]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/net/can/slcan.c
slcan: not call free_netdev before rtnl_unlock in slcan_open
[thirdparty/kernel/stable.git] / drivers / net / can / slcan.c
1 /*
2 * slcan.c - serial line CAN interface driver (using tty line discipline)
3 *
4 * This file is derived from linux/drivers/net/slip/slip.c
5 *
6 * slip.c Authors : Laurence Culhane <loz@holmes.demon.co.uk>
7 * Fred N. van Kempen <waltje@uwalt.nl.mugnet.org>
8 * slcan.c Author : Oliver Hartkopp <socketcan@hartkopp.net>
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see http://www.gnu.org/licenses/gpl.html
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
29 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
31 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
33 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
34 * DAMAGE.
35 *
36 */
37
38 #include <linux/module.h>
39 #include <linux/moduleparam.h>
40
41 #include <linux/uaccess.h>
42 #include <linux/bitops.h>
43 #include <linux/string.h>
44 #include <linux/tty.h>
45 #include <linux/errno.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>
48 #include <linux/rtnetlink.h>
49 #include <linux/if_arp.h>
50 #include <linux/if_ether.h>
51 #include <linux/sched.h>
52 #include <linux/delay.h>
53 #include <linux/init.h>
54 #include <linux/kernel.h>
55 #include <linux/workqueue.h>
56 #include <linux/can.h>
57 #include <linux/can/skb.h>
58
59 static __initconst const char banner[] =
60 KERN_INFO "slcan: serial line CAN interface driver\n";
61
62 MODULE_ALIAS_LDISC(N_SLCAN);
63 MODULE_DESCRIPTION("serial line CAN interface");
64 MODULE_LICENSE("GPL");
65 MODULE_AUTHOR("Oliver Hartkopp <socketcan@hartkopp.net>");
66
67 #define SLCAN_MAGIC 0x53CA
68
69 static int maxdev = 10; /* MAX number of SLCAN channels;
70 This can be overridden with
71 insmod slcan.ko maxdev=nnn */
72 module_param(maxdev, int, 0);
73 MODULE_PARM_DESC(maxdev, "Maximum number of slcan interfaces");
74
75 /* maximum rx buffer len: extended CAN frame with timestamp */
76 #define SLC_MTU (sizeof("T1111222281122334455667788EA5F\r")+1)
77
78 #define SLC_CMD_LEN 1
79 #define SLC_SFF_ID_LEN 3
80 #define SLC_EFF_ID_LEN 8
81
82 struct slcan {
83 int magic;
84
85 /* Various fields. */
86 struct tty_struct *tty; /* ptr to TTY structure */
87 struct net_device *dev; /* easy for intr handling */
88 spinlock_t lock;
89 struct work_struct tx_work; /* Flushes transmit buffer */
90
91 /* These are pointers to the malloc()ed frame buffers. */
92 unsigned char rbuff[SLC_MTU]; /* receiver buffer */
93 int rcount; /* received chars counter */
94 unsigned char xbuff[SLC_MTU]; /* transmitter buffer */
95 unsigned char *xhead; /* pointer to next XMIT byte */
96 int xleft; /* bytes left in XMIT queue */
97
98 unsigned long flags; /* Flag values/ mode etc */
99 #define SLF_INUSE 0 /* Channel in use */
100 #define SLF_ERROR 1 /* Parity, etc. error */
101 };
102
103 static struct net_device **slcan_devs;
104
105 /************************************************************************
106 * SLCAN ENCAPSULATION FORMAT *
107 ************************************************************************/
108
109 /*
110 * A CAN frame has a can_id (11 bit standard frame format OR 29 bit extended
111 * frame format) a data length code (can_dlc) which can be from 0 to 8
112 * and up to <can_dlc> data bytes as payload.
113 * Additionally a CAN frame may become a remote transmission frame if the
114 * RTR-bit is set. This causes another ECU to send a CAN frame with the
115 * given can_id.
116 *
117 * The SLCAN ASCII representation of these different frame types is:
118 * <type> <id> <dlc> <data>*
119 *
120 * Extended frames (29 bit) are defined by capital characters in the type.
121 * RTR frames are defined as 'r' types - normal frames have 't' type:
122 * t => 11 bit data frame
123 * r => 11 bit RTR frame
124 * T => 29 bit data frame
125 * R => 29 bit RTR frame
126 *
127 * The <id> is 3 (standard) or 8 (extended) bytes in ASCII Hex (base64).
128 * The <dlc> is a one byte ASCII number ('0' - '8')
129 * The <data> section has at much ASCII Hex bytes as defined by the <dlc>
130 *
131 * Examples:
132 *
133 * t1230 : can_id 0x123, can_dlc 0, no data
134 * t4563112233 : can_id 0x456, can_dlc 3, data 0x11 0x22 0x33
135 * T12ABCDEF2AA55 : extended can_id 0x12ABCDEF, can_dlc 2, data 0xAA 0x55
136 * r1230 : can_id 0x123, can_dlc 0, no data, remote transmission request
137 *
138 */
139
140 /************************************************************************
141 * STANDARD SLCAN DECAPSULATION *
142 ************************************************************************/
143
144 /* Send one completely decapsulated can_frame to the network layer */
145 static void slc_bump(struct slcan *sl)
146 {
147 struct sk_buff *skb;
148 struct can_frame cf;
149 int i, tmp;
150 u32 tmpid;
151 char *cmd = sl->rbuff;
152
153 memset(&cf, 0, sizeof(cf));
154
155 switch (*cmd) {
156 case 'r':
157 cf.can_id = CAN_RTR_FLAG;
158 /* fallthrough */
159 case 't':
160 /* store dlc ASCII value and terminate SFF CAN ID string */
161 cf.can_dlc = sl->rbuff[SLC_CMD_LEN + SLC_SFF_ID_LEN];
162 sl->rbuff[SLC_CMD_LEN + SLC_SFF_ID_LEN] = 0;
163 /* point to payload data behind the dlc */
164 cmd += SLC_CMD_LEN + SLC_SFF_ID_LEN + 1;
165 break;
166 case 'R':
167 cf.can_id = CAN_RTR_FLAG;
168 /* fallthrough */
169 case 'T':
170 cf.can_id |= CAN_EFF_FLAG;
171 /* store dlc ASCII value and terminate EFF CAN ID string */
172 cf.can_dlc = sl->rbuff[SLC_CMD_LEN + SLC_EFF_ID_LEN];
173 sl->rbuff[SLC_CMD_LEN + SLC_EFF_ID_LEN] = 0;
174 /* point to payload data behind the dlc */
175 cmd += SLC_CMD_LEN + SLC_EFF_ID_LEN + 1;
176 break;
177 default:
178 return;
179 }
180
181 if (kstrtou32(sl->rbuff + SLC_CMD_LEN, 16, &tmpid))
182 return;
183
184 cf.can_id |= tmpid;
185
186 /* get can_dlc from sanitized ASCII value */
187 if (cf.can_dlc >= '0' && cf.can_dlc < '9')
188 cf.can_dlc -= '0';
189 else
190 return;
191
192 /* RTR frames may have a dlc > 0 but they never have any data bytes */
193 if (!(cf.can_id & CAN_RTR_FLAG)) {
194 for (i = 0; i < cf.can_dlc; i++) {
195 tmp = hex_to_bin(*cmd++);
196 if (tmp < 0)
197 return;
198 cf.data[i] = (tmp << 4);
199 tmp = hex_to_bin(*cmd++);
200 if (tmp < 0)
201 return;
202 cf.data[i] |= tmp;
203 }
204 }
205
206 skb = dev_alloc_skb(sizeof(struct can_frame) +
207 sizeof(struct can_skb_priv));
208 if (!skb)
209 return;
210
211 skb->dev = sl->dev;
212 skb->protocol = htons(ETH_P_CAN);
213 skb->pkt_type = PACKET_BROADCAST;
214 skb->ip_summed = CHECKSUM_UNNECESSARY;
215
216 can_skb_reserve(skb);
217 can_skb_prv(skb)->ifindex = sl->dev->ifindex;
218
219 memcpy(skb_put(skb, sizeof(struct can_frame)),
220 &cf, sizeof(struct can_frame));
221 netif_rx_ni(skb);
222
223 sl->dev->stats.rx_packets++;
224 sl->dev->stats.rx_bytes += cf.can_dlc;
225 }
226
227 /* parse tty input stream */
228 static void slcan_unesc(struct slcan *sl, unsigned char s)
229 {
230 if ((s == '\r') || (s == '\a')) { /* CR or BEL ends the pdu */
231 if (!test_and_clear_bit(SLF_ERROR, &sl->flags) &&
232 (sl->rcount > 4)) {
233 slc_bump(sl);
234 }
235 sl->rcount = 0;
236 } else {
237 if (!test_bit(SLF_ERROR, &sl->flags)) {
238 if (sl->rcount < SLC_MTU) {
239 sl->rbuff[sl->rcount++] = s;
240 return;
241 } else {
242 sl->dev->stats.rx_over_errors++;
243 set_bit(SLF_ERROR, &sl->flags);
244 }
245 }
246 }
247 }
248
249 /************************************************************************
250 * STANDARD SLCAN ENCAPSULATION *
251 ************************************************************************/
252
253 /* Encapsulate one can_frame and stuff into a TTY queue. */
254 static void slc_encaps(struct slcan *sl, struct can_frame *cf)
255 {
256 int actual, i;
257 unsigned char *pos;
258 unsigned char *endpos;
259 canid_t id = cf->can_id;
260
261 pos = sl->xbuff;
262
263 if (cf->can_id & CAN_RTR_FLAG)
264 *pos = 'R'; /* becomes 'r' in standard frame format (SFF) */
265 else
266 *pos = 'T'; /* becomes 't' in standard frame format (SSF) */
267
268 /* determine number of chars for the CAN-identifier */
269 if (cf->can_id & CAN_EFF_FLAG) {
270 id &= CAN_EFF_MASK;
271 endpos = pos + SLC_EFF_ID_LEN;
272 } else {
273 *pos |= 0x20; /* convert R/T to lower case for SFF */
274 id &= CAN_SFF_MASK;
275 endpos = pos + SLC_SFF_ID_LEN;
276 }
277
278 /* build 3 (SFF) or 8 (EFF) digit CAN identifier */
279 pos++;
280 while (endpos >= pos) {
281 *endpos-- = hex_asc_upper[id & 0xf];
282 id >>= 4;
283 }
284
285 pos += (cf->can_id & CAN_EFF_FLAG) ? SLC_EFF_ID_LEN : SLC_SFF_ID_LEN;
286
287 *pos++ = cf->can_dlc + '0';
288
289 /* RTR frames may have a dlc > 0 but they never have any data bytes */
290 if (!(cf->can_id & CAN_RTR_FLAG)) {
291 for (i = 0; i < cf->can_dlc; i++)
292 pos = hex_byte_pack_upper(pos, cf->data[i]);
293 }
294
295 *pos++ = '\r';
296
297 /* Order of next two lines is *very* important.
298 * When we are sending a little amount of data,
299 * the transfer may be completed inside the ops->write()
300 * routine, because it's running with interrupts enabled.
301 * In this case we *never* got WRITE_WAKEUP event,
302 * if we did not request it before write operation.
303 * 14 Oct 1994 Dmitry Gorodchanin.
304 */
305 set_bit(TTY_DO_WRITE_WAKEUP, &sl->tty->flags);
306 actual = sl->tty->ops->write(sl->tty, sl->xbuff, pos - sl->xbuff);
307 sl->xleft = (pos - sl->xbuff) - actual;
308 sl->xhead = sl->xbuff + actual;
309 sl->dev->stats.tx_bytes += cf->can_dlc;
310 }
311
312 /* Write out any remaining transmit buffer. Scheduled when tty is writable */
313 static void slcan_transmit(struct work_struct *work)
314 {
315 struct slcan *sl = container_of(work, struct slcan, tx_work);
316 int actual;
317
318 spin_lock_bh(&sl->lock);
319 /* First make sure we're connected. */
320 if (!sl->tty || sl->magic != SLCAN_MAGIC || !netif_running(sl->dev)) {
321 spin_unlock_bh(&sl->lock);
322 return;
323 }
324
325 if (sl->xleft <= 0) {
326 /* Now serial buffer is almost free & we can start
327 * transmission of another packet */
328 sl->dev->stats.tx_packets++;
329 clear_bit(TTY_DO_WRITE_WAKEUP, &sl->tty->flags);
330 spin_unlock_bh(&sl->lock);
331 netif_wake_queue(sl->dev);
332 return;
333 }
334
335 actual = sl->tty->ops->write(sl->tty, sl->xhead, sl->xleft);
336 sl->xleft -= actual;
337 sl->xhead += actual;
338 spin_unlock_bh(&sl->lock);
339 }
340
341 /*
342 * Called by the driver when there's room for more data.
343 * Schedule the transmit.
344 */
345 static void slcan_write_wakeup(struct tty_struct *tty)
346 {
347 struct slcan *sl;
348
349 rcu_read_lock();
350 sl = rcu_dereference(tty->disc_data);
351 if (!sl)
352 goto out;
353
354 schedule_work(&sl->tx_work);
355 out:
356 rcu_read_unlock();
357 }
358
359 /* Send a can_frame to a TTY queue. */
360 static netdev_tx_t slc_xmit(struct sk_buff *skb, struct net_device *dev)
361 {
362 struct slcan *sl = netdev_priv(dev);
363
364 if (skb->len != sizeof(struct can_frame))
365 goto out;
366
367 spin_lock(&sl->lock);
368 if (!netif_running(dev)) {
369 spin_unlock(&sl->lock);
370 printk(KERN_WARNING "%s: xmit: iface is down\n", dev->name);
371 goto out;
372 }
373 if (sl->tty == NULL) {
374 spin_unlock(&sl->lock);
375 goto out;
376 }
377
378 netif_stop_queue(sl->dev);
379 slc_encaps(sl, (struct can_frame *) skb->data); /* encaps & send */
380 spin_unlock(&sl->lock);
381
382 out:
383 kfree_skb(skb);
384 return NETDEV_TX_OK;
385 }
386
387
388 /******************************************
389 * Routines looking at netdevice side.
390 ******************************************/
391
392 /* Netdevice UP -> DOWN routine */
393 static int slc_close(struct net_device *dev)
394 {
395 struct slcan *sl = netdev_priv(dev);
396
397 spin_lock_bh(&sl->lock);
398 if (sl->tty) {
399 /* TTY discipline is running. */
400 clear_bit(TTY_DO_WRITE_WAKEUP, &sl->tty->flags);
401 }
402 netif_stop_queue(dev);
403 sl->rcount = 0;
404 sl->xleft = 0;
405 spin_unlock_bh(&sl->lock);
406
407 return 0;
408 }
409
410 /* Netdevice DOWN -> UP routine */
411 static int slc_open(struct net_device *dev)
412 {
413 struct slcan *sl = netdev_priv(dev);
414
415 if (sl->tty == NULL)
416 return -ENODEV;
417
418 sl->flags &= (1 << SLF_INUSE);
419 netif_start_queue(dev);
420 return 0;
421 }
422
423 /* Hook the destructor so we can free slcan devs at the right point in time */
424 static void slc_free_netdev(struct net_device *dev)
425 {
426 int i = dev->base_addr;
427 free_netdev(dev);
428 slcan_devs[i] = NULL;
429 }
430
431 static int slcan_change_mtu(struct net_device *dev, int new_mtu)
432 {
433 return -EINVAL;
434 }
435
436 static const struct net_device_ops slc_netdev_ops = {
437 .ndo_open = slc_open,
438 .ndo_stop = slc_close,
439 .ndo_start_xmit = slc_xmit,
440 .ndo_change_mtu = slcan_change_mtu,
441 };
442
443 static void slc_setup(struct net_device *dev)
444 {
445 dev->netdev_ops = &slc_netdev_ops;
446 dev->destructor = slc_free_netdev;
447
448 dev->hard_header_len = 0;
449 dev->addr_len = 0;
450 dev->tx_queue_len = 10;
451
452 dev->mtu = sizeof(struct can_frame);
453 dev->type = ARPHRD_CAN;
454
455 /* New-style flags. */
456 dev->flags = IFF_NOARP;
457 dev->features = NETIF_F_HW_CSUM;
458 }
459
460 /******************************************
461 Routines looking at TTY side.
462 ******************************************/
463
464 /*
465 * Handle the 'receiver data ready' interrupt.
466 * This function is called by the 'tty_io' module in the kernel when
467 * a block of SLCAN data has been received, which can now be decapsulated
468 * and sent on to some IP layer for further processing. This will not
469 * be re-entered while running but other ldisc functions may be called
470 * in parallel
471 */
472
473 static void slcan_receive_buf(struct tty_struct *tty,
474 const unsigned char *cp, char *fp, int count)
475 {
476 struct slcan *sl = (struct slcan *) tty->disc_data;
477
478 if (!sl || sl->magic != SLCAN_MAGIC || !netif_running(sl->dev))
479 return;
480
481 /* Read the characters out of the buffer */
482 while (count--) {
483 if (fp && *fp++) {
484 if (!test_and_set_bit(SLF_ERROR, &sl->flags))
485 sl->dev->stats.rx_errors++;
486 cp++;
487 continue;
488 }
489 slcan_unesc(sl, *cp++);
490 }
491 }
492
493 /************************************
494 * slcan_open helper routines.
495 ************************************/
496
497 /* Collect hanged up channels */
498 static void slc_sync(void)
499 {
500 int i;
501 struct net_device *dev;
502 struct slcan *sl;
503
504 for (i = 0; i < maxdev; i++) {
505 dev = slcan_devs[i];
506 if (dev == NULL)
507 break;
508
509 sl = netdev_priv(dev);
510 if (sl->tty)
511 continue;
512 if (dev->flags & IFF_UP)
513 dev_close(dev);
514 }
515 }
516
517 /* Find a free SLCAN channel, and link in this `tty' line. */
518 static struct slcan *slc_alloc(dev_t line)
519 {
520 int i;
521 char name[IFNAMSIZ];
522 struct net_device *dev = NULL;
523 struct slcan *sl;
524
525 for (i = 0; i < maxdev; i++) {
526 dev = slcan_devs[i];
527 if (dev == NULL)
528 break;
529
530 }
531
532 /* Sorry, too many, all slots in use */
533 if (i >= maxdev)
534 return NULL;
535
536 sprintf(name, "slcan%d", i);
537 dev = alloc_netdev(sizeof(*sl), name, slc_setup);
538 if (!dev)
539 return NULL;
540
541 dev->base_addr = i;
542 sl = netdev_priv(dev);
543
544 /* Initialize channel control data */
545 sl->magic = SLCAN_MAGIC;
546 sl->dev = dev;
547 spin_lock_init(&sl->lock);
548 INIT_WORK(&sl->tx_work, slcan_transmit);
549 slcan_devs[i] = dev;
550
551 return sl;
552 }
553
554 /*
555 * Open the high-level part of the SLCAN channel.
556 * This function is called by the TTY module when the
557 * SLCAN line discipline is called for. Because we are
558 * sure the tty line exists, we only have to link it to
559 * a free SLCAN channel...
560 *
561 * Called in process context serialized from other ldisc calls.
562 */
563
564 static int slcan_open(struct tty_struct *tty)
565 {
566 struct slcan *sl;
567 int err;
568
569 if (!capable(CAP_NET_ADMIN))
570 return -EPERM;
571
572 if (tty->ops->write == NULL)
573 return -EOPNOTSUPP;
574
575 /* RTnetlink lock is misused here to serialize concurrent
576 opens of slcan channels. There are better ways, but it is
577 the simplest one.
578 */
579 rtnl_lock();
580
581 /* Collect hanged up channels. */
582 slc_sync();
583
584 sl = tty->disc_data;
585
586 err = -EEXIST;
587 /* First make sure we're not already connected. */
588 if (sl && sl->magic == SLCAN_MAGIC)
589 goto err_exit;
590
591 /* OK. Find a free SLCAN channel to use. */
592 err = -ENFILE;
593 sl = slc_alloc(tty_devnum(tty));
594 if (sl == NULL)
595 goto err_exit;
596
597 sl->tty = tty;
598 tty->disc_data = sl;
599
600 if (!test_bit(SLF_INUSE, &sl->flags)) {
601 /* Perform the low-level SLCAN initialization. */
602 sl->rcount = 0;
603 sl->xleft = 0;
604
605 set_bit(SLF_INUSE, &sl->flags);
606
607 err = register_netdevice(sl->dev);
608 if (err)
609 goto err_free_chan;
610 }
611
612 /* Done. We have linked the TTY line to a channel. */
613 rtnl_unlock();
614 tty->receive_room = 65536; /* We don't flow control */
615
616 /* TTY layer expects 0 on success */
617 return 0;
618
619 err_free_chan:
620 sl->tty = NULL;
621 tty->disc_data = NULL;
622 clear_bit(SLF_INUSE, &sl->flags);
623 /* do not call free_netdev before rtnl_unlock */
624 rtnl_unlock();
625 slc_free_netdev(sl->dev);
626 return err;
627
628 err_exit:
629 rtnl_unlock();
630
631 /* Count references from TTY module */
632 return err;
633 }
634
635 /*
636 * Close down a SLCAN channel.
637 * This means flushing out any pending queues, and then returning. This
638 * call is serialized against other ldisc functions.
639 *
640 * We also use this method for a hangup event.
641 */
642
643 static void slcan_close(struct tty_struct *tty)
644 {
645 struct slcan *sl = (struct slcan *) tty->disc_data;
646
647 /* First make sure we're connected. */
648 if (!sl || sl->magic != SLCAN_MAGIC || sl->tty != tty)
649 return;
650
651 spin_lock_bh(&sl->lock);
652 rcu_assign_pointer(tty->disc_data, NULL);
653 sl->tty = NULL;
654 spin_unlock_bh(&sl->lock);
655
656 synchronize_rcu();
657 flush_work(&sl->tx_work);
658
659 /* Flush network side */
660 unregister_netdev(sl->dev);
661 /* This will complete via sl_free_netdev */
662 }
663
664 static int slcan_hangup(struct tty_struct *tty)
665 {
666 slcan_close(tty);
667 return 0;
668 }
669
670 /* Perform I/O control on an active SLCAN channel. */
671 static int slcan_ioctl(struct tty_struct *tty, struct file *file,
672 unsigned int cmd, unsigned long arg)
673 {
674 struct slcan *sl = (struct slcan *) tty->disc_data;
675 unsigned int tmp;
676
677 /* First make sure we're connected. */
678 if (!sl || sl->magic != SLCAN_MAGIC)
679 return -EINVAL;
680
681 switch (cmd) {
682 case SIOCGIFNAME:
683 tmp = strlen(sl->dev->name) + 1;
684 if (copy_to_user((void __user *)arg, sl->dev->name, tmp))
685 return -EFAULT;
686 return 0;
687
688 case SIOCSIFHWADDR:
689 return -EINVAL;
690
691 default:
692 return tty_mode_ioctl(tty, file, cmd, arg);
693 }
694 }
695
696 static struct tty_ldisc_ops slc_ldisc = {
697 .owner = THIS_MODULE,
698 .magic = TTY_LDISC_MAGIC,
699 .name = "slcan",
700 .open = slcan_open,
701 .close = slcan_close,
702 .hangup = slcan_hangup,
703 .ioctl = slcan_ioctl,
704 .receive_buf = slcan_receive_buf,
705 .write_wakeup = slcan_write_wakeup,
706 };
707
708 static int __init slcan_init(void)
709 {
710 int status;
711
712 if (maxdev < 4)
713 maxdev = 4; /* Sanity */
714
715 printk(banner);
716 printk(KERN_INFO "slcan: %d dynamic interface channels.\n", maxdev);
717
718 slcan_devs = kzalloc(sizeof(struct net_device *)*maxdev, GFP_KERNEL);
719 if (!slcan_devs)
720 return -ENOMEM;
721
722 /* Fill in our line protocol discipline, and register it */
723 status = tty_register_ldisc(N_SLCAN, &slc_ldisc);
724 if (status) {
725 printk(KERN_ERR "slcan: can't register line discipline\n");
726 kfree(slcan_devs);
727 }
728 return status;
729 }
730
731 static void __exit slcan_exit(void)
732 {
733 int i;
734 struct net_device *dev;
735 struct slcan *sl;
736 unsigned long timeout = jiffies + HZ;
737 int busy = 0;
738
739 if (slcan_devs == NULL)
740 return;
741
742 /* First of all: check for active disciplines and hangup them.
743 */
744 do {
745 if (busy)
746 msleep_interruptible(100);
747
748 busy = 0;
749 for (i = 0; i < maxdev; i++) {
750 dev = slcan_devs[i];
751 if (!dev)
752 continue;
753 sl = netdev_priv(dev);
754 spin_lock_bh(&sl->lock);
755 if (sl->tty) {
756 busy++;
757 tty_hangup(sl->tty);
758 }
759 spin_unlock_bh(&sl->lock);
760 }
761 } while (busy && time_before(jiffies, timeout));
762
763 /* FIXME: hangup is async so we should wait when doing this second
764 phase */
765
766 for (i = 0; i < maxdev; i++) {
767 dev = slcan_devs[i];
768 if (!dev)
769 continue;
770 slcan_devs[i] = NULL;
771
772 sl = netdev_priv(dev);
773 if (sl->tty) {
774 printk(KERN_ERR "%s: tty discipline still running\n",
775 dev->name);
776 /* Intentionally leak the control block. */
777 dev->destructor = NULL;
778 }
779
780 unregister_netdev(dev);
781 }
782
783 kfree(slcan_devs);
784 slcan_devs = NULL;
785
786 i = tty_unregister_ldisc(N_SLCAN);
787 if (i)
788 printk(KERN_ERR "slcan: can't unregister ldisc (err %d)\n", i);
789 }
790
791 module_init(slcan_init);
792 module_exit(slcan_exit);