]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/net/ethernet/cavium/thunder/nicvf_queues.c
Merge tag 'clang-format-for-linus-v5.1-rc5' of git://github.com/ojeda/linux
[thirdparty/kernel/stable.git] / drivers / net / ethernet / cavium / thunder / nicvf_queues.c
1 /*
2 * Copyright (C) 2015 Cavium, Inc.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License
6 * as published by the Free Software Foundation.
7 */
8
9 #include <linux/pci.h>
10 #include <linux/netdevice.h>
11 #include <linux/ip.h>
12 #include <linux/etherdevice.h>
13 #include <linux/iommu.h>
14 #include <net/ip.h>
15 #include <net/tso.h>
16
17 #include "nic_reg.h"
18 #include "nic.h"
19 #include "q_struct.h"
20 #include "nicvf_queues.h"
21
22 static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
23 int size, u64 data);
24 static void nicvf_get_page(struct nicvf *nic)
25 {
26 if (!nic->rb_pageref || !nic->rb_page)
27 return;
28
29 page_ref_add(nic->rb_page, nic->rb_pageref);
30 nic->rb_pageref = 0;
31 }
32
33 /* Poll a register for a specific value */
34 static int nicvf_poll_reg(struct nicvf *nic, int qidx,
35 u64 reg, int bit_pos, int bits, int val)
36 {
37 u64 bit_mask;
38 u64 reg_val;
39 int timeout = 10;
40
41 bit_mask = (1ULL << bits) - 1;
42 bit_mask = (bit_mask << bit_pos);
43
44 while (timeout) {
45 reg_val = nicvf_queue_reg_read(nic, reg, qidx);
46 if (((reg_val & bit_mask) >> bit_pos) == val)
47 return 0;
48 usleep_range(1000, 2000);
49 timeout--;
50 }
51 netdev_err(nic->netdev, "Poll on reg 0x%llx failed\n", reg);
52 return 1;
53 }
54
55 /* Allocate memory for a queue's descriptors */
56 static int nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
57 int q_len, int desc_size, int align_bytes)
58 {
59 dmem->q_len = q_len;
60 dmem->size = (desc_size * q_len) + align_bytes;
61 /* Save address, need it while freeing */
62 dmem->unalign_base = dma_alloc_coherent(&nic->pdev->dev, dmem->size,
63 &dmem->dma, GFP_KERNEL);
64 if (!dmem->unalign_base)
65 return -ENOMEM;
66
67 /* Align memory address for 'align_bytes' */
68 dmem->phys_base = NICVF_ALIGNED_ADDR((u64)dmem->dma, align_bytes);
69 dmem->base = dmem->unalign_base + (dmem->phys_base - dmem->dma);
70 return 0;
71 }
72
73 /* Free queue's descriptor memory */
74 static void nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
75 {
76 if (!dmem)
77 return;
78
79 dma_free_coherent(&nic->pdev->dev, dmem->size,
80 dmem->unalign_base, dmem->dma);
81 dmem->unalign_base = NULL;
82 dmem->base = NULL;
83 }
84
85 #define XDP_PAGE_REFCNT_REFILL 256
86
87 /* Allocate a new page or recycle one if possible
88 *
89 * We cannot optimize dma mapping here, since
90 * 1. It's only one RBDR ring for 8 Rx queues.
91 * 2. CQE_RX gives address of the buffer where pkt has been DMA'ed
92 * and not idx into RBDR ring, so can't refer to saved info.
93 * 3. There are multiple receive buffers per page
94 */
95 static inline struct pgcache *nicvf_alloc_page(struct nicvf *nic,
96 struct rbdr *rbdr, gfp_t gfp)
97 {
98 int ref_count;
99 struct page *page = NULL;
100 struct pgcache *pgcache, *next;
101
102 /* Check if page is already allocated */
103 pgcache = &rbdr->pgcache[rbdr->pgidx];
104 page = pgcache->page;
105 /* Check if page can be recycled */
106 if (page) {
107 ref_count = page_ref_count(page);
108 /* This page can be recycled if internal ref_count and page's
109 * ref_count are equal, indicating that the page has been used
110 * once for packet transmission. For non-XDP mode, internal
111 * ref_count is always '1'.
112 */
113 if (rbdr->is_xdp) {
114 if (ref_count == pgcache->ref_count)
115 pgcache->ref_count--;
116 else
117 page = NULL;
118 } else if (ref_count != 1) {
119 page = NULL;
120 }
121 }
122
123 if (!page) {
124 page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN, 0);
125 if (!page)
126 return NULL;
127
128 this_cpu_inc(nic->pnicvf->drv_stats->page_alloc);
129
130 /* Check for space */
131 if (rbdr->pgalloc >= rbdr->pgcnt) {
132 /* Page can still be used */
133 nic->rb_page = page;
134 return NULL;
135 }
136
137 /* Save the page in page cache */
138 pgcache->page = page;
139 pgcache->dma_addr = 0;
140 pgcache->ref_count = 0;
141 rbdr->pgalloc++;
142 }
143
144 /* Take additional page references for recycling */
145 if (rbdr->is_xdp) {
146 /* Since there is single RBDR (i.e single core doing
147 * page recycling) per 8 Rx queues, in XDP mode adjusting
148 * page references atomically is the biggest bottleneck, so
149 * take bunch of references at a time.
150 *
151 * So here, below reference counts defer by '1'.
152 */
153 if (!pgcache->ref_count) {
154 pgcache->ref_count = XDP_PAGE_REFCNT_REFILL;
155 page_ref_add(page, XDP_PAGE_REFCNT_REFILL);
156 }
157 } else {
158 /* In non-XDP case, single 64K page is divided across multiple
159 * receive buffers, so cost of recycling is less anyway.
160 * So we can do with just one extra reference.
161 */
162 page_ref_add(page, 1);
163 }
164
165 rbdr->pgidx++;
166 rbdr->pgidx &= (rbdr->pgcnt - 1);
167
168 /* Prefetch refcount of next page in page cache */
169 next = &rbdr->pgcache[rbdr->pgidx];
170 page = next->page;
171 if (page)
172 prefetch(&page->_refcount);
173
174 return pgcache;
175 }
176
177 /* Allocate buffer for packet reception */
178 static inline int nicvf_alloc_rcv_buffer(struct nicvf *nic, struct rbdr *rbdr,
179 gfp_t gfp, u32 buf_len, u64 *rbuf)
180 {
181 struct pgcache *pgcache = NULL;
182
183 /* Check if request can be accomodated in previous allocated page.
184 * But in XDP mode only one buffer per page is permitted.
185 */
186 if (!rbdr->is_xdp && nic->rb_page &&
187 ((nic->rb_page_offset + buf_len) <= PAGE_SIZE)) {
188 nic->rb_pageref++;
189 goto ret;
190 }
191
192 nicvf_get_page(nic);
193 nic->rb_page = NULL;
194
195 /* Get new page, either recycled or new one */
196 pgcache = nicvf_alloc_page(nic, rbdr, gfp);
197 if (!pgcache && !nic->rb_page) {
198 this_cpu_inc(nic->pnicvf->drv_stats->rcv_buffer_alloc_failures);
199 return -ENOMEM;
200 }
201
202 nic->rb_page_offset = 0;
203
204 /* Reserve space for header modifications by BPF program */
205 if (rbdr->is_xdp)
206 buf_len += XDP_PACKET_HEADROOM;
207
208 /* Check if it's recycled */
209 if (pgcache)
210 nic->rb_page = pgcache->page;
211 ret:
212 if (rbdr->is_xdp && pgcache && pgcache->dma_addr) {
213 *rbuf = pgcache->dma_addr;
214 } else {
215 /* HW will ensure data coherency, CPU sync not required */
216 *rbuf = (u64)dma_map_page_attrs(&nic->pdev->dev, nic->rb_page,
217 nic->rb_page_offset, buf_len,
218 DMA_FROM_DEVICE,
219 DMA_ATTR_SKIP_CPU_SYNC);
220 if (dma_mapping_error(&nic->pdev->dev, (dma_addr_t)*rbuf)) {
221 if (!nic->rb_page_offset)
222 __free_pages(nic->rb_page, 0);
223 nic->rb_page = NULL;
224 return -ENOMEM;
225 }
226 if (pgcache)
227 pgcache->dma_addr = *rbuf + XDP_PACKET_HEADROOM;
228 nic->rb_page_offset += buf_len;
229 }
230
231 return 0;
232 }
233
234 /* Build skb around receive buffer */
235 static struct sk_buff *nicvf_rb_ptr_to_skb(struct nicvf *nic,
236 u64 rb_ptr, int len)
237 {
238 void *data;
239 struct sk_buff *skb;
240
241 data = phys_to_virt(rb_ptr);
242
243 /* Now build an skb to give to stack */
244 skb = build_skb(data, RCV_FRAG_LEN);
245 if (!skb) {
246 put_page(virt_to_page(data));
247 return NULL;
248 }
249
250 prefetch(skb->data);
251 return skb;
252 }
253
254 /* Allocate RBDR ring and populate receive buffers */
255 static int nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr,
256 int ring_len, int buf_size)
257 {
258 int idx;
259 u64 rbuf;
260 struct rbdr_entry_t *desc;
261 int err;
262
263 err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
264 sizeof(struct rbdr_entry_t),
265 NICVF_RCV_BUF_ALIGN_BYTES);
266 if (err)
267 return err;
268
269 rbdr->desc = rbdr->dmem.base;
270 /* Buffer size has to be in multiples of 128 bytes */
271 rbdr->dma_size = buf_size;
272 rbdr->enable = true;
273 rbdr->thresh = RBDR_THRESH;
274 rbdr->head = 0;
275 rbdr->tail = 0;
276
277 /* Initialize page recycling stuff.
278 *
279 * Can't use single buffer per page especially with 64K pages.
280 * On embedded platforms i.e 81xx/83xx available memory itself
281 * is low and minimum ring size of RBDR is 8K, that takes away
282 * lots of memory.
283 *
284 * But for XDP it has to be a single buffer per page.
285 */
286 if (!nic->pnicvf->xdp_prog) {
287 rbdr->pgcnt = ring_len / (PAGE_SIZE / buf_size);
288 rbdr->is_xdp = false;
289 } else {
290 rbdr->pgcnt = ring_len;
291 rbdr->is_xdp = true;
292 }
293 rbdr->pgcnt = roundup_pow_of_two(rbdr->pgcnt);
294 rbdr->pgcache = kcalloc(rbdr->pgcnt, sizeof(*rbdr->pgcache),
295 GFP_KERNEL);
296 if (!rbdr->pgcache)
297 return -ENOMEM;
298 rbdr->pgidx = 0;
299 rbdr->pgalloc = 0;
300
301 nic->rb_page = NULL;
302 for (idx = 0; idx < ring_len; idx++) {
303 err = nicvf_alloc_rcv_buffer(nic, rbdr, GFP_KERNEL,
304 RCV_FRAG_LEN, &rbuf);
305 if (err) {
306 /* To free already allocated and mapped ones */
307 rbdr->tail = idx - 1;
308 return err;
309 }
310
311 desc = GET_RBDR_DESC(rbdr, idx);
312 desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1);
313 }
314
315 nicvf_get_page(nic);
316
317 return 0;
318 }
319
320 /* Free RBDR ring and its receive buffers */
321 static void nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
322 {
323 int head, tail;
324 u64 buf_addr, phys_addr;
325 struct pgcache *pgcache;
326 struct rbdr_entry_t *desc;
327
328 if (!rbdr)
329 return;
330
331 rbdr->enable = false;
332 if (!rbdr->dmem.base)
333 return;
334
335 head = rbdr->head;
336 tail = rbdr->tail;
337
338 /* Release page references */
339 while (head != tail) {
340 desc = GET_RBDR_DESC(rbdr, head);
341 buf_addr = desc->buf_addr;
342 phys_addr = nicvf_iova_to_phys(nic, buf_addr);
343 dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
344 DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
345 if (phys_addr)
346 put_page(virt_to_page(phys_to_virt(phys_addr)));
347 head++;
348 head &= (rbdr->dmem.q_len - 1);
349 }
350 /* Release buffer of tail desc */
351 desc = GET_RBDR_DESC(rbdr, tail);
352 buf_addr = desc->buf_addr;
353 phys_addr = nicvf_iova_to_phys(nic, buf_addr);
354 dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
355 DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
356 if (phys_addr)
357 put_page(virt_to_page(phys_to_virt(phys_addr)));
358
359 /* Sync page cache info */
360 smp_rmb();
361
362 /* Release additional page references held for recycling */
363 head = 0;
364 while (head < rbdr->pgcnt) {
365 pgcache = &rbdr->pgcache[head];
366 if (pgcache->page && page_ref_count(pgcache->page) != 0) {
367 if (rbdr->is_xdp) {
368 page_ref_sub(pgcache->page,
369 pgcache->ref_count - 1);
370 }
371 put_page(pgcache->page);
372 }
373 head++;
374 }
375
376 /* Free RBDR ring */
377 nicvf_free_q_desc_mem(nic, &rbdr->dmem);
378 }
379
380 /* Refill receive buffer descriptors with new buffers.
381 */
382 static void nicvf_refill_rbdr(struct nicvf *nic, gfp_t gfp)
383 {
384 struct queue_set *qs = nic->qs;
385 int rbdr_idx = qs->rbdr_cnt;
386 int tail, qcount;
387 int refill_rb_cnt;
388 struct rbdr *rbdr;
389 struct rbdr_entry_t *desc;
390 u64 rbuf;
391 int new_rb = 0;
392
393 refill:
394 if (!rbdr_idx)
395 return;
396 rbdr_idx--;
397 rbdr = &qs->rbdr[rbdr_idx];
398 /* Check if it's enabled */
399 if (!rbdr->enable)
400 goto next_rbdr;
401
402 /* Get no of desc's to be refilled */
403 qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
404 qcount &= 0x7FFFF;
405 /* Doorbell can be ringed with a max of ring size minus 1 */
406 if (qcount >= (qs->rbdr_len - 1))
407 goto next_rbdr;
408 else
409 refill_rb_cnt = qs->rbdr_len - qcount - 1;
410
411 /* Sync page cache info */
412 smp_rmb();
413
414 /* Start filling descs from tail */
415 tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
416 while (refill_rb_cnt) {
417 tail++;
418 tail &= (rbdr->dmem.q_len - 1);
419
420 if (nicvf_alloc_rcv_buffer(nic, rbdr, gfp, RCV_FRAG_LEN, &rbuf))
421 break;
422
423 desc = GET_RBDR_DESC(rbdr, tail);
424 desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1);
425 refill_rb_cnt--;
426 new_rb++;
427 }
428
429 nicvf_get_page(nic);
430
431 /* make sure all memory stores are done before ringing doorbell */
432 smp_wmb();
433
434 /* Check if buffer allocation failed */
435 if (refill_rb_cnt)
436 nic->rb_alloc_fail = true;
437 else
438 nic->rb_alloc_fail = false;
439
440 /* Notify HW */
441 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
442 rbdr_idx, new_rb);
443 next_rbdr:
444 /* Re-enable RBDR interrupts only if buffer allocation is success */
445 if (!nic->rb_alloc_fail && rbdr->enable &&
446 netif_running(nic->pnicvf->netdev))
447 nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
448
449 if (rbdr_idx)
450 goto refill;
451 }
452
453 /* Alloc rcv buffers in non-atomic mode for better success */
454 void nicvf_rbdr_work(struct work_struct *work)
455 {
456 struct nicvf *nic = container_of(work, struct nicvf, rbdr_work.work);
457
458 nicvf_refill_rbdr(nic, GFP_KERNEL);
459 if (nic->rb_alloc_fail)
460 schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
461 else
462 nic->rb_work_scheduled = false;
463 }
464
465 /* In Softirq context, alloc rcv buffers in atomic mode */
466 void nicvf_rbdr_task(unsigned long data)
467 {
468 struct nicvf *nic = (struct nicvf *)data;
469
470 nicvf_refill_rbdr(nic, GFP_ATOMIC);
471 if (nic->rb_alloc_fail) {
472 nic->rb_work_scheduled = true;
473 schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
474 }
475 }
476
477 /* Initialize completion queue */
478 static int nicvf_init_cmp_queue(struct nicvf *nic,
479 struct cmp_queue *cq, int q_len)
480 {
481 int err;
482
483 err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
484 NICVF_CQ_BASE_ALIGN_BYTES);
485 if (err)
486 return err;
487
488 cq->desc = cq->dmem.base;
489 cq->thresh = pass1_silicon(nic->pdev) ? 0 : CMP_QUEUE_CQE_THRESH;
490 nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
491
492 return 0;
493 }
494
495 static void nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
496 {
497 if (!cq)
498 return;
499 if (!cq->dmem.base)
500 return;
501
502 nicvf_free_q_desc_mem(nic, &cq->dmem);
503 }
504
505 /* Initialize transmit queue */
506 static int nicvf_init_snd_queue(struct nicvf *nic,
507 struct snd_queue *sq, int q_len, int qidx)
508 {
509 int err;
510
511 err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
512 NICVF_SQ_BASE_ALIGN_BYTES);
513 if (err)
514 return err;
515
516 sq->desc = sq->dmem.base;
517 sq->skbuff = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
518 if (!sq->skbuff)
519 return -ENOMEM;
520
521 sq->head = 0;
522 sq->tail = 0;
523 sq->thresh = SND_QUEUE_THRESH;
524
525 /* Check if this SQ is a XDP TX queue */
526 if (nic->sqs_mode)
527 qidx += ((nic->sqs_id + 1) * MAX_SND_QUEUES_PER_QS);
528 if (qidx < nic->pnicvf->xdp_tx_queues) {
529 /* Alloc memory to save page pointers for XDP_TX */
530 sq->xdp_page = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
531 if (!sq->xdp_page)
532 return -ENOMEM;
533 sq->xdp_desc_cnt = 0;
534 sq->xdp_free_cnt = q_len - 1;
535 sq->is_xdp = true;
536 } else {
537 sq->xdp_page = NULL;
538 sq->xdp_desc_cnt = 0;
539 sq->xdp_free_cnt = 0;
540 sq->is_xdp = false;
541
542 atomic_set(&sq->free_cnt, q_len - 1);
543
544 /* Preallocate memory for TSO segment's header */
545 sq->tso_hdrs = dma_alloc_coherent(&nic->pdev->dev,
546 q_len * TSO_HEADER_SIZE,
547 &sq->tso_hdrs_phys,
548 GFP_KERNEL);
549 if (!sq->tso_hdrs)
550 return -ENOMEM;
551 }
552
553 return 0;
554 }
555
556 void nicvf_unmap_sndq_buffers(struct nicvf *nic, struct snd_queue *sq,
557 int hdr_sqe, u8 subdesc_cnt)
558 {
559 u8 idx;
560 struct sq_gather_subdesc *gather;
561
562 /* Unmap DMA mapped skb data buffers */
563 for (idx = 0; idx < subdesc_cnt; idx++) {
564 hdr_sqe++;
565 hdr_sqe &= (sq->dmem.q_len - 1);
566 gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, hdr_sqe);
567 /* HW will ensure data coherency, CPU sync not required */
568 dma_unmap_page_attrs(&nic->pdev->dev, gather->addr,
569 gather->size, DMA_TO_DEVICE,
570 DMA_ATTR_SKIP_CPU_SYNC);
571 }
572 }
573
574 static void nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
575 {
576 struct sk_buff *skb;
577 struct page *page;
578 struct sq_hdr_subdesc *hdr;
579 struct sq_hdr_subdesc *tso_sqe;
580
581 if (!sq)
582 return;
583 if (!sq->dmem.base)
584 return;
585
586 if (sq->tso_hdrs) {
587 dma_free_coherent(&nic->pdev->dev,
588 sq->dmem.q_len * TSO_HEADER_SIZE,
589 sq->tso_hdrs, sq->tso_hdrs_phys);
590 sq->tso_hdrs = NULL;
591 }
592
593 /* Free pending skbs in the queue */
594 smp_rmb();
595 while (sq->head != sq->tail) {
596 skb = (struct sk_buff *)sq->skbuff[sq->head];
597 if (!skb || !sq->xdp_page)
598 goto next;
599
600 page = (struct page *)sq->xdp_page[sq->head];
601 if (!page)
602 goto next;
603 else
604 put_page(page);
605
606 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
607 /* Check for dummy descriptor used for HW TSO offload on 88xx */
608 if (hdr->dont_send) {
609 /* Get actual TSO descriptors and unmap them */
610 tso_sqe =
611 (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2);
612 nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2,
613 tso_sqe->subdesc_cnt);
614 } else {
615 nicvf_unmap_sndq_buffers(nic, sq, sq->head,
616 hdr->subdesc_cnt);
617 }
618 if (skb)
619 dev_kfree_skb_any(skb);
620 next:
621 sq->head++;
622 sq->head &= (sq->dmem.q_len - 1);
623 }
624 kfree(sq->skbuff);
625 kfree(sq->xdp_page);
626 nicvf_free_q_desc_mem(nic, &sq->dmem);
627 }
628
629 static void nicvf_reclaim_snd_queue(struct nicvf *nic,
630 struct queue_set *qs, int qidx)
631 {
632 /* Disable send queue */
633 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
634 /* Check if SQ is stopped */
635 if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
636 return;
637 /* Reset send queue */
638 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
639 }
640
641 static void nicvf_reclaim_rcv_queue(struct nicvf *nic,
642 struct queue_set *qs, int qidx)
643 {
644 union nic_mbx mbx = {};
645
646 /* Make sure all packets in the pipeline are written back into mem */
647 mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
648 nicvf_send_msg_to_pf(nic, &mbx);
649 }
650
651 static void nicvf_reclaim_cmp_queue(struct nicvf *nic,
652 struct queue_set *qs, int qidx)
653 {
654 /* Disable timer threshold (doesn't get reset upon CQ reset */
655 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
656 /* Disable completion queue */
657 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
658 /* Reset completion queue */
659 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
660 }
661
662 static void nicvf_reclaim_rbdr(struct nicvf *nic,
663 struct rbdr *rbdr, int qidx)
664 {
665 u64 tmp, fifo_state;
666 int timeout = 10;
667
668 /* Save head and tail pointers for feeing up buffers */
669 rbdr->head = nicvf_queue_reg_read(nic,
670 NIC_QSET_RBDR_0_1_HEAD,
671 qidx) >> 3;
672 rbdr->tail = nicvf_queue_reg_read(nic,
673 NIC_QSET_RBDR_0_1_TAIL,
674 qidx) >> 3;
675
676 /* If RBDR FIFO is in 'FAIL' state then do a reset first
677 * before relaiming.
678 */
679 fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
680 if (((fifo_state >> 62) & 0x03) == 0x3)
681 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
682 qidx, NICVF_RBDR_RESET);
683
684 /* Disable RBDR */
685 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
686 if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
687 return;
688 while (1) {
689 tmp = nicvf_queue_reg_read(nic,
690 NIC_QSET_RBDR_0_1_PREFETCH_STATUS,
691 qidx);
692 if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
693 break;
694 usleep_range(1000, 2000);
695 timeout--;
696 if (!timeout) {
697 netdev_err(nic->netdev,
698 "Failed polling on prefetch status\n");
699 return;
700 }
701 }
702 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
703 qidx, NICVF_RBDR_RESET);
704
705 if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
706 return;
707 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
708 if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
709 return;
710 }
711
712 void nicvf_config_vlan_stripping(struct nicvf *nic, netdev_features_t features)
713 {
714 u64 rq_cfg;
715 int sqs;
716
717 rq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_RQ_GEN_CFG, 0);
718
719 /* Enable first VLAN stripping */
720 if (features & NETIF_F_HW_VLAN_CTAG_RX)
721 rq_cfg |= (1ULL << 25);
722 else
723 rq_cfg &= ~(1ULL << 25);
724 nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
725
726 /* Configure Secondary Qsets, if any */
727 for (sqs = 0; sqs < nic->sqs_count; sqs++)
728 if (nic->snicvf[sqs])
729 nicvf_queue_reg_write(nic->snicvf[sqs],
730 NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
731 }
732
733 static void nicvf_reset_rcv_queue_stats(struct nicvf *nic)
734 {
735 union nic_mbx mbx = {};
736
737 /* Reset all RQ/SQ and VF stats */
738 mbx.reset_stat.msg = NIC_MBOX_MSG_RESET_STAT_COUNTER;
739 mbx.reset_stat.rx_stat_mask = 0x3FFF;
740 mbx.reset_stat.tx_stat_mask = 0x1F;
741 mbx.reset_stat.rq_stat_mask = 0xFFFF;
742 mbx.reset_stat.sq_stat_mask = 0xFFFF;
743 nicvf_send_msg_to_pf(nic, &mbx);
744 }
745
746 /* Configures receive queue */
747 static void nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
748 int qidx, bool enable)
749 {
750 union nic_mbx mbx = {};
751 struct rcv_queue *rq;
752 struct rq_cfg rq_cfg;
753
754 rq = &qs->rq[qidx];
755 rq->enable = enable;
756
757 /* Disable receive queue */
758 nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
759
760 if (!rq->enable) {
761 nicvf_reclaim_rcv_queue(nic, qs, qidx);
762 xdp_rxq_info_unreg(&rq->xdp_rxq);
763 return;
764 }
765
766 rq->cq_qs = qs->vnic_id;
767 rq->cq_idx = qidx;
768 rq->start_rbdr_qs = qs->vnic_id;
769 rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
770 rq->cont_rbdr_qs = qs->vnic_id;
771 rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
772 /* all writes of RBDR data to be loaded into L2 Cache as well*/
773 rq->caching = 1;
774
775 /* Driver have no proper error path for failed XDP RX-queue info reg */
776 WARN_ON(xdp_rxq_info_reg(&rq->xdp_rxq, nic->netdev, qidx) < 0);
777
778 /* Send a mailbox msg to PF to config RQ */
779 mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
780 mbx.rq.qs_num = qs->vnic_id;
781 mbx.rq.rq_num = qidx;
782 mbx.rq.cfg = (rq->caching << 26) | (rq->cq_qs << 19) |
783 (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
784 (rq->cont_qs_rbdr_idx << 8) |
785 (rq->start_rbdr_qs << 1) | (rq->start_qs_rbdr_idx);
786 nicvf_send_msg_to_pf(nic, &mbx);
787
788 mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
789 mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
790 (RQ_PASS_RBDR_LVL << 16) | (RQ_PASS_CQ_LVL << 8) |
791 (qs->vnic_id << 0);
792 nicvf_send_msg_to_pf(nic, &mbx);
793
794 /* RQ drop config
795 * Enable CQ drop to reserve sufficient CQEs for all tx packets
796 */
797 mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
798 mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
799 (RQ_PASS_RBDR_LVL << 40) | (RQ_DROP_RBDR_LVL << 32) |
800 (RQ_PASS_CQ_LVL << 16) | (RQ_DROP_CQ_LVL << 8);
801 nicvf_send_msg_to_pf(nic, &mbx);
802
803 if (!nic->sqs_mode && (qidx == 0)) {
804 /* Enable checking L3/L4 length and TCP/UDP checksums
805 * Also allow IPv6 pkts with zero UDP checksum.
806 */
807 nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0,
808 (BIT(24) | BIT(23) | BIT(21) | BIT(20)));
809 nicvf_config_vlan_stripping(nic, nic->netdev->features);
810 }
811
812 /* Enable Receive queue */
813 memset(&rq_cfg, 0, sizeof(struct rq_cfg));
814 rq_cfg.ena = 1;
815 rq_cfg.tcp_ena = 0;
816 nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, *(u64 *)&rq_cfg);
817 }
818
819 /* Configures completion queue */
820 void nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
821 int qidx, bool enable)
822 {
823 struct cmp_queue *cq;
824 struct cq_cfg cq_cfg;
825
826 cq = &qs->cq[qidx];
827 cq->enable = enable;
828
829 if (!cq->enable) {
830 nicvf_reclaim_cmp_queue(nic, qs, qidx);
831 return;
832 }
833
834 /* Reset completion queue */
835 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
836
837 if (!cq->enable)
838 return;
839
840 spin_lock_init(&cq->lock);
841 /* Set completion queue base address */
842 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE,
843 qidx, (u64)(cq->dmem.phys_base));
844
845 /* Enable Completion queue */
846 memset(&cq_cfg, 0, sizeof(struct cq_cfg));
847 cq_cfg.ena = 1;
848 cq_cfg.reset = 0;
849 cq_cfg.caching = 0;
850 cq_cfg.qsize = ilog2(qs->cq_len >> 10);
851 cq_cfg.avg_con = 0;
852 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(u64 *)&cq_cfg);
853
854 /* Set threshold value for interrupt generation */
855 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
856 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2,
857 qidx, CMP_QUEUE_TIMER_THRESH);
858 }
859
860 /* Configures transmit queue */
861 static void nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs,
862 int qidx, bool enable)
863 {
864 union nic_mbx mbx = {};
865 struct snd_queue *sq;
866 struct sq_cfg sq_cfg;
867
868 sq = &qs->sq[qidx];
869 sq->enable = enable;
870
871 if (!sq->enable) {
872 nicvf_reclaim_snd_queue(nic, qs, qidx);
873 return;
874 }
875
876 /* Reset send queue */
877 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
878
879 sq->cq_qs = qs->vnic_id;
880 sq->cq_idx = qidx;
881
882 /* Send a mailbox msg to PF to config SQ */
883 mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
884 mbx.sq.qs_num = qs->vnic_id;
885 mbx.sq.sq_num = qidx;
886 mbx.sq.sqs_mode = nic->sqs_mode;
887 mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
888 nicvf_send_msg_to_pf(nic, &mbx);
889
890 /* Set queue base address */
891 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE,
892 qidx, (u64)(sq->dmem.phys_base));
893
894 /* Enable send queue & set queue size */
895 memset(&sq_cfg, 0, sizeof(struct sq_cfg));
896 sq_cfg.ena = 1;
897 sq_cfg.reset = 0;
898 sq_cfg.ldwb = 0;
899 sq_cfg.qsize = ilog2(qs->sq_len >> 10);
900 sq_cfg.tstmp_bgx_intf = 0;
901 /* CQ's level at which HW will stop processing SQEs to avoid
902 * transmitting a pkt with no space in CQ to post CQE_TX.
903 */
904 sq_cfg.cq_limit = (CMP_QUEUE_PIPELINE_RSVD * 256) / qs->cq_len;
905 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(u64 *)&sq_cfg);
906
907 /* Set threshold value for interrupt generation */
908 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
909
910 /* Set queue:cpu affinity for better load distribution */
911 if (cpu_online(qidx)) {
912 cpumask_set_cpu(qidx, &sq->affinity_mask);
913 netif_set_xps_queue(nic->netdev,
914 &sq->affinity_mask, qidx);
915 }
916 }
917
918 /* Configures receive buffer descriptor ring */
919 static void nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs,
920 int qidx, bool enable)
921 {
922 struct rbdr *rbdr;
923 struct rbdr_cfg rbdr_cfg;
924
925 rbdr = &qs->rbdr[qidx];
926 nicvf_reclaim_rbdr(nic, rbdr, qidx);
927 if (!enable)
928 return;
929
930 /* Set descriptor base address */
931 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE,
932 qidx, (u64)(rbdr->dmem.phys_base));
933
934 /* Enable RBDR & set queue size */
935 /* Buffer size should be in multiples of 128 bytes */
936 memset(&rbdr_cfg, 0, sizeof(struct rbdr_cfg));
937 rbdr_cfg.ena = 1;
938 rbdr_cfg.reset = 0;
939 rbdr_cfg.ldwb = 0;
940 rbdr_cfg.qsize = RBDR_SIZE;
941 rbdr_cfg.avg_con = 0;
942 rbdr_cfg.lines = rbdr->dma_size / 128;
943 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
944 qidx, *(u64 *)&rbdr_cfg);
945
946 /* Notify HW */
947 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
948 qidx, qs->rbdr_len - 1);
949
950 /* Set threshold value for interrupt generation */
951 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH,
952 qidx, rbdr->thresh - 1);
953 }
954
955 /* Requests PF to assign and enable Qset */
956 void nicvf_qset_config(struct nicvf *nic, bool enable)
957 {
958 union nic_mbx mbx = {};
959 struct queue_set *qs = nic->qs;
960 struct qs_cfg *qs_cfg;
961
962 if (!qs) {
963 netdev_warn(nic->netdev,
964 "Qset is still not allocated, don't init queues\n");
965 return;
966 }
967
968 qs->enable = enable;
969 qs->vnic_id = nic->vf_id;
970
971 /* Send a mailbox msg to PF to config Qset */
972 mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
973 mbx.qs.num = qs->vnic_id;
974 mbx.qs.sqs_count = nic->sqs_count;
975
976 mbx.qs.cfg = 0;
977 qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
978 if (qs->enable) {
979 qs_cfg->ena = 1;
980 #ifdef __BIG_ENDIAN
981 qs_cfg->be = 1;
982 #endif
983 qs_cfg->vnic = qs->vnic_id;
984 /* Enable Tx timestamping capability */
985 if (nic->ptp_clock)
986 qs_cfg->send_tstmp_ena = 1;
987 }
988 nicvf_send_msg_to_pf(nic, &mbx);
989 }
990
991 static void nicvf_free_resources(struct nicvf *nic)
992 {
993 int qidx;
994 struct queue_set *qs = nic->qs;
995
996 /* Free receive buffer descriptor ring */
997 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
998 nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
999
1000 /* Free completion queue */
1001 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1002 nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
1003
1004 /* Free send queue */
1005 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1006 nicvf_free_snd_queue(nic, &qs->sq[qidx]);
1007 }
1008
1009 static int nicvf_alloc_resources(struct nicvf *nic)
1010 {
1011 int qidx;
1012 struct queue_set *qs = nic->qs;
1013
1014 /* Alloc receive buffer descriptor ring */
1015 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1016 if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
1017 DMA_BUFFER_LEN))
1018 goto alloc_fail;
1019 }
1020
1021 /* Alloc send queue */
1022 for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
1023 if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len, qidx))
1024 goto alloc_fail;
1025 }
1026
1027 /* Alloc completion queue */
1028 for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1029 if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len))
1030 goto alloc_fail;
1031 }
1032
1033 return 0;
1034 alloc_fail:
1035 nicvf_free_resources(nic);
1036 return -ENOMEM;
1037 }
1038
1039 int nicvf_set_qset_resources(struct nicvf *nic)
1040 {
1041 struct queue_set *qs;
1042
1043 qs = devm_kzalloc(&nic->pdev->dev, sizeof(*qs), GFP_KERNEL);
1044 if (!qs)
1045 return -ENOMEM;
1046 nic->qs = qs;
1047
1048 /* Set count of each queue */
1049 qs->rbdr_cnt = DEFAULT_RBDR_CNT;
1050 qs->rq_cnt = min_t(u8, MAX_RCV_QUEUES_PER_QS, num_online_cpus());
1051 qs->sq_cnt = min_t(u8, MAX_SND_QUEUES_PER_QS, num_online_cpus());
1052 qs->cq_cnt = max_t(u8, qs->rq_cnt, qs->sq_cnt);
1053
1054 /* Set queue lengths */
1055 qs->rbdr_len = RCV_BUF_COUNT;
1056 qs->sq_len = SND_QUEUE_LEN;
1057 qs->cq_len = CMP_QUEUE_LEN;
1058
1059 nic->rx_queues = qs->rq_cnt;
1060 nic->tx_queues = qs->sq_cnt;
1061 nic->xdp_tx_queues = 0;
1062
1063 return 0;
1064 }
1065
1066 int nicvf_config_data_transfer(struct nicvf *nic, bool enable)
1067 {
1068 bool disable = false;
1069 struct queue_set *qs = nic->qs;
1070 struct queue_set *pqs = nic->pnicvf->qs;
1071 int qidx;
1072
1073 if (!qs)
1074 return 0;
1075
1076 /* Take primary VF's queue lengths.
1077 * This is needed to take queue lengths set from ethtool
1078 * into consideration.
1079 */
1080 if (nic->sqs_mode && pqs) {
1081 qs->cq_len = pqs->cq_len;
1082 qs->sq_len = pqs->sq_len;
1083 }
1084
1085 if (enable) {
1086 if (nicvf_alloc_resources(nic))
1087 return -ENOMEM;
1088
1089 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1090 nicvf_snd_queue_config(nic, qs, qidx, enable);
1091 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1092 nicvf_cmp_queue_config(nic, qs, qidx, enable);
1093 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1094 nicvf_rbdr_config(nic, qs, qidx, enable);
1095 for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1096 nicvf_rcv_queue_config(nic, qs, qidx, enable);
1097 } else {
1098 for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1099 nicvf_rcv_queue_config(nic, qs, qidx, disable);
1100 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1101 nicvf_rbdr_config(nic, qs, qidx, disable);
1102 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1103 nicvf_snd_queue_config(nic, qs, qidx, disable);
1104 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1105 nicvf_cmp_queue_config(nic, qs, qidx, disable);
1106
1107 nicvf_free_resources(nic);
1108 }
1109
1110 /* Reset RXQ's stats.
1111 * SQ's stats will get reset automatically once SQ is reset.
1112 */
1113 nicvf_reset_rcv_queue_stats(nic);
1114
1115 return 0;
1116 }
1117
1118 /* Get a free desc from SQ
1119 * returns descriptor ponter & descriptor number
1120 */
1121 static inline int nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
1122 {
1123 int qentry;
1124
1125 qentry = sq->tail;
1126 if (!sq->is_xdp)
1127 atomic_sub(desc_cnt, &sq->free_cnt);
1128 else
1129 sq->xdp_free_cnt -= desc_cnt;
1130 sq->tail += desc_cnt;
1131 sq->tail &= (sq->dmem.q_len - 1);
1132
1133 return qentry;
1134 }
1135
1136 /* Rollback to previous tail pointer when descriptors not used */
1137 static inline void nicvf_rollback_sq_desc(struct snd_queue *sq,
1138 int qentry, int desc_cnt)
1139 {
1140 sq->tail = qentry;
1141 atomic_add(desc_cnt, &sq->free_cnt);
1142 }
1143
1144 /* Free descriptor back to SQ for future use */
1145 void nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
1146 {
1147 if (!sq->is_xdp)
1148 atomic_add(desc_cnt, &sq->free_cnt);
1149 else
1150 sq->xdp_free_cnt += desc_cnt;
1151 sq->head += desc_cnt;
1152 sq->head &= (sq->dmem.q_len - 1);
1153 }
1154
1155 static inline int nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
1156 {
1157 qentry++;
1158 qentry &= (sq->dmem.q_len - 1);
1159 return qentry;
1160 }
1161
1162 void nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
1163 {
1164 u64 sq_cfg;
1165
1166 sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1167 sq_cfg |= NICVF_SQ_EN;
1168 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1169 /* Ring doorbell so that H/W restarts processing SQEs */
1170 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
1171 }
1172
1173 void nicvf_sq_disable(struct nicvf *nic, int qidx)
1174 {
1175 u64 sq_cfg;
1176
1177 sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1178 sq_cfg &= ~NICVF_SQ_EN;
1179 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1180 }
1181
1182 void nicvf_sq_free_used_descs(struct net_device *netdev, struct snd_queue *sq,
1183 int qidx)
1184 {
1185 u64 head, tail;
1186 struct sk_buff *skb;
1187 struct nicvf *nic = netdev_priv(netdev);
1188 struct sq_hdr_subdesc *hdr;
1189
1190 head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
1191 tail = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_TAIL, qidx) >> 4;
1192 while (sq->head != head) {
1193 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
1194 if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
1195 nicvf_put_sq_desc(sq, 1);
1196 continue;
1197 }
1198 skb = (struct sk_buff *)sq->skbuff[sq->head];
1199 if (skb)
1200 dev_kfree_skb_any(skb);
1201 atomic64_add(1, (atomic64_t *)&netdev->stats.tx_packets);
1202 atomic64_add(hdr->tot_len,
1203 (atomic64_t *)&netdev->stats.tx_bytes);
1204 nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
1205 }
1206 }
1207
1208 /* XDP Transmit APIs */
1209 void nicvf_xdp_sq_doorbell(struct nicvf *nic,
1210 struct snd_queue *sq, int sq_num)
1211 {
1212 if (!sq->xdp_desc_cnt)
1213 return;
1214
1215 /* make sure all memory stores are done before ringing doorbell */
1216 wmb();
1217
1218 /* Inform HW to xmit all TSO segments */
1219 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1220 sq_num, sq->xdp_desc_cnt);
1221 sq->xdp_desc_cnt = 0;
1222 }
1223
1224 static inline void
1225 nicvf_xdp_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry,
1226 int subdesc_cnt, u64 data, int len)
1227 {
1228 struct sq_hdr_subdesc *hdr;
1229
1230 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1231 memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1232 hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1233 hdr->subdesc_cnt = subdesc_cnt;
1234 hdr->tot_len = len;
1235 hdr->post_cqe = 1;
1236 sq->xdp_page[qentry] = (u64)virt_to_page((void *)data);
1237 }
1238
1239 int nicvf_xdp_sq_append_pkt(struct nicvf *nic, struct snd_queue *sq,
1240 u64 bufaddr, u64 dma_addr, u16 len)
1241 {
1242 int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
1243 int qentry;
1244
1245 if (subdesc_cnt > sq->xdp_free_cnt)
1246 return 0;
1247
1248 qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1249
1250 nicvf_xdp_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, bufaddr, len);
1251
1252 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1253 nicvf_sq_add_gather_subdesc(sq, qentry, len, dma_addr);
1254
1255 sq->xdp_desc_cnt += subdesc_cnt;
1256
1257 return 1;
1258 }
1259
1260 /* Calculate no of SQ subdescriptors needed to transmit all
1261 * segments of this TSO packet.
1262 * Taken from 'Tilera network driver' with a minor modification.
1263 */
1264 static int nicvf_tso_count_subdescs(struct sk_buff *skb)
1265 {
1266 struct skb_shared_info *sh = skb_shinfo(skb);
1267 unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1268 unsigned int data_len = skb->len - sh_len;
1269 unsigned int p_len = sh->gso_size;
1270 long f_id = -1; /* id of the current fragment */
1271 long f_size = skb_headlen(skb) - sh_len; /* current fragment size */
1272 long f_used = 0; /* bytes used from the current fragment */
1273 long n; /* size of the current piece of payload */
1274 int num_edescs = 0;
1275 int segment;
1276
1277 for (segment = 0; segment < sh->gso_segs; segment++) {
1278 unsigned int p_used = 0;
1279
1280 /* One edesc for header and for each piece of the payload. */
1281 for (num_edescs++; p_used < p_len; num_edescs++) {
1282 /* Advance as needed. */
1283 while (f_used >= f_size) {
1284 f_id++;
1285 f_size = skb_frag_size(&sh->frags[f_id]);
1286 f_used = 0;
1287 }
1288
1289 /* Use bytes from the current fragment. */
1290 n = p_len - p_used;
1291 if (n > f_size - f_used)
1292 n = f_size - f_used;
1293 f_used += n;
1294 p_used += n;
1295 }
1296
1297 /* The last segment may be less than gso_size. */
1298 data_len -= p_len;
1299 if (data_len < p_len)
1300 p_len = data_len;
1301 }
1302
1303 /* '+ gso_segs' for SQ_HDR_SUDESCs for each segment */
1304 return num_edescs + sh->gso_segs;
1305 }
1306
1307 #define POST_CQE_DESC_COUNT 2
1308
1309 /* Get the number of SQ descriptors needed to xmit this skb */
1310 static int nicvf_sq_subdesc_required(struct nicvf *nic, struct sk_buff *skb)
1311 {
1312 int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
1313
1314 if (skb_shinfo(skb)->gso_size && !nic->hw_tso) {
1315 subdesc_cnt = nicvf_tso_count_subdescs(skb);
1316 return subdesc_cnt;
1317 }
1318
1319 /* Dummy descriptors to get TSO pkt completion notification */
1320 if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size)
1321 subdesc_cnt += POST_CQE_DESC_COUNT;
1322
1323 if (skb_shinfo(skb)->nr_frags)
1324 subdesc_cnt += skb_shinfo(skb)->nr_frags;
1325
1326 return subdesc_cnt;
1327 }
1328
1329 /* Add SQ HEADER subdescriptor.
1330 * First subdescriptor for every send descriptor.
1331 */
1332 static inline void
1333 nicvf_sq_add_hdr_subdesc(struct nicvf *nic, struct snd_queue *sq, int qentry,
1334 int subdesc_cnt, struct sk_buff *skb, int len)
1335 {
1336 int proto;
1337 struct sq_hdr_subdesc *hdr;
1338 union {
1339 struct iphdr *v4;
1340 struct ipv6hdr *v6;
1341 unsigned char *hdr;
1342 } ip;
1343
1344 ip.hdr = skb_network_header(skb);
1345 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1346 memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1347 hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1348
1349 if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size) {
1350 /* post_cqe = 0, to avoid HW posting a CQE for every TSO
1351 * segment transmitted on 88xx.
1352 */
1353 hdr->subdesc_cnt = subdesc_cnt - POST_CQE_DESC_COUNT;
1354 } else {
1355 sq->skbuff[qentry] = (u64)skb;
1356 /* Enable notification via CQE after processing SQE */
1357 hdr->post_cqe = 1;
1358 /* No of subdescriptors following this */
1359 hdr->subdesc_cnt = subdesc_cnt;
1360 }
1361 hdr->tot_len = len;
1362
1363 /* Offload checksum calculation to HW */
1364 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1365 if (ip.v4->version == 4)
1366 hdr->csum_l3 = 1; /* Enable IP csum calculation */
1367 hdr->l3_offset = skb_network_offset(skb);
1368 hdr->l4_offset = skb_transport_offset(skb);
1369
1370 proto = (ip.v4->version == 4) ? ip.v4->protocol :
1371 ip.v6->nexthdr;
1372
1373 switch (proto) {
1374 case IPPROTO_TCP:
1375 hdr->csum_l4 = SEND_L4_CSUM_TCP;
1376 break;
1377 case IPPROTO_UDP:
1378 hdr->csum_l4 = SEND_L4_CSUM_UDP;
1379 break;
1380 case IPPROTO_SCTP:
1381 hdr->csum_l4 = SEND_L4_CSUM_SCTP;
1382 break;
1383 }
1384 }
1385
1386 if (nic->hw_tso && skb_shinfo(skb)->gso_size) {
1387 hdr->tso = 1;
1388 hdr->tso_start = skb_transport_offset(skb) + tcp_hdrlen(skb);
1389 hdr->tso_max_paysize = skb_shinfo(skb)->gso_size;
1390 /* For non-tunneled pkts, point this to L2 ethertype */
1391 hdr->inner_l3_offset = skb_network_offset(skb) - 2;
1392 this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
1393 }
1394
1395 /* Check if timestamp is requested */
1396 if (!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1397 skb_tx_timestamp(skb);
1398 return;
1399 }
1400
1401 /* Tx timestamping not supported along with TSO, so ignore request */
1402 if (skb_shinfo(skb)->gso_size)
1403 return;
1404
1405 /* HW supports only a single outstanding packet to timestamp */
1406 if (!atomic_add_unless(&nic->pnicvf->tx_ptp_skbs, 1, 1))
1407 return;
1408
1409 /* Mark the SKB for later reference */
1410 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1411
1412 /* Finally enable timestamp generation
1413 * Since 'post_cqe' is also set, two CQEs will be posted
1414 * for this packet i.e CQE_TYPE_SEND and CQE_TYPE_SEND_PTP.
1415 */
1416 hdr->tstmp = 1;
1417 }
1418
1419 /* SQ GATHER subdescriptor
1420 * Must follow HDR descriptor
1421 */
1422 static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
1423 int size, u64 data)
1424 {
1425 struct sq_gather_subdesc *gather;
1426
1427 qentry &= (sq->dmem.q_len - 1);
1428 gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
1429
1430 memset(gather, 0, SND_QUEUE_DESC_SIZE);
1431 gather->subdesc_type = SQ_DESC_TYPE_GATHER;
1432 gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
1433 gather->size = size;
1434 gather->addr = data;
1435 }
1436
1437 /* Add HDR + IMMEDIATE subdescriptors right after descriptors of a TSO
1438 * packet so that a CQE is posted as a notifation for transmission of
1439 * TSO packet.
1440 */
1441 static inline void nicvf_sq_add_cqe_subdesc(struct snd_queue *sq, int qentry,
1442 int tso_sqe, struct sk_buff *skb)
1443 {
1444 struct sq_imm_subdesc *imm;
1445 struct sq_hdr_subdesc *hdr;
1446
1447 sq->skbuff[qentry] = (u64)skb;
1448
1449 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1450 memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1451 hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1452 /* Enable notification via CQE after processing SQE */
1453 hdr->post_cqe = 1;
1454 /* There is no packet to transmit here */
1455 hdr->dont_send = 1;
1456 hdr->subdesc_cnt = POST_CQE_DESC_COUNT - 1;
1457 hdr->tot_len = 1;
1458 /* Actual TSO header SQE index, needed for cleanup */
1459 hdr->rsvd2 = tso_sqe;
1460
1461 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1462 imm = (struct sq_imm_subdesc *)GET_SQ_DESC(sq, qentry);
1463 memset(imm, 0, SND_QUEUE_DESC_SIZE);
1464 imm->subdesc_type = SQ_DESC_TYPE_IMMEDIATE;
1465 imm->len = 1;
1466 }
1467
1468 static inline void nicvf_sq_doorbell(struct nicvf *nic, struct sk_buff *skb,
1469 int sq_num, int desc_cnt)
1470 {
1471 struct netdev_queue *txq;
1472
1473 txq = netdev_get_tx_queue(nic->pnicvf->netdev,
1474 skb_get_queue_mapping(skb));
1475
1476 netdev_tx_sent_queue(txq, skb->len);
1477
1478 /* make sure all memory stores are done before ringing doorbell */
1479 smp_wmb();
1480
1481 /* Inform HW to xmit all TSO segments */
1482 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1483 sq_num, desc_cnt);
1484 }
1485
1486 /* Segment a TSO packet into 'gso_size' segments and append
1487 * them to SQ for transfer
1488 */
1489 static int nicvf_sq_append_tso(struct nicvf *nic, struct snd_queue *sq,
1490 int sq_num, int qentry, struct sk_buff *skb)
1491 {
1492 struct tso_t tso;
1493 int seg_subdescs = 0, desc_cnt = 0;
1494 int seg_len, total_len, data_left;
1495 int hdr_qentry = qentry;
1496 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1497
1498 tso_start(skb, &tso);
1499 total_len = skb->len - hdr_len;
1500 while (total_len > 0) {
1501 char *hdr;
1502
1503 /* Save Qentry for adding HDR_SUBDESC at the end */
1504 hdr_qentry = qentry;
1505
1506 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1507 total_len -= data_left;
1508
1509 /* Add segment's header */
1510 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1511 hdr = sq->tso_hdrs + qentry * TSO_HEADER_SIZE;
1512 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1513 nicvf_sq_add_gather_subdesc(sq, qentry, hdr_len,
1514 sq->tso_hdrs_phys +
1515 qentry * TSO_HEADER_SIZE);
1516 /* HDR_SUDESC + GATHER */
1517 seg_subdescs = 2;
1518 seg_len = hdr_len;
1519
1520 /* Add segment's payload fragments */
1521 while (data_left > 0) {
1522 int size;
1523
1524 size = min_t(int, tso.size, data_left);
1525
1526 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1527 nicvf_sq_add_gather_subdesc(sq, qentry, size,
1528 virt_to_phys(tso.data));
1529 seg_subdescs++;
1530 seg_len += size;
1531
1532 data_left -= size;
1533 tso_build_data(skb, &tso, size);
1534 }
1535 nicvf_sq_add_hdr_subdesc(nic, sq, hdr_qentry,
1536 seg_subdescs - 1, skb, seg_len);
1537 sq->skbuff[hdr_qentry] = (u64)NULL;
1538 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1539
1540 desc_cnt += seg_subdescs;
1541 }
1542 /* Save SKB in the last segment for freeing */
1543 sq->skbuff[hdr_qentry] = (u64)skb;
1544
1545 nicvf_sq_doorbell(nic, skb, sq_num, desc_cnt);
1546
1547 this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
1548 return 1;
1549 }
1550
1551 /* Append an skb to a SQ for packet transfer. */
1552 int nicvf_sq_append_skb(struct nicvf *nic, struct snd_queue *sq,
1553 struct sk_buff *skb, u8 sq_num)
1554 {
1555 int i, size;
1556 int subdesc_cnt, hdr_sqe = 0;
1557 int qentry;
1558 u64 dma_addr;
1559
1560 subdesc_cnt = nicvf_sq_subdesc_required(nic, skb);
1561 if (subdesc_cnt > atomic_read(&sq->free_cnt))
1562 goto append_fail;
1563
1564 qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1565
1566 /* Check if its a TSO packet */
1567 if (skb_shinfo(skb)->gso_size && !nic->hw_tso)
1568 return nicvf_sq_append_tso(nic, sq, sq_num, qentry, skb);
1569
1570 /* Add SQ header subdesc */
1571 nicvf_sq_add_hdr_subdesc(nic, sq, qentry, subdesc_cnt - 1,
1572 skb, skb->len);
1573 hdr_sqe = qentry;
1574
1575 /* Add SQ gather subdescs */
1576 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1577 size = skb_is_nonlinear(skb) ? skb_headlen(skb) : skb->len;
1578 /* HW will ensure data coherency, CPU sync not required */
1579 dma_addr = dma_map_page_attrs(&nic->pdev->dev, virt_to_page(skb->data),
1580 offset_in_page(skb->data), size,
1581 DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
1582 if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
1583 nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
1584 return 0;
1585 }
1586
1587 nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
1588
1589 /* Check for scattered buffer */
1590 if (!skb_is_nonlinear(skb))
1591 goto doorbell;
1592
1593 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1594 const struct skb_frag_struct *frag;
1595
1596 frag = &skb_shinfo(skb)->frags[i];
1597
1598 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1599 size = skb_frag_size(frag);
1600 dma_addr = dma_map_page_attrs(&nic->pdev->dev,
1601 skb_frag_page(frag),
1602 frag->page_offset, size,
1603 DMA_TO_DEVICE,
1604 DMA_ATTR_SKIP_CPU_SYNC);
1605 if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
1606 /* Free entire chain of mapped buffers
1607 * here 'i' = frags mapped + above mapped skb->data
1608 */
1609 nicvf_unmap_sndq_buffers(nic, sq, hdr_sqe, i);
1610 nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
1611 return 0;
1612 }
1613 nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
1614 }
1615
1616 doorbell:
1617 if (nic->t88 && skb_shinfo(skb)->gso_size) {
1618 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1619 nicvf_sq_add_cqe_subdesc(sq, qentry, hdr_sqe, skb);
1620 }
1621
1622 nicvf_sq_doorbell(nic, skb, sq_num, subdesc_cnt);
1623
1624 return 1;
1625
1626 append_fail:
1627 /* Use original PCI dev for debug log */
1628 nic = nic->pnicvf;
1629 netdev_dbg(nic->netdev, "Not enough SQ descriptors to xmit pkt\n");
1630 return 0;
1631 }
1632
1633 static inline unsigned frag_num(unsigned i)
1634 {
1635 #ifdef __BIG_ENDIAN
1636 return (i & ~3) + 3 - (i & 3);
1637 #else
1638 return i;
1639 #endif
1640 }
1641
1642 static void nicvf_unmap_rcv_buffer(struct nicvf *nic, u64 dma_addr,
1643 u64 buf_addr, bool xdp)
1644 {
1645 struct page *page = NULL;
1646 int len = RCV_FRAG_LEN;
1647
1648 if (xdp) {
1649 page = virt_to_page(phys_to_virt(buf_addr));
1650 /* Check if it's a recycled page, if not
1651 * unmap the DMA mapping.
1652 *
1653 * Recycled page holds an extra reference.
1654 */
1655 if (page_ref_count(page) != 1)
1656 return;
1657
1658 len += XDP_PACKET_HEADROOM;
1659 /* Receive buffers in XDP mode are mapped from page start */
1660 dma_addr &= PAGE_MASK;
1661 }
1662 dma_unmap_page_attrs(&nic->pdev->dev, dma_addr, len,
1663 DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
1664 }
1665
1666 /* Returns SKB for a received packet */
1667 struct sk_buff *nicvf_get_rcv_skb(struct nicvf *nic,
1668 struct cqe_rx_t *cqe_rx, bool xdp)
1669 {
1670 int frag;
1671 int payload_len = 0;
1672 struct sk_buff *skb = NULL;
1673 struct page *page;
1674 int offset;
1675 u16 *rb_lens = NULL;
1676 u64 *rb_ptrs = NULL;
1677 u64 phys_addr;
1678
1679 rb_lens = (void *)cqe_rx + (3 * sizeof(u64));
1680 /* Except 88xx pass1 on all other chips CQE_RX2_S is added to
1681 * CQE_RX at word6, hence buffer pointers move by word
1682 *
1683 * Use existing 'hw_tso' flag which will be set for all chips
1684 * except 88xx pass1 instead of a additional cache line
1685 * access (or miss) by using pci dev's revision.
1686 */
1687 if (!nic->hw_tso)
1688 rb_ptrs = (void *)cqe_rx + (6 * sizeof(u64));
1689 else
1690 rb_ptrs = (void *)cqe_rx + (7 * sizeof(u64));
1691
1692 for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
1693 payload_len = rb_lens[frag_num(frag)];
1694 phys_addr = nicvf_iova_to_phys(nic, *rb_ptrs);
1695 if (!phys_addr) {
1696 if (skb)
1697 dev_kfree_skb_any(skb);
1698 return NULL;
1699 }
1700
1701 if (!frag) {
1702 /* First fragment */
1703 nicvf_unmap_rcv_buffer(nic,
1704 *rb_ptrs - cqe_rx->align_pad,
1705 phys_addr, xdp);
1706 skb = nicvf_rb_ptr_to_skb(nic,
1707 phys_addr - cqe_rx->align_pad,
1708 payload_len);
1709 if (!skb)
1710 return NULL;
1711 skb_reserve(skb, cqe_rx->align_pad);
1712 skb_put(skb, payload_len);
1713 } else {
1714 /* Add fragments */
1715 nicvf_unmap_rcv_buffer(nic, *rb_ptrs, phys_addr, xdp);
1716 page = virt_to_page(phys_to_virt(phys_addr));
1717 offset = phys_to_virt(phys_addr) - page_address(page);
1718 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
1719 offset, payload_len, RCV_FRAG_LEN);
1720 }
1721 /* Next buffer pointer */
1722 rb_ptrs++;
1723 }
1724 return skb;
1725 }
1726
1727 static u64 nicvf_int_type_to_mask(int int_type, int q_idx)
1728 {
1729 u64 reg_val;
1730
1731 switch (int_type) {
1732 case NICVF_INTR_CQ:
1733 reg_val = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1734 break;
1735 case NICVF_INTR_SQ:
1736 reg_val = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1737 break;
1738 case NICVF_INTR_RBDR:
1739 reg_val = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1740 break;
1741 case NICVF_INTR_PKT_DROP:
1742 reg_val = (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1743 break;
1744 case NICVF_INTR_TCP_TIMER:
1745 reg_val = (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1746 break;
1747 case NICVF_INTR_MBOX:
1748 reg_val = (1ULL << NICVF_INTR_MBOX_SHIFT);
1749 break;
1750 case NICVF_INTR_QS_ERR:
1751 reg_val = (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1752 break;
1753 default:
1754 reg_val = 0;
1755 }
1756
1757 return reg_val;
1758 }
1759
1760 /* Enable interrupt */
1761 void nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
1762 {
1763 u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1764
1765 if (!mask) {
1766 netdev_dbg(nic->netdev,
1767 "Failed to enable interrupt: unknown type\n");
1768 return;
1769 }
1770 nicvf_reg_write(nic, NIC_VF_ENA_W1S,
1771 nicvf_reg_read(nic, NIC_VF_ENA_W1S) | mask);
1772 }
1773
1774 /* Disable interrupt */
1775 void nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
1776 {
1777 u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1778
1779 if (!mask) {
1780 netdev_dbg(nic->netdev,
1781 "Failed to disable interrupt: unknown type\n");
1782 return;
1783 }
1784
1785 nicvf_reg_write(nic, NIC_VF_ENA_W1C, mask);
1786 }
1787
1788 /* Clear interrupt */
1789 void nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
1790 {
1791 u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1792
1793 if (!mask) {
1794 netdev_dbg(nic->netdev,
1795 "Failed to clear interrupt: unknown type\n");
1796 return;
1797 }
1798
1799 nicvf_reg_write(nic, NIC_VF_INT, mask);
1800 }
1801
1802 /* Check if interrupt is enabled */
1803 int nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
1804 {
1805 u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1806 /* If interrupt type is unknown, we treat it disabled. */
1807 if (!mask) {
1808 netdev_dbg(nic->netdev,
1809 "Failed to check interrupt enable: unknown type\n");
1810 return 0;
1811 }
1812
1813 return mask & nicvf_reg_read(nic, NIC_VF_ENA_W1S);
1814 }
1815
1816 void nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
1817 {
1818 struct rcv_queue *rq;
1819
1820 #define GET_RQ_STATS(reg) \
1821 nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
1822 (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1823
1824 rq = &nic->qs->rq[rq_idx];
1825 rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
1826 rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
1827 }
1828
1829 void nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
1830 {
1831 struct snd_queue *sq;
1832
1833 #define GET_SQ_STATS(reg) \
1834 nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
1835 (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1836
1837 sq = &nic->qs->sq[sq_idx];
1838 sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
1839 sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
1840 }
1841
1842 /* Check for errors in the receive cmp.queue entry */
1843 int nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1844 {
1845 netif_err(nic, rx_err, nic->netdev,
1846 "RX error CQE err_level 0x%x err_opcode 0x%x\n",
1847 cqe_rx->err_level, cqe_rx->err_opcode);
1848
1849 switch (cqe_rx->err_opcode) {
1850 case CQ_RX_ERROP_RE_PARTIAL:
1851 this_cpu_inc(nic->drv_stats->rx_bgx_truncated_pkts);
1852 break;
1853 case CQ_RX_ERROP_RE_JABBER:
1854 this_cpu_inc(nic->drv_stats->rx_jabber_errs);
1855 break;
1856 case CQ_RX_ERROP_RE_FCS:
1857 this_cpu_inc(nic->drv_stats->rx_fcs_errs);
1858 break;
1859 case CQ_RX_ERROP_RE_RX_CTL:
1860 this_cpu_inc(nic->drv_stats->rx_bgx_errs);
1861 break;
1862 case CQ_RX_ERROP_PREL2_ERR:
1863 this_cpu_inc(nic->drv_stats->rx_prel2_errs);
1864 break;
1865 case CQ_RX_ERROP_L2_MAL:
1866 this_cpu_inc(nic->drv_stats->rx_l2_hdr_malformed);
1867 break;
1868 case CQ_RX_ERROP_L2_OVERSIZE:
1869 this_cpu_inc(nic->drv_stats->rx_oversize);
1870 break;
1871 case CQ_RX_ERROP_L2_UNDERSIZE:
1872 this_cpu_inc(nic->drv_stats->rx_undersize);
1873 break;
1874 case CQ_RX_ERROP_L2_LENMISM:
1875 this_cpu_inc(nic->drv_stats->rx_l2_len_mismatch);
1876 break;
1877 case CQ_RX_ERROP_L2_PCLP:
1878 this_cpu_inc(nic->drv_stats->rx_l2_pclp);
1879 break;
1880 case CQ_RX_ERROP_IP_NOT:
1881 this_cpu_inc(nic->drv_stats->rx_ip_ver_errs);
1882 break;
1883 case CQ_RX_ERROP_IP_CSUM_ERR:
1884 this_cpu_inc(nic->drv_stats->rx_ip_csum_errs);
1885 break;
1886 case CQ_RX_ERROP_IP_MAL:
1887 this_cpu_inc(nic->drv_stats->rx_ip_hdr_malformed);
1888 break;
1889 case CQ_RX_ERROP_IP_MALD:
1890 this_cpu_inc(nic->drv_stats->rx_ip_payload_malformed);
1891 break;
1892 case CQ_RX_ERROP_IP_HOP:
1893 this_cpu_inc(nic->drv_stats->rx_ip_ttl_errs);
1894 break;
1895 case CQ_RX_ERROP_L3_PCLP:
1896 this_cpu_inc(nic->drv_stats->rx_l3_pclp);
1897 break;
1898 case CQ_RX_ERROP_L4_MAL:
1899 this_cpu_inc(nic->drv_stats->rx_l4_malformed);
1900 break;
1901 case CQ_RX_ERROP_L4_CHK:
1902 this_cpu_inc(nic->drv_stats->rx_l4_csum_errs);
1903 break;
1904 case CQ_RX_ERROP_UDP_LEN:
1905 this_cpu_inc(nic->drv_stats->rx_udp_len_errs);
1906 break;
1907 case CQ_RX_ERROP_L4_PORT:
1908 this_cpu_inc(nic->drv_stats->rx_l4_port_errs);
1909 break;
1910 case CQ_RX_ERROP_TCP_FLAG:
1911 this_cpu_inc(nic->drv_stats->rx_tcp_flag_errs);
1912 break;
1913 case CQ_RX_ERROP_TCP_OFFSET:
1914 this_cpu_inc(nic->drv_stats->rx_tcp_offset_errs);
1915 break;
1916 case CQ_RX_ERROP_L4_PCLP:
1917 this_cpu_inc(nic->drv_stats->rx_l4_pclp);
1918 break;
1919 case CQ_RX_ERROP_RBDR_TRUNC:
1920 this_cpu_inc(nic->drv_stats->rx_truncated_pkts);
1921 break;
1922 }
1923
1924 return 1;
1925 }
1926
1927 /* Check for errors in the send cmp.queue entry */
1928 int nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cqe_send_t *cqe_tx)
1929 {
1930 switch (cqe_tx->send_status) {
1931 case CQ_TX_ERROP_DESC_FAULT:
1932 this_cpu_inc(nic->drv_stats->tx_desc_fault);
1933 break;
1934 case CQ_TX_ERROP_HDR_CONS_ERR:
1935 this_cpu_inc(nic->drv_stats->tx_hdr_cons_err);
1936 break;
1937 case CQ_TX_ERROP_SUBDC_ERR:
1938 this_cpu_inc(nic->drv_stats->tx_subdesc_err);
1939 break;
1940 case CQ_TX_ERROP_MAX_SIZE_VIOL:
1941 this_cpu_inc(nic->drv_stats->tx_max_size_exceeded);
1942 break;
1943 case CQ_TX_ERROP_IMM_SIZE_OFLOW:
1944 this_cpu_inc(nic->drv_stats->tx_imm_size_oflow);
1945 break;
1946 case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
1947 this_cpu_inc(nic->drv_stats->tx_data_seq_err);
1948 break;
1949 case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
1950 this_cpu_inc(nic->drv_stats->tx_mem_seq_err);
1951 break;
1952 case CQ_TX_ERROP_LOCK_VIOL:
1953 this_cpu_inc(nic->drv_stats->tx_lock_viol);
1954 break;
1955 case CQ_TX_ERROP_DATA_FAULT:
1956 this_cpu_inc(nic->drv_stats->tx_data_fault);
1957 break;
1958 case CQ_TX_ERROP_TSTMP_CONFLICT:
1959 this_cpu_inc(nic->drv_stats->tx_tstmp_conflict);
1960 break;
1961 case CQ_TX_ERROP_TSTMP_TIMEOUT:
1962 this_cpu_inc(nic->drv_stats->tx_tstmp_timeout);
1963 break;
1964 case CQ_TX_ERROP_MEM_FAULT:
1965 this_cpu_inc(nic->drv_stats->tx_mem_fault);
1966 break;
1967 case CQ_TX_ERROP_CK_OVERLAP:
1968 this_cpu_inc(nic->drv_stats->tx_csum_overlap);
1969 break;
1970 case CQ_TX_ERROP_CK_OFLOW:
1971 this_cpu_inc(nic->drv_stats->tx_csum_overflow);
1972 break;
1973 }
1974
1975 return 1;
1976 }