]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/pci/p2pdma.c
Merge branch 'linux-5.2' of git://github.com/skeggsb/linux into drm-fixes
[thirdparty/kernel/stable.git] / drivers / pci / p2pdma.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Peer 2 Peer DMA support.
4 *
5 * Copyright (c) 2016-2018, Logan Gunthorpe
6 * Copyright (c) 2016-2017, Microsemi Corporation
7 * Copyright (c) 2017, Christoph Hellwig
8 * Copyright (c) 2018, Eideticom Inc.
9 */
10
11 #define pr_fmt(fmt) "pci-p2pdma: " fmt
12 #include <linux/ctype.h>
13 #include <linux/pci-p2pdma.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/genalloc.h>
17 #include <linux/memremap.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/random.h>
20 #include <linux/seq_buf.h>
21
22 struct pci_p2pdma {
23 struct percpu_ref devmap_ref;
24 struct completion devmap_ref_done;
25 struct gen_pool *pool;
26 bool p2pmem_published;
27 };
28
29 static ssize_t size_show(struct device *dev, struct device_attribute *attr,
30 char *buf)
31 {
32 struct pci_dev *pdev = to_pci_dev(dev);
33 size_t size = 0;
34
35 if (pdev->p2pdma->pool)
36 size = gen_pool_size(pdev->p2pdma->pool);
37
38 return snprintf(buf, PAGE_SIZE, "%zd\n", size);
39 }
40 static DEVICE_ATTR_RO(size);
41
42 static ssize_t available_show(struct device *dev, struct device_attribute *attr,
43 char *buf)
44 {
45 struct pci_dev *pdev = to_pci_dev(dev);
46 size_t avail = 0;
47
48 if (pdev->p2pdma->pool)
49 avail = gen_pool_avail(pdev->p2pdma->pool);
50
51 return snprintf(buf, PAGE_SIZE, "%zd\n", avail);
52 }
53 static DEVICE_ATTR_RO(available);
54
55 static ssize_t published_show(struct device *dev, struct device_attribute *attr,
56 char *buf)
57 {
58 struct pci_dev *pdev = to_pci_dev(dev);
59
60 return snprintf(buf, PAGE_SIZE, "%d\n",
61 pdev->p2pdma->p2pmem_published);
62 }
63 static DEVICE_ATTR_RO(published);
64
65 static struct attribute *p2pmem_attrs[] = {
66 &dev_attr_size.attr,
67 &dev_attr_available.attr,
68 &dev_attr_published.attr,
69 NULL,
70 };
71
72 static const struct attribute_group p2pmem_group = {
73 .attrs = p2pmem_attrs,
74 .name = "p2pmem",
75 };
76
77 static void pci_p2pdma_percpu_release(struct percpu_ref *ref)
78 {
79 struct pci_p2pdma *p2p =
80 container_of(ref, struct pci_p2pdma, devmap_ref);
81
82 complete_all(&p2p->devmap_ref_done);
83 }
84
85 static void pci_p2pdma_percpu_kill(struct percpu_ref *ref)
86 {
87 /*
88 * pci_p2pdma_add_resource() may be called multiple times
89 * by a driver and may register the percpu_kill devm action multiple
90 * times. We only want the first action to actually kill the
91 * percpu_ref.
92 */
93 if (percpu_ref_is_dying(ref))
94 return;
95
96 percpu_ref_kill(ref);
97 }
98
99 static void pci_p2pdma_release(void *data)
100 {
101 struct pci_dev *pdev = data;
102
103 if (!pdev->p2pdma)
104 return;
105
106 wait_for_completion(&pdev->p2pdma->devmap_ref_done);
107 percpu_ref_exit(&pdev->p2pdma->devmap_ref);
108
109 gen_pool_destroy(pdev->p2pdma->pool);
110 sysfs_remove_group(&pdev->dev.kobj, &p2pmem_group);
111 pdev->p2pdma = NULL;
112 }
113
114 static int pci_p2pdma_setup(struct pci_dev *pdev)
115 {
116 int error = -ENOMEM;
117 struct pci_p2pdma *p2p;
118
119 p2p = devm_kzalloc(&pdev->dev, sizeof(*p2p), GFP_KERNEL);
120 if (!p2p)
121 return -ENOMEM;
122
123 p2p->pool = gen_pool_create(PAGE_SHIFT, dev_to_node(&pdev->dev));
124 if (!p2p->pool)
125 goto out;
126
127 init_completion(&p2p->devmap_ref_done);
128 error = percpu_ref_init(&p2p->devmap_ref,
129 pci_p2pdma_percpu_release, 0, GFP_KERNEL);
130 if (error)
131 goto out_pool_destroy;
132
133 error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_release, pdev);
134 if (error)
135 goto out_pool_destroy;
136
137 pdev->p2pdma = p2p;
138
139 error = sysfs_create_group(&pdev->dev.kobj, &p2pmem_group);
140 if (error)
141 goto out_pool_destroy;
142
143 return 0;
144
145 out_pool_destroy:
146 pdev->p2pdma = NULL;
147 gen_pool_destroy(p2p->pool);
148 out:
149 devm_kfree(&pdev->dev, p2p);
150 return error;
151 }
152
153 /**
154 * pci_p2pdma_add_resource - add memory for use as p2p memory
155 * @pdev: the device to add the memory to
156 * @bar: PCI BAR to add
157 * @size: size of the memory to add, may be zero to use the whole BAR
158 * @offset: offset into the PCI BAR
159 *
160 * The memory will be given ZONE_DEVICE struct pages so that it may
161 * be used with any DMA request.
162 */
163 int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size_t size,
164 u64 offset)
165 {
166 struct dev_pagemap *pgmap;
167 void *addr;
168 int error;
169
170 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM))
171 return -EINVAL;
172
173 if (offset >= pci_resource_len(pdev, bar))
174 return -EINVAL;
175
176 if (!size)
177 size = pci_resource_len(pdev, bar) - offset;
178
179 if (size + offset > pci_resource_len(pdev, bar))
180 return -EINVAL;
181
182 if (!pdev->p2pdma) {
183 error = pci_p2pdma_setup(pdev);
184 if (error)
185 return error;
186 }
187
188 pgmap = devm_kzalloc(&pdev->dev, sizeof(*pgmap), GFP_KERNEL);
189 if (!pgmap)
190 return -ENOMEM;
191
192 pgmap->res.start = pci_resource_start(pdev, bar) + offset;
193 pgmap->res.end = pgmap->res.start + size - 1;
194 pgmap->res.flags = pci_resource_flags(pdev, bar);
195 pgmap->ref = &pdev->p2pdma->devmap_ref;
196 pgmap->type = MEMORY_DEVICE_PCI_P2PDMA;
197 pgmap->pci_p2pdma_bus_offset = pci_bus_address(pdev, bar) -
198 pci_resource_start(pdev, bar);
199 pgmap->kill = pci_p2pdma_percpu_kill;
200
201 addr = devm_memremap_pages(&pdev->dev, pgmap);
202 if (IS_ERR(addr)) {
203 error = PTR_ERR(addr);
204 goto pgmap_free;
205 }
206
207 error = gen_pool_add_virt(pdev->p2pdma->pool, (unsigned long)addr,
208 pci_bus_address(pdev, bar) + offset,
209 resource_size(&pgmap->res), dev_to_node(&pdev->dev));
210 if (error)
211 goto pgmap_free;
212
213 pci_info(pdev, "added peer-to-peer DMA memory %pR\n",
214 &pgmap->res);
215
216 return 0;
217
218 pgmap_free:
219 devm_kfree(&pdev->dev, pgmap);
220 return error;
221 }
222 EXPORT_SYMBOL_GPL(pci_p2pdma_add_resource);
223
224 /*
225 * Note this function returns the parent PCI device with a
226 * reference taken. It is the caller's responsibily to drop
227 * the reference.
228 */
229 static struct pci_dev *find_parent_pci_dev(struct device *dev)
230 {
231 struct device *parent;
232
233 dev = get_device(dev);
234
235 while (dev) {
236 if (dev_is_pci(dev))
237 return to_pci_dev(dev);
238
239 parent = get_device(dev->parent);
240 put_device(dev);
241 dev = parent;
242 }
243
244 return NULL;
245 }
246
247 /*
248 * Check if a PCI bridge has its ACS redirection bits set to redirect P2P
249 * TLPs upstream via ACS. Returns 1 if the packets will be redirected
250 * upstream, 0 otherwise.
251 */
252 static int pci_bridge_has_acs_redir(struct pci_dev *pdev)
253 {
254 int pos;
255 u16 ctrl;
256
257 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
258 if (!pos)
259 return 0;
260
261 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
262
263 if (ctrl & (PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC))
264 return 1;
265
266 return 0;
267 }
268
269 static void seq_buf_print_bus_devfn(struct seq_buf *buf, struct pci_dev *pdev)
270 {
271 if (!buf)
272 return;
273
274 seq_buf_printf(buf, "%s;", pci_name(pdev));
275 }
276
277 /*
278 * If we can't find a common upstream bridge take a look at the root
279 * complex and compare it to a whitelist of known good hardware.
280 */
281 static bool root_complex_whitelist(struct pci_dev *dev)
282 {
283 struct pci_host_bridge *host = pci_find_host_bridge(dev->bus);
284 struct pci_dev *root = pci_get_slot(host->bus, PCI_DEVFN(0, 0));
285 unsigned short vendor, device;
286
287 if (!root)
288 return false;
289
290 vendor = root->vendor;
291 device = root->device;
292 pci_dev_put(root);
293
294 /* AMD ZEN host bridges can do peer to peer */
295 if (vendor == PCI_VENDOR_ID_AMD && device == 0x1450)
296 return true;
297
298 return false;
299 }
300
301 /*
302 * Find the distance through the nearest common upstream bridge between
303 * two PCI devices.
304 *
305 * If the two devices are the same device then 0 will be returned.
306 *
307 * If there are two virtual functions of the same device behind the same
308 * bridge port then 2 will be returned (one step down to the PCIe switch,
309 * then one step back to the same device).
310 *
311 * In the case where two devices are connected to the same PCIe switch, the
312 * value 4 will be returned. This corresponds to the following PCI tree:
313 *
314 * -+ Root Port
315 * \+ Switch Upstream Port
316 * +-+ Switch Downstream Port
317 * + \- Device A
318 * \-+ Switch Downstream Port
319 * \- Device B
320 *
321 * The distance is 4 because we traverse from Device A through the downstream
322 * port of the switch, to the common upstream port, back up to the second
323 * downstream port and then to Device B.
324 *
325 * Any two devices that don't have a common upstream bridge will return -1.
326 * In this way devices on separate PCIe root ports will be rejected, which
327 * is what we want for peer-to-peer seeing each PCIe root port defines a
328 * separate hierarchy domain and there's no way to determine whether the root
329 * complex supports forwarding between them.
330 *
331 * In the case where two devices are connected to different PCIe switches,
332 * this function will still return a positive distance as long as both
333 * switches eventually have a common upstream bridge. Note this covers
334 * the case of using multiple PCIe switches to achieve a desired level of
335 * fan-out from a root port. The exact distance will be a function of the
336 * number of switches between Device A and Device B.
337 *
338 * If a bridge which has any ACS redirection bits set is in the path
339 * then this functions will return -2. This is so we reject any
340 * cases where the TLPs are forwarded up into the root complex.
341 * In this case, a list of all infringing bridge addresses will be
342 * populated in acs_list (assuming it's non-null) for printk purposes.
343 */
344 static int upstream_bridge_distance(struct pci_dev *provider,
345 struct pci_dev *client,
346 struct seq_buf *acs_list)
347 {
348 struct pci_dev *a = provider, *b = client, *bb;
349 int dist_a = 0;
350 int dist_b = 0;
351 int acs_cnt = 0;
352
353 /*
354 * Note, we don't need to take references to devices returned by
355 * pci_upstream_bridge() seeing we hold a reference to a child
356 * device which will already hold a reference to the upstream bridge.
357 */
358
359 while (a) {
360 dist_b = 0;
361
362 if (pci_bridge_has_acs_redir(a)) {
363 seq_buf_print_bus_devfn(acs_list, a);
364 acs_cnt++;
365 }
366
367 bb = b;
368
369 while (bb) {
370 if (a == bb)
371 goto check_b_path_acs;
372
373 bb = pci_upstream_bridge(bb);
374 dist_b++;
375 }
376
377 a = pci_upstream_bridge(a);
378 dist_a++;
379 }
380
381 /*
382 * Allow the connection if both devices are on a whitelisted root
383 * complex, but add an arbitary large value to the distance.
384 */
385 if (root_complex_whitelist(provider) &&
386 root_complex_whitelist(client))
387 return 0x1000 + dist_a + dist_b;
388
389 return -1;
390
391 check_b_path_acs:
392 bb = b;
393
394 while (bb) {
395 if (a == bb)
396 break;
397
398 if (pci_bridge_has_acs_redir(bb)) {
399 seq_buf_print_bus_devfn(acs_list, bb);
400 acs_cnt++;
401 }
402
403 bb = pci_upstream_bridge(bb);
404 }
405
406 if (acs_cnt)
407 return -2;
408
409 return dist_a + dist_b;
410 }
411
412 static int upstream_bridge_distance_warn(struct pci_dev *provider,
413 struct pci_dev *client)
414 {
415 struct seq_buf acs_list;
416 int ret;
417
418 seq_buf_init(&acs_list, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
419 if (!acs_list.buffer)
420 return -ENOMEM;
421
422 ret = upstream_bridge_distance(provider, client, &acs_list);
423 if (ret == -2) {
424 pci_warn(client, "cannot be used for peer-to-peer DMA as ACS redirect is set between the client and provider (%s)\n",
425 pci_name(provider));
426 /* Drop final semicolon */
427 acs_list.buffer[acs_list.len-1] = 0;
428 pci_warn(client, "to disable ACS redirect for this path, add the kernel parameter: pci=disable_acs_redir=%s\n",
429 acs_list.buffer);
430
431 } else if (ret < 0) {
432 pci_warn(client, "cannot be used for peer-to-peer DMA as the client and provider (%s) do not share an upstream bridge\n",
433 pci_name(provider));
434 }
435
436 kfree(acs_list.buffer);
437
438 return ret;
439 }
440
441 /**
442 * pci_p2pdma_distance_many - Determive the cumulative distance between
443 * a p2pdma provider and the clients in use.
444 * @provider: p2pdma provider to check against the client list
445 * @clients: array of devices to check (NULL-terminated)
446 * @num_clients: number of clients in the array
447 * @verbose: if true, print warnings for devices when we return -1
448 *
449 * Returns -1 if any of the clients are not compatible (behind the same
450 * root port as the provider), otherwise returns a positive number where
451 * a lower number is the preferable choice. (If there's one client
452 * that's the same as the provider it will return 0, which is best choice).
453 *
454 * For now, "compatible" means the provider and the clients are all behind
455 * the same PCI root port. This cuts out cases that may work but is safest
456 * for the user. Future work can expand this to white-list root complexes that
457 * can safely forward between each ports.
458 */
459 int pci_p2pdma_distance_many(struct pci_dev *provider, struct device **clients,
460 int num_clients, bool verbose)
461 {
462 bool not_supported = false;
463 struct pci_dev *pci_client;
464 int distance = 0;
465 int i, ret;
466
467 if (num_clients == 0)
468 return -1;
469
470 for (i = 0; i < num_clients; i++) {
471 pci_client = find_parent_pci_dev(clients[i]);
472 if (!pci_client) {
473 if (verbose)
474 dev_warn(clients[i],
475 "cannot be used for peer-to-peer DMA as it is not a PCI device\n");
476 return -1;
477 }
478
479 if (verbose)
480 ret = upstream_bridge_distance_warn(provider,
481 pci_client);
482 else
483 ret = upstream_bridge_distance(provider, pci_client,
484 NULL);
485
486 pci_dev_put(pci_client);
487
488 if (ret < 0)
489 not_supported = true;
490
491 if (not_supported && !verbose)
492 break;
493
494 distance += ret;
495 }
496
497 if (not_supported)
498 return -1;
499
500 return distance;
501 }
502 EXPORT_SYMBOL_GPL(pci_p2pdma_distance_many);
503
504 /**
505 * pci_has_p2pmem - check if a given PCI device has published any p2pmem
506 * @pdev: PCI device to check
507 */
508 bool pci_has_p2pmem(struct pci_dev *pdev)
509 {
510 return pdev->p2pdma && pdev->p2pdma->p2pmem_published;
511 }
512 EXPORT_SYMBOL_GPL(pci_has_p2pmem);
513
514 /**
515 * pci_p2pmem_find - find a peer-to-peer DMA memory device compatible with
516 * the specified list of clients and shortest distance (as determined
517 * by pci_p2pmem_dma())
518 * @clients: array of devices to check (NULL-terminated)
519 * @num_clients: number of client devices in the list
520 *
521 * If multiple devices are behind the same switch, the one "closest" to the
522 * client devices in use will be chosen first. (So if one of the providers is
523 * the same as one of the clients, that provider will be used ahead of any
524 * other providers that are unrelated). If multiple providers are an equal
525 * distance away, one will be chosen at random.
526 *
527 * Returns a pointer to the PCI device with a reference taken (use pci_dev_put
528 * to return the reference) or NULL if no compatible device is found. The
529 * found provider will also be assigned to the client list.
530 */
531 struct pci_dev *pci_p2pmem_find_many(struct device **clients, int num_clients)
532 {
533 struct pci_dev *pdev = NULL;
534 int distance;
535 int closest_distance = INT_MAX;
536 struct pci_dev **closest_pdevs;
537 int dev_cnt = 0;
538 const int max_devs = PAGE_SIZE / sizeof(*closest_pdevs);
539 int i;
540
541 closest_pdevs = kmalloc(PAGE_SIZE, GFP_KERNEL);
542 if (!closest_pdevs)
543 return NULL;
544
545 while ((pdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
546 if (!pci_has_p2pmem(pdev))
547 continue;
548
549 distance = pci_p2pdma_distance_many(pdev, clients,
550 num_clients, false);
551 if (distance < 0 || distance > closest_distance)
552 continue;
553
554 if (distance == closest_distance && dev_cnt >= max_devs)
555 continue;
556
557 if (distance < closest_distance) {
558 for (i = 0; i < dev_cnt; i++)
559 pci_dev_put(closest_pdevs[i]);
560
561 dev_cnt = 0;
562 closest_distance = distance;
563 }
564
565 closest_pdevs[dev_cnt++] = pci_dev_get(pdev);
566 }
567
568 if (dev_cnt)
569 pdev = pci_dev_get(closest_pdevs[prandom_u32_max(dev_cnt)]);
570
571 for (i = 0; i < dev_cnt; i++)
572 pci_dev_put(closest_pdevs[i]);
573
574 kfree(closest_pdevs);
575 return pdev;
576 }
577 EXPORT_SYMBOL_GPL(pci_p2pmem_find_many);
578
579 /**
580 * pci_alloc_p2p_mem - allocate peer-to-peer DMA memory
581 * @pdev: the device to allocate memory from
582 * @size: number of bytes to allocate
583 *
584 * Returns the allocated memory or NULL on error.
585 */
586 void *pci_alloc_p2pmem(struct pci_dev *pdev, size_t size)
587 {
588 void *ret;
589
590 if (unlikely(!pdev->p2pdma))
591 return NULL;
592
593 if (unlikely(!percpu_ref_tryget_live(&pdev->p2pdma->devmap_ref)))
594 return NULL;
595
596 ret = (void *)gen_pool_alloc(pdev->p2pdma->pool, size);
597
598 if (unlikely(!ret))
599 percpu_ref_put(&pdev->p2pdma->devmap_ref);
600
601 return ret;
602 }
603 EXPORT_SYMBOL_GPL(pci_alloc_p2pmem);
604
605 /**
606 * pci_free_p2pmem - free peer-to-peer DMA memory
607 * @pdev: the device the memory was allocated from
608 * @addr: address of the memory that was allocated
609 * @size: number of bytes that were allocated
610 */
611 void pci_free_p2pmem(struct pci_dev *pdev, void *addr, size_t size)
612 {
613 gen_pool_free(pdev->p2pdma->pool, (uintptr_t)addr, size);
614 percpu_ref_put(&pdev->p2pdma->devmap_ref);
615 }
616 EXPORT_SYMBOL_GPL(pci_free_p2pmem);
617
618 /**
619 * pci_virt_to_bus - return the PCI bus address for a given virtual
620 * address obtained with pci_alloc_p2pmem()
621 * @pdev: the device the memory was allocated from
622 * @addr: address of the memory that was allocated
623 */
624 pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev *pdev, void *addr)
625 {
626 if (!addr)
627 return 0;
628 if (!pdev->p2pdma)
629 return 0;
630
631 /*
632 * Note: when we added the memory to the pool we used the PCI
633 * bus address as the physical address. So gen_pool_virt_to_phys()
634 * actually returns the bus address despite the misleading name.
635 */
636 return gen_pool_virt_to_phys(pdev->p2pdma->pool, (unsigned long)addr);
637 }
638 EXPORT_SYMBOL_GPL(pci_p2pmem_virt_to_bus);
639
640 /**
641 * pci_p2pmem_alloc_sgl - allocate peer-to-peer DMA memory in a scatterlist
642 * @pdev: the device to allocate memory from
643 * @nents: the number of SG entries in the list
644 * @length: number of bytes to allocate
645 *
646 * Return: %NULL on error or &struct scatterlist pointer and @nents on success
647 */
648 struct scatterlist *pci_p2pmem_alloc_sgl(struct pci_dev *pdev,
649 unsigned int *nents, u32 length)
650 {
651 struct scatterlist *sg;
652 void *addr;
653
654 sg = kzalloc(sizeof(*sg), GFP_KERNEL);
655 if (!sg)
656 return NULL;
657
658 sg_init_table(sg, 1);
659
660 addr = pci_alloc_p2pmem(pdev, length);
661 if (!addr)
662 goto out_free_sg;
663
664 sg_set_buf(sg, addr, length);
665 *nents = 1;
666 return sg;
667
668 out_free_sg:
669 kfree(sg);
670 return NULL;
671 }
672 EXPORT_SYMBOL_GPL(pci_p2pmem_alloc_sgl);
673
674 /**
675 * pci_p2pmem_free_sgl - free a scatterlist allocated by pci_p2pmem_alloc_sgl()
676 * @pdev: the device to allocate memory from
677 * @sgl: the allocated scatterlist
678 */
679 void pci_p2pmem_free_sgl(struct pci_dev *pdev, struct scatterlist *sgl)
680 {
681 struct scatterlist *sg;
682 int count;
683
684 for_each_sg(sgl, sg, INT_MAX, count) {
685 if (!sg)
686 break;
687
688 pci_free_p2pmem(pdev, sg_virt(sg), sg->length);
689 }
690 kfree(sgl);
691 }
692 EXPORT_SYMBOL_GPL(pci_p2pmem_free_sgl);
693
694 /**
695 * pci_p2pmem_publish - publish the peer-to-peer DMA memory for use by
696 * other devices with pci_p2pmem_find()
697 * @pdev: the device with peer-to-peer DMA memory to publish
698 * @publish: set to true to publish the memory, false to unpublish it
699 *
700 * Published memory can be used by other PCI device drivers for
701 * peer-2-peer DMA operations. Non-published memory is reserved for
702 * exclusive use of the device driver that registers the peer-to-peer
703 * memory.
704 */
705 void pci_p2pmem_publish(struct pci_dev *pdev, bool publish)
706 {
707 if (pdev->p2pdma)
708 pdev->p2pdma->p2pmem_published = publish;
709 }
710 EXPORT_SYMBOL_GPL(pci_p2pmem_publish);
711
712 /**
713 * pci_p2pdma_map_sg - map a PCI peer-to-peer scatterlist for DMA
714 * @dev: device doing the DMA request
715 * @sg: scatter list to map
716 * @nents: elements in the scatterlist
717 * @dir: DMA direction
718 *
719 * Scatterlists mapped with this function should not be unmapped in any way.
720 *
721 * Returns the number of SG entries mapped or 0 on error.
722 */
723 int pci_p2pdma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
724 enum dma_data_direction dir)
725 {
726 struct dev_pagemap *pgmap;
727 struct scatterlist *s;
728 phys_addr_t paddr;
729 int i;
730
731 /*
732 * p2pdma mappings are not compatible with devices that use
733 * dma_virt_ops. If the upper layers do the right thing
734 * this should never happen because it will be prevented
735 * by the check in pci_p2pdma_add_client()
736 */
737 if (WARN_ON_ONCE(IS_ENABLED(CONFIG_DMA_VIRT_OPS) &&
738 dev->dma_ops == &dma_virt_ops))
739 return 0;
740
741 for_each_sg(sg, s, nents, i) {
742 pgmap = sg_page(s)->pgmap;
743 paddr = sg_phys(s);
744
745 s->dma_address = paddr - pgmap->pci_p2pdma_bus_offset;
746 sg_dma_len(s) = s->length;
747 }
748
749 return nents;
750 }
751 EXPORT_SYMBOL_GPL(pci_p2pdma_map_sg);
752
753 /**
754 * pci_p2pdma_enable_store - parse a configfs/sysfs attribute store
755 * to enable p2pdma
756 * @page: contents of the value to be stored
757 * @p2p_dev: returns the PCI device that was selected to be used
758 * (if one was specified in the stored value)
759 * @use_p2pdma: returns whether to enable p2pdma or not
760 *
761 * Parses an attribute value to decide whether to enable p2pdma.
762 * The value can select a PCI device (using its full BDF device
763 * name) or a boolean (in any format strtobool() accepts). A false
764 * value disables p2pdma, a true value expects the caller
765 * to automatically find a compatible device and specifying a PCI device
766 * expects the caller to use the specific provider.
767 *
768 * pci_p2pdma_enable_show() should be used as the show operation for
769 * the attribute.
770 *
771 * Returns 0 on success
772 */
773 int pci_p2pdma_enable_store(const char *page, struct pci_dev **p2p_dev,
774 bool *use_p2pdma)
775 {
776 struct device *dev;
777
778 dev = bus_find_device_by_name(&pci_bus_type, NULL, page);
779 if (dev) {
780 *use_p2pdma = true;
781 *p2p_dev = to_pci_dev(dev);
782
783 if (!pci_has_p2pmem(*p2p_dev)) {
784 pci_err(*p2p_dev,
785 "PCI device has no peer-to-peer memory: %s\n",
786 page);
787 pci_dev_put(*p2p_dev);
788 return -ENODEV;
789 }
790
791 return 0;
792 } else if ((page[0] == '0' || page[0] == '1') && !iscntrl(page[1])) {
793 /*
794 * If the user enters a PCI device that doesn't exist
795 * like "0000:01:00.1", we don't want strtobool to think
796 * it's a '0' when it's clearly not what the user wanted.
797 * So we require 0's and 1's to be exactly one character.
798 */
799 } else if (!strtobool(page, use_p2pdma)) {
800 return 0;
801 }
802
803 pr_err("No such PCI device: %.*s\n", (int)strcspn(page, "\n"), page);
804 return -ENODEV;
805 }
806 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_store);
807
808 /**
809 * pci_p2pdma_enable_show - show a configfs/sysfs attribute indicating
810 * whether p2pdma is enabled
811 * @page: contents of the stored value
812 * @p2p_dev: the selected p2p device (NULL if no device is selected)
813 * @use_p2pdma: whether p2pdma has been enabled
814 *
815 * Attributes that use pci_p2pdma_enable_store() should use this function
816 * to show the value of the attribute.
817 *
818 * Returns 0 on success
819 */
820 ssize_t pci_p2pdma_enable_show(char *page, struct pci_dev *p2p_dev,
821 bool use_p2pdma)
822 {
823 if (!use_p2pdma)
824 return sprintf(page, "0\n");
825
826 if (!p2p_dev)
827 return sprintf(page, "1\n");
828
829 return sprintf(page, "%s\n", pci_name(p2p_dev));
830 }
831 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_show);