]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/net/ethernet/hisilicon/hns/hns_enet.c
Merge tag 'drm/tegra/for-5.1-rc5' of git://anongit.freedesktop.org/tegra/linux into...
[thirdparty/kernel/stable.git] / drivers / net / ethernet / hisilicon / hns / hns_enet.c
1 /*
2 * Copyright (c) 2014-2015 Hisilicon Limited.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 */
9
10 #include <linux/clk.h>
11 #include <linux/cpumask.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/module.h>
19 #include <linux/phy.h>
20 #include <linux/platform_device.h>
21 #include <linux/skbuff.h>
22
23 #include "hnae.h"
24 #include "hns_enet.h"
25 #include "hns_dsaf_mac.h"
26
27 #define NIC_MAX_Q_PER_VF 16
28 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
29
30 #define SERVICE_TIMER_HZ (1 * HZ)
31
32 #define RCB_IRQ_NOT_INITED 0
33 #define RCB_IRQ_INITED 1
34 #define HNS_BUFFER_SIZE_2048 2048
35
36 #define BD_MAX_SEND_SIZE 8191
37 #define SKB_TMP_LEN(SKB) \
38 (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
39
40 static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size,
41 int send_sz, dma_addr_t dma, int frag_end,
42 int buf_num, enum hns_desc_type type, int mtu)
43 {
44 struct hnae_desc *desc = &ring->desc[ring->next_to_use];
45 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
46 struct iphdr *iphdr;
47 struct ipv6hdr *ipv6hdr;
48 struct sk_buff *skb;
49 __be16 protocol;
50 u8 bn_pid = 0;
51 u8 rrcfv = 0;
52 u8 ip_offset = 0;
53 u8 tvsvsn = 0;
54 u16 mss = 0;
55 u8 l4_len = 0;
56 u16 paylen = 0;
57
58 desc_cb->priv = priv;
59 desc_cb->length = size;
60 desc_cb->dma = dma;
61 desc_cb->type = type;
62
63 desc->addr = cpu_to_le64(dma);
64 desc->tx.send_size = cpu_to_le16((u16)send_sz);
65
66 /* config bd buffer end */
67 hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
68 hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
69
70 /* fill port_id in the tx bd for sending management pkts */
71 hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
72 HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
73
74 if (type == DESC_TYPE_SKB) {
75 skb = (struct sk_buff *)priv;
76
77 if (skb->ip_summed == CHECKSUM_PARTIAL) {
78 skb_reset_mac_len(skb);
79 protocol = skb->protocol;
80 ip_offset = ETH_HLEN;
81
82 if (protocol == htons(ETH_P_8021Q)) {
83 ip_offset += VLAN_HLEN;
84 protocol = vlan_get_protocol(skb);
85 skb->protocol = protocol;
86 }
87
88 if (skb->protocol == htons(ETH_P_IP)) {
89 iphdr = ip_hdr(skb);
90 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
91 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
92
93 /* check for tcp/udp header */
94 if (iphdr->protocol == IPPROTO_TCP &&
95 skb_is_gso(skb)) {
96 hnae_set_bit(tvsvsn,
97 HNSV2_TXD_TSE_B, 1);
98 l4_len = tcp_hdrlen(skb);
99 mss = skb_shinfo(skb)->gso_size;
100 paylen = skb->len - SKB_TMP_LEN(skb);
101 }
102 } else if (skb->protocol == htons(ETH_P_IPV6)) {
103 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
104 ipv6hdr = ipv6_hdr(skb);
105 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
106
107 /* check for tcp/udp header */
108 if (ipv6hdr->nexthdr == IPPROTO_TCP &&
109 skb_is_gso(skb) && skb_is_gso_v6(skb)) {
110 hnae_set_bit(tvsvsn,
111 HNSV2_TXD_TSE_B, 1);
112 l4_len = tcp_hdrlen(skb);
113 mss = skb_shinfo(skb)->gso_size;
114 paylen = skb->len - SKB_TMP_LEN(skb);
115 }
116 }
117 desc->tx.ip_offset = ip_offset;
118 desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
119 desc->tx.mss = cpu_to_le16(mss);
120 desc->tx.l4_len = l4_len;
121 desc->tx.paylen = cpu_to_le16(paylen);
122 }
123 }
124
125 hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
126
127 desc->tx.bn_pid = bn_pid;
128 desc->tx.ra_ri_cs_fe_vld = rrcfv;
129
130 ring_ptr_move_fw(ring, next_to_use);
131 }
132
133 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
134 int size, dma_addr_t dma, int frag_end,
135 int buf_num, enum hns_desc_type type, int mtu)
136 {
137 fill_v2_desc_hw(ring, priv, size, size, dma, frag_end,
138 buf_num, type, mtu);
139 }
140
141 static const struct acpi_device_id hns_enet_acpi_match[] = {
142 { "HISI00C1", 0 },
143 { "HISI00C2", 0 },
144 { },
145 };
146 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
147
148 static void fill_desc(struct hnae_ring *ring, void *priv,
149 int size, dma_addr_t dma, int frag_end,
150 int buf_num, enum hns_desc_type type, int mtu)
151 {
152 struct hnae_desc *desc = &ring->desc[ring->next_to_use];
153 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
154 struct sk_buff *skb;
155 __be16 protocol;
156 u32 ip_offset;
157 u32 asid_bufnum_pid = 0;
158 u32 flag_ipoffset = 0;
159
160 desc_cb->priv = priv;
161 desc_cb->length = size;
162 desc_cb->dma = dma;
163 desc_cb->type = type;
164
165 desc->addr = cpu_to_le64(dma);
166 desc->tx.send_size = cpu_to_le16((u16)size);
167
168 /*config bd buffer end */
169 flag_ipoffset |= 1 << HNS_TXD_VLD_B;
170
171 asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
172
173 if (type == DESC_TYPE_SKB) {
174 skb = (struct sk_buff *)priv;
175
176 if (skb->ip_summed == CHECKSUM_PARTIAL) {
177 protocol = skb->protocol;
178 ip_offset = ETH_HLEN;
179
180 /*if it is a SW VLAN check the next protocol*/
181 if (protocol == htons(ETH_P_8021Q)) {
182 ip_offset += VLAN_HLEN;
183 protocol = vlan_get_protocol(skb);
184 skb->protocol = protocol;
185 }
186
187 if (skb->protocol == htons(ETH_P_IP)) {
188 flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
189 /* check for tcp/udp header */
190 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
191
192 } else if (skb->protocol == htons(ETH_P_IPV6)) {
193 /* ipv6 has not l3 cs, check for L4 header */
194 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
195 }
196
197 flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
198 }
199 }
200
201 flag_ipoffset |= frag_end << HNS_TXD_FE_B;
202
203 desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
204 desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
205
206 ring_ptr_move_fw(ring, next_to_use);
207 }
208
209 static void unfill_desc(struct hnae_ring *ring)
210 {
211 ring_ptr_move_bw(ring, next_to_use);
212 }
213
214 static int hns_nic_maybe_stop_tx(
215 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
216 {
217 struct sk_buff *skb = *out_skb;
218 struct sk_buff *new_skb = NULL;
219 int buf_num;
220
221 /* no. of segments (plus a header) */
222 buf_num = skb_shinfo(skb)->nr_frags + 1;
223
224 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
225 if (ring_space(ring) < 1)
226 return -EBUSY;
227
228 new_skb = skb_copy(skb, GFP_ATOMIC);
229 if (!new_skb)
230 return -ENOMEM;
231
232 dev_kfree_skb_any(skb);
233 *out_skb = new_skb;
234 buf_num = 1;
235 } else if (buf_num > ring_space(ring)) {
236 return -EBUSY;
237 }
238
239 *bnum = buf_num;
240 return 0;
241 }
242
243 static int hns_nic_maybe_stop_tso(
244 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
245 {
246 int i;
247 int size;
248 int buf_num;
249 int frag_num;
250 struct sk_buff *skb = *out_skb;
251 struct sk_buff *new_skb = NULL;
252 struct skb_frag_struct *frag;
253
254 size = skb_headlen(skb);
255 buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
256
257 frag_num = skb_shinfo(skb)->nr_frags;
258 for (i = 0; i < frag_num; i++) {
259 frag = &skb_shinfo(skb)->frags[i];
260 size = skb_frag_size(frag);
261 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
262 }
263
264 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
265 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
266 if (ring_space(ring) < buf_num)
267 return -EBUSY;
268 /* manual split the send packet */
269 new_skb = skb_copy(skb, GFP_ATOMIC);
270 if (!new_skb)
271 return -ENOMEM;
272 dev_kfree_skb_any(skb);
273 *out_skb = new_skb;
274
275 } else if (ring_space(ring) < buf_num) {
276 return -EBUSY;
277 }
278
279 *bnum = buf_num;
280 return 0;
281 }
282
283 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
284 int size, dma_addr_t dma, int frag_end,
285 int buf_num, enum hns_desc_type type, int mtu)
286 {
287 int frag_buf_num;
288 int sizeoflast;
289 int k;
290
291 frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
292 sizeoflast = size % BD_MAX_SEND_SIZE;
293 sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
294
295 /* when the frag size is bigger than hardware, split this frag */
296 for (k = 0; k < frag_buf_num; k++)
297 fill_v2_desc_hw(ring, priv, k == 0 ? size : 0,
298 (k == frag_buf_num - 1) ?
299 sizeoflast : BD_MAX_SEND_SIZE,
300 dma + BD_MAX_SEND_SIZE * k,
301 frag_end && (k == frag_buf_num - 1) ? 1 : 0,
302 buf_num,
303 (type == DESC_TYPE_SKB && !k) ?
304 DESC_TYPE_SKB : DESC_TYPE_PAGE,
305 mtu);
306 }
307
308 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev,
309 struct sk_buff *skb,
310 struct hns_nic_ring_data *ring_data)
311 {
312 struct hns_nic_priv *priv = netdev_priv(ndev);
313 struct hnae_ring *ring = ring_data->ring;
314 struct device *dev = ring_to_dev(ring);
315 struct netdev_queue *dev_queue;
316 struct skb_frag_struct *frag;
317 int buf_num;
318 int seg_num;
319 dma_addr_t dma;
320 int size, next_to_use;
321 int i;
322
323 switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
324 case -EBUSY:
325 ring->stats.tx_busy++;
326 goto out_net_tx_busy;
327 case -ENOMEM:
328 ring->stats.sw_err_cnt++;
329 netdev_err(ndev, "no memory to xmit!\n");
330 goto out_err_tx_ok;
331 default:
332 break;
333 }
334
335 /* no. of segments (plus a header) */
336 seg_num = skb_shinfo(skb)->nr_frags + 1;
337 next_to_use = ring->next_to_use;
338
339 /* fill the first part */
340 size = skb_headlen(skb);
341 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
342 if (dma_mapping_error(dev, dma)) {
343 netdev_err(ndev, "TX head DMA map failed\n");
344 ring->stats.sw_err_cnt++;
345 goto out_err_tx_ok;
346 }
347 priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
348 buf_num, DESC_TYPE_SKB, ndev->mtu);
349
350 /* fill the fragments */
351 for (i = 1; i < seg_num; i++) {
352 frag = &skb_shinfo(skb)->frags[i - 1];
353 size = skb_frag_size(frag);
354 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
355 if (dma_mapping_error(dev, dma)) {
356 netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
357 ring->stats.sw_err_cnt++;
358 goto out_map_frag_fail;
359 }
360 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
361 seg_num - 1 == i ? 1 : 0, buf_num,
362 DESC_TYPE_PAGE, ndev->mtu);
363 }
364
365 /*complete translate all packets*/
366 dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
367 netdev_tx_sent_queue(dev_queue, skb->len);
368
369 netif_trans_update(ndev);
370 ndev->stats.tx_bytes += skb->len;
371 ndev->stats.tx_packets++;
372
373 wmb(); /* commit all data before submit */
374 assert(skb->queue_mapping < priv->ae_handle->q_num);
375 hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
376
377 return NETDEV_TX_OK;
378
379 out_map_frag_fail:
380
381 while (ring->next_to_use != next_to_use) {
382 unfill_desc(ring);
383 if (ring->next_to_use != next_to_use)
384 dma_unmap_page(dev,
385 ring->desc_cb[ring->next_to_use].dma,
386 ring->desc_cb[ring->next_to_use].length,
387 DMA_TO_DEVICE);
388 else
389 dma_unmap_single(dev,
390 ring->desc_cb[next_to_use].dma,
391 ring->desc_cb[next_to_use].length,
392 DMA_TO_DEVICE);
393 }
394
395 out_err_tx_ok:
396
397 dev_kfree_skb_any(skb);
398 return NETDEV_TX_OK;
399
400 out_net_tx_busy:
401
402 netif_stop_subqueue(ndev, skb->queue_mapping);
403
404 /* Herbert's original patch had:
405 * smp_mb__after_netif_stop_queue();
406 * but since that doesn't exist yet, just open code it.
407 */
408 smp_mb();
409 return NETDEV_TX_BUSY;
410 }
411
412 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
413 struct hnae_ring *ring, int pull_len,
414 struct hnae_desc_cb *desc_cb)
415 {
416 struct hnae_desc *desc;
417 u32 truesize;
418 int size;
419 int last_offset;
420 bool twobufs;
421
422 twobufs = ((PAGE_SIZE < 8192) &&
423 hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
424
425 desc = &ring->desc[ring->next_to_clean];
426 size = le16_to_cpu(desc->rx.size);
427
428 if (twobufs) {
429 truesize = hnae_buf_size(ring);
430 } else {
431 truesize = ALIGN(size, L1_CACHE_BYTES);
432 last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
433 }
434
435 skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
436 size - pull_len, truesize);
437
438 /* avoid re-using remote pages,flag default unreuse */
439 if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
440 return;
441
442 if (twobufs) {
443 /* if we are only owner of page we can reuse it */
444 if (likely(page_count(desc_cb->priv) == 1)) {
445 /* flip page offset to other buffer */
446 desc_cb->page_offset ^= truesize;
447
448 desc_cb->reuse_flag = 1;
449 /* bump ref count on page before it is given*/
450 get_page(desc_cb->priv);
451 }
452 return;
453 }
454
455 /* move offset up to the next cache line */
456 desc_cb->page_offset += truesize;
457
458 if (desc_cb->page_offset <= last_offset) {
459 desc_cb->reuse_flag = 1;
460 /* bump ref count on page before it is given*/
461 get_page(desc_cb->priv);
462 }
463 }
464
465 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
466 {
467 *out_bnum = hnae_get_field(bnum_flag,
468 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
469 }
470
471 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
472 {
473 *out_bnum = hnae_get_field(bnum_flag,
474 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
475 }
476
477 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data,
478 struct sk_buff *skb, u32 flag)
479 {
480 struct net_device *netdev = ring_data->napi.dev;
481 u32 l3id;
482 u32 l4id;
483
484 /* check if RX checksum offload is enabled */
485 if (unlikely(!(netdev->features & NETIF_F_RXCSUM)))
486 return;
487
488 /* In hardware, we only support checksum for the following protocols:
489 * 1) IPv4,
490 * 2) TCP(over IPv4 or IPv6),
491 * 3) UDP(over IPv4 or IPv6),
492 * 4) SCTP(over IPv4 or IPv6)
493 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP,
494 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols.
495 *
496 * Hardware limitation:
497 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status &
498 * Error" bit (which usually can be used to indicate whether checksum
499 * was calculated by the hardware and if there was any error encountered
500 * during checksum calculation).
501 *
502 * Software workaround:
503 * We do get info within the RX descriptor about the kind of L3/L4
504 * protocol coming in the packet and the error status. These errors
505 * might not just be checksum errors but could be related to version,
506 * length of IPv4, UDP, TCP etc.
507 * Because there is no-way of knowing if it is a L3/L4 error due to bad
508 * checksum or any other L3/L4 error, we will not (cannot) convey
509 * checksum status for such cases to upper stack and will not maintain
510 * the RX L3/L4 checksum counters as well.
511 */
512
513 l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S);
514 l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S);
515
516 /* check L3 protocol for which checksum is supported */
517 if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6))
518 return;
519
520 /* check for any(not just checksum)flagged L3 protocol errors */
521 if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B)))
522 return;
523
524 /* we do not support checksum of fragmented packets */
525 if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B)))
526 return;
527
528 /* check L4 protocol for which checksum is supported */
529 if ((l4id != HNS_RX_FLAG_L4ID_TCP) &&
530 (l4id != HNS_RX_FLAG_L4ID_UDP) &&
531 (l4id != HNS_RX_FLAG_L4ID_SCTP))
532 return;
533
534 /* check for any(not just checksum)flagged L4 protocol errors */
535 if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B)))
536 return;
537
538 /* now, this has to be a packet with valid RX checksum */
539 skb->ip_summed = CHECKSUM_UNNECESSARY;
540 }
541
542 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
543 struct sk_buff **out_skb, int *out_bnum)
544 {
545 struct hnae_ring *ring = ring_data->ring;
546 struct net_device *ndev = ring_data->napi.dev;
547 struct hns_nic_priv *priv = netdev_priv(ndev);
548 struct sk_buff *skb;
549 struct hnae_desc *desc;
550 struct hnae_desc_cb *desc_cb;
551 unsigned char *va;
552 int bnum, length, i;
553 int pull_len;
554 u32 bnum_flag;
555
556 desc = &ring->desc[ring->next_to_clean];
557 desc_cb = &ring->desc_cb[ring->next_to_clean];
558
559 prefetch(desc);
560
561 va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
562
563 /* prefetch first cache line of first page */
564 prefetch(va);
565 #if L1_CACHE_BYTES < 128
566 prefetch(va + L1_CACHE_BYTES);
567 #endif
568
569 skb = *out_skb = napi_alloc_skb(&ring_data->napi,
570 HNS_RX_HEAD_SIZE);
571 if (unlikely(!skb)) {
572 netdev_err(ndev, "alloc rx skb fail\n");
573 ring->stats.sw_err_cnt++;
574 return -ENOMEM;
575 }
576
577 prefetchw(skb->data);
578 length = le16_to_cpu(desc->rx.pkt_len);
579 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
580 priv->ops.get_rxd_bnum(bnum_flag, &bnum);
581 *out_bnum = bnum;
582
583 if (length <= HNS_RX_HEAD_SIZE) {
584 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
585
586 /* we can reuse buffer as-is, just make sure it is local */
587 if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
588 desc_cb->reuse_flag = 1;
589 else /* this page cannot be reused so discard it */
590 put_page(desc_cb->priv);
591
592 ring_ptr_move_fw(ring, next_to_clean);
593
594 if (unlikely(bnum != 1)) { /* check err*/
595 *out_bnum = 1;
596 goto out_bnum_err;
597 }
598 } else {
599 ring->stats.seg_pkt_cnt++;
600
601 pull_len = eth_get_headlen(va, HNS_RX_HEAD_SIZE);
602 memcpy(__skb_put(skb, pull_len), va,
603 ALIGN(pull_len, sizeof(long)));
604
605 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
606 ring_ptr_move_fw(ring, next_to_clean);
607
608 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
609 *out_bnum = 1;
610 goto out_bnum_err;
611 }
612 for (i = 1; i < bnum; i++) {
613 desc = &ring->desc[ring->next_to_clean];
614 desc_cb = &ring->desc_cb[ring->next_to_clean];
615
616 hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
617 ring_ptr_move_fw(ring, next_to_clean);
618 }
619 }
620
621 /* check except process, free skb and jump the desc */
622 if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
623 out_bnum_err:
624 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
625 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
626 bnum, ring->max_desc_num_per_pkt,
627 length, (int)MAX_SKB_FRAGS,
628 ((u64 *)desc)[0], ((u64 *)desc)[1]);
629 ring->stats.err_bd_num++;
630 dev_kfree_skb_any(skb);
631 return -EDOM;
632 }
633
634 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
635
636 if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
637 netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
638 ((u64 *)desc)[0], ((u64 *)desc)[1]);
639 ring->stats.non_vld_descs++;
640 dev_kfree_skb_any(skb);
641 return -EINVAL;
642 }
643
644 if (unlikely((!desc->rx.pkt_len) ||
645 hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
646 ring->stats.err_pkt_len++;
647 dev_kfree_skb_any(skb);
648 return -EFAULT;
649 }
650
651 if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
652 ring->stats.l2_err++;
653 dev_kfree_skb_any(skb);
654 return -EFAULT;
655 }
656
657 ring->stats.rx_pkts++;
658 ring->stats.rx_bytes += skb->len;
659
660 /* indicate to upper stack if our hardware has already calculated
661 * the RX checksum
662 */
663 hns_nic_rx_checksum(ring_data, skb, bnum_flag);
664
665 return 0;
666 }
667
668 static void
669 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
670 {
671 int i, ret;
672 struct hnae_desc_cb res_cbs;
673 struct hnae_desc_cb *desc_cb;
674 struct hnae_ring *ring = ring_data->ring;
675 struct net_device *ndev = ring_data->napi.dev;
676
677 for (i = 0; i < cleand_count; i++) {
678 desc_cb = &ring->desc_cb[ring->next_to_use];
679 if (desc_cb->reuse_flag) {
680 ring->stats.reuse_pg_cnt++;
681 hnae_reuse_buffer(ring, ring->next_to_use);
682 } else {
683 ret = hnae_reserve_buffer_map(ring, &res_cbs);
684 if (ret) {
685 ring->stats.sw_err_cnt++;
686 netdev_err(ndev, "hnae reserve buffer map failed.\n");
687 break;
688 }
689 hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
690 }
691
692 ring_ptr_move_fw(ring, next_to_use);
693 }
694
695 wmb(); /* make all data has been write before submit */
696 writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
697 }
698
699 /* return error number for error or number of desc left to take
700 */
701 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
702 struct sk_buff *skb)
703 {
704 struct net_device *ndev = ring_data->napi.dev;
705
706 skb->protocol = eth_type_trans(skb, ndev);
707 (void)napi_gro_receive(&ring_data->napi, skb);
708 }
709
710 static int hns_desc_unused(struct hnae_ring *ring)
711 {
712 int ntc = ring->next_to_clean;
713 int ntu = ring->next_to_use;
714
715 return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
716 }
717
718 #define HNS_LOWEST_LATENCY_RATE 27 /* 27 MB/s */
719 #define HNS_LOW_LATENCY_RATE 80 /* 80 MB/s */
720
721 #define HNS_COAL_BDNUM 3
722
723 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring)
724 {
725 bool coal_enable = ring->q->handle->coal_adapt_en;
726
727 if (coal_enable &&
728 ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE)
729 return HNS_COAL_BDNUM;
730 else
731 return 0;
732 }
733
734 static void hns_update_rx_rate(struct hnae_ring *ring)
735 {
736 bool coal_enable = ring->q->handle->coal_adapt_en;
737 u32 time_passed_ms;
738 u64 total_bytes;
739
740 if (!coal_enable ||
741 time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4)))
742 return;
743
744 /* ring->stats.rx_bytes overflowed */
745 if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) {
746 ring->coal_last_rx_bytes = ring->stats.rx_bytes;
747 ring->coal_last_jiffies = jiffies;
748 return;
749 }
750
751 total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes;
752 time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies);
753 do_div(total_bytes, time_passed_ms);
754 ring->coal_rx_rate = total_bytes >> 10;
755
756 ring->coal_last_rx_bytes = ring->stats.rx_bytes;
757 ring->coal_last_jiffies = jiffies;
758 }
759
760 /**
761 * smooth_alg - smoothing algrithm for adjusting coalesce parameter
762 **/
763 static u32 smooth_alg(u32 new_param, u32 old_param)
764 {
765 u32 gap = (new_param > old_param) ? new_param - old_param
766 : old_param - new_param;
767
768 if (gap > 8)
769 gap >>= 3;
770
771 if (new_param > old_param)
772 return old_param + gap;
773 else
774 return old_param - gap;
775 }
776
777 /**
778 * hns_nic_adp_coalesce - self adapte coalesce according to rx rate
779 * @ring_data: pointer to hns_nic_ring_data
780 **/
781 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data)
782 {
783 struct hnae_ring *ring = ring_data->ring;
784 struct hnae_handle *handle = ring->q->handle;
785 u32 new_coal_param, old_coal_param = ring->coal_param;
786
787 if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE)
788 new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM;
789 else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE)
790 new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM;
791 else
792 new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM;
793
794 if (new_coal_param == old_coal_param &&
795 new_coal_param == handle->coal_param)
796 return;
797
798 new_coal_param = smooth_alg(new_coal_param, old_coal_param);
799 ring->coal_param = new_coal_param;
800
801 /**
802 * Because all ring in one port has one coalesce param, when one ring
803 * calculate its own coalesce param, it cannot write to hardware at
804 * once. There are three conditions as follows:
805 * 1. current ring's coalesce param is larger than the hardware.
806 * 2. or ring which adapt last time can change again.
807 * 3. timeout.
808 */
809 if (new_coal_param == handle->coal_param) {
810 handle->coal_last_jiffies = jiffies;
811 handle->coal_ring_idx = ring_data->queue_index;
812 } else if (new_coal_param > handle->coal_param ||
813 handle->coal_ring_idx == ring_data->queue_index ||
814 time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) {
815 handle->dev->ops->set_coalesce_usecs(handle,
816 new_coal_param);
817 handle->dev->ops->set_coalesce_frames(handle,
818 1, new_coal_param);
819 handle->coal_param = new_coal_param;
820 handle->coal_ring_idx = ring_data->queue_index;
821 handle->coal_last_jiffies = jiffies;
822 }
823 }
824
825 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
826 int budget, void *v)
827 {
828 struct hnae_ring *ring = ring_data->ring;
829 struct sk_buff *skb;
830 int num, bnum;
831 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
832 int recv_pkts, recv_bds, clean_count, err;
833 int unused_count = hns_desc_unused(ring);
834
835 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
836 rmb(); /* make sure num taken effect before the other data is touched */
837
838 recv_pkts = 0, recv_bds = 0, clean_count = 0;
839 num -= unused_count;
840
841 while (recv_pkts < budget && recv_bds < num) {
842 /* reuse or realloc buffers */
843 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
844 hns_nic_alloc_rx_buffers(ring_data,
845 clean_count + unused_count);
846 clean_count = 0;
847 unused_count = hns_desc_unused(ring);
848 }
849
850 /* poll one pkt */
851 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
852 if (unlikely(!skb)) /* this fault cannot be repaired */
853 goto out;
854
855 recv_bds += bnum;
856 clean_count += bnum;
857 if (unlikely(err)) { /* do jump the err */
858 recv_pkts++;
859 continue;
860 }
861
862 /* do update ip stack process*/
863 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
864 ring_data, skb);
865 recv_pkts++;
866 }
867
868 out:
869 /* make all data has been write before submit */
870 if (clean_count + unused_count > 0)
871 hns_nic_alloc_rx_buffers(ring_data,
872 clean_count + unused_count);
873
874 return recv_pkts;
875 }
876
877 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
878 {
879 struct hnae_ring *ring = ring_data->ring;
880 int num = 0;
881 bool rx_stopped;
882
883 hns_update_rx_rate(ring);
884
885 /* for hardware bug fixed */
886 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
887 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
888
889 if (num <= hns_coal_rx_bdnum(ring)) {
890 if (ring->q->handle->coal_adapt_en)
891 hns_nic_adpt_coalesce(ring_data);
892
893 rx_stopped = true;
894 } else {
895 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
896 ring_data->ring, 1);
897
898 rx_stopped = false;
899 }
900
901 return rx_stopped;
902 }
903
904 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
905 {
906 struct hnae_ring *ring = ring_data->ring;
907 int num;
908
909 hns_update_rx_rate(ring);
910 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
911
912 if (num <= hns_coal_rx_bdnum(ring)) {
913 if (ring->q->handle->coal_adapt_en)
914 hns_nic_adpt_coalesce(ring_data);
915
916 return true;
917 }
918
919 return false;
920 }
921
922 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
923 int *bytes, int *pkts)
924 {
925 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
926
927 (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
928 (*bytes) += desc_cb->length;
929 /* desc_cb will be cleaned, after hnae_free_buffer_detach*/
930 hnae_free_buffer_detach(ring, ring->next_to_clean);
931
932 ring_ptr_move_fw(ring, next_to_clean);
933 }
934
935 static int is_valid_clean_head(struct hnae_ring *ring, int h)
936 {
937 int u = ring->next_to_use;
938 int c = ring->next_to_clean;
939
940 if (unlikely(h > ring->desc_num))
941 return 0;
942
943 assert(u > 0 && u < ring->desc_num);
944 assert(c > 0 && c < ring->desc_num);
945 assert(u != c && h != c); /* must be checked before call this func */
946
947 return u > c ? (h > c && h <= u) : (h > c || h <= u);
948 }
949
950 /* netif_tx_lock will turn down the performance, set only when necessary */
951 #ifdef CONFIG_NET_POLL_CONTROLLER
952 #define NETIF_TX_LOCK(ring) spin_lock(&(ring)->lock)
953 #define NETIF_TX_UNLOCK(ring) spin_unlock(&(ring)->lock)
954 #else
955 #define NETIF_TX_LOCK(ring)
956 #define NETIF_TX_UNLOCK(ring)
957 #endif
958
959 /* reclaim all desc in one budget
960 * return error or number of desc left
961 */
962 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
963 int budget, void *v)
964 {
965 struct hnae_ring *ring = ring_data->ring;
966 struct net_device *ndev = ring_data->napi.dev;
967 struct netdev_queue *dev_queue;
968 struct hns_nic_priv *priv = netdev_priv(ndev);
969 int head;
970 int bytes, pkts;
971
972 NETIF_TX_LOCK(ring);
973
974 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
975 rmb(); /* make sure head is ready before touch any data */
976
977 if (is_ring_empty(ring) || head == ring->next_to_clean) {
978 NETIF_TX_UNLOCK(ring);
979 return 0; /* no data to poll */
980 }
981
982 if (!is_valid_clean_head(ring, head)) {
983 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
984 ring->next_to_use, ring->next_to_clean);
985 ring->stats.io_err_cnt++;
986 NETIF_TX_UNLOCK(ring);
987 return -EIO;
988 }
989
990 bytes = 0;
991 pkts = 0;
992 while (head != ring->next_to_clean) {
993 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
994 /* issue prefetch for next Tx descriptor */
995 prefetch(&ring->desc_cb[ring->next_to_clean]);
996 }
997 /* update tx ring statistics. */
998 ring->stats.tx_pkts += pkts;
999 ring->stats.tx_bytes += bytes;
1000
1001 NETIF_TX_UNLOCK(ring);
1002
1003 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1004 netdev_tx_completed_queue(dev_queue, pkts, bytes);
1005
1006 if (unlikely(priv->link && !netif_carrier_ok(ndev)))
1007 netif_carrier_on(ndev);
1008
1009 if (unlikely(pkts && netif_carrier_ok(ndev) &&
1010 (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
1011 /* Make sure that anybody stopping the queue after this
1012 * sees the new next_to_clean.
1013 */
1014 smp_mb();
1015 if (netif_tx_queue_stopped(dev_queue) &&
1016 !test_bit(NIC_STATE_DOWN, &priv->state)) {
1017 netif_tx_wake_queue(dev_queue);
1018 ring->stats.restart_queue++;
1019 }
1020 }
1021 return 0;
1022 }
1023
1024 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
1025 {
1026 struct hnae_ring *ring = ring_data->ring;
1027 int head;
1028
1029 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1030
1031 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1032
1033 if (head != ring->next_to_clean) {
1034 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1035 ring_data->ring, 1);
1036
1037 return false;
1038 } else {
1039 return true;
1040 }
1041 }
1042
1043 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1044 {
1045 struct hnae_ring *ring = ring_data->ring;
1046 int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1047
1048 if (head == ring->next_to_clean)
1049 return true;
1050 else
1051 return false;
1052 }
1053
1054 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
1055 {
1056 struct hnae_ring *ring = ring_data->ring;
1057 struct net_device *ndev = ring_data->napi.dev;
1058 struct netdev_queue *dev_queue;
1059 int head;
1060 int bytes, pkts;
1061
1062 NETIF_TX_LOCK(ring);
1063
1064 head = ring->next_to_use; /* ntu :soft setted ring position*/
1065 bytes = 0;
1066 pkts = 0;
1067 while (head != ring->next_to_clean)
1068 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1069
1070 NETIF_TX_UNLOCK(ring);
1071
1072 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1073 netdev_tx_reset_queue(dev_queue);
1074 }
1075
1076 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
1077 {
1078 int clean_complete = 0;
1079 struct hns_nic_ring_data *ring_data =
1080 container_of(napi, struct hns_nic_ring_data, napi);
1081 struct hnae_ring *ring = ring_data->ring;
1082
1083 try_again:
1084 clean_complete += ring_data->poll_one(
1085 ring_data, budget - clean_complete,
1086 ring_data->ex_process);
1087
1088 if (clean_complete < budget) {
1089 if (ring_data->fini_process(ring_data)) {
1090 napi_complete(napi);
1091 ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1092 } else {
1093 goto try_again;
1094 }
1095 }
1096
1097 return clean_complete;
1098 }
1099
1100 static irqreturn_t hns_irq_handle(int irq, void *dev)
1101 {
1102 struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1103
1104 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1105 ring_data->ring, 1);
1106 napi_schedule(&ring_data->napi);
1107
1108 return IRQ_HANDLED;
1109 }
1110
1111 /**
1112 *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
1113 *@ndev: net device
1114 */
1115 static void hns_nic_adjust_link(struct net_device *ndev)
1116 {
1117 struct hns_nic_priv *priv = netdev_priv(ndev);
1118 struct hnae_handle *h = priv->ae_handle;
1119 int state = 1;
1120
1121 /* If there is no phy, do not need adjust link */
1122 if (ndev->phydev) {
1123 /* When phy link down, do nothing */
1124 if (ndev->phydev->link == 0)
1125 return;
1126
1127 if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed,
1128 ndev->phydev->duplex)) {
1129 /* because Hi161X chip don't support to change gmac
1130 * speed and duplex with traffic. Delay 200ms to
1131 * make sure there is no more data in chip FIFO.
1132 */
1133 netif_carrier_off(ndev);
1134 msleep(200);
1135 h->dev->ops->adjust_link(h, ndev->phydev->speed,
1136 ndev->phydev->duplex);
1137 netif_carrier_on(ndev);
1138 }
1139 }
1140
1141 state = state && h->dev->ops->get_status(h);
1142
1143 if (state != priv->link) {
1144 if (state) {
1145 netif_carrier_on(ndev);
1146 netif_tx_wake_all_queues(ndev);
1147 netdev_info(ndev, "link up\n");
1148 } else {
1149 netif_carrier_off(ndev);
1150 netdev_info(ndev, "link down\n");
1151 }
1152 priv->link = state;
1153 }
1154 }
1155
1156 /**
1157 *hns_nic_init_phy - init phy
1158 *@ndev: net device
1159 *@h: ae handle
1160 * Return 0 on success, negative on failure
1161 */
1162 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1163 {
1164 __ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = { 0, };
1165 struct phy_device *phy_dev = h->phy_dev;
1166 int ret;
1167
1168 if (!h->phy_dev)
1169 return 0;
1170
1171 ethtool_convert_legacy_u32_to_link_mode(supported, h->if_support);
1172 linkmode_and(phy_dev->supported, phy_dev->supported, supported);
1173 linkmode_copy(phy_dev->advertising, phy_dev->supported);
1174
1175 if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1176 phy_dev->autoneg = false;
1177
1178 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1179 phy_dev->dev_flags = 0;
1180
1181 ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1182 h->phy_if);
1183 } else {
1184 ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1185 }
1186 if (unlikely(ret))
1187 return -ENODEV;
1188
1189 return 0;
1190 }
1191
1192 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1193 {
1194 struct hns_nic_priv *priv = netdev_priv(netdev);
1195 struct hnae_handle *h = priv->ae_handle;
1196
1197 napi_enable(&priv->ring_data[idx].napi);
1198
1199 enable_irq(priv->ring_data[idx].ring->irq);
1200 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1201
1202 return 0;
1203 }
1204
1205 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1206 {
1207 struct hns_nic_priv *priv = netdev_priv(ndev);
1208 struct hnae_handle *h = priv->ae_handle;
1209 struct sockaddr *mac_addr = p;
1210 int ret;
1211
1212 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1213 return -EADDRNOTAVAIL;
1214
1215 ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1216 if (ret) {
1217 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1218 return ret;
1219 }
1220
1221 memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1222
1223 return 0;
1224 }
1225
1226 static void hns_nic_update_stats(struct net_device *netdev)
1227 {
1228 struct hns_nic_priv *priv = netdev_priv(netdev);
1229 struct hnae_handle *h = priv->ae_handle;
1230
1231 h->dev->ops->update_stats(h, &netdev->stats);
1232 }
1233
1234 /* set mac addr if it is configed. or leave it to the AE driver */
1235 static void hns_init_mac_addr(struct net_device *ndev)
1236 {
1237 struct hns_nic_priv *priv = netdev_priv(ndev);
1238
1239 if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) {
1240 eth_hw_addr_random(ndev);
1241 dev_warn(priv->dev, "No valid mac, use random mac %pM",
1242 ndev->dev_addr);
1243 }
1244 }
1245
1246 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1247 {
1248 struct hns_nic_priv *priv = netdev_priv(netdev);
1249 struct hnae_handle *h = priv->ae_handle;
1250
1251 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1252 disable_irq(priv->ring_data[idx].ring->irq);
1253
1254 napi_disable(&priv->ring_data[idx].napi);
1255 }
1256
1257 static int hns_nic_init_affinity_mask(int q_num, int ring_idx,
1258 struct hnae_ring *ring, cpumask_t *mask)
1259 {
1260 int cpu;
1261
1262 /* Diffrent irq banlance between 16core and 32core.
1263 * The cpu mask set by ring index according to the ring flag
1264 * which indicate the ring is tx or rx.
1265 */
1266 if (q_num == num_possible_cpus()) {
1267 if (is_tx_ring(ring))
1268 cpu = ring_idx;
1269 else
1270 cpu = ring_idx - q_num;
1271 } else {
1272 if (is_tx_ring(ring))
1273 cpu = ring_idx * 2;
1274 else
1275 cpu = (ring_idx - q_num) * 2 + 1;
1276 }
1277
1278 cpumask_clear(mask);
1279 cpumask_set_cpu(cpu, mask);
1280
1281 return cpu;
1282 }
1283
1284 static void hns_nic_free_irq(int q_num, struct hns_nic_priv *priv)
1285 {
1286 int i;
1287
1288 for (i = 0; i < q_num * 2; i++) {
1289 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1290 irq_set_affinity_hint(priv->ring_data[i].ring->irq,
1291 NULL);
1292 free_irq(priv->ring_data[i].ring->irq,
1293 &priv->ring_data[i]);
1294 priv->ring_data[i].ring->irq_init_flag =
1295 RCB_IRQ_NOT_INITED;
1296 }
1297 }
1298 }
1299
1300 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1301 {
1302 struct hnae_handle *h = priv->ae_handle;
1303 struct hns_nic_ring_data *rd;
1304 int i;
1305 int ret;
1306 int cpu;
1307
1308 for (i = 0; i < h->q_num * 2; i++) {
1309 rd = &priv->ring_data[i];
1310
1311 if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1312 break;
1313
1314 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1315 "%s-%s%d", priv->netdev->name,
1316 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index);
1317
1318 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1319
1320 ret = request_irq(rd->ring->irq,
1321 hns_irq_handle, 0, rd->ring->ring_name, rd);
1322 if (ret) {
1323 netdev_err(priv->netdev, "request irq(%d) fail\n",
1324 rd->ring->irq);
1325 goto out_free_irq;
1326 }
1327 disable_irq(rd->ring->irq);
1328
1329 cpu = hns_nic_init_affinity_mask(h->q_num, i,
1330 rd->ring, &rd->mask);
1331
1332 if (cpu_online(cpu))
1333 irq_set_affinity_hint(rd->ring->irq,
1334 &rd->mask);
1335
1336 rd->ring->irq_init_flag = RCB_IRQ_INITED;
1337 }
1338
1339 return 0;
1340
1341 out_free_irq:
1342 hns_nic_free_irq(h->q_num, priv);
1343 return ret;
1344 }
1345
1346 static int hns_nic_net_up(struct net_device *ndev)
1347 {
1348 struct hns_nic_priv *priv = netdev_priv(ndev);
1349 struct hnae_handle *h = priv->ae_handle;
1350 int i, j;
1351 int ret;
1352
1353 if (!test_bit(NIC_STATE_DOWN, &priv->state))
1354 return 0;
1355
1356 ret = hns_nic_init_irq(priv);
1357 if (ret != 0) {
1358 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1359 return ret;
1360 }
1361
1362 for (i = 0; i < h->q_num * 2; i++) {
1363 ret = hns_nic_ring_open(ndev, i);
1364 if (ret)
1365 goto out_has_some_queues;
1366 }
1367
1368 ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1369 if (ret)
1370 goto out_set_mac_addr_err;
1371
1372 ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1373 if (ret)
1374 goto out_start_err;
1375
1376 if (ndev->phydev)
1377 phy_start(ndev->phydev);
1378
1379 clear_bit(NIC_STATE_DOWN, &priv->state);
1380 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1381
1382 return 0;
1383
1384 out_start_err:
1385 netif_stop_queue(ndev);
1386 out_set_mac_addr_err:
1387 out_has_some_queues:
1388 for (j = i - 1; j >= 0; j--)
1389 hns_nic_ring_close(ndev, j);
1390
1391 hns_nic_free_irq(h->q_num, priv);
1392 set_bit(NIC_STATE_DOWN, &priv->state);
1393
1394 return ret;
1395 }
1396
1397 static void hns_nic_net_down(struct net_device *ndev)
1398 {
1399 int i;
1400 struct hnae_ae_ops *ops;
1401 struct hns_nic_priv *priv = netdev_priv(ndev);
1402
1403 if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1404 return;
1405
1406 (void)del_timer_sync(&priv->service_timer);
1407 netif_tx_stop_all_queues(ndev);
1408 netif_carrier_off(ndev);
1409 netif_tx_disable(ndev);
1410 priv->link = 0;
1411
1412 if (ndev->phydev)
1413 phy_stop(ndev->phydev);
1414
1415 ops = priv->ae_handle->dev->ops;
1416
1417 if (ops->stop)
1418 ops->stop(priv->ae_handle);
1419
1420 netif_tx_stop_all_queues(ndev);
1421
1422 for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1423 hns_nic_ring_close(ndev, i);
1424 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1425
1426 /* clean tx buffers*/
1427 hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1428 }
1429 }
1430
1431 void hns_nic_net_reset(struct net_device *ndev)
1432 {
1433 struct hns_nic_priv *priv = netdev_priv(ndev);
1434 struct hnae_handle *handle = priv->ae_handle;
1435
1436 while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1437 usleep_range(1000, 2000);
1438
1439 (void)hnae_reinit_handle(handle);
1440
1441 clear_bit(NIC_STATE_RESETTING, &priv->state);
1442 }
1443
1444 void hns_nic_net_reinit(struct net_device *netdev)
1445 {
1446 struct hns_nic_priv *priv = netdev_priv(netdev);
1447 enum hnae_port_type type = priv->ae_handle->port_type;
1448
1449 netif_trans_update(priv->netdev);
1450 while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1451 usleep_range(1000, 2000);
1452
1453 hns_nic_net_down(netdev);
1454
1455 /* Only do hns_nic_net_reset in debug mode
1456 * because of hardware limitation.
1457 */
1458 if (type == HNAE_PORT_DEBUG)
1459 hns_nic_net_reset(netdev);
1460
1461 (void)hns_nic_net_up(netdev);
1462 clear_bit(NIC_STATE_REINITING, &priv->state);
1463 }
1464
1465 static int hns_nic_net_open(struct net_device *ndev)
1466 {
1467 struct hns_nic_priv *priv = netdev_priv(ndev);
1468 struct hnae_handle *h = priv->ae_handle;
1469 int ret;
1470
1471 if (test_bit(NIC_STATE_TESTING, &priv->state))
1472 return -EBUSY;
1473
1474 priv->link = 0;
1475 netif_carrier_off(ndev);
1476
1477 ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1478 if (ret < 0) {
1479 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1480 ret);
1481 return ret;
1482 }
1483
1484 ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1485 if (ret < 0) {
1486 netdev_err(ndev,
1487 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1488 return ret;
1489 }
1490
1491 ret = hns_nic_net_up(ndev);
1492 if (ret) {
1493 netdev_err(ndev,
1494 "hns net up fail, ret=%d!\n", ret);
1495 return ret;
1496 }
1497
1498 return 0;
1499 }
1500
1501 static int hns_nic_net_stop(struct net_device *ndev)
1502 {
1503 hns_nic_net_down(ndev);
1504
1505 return 0;
1506 }
1507
1508 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1509 #define HNS_TX_TIMEO_LIMIT (40 * HZ)
1510 static void hns_nic_net_timeout(struct net_device *ndev)
1511 {
1512 struct hns_nic_priv *priv = netdev_priv(ndev);
1513
1514 if (ndev->watchdog_timeo < HNS_TX_TIMEO_LIMIT) {
1515 ndev->watchdog_timeo *= 2;
1516 netdev_info(ndev, "watchdog_timo changed to %d.\n",
1517 ndev->watchdog_timeo);
1518 } else {
1519 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
1520 hns_tx_timeout_reset(priv);
1521 }
1522 }
1523
1524 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1525 int cmd)
1526 {
1527 struct phy_device *phy_dev = netdev->phydev;
1528
1529 if (!netif_running(netdev))
1530 return -EINVAL;
1531
1532 if (!phy_dev)
1533 return -ENOTSUPP;
1534
1535 return phy_mii_ioctl(phy_dev, ifr, cmd);
1536 }
1537
1538 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1539 struct net_device *ndev)
1540 {
1541 struct hns_nic_priv *priv = netdev_priv(ndev);
1542
1543 assert(skb->queue_mapping < ndev->ae_handle->q_num);
1544
1545 return hns_nic_net_xmit_hw(ndev, skb,
1546 &tx_ring_data(priv, skb->queue_mapping));
1547 }
1548
1549 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data,
1550 struct sk_buff *skb)
1551 {
1552 dev_kfree_skb_any(skb);
1553 }
1554
1555 #define HNS_LB_TX_RING 0
1556 static struct sk_buff *hns_assemble_skb(struct net_device *ndev)
1557 {
1558 struct sk_buff *skb;
1559 struct ethhdr *ethhdr;
1560 int frame_len;
1561
1562 /* allocate test skb */
1563 skb = alloc_skb(64, GFP_KERNEL);
1564 if (!skb)
1565 return NULL;
1566
1567 skb_put(skb, 64);
1568 skb->dev = ndev;
1569 memset(skb->data, 0xFF, skb->len);
1570
1571 /* must be tcp/ip package */
1572 ethhdr = (struct ethhdr *)skb->data;
1573 ethhdr->h_proto = htons(ETH_P_IP);
1574
1575 frame_len = skb->len & (~1ul);
1576 memset(&skb->data[frame_len / 2], 0xAA,
1577 frame_len / 2 - 1);
1578
1579 skb->queue_mapping = HNS_LB_TX_RING;
1580
1581 return skb;
1582 }
1583
1584 static int hns_enable_serdes_lb(struct net_device *ndev)
1585 {
1586 struct hns_nic_priv *priv = netdev_priv(ndev);
1587 struct hnae_handle *h = priv->ae_handle;
1588 struct hnae_ae_ops *ops = h->dev->ops;
1589 int speed, duplex;
1590 int ret;
1591
1592 ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1);
1593 if (ret)
1594 return ret;
1595
1596 ret = ops->start ? ops->start(h) : 0;
1597 if (ret)
1598 return ret;
1599
1600 /* link adjust duplex*/
1601 if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1602 speed = 1000;
1603 else
1604 speed = 10000;
1605 duplex = 1;
1606
1607 ops->adjust_link(h, speed, duplex);
1608
1609 /* wait h/w ready */
1610 mdelay(300);
1611
1612 return 0;
1613 }
1614
1615 static void hns_disable_serdes_lb(struct net_device *ndev)
1616 {
1617 struct hns_nic_priv *priv = netdev_priv(ndev);
1618 struct hnae_handle *h = priv->ae_handle;
1619 struct hnae_ae_ops *ops = h->dev->ops;
1620
1621 ops->stop(h);
1622 ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0);
1623 }
1624
1625 /**
1626 *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The
1627 *function as follows:
1628 * 1. if one rx ring has found the page_offset is not equal 0 between head
1629 * and tail, it means that the chip fetched the wrong descs for the ring
1630 * which buffer size is 4096.
1631 * 2. we set the chip serdes loopback and set rss indirection to the ring.
1632 * 3. construct 64-bytes ip broadcast packages, wait the associated rx ring
1633 * recieving all packages and it will fetch new descriptions.
1634 * 4. recover to the original state.
1635 *
1636 *@ndev: net device
1637 */
1638 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev)
1639 {
1640 struct hns_nic_priv *priv = netdev_priv(ndev);
1641 struct hnae_handle *h = priv->ae_handle;
1642 struct hnae_ae_ops *ops = h->dev->ops;
1643 struct hns_nic_ring_data *rd;
1644 struct hnae_ring *ring;
1645 struct sk_buff *skb;
1646 u32 *org_indir;
1647 u32 *cur_indir;
1648 int indir_size;
1649 int head, tail;
1650 int fetch_num;
1651 int i, j;
1652 bool found;
1653 int retry_times;
1654 int ret = 0;
1655
1656 /* alloc indir memory */
1657 indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir);
1658 org_indir = kzalloc(indir_size, GFP_KERNEL);
1659 if (!org_indir)
1660 return -ENOMEM;
1661
1662 /* store the orginal indirection */
1663 ops->get_rss(h, org_indir, NULL, NULL);
1664
1665 cur_indir = kzalloc(indir_size, GFP_KERNEL);
1666 if (!cur_indir) {
1667 ret = -ENOMEM;
1668 goto cur_indir_alloc_err;
1669 }
1670
1671 /* set loopback */
1672 if (hns_enable_serdes_lb(ndev)) {
1673 ret = -EINVAL;
1674 goto enable_serdes_lb_err;
1675 }
1676
1677 /* foreach every rx ring to clear fetch desc */
1678 for (i = 0; i < h->q_num; i++) {
1679 ring = &h->qs[i]->rx_ring;
1680 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1681 tail = readl_relaxed(ring->io_base + RCB_REG_TAIL);
1682 found = false;
1683 fetch_num = ring_dist(ring, head, tail);
1684
1685 while (head != tail) {
1686 if (ring->desc_cb[head].page_offset != 0) {
1687 found = true;
1688 break;
1689 }
1690
1691 head++;
1692 if (head == ring->desc_num)
1693 head = 0;
1694 }
1695
1696 if (found) {
1697 for (j = 0; j < indir_size / sizeof(*org_indir); j++)
1698 cur_indir[j] = i;
1699 ops->set_rss(h, cur_indir, NULL, 0);
1700
1701 for (j = 0; j < fetch_num; j++) {
1702 /* alloc one skb and init */
1703 skb = hns_assemble_skb(ndev);
1704 if (!skb)
1705 goto out;
1706 rd = &tx_ring_data(priv, skb->queue_mapping);
1707 hns_nic_net_xmit_hw(ndev, skb, rd);
1708
1709 retry_times = 0;
1710 while (retry_times++ < 10) {
1711 mdelay(10);
1712 /* clean rx */
1713 rd = &rx_ring_data(priv, i);
1714 if (rd->poll_one(rd, fetch_num,
1715 hns_nic_drop_rx_fetch))
1716 break;
1717 }
1718
1719 retry_times = 0;
1720 while (retry_times++ < 10) {
1721 mdelay(10);
1722 /* clean tx ring 0 send package */
1723 rd = &tx_ring_data(priv,
1724 HNS_LB_TX_RING);
1725 if (rd->poll_one(rd, fetch_num, NULL))
1726 break;
1727 }
1728 }
1729 }
1730 }
1731
1732 out:
1733 /* restore everything */
1734 ops->set_rss(h, org_indir, NULL, 0);
1735 hns_disable_serdes_lb(ndev);
1736 enable_serdes_lb_err:
1737 kfree(cur_indir);
1738 cur_indir_alloc_err:
1739 kfree(org_indir);
1740
1741 return ret;
1742 }
1743
1744 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1745 {
1746 struct hns_nic_priv *priv = netdev_priv(ndev);
1747 struct hnae_handle *h = priv->ae_handle;
1748 bool if_running = netif_running(ndev);
1749 int ret;
1750
1751 /* MTU < 68 is an error and causes problems on some kernels */
1752 if (new_mtu < 68)
1753 return -EINVAL;
1754
1755 /* MTU no change */
1756 if (new_mtu == ndev->mtu)
1757 return 0;
1758
1759 if (!h->dev->ops->set_mtu)
1760 return -ENOTSUPP;
1761
1762 if (if_running) {
1763 (void)hns_nic_net_stop(ndev);
1764 msleep(100);
1765 }
1766
1767 if (priv->enet_ver != AE_VERSION_1 &&
1768 ndev->mtu <= BD_SIZE_2048_MAX_MTU &&
1769 new_mtu > BD_SIZE_2048_MAX_MTU) {
1770 /* update desc */
1771 hnae_reinit_all_ring_desc(h);
1772
1773 /* clear the package which the chip has fetched */
1774 ret = hns_nic_clear_all_rx_fetch(ndev);
1775
1776 /* the page offset must be consist with desc */
1777 hnae_reinit_all_ring_page_off(h);
1778
1779 if (ret) {
1780 netdev_err(ndev, "clear the fetched desc fail\n");
1781 goto out;
1782 }
1783 }
1784
1785 ret = h->dev->ops->set_mtu(h, new_mtu);
1786 if (ret) {
1787 netdev_err(ndev, "set mtu fail, return value %d\n",
1788 ret);
1789 goto out;
1790 }
1791
1792 /* finally, set new mtu to netdevice */
1793 ndev->mtu = new_mtu;
1794
1795 out:
1796 if (if_running) {
1797 if (hns_nic_net_open(ndev)) {
1798 netdev_err(ndev, "hns net open fail\n");
1799 ret = -EINVAL;
1800 }
1801 }
1802
1803 return ret;
1804 }
1805
1806 static int hns_nic_set_features(struct net_device *netdev,
1807 netdev_features_t features)
1808 {
1809 struct hns_nic_priv *priv = netdev_priv(netdev);
1810
1811 switch (priv->enet_ver) {
1812 case AE_VERSION_1:
1813 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1814 netdev_info(netdev, "enet v1 do not support tso!\n");
1815 break;
1816 default:
1817 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1818 priv->ops.fill_desc = fill_tso_desc;
1819 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1820 /* The chip only support 7*4096 */
1821 netif_set_gso_max_size(netdev, 7 * 4096);
1822 } else {
1823 priv->ops.fill_desc = fill_v2_desc;
1824 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1825 }
1826 break;
1827 }
1828 netdev->features = features;
1829 return 0;
1830 }
1831
1832 static netdev_features_t hns_nic_fix_features(
1833 struct net_device *netdev, netdev_features_t features)
1834 {
1835 struct hns_nic_priv *priv = netdev_priv(netdev);
1836
1837 switch (priv->enet_ver) {
1838 case AE_VERSION_1:
1839 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1840 NETIF_F_HW_VLAN_CTAG_FILTER);
1841 break;
1842 default:
1843 break;
1844 }
1845 return features;
1846 }
1847
1848 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
1849 {
1850 struct hns_nic_priv *priv = netdev_priv(netdev);
1851 struct hnae_handle *h = priv->ae_handle;
1852
1853 if (h->dev->ops->add_uc_addr)
1854 return h->dev->ops->add_uc_addr(h, addr);
1855
1856 return 0;
1857 }
1858
1859 static int hns_nic_uc_unsync(struct net_device *netdev,
1860 const unsigned char *addr)
1861 {
1862 struct hns_nic_priv *priv = netdev_priv(netdev);
1863 struct hnae_handle *h = priv->ae_handle;
1864
1865 if (h->dev->ops->rm_uc_addr)
1866 return h->dev->ops->rm_uc_addr(h, addr);
1867
1868 return 0;
1869 }
1870
1871 /**
1872 * nic_set_multicast_list - set mutl mac address
1873 * @netdev: net device
1874 * @p: mac address
1875 *
1876 * return void
1877 */
1878 static void hns_set_multicast_list(struct net_device *ndev)
1879 {
1880 struct hns_nic_priv *priv = netdev_priv(ndev);
1881 struct hnae_handle *h = priv->ae_handle;
1882 struct netdev_hw_addr *ha = NULL;
1883
1884 if (!h) {
1885 netdev_err(ndev, "hnae handle is null\n");
1886 return;
1887 }
1888
1889 if (h->dev->ops->clr_mc_addr)
1890 if (h->dev->ops->clr_mc_addr(h))
1891 netdev_err(ndev, "clear multicast address fail\n");
1892
1893 if (h->dev->ops->set_mc_addr) {
1894 netdev_for_each_mc_addr(ha, ndev)
1895 if (h->dev->ops->set_mc_addr(h, ha->addr))
1896 netdev_err(ndev, "set multicast fail\n");
1897 }
1898 }
1899
1900 static void hns_nic_set_rx_mode(struct net_device *ndev)
1901 {
1902 struct hns_nic_priv *priv = netdev_priv(ndev);
1903 struct hnae_handle *h = priv->ae_handle;
1904
1905 if (h->dev->ops->set_promisc_mode) {
1906 if (ndev->flags & IFF_PROMISC)
1907 h->dev->ops->set_promisc_mode(h, 1);
1908 else
1909 h->dev->ops->set_promisc_mode(h, 0);
1910 }
1911
1912 hns_set_multicast_list(ndev);
1913
1914 if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync))
1915 netdev_err(ndev, "sync uc address fail\n");
1916 }
1917
1918 static void hns_nic_get_stats64(struct net_device *ndev,
1919 struct rtnl_link_stats64 *stats)
1920 {
1921 int idx = 0;
1922 u64 tx_bytes = 0;
1923 u64 rx_bytes = 0;
1924 u64 tx_pkts = 0;
1925 u64 rx_pkts = 0;
1926 struct hns_nic_priv *priv = netdev_priv(ndev);
1927 struct hnae_handle *h = priv->ae_handle;
1928
1929 for (idx = 0; idx < h->q_num; idx++) {
1930 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1931 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1932 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1933 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1934 }
1935
1936 stats->tx_bytes = tx_bytes;
1937 stats->tx_packets = tx_pkts;
1938 stats->rx_bytes = rx_bytes;
1939 stats->rx_packets = rx_pkts;
1940
1941 stats->rx_errors = ndev->stats.rx_errors;
1942 stats->multicast = ndev->stats.multicast;
1943 stats->rx_length_errors = ndev->stats.rx_length_errors;
1944 stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1945 stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1946
1947 stats->tx_errors = ndev->stats.tx_errors;
1948 stats->rx_dropped = ndev->stats.rx_dropped;
1949 stats->tx_dropped = ndev->stats.tx_dropped;
1950 stats->collisions = ndev->stats.collisions;
1951 stats->rx_over_errors = ndev->stats.rx_over_errors;
1952 stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1953 stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1954 stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1955 stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1956 stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1957 stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1958 stats->tx_window_errors = ndev->stats.tx_window_errors;
1959 stats->rx_compressed = ndev->stats.rx_compressed;
1960 stats->tx_compressed = ndev->stats.tx_compressed;
1961 }
1962
1963 static u16
1964 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
1965 struct net_device *sb_dev,
1966 select_queue_fallback_t fallback)
1967 {
1968 struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
1969 struct hns_nic_priv *priv = netdev_priv(ndev);
1970
1971 /* fix hardware broadcast/multicast packets queue loopback */
1972 if (!AE_IS_VER1(priv->enet_ver) &&
1973 is_multicast_ether_addr(eth_hdr->h_dest))
1974 return 0;
1975 else
1976 return fallback(ndev, skb, NULL);
1977 }
1978
1979 static const struct net_device_ops hns_nic_netdev_ops = {
1980 .ndo_open = hns_nic_net_open,
1981 .ndo_stop = hns_nic_net_stop,
1982 .ndo_start_xmit = hns_nic_net_xmit,
1983 .ndo_tx_timeout = hns_nic_net_timeout,
1984 .ndo_set_mac_address = hns_nic_net_set_mac_address,
1985 .ndo_change_mtu = hns_nic_change_mtu,
1986 .ndo_do_ioctl = hns_nic_do_ioctl,
1987 .ndo_set_features = hns_nic_set_features,
1988 .ndo_fix_features = hns_nic_fix_features,
1989 .ndo_get_stats64 = hns_nic_get_stats64,
1990 .ndo_set_rx_mode = hns_nic_set_rx_mode,
1991 .ndo_select_queue = hns_nic_select_queue,
1992 };
1993
1994 static void hns_nic_update_link_status(struct net_device *netdev)
1995 {
1996 struct hns_nic_priv *priv = netdev_priv(netdev);
1997
1998 struct hnae_handle *h = priv->ae_handle;
1999
2000 if (h->phy_dev) {
2001 if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
2002 return;
2003
2004 (void)genphy_read_status(h->phy_dev);
2005 }
2006 hns_nic_adjust_link(netdev);
2007 }
2008
2009 /* for dumping key regs*/
2010 static void hns_nic_dump(struct hns_nic_priv *priv)
2011 {
2012 struct hnae_handle *h = priv->ae_handle;
2013 struct hnae_ae_ops *ops = h->dev->ops;
2014 u32 *data, reg_num, i;
2015
2016 if (ops->get_regs_len && ops->get_regs) {
2017 reg_num = ops->get_regs_len(priv->ae_handle);
2018 reg_num = (reg_num + 3ul) & ~3ul;
2019 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
2020 if (data) {
2021 ops->get_regs(priv->ae_handle, data);
2022 for (i = 0; i < reg_num; i += 4)
2023 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
2024 i, data[i], data[i + 1],
2025 data[i + 2], data[i + 3]);
2026 kfree(data);
2027 }
2028 }
2029
2030 for (i = 0; i < h->q_num; i++) {
2031 pr_info("tx_queue%d_next_to_clean:%d\n",
2032 i, h->qs[i]->tx_ring.next_to_clean);
2033 pr_info("tx_queue%d_next_to_use:%d\n",
2034 i, h->qs[i]->tx_ring.next_to_use);
2035 pr_info("rx_queue%d_next_to_clean:%d\n",
2036 i, h->qs[i]->rx_ring.next_to_clean);
2037 pr_info("rx_queue%d_next_to_use:%d\n",
2038 i, h->qs[i]->rx_ring.next_to_use);
2039 }
2040 }
2041
2042 /* for resetting subtask */
2043 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
2044 {
2045 enum hnae_port_type type = priv->ae_handle->port_type;
2046
2047 if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
2048 return;
2049 clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2050
2051 /* If we're already down, removing or resetting, just bail */
2052 if (test_bit(NIC_STATE_DOWN, &priv->state) ||
2053 test_bit(NIC_STATE_REMOVING, &priv->state) ||
2054 test_bit(NIC_STATE_RESETTING, &priv->state))
2055 return;
2056
2057 hns_nic_dump(priv);
2058 netdev_info(priv->netdev, "try to reset %s port!\n",
2059 (type == HNAE_PORT_DEBUG ? "debug" : "service"));
2060
2061 rtnl_lock();
2062 /* put off any impending NetWatchDogTimeout */
2063 netif_trans_update(priv->netdev);
2064 hns_nic_net_reinit(priv->netdev);
2065
2066 rtnl_unlock();
2067 }
2068
2069 /* for doing service complete*/
2070 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
2071 {
2072 WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
2073 /* make sure to commit the things */
2074 smp_mb__before_atomic();
2075 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2076 }
2077
2078 static void hns_nic_service_task(struct work_struct *work)
2079 {
2080 struct hns_nic_priv *priv
2081 = container_of(work, struct hns_nic_priv, service_task);
2082 struct hnae_handle *h = priv->ae_handle;
2083
2084 hns_nic_reset_subtask(priv);
2085 hns_nic_update_link_status(priv->netdev);
2086 h->dev->ops->update_led_status(h);
2087 hns_nic_update_stats(priv->netdev);
2088
2089 hns_nic_service_event_complete(priv);
2090 }
2091
2092 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
2093 {
2094 if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
2095 !test_bit(NIC_STATE_REMOVING, &priv->state) &&
2096 !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
2097 (void)schedule_work(&priv->service_task);
2098 }
2099
2100 static void hns_nic_service_timer(struct timer_list *t)
2101 {
2102 struct hns_nic_priv *priv = from_timer(priv, t, service_timer);
2103
2104 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
2105
2106 hns_nic_task_schedule(priv);
2107 }
2108
2109 /**
2110 * hns_tx_timeout_reset - initiate reset due to Tx timeout
2111 * @priv: driver private struct
2112 **/
2113 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
2114 {
2115 /* Do the reset outside of interrupt context */
2116 if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
2117 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2118 netdev_warn(priv->netdev,
2119 "initiating reset due to tx timeout(%llu,0x%lx)\n",
2120 priv->tx_timeout_count, priv->state);
2121 priv->tx_timeout_count++;
2122 hns_nic_task_schedule(priv);
2123 }
2124 }
2125
2126 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
2127 {
2128 struct hnae_handle *h = priv->ae_handle;
2129 struct hns_nic_ring_data *rd;
2130 bool is_ver1 = AE_IS_VER1(priv->enet_ver);
2131 int i;
2132
2133 if (h->q_num > NIC_MAX_Q_PER_VF) {
2134 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
2135 return -EINVAL;
2136 }
2137
2138 priv->ring_data = kzalloc(array3_size(h->q_num,
2139 sizeof(*priv->ring_data), 2),
2140 GFP_KERNEL);
2141 if (!priv->ring_data)
2142 return -ENOMEM;
2143
2144 for (i = 0; i < h->q_num; i++) {
2145 rd = &priv->ring_data[i];
2146 rd->queue_index = i;
2147 rd->ring = &h->qs[i]->tx_ring;
2148 rd->poll_one = hns_nic_tx_poll_one;
2149 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
2150 hns_nic_tx_fini_pro_v2;
2151
2152 netif_napi_add(priv->netdev, &rd->napi,
2153 hns_nic_common_poll, NAPI_POLL_WEIGHT);
2154 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2155 }
2156 for (i = h->q_num; i < h->q_num * 2; i++) {
2157 rd = &priv->ring_data[i];
2158 rd->queue_index = i - h->q_num;
2159 rd->ring = &h->qs[i - h->q_num]->rx_ring;
2160 rd->poll_one = hns_nic_rx_poll_one;
2161 rd->ex_process = hns_nic_rx_up_pro;
2162 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
2163 hns_nic_rx_fini_pro_v2;
2164
2165 netif_napi_add(priv->netdev, &rd->napi,
2166 hns_nic_common_poll, NAPI_POLL_WEIGHT);
2167 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2168 }
2169
2170 return 0;
2171 }
2172
2173 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
2174 {
2175 struct hnae_handle *h = priv->ae_handle;
2176 int i;
2177
2178 for (i = 0; i < h->q_num * 2; i++) {
2179 netif_napi_del(&priv->ring_data[i].napi);
2180 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
2181 (void)irq_set_affinity_hint(
2182 priv->ring_data[i].ring->irq,
2183 NULL);
2184 free_irq(priv->ring_data[i].ring->irq,
2185 &priv->ring_data[i]);
2186 }
2187
2188 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2189 }
2190 kfree(priv->ring_data);
2191 }
2192
2193 static void hns_nic_set_priv_ops(struct net_device *netdev)
2194 {
2195 struct hns_nic_priv *priv = netdev_priv(netdev);
2196 struct hnae_handle *h = priv->ae_handle;
2197
2198 if (AE_IS_VER1(priv->enet_ver)) {
2199 priv->ops.fill_desc = fill_desc;
2200 priv->ops.get_rxd_bnum = get_rx_desc_bnum;
2201 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2202 } else {
2203 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
2204 if ((netdev->features & NETIF_F_TSO) ||
2205 (netdev->features & NETIF_F_TSO6)) {
2206 priv->ops.fill_desc = fill_tso_desc;
2207 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
2208 /* This chip only support 7*4096 */
2209 netif_set_gso_max_size(netdev, 7 * 4096);
2210 } else {
2211 priv->ops.fill_desc = fill_v2_desc;
2212 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2213 }
2214 /* enable tso when init
2215 * control tso on/off through TSE bit in bd
2216 */
2217 h->dev->ops->set_tso_stats(h, 1);
2218 }
2219 }
2220
2221 static int hns_nic_try_get_ae(struct net_device *ndev)
2222 {
2223 struct hns_nic_priv *priv = netdev_priv(ndev);
2224 struct hnae_handle *h;
2225 int ret;
2226
2227 h = hnae_get_handle(&priv->netdev->dev,
2228 priv->fwnode, priv->port_id, NULL);
2229 if (IS_ERR_OR_NULL(h)) {
2230 ret = -ENODEV;
2231 dev_dbg(priv->dev, "has not handle, register notifier!\n");
2232 goto out;
2233 }
2234 priv->ae_handle = h;
2235
2236 ret = hns_nic_init_phy(ndev, h);
2237 if (ret) {
2238 dev_err(priv->dev, "probe phy device fail!\n");
2239 goto out_init_phy;
2240 }
2241
2242 ret = hns_nic_init_ring_data(priv);
2243 if (ret) {
2244 ret = -ENOMEM;
2245 goto out_init_ring_data;
2246 }
2247
2248 hns_nic_set_priv_ops(ndev);
2249
2250 ret = register_netdev(ndev);
2251 if (ret) {
2252 dev_err(priv->dev, "probe register netdev fail!\n");
2253 goto out_reg_ndev_fail;
2254 }
2255 return 0;
2256
2257 out_reg_ndev_fail:
2258 hns_nic_uninit_ring_data(priv);
2259 priv->ring_data = NULL;
2260 out_init_phy:
2261 out_init_ring_data:
2262 hnae_put_handle(priv->ae_handle);
2263 priv->ae_handle = NULL;
2264 out:
2265 return ret;
2266 }
2267
2268 static int hns_nic_notifier_action(struct notifier_block *nb,
2269 unsigned long action, void *data)
2270 {
2271 struct hns_nic_priv *priv =
2272 container_of(nb, struct hns_nic_priv, notifier_block);
2273
2274 assert(action == HNAE_AE_REGISTER);
2275
2276 if (!hns_nic_try_get_ae(priv->netdev)) {
2277 hnae_unregister_notifier(&priv->notifier_block);
2278 priv->notifier_block.notifier_call = NULL;
2279 }
2280 return 0;
2281 }
2282
2283 static int hns_nic_dev_probe(struct platform_device *pdev)
2284 {
2285 struct device *dev = &pdev->dev;
2286 struct net_device *ndev;
2287 struct hns_nic_priv *priv;
2288 u32 port_id;
2289 int ret;
2290
2291 ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
2292 if (!ndev)
2293 return -ENOMEM;
2294
2295 platform_set_drvdata(pdev, ndev);
2296
2297 priv = netdev_priv(ndev);
2298 priv->dev = dev;
2299 priv->netdev = ndev;
2300
2301 if (dev_of_node(dev)) {
2302 struct device_node *ae_node;
2303
2304 if (of_device_is_compatible(dev->of_node,
2305 "hisilicon,hns-nic-v1"))
2306 priv->enet_ver = AE_VERSION_1;
2307 else
2308 priv->enet_ver = AE_VERSION_2;
2309
2310 ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
2311 if (!ae_node) {
2312 ret = -ENODEV;
2313 dev_err(dev, "not find ae-handle\n");
2314 goto out_read_prop_fail;
2315 }
2316 priv->fwnode = &ae_node->fwnode;
2317 } else if (is_acpi_node(dev->fwnode)) {
2318 struct fwnode_reference_args args;
2319
2320 if (acpi_dev_found(hns_enet_acpi_match[0].id))
2321 priv->enet_ver = AE_VERSION_1;
2322 else if (acpi_dev_found(hns_enet_acpi_match[1].id))
2323 priv->enet_ver = AE_VERSION_2;
2324 else
2325 return -ENXIO;
2326
2327 /* try to find port-idx-in-ae first */
2328 ret = acpi_node_get_property_reference(dev->fwnode,
2329 "ae-handle", 0, &args);
2330 if (ret) {
2331 dev_err(dev, "not find ae-handle\n");
2332 goto out_read_prop_fail;
2333 }
2334 if (!is_acpi_device_node(args.fwnode)) {
2335 ret = -EINVAL;
2336 goto out_read_prop_fail;
2337 }
2338 priv->fwnode = args.fwnode;
2339 } else {
2340 dev_err(dev, "cannot read cfg data from OF or acpi\n");
2341 return -ENXIO;
2342 }
2343
2344 ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
2345 if (ret) {
2346 /* only for old code compatible */
2347 ret = device_property_read_u32(dev, "port-id", &port_id);
2348 if (ret)
2349 goto out_read_prop_fail;
2350 /* for old dts, we need to caculate the port offset */
2351 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
2352 : port_id - HNS_SRV_OFFSET;
2353 }
2354 priv->port_id = port_id;
2355
2356 hns_init_mac_addr(ndev);
2357
2358 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
2359 ndev->priv_flags |= IFF_UNICAST_FLT;
2360 ndev->netdev_ops = &hns_nic_netdev_ops;
2361 hns_ethtool_set_ops(ndev);
2362
2363 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2364 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2365 NETIF_F_GRO;
2366 ndev->vlan_features |=
2367 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2368 ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
2369
2370 /* MTU range: 68 - 9578 (v1) or 9706 (v2) */
2371 ndev->min_mtu = MAC_MIN_MTU;
2372 switch (priv->enet_ver) {
2373 case AE_VERSION_2:
2374 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_NTUPLE;
2375 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2376 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2377 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2378 ndev->max_mtu = MAC_MAX_MTU_V2 -
2379 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2380 break;
2381 default:
2382 ndev->max_mtu = MAC_MAX_MTU -
2383 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2384 break;
2385 }
2386
2387 SET_NETDEV_DEV(ndev, dev);
2388
2389 if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2390 dev_dbg(dev, "set mask to 64bit\n");
2391 else
2392 dev_err(dev, "set mask to 64bit fail!\n");
2393
2394 /* carrier off reporting is important to ethtool even BEFORE open */
2395 netif_carrier_off(ndev);
2396
2397 timer_setup(&priv->service_timer, hns_nic_service_timer, 0);
2398 INIT_WORK(&priv->service_task, hns_nic_service_task);
2399
2400 set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
2401 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2402 set_bit(NIC_STATE_DOWN, &priv->state);
2403
2404 if (hns_nic_try_get_ae(priv->netdev)) {
2405 priv->notifier_block.notifier_call = hns_nic_notifier_action;
2406 ret = hnae_register_notifier(&priv->notifier_block);
2407 if (ret) {
2408 dev_err(dev, "register notifier fail!\n");
2409 goto out_notify_fail;
2410 }
2411 dev_dbg(dev, "has not handle, register notifier!\n");
2412 }
2413
2414 return 0;
2415
2416 out_notify_fail:
2417 (void)cancel_work_sync(&priv->service_task);
2418 out_read_prop_fail:
2419 /* safe for ACPI FW */
2420 of_node_put(to_of_node(priv->fwnode));
2421 free_netdev(ndev);
2422 return ret;
2423 }
2424
2425 static int hns_nic_dev_remove(struct platform_device *pdev)
2426 {
2427 struct net_device *ndev = platform_get_drvdata(pdev);
2428 struct hns_nic_priv *priv = netdev_priv(ndev);
2429
2430 if (ndev->reg_state != NETREG_UNINITIALIZED)
2431 unregister_netdev(ndev);
2432
2433 if (priv->ring_data)
2434 hns_nic_uninit_ring_data(priv);
2435 priv->ring_data = NULL;
2436
2437 if (ndev->phydev)
2438 phy_disconnect(ndev->phydev);
2439
2440 if (!IS_ERR_OR_NULL(priv->ae_handle))
2441 hnae_put_handle(priv->ae_handle);
2442 priv->ae_handle = NULL;
2443 if (priv->notifier_block.notifier_call)
2444 hnae_unregister_notifier(&priv->notifier_block);
2445 priv->notifier_block.notifier_call = NULL;
2446
2447 set_bit(NIC_STATE_REMOVING, &priv->state);
2448 (void)cancel_work_sync(&priv->service_task);
2449
2450 /* safe for ACPI FW */
2451 of_node_put(to_of_node(priv->fwnode));
2452
2453 free_netdev(ndev);
2454 return 0;
2455 }
2456
2457 static const struct of_device_id hns_enet_of_match[] = {
2458 {.compatible = "hisilicon,hns-nic-v1",},
2459 {.compatible = "hisilicon,hns-nic-v2",},
2460 {},
2461 };
2462
2463 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2464
2465 static struct platform_driver hns_nic_dev_driver = {
2466 .driver = {
2467 .name = "hns-nic",
2468 .of_match_table = hns_enet_of_match,
2469 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2470 },
2471 .probe = hns_nic_dev_probe,
2472 .remove = hns_nic_dev_remove,
2473 };
2474
2475 module_platform_driver(hns_nic_dev_driver);
2476
2477 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2478 MODULE_AUTHOR("Hisilicon, Inc.");
2479 MODULE_LICENSE("GPL");
2480 MODULE_ALIAS("platform:hns-nic");