]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/nvme/host/pci.c
439b9f4eb246aaccb6752e589cee21379f53d386
[thirdparty/kernel/stable.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/aer.h>
16 #include <linux/async.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/once.h>
28 #include <linux/pci.h>
29 #include <linux/t10-pi.h>
30 #include <linux/types.h>
31 #include <linux/io-64-nonatomic-lo-hi.h>
32 #include <linux/sed-opal.h>
33 #include <linux/pci-p2pdma.h>
34
35 #include "nvme.h"
36
37 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
38 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
39
40 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
41
42 /*
43 * These can be higher, but we need to ensure that any command doesn't
44 * require an sg allocation that needs more than a page of data.
45 */
46 #define NVME_MAX_KB_SZ 4096
47 #define NVME_MAX_SEGS 127
48
49 static int use_threaded_interrupts;
50 module_param(use_threaded_interrupts, int, 0);
51
52 static bool use_cmb_sqes = true;
53 module_param(use_cmb_sqes, bool, 0444);
54 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
55
56 static unsigned int max_host_mem_size_mb = 128;
57 module_param(max_host_mem_size_mb, uint, 0444);
58 MODULE_PARM_DESC(max_host_mem_size_mb,
59 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
60
61 static unsigned int sgl_threshold = SZ_32K;
62 module_param(sgl_threshold, uint, 0644);
63 MODULE_PARM_DESC(sgl_threshold,
64 "Use SGLs when average request segment size is larger or equal to "
65 "this size. Use 0 to disable SGLs.");
66
67 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
68 static const struct kernel_param_ops io_queue_depth_ops = {
69 .set = io_queue_depth_set,
70 .get = param_get_int,
71 };
72
73 static int io_queue_depth = 1024;
74 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
75 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
76
77 struct nvme_dev;
78 struct nvme_queue;
79
80 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
81
82 /*
83 * Represents an NVM Express device. Each nvme_dev is a PCI function.
84 */
85 struct nvme_dev {
86 struct nvme_queue *queues;
87 struct blk_mq_tag_set tagset;
88 struct blk_mq_tag_set admin_tagset;
89 u32 __iomem *dbs;
90 struct device *dev;
91 struct dma_pool *prp_page_pool;
92 struct dma_pool *prp_small_pool;
93 unsigned online_queues;
94 unsigned max_qid;
95 unsigned int num_vecs;
96 int q_depth;
97 u32 db_stride;
98 void __iomem *bar;
99 unsigned long bar_mapped_size;
100 struct work_struct remove_work;
101 struct mutex shutdown_lock;
102 bool subsystem;
103 u64 cmb_size;
104 bool cmb_use_sqes;
105 u32 cmbsz;
106 u32 cmbloc;
107 struct nvme_ctrl ctrl;
108 struct completion ioq_wait;
109
110 mempool_t *iod_mempool;
111
112 /* shadow doorbell buffer support: */
113 u32 *dbbuf_dbs;
114 dma_addr_t dbbuf_dbs_dma_addr;
115 u32 *dbbuf_eis;
116 dma_addr_t dbbuf_eis_dma_addr;
117
118 /* host memory buffer support: */
119 u64 host_mem_size;
120 u32 nr_host_mem_descs;
121 dma_addr_t host_mem_descs_dma;
122 struct nvme_host_mem_buf_desc *host_mem_descs;
123 void **host_mem_desc_bufs;
124 };
125
126 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
127 {
128 int n = 0, ret;
129
130 ret = kstrtoint(val, 10, &n);
131 if (ret != 0 || n < 2)
132 return -EINVAL;
133
134 return param_set_int(val, kp);
135 }
136
137 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
138 {
139 return qid * 2 * stride;
140 }
141
142 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
143 {
144 return (qid * 2 + 1) * stride;
145 }
146
147 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
148 {
149 return container_of(ctrl, struct nvme_dev, ctrl);
150 }
151
152 /*
153 * An NVM Express queue. Each device has at least two (one for admin
154 * commands and one for I/O commands).
155 */
156 struct nvme_queue {
157 struct device *q_dmadev;
158 struct nvme_dev *dev;
159 spinlock_t sq_lock;
160 struct nvme_command *sq_cmds;
161 bool sq_cmds_is_io;
162 spinlock_t cq_lock ____cacheline_aligned_in_smp;
163 volatile struct nvme_completion *cqes;
164 struct blk_mq_tags **tags;
165 dma_addr_t sq_dma_addr;
166 dma_addr_t cq_dma_addr;
167 u32 __iomem *q_db;
168 u16 q_depth;
169 s16 cq_vector;
170 u16 sq_tail;
171 u16 cq_head;
172 u16 last_cq_head;
173 u16 qid;
174 u8 cq_phase;
175 u32 *dbbuf_sq_db;
176 u32 *dbbuf_cq_db;
177 u32 *dbbuf_sq_ei;
178 u32 *dbbuf_cq_ei;
179 };
180
181 /*
182 * The nvme_iod describes the data in an I/O, including the list of PRP
183 * entries. You can't see it in this data structure because C doesn't let
184 * me express that. Use nvme_init_iod to ensure there's enough space
185 * allocated to store the PRP list.
186 */
187 struct nvme_iod {
188 struct nvme_request req;
189 struct nvme_queue *nvmeq;
190 bool use_sgl;
191 int aborted;
192 int npages; /* In the PRP list. 0 means small pool in use */
193 int nents; /* Used in scatterlist */
194 int length; /* Of data, in bytes */
195 dma_addr_t first_dma;
196 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
197 struct scatterlist *sg;
198 struct scatterlist inline_sg[0];
199 };
200
201 /*
202 * Check we didin't inadvertently grow the command struct
203 */
204 static inline void _nvme_check_size(void)
205 {
206 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
207 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
208 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
209 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
210 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
211 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
212 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
213 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
214 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
215 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
216 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
217 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
218 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
219 }
220
221 static inline unsigned int nvme_dbbuf_size(u32 stride)
222 {
223 return ((num_possible_cpus() + 1) * 8 * stride);
224 }
225
226 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
227 {
228 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
229
230 if (dev->dbbuf_dbs)
231 return 0;
232
233 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
234 &dev->dbbuf_dbs_dma_addr,
235 GFP_KERNEL);
236 if (!dev->dbbuf_dbs)
237 return -ENOMEM;
238 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
239 &dev->dbbuf_eis_dma_addr,
240 GFP_KERNEL);
241 if (!dev->dbbuf_eis) {
242 dma_free_coherent(dev->dev, mem_size,
243 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
244 dev->dbbuf_dbs = NULL;
245 return -ENOMEM;
246 }
247
248 return 0;
249 }
250
251 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
252 {
253 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
254
255 if (dev->dbbuf_dbs) {
256 dma_free_coherent(dev->dev, mem_size,
257 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
258 dev->dbbuf_dbs = NULL;
259 }
260 if (dev->dbbuf_eis) {
261 dma_free_coherent(dev->dev, mem_size,
262 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
263 dev->dbbuf_eis = NULL;
264 }
265 }
266
267 static void nvme_dbbuf_init(struct nvme_dev *dev,
268 struct nvme_queue *nvmeq, int qid)
269 {
270 if (!dev->dbbuf_dbs || !qid)
271 return;
272
273 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
274 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
275 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
276 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
277 }
278
279 static void nvme_dbbuf_set(struct nvme_dev *dev)
280 {
281 struct nvme_command c;
282
283 if (!dev->dbbuf_dbs)
284 return;
285
286 memset(&c, 0, sizeof(c));
287 c.dbbuf.opcode = nvme_admin_dbbuf;
288 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
289 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
290
291 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
292 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
293 /* Free memory and continue on */
294 nvme_dbbuf_dma_free(dev);
295 }
296 }
297
298 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
299 {
300 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
301 }
302
303 /* Update dbbuf and return true if an MMIO is required */
304 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
305 volatile u32 *dbbuf_ei)
306 {
307 if (dbbuf_db) {
308 u16 old_value;
309
310 /*
311 * Ensure that the queue is written before updating
312 * the doorbell in memory
313 */
314 wmb();
315
316 old_value = *dbbuf_db;
317 *dbbuf_db = value;
318
319 /*
320 * Ensure that the doorbell is updated before reading the event
321 * index from memory. The controller needs to provide similar
322 * ordering to ensure the envent index is updated before reading
323 * the doorbell.
324 */
325 mb();
326
327 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
328 return false;
329 }
330
331 return true;
332 }
333
334 /*
335 * Max size of iod being embedded in the request payload
336 */
337 #define NVME_INT_PAGES 2
338 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
339
340 /*
341 * Will slightly overestimate the number of pages needed. This is OK
342 * as it only leads to a small amount of wasted memory for the lifetime of
343 * the I/O.
344 */
345 static int nvme_npages(unsigned size, struct nvme_dev *dev)
346 {
347 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
348 dev->ctrl.page_size);
349 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
350 }
351
352 /*
353 * Calculates the number of pages needed for the SGL segments. For example a 4k
354 * page can accommodate 256 SGL descriptors.
355 */
356 static int nvme_pci_npages_sgl(unsigned int num_seg)
357 {
358 return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
359 }
360
361 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
362 unsigned int size, unsigned int nseg, bool use_sgl)
363 {
364 size_t alloc_size;
365
366 if (use_sgl)
367 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
368 else
369 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
370
371 return alloc_size + sizeof(struct scatterlist) * nseg;
372 }
373
374 static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
375 {
376 unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
377 NVME_INT_BYTES(dev), NVME_INT_PAGES,
378 use_sgl);
379
380 return sizeof(struct nvme_iod) + alloc_size;
381 }
382
383 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
384 unsigned int hctx_idx)
385 {
386 struct nvme_dev *dev = data;
387 struct nvme_queue *nvmeq = &dev->queues[0];
388
389 WARN_ON(hctx_idx != 0);
390 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
391 WARN_ON(nvmeq->tags);
392
393 hctx->driver_data = nvmeq;
394 nvmeq->tags = &dev->admin_tagset.tags[0];
395 return 0;
396 }
397
398 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
399 {
400 struct nvme_queue *nvmeq = hctx->driver_data;
401
402 nvmeq->tags = NULL;
403 }
404
405 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
406 unsigned int hctx_idx)
407 {
408 struct nvme_dev *dev = data;
409 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
410
411 if (!nvmeq->tags)
412 nvmeq->tags = &dev->tagset.tags[hctx_idx];
413
414 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
415 hctx->driver_data = nvmeq;
416 return 0;
417 }
418
419 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
420 unsigned int hctx_idx, unsigned int numa_node)
421 {
422 struct nvme_dev *dev = set->driver_data;
423 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
424 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
425 struct nvme_queue *nvmeq = &dev->queues[queue_idx];
426
427 BUG_ON(!nvmeq);
428 iod->nvmeq = nvmeq;
429
430 nvme_req(req)->ctrl = &dev->ctrl;
431 return 0;
432 }
433
434 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
435 {
436 struct nvme_dev *dev = set->driver_data;
437
438 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev),
439 dev->num_vecs > 1 ? 1 /* admin queue */ : 0);
440 }
441
442 /**
443 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
444 * @nvmeq: The queue to use
445 * @cmd: The command to send
446 */
447 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
448 {
449 spin_lock(&nvmeq->sq_lock);
450
451 memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd));
452
453 if (++nvmeq->sq_tail == nvmeq->q_depth)
454 nvmeq->sq_tail = 0;
455 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
456 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
457 writel(nvmeq->sq_tail, nvmeq->q_db);
458 spin_unlock(&nvmeq->sq_lock);
459 }
460
461 static void **nvme_pci_iod_list(struct request *req)
462 {
463 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
464 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
465 }
466
467 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
468 {
469 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
470 int nseg = blk_rq_nr_phys_segments(req);
471 unsigned int avg_seg_size;
472
473 if (nseg == 0)
474 return false;
475
476 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
477
478 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
479 return false;
480 if (!iod->nvmeq->qid)
481 return false;
482 if (!sgl_threshold || avg_seg_size < sgl_threshold)
483 return false;
484 return true;
485 }
486
487 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
488 {
489 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
490 int nseg = blk_rq_nr_phys_segments(rq);
491 unsigned int size = blk_rq_payload_bytes(rq);
492
493 iod->use_sgl = nvme_pci_use_sgls(dev, rq);
494
495 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
496 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
497 if (!iod->sg)
498 return BLK_STS_RESOURCE;
499 } else {
500 iod->sg = iod->inline_sg;
501 }
502
503 iod->aborted = 0;
504 iod->npages = -1;
505 iod->nents = 0;
506 iod->length = size;
507
508 return BLK_STS_OK;
509 }
510
511 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
512 {
513 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
514 const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
515 dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
516
517 int i;
518
519 if (iod->npages == 0)
520 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
521 dma_addr);
522
523 for (i = 0; i < iod->npages; i++) {
524 void *addr = nvme_pci_iod_list(req)[i];
525
526 if (iod->use_sgl) {
527 struct nvme_sgl_desc *sg_list = addr;
528
529 next_dma_addr =
530 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
531 } else {
532 __le64 *prp_list = addr;
533
534 next_dma_addr = le64_to_cpu(prp_list[last_prp]);
535 }
536
537 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
538 dma_addr = next_dma_addr;
539 }
540
541 if (iod->sg != iod->inline_sg)
542 mempool_free(iod->sg, dev->iod_mempool);
543 }
544
545 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
546 {
547 int i;
548 struct scatterlist *sg;
549
550 for_each_sg(sgl, sg, nents, i) {
551 dma_addr_t phys = sg_phys(sg);
552 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
553 "dma_address:%pad dma_length:%d\n",
554 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
555 sg_dma_len(sg));
556 }
557 }
558
559 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
560 struct request *req, struct nvme_rw_command *cmnd)
561 {
562 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
563 struct dma_pool *pool;
564 int length = blk_rq_payload_bytes(req);
565 struct scatterlist *sg = iod->sg;
566 int dma_len = sg_dma_len(sg);
567 u64 dma_addr = sg_dma_address(sg);
568 u32 page_size = dev->ctrl.page_size;
569 int offset = dma_addr & (page_size - 1);
570 __le64 *prp_list;
571 void **list = nvme_pci_iod_list(req);
572 dma_addr_t prp_dma;
573 int nprps, i;
574
575 length -= (page_size - offset);
576 if (length <= 0) {
577 iod->first_dma = 0;
578 goto done;
579 }
580
581 dma_len -= (page_size - offset);
582 if (dma_len) {
583 dma_addr += (page_size - offset);
584 } else {
585 sg = sg_next(sg);
586 dma_addr = sg_dma_address(sg);
587 dma_len = sg_dma_len(sg);
588 }
589
590 if (length <= page_size) {
591 iod->first_dma = dma_addr;
592 goto done;
593 }
594
595 nprps = DIV_ROUND_UP(length, page_size);
596 if (nprps <= (256 / 8)) {
597 pool = dev->prp_small_pool;
598 iod->npages = 0;
599 } else {
600 pool = dev->prp_page_pool;
601 iod->npages = 1;
602 }
603
604 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
605 if (!prp_list) {
606 iod->first_dma = dma_addr;
607 iod->npages = -1;
608 return BLK_STS_RESOURCE;
609 }
610 list[0] = prp_list;
611 iod->first_dma = prp_dma;
612 i = 0;
613 for (;;) {
614 if (i == page_size >> 3) {
615 __le64 *old_prp_list = prp_list;
616 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
617 if (!prp_list)
618 return BLK_STS_RESOURCE;
619 list[iod->npages++] = prp_list;
620 prp_list[0] = old_prp_list[i - 1];
621 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
622 i = 1;
623 }
624 prp_list[i++] = cpu_to_le64(dma_addr);
625 dma_len -= page_size;
626 dma_addr += page_size;
627 length -= page_size;
628 if (length <= 0)
629 break;
630 if (dma_len > 0)
631 continue;
632 if (unlikely(dma_len < 0))
633 goto bad_sgl;
634 sg = sg_next(sg);
635 dma_addr = sg_dma_address(sg);
636 dma_len = sg_dma_len(sg);
637 }
638
639 done:
640 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
641 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
642
643 return BLK_STS_OK;
644
645 bad_sgl:
646 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
647 "Invalid SGL for payload:%d nents:%d\n",
648 blk_rq_payload_bytes(req), iod->nents);
649 return BLK_STS_IOERR;
650 }
651
652 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
653 struct scatterlist *sg)
654 {
655 sge->addr = cpu_to_le64(sg_dma_address(sg));
656 sge->length = cpu_to_le32(sg_dma_len(sg));
657 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
658 }
659
660 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
661 dma_addr_t dma_addr, int entries)
662 {
663 sge->addr = cpu_to_le64(dma_addr);
664 if (entries < SGES_PER_PAGE) {
665 sge->length = cpu_to_le32(entries * sizeof(*sge));
666 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
667 } else {
668 sge->length = cpu_to_le32(PAGE_SIZE);
669 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
670 }
671 }
672
673 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
674 struct request *req, struct nvme_rw_command *cmd, int entries)
675 {
676 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
677 struct dma_pool *pool;
678 struct nvme_sgl_desc *sg_list;
679 struct scatterlist *sg = iod->sg;
680 dma_addr_t sgl_dma;
681 int i = 0;
682
683 /* setting the transfer type as SGL */
684 cmd->flags = NVME_CMD_SGL_METABUF;
685
686 if (entries == 1) {
687 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
688 return BLK_STS_OK;
689 }
690
691 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
692 pool = dev->prp_small_pool;
693 iod->npages = 0;
694 } else {
695 pool = dev->prp_page_pool;
696 iod->npages = 1;
697 }
698
699 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
700 if (!sg_list) {
701 iod->npages = -1;
702 return BLK_STS_RESOURCE;
703 }
704
705 nvme_pci_iod_list(req)[0] = sg_list;
706 iod->first_dma = sgl_dma;
707
708 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
709
710 do {
711 if (i == SGES_PER_PAGE) {
712 struct nvme_sgl_desc *old_sg_desc = sg_list;
713 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
714
715 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
716 if (!sg_list)
717 return BLK_STS_RESOURCE;
718
719 i = 0;
720 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
721 sg_list[i++] = *link;
722 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
723 }
724
725 nvme_pci_sgl_set_data(&sg_list[i++], sg);
726 sg = sg_next(sg);
727 } while (--entries > 0);
728
729 return BLK_STS_OK;
730 }
731
732 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
733 struct nvme_command *cmnd)
734 {
735 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
736 struct request_queue *q = req->q;
737 enum dma_data_direction dma_dir = rq_data_dir(req) ?
738 DMA_TO_DEVICE : DMA_FROM_DEVICE;
739 blk_status_t ret = BLK_STS_IOERR;
740 int nr_mapped;
741
742 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
743 iod->nents = blk_rq_map_sg(q, req, iod->sg);
744 if (!iod->nents)
745 goto out;
746
747 ret = BLK_STS_RESOURCE;
748
749 if (is_pci_p2pdma_page(sg_page(iod->sg)))
750 nr_mapped = pci_p2pdma_map_sg(dev->dev, iod->sg, iod->nents,
751 dma_dir);
752 else
753 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
754 dma_dir, DMA_ATTR_NO_WARN);
755 if (!nr_mapped)
756 goto out;
757
758 if (iod->use_sgl)
759 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
760 else
761 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
762
763 if (ret != BLK_STS_OK)
764 goto out_unmap;
765
766 ret = BLK_STS_IOERR;
767 if (blk_integrity_rq(req)) {
768 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
769 goto out_unmap;
770
771 sg_init_table(&iod->meta_sg, 1);
772 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
773 goto out_unmap;
774
775 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
776 goto out_unmap;
777
778 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
779 }
780
781 return BLK_STS_OK;
782
783 out_unmap:
784 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
785 out:
786 return ret;
787 }
788
789 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
790 {
791 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
792 enum dma_data_direction dma_dir = rq_data_dir(req) ?
793 DMA_TO_DEVICE : DMA_FROM_DEVICE;
794
795 if (iod->nents) {
796 /* P2PDMA requests do not need to be unmapped */
797 if (!is_pci_p2pdma_page(sg_page(iod->sg)))
798 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
799
800 if (blk_integrity_rq(req))
801 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
802 }
803
804 nvme_cleanup_cmd(req);
805 nvme_free_iod(dev, req);
806 }
807
808 /*
809 * NOTE: ns is NULL when called on the admin queue.
810 */
811 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
812 const struct blk_mq_queue_data *bd)
813 {
814 struct nvme_ns *ns = hctx->queue->queuedata;
815 struct nvme_queue *nvmeq = hctx->driver_data;
816 struct nvme_dev *dev = nvmeq->dev;
817 struct request *req = bd->rq;
818 struct nvme_command cmnd;
819 blk_status_t ret;
820
821 /*
822 * We should not need to do this, but we're still using this to
823 * ensure we can drain requests on a dying queue.
824 */
825 if (unlikely(nvmeq->cq_vector < 0))
826 return BLK_STS_IOERR;
827
828 ret = nvme_setup_cmd(ns, req, &cmnd);
829 if (ret)
830 return ret;
831
832 ret = nvme_init_iod(req, dev);
833 if (ret)
834 goto out_free_cmd;
835
836 if (blk_rq_nr_phys_segments(req)) {
837 ret = nvme_map_data(dev, req, &cmnd);
838 if (ret)
839 goto out_cleanup_iod;
840 }
841
842 blk_mq_start_request(req);
843 nvme_submit_cmd(nvmeq, &cmnd);
844 return BLK_STS_OK;
845 out_cleanup_iod:
846 nvme_free_iod(dev, req);
847 out_free_cmd:
848 nvme_cleanup_cmd(req);
849 return ret;
850 }
851
852 static void nvme_pci_complete_rq(struct request *req)
853 {
854 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
855
856 nvme_unmap_data(iod->nvmeq->dev, req);
857 nvme_complete_rq(req);
858 }
859
860 /* We read the CQE phase first to check if the rest of the entry is valid */
861 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
862 {
863 return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
864 nvmeq->cq_phase;
865 }
866
867 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
868 {
869 u16 head = nvmeq->cq_head;
870
871 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
872 nvmeq->dbbuf_cq_ei))
873 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
874 }
875
876 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
877 {
878 volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
879 struct request *req;
880
881 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
882 dev_warn(nvmeq->dev->ctrl.device,
883 "invalid id %d completed on queue %d\n",
884 cqe->command_id, le16_to_cpu(cqe->sq_id));
885 return;
886 }
887
888 /*
889 * AEN requests are special as they don't time out and can
890 * survive any kind of queue freeze and often don't respond to
891 * aborts. We don't even bother to allocate a struct request
892 * for them but rather special case them here.
893 */
894 if (unlikely(nvmeq->qid == 0 &&
895 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
896 nvme_complete_async_event(&nvmeq->dev->ctrl,
897 cqe->status, &cqe->result);
898 return;
899 }
900
901 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
902 nvme_end_request(req, cqe->status, cqe->result);
903 }
904
905 static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
906 {
907 while (start != end) {
908 nvme_handle_cqe(nvmeq, start);
909 if (++start == nvmeq->q_depth)
910 start = 0;
911 }
912 }
913
914 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
915 {
916 if (nvmeq->cq_head == nvmeq->q_depth - 1) {
917 nvmeq->cq_head = 0;
918 nvmeq->cq_phase = !nvmeq->cq_phase;
919 } else {
920 nvmeq->cq_head++;
921 }
922 }
923
924 static inline bool nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
925 u16 *end, int tag)
926 {
927 bool found = false;
928
929 *start = nvmeq->cq_head;
930 while (!found && nvme_cqe_pending(nvmeq)) {
931 if (nvmeq->cqes[nvmeq->cq_head].command_id == tag)
932 found = true;
933 nvme_update_cq_head(nvmeq);
934 }
935 *end = nvmeq->cq_head;
936
937 if (*start != *end)
938 nvme_ring_cq_doorbell(nvmeq);
939 return found;
940 }
941
942 static irqreturn_t nvme_irq(int irq, void *data)
943 {
944 struct nvme_queue *nvmeq = data;
945 irqreturn_t ret = IRQ_NONE;
946 u16 start, end;
947
948 spin_lock(&nvmeq->cq_lock);
949 if (nvmeq->cq_head != nvmeq->last_cq_head)
950 ret = IRQ_HANDLED;
951 nvme_process_cq(nvmeq, &start, &end, -1);
952 nvmeq->last_cq_head = nvmeq->cq_head;
953 spin_unlock(&nvmeq->cq_lock);
954
955 if (start != end) {
956 nvme_complete_cqes(nvmeq, start, end);
957 return IRQ_HANDLED;
958 }
959
960 return ret;
961 }
962
963 static irqreturn_t nvme_irq_check(int irq, void *data)
964 {
965 struct nvme_queue *nvmeq = data;
966 if (nvme_cqe_pending(nvmeq))
967 return IRQ_WAKE_THREAD;
968 return IRQ_NONE;
969 }
970
971 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
972 {
973 u16 start, end;
974 bool found;
975
976 if (!nvme_cqe_pending(nvmeq))
977 return 0;
978
979 spin_lock_irq(&nvmeq->cq_lock);
980 found = nvme_process_cq(nvmeq, &start, &end, tag);
981 spin_unlock_irq(&nvmeq->cq_lock);
982
983 nvme_complete_cqes(nvmeq, start, end);
984 return found;
985 }
986
987 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
988 {
989 struct nvme_queue *nvmeq = hctx->driver_data;
990
991 return __nvme_poll(nvmeq, tag);
992 }
993
994 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
995 {
996 struct nvme_dev *dev = to_nvme_dev(ctrl);
997 struct nvme_queue *nvmeq = &dev->queues[0];
998 struct nvme_command c;
999
1000 memset(&c, 0, sizeof(c));
1001 c.common.opcode = nvme_admin_async_event;
1002 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1003 nvme_submit_cmd(nvmeq, &c);
1004 }
1005
1006 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1007 {
1008 struct nvme_command c;
1009
1010 memset(&c, 0, sizeof(c));
1011 c.delete_queue.opcode = opcode;
1012 c.delete_queue.qid = cpu_to_le16(id);
1013
1014 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1015 }
1016
1017 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1018 struct nvme_queue *nvmeq, s16 vector)
1019 {
1020 struct nvme_command c;
1021 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1022
1023 /*
1024 * Note: we (ab)use the fact that the prp fields survive if no data
1025 * is attached to the request.
1026 */
1027 memset(&c, 0, sizeof(c));
1028 c.create_cq.opcode = nvme_admin_create_cq;
1029 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1030 c.create_cq.cqid = cpu_to_le16(qid);
1031 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1032 c.create_cq.cq_flags = cpu_to_le16(flags);
1033 c.create_cq.irq_vector = cpu_to_le16(vector);
1034
1035 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1036 }
1037
1038 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1039 struct nvme_queue *nvmeq)
1040 {
1041 struct nvme_ctrl *ctrl = &dev->ctrl;
1042 struct nvme_command c;
1043 int flags = NVME_QUEUE_PHYS_CONTIG;
1044
1045 /*
1046 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1047 * set. Since URGENT priority is zeroes, it makes all queues
1048 * URGENT.
1049 */
1050 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1051 flags |= NVME_SQ_PRIO_MEDIUM;
1052
1053 /*
1054 * Note: we (ab)use the fact that the prp fields survive if no data
1055 * is attached to the request.
1056 */
1057 memset(&c, 0, sizeof(c));
1058 c.create_sq.opcode = nvme_admin_create_sq;
1059 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1060 c.create_sq.sqid = cpu_to_le16(qid);
1061 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1062 c.create_sq.sq_flags = cpu_to_le16(flags);
1063 c.create_sq.cqid = cpu_to_le16(qid);
1064
1065 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1066 }
1067
1068 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1069 {
1070 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1071 }
1072
1073 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1074 {
1075 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1076 }
1077
1078 static void abort_endio(struct request *req, blk_status_t error)
1079 {
1080 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1081 struct nvme_queue *nvmeq = iod->nvmeq;
1082
1083 dev_warn(nvmeq->dev->ctrl.device,
1084 "Abort status: 0x%x", nvme_req(req)->status);
1085 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1086 blk_mq_free_request(req);
1087 }
1088
1089 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1090 {
1091
1092 /* If true, indicates loss of adapter communication, possibly by a
1093 * NVMe Subsystem reset.
1094 */
1095 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1096
1097 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1098 switch (dev->ctrl.state) {
1099 case NVME_CTRL_RESETTING:
1100 case NVME_CTRL_CONNECTING:
1101 return false;
1102 default:
1103 break;
1104 }
1105
1106 /* We shouldn't reset unless the controller is on fatal error state
1107 * _or_ if we lost the communication with it.
1108 */
1109 if (!(csts & NVME_CSTS_CFS) && !nssro)
1110 return false;
1111
1112 return true;
1113 }
1114
1115 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1116 {
1117 /* Read a config register to help see what died. */
1118 u16 pci_status;
1119 int result;
1120
1121 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1122 &pci_status);
1123 if (result == PCIBIOS_SUCCESSFUL)
1124 dev_warn(dev->ctrl.device,
1125 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1126 csts, pci_status);
1127 else
1128 dev_warn(dev->ctrl.device,
1129 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1130 csts, result);
1131 }
1132
1133 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1134 {
1135 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1136 struct nvme_queue *nvmeq = iod->nvmeq;
1137 struct nvme_dev *dev = nvmeq->dev;
1138 struct request *abort_req;
1139 struct nvme_command cmd;
1140 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1141
1142 /* If PCI error recovery process is happening, we cannot reset or
1143 * the recovery mechanism will surely fail.
1144 */
1145 mb();
1146 if (pci_channel_offline(to_pci_dev(dev->dev)))
1147 return BLK_EH_RESET_TIMER;
1148
1149 /*
1150 * Reset immediately if the controller is failed
1151 */
1152 if (nvme_should_reset(dev, csts)) {
1153 nvme_warn_reset(dev, csts);
1154 nvme_dev_disable(dev, false);
1155 nvme_reset_ctrl(&dev->ctrl);
1156 return BLK_EH_DONE;
1157 }
1158
1159 /*
1160 * Did we miss an interrupt?
1161 */
1162 if (__nvme_poll(nvmeq, req->tag)) {
1163 dev_warn(dev->ctrl.device,
1164 "I/O %d QID %d timeout, completion polled\n",
1165 req->tag, nvmeq->qid);
1166 return BLK_EH_DONE;
1167 }
1168
1169 /*
1170 * Shutdown immediately if controller times out while starting. The
1171 * reset work will see the pci device disabled when it gets the forced
1172 * cancellation error. All outstanding requests are completed on
1173 * shutdown, so we return BLK_EH_DONE.
1174 */
1175 switch (dev->ctrl.state) {
1176 case NVME_CTRL_CONNECTING:
1177 case NVME_CTRL_RESETTING:
1178 dev_warn_ratelimited(dev->ctrl.device,
1179 "I/O %d QID %d timeout, disable controller\n",
1180 req->tag, nvmeq->qid);
1181 nvme_dev_disable(dev, false);
1182 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1183 return BLK_EH_DONE;
1184 default:
1185 break;
1186 }
1187
1188 /*
1189 * Shutdown the controller immediately and schedule a reset if the
1190 * command was already aborted once before and still hasn't been
1191 * returned to the driver, or if this is the admin queue.
1192 */
1193 if (!nvmeq->qid || iod->aborted) {
1194 dev_warn(dev->ctrl.device,
1195 "I/O %d QID %d timeout, reset controller\n",
1196 req->tag, nvmeq->qid);
1197 nvme_dev_disable(dev, false);
1198 nvme_reset_ctrl(&dev->ctrl);
1199
1200 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1201 return BLK_EH_DONE;
1202 }
1203
1204 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1205 atomic_inc(&dev->ctrl.abort_limit);
1206 return BLK_EH_RESET_TIMER;
1207 }
1208 iod->aborted = 1;
1209
1210 memset(&cmd, 0, sizeof(cmd));
1211 cmd.abort.opcode = nvme_admin_abort_cmd;
1212 cmd.abort.cid = req->tag;
1213 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1214
1215 dev_warn(nvmeq->dev->ctrl.device,
1216 "I/O %d QID %d timeout, aborting\n",
1217 req->tag, nvmeq->qid);
1218
1219 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1220 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1221 if (IS_ERR(abort_req)) {
1222 atomic_inc(&dev->ctrl.abort_limit);
1223 return BLK_EH_RESET_TIMER;
1224 }
1225
1226 abort_req->timeout = ADMIN_TIMEOUT;
1227 abort_req->end_io_data = NULL;
1228 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1229
1230 /*
1231 * The aborted req will be completed on receiving the abort req.
1232 * We enable the timer again. If hit twice, it'll cause a device reset,
1233 * as the device then is in a faulty state.
1234 */
1235 return BLK_EH_RESET_TIMER;
1236 }
1237
1238 static void nvme_free_queue(struct nvme_queue *nvmeq)
1239 {
1240 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1241 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1242
1243 if (nvmeq->sq_cmds) {
1244 if (nvmeq->sq_cmds_is_io)
1245 pci_free_p2pmem(to_pci_dev(nvmeq->q_dmadev),
1246 nvmeq->sq_cmds,
1247 SQ_SIZE(nvmeq->q_depth));
1248 else
1249 dma_free_coherent(nvmeq->q_dmadev,
1250 SQ_SIZE(nvmeq->q_depth),
1251 nvmeq->sq_cmds,
1252 nvmeq->sq_dma_addr);
1253 }
1254 }
1255
1256 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1257 {
1258 int i;
1259
1260 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1261 dev->ctrl.queue_count--;
1262 nvme_free_queue(&dev->queues[i]);
1263 }
1264 }
1265
1266 /**
1267 * nvme_suspend_queue - put queue into suspended state
1268 * @nvmeq: queue to suspend
1269 */
1270 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1271 {
1272 int vector;
1273
1274 spin_lock_irq(&nvmeq->cq_lock);
1275 if (nvmeq->cq_vector == -1) {
1276 spin_unlock_irq(&nvmeq->cq_lock);
1277 return 1;
1278 }
1279 vector = nvmeq->cq_vector;
1280 nvmeq->dev->online_queues--;
1281 nvmeq->cq_vector = -1;
1282 spin_unlock_irq(&nvmeq->cq_lock);
1283
1284 /*
1285 * Ensure that nvme_queue_rq() sees it ->cq_vector == -1 without
1286 * having to grab the lock.
1287 */
1288 mb();
1289
1290 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1291 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1292
1293 pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1294
1295 return 0;
1296 }
1297
1298 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1299 {
1300 struct nvme_queue *nvmeq = &dev->queues[0];
1301 u16 start, end;
1302
1303 if (shutdown)
1304 nvme_shutdown_ctrl(&dev->ctrl);
1305 else
1306 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1307
1308 spin_lock_irq(&nvmeq->cq_lock);
1309 nvme_process_cq(nvmeq, &start, &end, -1);
1310 spin_unlock_irq(&nvmeq->cq_lock);
1311
1312 nvme_complete_cqes(nvmeq, start, end);
1313 }
1314
1315 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1316 int entry_size)
1317 {
1318 int q_depth = dev->q_depth;
1319 unsigned q_size_aligned = roundup(q_depth * entry_size,
1320 dev->ctrl.page_size);
1321
1322 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1323 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1324 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1325 q_depth = div_u64(mem_per_q, entry_size);
1326
1327 /*
1328 * Ensure the reduced q_depth is above some threshold where it
1329 * would be better to map queues in system memory with the
1330 * original depth
1331 */
1332 if (q_depth < 64)
1333 return -ENOMEM;
1334 }
1335
1336 return q_depth;
1337 }
1338
1339 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1340 int qid, int depth)
1341 {
1342 struct pci_dev *pdev = to_pci_dev(dev->dev);
1343
1344 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1345 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(depth));
1346 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1347 nvmeq->sq_cmds);
1348 nvmeq->sq_cmds_is_io = true;
1349 }
1350
1351 if (!nvmeq->sq_cmds) {
1352 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1353 &nvmeq->sq_dma_addr, GFP_KERNEL);
1354 nvmeq->sq_cmds_is_io = false;
1355 }
1356
1357 if (!nvmeq->sq_cmds)
1358 return -ENOMEM;
1359 return 0;
1360 }
1361
1362 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1363 {
1364 struct nvme_queue *nvmeq = &dev->queues[qid];
1365
1366 if (dev->ctrl.queue_count > qid)
1367 return 0;
1368
1369 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1370 &nvmeq->cq_dma_addr, GFP_KERNEL);
1371 if (!nvmeq->cqes)
1372 goto free_nvmeq;
1373
1374 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1375 goto free_cqdma;
1376
1377 nvmeq->q_dmadev = dev->dev;
1378 nvmeq->dev = dev;
1379 spin_lock_init(&nvmeq->sq_lock);
1380 spin_lock_init(&nvmeq->cq_lock);
1381 nvmeq->cq_head = 0;
1382 nvmeq->cq_phase = 1;
1383 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1384 nvmeq->q_depth = depth;
1385 nvmeq->qid = qid;
1386 nvmeq->cq_vector = -1;
1387 dev->ctrl.queue_count++;
1388
1389 return 0;
1390
1391 free_cqdma:
1392 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1393 nvmeq->cq_dma_addr);
1394 free_nvmeq:
1395 return -ENOMEM;
1396 }
1397
1398 static int queue_request_irq(struct nvme_queue *nvmeq)
1399 {
1400 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1401 int nr = nvmeq->dev->ctrl.instance;
1402
1403 if (use_threaded_interrupts) {
1404 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1405 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1406 } else {
1407 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1408 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1409 }
1410 }
1411
1412 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1413 {
1414 struct nvme_dev *dev = nvmeq->dev;
1415
1416 spin_lock_irq(&nvmeq->cq_lock);
1417 nvmeq->sq_tail = 0;
1418 nvmeq->cq_head = 0;
1419 nvmeq->cq_phase = 1;
1420 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1421 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1422 nvme_dbbuf_init(dev, nvmeq, qid);
1423 dev->online_queues++;
1424 spin_unlock_irq(&nvmeq->cq_lock);
1425 }
1426
1427 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1428 {
1429 struct nvme_dev *dev = nvmeq->dev;
1430 int result;
1431 s16 vector;
1432
1433 /*
1434 * A queue's vector matches the queue identifier unless the controller
1435 * has only one vector available.
1436 */
1437 vector = dev->num_vecs == 1 ? 0 : qid;
1438 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1439 if (result)
1440 return result;
1441
1442 result = adapter_alloc_sq(dev, qid, nvmeq);
1443 if (result < 0)
1444 return result;
1445 else if (result)
1446 goto release_cq;
1447
1448 /*
1449 * Set cq_vector after alloc cq/sq, otherwise nvme_suspend_queue will
1450 * invoke free_irq for it and cause a 'Trying to free already-free IRQ
1451 * xxx' warning if the create CQ/SQ command times out.
1452 */
1453 nvmeq->cq_vector = vector;
1454 nvme_init_queue(nvmeq, qid);
1455 result = queue_request_irq(nvmeq);
1456 if (result < 0)
1457 goto release_sq;
1458
1459 return result;
1460
1461 release_sq:
1462 nvmeq->cq_vector = -1;
1463 dev->online_queues--;
1464 adapter_delete_sq(dev, qid);
1465 release_cq:
1466 adapter_delete_cq(dev, qid);
1467 return result;
1468 }
1469
1470 static const struct blk_mq_ops nvme_mq_admin_ops = {
1471 .queue_rq = nvme_queue_rq,
1472 .complete = nvme_pci_complete_rq,
1473 .init_hctx = nvme_admin_init_hctx,
1474 .exit_hctx = nvme_admin_exit_hctx,
1475 .init_request = nvme_init_request,
1476 .timeout = nvme_timeout,
1477 };
1478
1479 static const struct blk_mq_ops nvme_mq_ops = {
1480 .queue_rq = nvme_queue_rq,
1481 .complete = nvme_pci_complete_rq,
1482 .init_hctx = nvme_init_hctx,
1483 .init_request = nvme_init_request,
1484 .map_queues = nvme_pci_map_queues,
1485 .timeout = nvme_timeout,
1486 .poll = nvme_poll,
1487 };
1488
1489 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1490 {
1491 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1492 /*
1493 * If the controller was reset during removal, it's possible
1494 * user requests may be waiting on a stopped queue. Start the
1495 * queue to flush these to completion.
1496 */
1497 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1498 blk_cleanup_queue(dev->ctrl.admin_q);
1499 blk_mq_free_tag_set(&dev->admin_tagset);
1500 }
1501 }
1502
1503 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1504 {
1505 if (!dev->ctrl.admin_q) {
1506 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1507 dev->admin_tagset.nr_hw_queues = 1;
1508
1509 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1510 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1511 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1512 dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
1513 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1514 dev->admin_tagset.driver_data = dev;
1515
1516 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1517 return -ENOMEM;
1518 dev->ctrl.admin_tagset = &dev->admin_tagset;
1519
1520 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1521 if (IS_ERR(dev->ctrl.admin_q)) {
1522 blk_mq_free_tag_set(&dev->admin_tagset);
1523 return -ENOMEM;
1524 }
1525 if (!blk_get_queue(dev->ctrl.admin_q)) {
1526 nvme_dev_remove_admin(dev);
1527 dev->ctrl.admin_q = NULL;
1528 return -ENODEV;
1529 }
1530 } else
1531 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1532
1533 return 0;
1534 }
1535
1536 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1537 {
1538 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1539 }
1540
1541 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1542 {
1543 struct pci_dev *pdev = to_pci_dev(dev->dev);
1544
1545 if (size <= dev->bar_mapped_size)
1546 return 0;
1547 if (size > pci_resource_len(pdev, 0))
1548 return -ENOMEM;
1549 if (dev->bar)
1550 iounmap(dev->bar);
1551 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1552 if (!dev->bar) {
1553 dev->bar_mapped_size = 0;
1554 return -ENOMEM;
1555 }
1556 dev->bar_mapped_size = size;
1557 dev->dbs = dev->bar + NVME_REG_DBS;
1558
1559 return 0;
1560 }
1561
1562 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1563 {
1564 int result;
1565 u32 aqa;
1566 struct nvme_queue *nvmeq;
1567
1568 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1569 if (result < 0)
1570 return result;
1571
1572 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1573 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1574
1575 if (dev->subsystem &&
1576 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1577 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1578
1579 result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1580 if (result < 0)
1581 return result;
1582
1583 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1584 if (result)
1585 return result;
1586
1587 nvmeq = &dev->queues[0];
1588 aqa = nvmeq->q_depth - 1;
1589 aqa |= aqa << 16;
1590
1591 writel(aqa, dev->bar + NVME_REG_AQA);
1592 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1593 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1594
1595 result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1596 if (result)
1597 return result;
1598
1599 nvmeq->cq_vector = 0;
1600 nvme_init_queue(nvmeq, 0);
1601 result = queue_request_irq(nvmeq);
1602 if (result) {
1603 nvmeq->cq_vector = -1;
1604 return result;
1605 }
1606
1607 return result;
1608 }
1609
1610 static int nvme_create_io_queues(struct nvme_dev *dev)
1611 {
1612 unsigned i, max;
1613 int ret = 0;
1614
1615 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1616 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1617 ret = -ENOMEM;
1618 break;
1619 }
1620 }
1621
1622 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1623 for (i = dev->online_queues; i <= max; i++) {
1624 ret = nvme_create_queue(&dev->queues[i], i);
1625 if (ret)
1626 break;
1627 }
1628
1629 /*
1630 * Ignore failing Create SQ/CQ commands, we can continue with less
1631 * than the desired amount of queues, and even a controller without
1632 * I/O queues can still be used to issue admin commands. This might
1633 * be useful to upgrade a buggy firmware for example.
1634 */
1635 return ret >= 0 ? 0 : ret;
1636 }
1637
1638 static ssize_t nvme_cmb_show(struct device *dev,
1639 struct device_attribute *attr,
1640 char *buf)
1641 {
1642 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1643
1644 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1645 ndev->cmbloc, ndev->cmbsz);
1646 }
1647 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1648
1649 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1650 {
1651 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1652
1653 return 1ULL << (12 + 4 * szu);
1654 }
1655
1656 static u32 nvme_cmb_size(struct nvme_dev *dev)
1657 {
1658 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1659 }
1660
1661 static void nvme_map_cmb(struct nvme_dev *dev)
1662 {
1663 u64 size, offset;
1664 resource_size_t bar_size;
1665 struct pci_dev *pdev = to_pci_dev(dev->dev);
1666 int bar;
1667
1668 if (dev->cmb_size)
1669 return;
1670
1671 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1672 if (!dev->cmbsz)
1673 return;
1674 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1675
1676 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1677 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1678 bar = NVME_CMB_BIR(dev->cmbloc);
1679 bar_size = pci_resource_len(pdev, bar);
1680
1681 if (offset > bar_size)
1682 return;
1683
1684 /*
1685 * Controllers may support a CMB size larger than their BAR,
1686 * for example, due to being behind a bridge. Reduce the CMB to
1687 * the reported size of the BAR
1688 */
1689 if (size > bar_size - offset)
1690 size = bar_size - offset;
1691
1692 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1693 dev_warn(dev->ctrl.device,
1694 "failed to register the CMB\n");
1695 return;
1696 }
1697
1698 dev->cmb_size = size;
1699 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1700
1701 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1702 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1703 pci_p2pmem_publish(pdev, true);
1704
1705 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1706 &dev_attr_cmb.attr, NULL))
1707 dev_warn(dev->ctrl.device,
1708 "failed to add sysfs attribute for CMB\n");
1709 }
1710
1711 static inline void nvme_release_cmb(struct nvme_dev *dev)
1712 {
1713 if (dev->cmb_size) {
1714 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1715 &dev_attr_cmb.attr, NULL);
1716 dev->cmb_size = 0;
1717 }
1718 }
1719
1720 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1721 {
1722 u64 dma_addr = dev->host_mem_descs_dma;
1723 struct nvme_command c;
1724 int ret;
1725
1726 memset(&c, 0, sizeof(c));
1727 c.features.opcode = nvme_admin_set_features;
1728 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1729 c.features.dword11 = cpu_to_le32(bits);
1730 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1731 ilog2(dev->ctrl.page_size));
1732 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1733 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1734 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1735
1736 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1737 if (ret) {
1738 dev_warn(dev->ctrl.device,
1739 "failed to set host mem (err %d, flags %#x).\n",
1740 ret, bits);
1741 }
1742 return ret;
1743 }
1744
1745 static void nvme_free_host_mem(struct nvme_dev *dev)
1746 {
1747 int i;
1748
1749 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1750 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1751 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1752
1753 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1754 le64_to_cpu(desc->addr),
1755 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1756 }
1757
1758 kfree(dev->host_mem_desc_bufs);
1759 dev->host_mem_desc_bufs = NULL;
1760 dma_free_coherent(dev->dev,
1761 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1762 dev->host_mem_descs, dev->host_mem_descs_dma);
1763 dev->host_mem_descs = NULL;
1764 dev->nr_host_mem_descs = 0;
1765 }
1766
1767 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1768 u32 chunk_size)
1769 {
1770 struct nvme_host_mem_buf_desc *descs;
1771 u32 max_entries, len;
1772 dma_addr_t descs_dma;
1773 int i = 0;
1774 void **bufs;
1775 u64 size, tmp;
1776
1777 tmp = (preferred + chunk_size - 1);
1778 do_div(tmp, chunk_size);
1779 max_entries = tmp;
1780
1781 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1782 max_entries = dev->ctrl.hmmaxd;
1783
1784 descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1785 &descs_dma, GFP_KERNEL);
1786 if (!descs)
1787 goto out;
1788
1789 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1790 if (!bufs)
1791 goto out_free_descs;
1792
1793 for (size = 0; size < preferred && i < max_entries; size += len) {
1794 dma_addr_t dma_addr;
1795
1796 len = min_t(u64, chunk_size, preferred - size);
1797 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1798 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1799 if (!bufs[i])
1800 break;
1801
1802 descs[i].addr = cpu_to_le64(dma_addr);
1803 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1804 i++;
1805 }
1806
1807 if (!size)
1808 goto out_free_bufs;
1809
1810 dev->nr_host_mem_descs = i;
1811 dev->host_mem_size = size;
1812 dev->host_mem_descs = descs;
1813 dev->host_mem_descs_dma = descs_dma;
1814 dev->host_mem_desc_bufs = bufs;
1815 return 0;
1816
1817 out_free_bufs:
1818 while (--i >= 0) {
1819 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1820
1821 dma_free_attrs(dev->dev, size, bufs[i],
1822 le64_to_cpu(descs[i].addr),
1823 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1824 }
1825
1826 kfree(bufs);
1827 out_free_descs:
1828 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1829 descs_dma);
1830 out:
1831 dev->host_mem_descs = NULL;
1832 return -ENOMEM;
1833 }
1834
1835 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1836 {
1837 u32 chunk_size;
1838
1839 /* start big and work our way down */
1840 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1841 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1842 chunk_size /= 2) {
1843 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1844 if (!min || dev->host_mem_size >= min)
1845 return 0;
1846 nvme_free_host_mem(dev);
1847 }
1848 }
1849
1850 return -ENOMEM;
1851 }
1852
1853 static int nvme_setup_host_mem(struct nvme_dev *dev)
1854 {
1855 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1856 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1857 u64 min = (u64)dev->ctrl.hmmin * 4096;
1858 u32 enable_bits = NVME_HOST_MEM_ENABLE;
1859 int ret;
1860
1861 preferred = min(preferred, max);
1862 if (min > max) {
1863 dev_warn(dev->ctrl.device,
1864 "min host memory (%lld MiB) above limit (%d MiB).\n",
1865 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1866 nvme_free_host_mem(dev);
1867 return 0;
1868 }
1869
1870 /*
1871 * If we already have a buffer allocated check if we can reuse it.
1872 */
1873 if (dev->host_mem_descs) {
1874 if (dev->host_mem_size >= min)
1875 enable_bits |= NVME_HOST_MEM_RETURN;
1876 else
1877 nvme_free_host_mem(dev);
1878 }
1879
1880 if (!dev->host_mem_descs) {
1881 if (nvme_alloc_host_mem(dev, min, preferred)) {
1882 dev_warn(dev->ctrl.device,
1883 "failed to allocate host memory buffer.\n");
1884 return 0; /* controller must work without HMB */
1885 }
1886
1887 dev_info(dev->ctrl.device,
1888 "allocated %lld MiB host memory buffer.\n",
1889 dev->host_mem_size >> ilog2(SZ_1M));
1890 }
1891
1892 ret = nvme_set_host_mem(dev, enable_bits);
1893 if (ret)
1894 nvme_free_host_mem(dev);
1895 return ret;
1896 }
1897
1898 static int nvme_setup_io_queues(struct nvme_dev *dev)
1899 {
1900 struct nvme_queue *adminq = &dev->queues[0];
1901 struct pci_dev *pdev = to_pci_dev(dev->dev);
1902 int result, nr_io_queues;
1903 unsigned long size;
1904
1905 struct irq_affinity affd = {
1906 .pre_vectors = 1
1907 };
1908
1909 nr_io_queues = num_possible_cpus();
1910 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1911 if (result < 0)
1912 return result;
1913
1914 if (nr_io_queues == 0)
1915 return 0;
1916
1917 if (dev->cmb_use_sqes) {
1918 result = nvme_cmb_qdepth(dev, nr_io_queues,
1919 sizeof(struct nvme_command));
1920 if (result > 0)
1921 dev->q_depth = result;
1922 else
1923 dev->cmb_use_sqes = false;
1924 }
1925
1926 do {
1927 size = db_bar_size(dev, nr_io_queues);
1928 result = nvme_remap_bar(dev, size);
1929 if (!result)
1930 break;
1931 if (!--nr_io_queues)
1932 return -ENOMEM;
1933 } while (1);
1934 adminq->q_db = dev->dbs;
1935
1936 /* Deregister the admin queue's interrupt */
1937 pci_free_irq(pdev, 0, adminq);
1938
1939 /*
1940 * If we enable msix early due to not intx, disable it again before
1941 * setting up the full range we need.
1942 */
1943 pci_free_irq_vectors(pdev);
1944 result = pci_alloc_irq_vectors_affinity(pdev, 1, nr_io_queues + 1,
1945 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
1946 if (result <= 0)
1947 return -EIO;
1948 dev->num_vecs = result;
1949 dev->max_qid = max(result - 1, 1);
1950
1951 /*
1952 * Should investigate if there's a performance win from allocating
1953 * more queues than interrupt vectors; it might allow the submission
1954 * path to scale better, even if the receive path is limited by the
1955 * number of interrupts.
1956 */
1957
1958 result = queue_request_irq(adminq);
1959 if (result) {
1960 adminq->cq_vector = -1;
1961 return result;
1962 }
1963 return nvme_create_io_queues(dev);
1964 }
1965
1966 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1967 {
1968 struct nvme_queue *nvmeq = req->end_io_data;
1969
1970 blk_mq_free_request(req);
1971 complete(&nvmeq->dev->ioq_wait);
1972 }
1973
1974 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1975 {
1976 struct nvme_queue *nvmeq = req->end_io_data;
1977 u16 start, end;
1978
1979 if (!error) {
1980 unsigned long flags;
1981
1982 spin_lock_irqsave(&nvmeq->cq_lock, flags);
1983 nvme_process_cq(nvmeq, &start, &end, -1);
1984 spin_unlock_irqrestore(&nvmeq->cq_lock, flags);
1985
1986 nvme_complete_cqes(nvmeq, start, end);
1987 }
1988
1989 nvme_del_queue_end(req, error);
1990 }
1991
1992 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1993 {
1994 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1995 struct request *req;
1996 struct nvme_command cmd;
1997
1998 memset(&cmd, 0, sizeof(cmd));
1999 cmd.delete_queue.opcode = opcode;
2000 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2001
2002 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2003 if (IS_ERR(req))
2004 return PTR_ERR(req);
2005
2006 req->timeout = ADMIN_TIMEOUT;
2007 req->end_io_data = nvmeq;
2008
2009 blk_execute_rq_nowait(q, NULL, req, false,
2010 opcode == nvme_admin_delete_cq ?
2011 nvme_del_cq_end : nvme_del_queue_end);
2012 return 0;
2013 }
2014
2015 static void nvme_disable_io_queues(struct nvme_dev *dev)
2016 {
2017 int pass, queues = dev->online_queues - 1;
2018 unsigned long timeout;
2019 u8 opcode = nvme_admin_delete_sq;
2020
2021 for (pass = 0; pass < 2; pass++) {
2022 int sent = 0, i = queues;
2023
2024 reinit_completion(&dev->ioq_wait);
2025 retry:
2026 timeout = ADMIN_TIMEOUT;
2027 for (; i > 0; i--, sent++)
2028 if (nvme_delete_queue(&dev->queues[i], opcode))
2029 break;
2030
2031 while (sent--) {
2032 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
2033 if (timeout == 0)
2034 return;
2035 if (i)
2036 goto retry;
2037 }
2038 opcode = nvme_admin_delete_cq;
2039 }
2040 }
2041
2042 /*
2043 * return error value only when tagset allocation failed
2044 */
2045 static int nvme_dev_add(struct nvme_dev *dev)
2046 {
2047 int ret;
2048
2049 if (!dev->ctrl.tagset) {
2050 dev->tagset.ops = &nvme_mq_ops;
2051 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2052 dev->tagset.timeout = NVME_IO_TIMEOUT;
2053 dev->tagset.numa_node = dev_to_node(dev->dev);
2054 dev->tagset.queue_depth =
2055 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2056 dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2057 if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2058 dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2059 nvme_pci_cmd_size(dev, true));
2060 }
2061 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2062 dev->tagset.driver_data = dev;
2063
2064 ret = blk_mq_alloc_tag_set(&dev->tagset);
2065 if (ret) {
2066 dev_warn(dev->ctrl.device,
2067 "IO queues tagset allocation failed %d\n", ret);
2068 return ret;
2069 }
2070 dev->ctrl.tagset = &dev->tagset;
2071
2072 nvme_dbbuf_set(dev);
2073 } else {
2074 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2075
2076 /* Free previously allocated queues that are no longer usable */
2077 nvme_free_queues(dev, dev->online_queues);
2078 }
2079
2080 return 0;
2081 }
2082
2083 static int nvme_pci_enable(struct nvme_dev *dev)
2084 {
2085 int result = -ENOMEM;
2086 struct pci_dev *pdev = to_pci_dev(dev->dev);
2087
2088 if (pci_enable_device_mem(pdev))
2089 return result;
2090
2091 pci_set_master(pdev);
2092
2093 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2094 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2095 goto disable;
2096
2097 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2098 result = -ENODEV;
2099 goto disable;
2100 }
2101
2102 /*
2103 * Some devices and/or platforms don't advertise or work with INTx
2104 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2105 * adjust this later.
2106 */
2107 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2108 if (result < 0)
2109 return result;
2110
2111 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2112
2113 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2114 io_queue_depth);
2115 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2116 dev->dbs = dev->bar + 4096;
2117
2118 /*
2119 * Temporary fix for the Apple controller found in the MacBook8,1 and
2120 * some MacBook7,1 to avoid controller resets and data loss.
2121 */
2122 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2123 dev->q_depth = 2;
2124 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2125 "set queue depth=%u to work around controller resets\n",
2126 dev->q_depth);
2127 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2128 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2129 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2130 dev->q_depth = 64;
2131 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2132 "set queue depth=%u\n", dev->q_depth);
2133 }
2134
2135 nvme_map_cmb(dev);
2136
2137 pci_enable_pcie_error_reporting(pdev);
2138 pci_save_state(pdev);
2139 return 0;
2140
2141 disable:
2142 pci_disable_device(pdev);
2143 return result;
2144 }
2145
2146 static void nvme_dev_unmap(struct nvme_dev *dev)
2147 {
2148 if (dev->bar)
2149 iounmap(dev->bar);
2150 pci_release_mem_regions(to_pci_dev(dev->dev));
2151 }
2152
2153 static void nvme_pci_disable(struct nvme_dev *dev)
2154 {
2155 struct pci_dev *pdev = to_pci_dev(dev->dev);
2156
2157 pci_free_irq_vectors(pdev);
2158
2159 if (pci_is_enabled(pdev)) {
2160 pci_disable_pcie_error_reporting(pdev);
2161 pci_disable_device(pdev);
2162 }
2163 }
2164
2165 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2166 {
2167 int i;
2168 bool dead = true;
2169 struct pci_dev *pdev = to_pci_dev(dev->dev);
2170
2171 mutex_lock(&dev->shutdown_lock);
2172 if (pci_is_enabled(pdev)) {
2173 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2174
2175 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2176 dev->ctrl.state == NVME_CTRL_RESETTING)
2177 nvme_start_freeze(&dev->ctrl);
2178 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2179 pdev->error_state != pci_channel_io_normal);
2180 }
2181
2182 /*
2183 * Give the controller a chance to complete all entered requests if
2184 * doing a safe shutdown.
2185 */
2186 if (!dead) {
2187 if (shutdown)
2188 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2189 }
2190
2191 nvme_stop_queues(&dev->ctrl);
2192
2193 if (!dead && dev->ctrl.queue_count > 0) {
2194 nvme_disable_io_queues(dev);
2195 nvme_disable_admin_queue(dev, shutdown);
2196 }
2197 for (i = dev->ctrl.queue_count - 1; i >= 0; i--)
2198 nvme_suspend_queue(&dev->queues[i]);
2199
2200 nvme_pci_disable(dev);
2201
2202 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2203 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2204
2205 /*
2206 * The driver will not be starting up queues again if shutting down so
2207 * must flush all entered requests to their failed completion to avoid
2208 * deadlocking blk-mq hot-cpu notifier.
2209 */
2210 if (shutdown)
2211 nvme_start_queues(&dev->ctrl);
2212 mutex_unlock(&dev->shutdown_lock);
2213 }
2214
2215 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2216 {
2217 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2218 PAGE_SIZE, PAGE_SIZE, 0);
2219 if (!dev->prp_page_pool)
2220 return -ENOMEM;
2221
2222 /* Optimisation for I/Os between 4k and 128k */
2223 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2224 256, 256, 0);
2225 if (!dev->prp_small_pool) {
2226 dma_pool_destroy(dev->prp_page_pool);
2227 return -ENOMEM;
2228 }
2229 return 0;
2230 }
2231
2232 static void nvme_release_prp_pools(struct nvme_dev *dev)
2233 {
2234 dma_pool_destroy(dev->prp_page_pool);
2235 dma_pool_destroy(dev->prp_small_pool);
2236 }
2237
2238 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2239 {
2240 struct nvme_dev *dev = to_nvme_dev(ctrl);
2241
2242 nvme_dbbuf_dma_free(dev);
2243 put_device(dev->dev);
2244 if (dev->tagset.tags)
2245 blk_mq_free_tag_set(&dev->tagset);
2246 if (dev->ctrl.admin_q)
2247 blk_put_queue(dev->ctrl.admin_q);
2248 kfree(dev->queues);
2249 free_opal_dev(dev->ctrl.opal_dev);
2250 mempool_destroy(dev->iod_mempool);
2251 kfree(dev);
2252 }
2253
2254 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2255 {
2256 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2257
2258 nvme_get_ctrl(&dev->ctrl);
2259 nvme_dev_disable(dev, false);
2260 nvme_kill_queues(&dev->ctrl);
2261 if (!queue_work(nvme_wq, &dev->remove_work))
2262 nvme_put_ctrl(&dev->ctrl);
2263 }
2264
2265 static void nvme_reset_work(struct work_struct *work)
2266 {
2267 struct nvme_dev *dev =
2268 container_of(work, struct nvme_dev, ctrl.reset_work);
2269 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2270 int result = -ENODEV;
2271 enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
2272
2273 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2274 goto out;
2275
2276 /*
2277 * If we're called to reset a live controller first shut it down before
2278 * moving on.
2279 */
2280 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2281 nvme_dev_disable(dev, false);
2282
2283 mutex_lock(&dev->shutdown_lock);
2284 result = nvme_pci_enable(dev);
2285 if (result)
2286 goto out;
2287
2288 result = nvme_pci_configure_admin_queue(dev);
2289 if (result)
2290 goto out;
2291
2292 result = nvme_alloc_admin_tags(dev);
2293 if (result)
2294 goto out;
2295
2296 /*
2297 * Limit the max command size to prevent iod->sg allocations going
2298 * over a single page.
2299 */
2300 dev->ctrl.max_hw_sectors = NVME_MAX_KB_SZ << 1;
2301 dev->ctrl.max_segments = NVME_MAX_SEGS;
2302 mutex_unlock(&dev->shutdown_lock);
2303
2304 /*
2305 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2306 * initializing procedure here.
2307 */
2308 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2309 dev_warn(dev->ctrl.device,
2310 "failed to mark controller CONNECTING\n");
2311 goto out;
2312 }
2313
2314 result = nvme_init_identify(&dev->ctrl);
2315 if (result)
2316 goto out;
2317
2318 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2319 if (!dev->ctrl.opal_dev)
2320 dev->ctrl.opal_dev =
2321 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2322 else if (was_suspend)
2323 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2324 } else {
2325 free_opal_dev(dev->ctrl.opal_dev);
2326 dev->ctrl.opal_dev = NULL;
2327 }
2328
2329 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2330 result = nvme_dbbuf_dma_alloc(dev);
2331 if (result)
2332 dev_warn(dev->dev,
2333 "unable to allocate dma for dbbuf\n");
2334 }
2335
2336 if (dev->ctrl.hmpre) {
2337 result = nvme_setup_host_mem(dev);
2338 if (result < 0)
2339 goto out;
2340 }
2341
2342 result = nvme_setup_io_queues(dev);
2343 if (result)
2344 goto out;
2345
2346 /*
2347 * Keep the controller around but remove all namespaces if we don't have
2348 * any working I/O queue.
2349 */
2350 if (dev->online_queues < 2) {
2351 dev_warn(dev->ctrl.device, "IO queues not created\n");
2352 nvme_kill_queues(&dev->ctrl);
2353 nvme_remove_namespaces(&dev->ctrl);
2354 new_state = NVME_CTRL_ADMIN_ONLY;
2355 } else {
2356 nvme_start_queues(&dev->ctrl);
2357 nvme_wait_freeze(&dev->ctrl);
2358 /* hit this only when allocate tagset fails */
2359 if (nvme_dev_add(dev))
2360 new_state = NVME_CTRL_ADMIN_ONLY;
2361 nvme_unfreeze(&dev->ctrl);
2362 }
2363
2364 /*
2365 * If only admin queue live, keep it to do further investigation or
2366 * recovery.
2367 */
2368 if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2369 dev_warn(dev->ctrl.device,
2370 "failed to mark controller state %d\n", new_state);
2371 goto out;
2372 }
2373
2374 nvme_start_ctrl(&dev->ctrl);
2375 return;
2376
2377 out:
2378 nvme_remove_dead_ctrl(dev, result);
2379 }
2380
2381 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2382 {
2383 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2384 struct pci_dev *pdev = to_pci_dev(dev->dev);
2385
2386 if (pci_get_drvdata(pdev))
2387 device_release_driver(&pdev->dev);
2388 nvme_put_ctrl(&dev->ctrl);
2389 }
2390
2391 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2392 {
2393 *val = readl(to_nvme_dev(ctrl)->bar + off);
2394 return 0;
2395 }
2396
2397 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2398 {
2399 writel(val, to_nvme_dev(ctrl)->bar + off);
2400 return 0;
2401 }
2402
2403 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2404 {
2405 *val = readq(to_nvme_dev(ctrl)->bar + off);
2406 return 0;
2407 }
2408
2409 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2410 {
2411 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2412
2413 return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2414 }
2415
2416 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2417 .name = "pcie",
2418 .module = THIS_MODULE,
2419 .flags = NVME_F_METADATA_SUPPORTED |
2420 NVME_F_PCI_P2PDMA,
2421 .reg_read32 = nvme_pci_reg_read32,
2422 .reg_write32 = nvme_pci_reg_write32,
2423 .reg_read64 = nvme_pci_reg_read64,
2424 .free_ctrl = nvme_pci_free_ctrl,
2425 .submit_async_event = nvme_pci_submit_async_event,
2426 .get_address = nvme_pci_get_address,
2427 };
2428
2429 static int nvme_dev_map(struct nvme_dev *dev)
2430 {
2431 struct pci_dev *pdev = to_pci_dev(dev->dev);
2432
2433 if (pci_request_mem_regions(pdev, "nvme"))
2434 return -ENODEV;
2435
2436 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2437 goto release;
2438
2439 return 0;
2440 release:
2441 pci_release_mem_regions(pdev);
2442 return -ENODEV;
2443 }
2444
2445 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2446 {
2447 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2448 /*
2449 * Several Samsung devices seem to drop off the PCIe bus
2450 * randomly when APST is on and uses the deepest sleep state.
2451 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2452 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2453 * 950 PRO 256GB", but it seems to be restricted to two Dell
2454 * laptops.
2455 */
2456 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2457 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2458 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2459 return NVME_QUIRK_NO_DEEPEST_PS;
2460 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2461 /*
2462 * Samsung SSD 960 EVO drops off the PCIe bus after system
2463 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2464 * within few minutes after bootup on a Coffee Lake board -
2465 * ASUS PRIME Z370-A
2466 */
2467 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2468 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2469 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2470 return NVME_QUIRK_NO_APST;
2471 }
2472
2473 return 0;
2474 }
2475
2476 static void nvme_async_probe(void *data, async_cookie_t cookie)
2477 {
2478 struct nvme_dev *dev = data;
2479
2480 nvme_reset_ctrl_sync(&dev->ctrl);
2481 flush_work(&dev->ctrl.scan_work);
2482 nvme_put_ctrl(&dev->ctrl);
2483 }
2484
2485 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2486 {
2487 int node, result = -ENOMEM;
2488 struct nvme_dev *dev;
2489 unsigned long quirks = id->driver_data;
2490 size_t alloc_size;
2491
2492 node = dev_to_node(&pdev->dev);
2493 if (node == NUMA_NO_NODE)
2494 set_dev_node(&pdev->dev, first_memory_node);
2495
2496 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2497 if (!dev)
2498 return -ENOMEM;
2499
2500 dev->queues = kcalloc_node(num_possible_cpus() + 1,
2501 sizeof(struct nvme_queue), GFP_KERNEL, node);
2502 if (!dev->queues)
2503 goto free;
2504
2505 dev->dev = get_device(&pdev->dev);
2506 pci_set_drvdata(pdev, dev);
2507
2508 result = nvme_dev_map(dev);
2509 if (result)
2510 goto put_pci;
2511
2512 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2513 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2514 mutex_init(&dev->shutdown_lock);
2515 init_completion(&dev->ioq_wait);
2516
2517 result = nvme_setup_prp_pools(dev);
2518 if (result)
2519 goto unmap;
2520
2521 quirks |= check_vendor_combination_bug(pdev);
2522
2523 /*
2524 * Double check that our mempool alloc size will cover the biggest
2525 * command we support.
2526 */
2527 alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2528 NVME_MAX_SEGS, true);
2529 WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2530
2531 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2532 mempool_kfree,
2533 (void *) alloc_size,
2534 GFP_KERNEL, node);
2535 if (!dev->iod_mempool) {
2536 result = -ENOMEM;
2537 goto release_pools;
2538 }
2539
2540 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2541 quirks);
2542 if (result)
2543 goto release_mempool;
2544
2545 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2546
2547 nvme_get_ctrl(&dev->ctrl);
2548 async_schedule(nvme_async_probe, dev);
2549
2550 return 0;
2551
2552 release_mempool:
2553 mempool_destroy(dev->iod_mempool);
2554 release_pools:
2555 nvme_release_prp_pools(dev);
2556 unmap:
2557 nvme_dev_unmap(dev);
2558 put_pci:
2559 put_device(dev->dev);
2560 free:
2561 kfree(dev->queues);
2562 kfree(dev);
2563 return result;
2564 }
2565
2566 static void nvme_reset_prepare(struct pci_dev *pdev)
2567 {
2568 struct nvme_dev *dev = pci_get_drvdata(pdev);
2569 nvme_dev_disable(dev, false);
2570 }
2571
2572 static void nvme_reset_done(struct pci_dev *pdev)
2573 {
2574 struct nvme_dev *dev = pci_get_drvdata(pdev);
2575 nvme_reset_ctrl_sync(&dev->ctrl);
2576 }
2577
2578 static void nvme_shutdown(struct pci_dev *pdev)
2579 {
2580 struct nvme_dev *dev = pci_get_drvdata(pdev);
2581 nvme_dev_disable(dev, true);
2582 }
2583
2584 /*
2585 * The driver's remove may be called on a device in a partially initialized
2586 * state. This function must not have any dependencies on the device state in
2587 * order to proceed.
2588 */
2589 static void nvme_remove(struct pci_dev *pdev)
2590 {
2591 struct nvme_dev *dev = pci_get_drvdata(pdev);
2592
2593 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2594 pci_set_drvdata(pdev, NULL);
2595
2596 if (!pci_device_is_present(pdev)) {
2597 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2598 nvme_dev_disable(dev, true);
2599 nvme_dev_remove_admin(dev);
2600 }
2601
2602 flush_work(&dev->ctrl.reset_work);
2603 nvme_stop_ctrl(&dev->ctrl);
2604 nvme_remove_namespaces(&dev->ctrl);
2605 nvme_dev_disable(dev, true);
2606 nvme_release_cmb(dev);
2607 nvme_free_host_mem(dev);
2608 nvme_dev_remove_admin(dev);
2609 nvme_free_queues(dev, 0);
2610 nvme_uninit_ctrl(&dev->ctrl);
2611 nvme_release_prp_pools(dev);
2612 nvme_dev_unmap(dev);
2613 nvme_put_ctrl(&dev->ctrl);
2614 }
2615
2616 #ifdef CONFIG_PM_SLEEP
2617 static int nvme_suspend(struct device *dev)
2618 {
2619 struct pci_dev *pdev = to_pci_dev(dev);
2620 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2621
2622 nvme_dev_disable(ndev, true);
2623 return 0;
2624 }
2625
2626 static int nvme_resume(struct device *dev)
2627 {
2628 struct pci_dev *pdev = to_pci_dev(dev);
2629 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2630
2631 nvme_reset_ctrl(&ndev->ctrl);
2632 return 0;
2633 }
2634 #endif
2635
2636 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2637
2638 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2639 pci_channel_state_t state)
2640 {
2641 struct nvme_dev *dev = pci_get_drvdata(pdev);
2642
2643 /*
2644 * A frozen channel requires a reset. When detected, this method will
2645 * shutdown the controller to quiesce. The controller will be restarted
2646 * after the slot reset through driver's slot_reset callback.
2647 */
2648 switch (state) {
2649 case pci_channel_io_normal:
2650 return PCI_ERS_RESULT_CAN_RECOVER;
2651 case pci_channel_io_frozen:
2652 dev_warn(dev->ctrl.device,
2653 "frozen state error detected, reset controller\n");
2654 nvme_dev_disable(dev, false);
2655 return PCI_ERS_RESULT_NEED_RESET;
2656 case pci_channel_io_perm_failure:
2657 dev_warn(dev->ctrl.device,
2658 "failure state error detected, request disconnect\n");
2659 return PCI_ERS_RESULT_DISCONNECT;
2660 }
2661 return PCI_ERS_RESULT_NEED_RESET;
2662 }
2663
2664 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2665 {
2666 struct nvme_dev *dev = pci_get_drvdata(pdev);
2667
2668 dev_info(dev->ctrl.device, "restart after slot reset\n");
2669 pci_restore_state(pdev);
2670 nvme_reset_ctrl(&dev->ctrl);
2671 return PCI_ERS_RESULT_RECOVERED;
2672 }
2673
2674 static void nvme_error_resume(struct pci_dev *pdev)
2675 {
2676 struct nvme_dev *dev = pci_get_drvdata(pdev);
2677
2678 flush_work(&dev->ctrl.reset_work);
2679 }
2680
2681 static const struct pci_error_handlers nvme_err_handler = {
2682 .error_detected = nvme_error_detected,
2683 .slot_reset = nvme_slot_reset,
2684 .resume = nvme_error_resume,
2685 .reset_prepare = nvme_reset_prepare,
2686 .reset_done = nvme_reset_done,
2687 };
2688
2689 static const struct pci_device_id nvme_id_table[] = {
2690 { PCI_VDEVICE(INTEL, 0x0953),
2691 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2692 NVME_QUIRK_DEALLOCATE_ZEROES, },
2693 { PCI_VDEVICE(INTEL, 0x0a53),
2694 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2695 NVME_QUIRK_DEALLOCATE_ZEROES, },
2696 { PCI_VDEVICE(INTEL, 0x0a54),
2697 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2698 NVME_QUIRK_DEALLOCATE_ZEROES, },
2699 { PCI_VDEVICE(INTEL, 0x0a55),
2700 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2701 NVME_QUIRK_DEALLOCATE_ZEROES, },
2702 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
2703 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
2704 NVME_QUIRK_MEDIUM_PRIO_SQ },
2705 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
2706 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
2707 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2708 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2709 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
2710 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2711 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2712 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2713 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
2714 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2715 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2716 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2717 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
2718 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2719 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
2720 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2721 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
2722 .driver_data = NVME_QUIRK_LIGHTNVM, },
2723 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
2724 .driver_data = NVME_QUIRK_LIGHTNVM, },
2725 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
2726 .driver_data = NVME_QUIRK_LIGHTNVM, },
2727 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2728 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2729 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2730 { 0, }
2731 };
2732 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2733
2734 static struct pci_driver nvme_driver = {
2735 .name = "nvme",
2736 .id_table = nvme_id_table,
2737 .probe = nvme_probe,
2738 .remove = nvme_remove,
2739 .shutdown = nvme_shutdown,
2740 .driver = {
2741 .pm = &nvme_dev_pm_ops,
2742 },
2743 .sriov_configure = pci_sriov_configure_simple,
2744 .err_handler = &nvme_err_handler,
2745 };
2746
2747 static int __init nvme_init(void)
2748 {
2749 return pci_register_driver(&nvme_driver);
2750 }
2751
2752 static void __exit nvme_exit(void)
2753 {
2754 pci_unregister_driver(&nvme_driver);
2755 flush_workqueue(nvme_wq);
2756 _nvme_check_size();
2757 }
2758
2759 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2760 MODULE_LICENSE("GPL");
2761 MODULE_VERSION("1.0");
2762 module_init(nvme_init);
2763 module_exit(nvme_exit);