDATE_CACHE_UDELAY(map, chip,
2275 adr, map->size,
2276 chip->erase_time*500);
2277
2278 timeo = jiffies + (HZ*20);
2279
2280 for (;;) {
2281 if (chip->state != FL_ERASING) {
2282 /* Someone's suspended the erase. Sleep */
2283 set_current_state(TASK_UNINTERRUPTIBLE);
2284 add_wait_queue(&chip->wq, &wait);
2285 mutex_unlock(&chip->mutex);
2286 schedule();
2287 remove_wait_queue(&chip->wq, &wait);
2288 mutex_lock(&chip->mutex);
2289 continue;
2290 }
2291 if (chip->erase_suspended) {
2292 /* This erase was suspended and resumed.
2293 Adjust the timeout */
2294 timeo = jiffies + (HZ*20); /* FIXME */
2295 chip->erase_suspended = 0;
2296 }
2297
2298 if (chip_good(map, adr, map_word_ff(map)))
2299 break;
2300
2301 if (time_after(jiffies, timeo)) {
2302 printk(KERN_WARNING "MTD %s(): software timeout\n",
2303 __func__);
2304 ret = -EIO;
2305 break;
2306 }
2307
2308 /* Latency issues. Drop the lock, wait a while and retry */
2309 UDELAY(map, chip, adr, 1000000/HZ);
2310 }
2311 /* Did we succeed? */
2312 if (ret) {
2313 /* reset on all failures. */
2314 map_write(map, CMD(0xF0), chip->start);
2315 /* FIXME - should have reset delay before continuing */
2316
2317 if (++retry_cnt <= MAX_RETRIES) {
2318 ret = 0;
2319 goto retry;
2320 }
2321 }
2322
2323 chip->state = FL_READY;
2324 xip_enable(map, chip, adr);
2325 DISABLE_VPP(map);
2326 put_chip(map, chip, adr);
2327 mutex_unlock(&chip->mutex);
2328
2329 return ret;
2330 }
2331
2332
2333 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
2334 {
2335 struct cfi_private *cfi = map->fldrv_priv;
2336 unsigned long timeo = jiffies + HZ;
2337 DECLARE_WAITQUEUE(wait, current);
2338 int ret = 0;
2339 int retry_cnt = 0;
2340
2341 adr += chip->start;
2342
2343 mutex_lock(&chip->mutex);
2344 ret = get_chip(map, chip, adr, FL_ERASING);
2345 if (ret) {
2346 mutex_unlock(&chip->mutex);
2347 return ret;
2348 }
2349
2350 pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2351 __func__, adr);
2352
2353 XIP_INVAL_CACHED_RANGE(map, adr, len);
2354 ENABLE_VPP(map);
2355 xip_disable(map, chip, adr);
2356
2357 retry:
2358 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2359 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2360 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2361 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2362 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2363 map_write(map, cfi->sector_erase_cmd, adr);
2364
2365 chip->state = FL_ERASING;
2366 chip->erase_suspended = 0;
2367 chip->in_progress_block_addr = adr;
2368 chip->in_progress_block_mask = ~(len - 1);
2369
2370 INVALIDATE_CACHE_UDELAY(map, chip,
2371 adr, len,
2372 chip->erase_time*500);
2373
2374 timeo = jiffies + (HZ*20);
2375
2376 for (;;) {
2377 if (chip->state != FL_ERASING) {
2378 /* Someone's suspended the erase. Sleep */
2379 set_current_state(TASK_UNINTERRUPTIBLE);
2380 add_wait_queue(&chip->wq, &wait);
2381 mutex_unlock(&chip->mutex);
2382 schedule();
2383 remove_wait_queue(&chip->wq, &wait);
2384 mutex_lock(&chip->mutex);
2385 continue;
2386 }
2387 if (chip->erase_suspended) {
2388 /* This erase was suspended and resumed.
2389 Adjust the timeout */
2390 timeo = jiffies + (HZ*20); /* FIXME */
2391 chip->erase_suspended = 0;
2392 }
2393
2394 if (chip_good(map, adr, map_word_ff(map)))
2395 break;
2396
2397 if (time_after(jiffies, timeo)) {
2398 printk(KERN_WARNING "MTD %s(): software timeout\n",
2399 __func__);
2400 ret = -EIO;
2401 break;
2402 }
2403
2404 /* Latency issues. Drop the lock, wait a while and retry */
2405 UDELAY(map, chip, adr, 1000000/HZ);
2406 }
2407 /* Did we succeed? */
2408 if (ret) {
2409 /* reset on all failures. */
2410 map_write(map, CMD(0xF0), chip->start);
2411 /* FIXME - should have reset delay before continuing */
2412
2413 if (++retry_cnt <= MAX_RETRIES) {
2414 ret = 0;
2415 goto retry;
2416 }
2417 }
2418
2419 chip->state = FL_READY;
2420 xip_enable(map, chip, adr);
2421 DISABLE_VPP(map);
2422 put_chip(map, chip, adr);
2423 mutex_unlock(&chip->mutex);
2424 return ret;
2425 }
2426
2427
2428 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
2429 {
2430 return cfi_varsize_frob(mtd, do_erase_oneblock, instr->addr,
2431 instr->len, NULL);
2432 }
2433
2434
2435 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
2436 {
2437 struct map_info *map = mtd->priv;
2438 struct cfi_private *cfi = map->fldrv_priv;
2439
2440 if (instr->addr != 0)
2441 return -EINVAL;
2442
2443 if (instr->len != mtd->size)
2444 return -EINVAL;
2445
2446 return do_erase_chip(map, &cfi->chips[0]);
2447 }
2448
2449 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
2450 unsigned long adr, int len, void *thunk)
2451 {
2452 struct cfi_private *cfi = map->fldrv_priv;
2453 int ret;
2454
2455 mutex_lock(&chip->mutex);
2456 ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2457 if (ret)
2458 goto out_unlock;
2459 chip->state = FL_LOCKING;
2460
2461 pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2462
2463 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2464 cfi->device_type, NULL);
2465 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2466 cfi->device_type, NULL);
2467 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
2468 cfi->device_type, NULL);
2469 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2470 cfi->device_type, NULL);
2471 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2472 cfi->device_type, NULL);
2473 map_write(map, CMD(0x40), chip->start + adr);
2474
2475 chip->state = FL_READY;
2476 put_chip(map, chip, adr + chip->start);
2477 ret = 0;
2478
2479 out_unlock:
2480 mutex_unlock(&chip->mutex);
2481 return ret;
2482 }
2483
2484 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
2485 unsigned long adr, int len, void *thunk)
2486 {
2487 struct cfi_private *cfi = map->fldrv_priv;
2488 int ret;
2489
2490 mutex_lock(&chip->mutex);
2491 ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
2492 if (ret)
2493 goto out_unlock;
2494 chip->state = FL_UNLOCKING;
2495
2496 pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2497
2498 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2499 cfi->device_type, NULL);
2500 map_write(map, CMD(0x70), adr);
2501
2502 chip->state = FL_READY;
2503 put_chip(map, chip, adr + chip->start);
2504 ret = 0;
2505
2506 out_unlock:
2507 mutex_unlock(&chip->mutex);
2508 return ret;
2509 }
2510
2511 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2512 {
2513 return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
2514 }
2515
2516 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2517 {
2518 return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
2519 }
2520
2521 /*
2522 * Advanced Sector Protection - PPB (Persistent Protection Bit) locking
2523 */
2524
2525 struct ppb_lock {
2526 struct flchip *chip;
2527 unsigned long adr;
2528 int locked;
2529 };
2530
2531 #define MAX_SECTORS 512
2532
2533 #define DO_XXLOCK_ONEBLOCK_LOCK ((void *)1)
2534 #define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *)2)
2535 #define DO_XXLOCK_ONEBLOCK_GETLOCK ((void *)3)
2536
2537 static int __maybe_unused do_ppb_xxlock(struct map_info *map,
2538 struct flchip *chip,
2539 unsigned long adr, int len, void *thunk)
2540 {
2541 struct cfi_private *cfi = map->fldrv_priv;
2542 unsigned long timeo;
2543 int ret;
2544
2545 adr += chip->start;
2546 mutex_lock(&chip->mutex);
2547 ret = get_chip(map, chip, adr, FL_LOCKING);
2548 if (ret) {
2549 mutex_unlock(&chip->mutex);
2550 return ret;
2551 }
2552
2553 pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len);
2554
2555 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2556 cfi->device_type, NULL);
2557 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2558 cfi->device_type, NULL);
2559 /* PPB entry command */
2560 cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi,
2561 cfi->device_type, NULL);
2562
2563 if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2564 chip->state = FL_LOCKING;
2565 map_write(map, CMD(0xA0), adr);
2566 map_write(map, CMD(0x00), adr);
2567 } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2568 /*
2569 * Unlocking of one specific sector is not supported, so we
2570 * have to unlock all sectors of this device instead
2571 */
2572 chip->state = FL_UNLOCKING;
2573 map_write(map, CMD(0x80), chip->start);
2574 map_write(map, CMD(0x30), chip->start);
2575 } else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) {
2576 chip->state = FL_JEDEC_QUERY;
2577 /* Return locked status: 0->locked, 1->unlocked */
2578 ret = !cfi_read_query(map, adr);
2579 } else
2580 BUG();
2581
2582 /*
2583 * Wait for some time as unlocking of all sectors takes quite long
2584 */
2585 timeo = jiffies + msecs_to_jiffies(2000); /* 2s max (un)locking */
2586 for (;;) {
2587 if (chip_ready(map, adr))
2588 break;
2589
2590 if (time_after(jiffies, timeo)) {
2591 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
2592 ret = -EIO;
2593 break;
2594 }
2595
2596 UDELAY(map, chip, adr, 1);
2597 }
2598
2599 /* Exit BC commands */
2600 map_write(map, CMD(0x90), chip->start);
2601 map_write(map, CMD(0x00), chip->start);
2602
2603 chip->state = FL_READY;
2604 put_chip(map, chip, adr);
2605 mutex_unlock(&chip->mutex);
2606
2607 return ret;
2608 }
2609
2610 static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs,
2611 uint64_t len)
2612 {
2613 return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2614 DO_XXLOCK_ONEBLOCK_LOCK);
2615 }
2616
2617 static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs,
2618 uint64_t len)
2619 {
2620 struct mtd_erase_region_info *regions = mtd->eraseregions;
2621 struct map_info *map = mtd->priv;
2622 struct cfi_private *cfi = map->fldrv_priv;
2623 struct ppb_lock *sect;
2624 unsigned long adr;
2625 loff_t offset;
2626 uint64_t length;
2627 int chipnum;
2628 int i;
2629 int sectors;
2630 int ret;
2631
2632 /*
2633 * PPB unlocking always unlocks all sectors of the flash chip.
2634 * We need to re-lock all previously locked sectors. So lets
2635 * first check the locking status of all sectors and save
2636 * it for future use.
2637 */
2638 sect = kcalloc(MAX_SECTORS, sizeof(struct ppb_lock), GFP_KERNEL);
2639 if (!sect)
2640 return -ENOMEM;
2641
2642 /*
2643 * This code to walk all sectors is a slightly modified version
2644 * of the cfi_varsize_frob() code.
2645 */
2646 i = 0;
2647 chipnum = 0;
2648 adr = 0;
2649 sectors = 0;
2650 offset = 0;
2651 length = mtd->size;
2652
2653 while (length) {
2654 int size = regions[i].erasesize;
2655
2656 /*
2657 * Only test sectors that shall not be unlocked. The other
2658 * sectors shall be unlocked, so lets keep their locking
2659 * status at "unlocked" (locked=0) for the final re-locking.
2660 */
2661 if ((offset < ofs) || (offset >= (ofs + len))) {
2662 sect[sectors].chip = &cfi->chips[chipnum];
2663 sect[sectors].adr = adr;
2664 sect[sectors].locked = do_ppb_xxlock(
2665 map, &cfi->chips[chipnum], adr, 0,
2666 DO_XXLOCK_ONEBLOCK_GETLOCK);
2667 }
2668
2669 adr += size;
2670 offset += size;
2671 length -= size;
2672
2673 if (offset == regions[i].offset + size * regions[i].numblocks)
2674 i++;
2675
2676 if (adr >> cfi->chipshift) {
2677 if (offset >= (ofs + len))
2678 break;
2679 adr = 0;
2680 chipnum++;
2681
2682 if (chipnum >= cfi->numchips)
2683 break;
2684 }
2685
2686 sectors++;
2687 if (sectors >= MAX_SECTORS) {
2688 printk(KERN_ERR "Only %d sectors for PPB locking supported!\n",
2689 MAX_SECTORS);
2690 kfree(sect);
2691 return -EINVAL;
2692 }
2693 }
2694
2695 /* Now unlock the whole chip */
2696 ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2697 DO_XXLOCK_ONEBLOCK_UNLOCK);
2698 if (ret) {
2699 kfree(sect);
2700 return ret;
2701 }
2702
2703 /*
2704 * PPB unlocking always unlocks all sectors of the flash chip.
2705 * We need to re-lock all previously locked sectors.
2706 */
2707 for (i = 0; i < sectors; i++) {
2708 if (sect[i].locked)
2709 do_ppb_xxlock(map, sect[i].chip, sect[i].adr, 0,
2710 DO_XXLOCK_ONEBLOCK_LOCK);
2711 }
2712
2713 kfree(sect);
2714 return ret;
2715 }
2716
2717 static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs,
2718 uint64_t len)
2719 {
2720 return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2721 DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0;
2722 }
2723
2724 static void cfi_amdstd_sync (struct mtd_info *mtd)
2725 {
2726 struct map_info *map = mtd->priv;
2727 struct cfi_private *cfi = map->fldrv_priv;
2728 int i;
2729 struct flchip *chip;
2730 int ret = 0;
2731 DECLARE_WAITQUEUE(wait, current);
2732
2733 for (i=0; !ret && i<cfi->numchips; i++) {
2734 chip = &cfi->chips[i];
2735
2736 retry:
2737 mutex_lock(&chip->mutex);
2738
2739 switch(chip->state) {
2740 case FL_READY:
2741 case FL_STATUS:
2742 case FL_CFI_QUERY:
2743 case FL_JEDEC_QUERY:
2744 chip->oldstate = chip->state;
2745 chip->state = FL_SYNCING;
2746 /* No need to wake_up() on this state change -
2747 * as the whole point is that nobody can do anything
2748 * with the chip now anyway.
2749 */
2750 case FL_SYNCING:
2751 mutex_unlock(&chip->mutex);
2752 break;
2753
2754 default:
2755 /* Not an idle state */
2756 set_current_state(TASK_UNINTERRUPTIBLE);
2757 add_wait_queue(&chip->wq, &wait);
2758
2759 mutex_unlock(&chip->mutex);
2760
2761 schedule();
2762
2763 remove_wait_queue(&chip->wq, &wait);
2764
2765 goto retry;
2766 }
2767 }
2768
2769 /* Unlock the chips again */
2770
2771 for (i--; i >=0; i--) {
2772 chip = &cfi->chips[i];
2773
2774 mutex_lock(&chip->mutex);
2775
2776 if (chip->state == FL_SYNCING) {
2777 chip->state = chip->oldstate;
2778 wake_up(&chip->wq);
2779 }
2780 mutex_unlock(&chip->mutex);
2781 }
2782 }
2783
2784
2785 static int cfi_amdstd_suspend(struct mtd_info *mtd)
2786 {
2787 struct map_info *map = mtd->priv;
2788 struct cfi_private *cfi = map->fldrv_priv;
2789 int i;
2790 struct flchip *chip;
2791 int ret = 0;
2792
2793 for (i=0; !ret && i<cfi->numchips; i++) {
2794 chip = &cfi->chips[i];
2795
2796 mutex_lock(&chip->mutex);
2797
2798 switch(chip->state) {
2799 case FL_READY:
2800 case FL_STATUS:
2801 case FL_CFI_QUERY:
2802 case FL_JEDEC_QUERY:
2803 chip->oldstate = chip->state;
2804 chip->state = FL_PM_SUSPENDED;
2805 /* No need to wake_up() on this state change -
2806 * as the whole point is that nobody can do anything
2807 * with the chip now anyway.
2808 */
2809 case FL_PM_SUSPENDED:
2810 break;
2811
2812 default:
2813 ret = -EAGAIN;
2814 break;
2815 }
2816 mutex_unlock(&chip->mutex);
2817 }
2818
2819 /* Unlock the chips again */
2820
2821 if (ret) {
2822 for (i--; i >=0; i--) {
2823 chip = &cfi->chips[i];
2824
2825 mutex_lock(&chip->mutex);
2826
2827 if (chip->state == FL_PM_SUSPENDED) {
2828 chip->state = chip->oldstate;
2829 wake_up(&chip->wq);
2830 }
2831 mutex_unlock(&chip->mutex);
2832 }
2833 }
2834
2835 return ret;
2836 }
2837
2838
2839 static void cfi_amdstd_resume(struct mtd_info *mtd)
2840 {
2841 struct map_info *map = mtd->priv;
2842 struct cfi_private *cfi = map->fldrv_priv;
2843 int i;
2844 struct flchip *chip;
2845
2846 for (i=0; i<cfi->numchips; i++) {
2847
2848 chip = &cfi->chips[i];
2849
2850 mutex_lock(&chip->mutex);
2851
2852 if (chip->state == FL_PM_SUSPENDED) {
2853 chip->state = FL_READY;
2854 map_write(map, CMD(0xF0), chip->start);
2855 wake_up(&chip->wq);
2856 }
2857 else
2858 printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
2859
2860 mutex_unlock(&chip->mutex);
2861 }
2862 }
2863
2864
2865 /*
2866 * Ensure that the flash device is put back into read array mode before
2867 * unloading the driver or rebooting. On some systems, rebooting while
2868 * the flash is in query/program/erase mode will prevent the CPU from
2869 * fetching the bootloader code, requiring a hard reset or power cycle.
2870 */
2871 static int cfi_amdstd_reset(struct mtd_info *mtd)
2872 {
2873 struct map_info *map = mtd->priv;
2874 struct cfi_private *cfi = map->fldrv_priv;
2875 int i, ret;
2876 struct flchip *chip;
2877
2878 for (i = 0; i < cfi->numchips; i++) {
2879
2880 chip = &cfi->chips[i];
2881
2882 mutex_lock(&chip->mutex);
2883
2884 ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2885 if (!ret) {
2886 map_write(map, CMD(0xF0), chip->start);
2887 chip->state = FL_SHUTDOWN;
2888 put_chip(map, chip, chip->start);
2889 }
2890
2891 mutex_unlock(&chip->mutex);
2892 }
2893
2894 return 0;
2895 }
2896
2897
2898 static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
2899 void *v)
2900 {
2901 struct mtd_info *mtd;
2902
2903 mtd = container_of(nb, struct mtd_info, reboot_notifier);
2904 cfi_amdstd_reset(mtd);
2905 return NOTIFY_DONE;
2906 }
2907
2908
2909 static void cfi_amdstd_destroy(struct mtd_info *mtd)
2910 {
2911 struct map_info *map = mtd->priv;
2912 struct cfi_private *cfi = map->fldrv_priv;
2913
2914 cfi_amdstd_reset(mtd);
2915 unregister_reboot_notifier(&mtd->reboot_notifier);
2916 kfree(cfi->cmdset_priv);
2917 kfree(cfi->cfiq);
2918 kfree(cfi);
2919 kfree(mtd->eraseregions);
2920 }
2921
2922 MODULE_LICENSE("GPL");
2923 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
2924 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
2925 MODULE_ALIAS("cfi_cmdset_0006");
2926 MODULE_ALIAS("cfi_cmdset_0701");