]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/net/ethernet/broadcom/bnx2x/bnx2x_cmn.c
bnx2x: Prevent load reordering in tx completion processing
[thirdparty/kernel/stable.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_cmn.c
1 /* bnx2x_cmn.c: QLogic Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
10 *
11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12 * Written by: Eliezer Tamir
13 * Based on code from Michael Chan's bnx2 driver
14 * UDP CSUM errata workaround by Arik Gendelman
15 * Slowpath and fastpath rework by Vladislav Zolotarov
16 * Statistics and Link management by Yitchak Gertner
17 *
18 */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/interrupt.h>
25 #include <linux/ip.h>
26 #include <linux/crash_dump.h>
27 #include <net/tcp.h>
28 #include <net/ipv6.h>
29 #include <net/ip6_checksum.h>
30 #include <linux/prefetch.h>
31 #include "bnx2x_cmn.h"
32 #include "bnx2x_init.h"
33 #include "bnx2x_sp.h"
34
35 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp);
36 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp);
37 static int bnx2x_alloc_fp_mem(struct bnx2x *bp);
38 static int bnx2x_poll(struct napi_struct *napi, int budget);
39
40 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp)
41 {
42 int i;
43
44 /* Add NAPI objects */
45 for_each_rx_queue_cnic(bp, i) {
46 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
47 bnx2x_poll, NAPI_POLL_WEIGHT);
48 }
49 }
50
51 static void bnx2x_add_all_napi(struct bnx2x *bp)
52 {
53 int i;
54
55 /* Add NAPI objects */
56 for_each_eth_queue(bp, i) {
57 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
58 bnx2x_poll, NAPI_POLL_WEIGHT);
59 }
60 }
61
62 static int bnx2x_calc_num_queues(struct bnx2x *bp)
63 {
64 int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues();
65
66 /* Reduce memory usage in kdump environment by using only one queue */
67 if (is_kdump_kernel())
68 nq = 1;
69
70 nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp));
71 return nq;
72 }
73
74 /**
75 * bnx2x_move_fp - move content of the fastpath structure.
76 *
77 * @bp: driver handle
78 * @from: source FP index
79 * @to: destination FP index
80 *
81 * Makes sure the contents of the bp->fp[to].napi is kept
82 * intact. This is done by first copying the napi struct from
83 * the target to the source, and then mem copying the entire
84 * source onto the target. Update txdata pointers and related
85 * content.
86 */
87 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to)
88 {
89 struct bnx2x_fastpath *from_fp = &bp->fp[from];
90 struct bnx2x_fastpath *to_fp = &bp->fp[to];
91 struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from];
92 struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to];
93 struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from];
94 struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to];
95 int old_max_eth_txqs, new_max_eth_txqs;
96 int old_txdata_index = 0, new_txdata_index = 0;
97 struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info;
98
99 /* Copy the NAPI object as it has been already initialized */
100 from_fp->napi = to_fp->napi;
101
102 /* Move bnx2x_fastpath contents */
103 memcpy(to_fp, from_fp, sizeof(*to_fp));
104 to_fp->index = to;
105
106 /* Retain the tpa_info of the original `to' version as we don't want
107 * 2 FPs to contain the same tpa_info pointer.
108 */
109 to_fp->tpa_info = old_tpa_info;
110
111 /* move sp_objs contents as well, as their indices match fp ones */
112 memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs));
113
114 /* move fp_stats contents as well, as their indices match fp ones */
115 memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats));
116
117 /* Update txdata pointers in fp and move txdata content accordingly:
118 * Each fp consumes 'max_cos' txdata structures, so the index should be
119 * decremented by max_cos x delta.
120 */
121
122 old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos;
123 new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) *
124 (bp)->max_cos;
125 if (from == FCOE_IDX(bp)) {
126 old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
127 new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
128 }
129
130 memcpy(&bp->bnx2x_txq[new_txdata_index],
131 &bp->bnx2x_txq[old_txdata_index],
132 sizeof(struct bnx2x_fp_txdata));
133 to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index];
134 }
135
136 /**
137 * bnx2x_fill_fw_str - Fill buffer with FW version string.
138 *
139 * @bp: driver handle
140 * @buf: character buffer to fill with the fw name
141 * @buf_len: length of the above buffer
142 *
143 */
144 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len)
145 {
146 if (IS_PF(bp)) {
147 u8 phy_fw_ver[PHY_FW_VER_LEN];
148
149 phy_fw_ver[0] = '\0';
150 bnx2x_get_ext_phy_fw_version(&bp->link_params,
151 phy_fw_ver, PHY_FW_VER_LEN);
152 strlcpy(buf, bp->fw_ver, buf_len);
153 snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver),
154 "bc %d.%d.%d%s%s",
155 (bp->common.bc_ver & 0xff0000) >> 16,
156 (bp->common.bc_ver & 0xff00) >> 8,
157 (bp->common.bc_ver & 0xff),
158 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver);
159 } else {
160 bnx2x_vf_fill_fw_str(bp, buf, buf_len);
161 }
162 }
163
164 /**
165 * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
166 *
167 * @bp: driver handle
168 * @delta: number of eth queues which were not allocated
169 */
170 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta)
171 {
172 int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp);
173
174 /* Queue pointer cannot be re-set on an fp-basis, as moving pointer
175 * backward along the array could cause memory to be overridden
176 */
177 for (cos = 1; cos < bp->max_cos; cos++) {
178 for (i = 0; i < old_eth_num - delta; i++) {
179 struct bnx2x_fastpath *fp = &bp->fp[i];
180 int new_idx = cos * (old_eth_num - delta) + i;
181
182 memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos],
183 sizeof(struct bnx2x_fp_txdata));
184 fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx];
185 }
186 }
187 }
188
189 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
190
191 /* free skb in the packet ring at pos idx
192 * return idx of last bd freed
193 */
194 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata,
195 u16 idx, unsigned int *pkts_compl,
196 unsigned int *bytes_compl)
197 {
198 struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx];
199 struct eth_tx_start_bd *tx_start_bd;
200 struct eth_tx_bd *tx_data_bd;
201 struct sk_buff *skb = tx_buf->skb;
202 u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
203 int nbd;
204 u16 split_bd_len = 0;
205
206 /* prefetch skb end pointer to speedup dev_kfree_skb() */
207 prefetch(&skb->end);
208
209 DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n",
210 txdata->txq_index, idx, tx_buf, skb);
211
212 tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd;
213
214 nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
215 #ifdef BNX2X_STOP_ON_ERROR
216 if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
217 BNX2X_ERR("BAD nbd!\n");
218 bnx2x_panic();
219 }
220 #endif
221 new_cons = nbd + tx_buf->first_bd;
222
223 /* Get the next bd */
224 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
225
226 /* Skip a parse bd... */
227 --nbd;
228 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
229
230 if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) {
231 /* Skip second parse bd... */
232 --nbd;
233 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
234 }
235
236 /* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */
237 if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
238 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
239 split_bd_len = BD_UNMAP_LEN(tx_data_bd);
240 --nbd;
241 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
242 }
243
244 /* unmap first bd */
245 dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
246 BD_UNMAP_LEN(tx_start_bd) + split_bd_len,
247 DMA_TO_DEVICE);
248
249 /* now free frags */
250 while (nbd > 0) {
251
252 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
253 dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
254 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
255 if (--nbd)
256 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
257 }
258
259 /* release skb */
260 WARN_ON(!skb);
261 if (likely(skb)) {
262 (*pkts_compl)++;
263 (*bytes_compl) += skb->len;
264 dev_kfree_skb_any(skb);
265 }
266
267 tx_buf->first_bd = 0;
268 tx_buf->skb = NULL;
269
270 return new_cons;
271 }
272
273 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata)
274 {
275 struct netdev_queue *txq;
276 u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons;
277 unsigned int pkts_compl = 0, bytes_compl = 0;
278
279 #ifdef BNX2X_STOP_ON_ERROR
280 if (unlikely(bp->panic))
281 return -1;
282 #endif
283
284 txq = netdev_get_tx_queue(bp->dev, txdata->txq_index);
285 hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
286 sw_cons = txdata->tx_pkt_cons;
287
288 /* Ensure subsequent loads occur after hw_cons */
289 smp_rmb();
290
291 while (sw_cons != hw_cons) {
292 u16 pkt_cons;
293
294 pkt_cons = TX_BD(sw_cons);
295
296 DP(NETIF_MSG_TX_DONE,
297 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n",
298 txdata->txq_index, hw_cons, sw_cons, pkt_cons);
299
300 bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons,
301 &pkts_compl, &bytes_compl);
302
303 sw_cons++;
304 }
305
306 netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
307
308 txdata->tx_pkt_cons = sw_cons;
309 txdata->tx_bd_cons = bd_cons;
310
311 /* Need to make the tx_bd_cons update visible to start_xmit()
312 * before checking for netif_tx_queue_stopped(). Without the
313 * memory barrier, there is a small possibility that
314 * start_xmit() will miss it and cause the queue to be stopped
315 * forever.
316 * On the other hand we need an rmb() here to ensure the proper
317 * ordering of bit testing in the following
318 * netif_tx_queue_stopped(txq) call.
319 */
320 smp_mb();
321
322 if (unlikely(netif_tx_queue_stopped(txq))) {
323 /* Taking tx_lock() is needed to prevent re-enabling the queue
324 * while it's empty. This could have happen if rx_action() gets
325 * suspended in bnx2x_tx_int() after the condition before
326 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
327 *
328 * stops the queue->sees fresh tx_bd_cons->releases the queue->
329 * sends some packets consuming the whole queue again->
330 * stops the queue
331 */
332
333 __netif_tx_lock(txq, smp_processor_id());
334
335 if ((netif_tx_queue_stopped(txq)) &&
336 (bp->state == BNX2X_STATE_OPEN) &&
337 (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT))
338 netif_tx_wake_queue(txq);
339
340 __netif_tx_unlock(txq);
341 }
342 return 0;
343 }
344
345 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
346 u16 idx)
347 {
348 u16 last_max = fp->last_max_sge;
349
350 if (SUB_S16(idx, last_max) > 0)
351 fp->last_max_sge = idx;
352 }
353
354 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
355 u16 sge_len,
356 struct eth_end_agg_rx_cqe *cqe)
357 {
358 struct bnx2x *bp = fp->bp;
359 u16 last_max, last_elem, first_elem;
360 u16 delta = 0;
361 u16 i;
362
363 if (!sge_len)
364 return;
365
366 /* First mark all used pages */
367 for (i = 0; i < sge_len; i++)
368 BIT_VEC64_CLEAR_BIT(fp->sge_mask,
369 RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i])));
370
371 DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
372 sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
373
374 /* Here we assume that the last SGE index is the biggest */
375 prefetch((void *)(fp->sge_mask));
376 bnx2x_update_last_max_sge(fp,
377 le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
378
379 last_max = RX_SGE(fp->last_max_sge);
380 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
381 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
382
383 /* If ring is not full */
384 if (last_elem + 1 != first_elem)
385 last_elem++;
386
387 /* Now update the prod */
388 for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
389 if (likely(fp->sge_mask[i]))
390 break;
391
392 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
393 delta += BIT_VEC64_ELEM_SZ;
394 }
395
396 if (delta > 0) {
397 fp->rx_sge_prod += delta;
398 /* clear page-end entries */
399 bnx2x_clear_sge_mask_next_elems(fp);
400 }
401
402 DP(NETIF_MSG_RX_STATUS,
403 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n",
404 fp->last_max_sge, fp->rx_sge_prod);
405 }
406
407 /* Get Toeplitz hash value in the skb using the value from the
408 * CQE (calculated by HW).
409 */
410 static u32 bnx2x_get_rxhash(const struct bnx2x *bp,
411 const struct eth_fast_path_rx_cqe *cqe,
412 enum pkt_hash_types *rxhash_type)
413 {
414 /* Get Toeplitz hash from CQE */
415 if ((bp->dev->features & NETIF_F_RXHASH) &&
416 (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) {
417 enum eth_rss_hash_type htype;
418
419 htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE;
420 *rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) ||
421 (htype == TCP_IPV6_HASH_TYPE)) ?
422 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
423
424 return le32_to_cpu(cqe->rss_hash_result);
425 }
426 *rxhash_type = PKT_HASH_TYPE_NONE;
427 return 0;
428 }
429
430 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
431 u16 cons, u16 prod,
432 struct eth_fast_path_rx_cqe *cqe)
433 {
434 struct bnx2x *bp = fp->bp;
435 struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
436 struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
437 struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
438 dma_addr_t mapping;
439 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue];
440 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
441
442 /* print error if current state != stop */
443 if (tpa_info->tpa_state != BNX2X_TPA_STOP)
444 BNX2X_ERR("start of bin not in stop [%d]\n", queue);
445
446 /* Try to map an empty data buffer from the aggregation info */
447 mapping = dma_map_single(&bp->pdev->dev,
448 first_buf->data + NET_SKB_PAD,
449 fp->rx_buf_size, DMA_FROM_DEVICE);
450 /*
451 * ...if it fails - move the skb from the consumer to the producer
452 * and set the current aggregation state as ERROR to drop it
453 * when TPA_STOP arrives.
454 */
455
456 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
457 /* Move the BD from the consumer to the producer */
458 bnx2x_reuse_rx_data(fp, cons, prod);
459 tpa_info->tpa_state = BNX2X_TPA_ERROR;
460 return;
461 }
462
463 /* move empty data from pool to prod */
464 prod_rx_buf->data = first_buf->data;
465 dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
466 /* point prod_bd to new data */
467 prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
468 prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
469
470 /* move partial skb from cons to pool (don't unmap yet) */
471 *first_buf = *cons_rx_buf;
472
473 /* mark bin state as START */
474 tpa_info->parsing_flags =
475 le16_to_cpu(cqe->pars_flags.flags);
476 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
477 tpa_info->tpa_state = BNX2X_TPA_START;
478 tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd);
479 tpa_info->placement_offset = cqe->placement_offset;
480 tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type);
481 if (fp->mode == TPA_MODE_GRO) {
482 u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len);
483 tpa_info->full_page = SGE_PAGES / gro_size * gro_size;
484 tpa_info->gro_size = gro_size;
485 }
486
487 #ifdef BNX2X_STOP_ON_ERROR
488 fp->tpa_queue_used |= (1 << queue);
489 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
490 fp->tpa_queue_used);
491 #endif
492 }
493
494 /* Timestamp option length allowed for TPA aggregation:
495 *
496 * nop nop kind length echo val
497 */
498 #define TPA_TSTAMP_OPT_LEN 12
499 /**
500 * bnx2x_set_gro_params - compute GRO values
501 *
502 * @skb: packet skb
503 * @parsing_flags: parsing flags from the START CQE
504 * @len_on_bd: total length of the first packet for the
505 * aggregation.
506 * @pkt_len: length of all segments
507 *
508 * Approximate value of the MSS for this aggregation calculated using
509 * the first packet of it.
510 * Compute number of aggregated segments, and gso_type.
511 */
512 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags,
513 u16 len_on_bd, unsigned int pkt_len,
514 u16 num_of_coalesced_segs)
515 {
516 /* TPA aggregation won't have either IP options or TCP options
517 * other than timestamp or IPv6 extension headers.
518 */
519 u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr);
520
521 if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
522 PRS_FLAG_OVERETH_IPV6) {
523 hdrs_len += sizeof(struct ipv6hdr);
524 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
525 } else {
526 hdrs_len += sizeof(struct iphdr);
527 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
528 }
529
530 /* Check if there was a TCP timestamp, if there is it's will
531 * always be 12 bytes length: nop nop kind length echo val.
532 *
533 * Otherwise FW would close the aggregation.
534 */
535 if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG)
536 hdrs_len += TPA_TSTAMP_OPT_LEN;
537
538 skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len;
539
540 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
541 * to skb_shinfo(skb)->gso_segs
542 */
543 NAPI_GRO_CB(skb)->count = num_of_coalesced_segs;
544 }
545
546 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp,
547 u16 index, gfp_t gfp_mask)
548 {
549 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
550 struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
551 struct bnx2x_alloc_pool *pool = &fp->page_pool;
552 dma_addr_t mapping;
553
554 if (!pool->page) {
555 pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT);
556 if (unlikely(!pool->page))
557 return -ENOMEM;
558
559 pool->offset = 0;
560 }
561
562 mapping = dma_map_page(&bp->pdev->dev, pool->page,
563 pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE);
564 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
565 BNX2X_ERR("Can't map sge\n");
566 return -ENOMEM;
567 }
568
569 sw_buf->page = pool->page;
570 sw_buf->offset = pool->offset;
571
572 dma_unmap_addr_set(sw_buf, mapping, mapping);
573
574 sge->addr_hi = cpu_to_le32(U64_HI(mapping));
575 sge->addr_lo = cpu_to_le32(U64_LO(mapping));
576
577 pool->offset += SGE_PAGE_SIZE;
578 if (PAGE_SIZE - pool->offset >= SGE_PAGE_SIZE)
579 get_page(pool->page);
580 else
581 pool->page = NULL;
582 return 0;
583 }
584
585 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
586 struct bnx2x_agg_info *tpa_info,
587 u16 pages,
588 struct sk_buff *skb,
589 struct eth_end_agg_rx_cqe *cqe,
590 u16 cqe_idx)
591 {
592 struct sw_rx_page *rx_pg, old_rx_pg;
593 u32 i, frag_len, frag_size;
594 int err, j, frag_id = 0;
595 u16 len_on_bd = tpa_info->len_on_bd;
596 u16 full_page = 0, gro_size = 0;
597
598 frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd;
599
600 if (fp->mode == TPA_MODE_GRO) {
601 gro_size = tpa_info->gro_size;
602 full_page = tpa_info->full_page;
603 }
604
605 /* This is needed in order to enable forwarding support */
606 if (frag_size)
607 bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd,
608 le16_to_cpu(cqe->pkt_len),
609 le16_to_cpu(cqe->num_of_coalesced_segs));
610
611 #ifdef BNX2X_STOP_ON_ERROR
612 if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) {
613 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
614 pages, cqe_idx);
615 BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len);
616 bnx2x_panic();
617 return -EINVAL;
618 }
619 #endif
620
621 /* Run through the SGL and compose the fragmented skb */
622 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
623 u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j]));
624
625 /* FW gives the indices of the SGE as if the ring is an array
626 (meaning that "next" element will consume 2 indices) */
627 if (fp->mode == TPA_MODE_GRO)
628 frag_len = min_t(u32, frag_size, (u32)full_page);
629 else /* LRO */
630 frag_len = min_t(u32, frag_size, (u32)SGE_PAGES);
631
632 rx_pg = &fp->rx_page_ring[sge_idx];
633 old_rx_pg = *rx_pg;
634
635 /* If we fail to allocate a substitute page, we simply stop
636 where we are and drop the whole packet */
637 err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC);
638 if (unlikely(err)) {
639 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
640 return err;
641 }
642
643 dma_unmap_page(&bp->pdev->dev,
644 dma_unmap_addr(&old_rx_pg, mapping),
645 SGE_PAGE_SIZE, DMA_FROM_DEVICE);
646 /* Add one frag and update the appropriate fields in the skb */
647 if (fp->mode == TPA_MODE_LRO)
648 skb_fill_page_desc(skb, j, old_rx_pg.page,
649 old_rx_pg.offset, frag_len);
650 else { /* GRO */
651 int rem;
652 int offset = 0;
653 for (rem = frag_len; rem > 0; rem -= gro_size) {
654 int len = rem > gro_size ? gro_size : rem;
655 skb_fill_page_desc(skb, frag_id++,
656 old_rx_pg.page,
657 old_rx_pg.offset + offset,
658 len);
659 if (offset)
660 get_page(old_rx_pg.page);
661 offset += len;
662 }
663 }
664
665 skb->data_len += frag_len;
666 skb->truesize += SGE_PAGES;
667 skb->len += frag_len;
668
669 frag_size -= frag_len;
670 }
671
672 return 0;
673 }
674
675 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data)
676 {
677 if (fp->rx_frag_size)
678 skb_free_frag(data);
679 else
680 kfree(data);
681 }
682
683 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask)
684 {
685 if (fp->rx_frag_size) {
686 /* GFP_KERNEL allocations are used only during initialization */
687 if (unlikely(gfpflags_allow_blocking(gfp_mask)))
688 return (void *)__get_free_page(gfp_mask);
689
690 return napi_alloc_frag(fp->rx_frag_size);
691 }
692
693 return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask);
694 }
695
696 #ifdef CONFIG_INET
697 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb)
698 {
699 const struct iphdr *iph = ip_hdr(skb);
700 struct tcphdr *th;
701
702 skb_set_transport_header(skb, sizeof(struct iphdr));
703 th = tcp_hdr(skb);
704
705 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
706 iph->saddr, iph->daddr, 0);
707 }
708
709 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb)
710 {
711 struct ipv6hdr *iph = ipv6_hdr(skb);
712 struct tcphdr *th;
713
714 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
715 th = tcp_hdr(skb);
716
717 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
718 &iph->saddr, &iph->daddr, 0);
719 }
720
721 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb,
722 void (*gro_func)(struct bnx2x*, struct sk_buff*))
723 {
724 skb_reset_network_header(skb);
725 gro_func(bp, skb);
726 tcp_gro_complete(skb);
727 }
728 #endif
729
730 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp,
731 struct sk_buff *skb)
732 {
733 #ifdef CONFIG_INET
734 if (skb_shinfo(skb)->gso_size) {
735 switch (be16_to_cpu(skb->protocol)) {
736 case ETH_P_IP:
737 bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum);
738 break;
739 case ETH_P_IPV6:
740 bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum);
741 break;
742 default:
743 netdev_WARN_ONCE(bp->dev,
744 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
745 be16_to_cpu(skb->protocol));
746 }
747 }
748 #endif
749 skb_record_rx_queue(skb, fp->rx_queue);
750 napi_gro_receive(&fp->napi, skb);
751 }
752
753 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
754 struct bnx2x_agg_info *tpa_info,
755 u16 pages,
756 struct eth_end_agg_rx_cqe *cqe,
757 u16 cqe_idx)
758 {
759 struct sw_rx_bd *rx_buf = &tpa_info->first_buf;
760 u8 pad = tpa_info->placement_offset;
761 u16 len = tpa_info->len_on_bd;
762 struct sk_buff *skb = NULL;
763 u8 *new_data, *data = rx_buf->data;
764 u8 old_tpa_state = tpa_info->tpa_state;
765
766 tpa_info->tpa_state = BNX2X_TPA_STOP;
767
768 /* If we there was an error during the handling of the TPA_START -
769 * drop this aggregation.
770 */
771 if (old_tpa_state == BNX2X_TPA_ERROR)
772 goto drop;
773
774 /* Try to allocate the new data */
775 new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC);
776 /* Unmap skb in the pool anyway, as we are going to change
777 pool entry status to BNX2X_TPA_STOP even if new skb allocation
778 fails. */
779 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
780 fp->rx_buf_size, DMA_FROM_DEVICE);
781 if (likely(new_data))
782 skb = build_skb(data, fp->rx_frag_size);
783
784 if (likely(skb)) {
785 #ifdef BNX2X_STOP_ON_ERROR
786 if (pad + len > fp->rx_buf_size) {
787 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n",
788 pad, len, fp->rx_buf_size);
789 bnx2x_panic();
790 return;
791 }
792 #endif
793
794 skb_reserve(skb, pad + NET_SKB_PAD);
795 skb_put(skb, len);
796 skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type);
797
798 skb->protocol = eth_type_trans(skb, bp->dev);
799 skb->ip_summed = CHECKSUM_UNNECESSARY;
800
801 if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages,
802 skb, cqe, cqe_idx)) {
803 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN)
804 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag);
805 bnx2x_gro_receive(bp, fp, skb);
806 } else {
807 DP(NETIF_MSG_RX_STATUS,
808 "Failed to allocate new pages - dropping packet!\n");
809 dev_kfree_skb_any(skb);
810 }
811
812 /* put new data in bin */
813 rx_buf->data = new_data;
814
815 return;
816 }
817 if (new_data)
818 bnx2x_frag_free(fp, new_data);
819 drop:
820 /* drop the packet and keep the buffer in the bin */
821 DP(NETIF_MSG_RX_STATUS,
822 "Failed to allocate or map a new skb - dropping packet!\n");
823 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++;
824 }
825
826 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp,
827 u16 index, gfp_t gfp_mask)
828 {
829 u8 *data;
830 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
831 struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
832 dma_addr_t mapping;
833
834 data = bnx2x_frag_alloc(fp, gfp_mask);
835 if (unlikely(data == NULL))
836 return -ENOMEM;
837
838 mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
839 fp->rx_buf_size,
840 DMA_FROM_DEVICE);
841 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
842 bnx2x_frag_free(fp, data);
843 BNX2X_ERR("Can't map rx data\n");
844 return -ENOMEM;
845 }
846
847 rx_buf->data = data;
848 dma_unmap_addr_set(rx_buf, mapping, mapping);
849
850 rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
851 rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
852
853 return 0;
854 }
855
856 static
857 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe,
858 struct bnx2x_fastpath *fp,
859 struct bnx2x_eth_q_stats *qstats)
860 {
861 /* Do nothing if no L4 csum validation was done.
862 * We do not check whether IP csum was validated. For IPv4 we assume
863 * that if the card got as far as validating the L4 csum, it also
864 * validated the IP csum. IPv6 has no IP csum.
865 */
866 if (cqe->fast_path_cqe.status_flags &
867 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)
868 return;
869
870 /* If L4 validation was done, check if an error was found. */
871
872 if (cqe->fast_path_cqe.type_error_flags &
873 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG |
874 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG))
875 qstats->hw_csum_err++;
876 else
877 skb->ip_summed = CHECKSUM_UNNECESSARY;
878 }
879
880 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
881 {
882 struct bnx2x *bp = fp->bp;
883 u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
884 u16 sw_comp_cons, sw_comp_prod;
885 int rx_pkt = 0;
886 union eth_rx_cqe *cqe;
887 struct eth_fast_path_rx_cqe *cqe_fp;
888
889 #ifdef BNX2X_STOP_ON_ERROR
890 if (unlikely(bp->panic))
891 return 0;
892 #endif
893 if (budget <= 0)
894 return rx_pkt;
895
896 bd_cons = fp->rx_bd_cons;
897 bd_prod = fp->rx_bd_prod;
898 bd_prod_fw = bd_prod;
899 sw_comp_cons = fp->rx_comp_cons;
900 sw_comp_prod = fp->rx_comp_prod;
901
902 comp_ring_cons = RCQ_BD(sw_comp_cons);
903 cqe = &fp->rx_comp_ring[comp_ring_cons];
904 cqe_fp = &cqe->fast_path_cqe;
905
906 DP(NETIF_MSG_RX_STATUS,
907 "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons);
908
909 while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) {
910 struct sw_rx_bd *rx_buf = NULL;
911 struct sk_buff *skb;
912 u8 cqe_fp_flags;
913 enum eth_rx_cqe_type cqe_fp_type;
914 u16 len, pad, queue;
915 u8 *data;
916 u32 rxhash;
917 enum pkt_hash_types rxhash_type;
918
919 #ifdef BNX2X_STOP_ON_ERROR
920 if (unlikely(bp->panic))
921 return 0;
922 #endif
923
924 bd_prod = RX_BD(bd_prod);
925 bd_cons = RX_BD(bd_cons);
926
927 /* A rmb() is required to ensure that the CQE is not read
928 * before it is written by the adapter DMA. PCI ordering
929 * rules will make sure the other fields are written before
930 * the marker at the end of struct eth_fast_path_rx_cqe
931 * but without rmb() a weakly ordered processor can process
932 * stale data. Without the barrier TPA state-machine might
933 * enter inconsistent state and kernel stack might be
934 * provided with incorrect packet description - these lead
935 * to various kernel crashed.
936 */
937 rmb();
938
939 cqe_fp_flags = cqe_fp->type_error_flags;
940 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
941
942 DP(NETIF_MSG_RX_STATUS,
943 "CQE type %x err %x status %x queue %x vlan %x len %u\n",
944 CQE_TYPE(cqe_fp_flags),
945 cqe_fp_flags, cqe_fp->status_flags,
946 le32_to_cpu(cqe_fp->rss_hash_result),
947 le16_to_cpu(cqe_fp->vlan_tag),
948 le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len));
949
950 /* is this a slowpath msg? */
951 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) {
952 bnx2x_sp_event(fp, cqe);
953 goto next_cqe;
954 }
955
956 rx_buf = &fp->rx_buf_ring[bd_cons];
957 data = rx_buf->data;
958
959 if (!CQE_TYPE_FAST(cqe_fp_type)) {
960 struct bnx2x_agg_info *tpa_info;
961 u16 frag_size, pages;
962 #ifdef BNX2X_STOP_ON_ERROR
963 /* sanity check */
964 if (fp->mode == TPA_MODE_DISABLED &&
965 (CQE_TYPE_START(cqe_fp_type) ||
966 CQE_TYPE_STOP(cqe_fp_type)))
967 BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n",
968 CQE_TYPE(cqe_fp_type));
969 #endif
970
971 if (CQE_TYPE_START(cqe_fp_type)) {
972 u16 queue = cqe_fp->queue_index;
973 DP(NETIF_MSG_RX_STATUS,
974 "calling tpa_start on queue %d\n",
975 queue);
976
977 bnx2x_tpa_start(fp, queue,
978 bd_cons, bd_prod,
979 cqe_fp);
980
981 goto next_rx;
982 }
983 queue = cqe->end_agg_cqe.queue_index;
984 tpa_info = &fp->tpa_info[queue];
985 DP(NETIF_MSG_RX_STATUS,
986 "calling tpa_stop on queue %d\n",
987 queue);
988
989 frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) -
990 tpa_info->len_on_bd;
991
992 if (fp->mode == TPA_MODE_GRO)
993 pages = (frag_size + tpa_info->full_page - 1) /
994 tpa_info->full_page;
995 else
996 pages = SGE_PAGE_ALIGN(frag_size) >>
997 SGE_PAGE_SHIFT;
998
999 bnx2x_tpa_stop(bp, fp, tpa_info, pages,
1000 &cqe->end_agg_cqe, comp_ring_cons);
1001 #ifdef BNX2X_STOP_ON_ERROR
1002 if (bp->panic)
1003 return 0;
1004 #endif
1005
1006 bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe);
1007 goto next_cqe;
1008 }
1009 /* non TPA */
1010 len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len);
1011 pad = cqe_fp->placement_offset;
1012 dma_sync_single_for_cpu(&bp->pdev->dev,
1013 dma_unmap_addr(rx_buf, mapping),
1014 pad + RX_COPY_THRESH,
1015 DMA_FROM_DEVICE);
1016 pad += NET_SKB_PAD;
1017 prefetch(data + pad); /* speedup eth_type_trans() */
1018 /* is this an error packet? */
1019 if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
1020 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1021 "ERROR flags %x rx packet %u\n",
1022 cqe_fp_flags, sw_comp_cons);
1023 bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++;
1024 goto reuse_rx;
1025 }
1026
1027 /* Since we don't have a jumbo ring
1028 * copy small packets if mtu > 1500
1029 */
1030 if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
1031 (len <= RX_COPY_THRESH)) {
1032 skb = napi_alloc_skb(&fp->napi, len);
1033 if (skb == NULL) {
1034 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1035 "ERROR packet dropped because of alloc failure\n");
1036 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1037 goto reuse_rx;
1038 }
1039 memcpy(skb->data, data + pad, len);
1040 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1041 } else {
1042 if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod,
1043 GFP_ATOMIC) == 0)) {
1044 dma_unmap_single(&bp->pdev->dev,
1045 dma_unmap_addr(rx_buf, mapping),
1046 fp->rx_buf_size,
1047 DMA_FROM_DEVICE);
1048 skb = build_skb(data, fp->rx_frag_size);
1049 if (unlikely(!skb)) {
1050 bnx2x_frag_free(fp, data);
1051 bnx2x_fp_qstats(bp, fp)->
1052 rx_skb_alloc_failed++;
1053 goto next_rx;
1054 }
1055 skb_reserve(skb, pad);
1056 } else {
1057 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1058 "ERROR packet dropped because of alloc failure\n");
1059 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1060 reuse_rx:
1061 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1062 goto next_rx;
1063 }
1064 }
1065
1066 skb_put(skb, len);
1067 skb->protocol = eth_type_trans(skb, bp->dev);
1068
1069 /* Set Toeplitz hash for a none-LRO skb */
1070 rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type);
1071 skb_set_hash(skb, rxhash, rxhash_type);
1072
1073 skb_checksum_none_assert(skb);
1074
1075 if (bp->dev->features & NETIF_F_RXCSUM)
1076 bnx2x_csum_validate(skb, cqe, fp,
1077 bnx2x_fp_qstats(bp, fp));
1078
1079 skb_record_rx_queue(skb, fp->rx_queue);
1080
1081 /* Check if this packet was timestamped */
1082 if (unlikely(cqe->fast_path_cqe.type_error_flags &
1083 (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT)))
1084 bnx2x_set_rx_ts(bp, skb);
1085
1086 if (le16_to_cpu(cqe_fp->pars_flags.flags) &
1087 PARSING_FLAGS_VLAN)
1088 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1089 le16_to_cpu(cqe_fp->vlan_tag));
1090
1091 napi_gro_receive(&fp->napi, skb);
1092 next_rx:
1093 rx_buf->data = NULL;
1094
1095 bd_cons = NEXT_RX_IDX(bd_cons);
1096 bd_prod = NEXT_RX_IDX(bd_prod);
1097 bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
1098 rx_pkt++;
1099 next_cqe:
1100 sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
1101 sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
1102
1103 /* mark CQE as free */
1104 BNX2X_SEED_CQE(cqe_fp);
1105
1106 if (rx_pkt == budget)
1107 break;
1108
1109 comp_ring_cons = RCQ_BD(sw_comp_cons);
1110 cqe = &fp->rx_comp_ring[comp_ring_cons];
1111 cqe_fp = &cqe->fast_path_cqe;
1112 } /* while */
1113
1114 fp->rx_bd_cons = bd_cons;
1115 fp->rx_bd_prod = bd_prod_fw;
1116 fp->rx_comp_cons = sw_comp_cons;
1117 fp->rx_comp_prod = sw_comp_prod;
1118
1119 /* Update producers */
1120 bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
1121 fp->rx_sge_prod);
1122
1123 return rx_pkt;
1124 }
1125
1126 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
1127 {
1128 struct bnx2x_fastpath *fp = fp_cookie;
1129 struct bnx2x *bp = fp->bp;
1130 u8 cos;
1131
1132 DP(NETIF_MSG_INTR,
1133 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1134 fp->index, fp->fw_sb_id, fp->igu_sb_id);
1135
1136 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
1137
1138 #ifdef BNX2X_STOP_ON_ERROR
1139 if (unlikely(bp->panic))
1140 return IRQ_HANDLED;
1141 #endif
1142
1143 /* Handle Rx and Tx according to MSI-X vector */
1144 for_each_cos_in_tx_queue(fp, cos)
1145 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1146
1147 prefetch(&fp->sb_running_index[SM_RX_ID]);
1148 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1149
1150 return IRQ_HANDLED;
1151 }
1152
1153 /* HW Lock for shared dual port PHYs */
1154 void bnx2x_acquire_phy_lock(struct bnx2x *bp)
1155 {
1156 mutex_lock(&bp->port.phy_mutex);
1157
1158 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1159 }
1160
1161 void bnx2x_release_phy_lock(struct bnx2x *bp)
1162 {
1163 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1164
1165 mutex_unlock(&bp->port.phy_mutex);
1166 }
1167
1168 /* calculates MF speed according to current linespeed and MF configuration */
1169 u16 bnx2x_get_mf_speed(struct bnx2x *bp)
1170 {
1171 u16 line_speed = bp->link_vars.line_speed;
1172 if (IS_MF(bp)) {
1173 u16 maxCfg = bnx2x_extract_max_cfg(bp,
1174 bp->mf_config[BP_VN(bp)]);
1175
1176 /* Calculate the current MAX line speed limit for the MF
1177 * devices
1178 */
1179 if (IS_MF_PERCENT_BW(bp))
1180 line_speed = (line_speed * maxCfg) / 100;
1181 else { /* SD mode */
1182 u16 vn_max_rate = maxCfg * 100;
1183
1184 if (vn_max_rate < line_speed)
1185 line_speed = vn_max_rate;
1186 }
1187 }
1188
1189 return line_speed;
1190 }
1191
1192 /**
1193 * bnx2x_fill_report_data - fill link report data to report
1194 *
1195 * @bp: driver handle
1196 * @data: link state to update
1197 *
1198 * It uses a none-atomic bit operations because is called under the mutex.
1199 */
1200 static void bnx2x_fill_report_data(struct bnx2x *bp,
1201 struct bnx2x_link_report_data *data)
1202 {
1203 memset(data, 0, sizeof(*data));
1204
1205 if (IS_PF(bp)) {
1206 /* Fill the report data: effective line speed */
1207 data->line_speed = bnx2x_get_mf_speed(bp);
1208
1209 /* Link is down */
1210 if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS))
1211 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1212 &data->link_report_flags);
1213
1214 if (!BNX2X_NUM_ETH_QUEUES(bp))
1215 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1216 &data->link_report_flags);
1217
1218 /* Full DUPLEX */
1219 if (bp->link_vars.duplex == DUPLEX_FULL)
1220 __set_bit(BNX2X_LINK_REPORT_FD,
1221 &data->link_report_flags);
1222
1223 /* Rx Flow Control is ON */
1224 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX)
1225 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1226 &data->link_report_flags);
1227
1228 /* Tx Flow Control is ON */
1229 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
1230 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1231 &data->link_report_flags);
1232 } else { /* VF */
1233 *data = bp->vf_link_vars;
1234 }
1235 }
1236
1237 /**
1238 * bnx2x_link_report - report link status to OS.
1239 *
1240 * @bp: driver handle
1241 *
1242 * Calls the __bnx2x_link_report() under the same locking scheme
1243 * as a link/PHY state managing code to ensure a consistent link
1244 * reporting.
1245 */
1246
1247 void bnx2x_link_report(struct bnx2x *bp)
1248 {
1249 bnx2x_acquire_phy_lock(bp);
1250 __bnx2x_link_report(bp);
1251 bnx2x_release_phy_lock(bp);
1252 }
1253
1254 /**
1255 * __bnx2x_link_report - report link status to OS.
1256 *
1257 * @bp: driver handle
1258 *
1259 * None atomic implementation.
1260 * Should be called under the phy_lock.
1261 */
1262 void __bnx2x_link_report(struct bnx2x *bp)
1263 {
1264 struct bnx2x_link_report_data cur_data;
1265
1266 if (bp->force_link_down) {
1267 bp->link_vars.link_up = 0;
1268 return;
1269 }
1270
1271 /* reread mf_cfg */
1272 if (IS_PF(bp) && !CHIP_IS_E1(bp))
1273 bnx2x_read_mf_cfg(bp);
1274
1275 /* Read the current link report info */
1276 bnx2x_fill_report_data(bp, &cur_data);
1277
1278 /* Don't report link down or exactly the same link status twice */
1279 if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) ||
1280 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1281 &bp->last_reported_link.link_report_flags) &&
1282 test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1283 &cur_data.link_report_flags)))
1284 return;
1285
1286 bp->link_cnt++;
1287
1288 /* We are going to report a new link parameters now -
1289 * remember the current data for the next time.
1290 */
1291 memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data));
1292
1293 /* propagate status to VFs */
1294 if (IS_PF(bp))
1295 bnx2x_iov_link_update(bp);
1296
1297 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1298 &cur_data.link_report_flags)) {
1299 netif_carrier_off(bp->dev);
1300 netdev_err(bp->dev, "NIC Link is Down\n");
1301 return;
1302 } else {
1303 const char *duplex;
1304 const char *flow;
1305
1306 netif_carrier_on(bp->dev);
1307
1308 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD,
1309 &cur_data.link_report_flags))
1310 duplex = "full";
1311 else
1312 duplex = "half";
1313
1314 /* Handle the FC at the end so that only these flags would be
1315 * possibly set. This way we may easily check if there is no FC
1316 * enabled.
1317 */
1318 if (cur_data.link_report_flags) {
1319 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1320 &cur_data.link_report_flags)) {
1321 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1322 &cur_data.link_report_flags))
1323 flow = "ON - receive & transmit";
1324 else
1325 flow = "ON - receive";
1326 } else {
1327 flow = "ON - transmit";
1328 }
1329 } else {
1330 flow = "none";
1331 }
1332 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1333 cur_data.line_speed, duplex, flow);
1334 }
1335 }
1336
1337 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1338 {
1339 int i;
1340
1341 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1342 struct eth_rx_sge *sge;
1343
1344 sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1345 sge->addr_hi =
1346 cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1347 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1348
1349 sge->addr_lo =
1350 cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1351 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1352 }
1353 }
1354
1355 static void bnx2x_free_tpa_pool(struct bnx2x *bp,
1356 struct bnx2x_fastpath *fp, int last)
1357 {
1358 int i;
1359
1360 for (i = 0; i < last; i++) {
1361 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1362 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1363 u8 *data = first_buf->data;
1364
1365 if (data == NULL) {
1366 DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1367 continue;
1368 }
1369 if (tpa_info->tpa_state == BNX2X_TPA_START)
1370 dma_unmap_single(&bp->pdev->dev,
1371 dma_unmap_addr(first_buf, mapping),
1372 fp->rx_buf_size, DMA_FROM_DEVICE);
1373 bnx2x_frag_free(fp, data);
1374 first_buf->data = NULL;
1375 }
1376 }
1377
1378 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp)
1379 {
1380 int j;
1381
1382 for_each_rx_queue_cnic(bp, j) {
1383 struct bnx2x_fastpath *fp = &bp->fp[j];
1384
1385 fp->rx_bd_cons = 0;
1386
1387 /* Activate BD ring */
1388 /* Warning!
1389 * this will generate an interrupt (to the TSTORM)
1390 * must only be done after chip is initialized
1391 */
1392 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1393 fp->rx_sge_prod);
1394 }
1395 }
1396
1397 void bnx2x_init_rx_rings(struct bnx2x *bp)
1398 {
1399 int func = BP_FUNC(bp);
1400 u16 ring_prod;
1401 int i, j;
1402
1403 /* Allocate TPA resources */
1404 for_each_eth_queue(bp, j) {
1405 struct bnx2x_fastpath *fp = &bp->fp[j];
1406
1407 DP(NETIF_MSG_IFUP,
1408 "mtu %d rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size);
1409
1410 if (fp->mode != TPA_MODE_DISABLED) {
1411 /* Fill the per-aggregation pool */
1412 for (i = 0; i < MAX_AGG_QS(bp); i++) {
1413 struct bnx2x_agg_info *tpa_info =
1414 &fp->tpa_info[i];
1415 struct sw_rx_bd *first_buf =
1416 &tpa_info->first_buf;
1417
1418 first_buf->data =
1419 bnx2x_frag_alloc(fp, GFP_KERNEL);
1420 if (!first_buf->data) {
1421 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1422 j);
1423 bnx2x_free_tpa_pool(bp, fp, i);
1424 fp->mode = TPA_MODE_DISABLED;
1425 break;
1426 }
1427 dma_unmap_addr_set(first_buf, mapping, 0);
1428 tpa_info->tpa_state = BNX2X_TPA_STOP;
1429 }
1430
1431 /* "next page" elements initialization */
1432 bnx2x_set_next_page_sgl(fp);
1433
1434 /* set SGEs bit mask */
1435 bnx2x_init_sge_ring_bit_mask(fp);
1436
1437 /* Allocate SGEs and initialize the ring elements */
1438 for (i = 0, ring_prod = 0;
1439 i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
1440
1441 if (bnx2x_alloc_rx_sge(bp, fp, ring_prod,
1442 GFP_KERNEL) < 0) {
1443 BNX2X_ERR("was only able to allocate %d rx sges\n",
1444 i);
1445 BNX2X_ERR("disabling TPA for queue[%d]\n",
1446 j);
1447 /* Cleanup already allocated elements */
1448 bnx2x_free_rx_sge_range(bp, fp,
1449 ring_prod);
1450 bnx2x_free_tpa_pool(bp, fp,
1451 MAX_AGG_QS(bp));
1452 fp->mode = TPA_MODE_DISABLED;
1453 ring_prod = 0;
1454 break;
1455 }
1456 ring_prod = NEXT_SGE_IDX(ring_prod);
1457 }
1458
1459 fp->rx_sge_prod = ring_prod;
1460 }
1461 }
1462
1463 for_each_eth_queue(bp, j) {
1464 struct bnx2x_fastpath *fp = &bp->fp[j];
1465
1466 fp->rx_bd_cons = 0;
1467
1468 /* Activate BD ring */
1469 /* Warning!
1470 * this will generate an interrupt (to the TSTORM)
1471 * must only be done after chip is initialized
1472 */
1473 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1474 fp->rx_sge_prod);
1475
1476 if (j != 0)
1477 continue;
1478
1479 if (CHIP_IS_E1(bp)) {
1480 REG_WR(bp, BAR_USTRORM_INTMEM +
1481 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
1482 U64_LO(fp->rx_comp_mapping));
1483 REG_WR(bp, BAR_USTRORM_INTMEM +
1484 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
1485 U64_HI(fp->rx_comp_mapping));
1486 }
1487 }
1488 }
1489
1490 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp)
1491 {
1492 u8 cos;
1493 struct bnx2x *bp = fp->bp;
1494
1495 for_each_cos_in_tx_queue(fp, cos) {
1496 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1497 unsigned pkts_compl = 0, bytes_compl = 0;
1498
1499 u16 sw_prod = txdata->tx_pkt_prod;
1500 u16 sw_cons = txdata->tx_pkt_cons;
1501
1502 while (sw_cons != sw_prod) {
1503 bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons),
1504 &pkts_compl, &bytes_compl);
1505 sw_cons++;
1506 }
1507
1508 netdev_tx_reset_queue(
1509 netdev_get_tx_queue(bp->dev,
1510 txdata->txq_index));
1511 }
1512 }
1513
1514 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp)
1515 {
1516 int i;
1517
1518 for_each_tx_queue_cnic(bp, i) {
1519 bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1520 }
1521 }
1522
1523 static void bnx2x_free_tx_skbs(struct bnx2x *bp)
1524 {
1525 int i;
1526
1527 for_each_eth_queue(bp, i) {
1528 bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1529 }
1530 }
1531
1532 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp)
1533 {
1534 struct bnx2x *bp = fp->bp;
1535 int i;
1536
1537 /* ring wasn't allocated */
1538 if (fp->rx_buf_ring == NULL)
1539 return;
1540
1541 for (i = 0; i < NUM_RX_BD; i++) {
1542 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
1543 u8 *data = rx_buf->data;
1544
1545 if (data == NULL)
1546 continue;
1547 dma_unmap_single(&bp->pdev->dev,
1548 dma_unmap_addr(rx_buf, mapping),
1549 fp->rx_buf_size, DMA_FROM_DEVICE);
1550
1551 rx_buf->data = NULL;
1552 bnx2x_frag_free(fp, data);
1553 }
1554 }
1555
1556 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp)
1557 {
1558 int j;
1559
1560 for_each_rx_queue_cnic(bp, j) {
1561 bnx2x_free_rx_bds(&bp->fp[j]);
1562 }
1563 }
1564
1565 static void bnx2x_free_rx_skbs(struct bnx2x *bp)
1566 {
1567 int j;
1568
1569 for_each_eth_queue(bp, j) {
1570 struct bnx2x_fastpath *fp = &bp->fp[j];
1571
1572 bnx2x_free_rx_bds(fp);
1573
1574 if (fp->mode != TPA_MODE_DISABLED)
1575 bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp));
1576 }
1577 }
1578
1579 static void bnx2x_free_skbs_cnic(struct bnx2x *bp)
1580 {
1581 bnx2x_free_tx_skbs_cnic(bp);
1582 bnx2x_free_rx_skbs_cnic(bp);
1583 }
1584
1585 void bnx2x_free_skbs(struct bnx2x *bp)
1586 {
1587 bnx2x_free_tx_skbs(bp);
1588 bnx2x_free_rx_skbs(bp);
1589 }
1590
1591 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value)
1592 {
1593 /* load old values */
1594 u32 mf_cfg = bp->mf_config[BP_VN(bp)];
1595
1596 if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) {
1597 /* leave all but MAX value */
1598 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
1599
1600 /* set new MAX value */
1601 mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT)
1602 & FUNC_MF_CFG_MAX_BW_MASK;
1603
1604 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
1605 }
1606 }
1607
1608 /**
1609 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1610 *
1611 * @bp: driver handle
1612 * @nvecs: number of vectors to be released
1613 */
1614 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs)
1615 {
1616 int i, offset = 0;
1617
1618 if (nvecs == offset)
1619 return;
1620
1621 /* VFs don't have a default SB */
1622 if (IS_PF(bp)) {
1623 free_irq(bp->msix_table[offset].vector, bp->dev);
1624 DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
1625 bp->msix_table[offset].vector);
1626 offset++;
1627 }
1628
1629 if (CNIC_SUPPORT(bp)) {
1630 if (nvecs == offset)
1631 return;
1632 offset++;
1633 }
1634
1635 for_each_eth_queue(bp, i) {
1636 if (nvecs == offset)
1637 return;
1638 DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n",
1639 i, bp->msix_table[offset].vector);
1640
1641 free_irq(bp->msix_table[offset++].vector, &bp->fp[i]);
1642 }
1643 }
1644
1645 void bnx2x_free_irq(struct bnx2x *bp)
1646 {
1647 if (bp->flags & USING_MSIX_FLAG &&
1648 !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1649 int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp);
1650
1651 /* vfs don't have a default status block */
1652 if (IS_PF(bp))
1653 nvecs++;
1654
1655 bnx2x_free_msix_irqs(bp, nvecs);
1656 } else {
1657 free_irq(bp->dev->irq, bp->dev);
1658 }
1659 }
1660
1661 int bnx2x_enable_msix(struct bnx2x *bp)
1662 {
1663 int msix_vec = 0, i, rc;
1664
1665 /* VFs don't have a default status block */
1666 if (IS_PF(bp)) {
1667 bp->msix_table[msix_vec].entry = msix_vec;
1668 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1669 bp->msix_table[0].entry);
1670 msix_vec++;
1671 }
1672
1673 /* Cnic requires an msix vector for itself */
1674 if (CNIC_SUPPORT(bp)) {
1675 bp->msix_table[msix_vec].entry = msix_vec;
1676 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1677 msix_vec, bp->msix_table[msix_vec].entry);
1678 msix_vec++;
1679 }
1680
1681 /* We need separate vectors for ETH queues only (not FCoE) */
1682 for_each_eth_queue(bp, i) {
1683 bp->msix_table[msix_vec].entry = msix_vec;
1684 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1685 msix_vec, msix_vec, i);
1686 msix_vec++;
1687 }
1688
1689 DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n",
1690 msix_vec);
1691
1692 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0],
1693 BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec);
1694 /*
1695 * reconfigure number of tx/rx queues according to available
1696 * MSI-X vectors
1697 */
1698 if (rc == -ENOSPC) {
1699 /* Get by with single vector */
1700 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1);
1701 if (rc < 0) {
1702 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1703 rc);
1704 goto no_msix;
1705 }
1706
1707 BNX2X_DEV_INFO("Using single MSI-X vector\n");
1708 bp->flags |= USING_SINGLE_MSIX_FLAG;
1709
1710 BNX2X_DEV_INFO("set number of queues to 1\n");
1711 bp->num_ethernet_queues = 1;
1712 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1713 } else if (rc < 0) {
1714 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1715 goto no_msix;
1716 } else if (rc < msix_vec) {
1717 /* how less vectors we will have? */
1718 int diff = msix_vec - rc;
1719
1720 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc);
1721
1722 /*
1723 * decrease number of queues by number of unallocated entries
1724 */
1725 bp->num_ethernet_queues -= diff;
1726 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1727
1728 BNX2X_DEV_INFO("New queue configuration set: %d\n",
1729 bp->num_queues);
1730 }
1731
1732 bp->flags |= USING_MSIX_FLAG;
1733
1734 return 0;
1735
1736 no_msix:
1737 /* fall to INTx if not enough memory */
1738 if (rc == -ENOMEM)
1739 bp->flags |= DISABLE_MSI_FLAG;
1740
1741 return rc;
1742 }
1743
1744 static int bnx2x_req_msix_irqs(struct bnx2x *bp)
1745 {
1746 int i, rc, offset = 0;
1747
1748 /* no default status block for vf */
1749 if (IS_PF(bp)) {
1750 rc = request_irq(bp->msix_table[offset++].vector,
1751 bnx2x_msix_sp_int, 0,
1752 bp->dev->name, bp->dev);
1753 if (rc) {
1754 BNX2X_ERR("request sp irq failed\n");
1755 return -EBUSY;
1756 }
1757 }
1758
1759 if (CNIC_SUPPORT(bp))
1760 offset++;
1761
1762 for_each_eth_queue(bp, i) {
1763 struct bnx2x_fastpath *fp = &bp->fp[i];
1764 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1765 bp->dev->name, i);
1766
1767 rc = request_irq(bp->msix_table[offset].vector,
1768 bnx2x_msix_fp_int, 0, fp->name, fp);
1769 if (rc) {
1770 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i,
1771 bp->msix_table[offset].vector, rc);
1772 bnx2x_free_msix_irqs(bp, offset);
1773 return -EBUSY;
1774 }
1775
1776 offset++;
1777 }
1778
1779 i = BNX2X_NUM_ETH_QUEUES(bp);
1780 if (IS_PF(bp)) {
1781 offset = 1 + CNIC_SUPPORT(bp);
1782 netdev_info(bp->dev,
1783 "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n",
1784 bp->msix_table[0].vector,
1785 0, bp->msix_table[offset].vector,
1786 i - 1, bp->msix_table[offset + i - 1].vector);
1787 } else {
1788 offset = CNIC_SUPPORT(bp);
1789 netdev_info(bp->dev,
1790 "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n",
1791 0, bp->msix_table[offset].vector,
1792 i - 1, bp->msix_table[offset + i - 1].vector);
1793 }
1794 return 0;
1795 }
1796
1797 int bnx2x_enable_msi(struct bnx2x *bp)
1798 {
1799 int rc;
1800
1801 rc = pci_enable_msi(bp->pdev);
1802 if (rc) {
1803 BNX2X_DEV_INFO("MSI is not attainable\n");
1804 return -1;
1805 }
1806 bp->flags |= USING_MSI_FLAG;
1807
1808 return 0;
1809 }
1810
1811 static int bnx2x_req_irq(struct bnx2x *bp)
1812 {
1813 unsigned long flags;
1814 unsigned int irq;
1815
1816 if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG))
1817 flags = 0;
1818 else
1819 flags = IRQF_SHARED;
1820
1821 if (bp->flags & USING_MSIX_FLAG)
1822 irq = bp->msix_table[0].vector;
1823 else
1824 irq = bp->pdev->irq;
1825
1826 return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev);
1827 }
1828
1829 static int bnx2x_setup_irqs(struct bnx2x *bp)
1830 {
1831 int rc = 0;
1832 if (bp->flags & USING_MSIX_FLAG &&
1833 !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1834 rc = bnx2x_req_msix_irqs(bp);
1835 if (rc)
1836 return rc;
1837 } else {
1838 rc = bnx2x_req_irq(bp);
1839 if (rc) {
1840 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc);
1841 return rc;
1842 }
1843 if (bp->flags & USING_MSI_FLAG) {
1844 bp->dev->irq = bp->pdev->irq;
1845 netdev_info(bp->dev, "using MSI IRQ %d\n",
1846 bp->dev->irq);
1847 }
1848 if (bp->flags & USING_MSIX_FLAG) {
1849 bp->dev->irq = bp->msix_table[0].vector;
1850 netdev_info(bp->dev, "using MSIX IRQ %d\n",
1851 bp->dev->irq);
1852 }
1853 }
1854
1855 return 0;
1856 }
1857
1858 static void bnx2x_napi_enable_cnic(struct bnx2x *bp)
1859 {
1860 int i;
1861
1862 for_each_rx_queue_cnic(bp, i) {
1863 napi_enable(&bnx2x_fp(bp, i, napi));
1864 }
1865 }
1866
1867 static void bnx2x_napi_enable(struct bnx2x *bp)
1868 {
1869 int i;
1870
1871 for_each_eth_queue(bp, i) {
1872 napi_enable(&bnx2x_fp(bp, i, napi));
1873 }
1874 }
1875
1876 static void bnx2x_napi_disable_cnic(struct bnx2x *bp)
1877 {
1878 int i;
1879
1880 for_each_rx_queue_cnic(bp, i) {
1881 napi_disable(&bnx2x_fp(bp, i, napi));
1882 }
1883 }
1884
1885 static void bnx2x_napi_disable(struct bnx2x *bp)
1886 {
1887 int i;
1888
1889 for_each_eth_queue(bp, i) {
1890 napi_disable(&bnx2x_fp(bp, i, napi));
1891 }
1892 }
1893
1894 void bnx2x_netif_start(struct bnx2x *bp)
1895 {
1896 if (netif_running(bp->dev)) {
1897 bnx2x_napi_enable(bp);
1898 if (CNIC_LOADED(bp))
1899 bnx2x_napi_enable_cnic(bp);
1900 bnx2x_int_enable(bp);
1901 if (bp->state == BNX2X_STATE_OPEN)
1902 netif_tx_wake_all_queues(bp->dev);
1903 }
1904 }
1905
1906 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
1907 {
1908 bnx2x_int_disable_sync(bp, disable_hw);
1909 bnx2x_napi_disable(bp);
1910 if (CNIC_LOADED(bp))
1911 bnx2x_napi_disable_cnic(bp);
1912 }
1913
1914 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb,
1915 struct net_device *sb_dev)
1916 {
1917 struct bnx2x *bp = netdev_priv(dev);
1918
1919 if (CNIC_LOADED(bp) && !NO_FCOE(bp)) {
1920 struct ethhdr *hdr = (struct ethhdr *)skb->data;
1921 u16 ether_type = ntohs(hdr->h_proto);
1922
1923 /* Skip VLAN tag if present */
1924 if (ether_type == ETH_P_8021Q) {
1925 struct vlan_ethhdr *vhdr =
1926 (struct vlan_ethhdr *)skb->data;
1927
1928 ether_type = ntohs(vhdr->h_vlan_encapsulated_proto);
1929 }
1930
1931 /* If ethertype is FCoE or FIP - use FCoE ring */
1932 if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP))
1933 return bnx2x_fcoe_tx(bp, txq_index);
1934 }
1935
1936 /* select a non-FCoE queue */
1937 return netdev_pick_tx(dev, skb, NULL) %
1938 (BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos);
1939 }
1940
1941 void bnx2x_set_num_queues(struct bnx2x *bp)
1942 {
1943 /* RSS queues */
1944 bp->num_ethernet_queues = bnx2x_calc_num_queues(bp);
1945
1946 /* override in STORAGE SD modes */
1947 if (IS_MF_STORAGE_ONLY(bp))
1948 bp->num_ethernet_queues = 1;
1949
1950 /* Add special queues */
1951 bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */
1952 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1953
1954 BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
1955 }
1956
1957 /**
1958 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1959 *
1960 * @bp: Driver handle
1961 *
1962 * We currently support for at most 16 Tx queues for each CoS thus we will
1963 * allocate a multiple of 16 for ETH L2 rings according to the value of the
1964 * bp->max_cos.
1965 *
1966 * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1967 * index after all ETH L2 indices.
1968 *
1969 * If the actual number of Tx queues (for each CoS) is less than 16 then there
1970 * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1971 * 16..31,...) with indices that are not coupled with any real Tx queue.
1972 *
1973 * The proper configuration of skb->queue_mapping is handled by
1974 * bnx2x_select_queue() and __skb_tx_hash().
1975 *
1976 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1977 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1978 */
1979 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic)
1980 {
1981 int rc, tx, rx;
1982
1983 tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos;
1984 rx = BNX2X_NUM_ETH_QUEUES(bp);
1985
1986 /* account for fcoe queue */
1987 if (include_cnic && !NO_FCOE(bp)) {
1988 rx++;
1989 tx++;
1990 }
1991
1992 rc = netif_set_real_num_tx_queues(bp->dev, tx);
1993 if (rc) {
1994 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc);
1995 return rc;
1996 }
1997 rc = netif_set_real_num_rx_queues(bp->dev, rx);
1998 if (rc) {
1999 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc);
2000 return rc;
2001 }
2002
2003 DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n",
2004 tx, rx);
2005
2006 return rc;
2007 }
2008
2009 static void bnx2x_set_rx_buf_size(struct bnx2x *bp)
2010 {
2011 int i;
2012
2013 for_each_queue(bp, i) {
2014 struct bnx2x_fastpath *fp = &bp->fp[i];
2015 u32 mtu;
2016
2017 /* Always use a mini-jumbo MTU for the FCoE L2 ring */
2018 if (IS_FCOE_IDX(i))
2019 /*
2020 * Although there are no IP frames expected to arrive to
2021 * this ring we still want to add an
2022 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
2023 * overrun attack.
2024 */
2025 mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2026 else
2027 mtu = bp->dev->mtu;
2028 fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START +
2029 IP_HEADER_ALIGNMENT_PADDING +
2030 ETH_OVERHEAD +
2031 mtu +
2032 BNX2X_FW_RX_ALIGN_END;
2033 fp->rx_buf_size = SKB_DATA_ALIGN(fp->rx_buf_size);
2034 /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */
2035 if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE)
2036 fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD;
2037 else
2038 fp->rx_frag_size = 0;
2039 }
2040 }
2041
2042 static int bnx2x_init_rss(struct bnx2x *bp)
2043 {
2044 int i;
2045 u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
2046
2047 /* Prepare the initial contents for the indirection table if RSS is
2048 * enabled
2049 */
2050 for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++)
2051 bp->rss_conf_obj.ind_table[i] =
2052 bp->fp->cl_id +
2053 ethtool_rxfh_indir_default(i, num_eth_queues);
2054
2055 /*
2056 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
2057 * per-port, so if explicit configuration is needed , do it only
2058 * for a PMF.
2059 *
2060 * For 57712 and newer on the other hand it's a per-function
2061 * configuration.
2062 */
2063 return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp));
2064 }
2065
2066 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj,
2067 bool config_hash, bool enable)
2068 {
2069 struct bnx2x_config_rss_params params = {NULL};
2070
2071 /* Although RSS is meaningless when there is a single HW queue we
2072 * still need it enabled in order to have HW Rx hash generated.
2073 *
2074 * if (!is_eth_multi(bp))
2075 * bp->multi_mode = ETH_RSS_MODE_DISABLED;
2076 */
2077
2078 params.rss_obj = rss_obj;
2079
2080 __set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
2081
2082 if (enable) {
2083 __set_bit(BNX2X_RSS_MODE_REGULAR, &params.rss_flags);
2084
2085 /* RSS configuration */
2086 __set_bit(BNX2X_RSS_IPV4, &params.rss_flags);
2087 __set_bit(BNX2X_RSS_IPV4_TCP, &params.rss_flags);
2088 __set_bit(BNX2X_RSS_IPV6, &params.rss_flags);
2089 __set_bit(BNX2X_RSS_IPV6_TCP, &params.rss_flags);
2090 if (rss_obj->udp_rss_v4)
2091 __set_bit(BNX2X_RSS_IPV4_UDP, &params.rss_flags);
2092 if (rss_obj->udp_rss_v6)
2093 __set_bit(BNX2X_RSS_IPV6_UDP, &params.rss_flags);
2094
2095 if (!CHIP_IS_E1x(bp)) {
2096 /* valid only for TUNN_MODE_VXLAN tunnel mode */
2097 __set_bit(BNX2X_RSS_IPV4_VXLAN, &params.rss_flags);
2098 __set_bit(BNX2X_RSS_IPV6_VXLAN, &params.rss_flags);
2099
2100 /* valid only for TUNN_MODE_GRE tunnel mode */
2101 __set_bit(BNX2X_RSS_TUNN_INNER_HDRS, &params.rss_flags);
2102 }
2103 } else {
2104 __set_bit(BNX2X_RSS_MODE_DISABLED, &params.rss_flags);
2105 }
2106
2107 /* Hash bits */
2108 params.rss_result_mask = MULTI_MASK;
2109
2110 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
2111
2112 if (config_hash) {
2113 /* RSS keys */
2114 netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4);
2115 __set_bit(BNX2X_RSS_SET_SRCH, &params.rss_flags);
2116 }
2117
2118 if (IS_PF(bp))
2119 return bnx2x_config_rss(bp, &params);
2120 else
2121 return bnx2x_vfpf_config_rss(bp, &params);
2122 }
2123
2124 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
2125 {
2126 struct bnx2x_func_state_params func_params = {NULL};
2127
2128 /* Prepare parameters for function state transitions */
2129 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2130
2131 func_params.f_obj = &bp->func_obj;
2132 func_params.cmd = BNX2X_F_CMD_HW_INIT;
2133
2134 func_params.params.hw_init.load_phase = load_code;
2135
2136 return bnx2x_func_state_change(bp, &func_params);
2137 }
2138
2139 /*
2140 * Cleans the object that have internal lists without sending
2141 * ramrods. Should be run when interrupts are disabled.
2142 */
2143 void bnx2x_squeeze_objects(struct bnx2x *bp)
2144 {
2145 int rc;
2146 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
2147 struct bnx2x_mcast_ramrod_params rparam = {NULL};
2148 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
2149
2150 /***************** Cleanup MACs' object first *************************/
2151
2152 /* Wait for completion of requested */
2153 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2154 /* Perform a dry cleanup */
2155 __set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
2156
2157 /* Clean ETH primary MAC */
2158 __set_bit(BNX2X_ETH_MAC, &vlan_mac_flags);
2159 rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags,
2160 &ramrod_flags);
2161 if (rc != 0)
2162 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc);
2163
2164 /* Cleanup UC list */
2165 vlan_mac_flags = 0;
2166 __set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags);
2167 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags,
2168 &ramrod_flags);
2169 if (rc != 0)
2170 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc);
2171
2172 /***************** Now clean mcast object *****************************/
2173 rparam.mcast_obj = &bp->mcast_obj;
2174 __set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
2175
2176 /* Add a DEL command... - Since we're doing a driver cleanup only,
2177 * we take a lock surrounding both the initial send and the CONTs,
2178 * as we don't want a true completion to disrupt us in the middle.
2179 */
2180 netif_addr_lock_bh(bp->dev);
2181 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
2182 if (rc < 0)
2183 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2184 rc);
2185
2186 /* ...and wait until all pending commands are cleared */
2187 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2188 while (rc != 0) {
2189 if (rc < 0) {
2190 BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2191 rc);
2192 netif_addr_unlock_bh(bp->dev);
2193 return;
2194 }
2195
2196 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2197 }
2198 netif_addr_unlock_bh(bp->dev);
2199 }
2200
2201 #ifndef BNX2X_STOP_ON_ERROR
2202 #define LOAD_ERROR_EXIT(bp, label) \
2203 do { \
2204 (bp)->state = BNX2X_STATE_ERROR; \
2205 goto label; \
2206 } while (0)
2207
2208 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2209 do { \
2210 bp->cnic_loaded = false; \
2211 goto label; \
2212 } while (0)
2213 #else /*BNX2X_STOP_ON_ERROR*/
2214 #define LOAD_ERROR_EXIT(bp, label) \
2215 do { \
2216 (bp)->state = BNX2X_STATE_ERROR; \
2217 (bp)->panic = 1; \
2218 return -EBUSY; \
2219 } while (0)
2220 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2221 do { \
2222 bp->cnic_loaded = false; \
2223 (bp)->panic = 1; \
2224 return -EBUSY; \
2225 } while (0)
2226 #endif /*BNX2X_STOP_ON_ERROR*/
2227
2228 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp)
2229 {
2230 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
2231 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2232 return;
2233 }
2234
2235 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
2236 {
2237 int num_groups, vf_headroom = 0;
2238 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
2239
2240 /* number of queues for statistics is number of eth queues + FCoE */
2241 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
2242
2243 /* Total number of FW statistics requests =
2244 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2245 * and fcoe l2 queue) stats + num of queues (which includes another 1
2246 * for fcoe l2 queue if applicable)
2247 */
2248 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
2249
2250 /* vf stats appear in the request list, but their data is allocated by
2251 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2252 * it is used to determine where to place the vf stats queries in the
2253 * request struct
2254 */
2255 if (IS_SRIOV(bp))
2256 vf_headroom = bnx2x_vf_headroom(bp);
2257
2258 /* Request is built from stats_query_header and an array of
2259 * stats_query_cmd_group each of which contains
2260 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2261 * configured in the stats_query_header.
2262 */
2263 num_groups =
2264 (((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) +
2265 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ?
2266 1 : 0));
2267
2268 DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2269 bp->fw_stats_num, vf_headroom, num_groups);
2270 bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
2271 num_groups * sizeof(struct stats_query_cmd_group);
2272
2273 /* Data for statistics requests + stats_counter
2274 * stats_counter holds per-STORM counters that are incremented
2275 * when STORM has finished with the current request.
2276 * memory for FCoE offloaded statistics are counted anyway,
2277 * even if they will not be sent.
2278 * VF stats are not accounted for here as the data of VF stats is stored
2279 * in memory allocated by the VF, not here.
2280 */
2281 bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
2282 sizeof(struct per_pf_stats) +
2283 sizeof(struct fcoe_statistics_params) +
2284 sizeof(struct per_queue_stats) * num_queue_stats +
2285 sizeof(struct stats_counter);
2286
2287 bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping,
2288 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2289 if (!bp->fw_stats)
2290 goto alloc_mem_err;
2291
2292 /* Set shortcuts */
2293 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
2294 bp->fw_stats_req_mapping = bp->fw_stats_mapping;
2295 bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
2296 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
2297 bp->fw_stats_data_mapping = bp->fw_stats_mapping +
2298 bp->fw_stats_req_sz;
2299
2300 DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n",
2301 U64_HI(bp->fw_stats_req_mapping),
2302 U64_LO(bp->fw_stats_req_mapping));
2303 DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n",
2304 U64_HI(bp->fw_stats_data_mapping),
2305 U64_LO(bp->fw_stats_data_mapping));
2306 return 0;
2307
2308 alloc_mem_err:
2309 bnx2x_free_fw_stats_mem(bp);
2310 BNX2X_ERR("Can't allocate FW stats memory\n");
2311 return -ENOMEM;
2312 }
2313
2314 /* send load request to mcp and analyze response */
2315 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code)
2316 {
2317 u32 param;
2318
2319 /* init fw_seq */
2320 bp->fw_seq =
2321 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
2322 DRV_MSG_SEQ_NUMBER_MASK);
2323 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
2324
2325 /* Get current FW pulse sequence */
2326 bp->fw_drv_pulse_wr_seq =
2327 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) &
2328 DRV_PULSE_SEQ_MASK);
2329 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
2330
2331 param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA;
2332
2333 if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp))
2334 param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA;
2335
2336 /* load request */
2337 (*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param);
2338
2339 /* if mcp fails to respond we must abort */
2340 if (!(*load_code)) {
2341 BNX2X_ERR("MCP response failure, aborting\n");
2342 return -EBUSY;
2343 }
2344
2345 /* If mcp refused (e.g. other port is in diagnostic mode) we
2346 * must abort
2347 */
2348 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2349 BNX2X_ERR("MCP refused load request, aborting\n");
2350 return -EBUSY;
2351 }
2352 return 0;
2353 }
2354
2355 /* check whether another PF has already loaded FW to chip. In
2356 * virtualized environments a pf from another VM may have already
2357 * initialized the device including loading FW
2358 */
2359 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err)
2360 {
2361 /* is another pf loaded on this engine? */
2362 if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP &&
2363 load_code != FW_MSG_CODE_DRV_LOAD_COMMON) {
2364 /* build my FW version dword */
2365 u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) +
2366 (BCM_5710_FW_MINOR_VERSION << 8) +
2367 (BCM_5710_FW_REVISION_VERSION << 16) +
2368 (BCM_5710_FW_ENGINEERING_VERSION << 24);
2369
2370 /* read loaded FW from chip */
2371 u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM);
2372
2373 DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n",
2374 loaded_fw, my_fw);
2375
2376 /* abort nic load if version mismatch */
2377 if (my_fw != loaded_fw) {
2378 if (print_err)
2379 BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n",
2380 loaded_fw, my_fw);
2381 else
2382 BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n",
2383 loaded_fw, my_fw);
2384 return -EBUSY;
2385 }
2386 }
2387 return 0;
2388 }
2389
2390 /* returns the "mcp load_code" according to global load_count array */
2391 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port)
2392 {
2393 int path = BP_PATH(bp);
2394
2395 DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d] %d, %d, %d\n",
2396 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2397 bnx2x_load_count[path][2]);
2398 bnx2x_load_count[path][0]++;
2399 bnx2x_load_count[path][1 + port]++;
2400 DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d] %d, %d, %d\n",
2401 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2402 bnx2x_load_count[path][2]);
2403 if (bnx2x_load_count[path][0] == 1)
2404 return FW_MSG_CODE_DRV_LOAD_COMMON;
2405 else if (bnx2x_load_count[path][1 + port] == 1)
2406 return FW_MSG_CODE_DRV_LOAD_PORT;
2407 else
2408 return FW_MSG_CODE_DRV_LOAD_FUNCTION;
2409 }
2410
2411 /* mark PMF if applicable */
2412 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code)
2413 {
2414 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2415 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2416 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2417 bp->port.pmf = 1;
2418 /* We need the barrier to ensure the ordering between the
2419 * writing to bp->port.pmf here and reading it from the
2420 * bnx2x_periodic_task().
2421 */
2422 smp_mb();
2423 } else {
2424 bp->port.pmf = 0;
2425 }
2426
2427 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2428 }
2429
2430 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code)
2431 {
2432 if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2433 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) &&
2434 (bp->common.shmem2_base)) {
2435 if (SHMEM2_HAS(bp, dcc_support))
2436 SHMEM2_WR(bp, dcc_support,
2437 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
2438 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
2439 if (SHMEM2_HAS(bp, afex_driver_support))
2440 SHMEM2_WR(bp, afex_driver_support,
2441 SHMEM_AFEX_SUPPORTED_VERSION_ONE);
2442 }
2443
2444 /* Set AFEX default VLAN tag to an invalid value */
2445 bp->afex_def_vlan_tag = -1;
2446 }
2447
2448 /**
2449 * bnx2x_bz_fp - zero content of the fastpath structure.
2450 *
2451 * @bp: driver handle
2452 * @index: fastpath index to be zeroed
2453 *
2454 * Makes sure the contents of the bp->fp[index].napi is kept
2455 * intact.
2456 */
2457 static void bnx2x_bz_fp(struct bnx2x *bp, int index)
2458 {
2459 struct bnx2x_fastpath *fp = &bp->fp[index];
2460 int cos;
2461 struct napi_struct orig_napi = fp->napi;
2462 struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info;
2463
2464 /* bzero bnx2x_fastpath contents */
2465 if (fp->tpa_info)
2466 memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 *
2467 sizeof(struct bnx2x_agg_info));
2468 memset(fp, 0, sizeof(*fp));
2469
2470 /* Restore the NAPI object as it has been already initialized */
2471 fp->napi = orig_napi;
2472 fp->tpa_info = orig_tpa_info;
2473 fp->bp = bp;
2474 fp->index = index;
2475 if (IS_ETH_FP(fp))
2476 fp->max_cos = bp->max_cos;
2477 else
2478 /* Special queues support only one CoS */
2479 fp->max_cos = 1;
2480
2481 /* Init txdata pointers */
2482 if (IS_FCOE_FP(fp))
2483 fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)];
2484 if (IS_ETH_FP(fp))
2485 for_each_cos_in_tx_queue(fp, cos)
2486 fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos *
2487 BNX2X_NUM_ETH_QUEUES(bp) + index];
2488
2489 /* set the tpa flag for each queue. The tpa flag determines the queue
2490 * minimal size so it must be set prior to queue memory allocation
2491 */
2492 if (bp->dev->features & NETIF_F_LRO)
2493 fp->mode = TPA_MODE_LRO;
2494 else if (bp->dev->features & NETIF_F_GRO_HW)
2495 fp->mode = TPA_MODE_GRO;
2496 else
2497 fp->mode = TPA_MODE_DISABLED;
2498
2499 /* We don't want TPA if it's disabled in bp
2500 * or if this is an FCoE L2 ring.
2501 */
2502 if (bp->disable_tpa || IS_FCOE_FP(fp))
2503 fp->mode = TPA_MODE_DISABLED;
2504 }
2505
2506 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state)
2507 {
2508 u32 cur;
2509
2510 if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp))
2511 return;
2512
2513 cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]);
2514 DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n",
2515 cur, state);
2516
2517 SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state);
2518 }
2519
2520 int bnx2x_load_cnic(struct bnx2x *bp)
2521 {
2522 int i, rc, port = BP_PORT(bp);
2523
2524 DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n");
2525
2526 mutex_init(&bp->cnic_mutex);
2527
2528 if (IS_PF(bp)) {
2529 rc = bnx2x_alloc_mem_cnic(bp);
2530 if (rc) {
2531 BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2532 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2533 }
2534 }
2535
2536 rc = bnx2x_alloc_fp_mem_cnic(bp);
2537 if (rc) {
2538 BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2539 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2540 }
2541
2542 /* Update the number of queues with the cnic queues */
2543 rc = bnx2x_set_real_num_queues(bp, 1);
2544 if (rc) {
2545 BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2546 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2547 }
2548
2549 /* Add all CNIC NAPI objects */
2550 bnx2x_add_all_napi_cnic(bp);
2551 DP(NETIF_MSG_IFUP, "cnic napi added\n");
2552 bnx2x_napi_enable_cnic(bp);
2553
2554 rc = bnx2x_init_hw_func_cnic(bp);
2555 if (rc)
2556 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1);
2557
2558 bnx2x_nic_init_cnic(bp);
2559
2560 if (IS_PF(bp)) {
2561 /* Enable Timer scan */
2562 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1);
2563
2564 /* setup cnic queues */
2565 for_each_cnic_queue(bp, i) {
2566 rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2567 if (rc) {
2568 BNX2X_ERR("Queue setup failed\n");
2569 LOAD_ERROR_EXIT(bp, load_error_cnic2);
2570 }
2571 }
2572 }
2573
2574 /* Initialize Rx filter. */
2575 bnx2x_set_rx_mode_inner(bp);
2576
2577 /* re-read iscsi info */
2578 bnx2x_get_iscsi_info(bp);
2579 bnx2x_setup_cnic_irq_info(bp);
2580 bnx2x_setup_cnic_info(bp);
2581 bp->cnic_loaded = true;
2582 if (bp->state == BNX2X_STATE_OPEN)
2583 bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
2584
2585 DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n");
2586
2587 return 0;
2588
2589 #ifndef BNX2X_STOP_ON_ERROR
2590 load_error_cnic2:
2591 /* Disable Timer scan */
2592 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
2593
2594 load_error_cnic1:
2595 bnx2x_napi_disable_cnic(bp);
2596 /* Update the number of queues without the cnic queues */
2597 if (bnx2x_set_real_num_queues(bp, 0))
2598 BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2599 load_error_cnic0:
2600 BNX2X_ERR("CNIC-related load failed\n");
2601 bnx2x_free_fp_mem_cnic(bp);
2602 bnx2x_free_mem_cnic(bp);
2603 return rc;
2604 #endif /* ! BNX2X_STOP_ON_ERROR */
2605 }
2606
2607 /* must be called with rtnl_lock */
2608 int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
2609 {
2610 int port = BP_PORT(bp);
2611 int i, rc = 0, load_code = 0;
2612
2613 DP(NETIF_MSG_IFUP, "Starting NIC load\n");
2614 DP(NETIF_MSG_IFUP,
2615 "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled");
2616
2617 #ifdef BNX2X_STOP_ON_ERROR
2618 if (unlikely(bp->panic)) {
2619 BNX2X_ERR("Can't load NIC when there is panic\n");
2620 return -EPERM;
2621 }
2622 #endif
2623
2624 bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
2625
2626 /* zero the structure w/o any lock, before SP handler is initialized */
2627 memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link));
2628 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
2629 &bp->last_reported_link.link_report_flags);
2630
2631 if (IS_PF(bp))
2632 /* must be called before memory allocation and HW init */
2633 bnx2x_ilt_set_info(bp);
2634
2635 /*
2636 * Zero fastpath structures preserving invariants like napi, which are
2637 * allocated only once, fp index, max_cos, bp pointer.
2638 * Also set fp->mode and txdata_ptr.
2639 */
2640 DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues);
2641 for_each_queue(bp, i)
2642 bnx2x_bz_fp(bp, i);
2643 memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS +
2644 bp->num_cnic_queues) *
2645 sizeof(struct bnx2x_fp_txdata));
2646
2647 bp->fcoe_init = false;
2648
2649 /* Set the receive queues buffer size */
2650 bnx2x_set_rx_buf_size(bp);
2651
2652 if (IS_PF(bp)) {
2653 rc = bnx2x_alloc_mem(bp);
2654 if (rc) {
2655 BNX2X_ERR("Unable to allocate bp memory\n");
2656 return rc;
2657 }
2658 }
2659
2660 /* need to be done after alloc mem, since it's self adjusting to amount
2661 * of memory available for RSS queues
2662 */
2663 rc = bnx2x_alloc_fp_mem(bp);
2664 if (rc) {
2665 BNX2X_ERR("Unable to allocate memory for fps\n");
2666 LOAD_ERROR_EXIT(bp, load_error0);
2667 }
2668
2669 /* Allocated memory for FW statistics */
2670 if (bnx2x_alloc_fw_stats_mem(bp))
2671 LOAD_ERROR_EXIT(bp, load_error0);
2672
2673 /* request pf to initialize status blocks */
2674 if (IS_VF(bp)) {
2675 rc = bnx2x_vfpf_init(bp);
2676 if (rc)
2677 LOAD_ERROR_EXIT(bp, load_error0);
2678 }
2679
2680 /* As long as bnx2x_alloc_mem() may possibly update
2681 * bp->num_queues, bnx2x_set_real_num_queues() should always
2682 * come after it. At this stage cnic queues are not counted.
2683 */
2684 rc = bnx2x_set_real_num_queues(bp, 0);
2685 if (rc) {
2686 BNX2X_ERR("Unable to set real_num_queues\n");
2687 LOAD_ERROR_EXIT(bp, load_error0);
2688 }
2689
2690 /* configure multi cos mappings in kernel.
2691 * this configuration may be overridden by a multi class queue
2692 * discipline or by a dcbx negotiation result.
2693 */
2694 bnx2x_setup_tc(bp->dev, bp->max_cos);
2695
2696 /* Add all NAPI objects */
2697 bnx2x_add_all_napi(bp);
2698 DP(NETIF_MSG_IFUP, "napi added\n");
2699 bnx2x_napi_enable(bp);
2700
2701 if (IS_PF(bp)) {
2702 /* set pf load just before approaching the MCP */
2703 bnx2x_set_pf_load(bp);
2704
2705 /* if mcp exists send load request and analyze response */
2706 if (!BP_NOMCP(bp)) {
2707 /* attempt to load pf */
2708 rc = bnx2x_nic_load_request(bp, &load_code);
2709 if (rc)
2710 LOAD_ERROR_EXIT(bp, load_error1);
2711
2712 /* what did mcp say? */
2713 rc = bnx2x_compare_fw_ver(bp, load_code, true);
2714 if (rc) {
2715 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2716 LOAD_ERROR_EXIT(bp, load_error2);
2717 }
2718 } else {
2719 load_code = bnx2x_nic_load_no_mcp(bp, port);
2720 }
2721
2722 /* mark pmf if applicable */
2723 bnx2x_nic_load_pmf(bp, load_code);
2724
2725 /* Init Function state controlling object */
2726 bnx2x__init_func_obj(bp);
2727
2728 /* Initialize HW */
2729 rc = bnx2x_init_hw(bp, load_code);
2730 if (rc) {
2731 BNX2X_ERR("HW init failed, aborting\n");
2732 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2733 LOAD_ERROR_EXIT(bp, load_error2);
2734 }
2735 }
2736
2737 bnx2x_pre_irq_nic_init(bp);
2738
2739 /* Connect to IRQs */
2740 rc = bnx2x_setup_irqs(bp);
2741 if (rc) {
2742 BNX2X_ERR("setup irqs failed\n");
2743 if (IS_PF(bp))
2744 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2745 LOAD_ERROR_EXIT(bp, load_error2);
2746 }
2747
2748 /* Init per-function objects */
2749 if (IS_PF(bp)) {
2750 /* Setup NIC internals and enable interrupts */
2751 bnx2x_post_irq_nic_init(bp, load_code);
2752
2753 bnx2x_init_bp_objs(bp);
2754 bnx2x_iov_nic_init(bp);
2755
2756 /* Set AFEX default VLAN tag to an invalid value */
2757 bp->afex_def_vlan_tag = -1;
2758 bnx2x_nic_load_afex_dcc(bp, load_code);
2759 bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
2760 rc = bnx2x_func_start(bp);
2761 if (rc) {
2762 BNX2X_ERR("Function start failed!\n");
2763 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2764
2765 LOAD_ERROR_EXIT(bp, load_error3);
2766 }
2767
2768 /* Send LOAD_DONE command to MCP */
2769 if (!BP_NOMCP(bp)) {
2770 load_code = bnx2x_fw_command(bp,
2771 DRV_MSG_CODE_LOAD_DONE, 0);
2772 if (!load_code) {
2773 BNX2X_ERR("MCP response failure, aborting\n");
2774 rc = -EBUSY;
2775 LOAD_ERROR_EXIT(bp, load_error3);
2776 }
2777 }
2778
2779 /* initialize FW coalescing state machines in RAM */
2780 bnx2x_update_coalesce(bp);
2781 }
2782
2783 /* setup the leading queue */
2784 rc = bnx2x_setup_leading(bp);
2785 if (rc) {
2786 BNX2X_ERR("Setup leading failed!\n");
2787 LOAD_ERROR_EXIT(bp, load_error3);
2788 }
2789
2790 /* set up the rest of the queues */
2791 for_each_nondefault_eth_queue(bp, i) {
2792 if (IS_PF(bp))
2793 rc = bnx2x_setup_queue(bp, &bp->fp[i], false);
2794 else /* VF */
2795 rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false);
2796 if (rc) {
2797 BNX2X_ERR("Queue %d setup failed\n", i);
2798 LOAD_ERROR_EXIT(bp, load_error3);
2799 }
2800 }
2801
2802 /* setup rss */
2803 rc = bnx2x_init_rss(bp);
2804 if (rc) {
2805 BNX2X_ERR("PF RSS init failed\n");
2806 LOAD_ERROR_EXIT(bp, load_error3);
2807 }
2808
2809 /* Now when Clients are configured we are ready to work */
2810 bp->state = BNX2X_STATE_OPEN;
2811
2812 /* Configure a ucast MAC */
2813 if (IS_PF(bp))
2814 rc = bnx2x_set_eth_mac(bp, true);
2815 else /* vf */
2816 rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index,
2817 true);
2818 if (rc) {
2819 BNX2X_ERR("Setting Ethernet MAC failed\n");
2820 LOAD_ERROR_EXIT(bp, load_error3);
2821 }
2822
2823 if (IS_PF(bp) && bp->pending_max) {
2824 bnx2x_update_max_mf_config(bp, bp->pending_max);
2825 bp->pending_max = 0;
2826 }
2827
2828 bp->force_link_down = false;
2829 if (bp->port.pmf) {
2830 rc = bnx2x_initial_phy_init(bp, load_mode);
2831 if (rc)
2832 LOAD_ERROR_EXIT(bp, load_error3);
2833 }
2834 bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN;
2835
2836 /* Start fast path */
2837
2838 /* Re-configure vlan filters */
2839 rc = bnx2x_vlan_reconfigure_vid(bp);
2840 if (rc)
2841 LOAD_ERROR_EXIT(bp, load_error3);
2842
2843 /* Initialize Rx filter. */
2844 bnx2x_set_rx_mode_inner(bp);
2845
2846 if (bp->flags & PTP_SUPPORTED) {
2847 bnx2x_register_phc(bp);
2848 bnx2x_init_ptp(bp);
2849 bnx2x_configure_ptp_filters(bp);
2850 }
2851 /* Start Tx */
2852 switch (load_mode) {
2853 case LOAD_NORMAL:
2854 /* Tx queue should be only re-enabled */
2855 netif_tx_wake_all_queues(bp->dev);
2856 break;
2857
2858 case LOAD_OPEN:
2859 netif_tx_start_all_queues(bp->dev);
2860 smp_mb__after_atomic();
2861 break;
2862
2863 case LOAD_DIAG:
2864 case LOAD_LOOPBACK_EXT:
2865 bp->state = BNX2X_STATE_DIAG;
2866 break;
2867
2868 default:
2869 break;
2870 }
2871
2872 if (bp->port.pmf)
2873 bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0);
2874 else
2875 bnx2x__link_status_update(bp);
2876
2877 /* start the timer */
2878 mod_timer(&bp->timer, jiffies + bp->current_interval);
2879
2880 if (CNIC_ENABLED(bp))
2881 bnx2x_load_cnic(bp);
2882
2883 if (IS_PF(bp))
2884 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
2885
2886 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2887 /* mark driver is loaded in shmem2 */
2888 u32 val;
2889 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2890 val &= ~DRV_FLAGS_MTU_MASK;
2891 val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT);
2892 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2893 val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
2894 DRV_FLAGS_CAPABILITIES_LOADED_L2);
2895 }
2896
2897 /* Wait for all pending SP commands to complete */
2898 if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) {
2899 BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2900 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
2901 return -EBUSY;
2902 }
2903
2904 /* Update driver data for On-Chip MFW dump. */
2905 if (IS_PF(bp))
2906 bnx2x_update_mfw_dump(bp);
2907
2908 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2909 if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG))
2910 bnx2x_dcbx_init(bp, false);
2911
2912 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2913 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE);
2914
2915 DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n");
2916
2917 return 0;
2918
2919 #ifndef BNX2X_STOP_ON_ERROR
2920 load_error3:
2921 if (IS_PF(bp)) {
2922 bnx2x_int_disable_sync(bp, 1);
2923
2924 /* Clean queueable objects */
2925 bnx2x_squeeze_objects(bp);
2926 }
2927
2928 /* Free SKBs, SGEs, TPA pool and driver internals */
2929 bnx2x_free_skbs(bp);
2930 for_each_rx_queue(bp, i)
2931 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2932
2933 /* Release IRQs */
2934 bnx2x_free_irq(bp);
2935 load_error2:
2936 if (IS_PF(bp) && !BP_NOMCP(bp)) {
2937 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
2938 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
2939 }
2940
2941 bp->port.pmf = 0;
2942 load_error1:
2943 bnx2x_napi_disable(bp);
2944 bnx2x_del_all_napi(bp);
2945
2946 /* clear pf_load status, as it was already set */
2947 if (IS_PF(bp))
2948 bnx2x_clear_pf_load(bp);
2949 load_error0:
2950 bnx2x_free_fw_stats_mem(bp);
2951 bnx2x_free_fp_mem(bp);
2952 bnx2x_free_mem(bp);
2953
2954 return rc;
2955 #endif /* ! BNX2X_STOP_ON_ERROR */
2956 }
2957
2958 int bnx2x_drain_tx_queues(struct bnx2x *bp)
2959 {
2960 u8 rc = 0, cos, i;
2961
2962 /* Wait until tx fastpath tasks complete */
2963 for_each_tx_queue(bp, i) {
2964 struct bnx2x_fastpath *fp = &bp->fp[i];
2965
2966 for_each_cos_in_tx_queue(fp, cos)
2967 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
2968 if (rc)
2969 return rc;
2970 }
2971 return 0;
2972 }
2973
2974 /* must be called with rtnl_lock */
2975 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link)
2976 {
2977 int i;
2978 bool global = false;
2979
2980 DP(NETIF_MSG_IFUP, "Starting NIC unload\n");
2981
2982 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2983 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
2984
2985 /* mark driver is unloaded in shmem2 */
2986 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2987 u32 val;
2988 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2989 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2990 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2991 }
2992
2993 if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE &&
2994 (bp->state == BNX2X_STATE_CLOSED ||
2995 bp->state == BNX2X_STATE_ERROR)) {
2996 /* We can get here if the driver has been unloaded
2997 * during parity error recovery and is either waiting for a
2998 * leader to complete or for other functions to unload and
2999 * then ifdown has been issued. In this case we want to
3000 * unload and let other functions to complete a recovery
3001 * process.
3002 */
3003 bp->recovery_state = BNX2X_RECOVERY_DONE;
3004 bp->is_leader = 0;
3005 bnx2x_release_leader_lock(bp);
3006 smp_mb();
3007
3008 DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n");
3009 BNX2X_ERR("Can't unload in closed or error state\n");
3010 return -EINVAL;
3011 }
3012
3013 /* Nothing to do during unload if previous bnx2x_nic_load()
3014 * have not completed successfully - all resources are released.
3015 *
3016 * we can get here only after unsuccessful ndo_* callback, during which
3017 * dev->IFF_UP flag is still on.
3018 */
3019 if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR)
3020 return 0;
3021
3022 /* It's important to set the bp->state to the value different from
3023 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
3024 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
3025 */
3026 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
3027 smp_mb();
3028
3029 /* indicate to VFs that the PF is going down */
3030 bnx2x_iov_channel_down(bp);
3031
3032 if (CNIC_LOADED(bp))
3033 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
3034
3035 /* Stop Tx */
3036 bnx2x_tx_disable(bp);
3037 netdev_reset_tc(bp->dev);
3038
3039 bp->rx_mode = BNX2X_RX_MODE_NONE;
3040
3041 del_timer_sync(&bp->timer);
3042
3043 if (IS_PF(bp) && !BP_NOMCP(bp)) {
3044 /* Set ALWAYS_ALIVE bit in shmem */
3045 bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
3046 bnx2x_drv_pulse(bp);
3047 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
3048 bnx2x_save_statistics(bp);
3049 }
3050
3051 /* wait till consumers catch up with producers in all queues.
3052 * If we're recovering, FW can't write to host so no reason
3053 * to wait for the queues to complete all Tx.
3054 */
3055 if (unload_mode != UNLOAD_RECOVERY)
3056 bnx2x_drain_tx_queues(bp);
3057
3058 /* if VF indicate to PF this function is going down (PF will delete sp
3059 * elements and clear initializations
3060 */
3061 if (IS_VF(bp))
3062 bnx2x_vfpf_close_vf(bp);
3063 else if (unload_mode != UNLOAD_RECOVERY)
3064 /* if this is a normal/close unload need to clean up chip*/
3065 bnx2x_chip_cleanup(bp, unload_mode, keep_link);
3066 else {
3067 /* Send the UNLOAD_REQUEST to the MCP */
3068 bnx2x_send_unload_req(bp, unload_mode);
3069
3070 /* Prevent transactions to host from the functions on the
3071 * engine that doesn't reset global blocks in case of global
3072 * attention once global blocks are reset and gates are opened
3073 * (the engine which leader will perform the recovery
3074 * last).
3075 */
3076 if (!CHIP_IS_E1x(bp))
3077 bnx2x_pf_disable(bp);
3078
3079 /* Disable HW interrupts, NAPI */
3080 bnx2x_netif_stop(bp, 1);
3081 /* Delete all NAPI objects */
3082 bnx2x_del_all_napi(bp);
3083 if (CNIC_LOADED(bp))
3084 bnx2x_del_all_napi_cnic(bp);
3085 /* Release IRQs */
3086 bnx2x_free_irq(bp);
3087
3088 /* Report UNLOAD_DONE to MCP */
3089 bnx2x_send_unload_done(bp, false);
3090 }
3091
3092 /*
3093 * At this stage no more interrupts will arrive so we may safely clean
3094 * the queueable objects here in case they failed to get cleaned so far.
3095 */
3096 if (IS_PF(bp))
3097 bnx2x_squeeze_objects(bp);
3098
3099 /* There should be no more pending SP commands at this stage */
3100 bp->sp_state = 0;
3101
3102 bp->port.pmf = 0;
3103
3104 /* clear pending work in rtnl task */
3105 bp->sp_rtnl_state = 0;
3106 smp_mb();
3107
3108 /* Free SKBs, SGEs, TPA pool and driver internals */
3109 bnx2x_free_skbs(bp);
3110 if (CNIC_LOADED(bp))
3111 bnx2x_free_skbs_cnic(bp);
3112 for_each_rx_queue(bp, i)
3113 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
3114
3115 bnx2x_free_fp_mem(bp);
3116 if (CNIC_LOADED(bp))
3117 bnx2x_free_fp_mem_cnic(bp);
3118
3119 if (IS_PF(bp)) {
3120 if (CNIC_LOADED(bp))
3121 bnx2x_free_mem_cnic(bp);
3122 }
3123 bnx2x_free_mem(bp);
3124
3125 bp->state = BNX2X_STATE_CLOSED;
3126 bp->cnic_loaded = false;
3127
3128 /* Clear driver version indication in shmem */
3129 if (IS_PF(bp) && !BP_NOMCP(bp))
3130 bnx2x_update_mng_version(bp);
3131
3132 /* Check if there are pending parity attentions. If there are - set
3133 * RECOVERY_IN_PROGRESS.
3134 */
3135 if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) {
3136 bnx2x_set_reset_in_progress(bp);
3137
3138 /* Set RESET_IS_GLOBAL if needed */
3139 if (global)
3140 bnx2x_set_reset_global(bp);
3141 }
3142
3143 /* The last driver must disable a "close the gate" if there is no
3144 * parity attention or "process kill" pending.
3145 */
3146 if (IS_PF(bp) &&
3147 !bnx2x_clear_pf_load(bp) &&
3148 bnx2x_reset_is_done(bp, BP_PATH(bp)))
3149 bnx2x_disable_close_the_gate(bp);
3150
3151 DP(NETIF_MSG_IFUP, "Ending NIC unload\n");
3152
3153 return 0;
3154 }
3155
3156 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
3157 {
3158 u16 pmcsr;
3159
3160 /* If there is no power capability, silently succeed */
3161 if (!bp->pdev->pm_cap) {
3162 BNX2X_DEV_INFO("No power capability. Breaking.\n");
3163 return 0;
3164 }
3165
3166 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
3167
3168 switch (state) {
3169 case PCI_D0:
3170 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3171 ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3172 PCI_PM_CTRL_PME_STATUS));
3173
3174 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3175 /* delay required during transition out of D3hot */
3176 msleep(20);
3177 break;
3178
3179 case PCI_D3hot:
3180 /* If there are other clients above don't
3181 shut down the power */
3182 if (atomic_read(&bp->pdev->enable_cnt) != 1)
3183 return 0;
3184 /* Don't shut down the power for emulation and FPGA */
3185 if (CHIP_REV_IS_SLOW(bp))
3186 return 0;
3187
3188 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3189 pmcsr |= 3;
3190
3191 if (bp->wol)
3192 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3193
3194 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3195 pmcsr);
3196
3197 /* No more memory access after this point until
3198 * device is brought back to D0.
3199 */
3200 break;
3201
3202 default:
3203 dev_err(&bp->pdev->dev, "Can't support state = %d\n", state);
3204 return -EINVAL;
3205 }
3206 return 0;
3207 }
3208
3209 /*
3210 * net_device service functions
3211 */
3212 static int bnx2x_poll(struct napi_struct *napi, int budget)
3213 {
3214 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3215 napi);
3216 struct bnx2x *bp = fp->bp;
3217 int rx_work_done;
3218 u8 cos;
3219
3220 #ifdef BNX2X_STOP_ON_ERROR
3221 if (unlikely(bp->panic)) {
3222 napi_complete(napi);
3223 return 0;
3224 }
3225 #endif
3226 for_each_cos_in_tx_queue(fp, cos)
3227 if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos]))
3228 bnx2x_tx_int(bp, fp->txdata_ptr[cos]);
3229
3230 rx_work_done = (bnx2x_has_rx_work(fp)) ? bnx2x_rx_int(fp, budget) : 0;
3231
3232 if (rx_work_done < budget) {
3233 /* No need to update SB for FCoE L2 ring as long as
3234 * it's connected to the default SB and the SB
3235 * has been updated when NAPI was scheduled.
3236 */
3237 if (IS_FCOE_FP(fp)) {
3238 napi_complete_done(napi, rx_work_done);
3239 } else {
3240 bnx2x_update_fpsb_idx(fp);
3241 /* bnx2x_has_rx_work() reads the status block,
3242 * thus we need to ensure that status block indices
3243 * have been actually read (bnx2x_update_fpsb_idx)
3244 * prior to this check (bnx2x_has_rx_work) so that
3245 * we won't write the "newer" value of the status block
3246 * to IGU (if there was a DMA right after
3247 * bnx2x_has_rx_work and if there is no rmb, the memory
3248 * reading (bnx2x_update_fpsb_idx) may be postponed
3249 * to right before bnx2x_ack_sb). In this case there
3250 * will never be another interrupt until there is
3251 * another update of the status block, while there
3252 * is still unhandled work.
3253 */
3254 rmb();
3255
3256 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3257 if (napi_complete_done(napi, rx_work_done)) {
3258 /* Re-enable interrupts */
3259 DP(NETIF_MSG_RX_STATUS,
3260 "Update index to %d\n", fp->fp_hc_idx);
3261 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID,
3262 le16_to_cpu(fp->fp_hc_idx),
3263 IGU_INT_ENABLE, 1);
3264 }
3265 } else {
3266 rx_work_done = budget;
3267 }
3268 }
3269 }
3270
3271 return rx_work_done;
3272 }
3273
3274 /* we split the first BD into headers and data BDs
3275 * to ease the pain of our fellow microcode engineers
3276 * we use one mapping for both BDs
3277 */
3278 static u16 bnx2x_tx_split(struct bnx2x *bp,
3279 struct bnx2x_fp_txdata *txdata,
3280 struct sw_tx_bd *tx_buf,
3281 struct eth_tx_start_bd **tx_bd, u16 hlen,
3282 u16 bd_prod)
3283 {
3284 struct eth_tx_start_bd *h_tx_bd = *tx_bd;
3285 struct eth_tx_bd *d_tx_bd;
3286 dma_addr_t mapping;
3287 int old_len = le16_to_cpu(h_tx_bd->nbytes);
3288
3289 /* first fix first BD */
3290 h_tx_bd->nbytes = cpu_to_le16(hlen);
3291
3292 DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x)\n",
3293 h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo);
3294
3295 /* now get a new data BD
3296 * (after the pbd) and fill it */
3297 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3298 d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3299
3300 mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
3301 le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
3302
3303 d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3304 d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3305 d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
3306
3307 /* this marks the BD as one that has no individual mapping */
3308 tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
3309
3310 DP(NETIF_MSG_TX_QUEUED,
3311 "TSO split data size is %d (%x:%x)\n",
3312 d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
3313
3314 /* update tx_bd */
3315 *tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
3316
3317 return bd_prod;
3318 }
3319
3320 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3321 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
3322 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
3323 {
3324 __sum16 tsum = (__force __sum16) csum;
3325
3326 if (fix > 0)
3327 tsum = ~csum_fold(csum_sub((__force __wsum) csum,
3328 csum_partial(t_header - fix, fix, 0)));
3329
3330 else if (fix < 0)
3331 tsum = ~csum_fold(csum_add((__force __wsum) csum,
3332 csum_partial(t_header, -fix, 0)));
3333
3334 return bswab16(tsum);
3335 }
3336
3337 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
3338 {
3339 u32 rc;
3340 __u8 prot = 0;
3341 __be16 protocol;
3342
3343 if (skb->ip_summed != CHECKSUM_PARTIAL)
3344 return XMIT_PLAIN;
3345
3346 protocol = vlan_get_protocol(skb);
3347 if (protocol == htons(ETH_P_IPV6)) {
3348 rc = XMIT_CSUM_V6;
3349 prot = ipv6_hdr(skb)->nexthdr;
3350 } else {
3351 rc = XMIT_CSUM_V4;
3352 prot = ip_hdr(skb)->protocol;
3353 }
3354
3355 if (!CHIP_IS_E1x(bp) && skb->encapsulation) {
3356 if (inner_ip_hdr(skb)->version == 6) {
3357 rc |= XMIT_CSUM_ENC_V6;
3358 if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3359 rc |= XMIT_CSUM_TCP;
3360 } else {
3361 rc |= XMIT_CSUM_ENC_V4;
3362 if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP)
3363 rc |= XMIT_CSUM_TCP;
3364 }
3365 }
3366 if (prot == IPPROTO_TCP)
3367 rc |= XMIT_CSUM_TCP;
3368
3369 if (skb_is_gso(skb)) {
3370 if (skb_is_gso_v6(skb)) {
3371 rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP);
3372 if (rc & XMIT_CSUM_ENC)
3373 rc |= XMIT_GSO_ENC_V6;
3374 } else {
3375 rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP);
3376 if (rc & XMIT_CSUM_ENC)
3377 rc |= XMIT_GSO_ENC_V4;
3378 }
3379 }
3380
3381 return rc;
3382 }
3383
3384 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */
3385 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS 4
3386
3387 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3388 #define BNX2X_NUM_TSO_WIN_SUB_BDS 3
3389
3390 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3391 /* check if packet requires linearization (packet is too fragmented)
3392 no need to check fragmentation if page size > 8K (there will be no
3393 violation to FW restrictions) */
3394 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
3395 u32 xmit_type)
3396 {
3397 int first_bd_sz = 0, num_tso_win_sub = BNX2X_NUM_TSO_WIN_SUB_BDS;
3398 int to_copy = 0, hlen = 0;
3399
3400 if (xmit_type & XMIT_GSO_ENC)
3401 num_tso_win_sub = BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS;
3402
3403 if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - num_tso_win_sub)) {
3404 if (xmit_type & XMIT_GSO) {
3405 unsigned short lso_mss = skb_shinfo(skb)->gso_size;
3406 int wnd_size = MAX_FETCH_BD - num_tso_win_sub;
3407 /* Number of windows to check */
3408 int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
3409 int wnd_idx = 0;
3410 int frag_idx = 0;
3411 u32 wnd_sum = 0;
3412
3413 /* Headers length */
3414 if (xmit_type & XMIT_GSO_ENC)
3415 hlen = (int)(skb_inner_transport_header(skb) -
3416 skb->data) +
3417 inner_tcp_hdrlen(skb);
3418 else
3419 hlen = (int)(skb_transport_header(skb) -
3420 skb->data) + tcp_hdrlen(skb);
3421
3422 /* Amount of data (w/o headers) on linear part of SKB*/
3423 first_bd_sz = skb_headlen(skb) - hlen;
3424
3425 wnd_sum = first_bd_sz;
3426
3427 /* Calculate the first sum - it's special */
3428 for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
3429 wnd_sum +=
3430 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]);
3431
3432 /* If there was data on linear skb data - check it */
3433 if (first_bd_sz > 0) {
3434 if (unlikely(wnd_sum < lso_mss)) {
3435 to_copy = 1;
3436 goto exit_lbl;
3437 }
3438
3439 wnd_sum -= first_bd_sz;
3440 }
3441
3442 /* Others are easier: run through the frag list and
3443 check all windows */
3444 for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
3445 wnd_sum +=
3446 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]);
3447
3448 if (unlikely(wnd_sum < lso_mss)) {
3449 to_copy = 1;
3450 break;
3451 }
3452 wnd_sum -=
3453 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]);
3454 }
3455 } else {
3456 /* in non-LSO too fragmented packet should always
3457 be linearized */
3458 to_copy = 1;
3459 }
3460 }
3461
3462 exit_lbl:
3463 if (unlikely(to_copy))
3464 DP(NETIF_MSG_TX_QUEUED,
3465 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n",
3466 (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
3467 skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
3468
3469 return to_copy;
3470 }
3471 #endif
3472
3473 /**
3474 * bnx2x_set_pbd_gso - update PBD in GSO case.
3475 *
3476 * @skb: packet skb
3477 * @pbd: parse BD
3478 * @xmit_type: xmit flags
3479 */
3480 static void bnx2x_set_pbd_gso(struct sk_buff *skb,
3481 struct eth_tx_parse_bd_e1x *pbd,
3482 u32 xmit_type)
3483 {
3484 pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
3485 pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq);
3486 pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb));
3487
3488 if (xmit_type & XMIT_GSO_V4) {
3489 pbd->ip_id = bswab16(ip_hdr(skb)->id);
3490 pbd->tcp_pseudo_csum =
3491 bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3492 ip_hdr(skb)->daddr,
3493 0, IPPROTO_TCP, 0));
3494 } else {
3495 pbd->tcp_pseudo_csum =
3496 bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3497 &ipv6_hdr(skb)->daddr,
3498 0, IPPROTO_TCP, 0));
3499 }
3500
3501 pbd->global_data |=
3502 cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
3503 }
3504
3505 /**
3506 * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length
3507 *
3508 * @bp: driver handle
3509 * @skb: packet skb
3510 * @parsing_data: data to be updated
3511 * @xmit_type: xmit flags
3512 *
3513 * 57712/578xx related, when skb has encapsulation
3514 */
3515 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb,
3516 u32 *parsing_data, u32 xmit_type)
3517 {
3518 *parsing_data |=
3519 ((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) <<
3520 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3521 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3522
3523 if (xmit_type & XMIT_CSUM_TCP) {
3524 *parsing_data |= ((inner_tcp_hdrlen(skb) / 4) <<
3525 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3526 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3527
3528 return skb_inner_transport_header(skb) +
3529 inner_tcp_hdrlen(skb) - skb->data;
3530 }
3531
3532 /* We support checksum offload for TCP and UDP only.
3533 * No need to pass the UDP header length - it's a constant.
3534 */
3535 return skb_inner_transport_header(skb) +
3536 sizeof(struct udphdr) - skb->data;
3537 }
3538
3539 /**
3540 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3541 *
3542 * @bp: driver handle
3543 * @skb: packet skb
3544 * @parsing_data: data to be updated
3545 * @xmit_type: xmit flags
3546 *
3547 * 57712/578xx related
3548 */
3549 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb,
3550 u32 *parsing_data, u32 xmit_type)
3551 {
3552 *parsing_data |=
3553 ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) <<
3554 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3555 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3556
3557 if (xmit_type & XMIT_CSUM_TCP) {
3558 *parsing_data |= ((tcp_hdrlen(skb) / 4) <<
3559 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3560 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3561
3562 return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data;
3563 }
3564 /* We support checksum offload for TCP and UDP only.
3565 * No need to pass the UDP header length - it's a constant.
3566 */
3567 return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data;
3568 }
3569
3570 /* set FW indication according to inner or outer protocols if tunneled */
3571 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3572 struct eth_tx_start_bd *tx_start_bd,
3573 u32 xmit_type)
3574 {
3575 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
3576
3577 if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6))
3578 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6;
3579
3580 if (!(xmit_type & XMIT_CSUM_TCP))
3581 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP;
3582 }
3583
3584 /**
3585 * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3586 *
3587 * @bp: driver handle
3588 * @skb: packet skb
3589 * @pbd: parse BD to be updated
3590 * @xmit_type: xmit flags
3591 */
3592 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3593 struct eth_tx_parse_bd_e1x *pbd,
3594 u32 xmit_type)
3595 {
3596 u8 hlen = (skb_network_header(skb) - skb->data) >> 1;
3597
3598 /* for now NS flag is not used in Linux */
3599 pbd->global_data =
3600 cpu_to_le16(hlen |
3601 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3602 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
3603
3604 pbd->ip_hlen_w = (skb_transport_header(skb) -
3605 skb_network_header(skb)) >> 1;
3606
3607 hlen += pbd->ip_hlen_w;
3608
3609 /* We support checksum offload for TCP and UDP only */
3610 if (xmit_type & XMIT_CSUM_TCP)
3611 hlen += tcp_hdrlen(skb) / 2;
3612 else
3613 hlen += sizeof(struct udphdr) / 2;
3614
3615 pbd->total_hlen_w = cpu_to_le16(hlen);
3616 hlen = hlen*2;
3617
3618 if (xmit_type & XMIT_CSUM_TCP) {
3619 pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check);
3620
3621 } else {
3622 s8 fix = SKB_CS_OFF(skb); /* signed! */
3623
3624 DP(NETIF_MSG_TX_QUEUED,
3625 "hlen %d fix %d csum before fix %x\n",
3626 le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb));
3627
3628 /* HW bug: fixup the CSUM */
3629 pbd->tcp_pseudo_csum =
3630 bnx2x_csum_fix(skb_transport_header(skb),
3631 SKB_CS(skb), fix);
3632
3633 DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n",
3634 pbd->tcp_pseudo_csum);
3635 }
3636
3637 return hlen;
3638 }
3639
3640 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb,
3641 struct eth_tx_parse_bd_e2 *pbd_e2,
3642 struct eth_tx_parse_2nd_bd *pbd2,
3643 u16 *global_data,
3644 u32 xmit_type)
3645 {
3646 u16 hlen_w = 0;
3647 u8 outerip_off, outerip_len = 0;
3648
3649 /* from outer IP to transport */
3650 hlen_w = (skb_inner_transport_header(skb) -
3651 skb_network_header(skb)) >> 1;
3652
3653 /* transport len */
3654 hlen_w += inner_tcp_hdrlen(skb) >> 1;
3655
3656 pbd2->fw_ip_hdr_to_payload_w = hlen_w;
3657
3658 /* outer IP header info */
3659 if (xmit_type & XMIT_CSUM_V4) {
3660 struct iphdr *iph = ip_hdr(skb);
3661 u32 csum = (__force u32)(~iph->check) -
3662 (__force u32)iph->tot_len -
3663 (__force u32)iph->frag_off;
3664
3665 outerip_len = iph->ihl << 1;
3666
3667 pbd2->fw_ip_csum_wo_len_flags_frag =
3668 bswab16(csum_fold((__force __wsum)csum));
3669 } else {
3670 pbd2->fw_ip_hdr_to_payload_w =
3671 hlen_w - ((sizeof(struct ipv6hdr)) >> 1);
3672 pbd_e2->data.tunnel_data.flags |=
3673 ETH_TUNNEL_DATA_IPV6_OUTER;
3674 }
3675
3676 pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq);
3677
3678 pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb));
3679
3680 /* inner IP header info */
3681 if (xmit_type & XMIT_CSUM_ENC_V4) {
3682 pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id);
3683
3684 pbd_e2->data.tunnel_data.pseudo_csum =
3685 bswab16(~csum_tcpudp_magic(
3686 inner_ip_hdr(skb)->saddr,
3687 inner_ip_hdr(skb)->daddr,
3688 0, IPPROTO_TCP, 0));
3689 } else {
3690 pbd_e2->data.tunnel_data.pseudo_csum =
3691 bswab16(~csum_ipv6_magic(
3692 &inner_ipv6_hdr(skb)->saddr,
3693 &inner_ipv6_hdr(skb)->daddr,
3694 0, IPPROTO_TCP, 0));
3695 }
3696
3697 outerip_off = (skb_network_header(skb) - skb->data) >> 1;
3698
3699 *global_data |=
3700 outerip_off |
3701 (outerip_len <<
3702 ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) |
3703 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3704 ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT);
3705
3706 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
3707 SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1);
3708 pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1;
3709 }
3710 }
3711
3712 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data,
3713 u32 xmit_type)
3714 {
3715 struct ipv6hdr *ipv6;
3716
3717 if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6)))
3718 return;
3719
3720 if (xmit_type & XMIT_GSO_ENC_V6)
3721 ipv6 = inner_ipv6_hdr(skb);
3722 else /* XMIT_GSO_V6 */
3723 ipv6 = ipv6_hdr(skb);
3724
3725 if (ipv6->nexthdr == NEXTHDR_IPV6)
3726 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
3727 }
3728
3729 /* called with netif_tx_lock
3730 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3731 * netif_wake_queue()
3732 */
3733 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev)
3734 {
3735 struct bnx2x *bp = netdev_priv(dev);
3736
3737 struct netdev_queue *txq;
3738 struct bnx2x_fp_txdata *txdata;
3739 struct sw_tx_bd *tx_buf;
3740 struct eth_tx_start_bd *tx_start_bd, *first_bd;
3741 struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL;
3742 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
3743 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
3744 struct eth_tx_parse_2nd_bd *pbd2 = NULL;
3745 u32 pbd_e2_parsing_data = 0;
3746 u16 pkt_prod, bd_prod;
3747 int nbd, txq_index;
3748 dma_addr_t mapping;
3749 u32 xmit_type = bnx2x_xmit_type(bp, skb);
3750 int i;
3751 u8 hlen = 0;
3752 __le16 pkt_size = 0;
3753 struct ethhdr *eth;
3754 u8 mac_type = UNICAST_ADDRESS;
3755
3756 #ifdef BNX2X_STOP_ON_ERROR
3757 if (unlikely(bp->panic))
3758 return NETDEV_TX_BUSY;
3759 #endif
3760
3761 txq_index = skb_get_queue_mapping(skb);
3762 txq = netdev_get_tx_queue(dev, txq_index);
3763
3764 BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0));
3765
3766 txdata = &bp->bnx2x_txq[txq_index];
3767
3768 /* enable this debug print to view the transmission queue being used
3769 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3770 txq_index, fp_index, txdata_index); */
3771
3772 /* enable this debug print to view the transmission details
3773 DP(NETIF_MSG_TX_QUEUED,
3774 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3775 txdata->cid, fp_index, txdata_index, txdata, fp); */
3776
3777 if (unlikely(bnx2x_tx_avail(bp, txdata) <
3778 skb_shinfo(skb)->nr_frags +
3779 BDS_PER_TX_PKT +
3780 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) {
3781 /* Handle special storage cases separately */
3782 if (txdata->tx_ring_size == 0) {
3783 struct bnx2x_eth_q_stats *q_stats =
3784 bnx2x_fp_qstats(bp, txdata->parent_fp);
3785 q_stats->driver_filtered_tx_pkt++;
3786 dev_kfree_skb(skb);
3787 return NETDEV_TX_OK;
3788 }
3789 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
3790 netif_tx_stop_queue(txq);
3791 BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3792
3793 return NETDEV_TX_BUSY;
3794 }
3795
3796 DP(NETIF_MSG_TX_QUEUED,
3797 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n",
3798 txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr,
3799 ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type,
3800 skb->len);
3801
3802 eth = (struct ethhdr *)skb->data;
3803
3804 /* set flag according to packet type (UNICAST_ADDRESS is default)*/
3805 if (unlikely(is_multicast_ether_addr(eth->h_dest))) {
3806 if (is_broadcast_ether_addr(eth->h_dest))
3807 mac_type = BROADCAST_ADDRESS;
3808 else
3809 mac_type = MULTICAST_ADDRESS;
3810 }
3811
3812 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3813 /* First, check if we need to linearize the skb (due to FW
3814 restrictions). No need to check fragmentation if page size > 8K
3815 (there will be no violation to FW restrictions) */
3816 if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) {
3817 /* Statistics of linearization */
3818 bp->lin_cnt++;
3819 if (skb_linearize(skb) != 0) {
3820 DP(NETIF_MSG_TX_QUEUED,
3821 "SKB linearization failed - silently dropping this SKB\n");
3822 dev_kfree_skb_any(skb);
3823 return NETDEV_TX_OK;
3824 }
3825 }
3826 #endif
3827 /* Map skb linear data for DMA */
3828 mapping = dma_map_single(&bp->pdev->dev, skb->data,
3829 skb_headlen(skb), DMA_TO_DEVICE);
3830 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3831 DP(NETIF_MSG_TX_QUEUED,
3832 "SKB mapping failed - silently dropping this SKB\n");
3833 dev_kfree_skb_any(skb);
3834 return NETDEV_TX_OK;
3835 }
3836 /*
3837 Please read carefully. First we use one BD which we mark as start,
3838 then we have a parsing info BD (used for TSO or xsum),
3839 and only then we have the rest of the TSO BDs.
3840 (don't forget to mark the last one as last,
3841 and to unmap only AFTER you write to the BD ...)
3842 And above all, all pdb sizes are in words - NOT DWORDS!
3843 */
3844
3845 /* get current pkt produced now - advance it just before sending packet
3846 * since mapping of pages may fail and cause packet to be dropped
3847 */
3848 pkt_prod = txdata->tx_pkt_prod;
3849 bd_prod = TX_BD(txdata->tx_bd_prod);
3850
3851 /* get a tx_buf and first BD
3852 * tx_start_bd may be changed during SPLIT,
3853 * but first_bd will always stay first
3854 */
3855 tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
3856 tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
3857 first_bd = tx_start_bd;
3858
3859 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
3860
3861 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
3862 if (!(bp->flags & TX_TIMESTAMPING_EN)) {
3863 bp->eth_stats.ptp_skip_tx_ts++;
3864 BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n");
3865 } else if (bp->ptp_tx_skb) {
3866 bp->eth_stats.ptp_skip_tx_ts++;
3867 netdev_err_once(bp->dev,
3868 "Device supports only a single outstanding packet to timestamp, this packet won't be timestamped\n");
3869 } else {
3870 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3871 /* schedule check for Tx timestamp */
3872 bp->ptp_tx_skb = skb_get(skb);
3873 bp->ptp_tx_start = jiffies;
3874 schedule_work(&bp->ptp_task);
3875 }
3876 }
3877
3878 /* header nbd: indirectly zero other flags! */
3879 tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT;
3880
3881 /* remember the first BD of the packet */
3882 tx_buf->first_bd = txdata->tx_bd_prod;
3883 tx_buf->skb = skb;
3884 tx_buf->flags = 0;
3885
3886 DP(NETIF_MSG_TX_QUEUED,
3887 "sending pkt %u @%p next_idx %u bd %u @%p\n",
3888 pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd);
3889
3890 if (skb_vlan_tag_present(skb)) {
3891 tx_start_bd->vlan_or_ethertype =
3892 cpu_to_le16(skb_vlan_tag_get(skb));
3893 tx_start_bd->bd_flags.as_bitfield |=
3894 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3895 } else {
3896 /* when transmitting in a vf, start bd must hold the ethertype
3897 * for fw to enforce it
3898 */
3899 u16 vlan_tci = 0;
3900 #ifndef BNX2X_STOP_ON_ERROR
3901 if (IS_VF(bp)) {
3902 #endif
3903 /* Still need to consider inband vlan for enforced */
3904 if (__vlan_get_tag(skb, &vlan_tci)) {
3905 tx_start_bd->vlan_or_ethertype =
3906 cpu_to_le16(ntohs(eth->h_proto));
3907 } else {
3908 tx_start_bd->bd_flags.as_bitfield |=
3909 (X_ETH_INBAND_VLAN <<
3910 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3911 tx_start_bd->vlan_or_ethertype =
3912 cpu_to_le16(vlan_tci);
3913 }
3914 #ifndef BNX2X_STOP_ON_ERROR
3915 } else {
3916 /* used by FW for packet accounting */
3917 tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
3918 }
3919 #endif
3920 }
3921
3922 nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3923
3924 /* turn on parsing and get a BD */
3925 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3926
3927 if (xmit_type & XMIT_CSUM)
3928 bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type);
3929
3930 if (!CHIP_IS_E1x(bp)) {
3931 pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
3932 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
3933
3934 if (xmit_type & XMIT_CSUM_ENC) {
3935 u16 global_data = 0;
3936
3937 /* Set PBD in enc checksum offload case */
3938 hlen = bnx2x_set_pbd_csum_enc(bp, skb,
3939 &pbd_e2_parsing_data,
3940 xmit_type);
3941
3942 /* turn on 2nd parsing and get a BD */
3943 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3944
3945 pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd;
3946
3947 memset(pbd2, 0, sizeof(*pbd2));
3948
3949 pbd_e2->data.tunnel_data.ip_hdr_start_inner_w =
3950 (skb_inner_network_header(skb) -
3951 skb->data) >> 1;
3952
3953 if (xmit_type & XMIT_GSO_ENC)
3954 bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2,
3955 &global_data,
3956 xmit_type);
3957
3958 pbd2->global_data = cpu_to_le16(global_data);
3959
3960 /* add addition parse BD indication to start BD */
3961 SET_FLAG(tx_start_bd->general_data,
3962 ETH_TX_START_BD_PARSE_NBDS, 1);
3963 /* set encapsulation flag in start BD */
3964 SET_FLAG(tx_start_bd->general_data,
3965 ETH_TX_START_BD_TUNNEL_EXIST, 1);
3966
3967 tx_buf->flags |= BNX2X_HAS_SECOND_PBD;
3968
3969 nbd++;
3970 } else if (xmit_type & XMIT_CSUM) {
3971 /* Set PBD in checksum offload case w/o encapsulation */
3972 hlen = bnx2x_set_pbd_csum_e2(bp, skb,
3973 &pbd_e2_parsing_data,
3974 xmit_type);
3975 }
3976
3977 bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type);
3978 /* Add the macs to the parsing BD if this is a vf or if
3979 * Tx Switching is enabled.
3980 */
3981 if (IS_VF(bp)) {
3982 /* override GRE parameters in BD */
3983 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
3984 &pbd_e2->data.mac_addr.src_mid,
3985 &pbd_e2->data.mac_addr.src_lo,
3986 eth->h_source);
3987
3988 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
3989 &pbd_e2->data.mac_addr.dst_mid,
3990 &pbd_e2->data.mac_addr.dst_lo,
3991 eth->h_dest);
3992 } else {
3993 if (bp->flags & TX_SWITCHING)
3994 bnx2x_set_fw_mac_addr(
3995 &pbd_e2->data.mac_addr.dst_hi,
3996 &pbd_e2->data.mac_addr.dst_mid,
3997 &pbd_e2->data.mac_addr.dst_lo,
3998 eth->h_dest);
3999 #ifdef BNX2X_STOP_ON_ERROR
4000 /* Enforce security is always set in Stop on Error -
4001 * source mac should be present in the parsing BD
4002 */
4003 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
4004 &pbd_e2->data.mac_addr.src_mid,
4005 &pbd_e2->data.mac_addr.src_lo,
4006 eth->h_source);
4007 #endif
4008 }
4009
4010 SET_FLAG(pbd_e2_parsing_data,
4011 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type);
4012 } else {
4013 u16 global_data = 0;
4014 pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
4015 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
4016 /* Set PBD in checksum offload case */
4017 if (xmit_type & XMIT_CSUM)
4018 hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type);
4019
4020 SET_FLAG(global_data,
4021 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
4022 pbd_e1x->global_data |= cpu_to_le16(global_data);
4023 }
4024
4025 /* Setup the data pointer of the first BD of the packet */
4026 tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4027 tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4028 tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
4029 pkt_size = tx_start_bd->nbytes;
4030
4031 DP(NETIF_MSG_TX_QUEUED,
4032 "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n",
4033 tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo,
4034 le16_to_cpu(tx_start_bd->nbytes),
4035 tx_start_bd->bd_flags.as_bitfield,
4036 le16_to_cpu(tx_start_bd->vlan_or_ethertype));
4037
4038 if (xmit_type & XMIT_GSO) {
4039
4040 DP(NETIF_MSG_TX_QUEUED,
4041 "TSO packet len %d hlen %d total len %d tso size %d\n",
4042 skb->len, hlen, skb_headlen(skb),
4043 skb_shinfo(skb)->gso_size);
4044
4045 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
4046
4047 if (unlikely(skb_headlen(skb) > hlen)) {
4048 nbd++;
4049 bd_prod = bnx2x_tx_split(bp, txdata, tx_buf,
4050 &tx_start_bd, hlen,
4051 bd_prod);
4052 }
4053 if (!CHIP_IS_E1x(bp))
4054 pbd_e2_parsing_data |=
4055 (skb_shinfo(skb)->gso_size <<
4056 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
4057 ETH_TX_PARSE_BD_E2_LSO_MSS;
4058 else
4059 bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type);
4060 }
4061
4062 /* Set the PBD's parsing_data field if not zero
4063 * (for the chips newer than 57711).
4064 */
4065 if (pbd_e2_parsing_data)
4066 pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data);
4067
4068 tx_data_bd = (struct eth_tx_bd *)tx_start_bd;
4069
4070 /* Handle fragmented skb */
4071 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4072 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4073
4074 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0,
4075 skb_frag_size(frag), DMA_TO_DEVICE);
4076 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
4077 unsigned int pkts_compl = 0, bytes_compl = 0;
4078
4079 DP(NETIF_MSG_TX_QUEUED,
4080 "Unable to map page - dropping packet...\n");
4081
4082 /* we need unmap all buffers already mapped
4083 * for this SKB;
4084 * first_bd->nbd need to be properly updated
4085 * before call to bnx2x_free_tx_pkt
4086 */
4087 first_bd->nbd = cpu_to_le16(nbd);
4088 bnx2x_free_tx_pkt(bp, txdata,
4089 TX_BD(txdata->tx_pkt_prod),
4090 &pkts_compl, &bytes_compl);
4091 return NETDEV_TX_OK;
4092 }
4093
4094 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4095 tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4096 if (total_pkt_bd == NULL)
4097 total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4098
4099 tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4100 tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4101 tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag));
4102 le16_add_cpu(&pkt_size, skb_frag_size(frag));
4103 nbd++;
4104
4105 DP(NETIF_MSG_TX_QUEUED,
4106 "frag %d bd @%p addr (%x:%x) nbytes %d\n",
4107 i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo,
4108 le16_to_cpu(tx_data_bd->nbytes));
4109 }
4110
4111 DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd);
4112
4113 /* update with actual num BDs */
4114 first_bd->nbd = cpu_to_le16(nbd);
4115
4116 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4117
4118 /* now send a tx doorbell, counting the next BD
4119 * if the packet contains or ends with it
4120 */
4121 if (TX_BD_POFF(bd_prod) < nbd)
4122 nbd++;
4123
4124 /* total_pkt_bytes should be set on the first data BD if
4125 * it's not an LSO packet and there is more than one
4126 * data BD. In this case pkt_size is limited by an MTU value.
4127 * However we prefer to set it for an LSO packet (while we don't
4128 * have to) in order to save some CPU cycles in a none-LSO
4129 * case, when we much more care about them.
4130 */
4131 if (total_pkt_bd != NULL)
4132 total_pkt_bd->total_pkt_bytes = pkt_size;
4133
4134 if (pbd_e1x)
4135 DP(NETIF_MSG_TX_QUEUED,
4136 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n",
4137 pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w,
4138 pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags,
4139 pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq,
4140 le16_to_cpu(pbd_e1x->total_hlen_w));
4141 if (pbd_e2)
4142 DP(NETIF_MSG_TX_QUEUED,
4143 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n",
4144 pbd_e2,
4145 pbd_e2->data.mac_addr.dst_hi,
4146 pbd_e2->data.mac_addr.dst_mid,
4147 pbd_e2->data.mac_addr.dst_lo,
4148 pbd_e2->data.mac_addr.src_hi,
4149 pbd_e2->data.mac_addr.src_mid,
4150 pbd_e2->data.mac_addr.src_lo,
4151 pbd_e2->parsing_data);
4152 DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod);
4153
4154 netdev_tx_sent_queue(txq, skb->len);
4155
4156 skb_tx_timestamp(skb);
4157
4158 txdata->tx_pkt_prod++;
4159 /*
4160 * Make sure that the BD data is updated before updating the producer
4161 * since FW might read the BD right after the producer is updated.
4162 * This is only applicable for weak-ordered memory model archs such
4163 * as IA-64. The following barrier is also mandatory since FW will
4164 * assumes packets must have BDs.
4165 */
4166 wmb();
4167
4168 txdata->tx_db.data.prod += nbd;
4169 /* make sure descriptor update is observed by HW */
4170 wmb();
4171
4172 DOORBELL_RELAXED(bp, txdata->cid, txdata->tx_db.raw);
4173
4174 txdata->tx_bd_prod += nbd;
4175
4176 if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) {
4177 netif_tx_stop_queue(txq);
4178
4179 /* paired memory barrier is in bnx2x_tx_int(), we have to keep
4180 * ordering of set_bit() in netif_tx_stop_queue() and read of
4181 * fp->bd_tx_cons */
4182 smp_mb();
4183
4184 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
4185 if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)
4186 netif_tx_wake_queue(txq);
4187 }
4188 txdata->tx_pkt++;
4189
4190 return NETDEV_TX_OK;
4191 }
4192
4193 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default)
4194 {
4195 int mfw_vn = BP_FW_MB_IDX(bp);
4196 u32 tmp;
4197
4198 /* If the shmem shouldn't affect configuration, reflect */
4199 if (!IS_MF_BD(bp)) {
4200 int i;
4201
4202 for (i = 0; i < BNX2X_MAX_PRIORITY; i++)
4203 c2s_map[i] = i;
4204 *c2s_default = 0;
4205
4206 return;
4207 }
4208
4209 tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]);
4210 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4211 c2s_map[0] = tmp & 0xff;
4212 c2s_map[1] = (tmp >> 8) & 0xff;
4213 c2s_map[2] = (tmp >> 16) & 0xff;
4214 c2s_map[3] = (tmp >> 24) & 0xff;
4215
4216 tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]);
4217 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4218 c2s_map[4] = tmp & 0xff;
4219 c2s_map[5] = (tmp >> 8) & 0xff;
4220 c2s_map[6] = (tmp >> 16) & 0xff;
4221 c2s_map[7] = (tmp >> 24) & 0xff;
4222
4223 tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]);
4224 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4225 *c2s_default = (tmp >> (8 * mfw_vn)) & 0xff;
4226 }
4227
4228 /**
4229 * bnx2x_setup_tc - routine to configure net_device for multi tc
4230 *
4231 * @netdev: net device to configure
4232 * @tc: number of traffic classes to enable
4233 *
4234 * callback connected to the ndo_setup_tc function pointer
4235 */
4236 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc)
4237 {
4238 struct bnx2x *bp = netdev_priv(dev);
4239 u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def;
4240 int cos, prio, count, offset;
4241
4242 /* setup tc must be called under rtnl lock */
4243 ASSERT_RTNL();
4244
4245 /* no traffic classes requested. Aborting */
4246 if (!num_tc) {
4247 netdev_reset_tc(dev);
4248 return 0;
4249 }
4250
4251 /* requested to support too many traffic classes */
4252 if (num_tc > bp->max_cos) {
4253 BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n",
4254 num_tc, bp->max_cos);
4255 return -EINVAL;
4256 }
4257
4258 /* declare amount of supported traffic classes */
4259 if (netdev_set_num_tc(dev, num_tc)) {
4260 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc);
4261 return -EINVAL;
4262 }
4263
4264 bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def);
4265
4266 /* configure priority to traffic class mapping */
4267 for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) {
4268 int outer_prio = c2s_map[prio];
4269
4270 netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]);
4271 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4272 "mapping priority %d to tc %d\n",
4273 outer_prio, bp->prio_to_cos[outer_prio]);
4274 }
4275
4276 /* Use this configuration to differentiate tc0 from other COSes
4277 This can be used for ets or pfc, and save the effort of setting
4278 up a multio class queue disc or negotiating DCBX with a switch
4279 netdev_set_prio_tc_map(dev, 0, 0);
4280 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
4281 for (prio = 1; prio < 16; prio++) {
4282 netdev_set_prio_tc_map(dev, prio, 1);
4283 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
4284 } */
4285
4286 /* configure traffic class to transmission queue mapping */
4287 for (cos = 0; cos < bp->max_cos; cos++) {
4288 count = BNX2X_NUM_ETH_QUEUES(bp);
4289 offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp);
4290 netdev_set_tc_queue(dev, cos, count, offset);
4291 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4292 "mapping tc %d to offset %d count %d\n",
4293 cos, offset, count);
4294 }
4295
4296 return 0;
4297 }
4298
4299 int __bnx2x_setup_tc(struct net_device *dev, enum tc_setup_type type,
4300 void *type_data)
4301 {
4302 struct tc_mqprio_qopt *mqprio = type_data;
4303
4304 if (type != TC_SETUP_QDISC_MQPRIO)
4305 return -EOPNOTSUPP;
4306
4307 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
4308
4309 return bnx2x_setup_tc(dev, mqprio->num_tc);
4310 }
4311
4312 /* called with rtnl_lock */
4313 int bnx2x_change_mac_addr(struct net_device *dev, void *p)
4314 {
4315 struct sockaddr *addr = p;
4316 struct bnx2x *bp = netdev_priv(dev);
4317 int rc = 0;
4318
4319 if (!is_valid_ether_addr(addr->sa_data)) {
4320 BNX2X_ERR("Requested MAC address is not valid\n");
4321 return -EINVAL;
4322 }
4323
4324 if (IS_MF_STORAGE_ONLY(bp)) {
4325 BNX2X_ERR("Can't change address on STORAGE ONLY function\n");
4326 return -EINVAL;
4327 }
4328
4329 if (netif_running(dev)) {
4330 rc = bnx2x_set_eth_mac(bp, false);
4331 if (rc)
4332 return rc;
4333 }
4334
4335 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4336
4337 if (netif_running(dev))
4338 rc = bnx2x_set_eth_mac(bp, true);
4339
4340 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4341 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4342
4343 return rc;
4344 }
4345
4346 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index)
4347 {
4348 union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk);
4349 struct bnx2x_fastpath *fp = &bp->fp[fp_index];
4350 u8 cos;
4351
4352 /* Common */
4353
4354 if (IS_FCOE_IDX(fp_index)) {
4355 memset(sb, 0, sizeof(union host_hc_status_block));
4356 fp->status_blk_mapping = 0;
4357 } else {
4358 /* status blocks */
4359 if (!CHIP_IS_E1x(bp))
4360 BNX2X_PCI_FREE(sb->e2_sb,
4361 bnx2x_fp(bp, fp_index,
4362 status_blk_mapping),
4363 sizeof(struct host_hc_status_block_e2));
4364 else
4365 BNX2X_PCI_FREE(sb->e1x_sb,
4366 bnx2x_fp(bp, fp_index,
4367 status_blk_mapping),
4368 sizeof(struct host_hc_status_block_e1x));
4369 }
4370
4371 /* Rx */
4372 if (!skip_rx_queue(bp, fp_index)) {
4373 bnx2x_free_rx_bds(fp);
4374
4375 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4376 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring));
4377 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring),
4378 bnx2x_fp(bp, fp_index, rx_desc_mapping),
4379 sizeof(struct eth_rx_bd) * NUM_RX_BD);
4380
4381 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring),
4382 bnx2x_fp(bp, fp_index, rx_comp_mapping),
4383 sizeof(struct eth_fast_path_rx_cqe) *
4384 NUM_RCQ_BD);
4385
4386 /* SGE ring */
4387 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring));
4388 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring),
4389 bnx2x_fp(bp, fp_index, rx_sge_mapping),
4390 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4391 }
4392
4393 /* Tx */
4394 if (!skip_tx_queue(bp, fp_index)) {
4395 /* fastpath tx rings: tx_buf tx_desc */
4396 for_each_cos_in_tx_queue(fp, cos) {
4397 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4398
4399 DP(NETIF_MSG_IFDOWN,
4400 "freeing tx memory of fp %d cos %d cid %d\n",
4401 fp_index, cos, txdata->cid);
4402
4403 BNX2X_FREE(txdata->tx_buf_ring);
4404 BNX2X_PCI_FREE(txdata->tx_desc_ring,
4405 txdata->tx_desc_mapping,
4406 sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4407 }
4408 }
4409 /* end of fastpath */
4410 }
4411
4412 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp)
4413 {
4414 int i;
4415 for_each_cnic_queue(bp, i)
4416 bnx2x_free_fp_mem_at(bp, i);
4417 }
4418
4419 void bnx2x_free_fp_mem(struct bnx2x *bp)
4420 {
4421 int i;
4422 for_each_eth_queue(bp, i)
4423 bnx2x_free_fp_mem_at(bp, i);
4424 }
4425
4426 static void set_sb_shortcuts(struct bnx2x *bp, int index)
4427 {
4428 union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk);
4429 if (!CHIP_IS_E1x(bp)) {
4430 bnx2x_fp(bp, index, sb_index_values) =
4431 (__le16 *)status_blk.e2_sb->sb.index_values;
4432 bnx2x_fp(bp, index, sb_running_index) =
4433 (__le16 *)status_blk.e2_sb->sb.running_index;
4434 } else {
4435 bnx2x_fp(bp, index, sb_index_values) =
4436 (__le16 *)status_blk.e1x_sb->sb.index_values;
4437 bnx2x_fp(bp, index, sb_running_index) =
4438 (__le16 *)status_blk.e1x_sb->sb.running_index;
4439 }
4440 }
4441
4442 /* Returns the number of actually allocated BDs */
4443 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
4444 int rx_ring_size)
4445 {
4446 struct bnx2x *bp = fp->bp;
4447 u16 ring_prod, cqe_ring_prod;
4448 int i, failure_cnt = 0;
4449
4450 fp->rx_comp_cons = 0;
4451 cqe_ring_prod = ring_prod = 0;
4452
4453 /* This routine is called only during fo init so
4454 * fp->eth_q_stats.rx_skb_alloc_failed = 0
4455 */
4456 for (i = 0; i < rx_ring_size; i++) {
4457 if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) {
4458 failure_cnt++;
4459 continue;
4460 }
4461 ring_prod = NEXT_RX_IDX(ring_prod);
4462 cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
4463 WARN_ON(ring_prod <= (i - failure_cnt));
4464 }
4465
4466 if (failure_cnt)
4467 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
4468 i - failure_cnt, fp->index);
4469
4470 fp->rx_bd_prod = ring_prod;
4471 /* Limit the CQE producer by the CQE ring size */
4472 fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
4473 cqe_ring_prod);
4474
4475 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
4476
4477 return i - failure_cnt;
4478 }
4479
4480 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
4481 {
4482 int i;
4483
4484 for (i = 1; i <= NUM_RCQ_RINGS; i++) {
4485 struct eth_rx_cqe_next_page *nextpg;
4486
4487 nextpg = (struct eth_rx_cqe_next_page *)
4488 &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
4489 nextpg->addr_hi =
4490 cpu_to_le32(U64_HI(fp->rx_comp_mapping +
4491 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4492 nextpg->addr_lo =
4493 cpu_to_le32(U64_LO(fp->rx_comp_mapping +
4494 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4495 }
4496 }
4497
4498 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index)
4499 {
4500 union host_hc_status_block *sb;
4501 struct bnx2x_fastpath *fp = &bp->fp[index];
4502 int ring_size = 0;
4503 u8 cos;
4504 int rx_ring_size = 0;
4505
4506 if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) {
4507 rx_ring_size = MIN_RX_SIZE_NONTPA;
4508 bp->rx_ring_size = rx_ring_size;
4509 } else if (!bp->rx_ring_size) {
4510 rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp);
4511
4512 if (CHIP_IS_E3(bp)) {
4513 u32 cfg = SHMEM_RD(bp,
4514 dev_info.port_hw_config[BP_PORT(bp)].
4515 default_cfg);
4516
4517 /* Decrease ring size for 1G functions */
4518 if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) ==
4519 PORT_HW_CFG_NET_SERDES_IF_SGMII)
4520 rx_ring_size /= 10;
4521 }
4522
4523 /* allocate at least number of buffers required by FW */
4524 rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
4525 MIN_RX_SIZE_TPA, rx_ring_size);
4526
4527 bp->rx_ring_size = rx_ring_size;
4528 } else /* if rx_ring_size specified - use it */
4529 rx_ring_size = bp->rx_ring_size;
4530
4531 DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size);
4532
4533 /* Common */
4534 sb = &bnx2x_fp(bp, index, status_blk);
4535
4536 if (!IS_FCOE_IDX(index)) {
4537 /* status blocks */
4538 if (!CHIP_IS_E1x(bp)) {
4539 sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4540 sizeof(struct host_hc_status_block_e2));
4541 if (!sb->e2_sb)
4542 goto alloc_mem_err;
4543 } else {
4544 sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4545 sizeof(struct host_hc_status_block_e1x));
4546 if (!sb->e1x_sb)
4547 goto alloc_mem_err;
4548 }
4549 }
4550
4551 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4552 * set shortcuts for it.
4553 */
4554 if (!IS_FCOE_IDX(index))
4555 set_sb_shortcuts(bp, index);
4556
4557 /* Tx */
4558 if (!skip_tx_queue(bp, index)) {
4559 /* fastpath tx rings: tx_buf tx_desc */
4560 for_each_cos_in_tx_queue(fp, cos) {
4561 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4562
4563 DP(NETIF_MSG_IFUP,
4564 "allocating tx memory of fp %d cos %d\n",
4565 index, cos);
4566
4567 txdata->tx_buf_ring = kcalloc(NUM_TX_BD,
4568 sizeof(struct sw_tx_bd),
4569 GFP_KERNEL);
4570 if (!txdata->tx_buf_ring)
4571 goto alloc_mem_err;
4572 txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping,
4573 sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4574 if (!txdata->tx_desc_ring)
4575 goto alloc_mem_err;
4576 }
4577 }
4578
4579 /* Rx */
4580 if (!skip_rx_queue(bp, index)) {
4581 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4582 bnx2x_fp(bp, index, rx_buf_ring) =
4583 kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL);
4584 if (!bnx2x_fp(bp, index, rx_buf_ring))
4585 goto alloc_mem_err;
4586 bnx2x_fp(bp, index, rx_desc_ring) =
4587 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping),
4588 sizeof(struct eth_rx_bd) * NUM_RX_BD);
4589 if (!bnx2x_fp(bp, index, rx_desc_ring))
4590 goto alloc_mem_err;
4591
4592 /* Seed all CQEs by 1s */
4593 bnx2x_fp(bp, index, rx_comp_ring) =
4594 BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping),
4595 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD);
4596 if (!bnx2x_fp(bp, index, rx_comp_ring))
4597 goto alloc_mem_err;
4598
4599 /* SGE ring */
4600 bnx2x_fp(bp, index, rx_page_ring) =
4601 kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page),
4602 GFP_KERNEL);
4603 if (!bnx2x_fp(bp, index, rx_page_ring))
4604 goto alloc_mem_err;
4605 bnx2x_fp(bp, index, rx_sge_ring) =
4606 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping),
4607 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4608 if (!bnx2x_fp(bp, index, rx_sge_ring))
4609 goto alloc_mem_err;
4610 /* RX BD ring */
4611 bnx2x_set_next_page_rx_bd(fp);
4612
4613 /* CQ ring */
4614 bnx2x_set_next_page_rx_cq(fp);
4615
4616 /* BDs */
4617 ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size);
4618 if (ring_size < rx_ring_size)
4619 goto alloc_mem_err;
4620 }
4621
4622 return 0;
4623
4624 /* handles low memory cases */
4625 alloc_mem_err:
4626 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4627 index, ring_size);
4628 /* FW will drop all packets if queue is not big enough,
4629 * In these cases we disable the queue
4630 * Min size is different for OOO, TPA and non-TPA queues
4631 */
4632 if (ring_size < (fp->mode == TPA_MODE_DISABLED ?
4633 MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) {
4634 /* release memory allocated for this queue */
4635 bnx2x_free_fp_mem_at(bp, index);
4636 return -ENOMEM;
4637 }
4638 return 0;
4639 }
4640
4641 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp)
4642 {
4643 if (!NO_FCOE(bp))
4644 /* FCoE */
4645 if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp)))
4646 /* we will fail load process instead of mark
4647 * NO_FCOE_FLAG
4648 */
4649 return -ENOMEM;
4650
4651 return 0;
4652 }
4653
4654 static int bnx2x_alloc_fp_mem(struct bnx2x *bp)
4655 {
4656 int i;
4657
4658 /* 1. Allocate FP for leading - fatal if error
4659 * 2. Allocate RSS - fix number of queues if error
4660 */
4661
4662 /* leading */
4663 if (bnx2x_alloc_fp_mem_at(bp, 0))
4664 return -ENOMEM;
4665
4666 /* RSS */
4667 for_each_nondefault_eth_queue(bp, i)
4668 if (bnx2x_alloc_fp_mem_at(bp, i))
4669 break;
4670
4671 /* handle memory failures */
4672 if (i != BNX2X_NUM_ETH_QUEUES(bp)) {
4673 int delta = BNX2X_NUM_ETH_QUEUES(bp) - i;
4674
4675 WARN_ON(delta < 0);
4676 bnx2x_shrink_eth_fp(bp, delta);
4677 if (CNIC_SUPPORT(bp))
4678 /* move non eth FPs next to last eth FP
4679 * must be done in that order
4680 * FCOE_IDX < FWD_IDX < OOO_IDX
4681 */
4682
4683 /* move FCoE fp even NO_FCOE_FLAG is on */
4684 bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta);
4685 bp->num_ethernet_queues -= delta;
4686 bp->num_queues = bp->num_ethernet_queues +
4687 bp->num_cnic_queues;
4688 BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4689 bp->num_queues + delta, bp->num_queues);
4690 }
4691
4692 return 0;
4693 }
4694
4695 void bnx2x_free_mem_bp(struct bnx2x *bp)
4696 {
4697 int i;
4698
4699 for (i = 0; i < bp->fp_array_size; i++)
4700 kfree(bp->fp[i].tpa_info);
4701 kfree(bp->fp);
4702 kfree(bp->sp_objs);
4703 kfree(bp->fp_stats);
4704 kfree(bp->bnx2x_txq);
4705 kfree(bp->msix_table);
4706 kfree(bp->ilt);
4707 }
4708
4709 int bnx2x_alloc_mem_bp(struct bnx2x *bp)
4710 {
4711 struct bnx2x_fastpath *fp;
4712 struct msix_entry *tbl;
4713 struct bnx2x_ilt *ilt;
4714 int msix_table_size = 0;
4715 int fp_array_size, txq_array_size;
4716 int i;
4717
4718 /*
4719 * The biggest MSI-X table we might need is as a maximum number of fast
4720 * path IGU SBs plus default SB (for PF only).
4721 */
4722 msix_table_size = bp->igu_sb_cnt;
4723 if (IS_PF(bp))
4724 msix_table_size++;
4725 BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size);
4726
4727 /* fp array: RSS plus CNIC related L2 queues */
4728 fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp);
4729 bp->fp_array_size = fp_array_size;
4730 BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size);
4731
4732 fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL);
4733 if (!fp)
4734 goto alloc_err;
4735 for (i = 0; i < bp->fp_array_size; i++) {
4736 fp[i].tpa_info =
4737 kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2,
4738 sizeof(struct bnx2x_agg_info), GFP_KERNEL);
4739 if (!(fp[i].tpa_info))
4740 goto alloc_err;
4741 }
4742
4743 bp->fp = fp;
4744
4745 /* allocate sp objs */
4746 bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs),
4747 GFP_KERNEL);
4748 if (!bp->sp_objs)
4749 goto alloc_err;
4750
4751 /* allocate fp_stats */
4752 bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats),
4753 GFP_KERNEL);
4754 if (!bp->fp_stats)
4755 goto alloc_err;
4756
4757 /* Allocate memory for the transmission queues array */
4758 txq_array_size =
4759 BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp);
4760 BNX2X_DEV_INFO("txq_array_size %d", txq_array_size);
4761
4762 bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata),
4763 GFP_KERNEL);
4764 if (!bp->bnx2x_txq)
4765 goto alloc_err;
4766
4767 /* msix table */
4768 tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL);
4769 if (!tbl)
4770 goto alloc_err;
4771 bp->msix_table = tbl;
4772
4773 /* ilt */
4774 ilt = kzalloc(sizeof(*ilt), GFP_KERNEL);
4775 if (!ilt)
4776 goto alloc_err;
4777 bp->ilt = ilt;
4778
4779 return 0;
4780 alloc_err:
4781 bnx2x_free_mem_bp(bp);
4782 return -ENOMEM;
4783 }
4784
4785 int bnx2x_reload_if_running(struct net_device *dev)
4786 {
4787 struct bnx2x *bp = netdev_priv(dev);
4788
4789 if (unlikely(!netif_running(dev)))
4790 return 0;
4791
4792 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
4793 return bnx2x_nic_load(bp, LOAD_NORMAL);
4794 }
4795
4796 int bnx2x_get_cur_phy_idx(struct bnx2x *bp)
4797 {
4798 u32 sel_phy_idx = 0;
4799 if (bp->link_params.num_phys <= 1)
4800 return INT_PHY;
4801
4802 if (bp->link_vars.link_up) {
4803 sel_phy_idx = EXT_PHY1;
4804 /* In case link is SERDES, check if the EXT_PHY2 is the one */
4805 if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
4806 (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
4807 sel_phy_idx = EXT_PHY2;
4808 } else {
4809
4810 switch (bnx2x_phy_selection(&bp->link_params)) {
4811 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
4812 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
4813 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
4814 sel_phy_idx = EXT_PHY1;
4815 break;
4816 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
4817 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
4818 sel_phy_idx = EXT_PHY2;
4819 break;
4820 }
4821 }
4822
4823 return sel_phy_idx;
4824 }
4825 int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
4826 {
4827 u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp);
4828 /*
4829 * The selected activated PHY is always after swapping (in case PHY
4830 * swapping is enabled). So when swapping is enabled, we need to reverse
4831 * the configuration
4832 */
4833
4834 if (bp->link_params.multi_phy_config &
4835 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
4836 if (sel_phy_idx == EXT_PHY1)
4837 sel_phy_idx = EXT_PHY2;
4838 else if (sel_phy_idx == EXT_PHY2)
4839 sel_phy_idx = EXT_PHY1;
4840 }
4841 return LINK_CONFIG_IDX(sel_phy_idx);
4842 }
4843
4844 #ifdef NETDEV_FCOE_WWNN
4845 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
4846 {
4847 struct bnx2x *bp = netdev_priv(dev);
4848 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
4849
4850 switch (type) {
4851 case NETDEV_FCOE_WWNN:
4852 *wwn = HILO_U64(cp->fcoe_wwn_node_name_hi,
4853 cp->fcoe_wwn_node_name_lo);
4854 break;
4855 case NETDEV_FCOE_WWPN:
4856 *wwn = HILO_U64(cp->fcoe_wwn_port_name_hi,
4857 cp->fcoe_wwn_port_name_lo);
4858 break;
4859 default:
4860 BNX2X_ERR("Wrong WWN type requested - %d\n", type);
4861 return -EINVAL;
4862 }
4863
4864 return 0;
4865 }
4866 #endif
4867
4868 /* called with rtnl_lock */
4869 int bnx2x_change_mtu(struct net_device *dev, int new_mtu)
4870 {
4871 struct bnx2x *bp = netdev_priv(dev);
4872
4873 if (pci_num_vf(bp->pdev)) {
4874 DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n");
4875 return -EPERM;
4876 }
4877
4878 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
4879 BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4880 return -EAGAIN;
4881 }
4882
4883 /* This does not race with packet allocation
4884 * because the actual alloc size is
4885 * only updated as part of load
4886 */
4887 dev->mtu = new_mtu;
4888
4889 if (!bnx2x_mtu_allows_gro(new_mtu))
4890 dev->features &= ~NETIF_F_GRO_HW;
4891
4892 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4893 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4894
4895 return bnx2x_reload_if_running(dev);
4896 }
4897
4898 netdev_features_t bnx2x_fix_features(struct net_device *dev,
4899 netdev_features_t features)
4900 {
4901 struct bnx2x *bp = netdev_priv(dev);
4902
4903 if (pci_num_vf(bp->pdev)) {
4904 netdev_features_t changed = dev->features ^ features;
4905
4906 /* Revert the requested changes in features if they
4907 * would require internal reload of PF in bnx2x_set_features().
4908 */
4909 if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) {
4910 features &= ~NETIF_F_RXCSUM;
4911 features |= dev->features & NETIF_F_RXCSUM;
4912 }
4913
4914 if (changed & NETIF_F_LOOPBACK) {
4915 features &= ~NETIF_F_LOOPBACK;
4916 features |= dev->features & NETIF_F_LOOPBACK;
4917 }
4918 }
4919
4920 /* TPA requires Rx CSUM offloading */
4921 if (!(features & NETIF_F_RXCSUM))
4922 features &= ~NETIF_F_LRO;
4923
4924 if (!(features & NETIF_F_GRO) || !bnx2x_mtu_allows_gro(dev->mtu))
4925 features &= ~NETIF_F_GRO_HW;
4926 if (features & NETIF_F_GRO_HW)
4927 features &= ~NETIF_F_LRO;
4928
4929 return features;
4930 }
4931
4932 int bnx2x_set_features(struct net_device *dev, netdev_features_t features)
4933 {
4934 struct bnx2x *bp = netdev_priv(dev);
4935 netdev_features_t changes = features ^ dev->features;
4936 bool bnx2x_reload = false;
4937 int rc;
4938
4939 /* VFs or non SRIOV PFs should be able to change loopback feature */
4940 if (!pci_num_vf(bp->pdev)) {
4941 if (features & NETIF_F_LOOPBACK) {
4942 if (bp->link_params.loopback_mode != LOOPBACK_BMAC) {
4943 bp->link_params.loopback_mode = LOOPBACK_BMAC;
4944 bnx2x_reload = true;
4945 }
4946 } else {
4947 if (bp->link_params.loopback_mode != LOOPBACK_NONE) {
4948 bp->link_params.loopback_mode = LOOPBACK_NONE;
4949 bnx2x_reload = true;
4950 }
4951 }
4952 }
4953
4954 /* Don't care about GRO changes */
4955 changes &= ~NETIF_F_GRO;
4956
4957 if (changes)
4958 bnx2x_reload = true;
4959
4960 if (bnx2x_reload) {
4961 if (bp->recovery_state == BNX2X_RECOVERY_DONE) {
4962 dev->features = features;
4963 rc = bnx2x_reload_if_running(dev);
4964 return rc ? rc : 1;
4965 }
4966 /* else: bnx2x_nic_load() will be called at end of recovery */
4967 }
4968
4969 return 0;
4970 }
4971
4972 void bnx2x_tx_timeout(struct net_device *dev)
4973 {
4974 struct bnx2x *bp = netdev_priv(dev);
4975
4976 /* We want the information of the dump logged,
4977 * but calling bnx2x_panic() would kill all chances of recovery.
4978 */
4979 if (!bp->panic)
4980 #ifndef BNX2X_STOP_ON_ERROR
4981 bnx2x_panic_dump(bp, false);
4982 #else
4983 bnx2x_panic();
4984 #endif
4985
4986 /* This allows the netif to be shutdown gracefully before resetting */
4987 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0);
4988 }
4989
4990 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state)
4991 {
4992 struct net_device *dev = pci_get_drvdata(pdev);
4993 struct bnx2x *bp;
4994
4995 if (!dev) {
4996 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
4997 return -ENODEV;
4998 }
4999 bp = netdev_priv(dev);
5000
5001 rtnl_lock();
5002
5003 pci_save_state(pdev);
5004
5005 if (!netif_running(dev)) {
5006 rtnl_unlock();
5007 return 0;
5008 }
5009
5010 netif_device_detach(dev);
5011
5012 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
5013
5014 bnx2x_set_power_state(bp, pci_choose_state(pdev, state));
5015
5016 rtnl_unlock();
5017
5018 return 0;
5019 }
5020
5021 int bnx2x_resume(struct pci_dev *pdev)
5022 {
5023 struct net_device *dev = pci_get_drvdata(pdev);
5024 struct bnx2x *bp;
5025 int rc;
5026
5027 if (!dev) {
5028 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5029 return -ENODEV;
5030 }
5031 bp = netdev_priv(dev);
5032
5033 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
5034 BNX2X_ERR("Handling parity error recovery. Try again later\n");
5035 return -EAGAIN;
5036 }
5037
5038 rtnl_lock();
5039
5040 pci_restore_state(pdev);
5041
5042 if (!netif_running(dev)) {
5043 rtnl_unlock();
5044 return 0;
5045 }
5046
5047 bnx2x_set_power_state(bp, PCI_D0);
5048 netif_device_attach(dev);
5049
5050 rc = bnx2x_nic_load(bp, LOAD_OPEN);
5051
5052 rtnl_unlock();
5053
5054 return rc;
5055 }
5056
5057 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
5058 u32 cid)
5059 {
5060 if (!cxt) {
5061 BNX2X_ERR("bad context pointer %p\n", cxt);
5062 return;
5063 }
5064
5065 /* ustorm cxt validation */
5066 cxt->ustorm_ag_context.cdu_usage =
5067 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5068 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
5069 /* xcontext validation */
5070 cxt->xstorm_ag_context.cdu_reserved =
5071 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5072 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
5073 }
5074
5075 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
5076 u8 fw_sb_id, u8 sb_index,
5077 u8 ticks)
5078 {
5079 u32 addr = BAR_CSTRORM_INTMEM +
5080 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index);
5081 REG_WR8(bp, addr, ticks);
5082 DP(NETIF_MSG_IFUP,
5083 "port %x fw_sb_id %d sb_index %d ticks %d\n",
5084 port, fw_sb_id, sb_index, ticks);
5085 }
5086
5087 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
5088 u16 fw_sb_id, u8 sb_index,
5089 u8 disable)
5090 {
5091 u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
5092 u32 addr = BAR_CSTRORM_INTMEM +
5093 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index);
5094 u8 flags = REG_RD8(bp, addr);
5095 /* clear and set */
5096 flags &= ~HC_INDEX_DATA_HC_ENABLED;
5097 flags |= enable_flag;
5098 REG_WR8(bp, addr, flags);
5099 DP(NETIF_MSG_IFUP,
5100 "port %x fw_sb_id %d sb_index %d disable %d\n",
5101 port, fw_sb_id, sb_index, disable);
5102 }
5103
5104 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
5105 u8 sb_index, u8 disable, u16 usec)
5106 {
5107 int port = BP_PORT(bp);
5108 u8 ticks = usec / BNX2X_BTR;
5109
5110 storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
5111
5112 disable = disable ? 1 : (usec ? 0 : 1);
5113 storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
5114 }
5115
5116 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag,
5117 u32 verbose)
5118 {
5119 smp_mb__before_atomic();
5120 set_bit(flag, &bp->sp_rtnl_state);
5121 smp_mb__after_atomic();
5122 DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n",
5123 flag);
5124 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5125 }