]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - fs/btrfs/disk-io.c
btrfs: fix pinned underflow after transaction aborted
[thirdparty/kernel/stable.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/scatterlist.h>
9 #include <linux/swap.h>
10 #include <linux/radix-tree.h>
11 #include <linux/writeback.h>
12 #include <linux/buffer_head.h>
13 #include <linux/workqueue.h>
14 #include <linux/kthread.h>
15 #include <linux/slab.h>
16 #include <linux/migrate.h>
17 #include <linux/ratelimit.h>
18 #include <linux/uuid.h>
19 #include <linux/semaphore.h>
20 #include <linux/error-injection.h>
21 #include <linux/crc32c.h>
22 #include <asm/unaligned.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "volumes.h"
28 #include "print-tree.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "free-space-cache.h"
32 #include "free-space-tree.h"
33 #include "inode-map.h"
34 #include "check-integrity.h"
35 #include "rcu-string.h"
36 #include "dev-replace.h"
37 #include "raid56.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40 #include "compression.h"
41 #include "tree-checker.h"
42 #include "ref-verify.h"
43
44 #ifdef CONFIG_X86
45 #include <asm/cpufeature.h>
46 #endif
47
48 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
49 BTRFS_HEADER_FLAG_RELOC |\
50 BTRFS_SUPER_FLAG_ERROR |\
51 BTRFS_SUPER_FLAG_SEEDING |\
52 BTRFS_SUPER_FLAG_METADUMP |\
53 BTRFS_SUPER_FLAG_METADUMP_V2)
54
55 static const struct extent_io_ops btree_extent_io_ops;
56 static void end_workqueue_fn(struct btrfs_work *work);
57 static void free_fs_root(struct btrfs_root *root);
58 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
59 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
60 struct btrfs_fs_info *fs_info);
61 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
62 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
63 struct extent_io_tree *dirty_pages,
64 int mark);
65 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
66 struct extent_io_tree *pinned_extents);
67 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
68 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
69
70 /*
71 * btrfs_end_io_wq structs are used to do processing in task context when an IO
72 * is complete. This is used during reads to verify checksums, and it is used
73 * by writes to insert metadata for new file extents after IO is complete.
74 */
75 struct btrfs_end_io_wq {
76 struct bio *bio;
77 bio_end_io_t *end_io;
78 void *private;
79 struct btrfs_fs_info *info;
80 blk_status_t status;
81 enum btrfs_wq_endio_type metadata;
82 struct btrfs_work work;
83 };
84
85 static struct kmem_cache *btrfs_end_io_wq_cache;
86
87 int __init btrfs_end_io_wq_init(void)
88 {
89 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
90 sizeof(struct btrfs_end_io_wq),
91 0,
92 SLAB_MEM_SPREAD,
93 NULL);
94 if (!btrfs_end_io_wq_cache)
95 return -ENOMEM;
96 return 0;
97 }
98
99 void __cold btrfs_end_io_wq_exit(void)
100 {
101 kmem_cache_destroy(btrfs_end_io_wq_cache);
102 }
103
104 /*
105 * async submit bios are used to offload expensive checksumming
106 * onto the worker threads. They checksum file and metadata bios
107 * just before they are sent down the IO stack.
108 */
109 struct async_submit_bio {
110 void *private_data;
111 struct btrfs_fs_info *fs_info;
112 struct bio *bio;
113 extent_submit_bio_start_t *submit_bio_start;
114 extent_submit_bio_done_t *submit_bio_done;
115 int mirror_num;
116 unsigned long bio_flags;
117 /*
118 * bio_offset is optional, can be used if the pages in the bio
119 * can't tell us where in the file the bio should go
120 */
121 u64 bio_offset;
122 struct btrfs_work work;
123 blk_status_t status;
124 };
125
126 /*
127 * Lockdep class keys for extent_buffer->lock's in this root. For a given
128 * eb, the lockdep key is determined by the btrfs_root it belongs to and
129 * the level the eb occupies in the tree.
130 *
131 * Different roots are used for different purposes and may nest inside each
132 * other and they require separate keysets. As lockdep keys should be
133 * static, assign keysets according to the purpose of the root as indicated
134 * by btrfs_root->objectid. This ensures that all special purpose roots
135 * have separate keysets.
136 *
137 * Lock-nesting across peer nodes is always done with the immediate parent
138 * node locked thus preventing deadlock. As lockdep doesn't know this, use
139 * subclass to avoid triggering lockdep warning in such cases.
140 *
141 * The key is set by the readpage_end_io_hook after the buffer has passed
142 * csum validation but before the pages are unlocked. It is also set by
143 * btrfs_init_new_buffer on freshly allocated blocks.
144 *
145 * We also add a check to make sure the highest level of the tree is the
146 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
147 * needs update as well.
148 */
149 #ifdef CONFIG_DEBUG_LOCK_ALLOC
150 # if BTRFS_MAX_LEVEL != 8
151 # error
152 # endif
153
154 static struct btrfs_lockdep_keyset {
155 u64 id; /* root objectid */
156 const char *name_stem; /* lock name stem */
157 char names[BTRFS_MAX_LEVEL + 1][20];
158 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
159 } btrfs_lockdep_keysets[] = {
160 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
161 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
162 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
163 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
164 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
165 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
166 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
167 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
168 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
169 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
170 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
171 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
172 { .id = 0, .name_stem = "tree" },
173 };
174
175 void __init btrfs_init_lockdep(void)
176 {
177 int i, j;
178
179 /* initialize lockdep class names */
180 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
181 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
182
183 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
184 snprintf(ks->names[j], sizeof(ks->names[j]),
185 "btrfs-%s-%02d", ks->name_stem, j);
186 }
187 }
188
189 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190 int level)
191 {
192 struct btrfs_lockdep_keyset *ks;
193
194 BUG_ON(level >= ARRAY_SIZE(ks->keys));
195
196 /* find the matching keyset, id 0 is the default entry */
197 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
198 if (ks->id == objectid)
199 break;
200
201 lockdep_set_class_and_name(&eb->lock,
202 &ks->keys[level], ks->names[level]);
203 }
204
205 #endif
206
207 /*
208 * extents on the btree inode are pretty simple, there's one extent
209 * that covers the entire device
210 */
211 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
212 struct page *page, size_t pg_offset, u64 start, u64 len,
213 int create)
214 {
215 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
216 struct extent_map_tree *em_tree = &inode->extent_tree;
217 struct extent_map *em;
218 int ret;
219
220 read_lock(&em_tree->lock);
221 em = lookup_extent_mapping(em_tree, start, len);
222 if (em) {
223 em->bdev = fs_info->fs_devices->latest_bdev;
224 read_unlock(&em_tree->lock);
225 goto out;
226 }
227 read_unlock(&em_tree->lock);
228
229 em = alloc_extent_map();
230 if (!em) {
231 em = ERR_PTR(-ENOMEM);
232 goto out;
233 }
234 em->start = 0;
235 em->len = (u64)-1;
236 em->block_len = (u64)-1;
237 em->block_start = 0;
238 em->bdev = fs_info->fs_devices->latest_bdev;
239
240 write_lock(&em_tree->lock);
241 ret = add_extent_mapping(em_tree, em, 0);
242 if (ret == -EEXIST) {
243 free_extent_map(em);
244 em = lookup_extent_mapping(em_tree, start, len);
245 if (!em)
246 em = ERR_PTR(-EIO);
247 } else if (ret) {
248 free_extent_map(em);
249 em = ERR_PTR(ret);
250 }
251 write_unlock(&em_tree->lock);
252
253 out:
254 return em;
255 }
256
257 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
258 {
259 return crc32c(seed, data, len);
260 }
261
262 void btrfs_csum_final(u32 crc, u8 *result)
263 {
264 put_unaligned_le32(~crc, result);
265 }
266
267 /*
268 * compute the csum for a btree block, and either verify it or write it
269 * into the csum field of the block.
270 */
271 static int csum_tree_block(struct btrfs_fs_info *fs_info,
272 struct extent_buffer *buf,
273 int verify)
274 {
275 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
276 char result[BTRFS_CSUM_SIZE];
277 unsigned long len;
278 unsigned long cur_len;
279 unsigned long offset = BTRFS_CSUM_SIZE;
280 char *kaddr;
281 unsigned long map_start;
282 unsigned long map_len;
283 int err;
284 u32 crc = ~(u32)0;
285
286 len = buf->len - offset;
287 while (len > 0) {
288 err = map_private_extent_buffer(buf, offset, 32,
289 &kaddr, &map_start, &map_len);
290 if (err)
291 return err;
292 cur_len = min(len, map_len - (offset - map_start));
293 crc = btrfs_csum_data(kaddr + offset - map_start,
294 crc, cur_len);
295 len -= cur_len;
296 offset += cur_len;
297 }
298 memset(result, 0, BTRFS_CSUM_SIZE);
299
300 btrfs_csum_final(crc, result);
301
302 if (verify) {
303 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
304 u32 val;
305 u32 found = 0;
306 memcpy(&found, result, csum_size);
307
308 read_extent_buffer(buf, &val, 0, csum_size);
309 btrfs_warn_rl(fs_info,
310 "%s checksum verify failed on %llu wanted %X found %X level %d",
311 fs_info->sb->s_id, buf->start,
312 val, found, btrfs_header_level(buf));
313 return -EUCLEAN;
314 }
315 } else {
316 write_extent_buffer(buf, result, 0, csum_size);
317 }
318
319 return 0;
320 }
321
322 /*
323 * we can't consider a given block up to date unless the transid of the
324 * block matches the transid in the parent node's pointer. This is how we
325 * detect blocks that either didn't get written at all or got written
326 * in the wrong place.
327 */
328 static int verify_parent_transid(struct extent_io_tree *io_tree,
329 struct extent_buffer *eb, u64 parent_transid,
330 int atomic)
331 {
332 struct extent_state *cached_state = NULL;
333 int ret;
334 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
335
336 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
337 return 0;
338
339 if (atomic)
340 return -EAGAIN;
341
342 if (need_lock) {
343 btrfs_tree_read_lock(eb);
344 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
345 }
346
347 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
348 &cached_state);
349 if (extent_buffer_uptodate(eb) &&
350 btrfs_header_generation(eb) == parent_transid) {
351 ret = 0;
352 goto out;
353 }
354 btrfs_err_rl(eb->fs_info,
355 "parent transid verify failed on %llu wanted %llu found %llu",
356 eb->start,
357 parent_transid, btrfs_header_generation(eb));
358 ret = 1;
359
360 /*
361 * Things reading via commit roots that don't have normal protection,
362 * like send, can have a really old block in cache that may point at a
363 * block that has been freed and re-allocated. So don't clear uptodate
364 * if we find an eb that is under IO (dirty/writeback) because we could
365 * end up reading in the stale data and then writing it back out and
366 * making everybody very sad.
367 */
368 if (!extent_buffer_under_io(eb))
369 clear_extent_buffer_uptodate(eb);
370 out:
371 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
372 &cached_state);
373 if (need_lock)
374 btrfs_tree_read_unlock_blocking(eb);
375 return ret;
376 }
377
378 /*
379 * Return 0 if the superblock checksum type matches the checksum value of that
380 * algorithm. Pass the raw disk superblock data.
381 */
382 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
383 char *raw_disk_sb)
384 {
385 struct btrfs_super_block *disk_sb =
386 (struct btrfs_super_block *)raw_disk_sb;
387 u16 csum_type = btrfs_super_csum_type(disk_sb);
388 int ret = 0;
389
390 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
391 u32 crc = ~(u32)0;
392 char result[sizeof(crc)];
393
394 /*
395 * The super_block structure does not span the whole
396 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
397 * is filled with zeros and is included in the checksum.
398 */
399 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
400 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
401 btrfs_csum_final(crc, result);
402
403 if (memcmp(raw_disk_sb, result, sizeof(result)))
404 ret = 1;
405 }
406
407 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
408 btrfs_err(fs_info, "unsupported checksum algorithm %u",
409 csum_type);
410 ret = 1;
411 }
412
413 return ret;
414 }
415
416 static int verify_level_key(struct btrfs_fs_info *fs_info,
417 struct extent_buffer *eb, int level,
418 struct btrfs_key *first_key, u64 parent_transid)
419 {
420 int found_level;
421 struct btrfs_key found_key;
422 int ret;
423
424 found_level = btrfs_header_level(eb);
425 if (found_level != level) {
426 #ifdef CONFIG_BTRFS_DEBUG
427 WARN_ON(1);
428 btrfs_err(fs_info,
429 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
430 eb->start, level, found_level);
431 #endif
432 return -EIO;
433 }
434
435 if (!first_key)
436 return 0;
437
438 /*
439 * For live tree block (new tree blocks in current transaction),
440 * we need proper lock context to avoid race, which is impossible here.
441 * So we only checks tree blocks which is read from disk, whose
442 * generation <= fs_info->last_trans_committed.
443 */
444 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
445 return 0;
446 if (found_level)
447 btrfs_node_key_to_cpu(eb, &found_key, 0);
448 else
449 btrfs_item_key_to_cpu(eb, &found_key, 0);
450 ret = btrfs_comp_cpu_keys(first_key, &found_key);
451
452 #ifdef CONFIG_BTRFS_DEBUG
453 if (ret) {
454 WARN_ON(1);
455 btrfs_err(fs_info,
456 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
457 eb->start, parent_transid, first_key->objectid,
458 first_key->type, first_key->offset,
459 found_key.objectid, found_key.type,
460 found_key.offset);
461 }
462 #endif
463 return ret;
464 }
465
466 /*
467 * helper to read a given tree block, doing retries as required when
468 * the checksums don't match and we have alternate mirrors to try.
469 *
470 * @parent_transid: expected transid, skip check if 0
471 * @level: expected level, mandatory check
472 * @first_key: expected key of first slot, skip check if NULL
473 */
474 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
475 struct extent_buffer *eb,
476 u64 parent_transid, int level,
477 struct btrfs_key *first_key)
478 {
479 struct extent_io_tree *io_tree;
480 int failed = 0;
481 int ret;
482 int num_copies = 0;
483 int mirror_num = 0;
484 int failed_mirror = 0;
485
486 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
487 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
488 while (1) {
489 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
490 mirror_num);
491 if (!ret) {
492 if (verify_parent_transid(io_tree, eb,
493 parent_transid, 0))
494 ret = -EIO;
495 else if (verify_level_key(fs_info, eb, level,
496 first_key, parent_transid))
497 ret = -EUCLEAN;
498 else
499 break;
500 }
501
502 /*
503 * This buffer's crc is fine, but its contents are corrupted, so
504 * there is no reason to read the other copies, they won't be
505 * any less wrong.
506 */
507 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags) ||
508 ret == -EUCLEAN)
509 break;
510
511 num_copies = btrfs_num_copies(fs_info,
512 eb->start, eb->len);
513 if (num_copies == 1)
514 break;
515
516 if (!failed_mirror) {
517 failed = 1;
518 failed_mirror = eb->read_mirror;
519 }
520
521 mirror_num++;
522 if (mirror_num == failed_mirror)
523 mirror_num++;
524
525 if (mirror_num > num_copies)
526 break;
527 }
528
529 if (failed && !ret && failed_mirror)
530 repair_eb_io_failure(fs_info, eb, failed_mirror);
531
532 return ret;
533 }
534
535 /*
536 * checksum a dirty tree block before IO. This has extra checks to make sure
537 * we only fill in the checksum field in the first page of a multi-page block
538 */
539
540 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
541 {
542 u64 start = page_offset(page);
543 u64 found_start;
544 struct extent_buffer *eb;
545
546 eb = (struct extent_buffer *)page->private;
547 if (page != eb->pages[0])
548 return 0;
549
550 found_start = btrfs_header_bytenr(eb);
551 /*
552 * Please do not consolidate these warnings into a single if.
553 * It is useful to know what went wrong.
554 */
555 if (WARN_ON(found_start != start))
556 return -EUCLEAN;
557 if (WARN_ON(!PageUptodate(page)))
558 return -EUCLEAN;
559
560 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
561 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
562
563 return csum_tree_block(fs_info, eb, 0);
564 }
565
566 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
567 struct extent_buffer *eb)
568 {
569 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
570 u8 fsid[BTRFS_FSID_SIZE];
571 int ret = 1;
572
573 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
574 while (fs_devices) {
575 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
576 ret = 0;
577 break;
578 }
579 fs_devices = fs_devices->seed;
580 }
581 return ret;
582 }
583
584 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
585 u64 phy_offset, struct page *page,
586 u64 start, u64 end, int mirror)
587 {
588 u64 found_start;
589 int found_level;
590 struct extent_buffer *eb;
591 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
592 struct btrfs_fs_info *fs_info = root->fs_info;
593 int ret = 0;
594 int reads_done;
595
596 if (!page->private)
597 goto out;
598
599 eb = (struct extent_buffer *)page->private;
600
601 /* the pending IO might have been the only thing that kept this buffer
602 * in memory. Make sure we have a ref for all this other checks
603 */
604 extent_buffer_get(eb);
605
606 reads_done = atomic_dec_and_test(&eb->io_pages);
607 if (!reads_done)
608 goto err;
609
610 eb->read_mirror = mirror;
611 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
612 ret = -EIO;
613 goto err;
614 }
615
616 found_start = btrfs_header_bytenr(eb);
617 if (found_start != eb->start) {
618 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
619 found_start, eb->start);
620 ret = -EIO;
621 goto err;
622 }
623 if (check_tree_block_fsid(fs_info, eb)) {
624 btrfs_err_rl(fs_info, "bad fsid on block %llu",
625 eb->start);
626 ret = -EIO;
627 goto err;
628 }
629 found_level = btrfs_header_level(eb);
630 if (found_level >= BTRFS_MAX_LEVEL) {
631 btrfs_err(fs_info, "bad tree block level %d",
632 (int)btrfs_header_level(eb));
633 ret = -EIO;
634 goto err;
635 }
636
637 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
638 eb, found_level);
639
640 ret = csum_tree_block(fs_info, eb, 1);
641 if (ret)
642 goto err;
643
644 /*
645 * If this is a leaf block and it is corrupt, set the corrupt bit so
646 * that we don't try and read the other copies of this block, just
647 * return -EIO.
648 */
649 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
650 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
651 ret = -EIO;
652 }
653
654 if (found_level > 0 && btrfs_check_node(fs_info, eb))
655 ret = -EIO;
656
657 if (!ret)
658 set_extent_buffer_uptodate(eb);
659 err:
660 if (reads_done &&
661 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
662 btree_readahead_hook(eb, ret);
663
664 if (ret) {
665 /*
666 * our io error hook is going to dec the io pages
667 * again, we have to make sure it has something
668 * to decrement
669 */
670 atomic_inc(&eb->io_pages);
671 clear_extent_buffer_uptodate(eb);
672 }
673 free_extent_buffer(eb);
674 out:
675 return ret;
676 }
677
678 static int btree_io_failed_hook(struct page *page, int failed_mirror)
679 {
680 struct extent_buffer *eb;
681
682 eb = (struct extent_buffer *)page->private;
683 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
684 eb->read_mirror = failed_mirror;
685 atomic_dec(&eb->io_pages);
686 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
687 btree_readahead_hook(eb, -EIO);
688 return -EIO; /* we fixed nothing */
689 }
690
691 static void end_workqueue_bio(struct bio *bio)
692 {
693 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
694 struct btrfs_fs_info *fs_info;
695 struct btrfs_workqueue *wq;
696 btrfs_work_func_t func;
697
698 fs_info = end_io_wq->info;
699 end_io_wq->status = bio->bi_status;
700
701 if (bio_op(bio) == REQ_OP_WRITE) {
702 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
703 wq = fs_info->endio_meta_write_workers;
704 func = btrfs_endio_meta_write_helper;
705 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
706 wq = fs_info->endio_freespace_worker;
707 func = btrfs_freespace_write_helper;
708 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
709 wq = fs_info->endio_raid56_workers;
710 func = btrfs_endio_raid56_helper;
711 } else {
712 wq = fs_info->endio_write_workers;
713 func = btrfs_endio_write_helper;
714 }
715 } else {
716 if (unlikely(end_io_wq->metadata ==
717 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
718 wq = fs_info->endio_repair_workers;
719 func = btrfs_endio_repair_helper;
720 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
721 wq = fs_info->endio_raid56_workers;
722 func = btrfs_endio_raid56_helper;
723 } else if (end_io_wq->metadata) {
724 wq = fs_info->endio_meta_workers;
725 func = btrfs_endio_meta_helper;
726 } else {
727 wq = fs_info->endio_workers;
728 func = btrfs_endio_helper;
729 }
730 }
731
732 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
733 btrfs_queue_work(wq, &end_io_wq->work);
734 }
735
736 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
737 enum btrfs_wq_endio_type metadata)
738 {
739 struct btrfs_end_io_wq *end_io_wq;
740
741 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
742 if (!end_io_wq)
743 return BLK_STS_RESOURCE;
744
745 end_io_wq->private = bio->bi_private;
746 end_io_wq->end_io = bio->bi_end_io;
747 end_io_wq->info = info;
748 end_io_wq->status = 0;
749 end_io_wq->bio = bio;
750 end_io_wq->metadata = metadata;
751
752 bio->bi_private = end_io_wq;
753 bio->bi_end_io = end_workqueue_bio;
754 return 0;
755 }
756
757 static void run_one_async_start(struct btrfs_work *work)
758 {
759 struct async_submit_bio *async;
760 blk_status_t ret;
761
762 async = container_of(work, struct async_submit_bio, work);
763 ret = async->submit_bio_start(async->private_data, async->bio,
764 async->bio_offset);
765 if (ret)
766 async->status = ret;
767 }
768
769 static void run_one_async_done(struct btrfs_work *work)
770 {
771 struct async_submit_bio *async;
772
773 async = container_of(work, struct async_submit_bio, work);
774
775 /* If an error occurred we just want to clean up the bio and move on */
776 if (async->status) {
777 async->bio->bi_status = async->status;
778 bio_endio(async->bio);
779 return;
780 }
781
782 async->submit_bio_done(async->private_data, async->bio, async->mirror_num);
783 }
784
785 static void run_one_async_free(struct btrfs_work *work)
786 {
787 struct async_submit_bio *async;
788
789 async = container_of(work, struct async_submit_bio, work);
790 kfree(async);
791 }
792
793 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
794 int mirror_num, unsigned long bio_flags,
795 u64 bio_offset, void *private_data,
796 extent_submit_bio_start_t *submit_bio_start,
797 extent_submit_bio_done_t *submit_bio_done)
798 {
799 struct async_submit_bio *async;
800
801 async = kmalloc(sizeof(*async), GFP_NOFS);
802 if (!async)
803 return BLK_STS_RESOURCE;
804
805 async->private_data = private_data;
806 async->fs_info = fs_info;
807 async->bio = bio;
808 async->mirror_num = mirror_num;
809 async->submit_bio_start = submit_bio_start;
810 async->submit_bio_done = submit_bio_done;
811
812 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
813 run_one_async_done, run_one_async_free);
814
815 async->bio_flags = bio_flags;
816 async->bio_offset = bio_offset;
817
818 async->status = 0;
819
820 if (op_is_sync(bio->bi_opf))
821 btrfs_set_work_high_priority(&async->work);
822
823 btrfs_queue_work(fs_info->workers, &async->work);
824 return 0;
825 }
826
827 static blk_status_t btree_csum_one_bio(struct bio *bio)
828 {
829 struct bio_vec *bvec;
830 struct btrfs_root *root;
831 int i, ret = 0;
832
833 ASSERT(!bio_flagged(bio, BIO_CLONED));
834 bio_for_each_segment_all(bvec, bio, i) {
835 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
836 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
837 if (ret)
838 break;
839 }
840
841 return errno_to_blk_status(ret);
842 }
843
844 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
845 u64 bio_offset)
846 {
847 /*
848 * when we're called for a write, we're already in the async
849 * submission context. Just jump into btrfs_map_bio
850 */
851 return btree_csum_one_bio(bio);
852 }
853
854 static blk_status_t btree_submit_bio_done(void *private_data, struct bio *bio,
855 int mirror_num)
856 {
857 struct inode *inode = private_data;
858 blk_status_t ret;
859
860 /*
861 * when we're called for a write, we're already in the async
862 * submission context. Just jump into btrfs_map_bio
863 */
864 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
865 if (ret) {
866 bio->bi_status = ret;
867 bio_endio(bio);
868 }
869 return ret;
870 }
871
872 static int check_async_write(struct btrfs_inode *bi)
873 {
874 if (atomic_read(&bi->sync_writers))
875 return 0;
876 #ifdef CONFIG_X86
877 if (static_cpu_has(X86_FEATURE_XMM4_2))
878 return 0;
879 #endif
880 return 1;
881 }
882
883 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
884 int mirror_num, unsigned long bio_flags,
885 u64 bio_offset)
886 {
887 struct inode *inode = private_data;
888 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
889 int async = check_async_write(BTRFS_I(inode));
890 blk_status_t ret;
891
892 if (bio_op(bio) != REQ_OP_WRITE) {
893 /*
894 * called for a read, do the setup so that checksum validation
895 * can happen in the async kernel threads
896 */
897 ret = btrfs_bio_wq_end_io(fs_info, bio,
898 BTRFS_WQ_ENDIO_METADATA);
899 if (ret)
900 goto out_w_error;
901 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
902 } else if (!async) {
903 ret = btree_csum_one_bio(bio);
904 if (ret)
905 goto out_w_error;
906 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
907 } else {
908 /*
909 * kthread helpers are used to submit writes so that
910 * checksumming can happen in parallel across all CPUs
911 */
912 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
913 bio_offset, private_data,
914 btree_submit_bio_start,
915 btree_submit_bio_done);
916 }
917
918 if (ret)
919 goto out_w_error;
920 return 0;
921
922 out_w_error:
923 bio->bi_status = ret;
924 bio_endio(bio);
925 return ret;
926 }
927
928 #ifdef CONFIG_MIGRATION
929 static int btree_migratepage(struct address_space *mapping,
930 struct page *newpage, struct page *page,
931 enum migrate_mode mode)
932 {
933 /*
934 * we can't safely write a btree page from here,
935 * we haven't done the locking hook
936 */
937 if (PageDirty(page))
938 return -EAGAIN;
939 /*
940 * Buffers may be managed in a filesystem specific way.
941 * We must have no buffers or drop them.
942 */
943 if (page_has_private(page) &&
944 !try_to_release_page(page, GFP_KERNEL))
945 return -EAGAIN;
946 return migrate_page(mapping, newpage, page, mode);
947 }
948 #endif
949
950
951 static int btree_writepages(struct address_space *mapping,
952 struct writeback_control *wbc)
953 {
954 struct btrfs_fs_info *fs_info;
955 int ret;
956
957 if (wbc->sync_mode == WB_SYNC_NONE) {
958
959 if (wbc->for_kupdate)
960 return 0;
961
962 fs_info = BTRFS_I(mapping->host)->root->fs_info;
963 /* this is a bit racy, but that's ok */
964 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
965 BTRFS_DIRTY_METADATA_THRESH,
966 fs_info->dirty_metadata_batch);
967 if (ret < 0)
968 return 0;
969 }
970 return btree_write_cache_pages(mapping, wbc);
971 }
972
973 static int btree_readpage(struct file *file, struct page *page)
974 {
975 struct extent_io_tree *tree;
976 tree = &BTRFS_I(page->mapping->host)->io_tree;
977 return extent_read_full_page(tree, page, btree_get_extent, 0);
978 }
979
980 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
981 {
982 if (PageWriteback(page) || PageDirty(page))
983 return 0;
984
985 return try_release_extent_buffer(page);
986 }
987
988 static void btree_invalidatepage(struct page *page, unsigned int offset,
989 unsigned int length)
990 {
991 struct extent_io_tree *tree;
992 tree = &BTRFS_I(page->mapping->host)->io_tree;
993 extent_invalidatepage(tree, page, offset);
994 btree_releasepage(page, GFP_NOFS);
995 if (PagePrivate(page)) {
996 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
997 "page private not zero on page %llu",
998 (unsigned long long)page_offset(page));
999 ClearPagePrivate(page);
1000 set_page_private(page, 0);
1001 put_page(page);
1002 }
1003 }
1004
1005 static int btree_set_page_dirty(struct page *page)
1006 {
1007 #ifdef DEBUG
1008 struct extent_buffer *eb;
1009
1010 BUG_ON(!PagePrivate(page));
1011 eb = (struct extent_buffer *)page->private;
1012 BUG_ON(!eb);
1013 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1014 BUG_ON(!atomic_read(&eb->refs));
1015 btrfs_assert_tree_locked(eb);
1016 #endif
1017 return __set_page_dirty_nobuffers(page);
1018 }
1019
1020 static const struct address_space_operations btree_aops = {
1021 .readpage = btree_readpage,
1022 .writepages = btree_writepages,
1023 .releasepage = btree_releasepage,
1024 .invalidatepage = btree_invalidatepage,
1025 #ifdef CONFIG_MIGRATION
1026 .migratepage = btree_migratepage,
1027 #endif
1028 .set_page_dirty = btree_set_page_dirty,
1029 };
1030
1031 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1032 {
1033 struct extent_buffer *buf = NULL;
1034 struct inode *btree_inode = fs_info->btree_inode;
1035
1036 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1037 if (IS_ERR(buf))
1038 return;
1039 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1040 buf, WAIT_NONE, 0);
1041 free_extent_buffer(buf);
1042 }
1043
1044 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1045 int mirror_num, struct extent_buffer **eb)
1046 {
1047 struct extent_buffer *buf = NULL;
1048 struct inode *btree_inode = fs_info->btree_inode;
1049 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1050 int ret;
1051
1052 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1053 if (IS_ERR(buf))
1054 return 0;
1055
1056 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1057
1058 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1059 mirror_num);
1060 if (ret) {
1061 free_extent_buffer(buf);
1062 return ret;
1063 }
1064
1065 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1066 free_extent_buffer(buf);
1067 return -EIO;
1068 } else if (extent_buffer_uptodate(buf)) {
1069 *eb = buf;
1070 } else {
1071 free_extent_buffer(buf);
1072 }
1073 return 0;
1074 }
1075
1076 struct extent_buffer *btrfs_find_create_tree_block(
1077 struct btrfs_fs_info *fs_info,
1078 u64 bytenr)
1079 {
1080 if (btrfs_is_testing(fs_info))
1081 return alloc_test_extent_buffer(fs_info, bytenr);
1082 return alloc_extent_buffer(fs_info, bytenr);
1083 }
1084
1085
1086 int btrfs_write_tree_block(struct extent_buffer *buf)
1087 {
1088 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1089 buf->start + buf->len - 1);
1090 }
1091
1092 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1093 {
1094 filemap_fdatawait_range(buf->pages[0]->mapping,
1095 buf->start, buf->start + buf->len - 1);
1096 }
1097
1098 /*
1099 * Read tree block at logical address @bytenr and do variant basic but critical
1100 * verification.
1101 *
1102 * @parent_transid: expected transid of this tree block, skip check if 0
1103 * @level: expected level, mandatory check
1104 * @first_key: expected key in slot 0, skip check if NULL
1105 */
1106 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1107 u64 parent_transid, int level,
1108 struct btrfs_key *first_key)
1109 {
1110 struct extent_buffer *buf = NULL;
1111 int ret;
1112
1113 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1114 if (IS_ERR(buf))
1115 return buf;
1116
1117 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1118 level, first_key);
1119 if (ret) {
1120 free_extent_buffer(buf);
1121 return ERR_PTR(ret);
1122 }
1123 return buf;
1124
1125 }
1126
1127 void clean_tree_block(struct btrfs_fs_info *fs_info,
1128 struct extent_buffer *buf)
1129 {
1130 if (btrfs_header_generation(buf) ==
1131 fs_info->running_transaction->transid) {
1132 btrfs_assert_tree_locked(buf);
1133
1134 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1135 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1136 -buf->len,
1137 fs_info->dirty_metadata_batch);
1138 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1139 btrfs_set_lock_blocking(buf);
1140 clear_extent_buffer_dirty(buf);
1141 }
1142 }
1143 }
1144
1145 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1146 {
1147 struct btrfs_subvolume_writers *writers;
1148 int ret;
1149
1150 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1151 if (!writers)
1152 return ERR_PTR(-ENOMEM);
1153
1154 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1155 if (ret < 0) {
1156 kfree(writers);
1157 return ERR_PTR(ret);
1158 }
1159
1160 init_waitqueue_head(&writers->wait);
1161 return writers;
1162 }
1163
1164 static void
1165 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1166 {
1167 percpu_counter_destroy(&writers->counter);
1168 kfree(writers);
1169 }
1170
1171 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1172 u64 objectid)
1173 {
1174 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1175 root->node = NULL;
1176 root->commit_root = NULL;
1177 root->state = 0;
1178 root->orphan_cleanup_state = 0;
1179
1180 root->objectid = objectid;
1181 root->last_trans = 0;
1182 root->highest_objectid = 0;
1183 root->nr_delalloc_inodes = 0;
1184 root->nr_ordered_extents = 0;
1185 root->name = NULL;
1186 root->inode_tree = RB_ROOT;
1187 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1188 root->block_rsv = NULL;
1189
1190 INIT_LIST_HEAD(&root->dirty_list);
1191 INIT_LIST_HEAD(&root->root_list);
1192 INIT_LIST_HEAD(&root->delalloc_inodes);
1193 INIT_LIST_HEAD(&root->delalloc_root);
1194 INIT_LIST_HEAD(&root->ordered_extents);
1195 INIT_LIST_HEAD(&root->ordered_root);
1196 INIT_LIST_HEAD(&root->logged_list[0]);
1197 INIT_LIST_HEAD(&root->logged_list[1]);
1198 spin_lock_init(&root->inode_lock);
1199 spin_lock_init(&root->delalloc_lock);
1200 spin_lock_init(&root->ordered_extent_lock);
1201 spin_lock_init(&root->accounting_lock);
1202 spin_lock_init(&root->log_extents_lock[0]);
1203 spin_lock_init(&root->log_extents_lock[1]);
1204 spin_lock_init(&root->qgroup_meta_rsv_lock);
1205 mutex_init(&root->objectid_mutex);
1206 mutex_init(&root->log_mutex);
1207 mutex_init(&root->ordered_extent_mutex);
1208 mutex_init(&root->delalloc_mutex);
1209 init_waitqueue_head(&root->log_writer_wait);
1210 init_waitqueue_head(&root->log_commit_wait[0]);
1211 init_waitqueue_head(&root->log_commit_wait[1]);
1212 INIT_LIST_HEAD(&root->log_ctxs[0]);
1213 INIT_LIST_HEAD(&root->log_ctxs[1]);
1214 atomic_set(&root->log_commit[0], 0);
1215 atomic_set(&root->log_commit[1], 0);
1216 atomic_set(&root->log_writers, 0);
1217 atomic_set(&root->log_batch, 0);
1218 refcount_set(&root->refs, 1);
1219 atomic_set(&root->will_be_snapshotted, 0);
1220 atomic_set(&root->snapshot_force_cow, 0);
1221 root->log_transid = 0;
1222 root->log_transid_committed = -1;
1223 root->last_log_commit = 0;
1224 if (!dummy)
1225 extent_io_tree_init(&root->dirty_log_pages, NULL);
1226
1227 memset(&root->root_key, 0, sizeof(root->root_key));
1228 memset(&root->root_item, 0, sizeof(root->root_item));
1229 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1230 if (!dummy)
1231 root->defrag_trans_start = fs_info->generation;
1232 else
1233 root->defrag_trans_start = 0;
1234 root->root_key.objectid = objectid;
1235 root->anon_dev = 0;
1236
1237 spin_lock_init(&root->root_item_lock);
1238 }
1239
1240 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1241 gfp_t flags)
1242 {
1243 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1244 if (root)
1245 root->fs_info = fs_info;
1246 return root;
1247 }
1248
1249 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1250 /* Should only be used by the testing infrastructure */
1251 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1252 {
1253 struct btrfs_root *root;
1254
1255 if (!fs_info)
1256 return ERR_PTR(-EINVAL);
1257
1258 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1259 if (!root)
1260 return ERR_PTR(-ENOMEM);
1261
1262 /* We don't use the stripesize in selftest, set it as sectorsize */
1263 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1264 root->alloc_bytenr = 0;
1265
1266 return root;
1267 }
1268 #endif
1269
1270 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1271 struct btrfs_fs_info *fs_info,
1272 u64 objectid)
1273 {
1274 struct extent_buffer *leaf;
1275 struct btrfs_root *tree_root = fs_info->tree_root;
1276 struct btrfs_root *root;
1277 struct btrfs_key key;
1278 int ret = 0;
1279 uuid_le uuid = NULL_UUID_LE;
1280
1281 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1282 if (!root)
1283 return ERR_PTR(-ENOMEM);
1284
1285 __setup_root(root, fs_info, objectid);
1286 root->root_key.objectid = objectid;
1287 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1288 root->root_key.offset = 0;
1289
1290 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1291 if (IS_ERR(leaf)) {
1292 ret = PTR_ERR(leaf);
1293 leaf = NULL;
1294 goto fail;
1295 }
1296
1297 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1298 btrfs_set_header_bytenr(leaf, leaf->start);
1299 btrfs_set_header_generation(leaf, trans->transid);
1300 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1301 btrfs_set_header_owner(leaf, objectid);
1302 root->node = leaf;
1303
1304 write_extent_buffer_fsid(leaf, fs_info->fsid);
1305 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1306 btrfs_mark_buffer_dirty(leaf);
1307
1308 root->commit_root = btrfs_root_node(root);
1309 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1310
1311 root->root_item.flags = 0;
1312 root->root_item.byte_limit = 0;
1313 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1314 btrfs_set_root_generation(&root->root_item, trans->transid);
1315 btrfs_set_root_level(&root->root_item, 0);
1316 btrfs_set_root_refs(&root->root_item, 1);
1317 btrfs_set_root_used(&root->root_item, leaf->len);
1318 btrfs_set_root_last_snapshot(&root->root_item, 0);
1319 btrfs_set_root_dirid(&root->root_item, 0);
1320 if (is_fstree(objectid))
1321 uuid_le_gen(&uuid);
1322 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1323 root->root_item.drop_level = 0;
1324
1325 key.objectid = objectid;
1326 key.type = BTRFS_ROOT_ITEM_KEY;
1327 key.offset = 0;
1328 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1329 if (ret)
1330 goto fail;
1331
1332 btrfs_tree_unlock(leaf);
1333
1334 return root;
1335
1336 fail:
1337 if (leaf) {
1338 btrfs_tree_unlock(leaf);
1339 free_extent_buffer(root->commit_root);
1340 free_extent_buffer(leaf);
1341 }
1342 kfree(root);
1343
1344 return ERR_PTR(ret);
1345 }
1346
1347 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1348 struct btrfs_fs_info *fs_info)
1349 {
1350 struct btrfs_root *root;
1351 struct extent_buffer *leaf;
1352
1353 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1354 if (!root)
1355 return ERR_PTR(-ENOMEM);
1356
1357 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1358
1359 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1360 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1361 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1362
1363 /*
1364 * DON'T set REF_COWS for log trees
1365 *
1366 * log trees do not get reference counted because they go away
1367 * before a real commit is actually done. They do store pointers
1368 * to file data extents, and those reference counts still get
1369 * updated (along with back refs to the log tree).
1370 */
1371
1372 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1373 NULL, 0, 0, 0);
1374 if (IS_ERR(leaf)) {
1375 kfree(root);
1376 return ERR_CAST(leaf);
1377 }
1378
1379 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1380 btrfs_set_header_bytenr(leaf, leaf->start);
1381 btrfs_set_header_generation(leaf, trans->transid);
1382 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1383 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1384 root->node = leaf;
1385
1386 write_extent_buffer_fsid(root->node, fs_info->fsid);
1387 btrfs_mark_buffer_dirty(root->node);
1388 btrfs_tree_unlock(root->node);
1389 return root;
1390 }
1391
1392 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1393 struct btrfs_fs_info *fs_info)
1394 {
1395 struct btrfs_root *log_root;
1396
1397 log_root = alloc_log_tree(trans, fs_info);
1398 if (IS_ERR(log_root))
1399 return PTR_ERR(log_root);
1400 WARN_ON(fs_info->log_root_tree);
1401 fs_info->log_root_tree = log_root;
1402 return 0;
1403 }
1404
1405 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1406 struct btrfs_root *root)
1407 {
1408 struct btrfs_fs_info *fs_info = root->fs_info;
1409 struct btrfs_root *log_root;
1410 struct btrfs_inode_item *inode_item;
1411
1412 log_root = alloc_log_tree(trans, fs_info);
1413 if (IS_ERR(log_root))
1414 return PTR_ERR(log_root);
1415
1416 log_root->last_trans = trans->transid;
1417 log_root->root_key.offset = root->root_key.objectid;
1418
1419 inode_item = &log_root->root_item.inode;
1420 btrfs_set_stack_inode_generation(inode_item, 1);
1421 btrfs_set_stack_inode_size(inode_item, 3);
1422 btrfs_set_stack_inode_nlink(inode_item, 1);
1423 btrfs_set_stack_inode_nbytes(inode_item,
1424 fs_info->nodesize);
1425 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1426
1427 btrfs_set_root_node(&log_root->root_item, log_root->node);
1428
1429 WARN_ON(root->log_root);
1430 root->log_root = log_root;
1431 root->log_transid = 0;
1432 root->log_transid_committed = -1;
1433 root->last_log_commit = 0;
1434 return 0;
1435 }
1436
1437 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1438 struct btrfs_key *key)
1439 {
1440 struct btrfs_root *root;
1441 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1442 struct btrfs_path *path;
1443 u64 generation;
1444 int ret;
1445 int level;
1446
1447 path = btrfs_alloc_path();
1448 if (!path)
1449 return ERR_PTR(-ENOMEM);
1450
1451 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1452 if (!root) {
1453 ret = -ENOMEM;
1454 goto alloc_fail;
1455 }
1456
1457 __setup_root(root, fs_info, key->objectid);
1458
1459 ret = btrfs_find_root(tree_root, key, path,
1460 &root->root_item, &root->root_key);
1461 if (ret) {
1462 if (ret > 0)
1463 ret = -ENOENT;
1464 goto find_fail;
1465 }
1466
1467 generation = btrfs_root_generation(&root->root_item);
1468 level = btrfs_root_level(&root->root_item);
1469 root->node = read_tree_block(fs_info,
1470 btrfs_root_bytenr(&root->root_item),
1471 generation, level, NULL);
1472 if (IS_ERR(root->node)) {
1473 ret = PTR_ERR(root->node);
1474 goto find_fail;
1475 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1476 ret = -EIO;
1477 free_extent_buffer(root->node);
1478 goto find_fail;
1479 }
1480 root->commit_root = btrfs_root_node(root);
1481 out:
1482 btrfs_free_path(path);
1483 return root;
1484
1485 find_fail:
1486 kfree(root);
1487 alloc_fail:
1488 root = ERR_PTR(ret);
1489 goto out;
1490 }
1491
1492 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1493 struct btrfs_key *location)
1494 {
1495 struct btrfs_root *root;
1496
1497 root = btrfs_read_tree_root(tree_root, location);
1498 if (IS_ERR(root))
1499 return root;
1500
1501 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1502 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1503 btrfs_check_and_init_root_item(&root->root_item);
1504 }
1505
1506 return root;
1507 }
1508
1509 int btrfs_init_fs_root(struct btrfs_root *root)
1510 {
1511 int ret;
1512 struct btrfs_subvolume_writers *writers;
1513
1514 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1515 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1516 GFP_NOFS);
1517 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1518 ret = -ENOMEM;
1519 goto fail;
1520 }
1521
1522 writers = btrfs_alloc_subvolume_writers();
1523 if (IS_ERR(writers)) {
1524 ret = PTR_ERR(writers);
1525 goto fail;
1526 }
1527 root->subv_writers = writers;
1528
1529 btrfs_init_free_ino_ctl(root);
1530 spin_lock_init(&root->ino_cache_lock);
1531 init_waitqueue_head(&root->ino_cache_wait);
1532
1533 ret = get_anon_bdev(&root->anon_dev);
1534 if (ret)
1535 goto fail;
1536
1537 mutex_lock(&root->objectid_mutex);
1538 ret = btrfs_find_highest_objectid(root,
1539 &root->highest_objectid);
1540 if (ret) {
1541 mutex_unlock(&root->objectid_mutex);
1542 goto fail;
1543 }
1544
1545 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1546
1547 mutex_unlock(&root->objectid_mutex);
1548
1549 return 0;
1550 fail:
1551 /* the caller is responsible to call free_fs_root */
1552 return ret;
1553 }
1554
1555 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1556 u64 root_id)
1557 {
1558 struct btrfs_root *root;
1559
1560 spin_lock(&fs_info->fs_roots_radix_lock);
1561 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1562 (unsigned long)root_id);
1563 spin_unlock(&fs_info->fs_roots_radix_lock);
1564 return root;
1565 }
1566
1567 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1568 struct btrfs_root *root)
1569 {
1570 int ret;
1571
1572 ret = radix_tree_preload(GFP_NOFS);
1573 if (ret)
1574 return ret;
1575
1576 spin_lock(&fs_info->fs_roots_radix_lock);
1577 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1578 (unsigned long)root->root_key.objectid,
1579 root);
1580 if (ret == 0)
1581 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1582 spin_unlock(&fs_info->fs_roots_radix_lock);
1583 radix_tree_preload_end();
1584
1585 return ret;
1586 }
1587
1588 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1589 struct btrfs_key *location,
1590 bool check_ref)
1591 {
1592 struct btrfs_root *root;
1593 struct btrfs_path *path;
1594 struct btrfs_key key;
1595 int ret;
1596
1597 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1598 return fs_info->tree_root;
1599 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1600 return fs_info->extent_root;
1601 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1602 return fs_info->chunk_root;
1603 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1604 return fs_info->dev_root;
1605 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1606 return fs_info->csum_root;
1607 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1608 return fs_info->quota_root ? fs_info->quota_root :
1609 ERR_PTR(-ENOENT);
1610 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1611 return fs_info->uuid_root ? fs_info->uuid_root :
1612 ERR_PTR(-ENOENT);
1613 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1614 return fs_info->free_space_root ? fs_info->free_space_root :
1615 ERR_PTR(-ENOENT);
1616 again:
1617 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1618 if (root) {
1619 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1620 return ERR_PTR(-ENOENT);
1621 return root;
1622 }
1623
1624 root = btrfs_read_fs_root(fs_info->tree_root, location);
1625 if (IS_ERR(root))
1626 return root;
1627
1628 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1629 ret = -ENOENT;
1630 goto fail;
1631 }
1632
1633 ret = btrfs_init_fs_root(root);
1634 if (ret)
1635 goto fail;
1636
1637 path = btrfs_alloc_path();
1638 if (!path) {
1639 ret = -ENOMEM;
1640 goto fail;
1641 }
1642 key.objectid = BTRFS_ORPHAN_OBJECTID;
1643 key.type = BTRFS_ORPHAN_ITEM_KEY;
1644 key.offset = location->objectid;
1645
1646 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1647 btrfs_free_path(path);
1648 if (ret < 0)
1649 goto fail;
1650 if (ret == 0)
1651 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1652
1653 ret = btrfs_insert_fs_root(fs_info, root);
1654 if (ret) {
1655 if (ret == -EEXIST) {
1656 free_fs_root(root);
1657 goto again;
1658 }
1659 goto fail;
1660 }
1661 return root;
1662 fail:
1663 free_fs_root(root);
1664 return ERR_PTR(ret);
1665 }
1666
1667 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1668 {
1669 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1670 int ret = 0;
1671 struct btrfs_device *device;
1672 struct backing_dev_info *bdi;
1673
1674 rcu_read_lock();
1675 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1676 if (!device->bdev)
1677 continue;
1678 bdi = device->bdev->bd_bdi;
1679 if (bdi_congested(bdi, bdi_bits)) {
1680 ret = 1;
1681 break;
1682 }
1683 }
1684 rcu_read_unlock();
1685 return ret;
1686 }
1687
1688 /*
1689 * called by the kthread helper functions to finally call the bio end_io
1690 * functions. This is where read checksum verification actually happens
1691 */
1692 static void end_workqueue_fn(struct btrfs_work *work)
1693 {
1694 struct bio *bio;
1695 struct btrfs_end_io_wq *end_io_wq;
1696
1697 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1698 bio = end_io_wq->bio;
1699
1700 bio->bi_status = end_io_wq->status;
1701 bio->bi_private = end_io_wq->private;
1702 bio->bi_end_io = end_io_wq->end_io;
1703 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1704 bio_endio(bio);
1705 }
1706
1707 static int cleaner_kthread(void *arg)
1708 {
1709 struct btrfs_root *root = arg;
1710 struct btrfs_fs_info *fs_info = root->fs_info;
1711 int again;
1712 struct btrfs_trans_handle *trans;
1713
1714 do {
1715 again = 0;
1716
1717 /* Make the cleaner go to sleep early. */
1718 if (btrfs_need_cleaner_sleep(fs_info))
1719 goto sleep;
1720
1721 /*
1722 * Do not do anything if we might cause open_ctree() to block
1723 * before we have finished mounting the filesystem.
1724 */
1725 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1726 goto sleep;
1727
1728 if (!mutex_trylock(&fs_info->cleaner_mutex))
1729 goto sleep;
1730
1731 /*
1732 * Avoid the problem that we change the status of the fs
1733 * during the above check and trylock.
1734 */
1735 if (btrfs_need_cleaner_sleep(fs_info)) {
1736 mutex_unlock(&fs_info->cleaner_mutex);
1737 goto sleep;
1738 }
1739
1740 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1741 btrfs_run_delayed_iputs(fs_info);
1742 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1743
1744 again = btrfs_clean_one_deleted_snapshot(root);
1745 mutex_unlock(&fs_info->cleaner_mutex);
1746
1747 /*
1748 * The defragger has dealt with the R/O remount and umount,
1749 * needn't do anything special here.
1750 */
1751 btrfs_run_defrag_inodes(fs_info);
1752
1753 /*
1754 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1755 * with relocation (btrfs_relocate_chunk) and relocation
1756 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1757 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1758 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1759 * unused block groups.
1760 */
1761 btrfs_delete_unused_bgs(fs_info);
1762 sleep:
1763 if (!again) {
1764 set_current_state(TASK_INTERRUPTIBLE);
1765 if (!kthread_should_stop())
1766 schedule();
1767 __set_current_state(TASK_RUNNING);
1768 }
1769 } while (!kthread_should_stop());
1770
1771 /*
1772 * Transaction kthread is stopped before us and wakes us up.
1773 * However we might have started a new transaction and COWed some
1774 * tree blocks when deleting unused block groups for example. So
1775 * make sure we commit the transaction we started to have a clean
1776 * shutdown when evicting the btree inode - if it has dirty pages
1777 * when we do the final iput() on it, eviction will trigger a
1778 * writeback for it which will fail with null pointer dereferences
1779 * since work queues and other resources were already released and
1780 * destroyed by the time the iput/eviction/writeback is made.
1781 */
1782 trans = btrfs_attach_transaction(root);
1783 if (IS_ERR(trans)) {
1784 if (PTR_ERR(trans) != -ENOENT)
1785 btrfs_err(fs_info,
1786 "cleaner transaction attach returned %ld",
1787 PTR_ERR(trans));
1788 } else {
1789 int ret;
1790
1791 ret = btrfs_commit_transaction(trans);
1792 if (ret)
1793 btrfs_err(fs_info,
1794 "cleaner open transaction commit returned %d",
1795 ret);
1796 }
1797
1798 return 0;
1799 }
1800
1801 static int transaction_kthread(void *arg)
1802 {
1803 struct btrfs_root *root = arg;
1804 struct btrfs_fs_info *fs_info = root->fs_info;
1805 struct btrfs_trans_handle *trans;
1806 struct btrfs_transaction *cur;
1807 u64 transid;
1808 unsigned long now;
1809 unsigned long delay;
1810 bool cannot_commit;
1811
1812 do {
1813 cannot_commit = false;
1814 delay = HZ * fs_info->commit_interval;
1815 mutex_lock(&fs_info->transaction_kthread_mutex);
1816
1817 spin_lock(&fs_info->trans_lock);
1818 cur = fs_info->running_transaction;
1819 if (!cur) {
1820 spin_unlock(&fs_info->trans_lock);
1821 goto sleep;
1822 }
1823
1824 now = get_seconds();
1825 if (cur->state < TRANS_STATE_BLOCKED &&
1826 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1827 (now < cur->start_time ||
1828 now - cur->start_time < fs_info->commit_interval)) {
1829 spin_unlock(&fs_info->trans_lock);
1830 delay = HZ * 5;
1831 goto sleep;
1832 }
1833 transid = cur->transid;
1834 spin_unlock(&fs_info->trans_lock);
1835
1836 /* If the file system is aborted, this will always fail. */
1837 trans = btrfs_attach_transaction(root);
1838 if (IS_ERR(trans)) {
1839 if (PTR_ERR(trans) != -ENOENT)
1840 cannot_commit = true;
1841 goto sleep;
1842 }
1843 if (transid == trans->transid) {
1844 btrfs_commit_transaction(trans);
1845 } else {
1846 btrfs_end_transaction(trans);
1847 }
1848 sleep:
1849 wake_up_process(fs_info->cleaner_kthread);
1850 mutex_unlock(&fs_info->transaction_kthread_mutex);
1851
1852 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1853 &fs_info->fs_state)))
1854 btrfs_cleanup_transaction(fs_info);
1855 if (!kthread_should_stop() &&
1856 (!btrfs_transaction_blocked(fs_info) ||
1857 cannot_commit))
1858 schedule_timeout_interruptible(delay);
1859 } while (!kthread_should_stop());
1860 return 0;
1861 }
1862
1863 /*
1864 * this will find the highest generation in the array of
1865 * root backups. The index of the highest array is returned,
1866 * or -1 if we can't find anything.
1867 *
1868 * We check to make sure the array is valid by comparing the
1869 * generation of the latest root in the array with the generation
1870 * in the super block. If they don't match we pitch it.
1871 */
1872 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1873 {
1874 u64 cur;
1875 int newest_index = -1;
1876 struct btrfs_root_backup *root_backup;
1877 int i;
1878
1879 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1880 root_backup = info->super_copy->super_roots + i;
1881 cur = btrfs_backup_tree_root_gen(root_backup);
1882 if (cur == newest_gen)
1883 newest_index = i;
1884 }
1885
1886 /* check to see if we actually wrapped around */
1887 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1888 root_backup = info->super_copy->super_roots;
1889 cur = btrfs_backup_tree_root_gen(root_backup);
1890 if (cur == newest_gen)
1891 newest_index = 0;
1892 }
1893 return newest_index;
1894 }
1895
1896
1897 /*
1898 * find the oldest backup so we know where to store new entries
1899 * in the backup array. This will set the backup_root_index
1900 * field in the fs_info struct
1901 */
1902 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1903 u64 newest_gen)
1904 {
1905 int newest_index = -1;
1906
1907 newest_index = find_newest_super_backup(info, newest_gen);
1908 /* if there was garbage in there, just move along */
1909 if (newest_index == -1) {
1910 info->backup_root_index = 0;
1911 } else {
1912 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1913 }
1914 }
1915
1916 /*
1917 * copy all the root pointers into the super backup array.
1918 * this will bump the backup pointer by one when it is
1919 * done
1920 */
1921 static void backup_super_roots(struct btrfs_fs_info *info)
1922 {
1923 int next_backup;
1924 struct btrfs_root_backup *root_backup;
1925 int last_backup;
1926
1927 next_backup = info->backup_root_index;
1928 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1929 BTRFS_NUM_BACKUP_ROOTS;
1930
1931 /*
1932 * just overwrite the last backup if we're at the same generation
1933 * this happens only at umount
1934 */
1935 root_backup = info->super_for_commit->super_roots + last_backup;
1936 if (btrfs_backup_tree_root_gen(root_backup) ==
1937 btrfs_header_generation(info->tree_root->node))
1938 next_backup = last_backup;
1939
1940 root_backup = info->super_for_commit->super_roots + next_backup;
1941
1942 /*
1943 * make sure all of our padding and empty slots get zero filled
1944 * regardless of which ones we use today
1945 */
1946 memset(root_backup, 0, sizeof(*root_backup));
1947
1948 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1949
1950 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1951 btrfs_set_backup_tree_root_gen(root_backup,
1952 btrfs_header_generation(info->tree_root->node));
1953
1954 btrfs_set_backup_tree_root_level(root_backup,
1955 btrfs_header_level(info->tree_root->node));
1956
1957 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1958 btrfs_set_backup_chunk_root_gen(root_backup,
1959 btrfs_header_generation(info->chunk_root->node));
1960 btrfs_set_backup_chunk_root_level(root_backup,
1961 btrfs_header_level(info->chunk_root->node));
1962
1963 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1964 btrfs_set_backup_extent_root_gen(root_backup,
1965 btrfs_header_generation(info->extent_root->node));
1966 btrfs_set_backup_extent_root_level(root_backup,
1967 btrfs_header_level(info->extent_root->node));
1968
1969 /*
1970 * we might commit during log recovery, which happens before we set
1971 * the fs_root. Make sure it is valid before we fill it in.
1972 */
1973 if (info->fs_root && info->fs_root->node) {
1974 btrfs_set_backup_fs_root(root_backup,
1975 info->fs_root->node->start);
1976 btrfs_set_backup_fs_root_gen(root_backup,
1977 btrfs_header_generation(info->fs_root->node));
1978 btrfs_set_backup_fs_root_level(root_backup,
1979 btrfs_header_level(info->fs_root->node));
1980 }
1981
1982 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1983 btrfs_set_backup_dev_root_gen(root_backup,
1984 btrfs_header_generation(info->dev_root->node));
1985 btrfs_set_backup_dev_root_level(root_backup,
1986 btrfs_header_level(info->dev_root->node));
1987
1988 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1989 btrfs_set_backup_csum_root_gen(root_backup,
1990 btrfs_header_generation(info->csum_root->node));
1991 btrfs_set_backup_csum_root_level(root_backup,
1992 btrfs_header_level(info->csum_root->node));
1993
1994 btrfs_set_backup_total_bytes(root_backup,
1995 btrfs_super_total_bytes(info->super_copy));
1996 btrfs_set_backup_bytes_used(root_backup,
1997 btrfs_super_bytes_used(info->super_copy));
1998 btrfs_set_backup_num_devices(root_backup,
1999 btrfs_super_num_devices(info->super_copy));
2000
2001 /*
2002 * if we don't copy this out to the super_copy, it won't get remembered
2003 * for the next commit
2004 */
2005 memcpy(&info->super_copy->super_roots,
2006 &info->super_for_commit->super_roots,
2007 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2008 }
2009
2010 /*
2011 * this copies info out of the root backup array and back into
2012 * the in-memory super block. It is meant to help iterate through
2013 * the array, so you send it the number of backups you've already
2014 * tried and the last backup index you used.
2015 *
2016 * this returns -1 when it has tried all the backups
2017 */
2018 static noinline int next_root_backup(struct btrfs_fs_info *info,
2019 struct btrfs_super_block *super,
2020 int *num_backups_tried, int *backup_index)
2021 {
2022 struct btrfs_root_backup *root_backup;
2023 int newest = *backup_index;
2024
2025 if (*num_backups_tried == 0) {
2026 u64 gen = btrfs_super_generation(super);
2027
2028 newest = find_newest_super_backup(info, gen);
2029 if (newest == -1)
2030 return -1;
2031
2032 *backup_index = newest;
2033 *num_backups_tried = 1;
2034 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2035 /* we've tried all the backups, all done */
2036 return -1;
2037 } else {
2038 /* jump to the next oldest backup */
2039 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2040 BTRFS_NUM_BACKUP_ROOTS;
2041 *backup_index = newest;
2042 *num_backups_tried += 1;
2043 }
2044 root_backup = super->super_roots + newest;
2045
2046 btrfs_set_super_generation(super,
2047 btrfs_backup_tree_root_gen(root_backup));
2048 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2049 btrfs_set_super_root_level(super,
2050 btrfs_backup_tree_root_level(root_backup));
2051 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2052
2053 /*
2054 * fixme: the total bytes and num_devices need to match or we should
2055 * need a fsck
2056 */
2057 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2058 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2059 return 0;
2060 }
2061
2062 /* helper to cleanup workers */
2063 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2064 {
2065 btrfs_destroy_workqueue(fs_info->fixup_workers);
2066 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2067 btrfs_destroy_workqueue(fs_info->workers);
2068 btrfs_destroy_workqueue(fs_info->endio_workers);
2069 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2070 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2071 btrfs_destroy_workqueue(fs_info->rmw_workers);
2072 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2073 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2074 btrfs_destroy_workqueue(fs_info->submit_workers);
2075 btrfs_destroy_workqueue(fs_info->delayed_workers);
2076 btrfs_destroy_workqueue(fs_info->caching_workers);
2077 btrfs_destroy_workqueue(fs_info->readahead_workers);
2078 btrfs_destroy_workqueue(fs_info->flush_workers);
2079 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2080 btrfs_destroy_workqueue(fs_info->extent_workers);
2081 /*
2082 * Now that all other work queues are destroyed, we can safely destroy
2083 * the queues used for metadata I/O, since tasks from those other work
2084 * queues can do metadata I/O operations.
2085 */
2086 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2087 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2088 }
2089
2090 static void free_root_extent_buffers(struct btrfs_root *root)
2091 {
2092 if (root) {
2093 free_extent_buffer(root->node);
2094 free_extent_buffer(root->commit_root);
2095 root->node = NULL;
2096 root->commit_root = NULL;
2097 }
2098 }
2099
2100 /* helper to cleanup tree roots */
2101 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2102 {
2103 free_root_extent_buffers(info->tree_root);
2104
2105 free_root_extent_buffers(info->dev_root);
2106 free_root_extent_buffers(info->extent_root);
2107 free_root_extent_buffers(info->csum_root);
2108 free_root_extent_buffers(info->quota_root);
2109 free_root_extent_buffers(info->uuid_root);
2110 if (chunk_root)
2111 free_root_extent_buffers(info->chunk_root);
2112 free_root_extent_buffers(info->free_space_root);
2113 }
2114
2115 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2116 {
2117 int ret;
2118 struct btrfs_root *gang[8];
2119 int i;
2120
2121 while (!list_empty(&fs_info->dead_roots)) {
2122 gang[0] = list_entry(fs_info->dead_roots.next,
2123 struct btrfs_root, root_list);
2124 list_del(&gang[0]->root_list);
2125
2126 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2127 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2128 } else {
2129 free_extent_buffer(gang[0]->node);
2130 free_extent_buffer(gang[0]->commit_root);
2131 btrfs_put_fs_root(gang[0]);
2132 }
2133 }
2134
2135 while (1) {
2136 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2137 (void **)gang, 0,
2138 ARRAY_SIZE(gang));
2139 if (!ret)
2140 break;
2141 for (i = 0; i < ret; i++)
2142 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2143 }
2144
2145 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2146 btrfs_free_log_root_tree(NULL, fs_info);
2147 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2148 }
2149 }
2150
2151 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2152 {
2153 mutex_init(&fs_info->scrub_lock);
2154 atomic_set(&fs_info->scrubs_running, 0);
2155 atomic_set(&fs_info->scrub_pause_req, 0);
2156 atomic_set(&fs_info->scrubs_paused, 0);
2157 atomic_set(&fs_info->scrub_cancel_req, 0);
2158 init_waitqueue_head(&fs_info->scrub_pause_wait);
2159 fs_info->scrub_workers_refcnt = 0;
2160 }
2161
2162 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2163 {
2164 spin_lock_init(&fs_info->balance_lock);
2165 mutex_init(&fs_info->balance_mutex);
2166 atomic_set(&fs_info->balance_pause_req, 0);
2167 atomic_set(&fs_info->balance_cancel_req, 0);
2168 fs_info->balance_ctl = NULL;
2169 init_waitqueue_head(&fs_info->balance_wait_q);
2170 }
2171
2172 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2173 {
2174 struct inode *inode = fs_info->btree_inode;
2175
2176 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2177 set_nlink(inode, 1);
2178 /*
2179 * we set the i_size on the btree inode to the max possible int.
2180 * the real end of the address space is determined by all of
2181 * the devices in the system
2182 */
2183 inode->i_size = OFFSET_MAX;
2184 inode->i_mapping->a_ops = &btree_aops;
2185
2186 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2187 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2188 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2189 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2190
2191 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2192
2193 BTRFS_I(inode)->root = fs_info->tree_root;
2194 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2195 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2196 btrfs_insert_inode_hash(inode);
2197 }
2198
2199 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2200 {
2201 fs_info->dev_replace.lock_owner = 0;
2202 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2203 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2204 rwlock_init(&fs_info->dev_replace.lock);
2205 atomic_set(&fs_info->dev_replace.read_locks, 0);
2206 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2207 init_waitqueue_head(&fs_info->replace_wait);
2208 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2209 }
2210
2211 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2212 {
2213 spin_lock_init(&fs_info->qgroup_lock);
2214 mutex_init(&fs_info->qgroup_ioctl_lock);
2215 fs_info->qgroup_tree = RB_ROOT;
2216 fs_info->qgroup_op_tree = RB_ROOT;
2217 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2218 fs_info->qgroup_seq = 1;
2219 fs_info->qgroup_ulist = NULL;
2220 fs_info->qgroup_rescan_running = false;
2221 mutex_init(&fs_info->qgroup_rescan_lock);
2222 }
2223
2224 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2225 struct btrfs_fs_devices *fs_devices)
2226 {
2227 u32 max_active = fs_info->thread_pool_size;
2228 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2229
2230 fs_info->workers =
2231 btrfs_alloc_workqueue(fs_info, "worker",
2232 flags | WQ_HIGHPRI, max_active, 16);
2233
2234 fs_info->delalloc_workers =
2235 btrfs_alloc_workqueue(fs_info, "delalloc",
2236 flags, max_active, 2);
2237
2238 fs_info->flush_workers =
2239 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2240 flags, max_active, 0);
2241
2242 fs_info->caching_workers =
2243 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2244
2245 /*
2246 * a higher idle thresh on the submit workers makes it much more
2247 * likely that bios will be send down in a sane order to the
2248 * devices
2249 */
2250 fs_info->submit_workers =
2251 btrfs_alloc_workqueue(fs_info, "submit", flags,
2252 min_t(u64, fs_devices->num_devices,
2253 max_active), 64);
2254
2255 fs_info->fixup_workers =
2256 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2257
2258 /*
2259 * endios are largely parallel and should have a very
2260 * low idle thresh
2261 */
2262 fs_info->endio_workers =
2263 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2264 fs_info->endio_meta_workers =
2265 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2266 max_active, 4);
2267 fs_info->endio_meta_write_workers =
2268 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2269 max_active, 2);
2270 fs_info->endio_raid56_workers =
2271 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2272 max_active, 4);
2273 fs_info->endio_repair_workers =
2274 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2275 fs_info->rmw_workers =
2276 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2277 fs_info->endio_write_workers =
2278 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2279 max_active, 2);
2280 fs_info->endio_freespace_worker =
2281 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2282 max_active, 0);
2283 fs_info->delayed_workers =
2284 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2285 max_active, 0);
2286 fs_info->readahead_workers =
2287 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2288 max_active, 2);
2289 fs_info->qgroup_rescan_workers =
2290 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2291 fs_info->extent_workers =
2292 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2293 min_t(u64, fs_devices->num_devices,
2294 max_active), 8);
2295
2296 if (!(fs_info->workers && fs_info->delalloc_workers &&
2297 fs_info->submit_workers && fs_info->flush_workers &&
2298 fs_info->endio_workers && fs_info->endio_meta_workers &&
2299 fs_info->endio_meta_write_workers &&
2300 fs_info->endio_repair_workers &&
2301 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2302 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2303 fs_info->caching_workers && fs_info->readahead_workers &&
2304 fs_info->fixup_workers && fs_info->delayed_workers &&
2305 fs_info->extent_workers &&
2306 fs_info->qgroup_rescan_workers)) {
2307 return -ENOMEM;
2308 }
2309
2310 return 0;
2311 }
2312
2313 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2314 struct btrfs_fs_devices *fs_devices)
2315 {
2316 int ret;
2317 struct btrfs_root *log_tree_root;
2318 struct btrfs_super_block *disk_super = fs_info->super_copy;
2319 u64 bytenr = btrfs_super_log_root(disk_super);
2320 int level = btrfs_super_log_root_level(disk_super);
2321
2322 if (fs_devices->rw_devices == 0) {
2323 btrfs_warn(fs_info, "log replay required on RO media");
2324 return -EIO;
2325 }
2326
2327 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2328 if (!log_tree_root)
2329 return -ENOMEM;
2330
2331 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2332
2333 log_tree_root->node = read_tree_block(fs_info, bytenr,
2334 fs_info->generation + 1,
2335 level, NULL);
2336 if (IS_ERR(log_tree_root->node)) {
2337 btrfs_warn(fs_info, "failed to read log tree");
2338 ret = PTR_ERR(log_tree_root->node);
2339 kfree(log_tree_root);
2340 return ret;
2341 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2342 btrfs_err(fs_info, "failed to read log tree");
2343 free_extent_buffer(log_tree_root->node);
2344 kfree(log_tree_root);
2345 return -EIO;
2346 }
2347 /* returns with log_tree_root freed on success */
2348 ret = btrfs_recover_log_trees(log_tree_root);
2349 if (ret) {
2350 btrfs_handle_fs_error(fs_info, ret,
2351 "Failed to recover log tree");
2352 free_extent_buffer(log_tree_root->node);
2353 kfree(log_tree_root);
2354 return ret;
2355 }
2356
2357 if (sb_rdonly(fs_info->sb)) {
2358 ret = btrfs_commit_super(fs_info);
2359 if (ret)
2360 return ret;
2361 }
2362
2363 return 0;
2364 }
2365
2366 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2367 {
2368 struct btrfs_root *tree_root = fs_info->tree_root;
2369 struct btrfs_root *root;
2370 struct btrfs_key location;
2371 int ret;
2372
2373 BUG_ON(!fs_info->tree_root);
2374
2375 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2376 location.type = BTRFS_ROOT_ITEM_KEY;
2377 location.offset = 0;
2378
2379 root = btrfs_read_tree_root(tree_root, &location);
2380 if (IS_ERR(root)) {
2381 ret = PTR_ERR(root);
2382 goto out;
2383 }
2384 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2385 fs_info->extent_root = root;
2386
2387 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2388 root = btrfs_read_tree_root(tree_root, &location);
2389 if (IS_ERR(root)) {
2390 ret = PTR_ERR(root);
2391 goto out;
2392 }
2393 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2394 fs_info->dev_root = root;
2395 btrfs_init_devices_late(fs_info);
2396
2397 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2398 root = btrfs_read_tree_root(tree_root, &location);
2399 if (IS_ERR(root)) {
2400 ret = PTR_ERR(root);
2401 goto out;
2402 }
2403 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2404 fs_info->csum_root = root;
2405
2406 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2407 root = btrfs_read_tree_root(tree_root, &location);
2408 if (!IS_ERR(root)) {
2409 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2410 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2411 fs_info->quota_root = root;
2412 }
2413
2414 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2415 root = btrfs_read_tree_root(tree_root, &location);
2416 if (IS_ERR(root)) {
2417 ret = PTR_ERR(root);
2418 if (ret != -ENOENT)
2419 goto out;
2420 } else {
2421 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2422 fs_info->uuid_root = root;
2423 }
2424
2425 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2426 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2427 root = btrfs_read_tree_root(tree_root, &location);
2428 if (IS_ERR(root)) {
2429 ret = PTR_ERR(root);
2430 goto out;
2431 }
2432 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2433 fs_info->free_space_root = root;
2434 }
2435
2436 return 0;
2437 out:
2438 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2439 location.objectid, ret);
2440 return ret;
2441 }
2442
2443 /*
2444 * Real super block validation
2445 * NOTE: super csum type and incompat features will not be checked here.
2446 *
2447 * @sb: super block to check
2448 * @mirror_num: the super block number to check its bytenr:
2449 * 0 the primary (1st) sb
2450 * 1, 2 2nd and 3rd backup copy
2451 * -1 skip bytenr check
2452 */
2453 static int validate_super(struct btrfs_fs_info *fs_info,
2454 struct btrfs_super_block *sb, int mirror_num)
2455 {
2456 u64 nodesize = btrfs_super_nodesize(sb);
2457 u64 sectorsize = btrfs_super_sectorsize(sb);
2458 int ret = 0;
2459
2460 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2461 btrfs_err(fs_info, "no valid FS found");
2462 ret = -EINVAL;
2463 }
2464 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2465 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2466 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2467 ret = -EINVAL;
2468 }
2469 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2470 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2471 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2472 ret = -EINVAL;
2473 }
2474 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2475 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2476 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2477 ret = -EINVAL;
2478 }
2479 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2480 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2481 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2482 ret = -EINVAL;
2483 }
2484
2485 /*
2486 * Check sectorsize and nodesize first, other check will need it.
2487 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2488 */
2489 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2490 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2491 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2492 ret = -EINVAL;
2493 }
2494 /* Only PAGE SIZE is supported yet */
2495 if (sectorsize != PAGE_SIZE) {
2496 btrfs_err(fs_info,
2497 "sectorsize %llu not supported yet, only support %lu",
2498 sectorsize, PAGE_SIZE);
2499 ret = -EINVAL;
2500 }
2501 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2502 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2503 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2504 ret = -EINVAL;
2505 }
2506 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2507 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2508 le32_to_cpu(sb->__unused_leafsize), nodesize);
2509 ret = -EINVAL;
2510 }
2511
2512 /* Root alignment check */
2513 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2514 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2515 btrfs_super_root(sb));
2516 ret = -EINVAL;
2517 }
2518 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2519 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2520 btrfs_super_chunk_root(sb));
2521 ret = -EINVAL;
2522 }
2523 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2524 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2525 btrfs_super_log_root(sb));
2526 ret = -EINVAL;
2527 }
2528
2529 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
2530 btrfs_err(fs_info,
2531 "dev_item UUID does not match fsid: %pU != %pU",
2532 fs_info->fsid, sb->dev_item.fsid);
2533 ret = -EINVAL;
2534 }
2535
2536 /*
2537 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2538 * done later
2539 */
2540 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2541 btrfs_err(fs_info, "bytes_used is too small %llu",
2542 btrfs_super_bytes_used(sb));
2543 ret = -EINVAL;
2544 }
2545 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2546 btrfs_err(fs_info, "invalid stripesize %u",
2547 btrfs_super_stripesize(sb));
2548 ret = -EINVAL;
2549 }
2550 if (btrfs_super_num_devices(sb) > (1UL << 31))
2551 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2552 btrfs_super_num_devices(sb));
2553 if (btrfs_super_num_devices(sb) == 0) {
2554 btrfs_err(fs_info, "number of devices is 0");
2555 ret = -EINVAL;
2556 }
2557
2558 if (mirror_num >= 0 &&
2559 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2560 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2561 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2562 ret = -EINVAL;
2563 }
2564
2565 /*
2566 * Obvious sys_chunk_array corruptions, it must hold at least one key
2567 * and one chunk
2568 */
2569 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2570 btrfs_err(fs_info, "system chunk array too big %u > %u",
2571 btrfs_super_sys_array_size(sb),
2572 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2573 ret = -EINVAL;
2574 }
2575 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2576 + sizeof(struct btrfs_chunk)) {
2577 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2578 btrfs_super_sys_array_size(sb),
2579 sizeof(struct btrfs_disk_key)
2580 + sizeof(struct btrfs_chunk));
2581 ret = -EINVAL;
2582 }
2583
2584 /*
2585 * The generation is a global counter, we'll trust it more than the others
2586 * but it's still possible that it's the one that's wrong.
2587 */
2588 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2589 btrfs_warn(fs_info,
2590 "suspicious: generation < chunk_root_generation: %llu < %llu",
2591 btrfs_super_generation(sb),
2592 btrfs_super_chunk_root_generation(sb));
2593 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2594 && btrfs_super_cache_generation(sb) != (u64)-1)
2595 btrfs_warn(fs_info,
2596 "suspicious: generation < cache_generation: %llu < %llu",
2597 btrfs_super_generation(sb),
2598 btrfs_super_cache_generation(sb));
2599
2600 return ret;
2601 }
2602
2603 /*
2604 * Validation of super block at mount time.
2605 * Some checks already done early at mount time, like csum type and incompat
2606 * flags will be skipped.
2607 */
2608 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2609 {
2610 return validate_super(fs_info, fs_info->super_copy, 0);
2611 }
2612
2613 /*
2614 * Validation of super block at write time.
2615 * Some checks like bytenr check will be skipped as their values will be
2616 * overwritten soon.
2617 * Extra checks like csum type and incompat flags will be done here.
2618 */
2619 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2620 struct btrfs_super_block *sb)
2621 {
2622 int ret;
2623
2624 ret = validate_super(fs_info, sb, -1);
2625 if (ret < 0)
2626 goto out;
2627 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2628 ret = -EUCLEAN;
2629 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2630 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2631 goto out;
2632 }
2633 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2634 ret = -EUCLEAN;
2635 btrfs_err(fs_info,
2636 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2637 btrfs_super_incompat_flags(sb),
2638 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2639 goto out;
2640 }
2641 out:
2642 if (ret < 0)
2643 btrfs_err(fs_info,
2644 "super block corruption detected before writing it to disk");
2645 return ret;
2646 }
2647
2648 int open_ctree(struct super_block *sb,
2649 struct btrfs_fs_devices *fs_devices,
2650 char *options)
2651 {
2652 u32 sectorsize;
2653 u32 nodesize;
2654 u32 stripesize;
2655 u64 generation;
2656 u64 features;
2657 struct btrfs_key location;
2658 struct buffer_head *bh;
2659 struct btrfs_super_block *disk_super;
2660 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2661 struct btrfs_root *tree_root;
2662 struct btrfs_root *chunk_root;
2663 int ret;
2664 int err = -EINVAL;
2665 int num_backups_tried = 0;
2666 int backup_index = 0;
2667 int clear_free_space_tree = 0;
2668 int level;
2669
2670 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2671 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2672 if (!tree_root || !chunk_root) {
2673 err = -ENOMEM;
2674 goto fail;
2675 }
2676
2677 ret = init_srcu_struct(&fs_info->subvol_srcu);
2678 if (ret) {
2679 err = ret;
2680 goto fail;
2681 }
2682
2683 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2684 if (ret) {
2685 err = ret;
2686 goto fail_srcu;
2687 }
2688 fs_info->dirty_metadata_batch = PAGE_SIZE *
2689 (1 + ilog2(nr_cpu_ids));
2690
2691 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2692 if (ret) {
2693 err = ret;
2694 goto fail_dirty_metadata_bytes;
2695 }
2696
2697 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2698 if (ret) {
2699 err = ret;
2700 goto fail_delalloc_bytes;
2701 }
2702
2703 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2704 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2705 INIT_LIST_HEAD(&fs_info->trans_list);
2706 INIT_LIST_HEAD(&fs_info->dead_roots);
2707 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2708 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2709 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2710 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2711 spin_lock_init(&fs_info->pending_raid_kobjs_lock);
2712 spin_lock_init(&fs_info->delalloc_root_lock);
2713 spin_lock_init(&fs_info->trans_lock);
2714 spin_lock_init(&fs_info->fs_roots_radix_lock);
2715 spin_lock_init(&fs_info->delayed_iput_lock);
2716 spin_lock_init(&fs_info->defrag_inodes_lock);
2717 spin_lock_init(&fs_info->tree_mod_seq_lock);
2718 spin_lock_init(&fs_info->super_lock);
2719 spin_lock_init(&fs_info->qgroup_op_lock);
2720 spin_lock_init(&fs_info->buffer_lock);
2721 spin_lock_init(&fs_info->unused_bgs_lock);
2722 rwlock_init(&fs_info->tree_mod_log_lock);
2723 mutex_init(&fs_info->unused_bg_unpin_mutex);
2724 mutex_init(&fs_info->delete_unused_bgs_mutex);
2725 mutex_init(&fs_info->reloc_mutex);
2726 mutex_init(&fs_info->delalloc_root_mutex);
2727 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2728 seqlock_init(&fs_info->profiles_lock);
2729
2730 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2731 INIT_LIST_HEAD(&fs_info->space_info);
2732 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2733 INIT_LIST_HEAD(&fs_info->unused_bgs);
2734 btrfs_mapping_init(&fs_info->mapping_tree);
2735 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2736 BTRFS_BLOCK_RSV_GLOBAL);
2737 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2738 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2739 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2740 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2741 BTRFS_BLOCK_RSV_DELOPS);
2742 atomic_set(&fs_info->async_delalloc_pages, 0);
2743 atomic_set(&fs_info->defrag_running, 0);
2744 atomic_set(&fs_info->qgroup_op_seq, 0);
2745 atomic_set(&fs_info->reada_works_cnt, 0);
2746 atomic64_set(&fs_info->tree_mod_seq, 0);
2747 fs_info->sb = sb;
2748 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2749 fs_info->metadata_ratio = 0;
2750 fs_info->defrag_inodes = RB_ROOT;
2751 atomic64_set(&fs_info->free_chunk_space, 0);
2752 fs_info->tree_mod_log = RB_ROOT;
2753 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2754 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2755 /* readahead state */
2756 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2757 spin_lock_init(&fs_info->reada_lock);
2758 btrfs_init_ref_verify(fs_info);
2759
2760 fs_info->thread_pool_size = min_t(unsigned long,
2761 num_online_cpus() + 2, 8);
2762
2763 INIT_LIST_HEAD(&fs_info->ordered_roots);
2764 spin_lock_init(&fs_info->ordered_root_lock);
2765
2766 fs_info->btree_inode = new_inode(sb);
2767 if (!fs_info->btree_inode) {
2768 err = -ENOMEM;
2769 goto fail_bio_counter;
2770 }
2771 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2772
2773 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2774 GFP_KERNEL);
2775 if (!fs_info->delayed_root) {
2776 err = -ENOMEM;
2777 goto fail_iput;
2778 }
2779 btrfs_init_delayed_root(fs_info->delayed_root);
2780
2781 btrfs_init_scrub(fs_info);
2782 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2783 fs_info->check_integrity_print_mask = 0;
2784 #endif
2785 btrfs_init_balance(fs_info);
2786 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2787
2788 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2789 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2790
2791 btrfs_init_btree_inode(fs_info);
2792
2793 spin_lock_init(&fs_info->block_group_cache_lock);
2794 fs_info->block_group_cache_tree = RB_ROOT;
2795 fs_info->first_logical_byte = (u64)-1;
2796
2797 extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2798 extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2799 fs_info->pinned_extents = &fs_info->freed_extents[0];
2800 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2801
2802 mutex_init(&fs_info->ordered_operations_mutex);
2803 mutex_init(&fs_info->tree_log_mutex);
2804 mutex_init(&fs_info->chunk_mutex);
2805 mutex_init(&fs_info->transaction_kthread_mutex);
2806 mutex_init(&fs_info->cleaner_mutex);
2807 mutex_init(&fs_info->ro_block_group_mutex);
2808 init_rwsem(&fs_info->commit_root_sem);
2809 init_rwsem(&fs_info->cleanup_work_sem);
2810 init_rwsem(&fs_info->subvol_sem);
2811 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2812
2813 btrfs_init_dev_replace_locks(fs_info);
2814 btrfs_init_qgroup(fs_info);
2815
2816 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2817 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2818
2819 init_waitqueue_head(&fs_info->transaction_throttle);
2820 init_waitqueue_head(&fs_info->transaction_wait);
2821 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2822 init_waitqueue_head(&fs_info->async_submit_wait);
2823
2824 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2825
2826 /* Usable values until the real ones are cached from the superblock */
2827 fs_info->nodesize = 4096;
2828 fs_info->sectorsize = 4096;
2829 fs_info->stripesize = 4096;
2830
2831 ret = btrfs_alloc_stripe_hash_table(fs_info);
2832 if (ret) {
2833 err = ret;
2834 goto fail_alloc;
2835 }
2836
2837 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2838
2839 invalidate_bdev(fs_devices->latest_bdev);
2840
2841 /*
2842 * Read super block and check the signature bytes only
2843 */
2844 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2845 if (IS_ERR(bh)) {
2846 err = PTR_ERR(bh);
2847 goto fail_alloc;
2848 }
2849
2850 /*
2851 * We want to check superblock checksum, the type is stored inside.
2852 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2853 */
2854 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2855 btrfs_err(fs_info, "superblock checksum mismatch");
2856 err = -EINVAL;
2857 brelse(bh);
2858 goto fail_alloc;
2859 }
2860
2861 /*
2862 * super_copy is zeroed at allocation time and we never touch the
2863 * following bytes up to INFO_SIZE, the checksum is calculated from
2864 * the whole block of INFO_SIZE
2865 */
2866 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2867 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2868 sizeof(*fs_info->super_for_commit));
2869 brelse(bh);
2870
2871 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2872
2873 ret = btrfs_validate_mount_super(fs_info);
2874 if (ret) {
2875 btrfs_err(fs_info, "superblock contains fatal errors");
2876 err = -EINVAL;
2877 goto fail_alloc;
2878 }
2879
2880 disk_super = fs_info->super_copy;
2881 if (!btrfs_super_root(disk_super))
2882 goto fail_alloc;
2883
2884 /* check FS state, whether FS is broken. */
2885 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2886 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2887
2888 /*
2889 * run through our array of backup supers and setup
2890 * our ring pointer to the oldest one
2891 */
2892 generation = btrfs_super_generation(disk_super);
2893 find_oldest_super_backup(fs_info, generation);
2894
2895 /*
2896 * In the long term, we'll store the compression type in the super
2897 * block, and it'll be used for per file compression control.
2898 */
2899 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2900
2901 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2902 if (ret) {
2903 err = ret;
2904 goto fail_alloc;
2905 }
2906
2907 features = btrfs_super_incompat_flags(disk_super) &
2908 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2909 if (features) {
2910 btrfs_err(fs_info,
2911 "cannot mount because of unsupported optional features (%llx)",
2912 features);
2913 err = -EINVAL;
2914 goto fail_alloc;
2915 }
2916
2917 features = btrfs_super_incompat_flags(disk_super);
2918 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2919 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2920 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2921 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2922 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2923
2924 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2925 btrfs_info(fs_info, "has skinny extents");
2926
2927 /*
2928 * flag our filesystem as having big metadata blocks if
2929 * they are bigger than the page size
2930 */
2931 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2932 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2933 btrfs_info(fs_info,
2934 "flagging fs with big metadata feature");
2935 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2936 }
2937
2938 nodesize = btrfs_super_nodesize(disk_super);
2939 sectorsize = btrfs_super_sectorsize(disk_super);
2940 stripesize = sectorsize;
2941 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2942 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2943
2944 /* Cache block sizes */
2945 fs_info->nodesize = nodesize;
2946 fs_info->sectorsize = sectorsize;
2947 fs_info->stripesize = stripesize;
2948
2949 /*
2950 * mixed block groups end up with duplicate but slightly offset
2951 * extent buffers for the same range. It leads to corruptions
2952 */
2953 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2954 (sectorsize != nodesize)) {
2955 btrfs_err(fs_info,
2956 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2957 nodesize, sectorsize);
2958 goto fail_alloc;
2959 }
2960
2961 /*
2962 * Needn't use the lock because there is no other task which will
2963 * update the flag.
2964 */
2965 btrfs_set_super_incompat_flags(disk_super, features);
2966
2967 features = btrfs_super_compat_ro_flags(disk_super) &
2968 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2969 if (!sb_rdonly(sb) && features) {
2970 btrfs_err(fs_info,
2971 "cannot mount read-write because of unsupported optional features (%llx)",
2972 features);
2973 err = -EINVAL;
2974 goto fail_alloc;
2975 }
2976
2977 ret = btrfs_init_workqueues(fs_info, fs_devices);
2978 if (ret) {
2979 err = ret;
2980 goto fail_sb_buffer;
2981 }
2982
2983 sb->s_bdi->congested_fn = btrfs_congested_fn;
2984 sb->s_bdi->congested_data = fs_info;
2985 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2986 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
2987 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2988 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2989
2990 sb->s_blocksize = sectorsize;
2991 sb->s_blocksize_bits = blksize_bits(sectorsize);
2992 memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
2993
2994 mutex_lock(&fs_info->chunk_mutex);
2995 ret = btrfs_read_sys_array(fs_info);
2996 mutex_unlock(&fs_info->chunk_mutex);
2997 if (ret) {
2998 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2999 goto fail_sb_buffer;
3000 }
3001
3002 generation = btrfs_super_chunk_root_generation(disk_super);
3003 level = btrfs_super_chunk_root_level(disk_super);
3004
3005 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
3006
3007 chunk_root->node = read_tree_block(fs_info,
3008 btrfs_super_chunk_root(disk_super),
3009 generation, level, NULL);
3010 if (IS_ERR(chunk_root->node) ||
3011 !extent_buffer_uptodate(chunk_root->node)) {
3012 btrfs_err(fs_info, "failed to read chunk root");
3013 if (!IS_ERR(chunk_root->node))
3014 free_extent_buffer(chunk_root->node);
3015 chunk_root->node = NULL;
3016 goto fail_tree_roots;
3017 }
3018 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3019 chunk_root->commit_root = btrfs_root_node(chunk_root);
3020
3021 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3022 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
3023
3024 ret = btrfs_read_chunk_tree(fs_info);
3025 if (ret) {
3026 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3027 goto fail_tree_roots;
3028 }
3029
3030 /*
3031 * Keep the devid that is marked to be the target device for the
3032 * device replace procedure
3033 */
3034 btrfs_free_extra_devids(fs_devices, 0);
3035
3036 if (!fs_devices->latest_bdev) {
3037 btrfs_err(fs_info, "failed to read devices");
3038 goto fail_tree_roots;
3039 }
3040
3041 retry_root_backup:
3042 generation = btrfs_super_generation(disk_super);
3043 level = btrfs_super_root_level(disk_super);
3044
3045 tree_root->node = read_tree_block(fs_info,
3046 btrfs_super_root(disk_super),
3047 generation, level, NULL);
3048 if (IS_ERR(tree_root->node) ||
3049 !extent_buffer_uptodate(tree_root->node)) {
3050 btrfs_warn(fs_info, "failed to read tree root");
3051 if (!IS_ERR(tree_root->node))
3052 free_extent_buffer(tree_root->node);
3053 tree_root->node = NULL;
3054 goto recovery_tree_root;
3055 }
3056
3057 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3058 tree_root->commit_root = btrfs_root_node(tree_root);
3059 btrfs_set_root_refs(&tree_root->root_item, 1);
3060
3061 mutex_lock(&tree_root->objectid_mutex);
3062 ret = btrfs_find_highest_objectid(tree_root,
3063 &tree_root->highest_objectid);
3064 if (ret) {
3065 mutex_unlock(&tree_root->objectid_mutex);
3066 goto recovery_tree_root;
3067 }
3068
3069 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3070
3071 mutex_unlock(&tree_root->objectid_mutex);
3072
3073 ret = btrfs_read_roots(fs_info);
3074 if (ret)
3075 goto recovery_tree_root;
3076
3077 fs_info->generation = generation;
3078 fs_info->last_trans_committed = generation;
3079
3080 ret = btrfs_recover_balance(fs_info);
3081 if (ret) {
3082 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3083 goto fail_block_groups;
3084 }
3085
3086 ret = btrfs_init_dev_stats(fs_info);
3087 if (ret) {
3088 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3089 goto fail_block_groups;
3090 }
3091
3092 ret = btrfs_init_dev_replace(fs_info);
3093 if (ret) {
3094 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3095 goto fail_block_groups;
3096 }
3097
3098 btrfs_free_extra_devids(fs_devices, 1);
3099
3100 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3101 if (ret) {
3102 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3103 ret);
3104 goto fail_block_groups;
3105 }
3106
3107 ret = btrfs_sysfs_add_device(fs_devices);
3108 if (ret) {
3109 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3110 ret);
3111 goto fail_fsdev_sysfs;
3112 }
3113
3114 ret = btrfs_sysfs_add_mounted(fs_info);
3115 if (ret) {
3116 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3117 goto fail_fsdev_sysfs;
3118 }
3119
3120 ret = btrfs_init_space_info(fs_info);
3121 if (ret) {
3122 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3123 goto fail_sysfs;
3124 }
3125
3126 ret = btrfs_read_block_groups(fs_info);
3127 if (ret) {
3128 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3129 goto fail_sysfs;
3130 }
3131
3132 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3133 btrfs_warn(fs_info,
3134 "writeable mount is not allowed due to too many missing devices");
3135 goto fail_sysfs;
3136 }
3137
3138 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3139 "btrfs-cleaner");
3140 if (IS_ERR(fs_info->cleaner_kthread))
3141 goto fail_sysfs;
3142
3143 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3144 tree_root,
3145 "btrfs-transaction");
3146 if (IS_ERR(fs_info->transaction_kthread))
3147 goto fail_cleaner;
3148
3149 if (!btrfs_test_opt(fs_info, NOSSD) &&
3150 !fs_info->fs_devices->rotating) {
3151 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3152 }
3153
3154 /*
3155 * Mount does not set all options immediately, we can do it now and do
3156 * not have to wait for transaction commit
3157 */
3158 btrfs_apply_pending_changes(fs_info);
3159
3160 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3161 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3162 ret = btrfsic_mount(fs_info, fs_devices,
3163 btrfs_test_opt(fs_info,
3164 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3165 1 : 0,
3166 fs_info->check_integrity_print_mask);
3167 if (ret)
3168 btrfs_warn(fs_info,
3169 "failed to initialize integrity check module: %d",
3170 ret);
3171 }
3172 #endif
3173 ret = btrfs_read_qgroup_config(fs_info);
3174 if (ret)
3175 goto fail_trans_kthread;
3176
3177 if (btrfs_build_ref_tree(fs_info))
3178 btrfs_err(fs_info, "couldn't build ref tree");
3179
3180 /* do not make disk changes in broken FS or nologreplay is given */
3181 if (btrfs_super_log_root(disk_super) != 0 &&
3182 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3183 ret = btrfs_replay_log(fs_info, fs_devices);
3184 if (ret) {
3185 err = ret;
3186 goto fail_qgroup;
3187 }
3188 }
3189
3190 ret = btrfs_find_orphan_roots(fs_info);
3191 if (ret)
3192 goto fail_qgroup;
3193
3194 if (!sb_rdonly(sb)) {
3195 ret = btrfs_cleanup_fs_roots(fs_info);
3196 if (ret)
3197 goto fail_qgroup;
3198
3199 mutex_lock(&fs_info->cleaner_mutex);
3200 ret = btrfs_recover_relocation(tree_root);
3201 mutex_unlock(&fs_info->cleaner_mutex);
3202 if (ret < 0) {
3203 btrfs_warn(fs_info, "failed to recover relocation: %d",
3204 ret);
3205 err = -EINVAL;
3206 goto fail_qgroup;
3207 }
3208 }
3209
3210 location.objectid = BTRFS_FS_TREE_OBJECTID;
3211 location.type = BTRFS_ROOT_ITEM_KEY;
3212 location.offset = 0;
3213
3214 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3215 if (IS_ERR(fs_info->fs_root)) {
3216 err = PTR_ERR(fs_info->fs_root);
3217 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3218 goto fail_qgroup;
3219 }
3220
3221 if (sb_rdonly(sb))
3222 return 0;
3223
3224 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3225 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3226 clear_free_space_tree = 1;
3227 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3228 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3229 btrfs_warn(fs_info, "free space tree is invalid");
3230 clear_free_space_tree = 1;
3231 }
3232
3233 if (clear_free_space_tree) {
3234 btrfs_info(fs_info, "clearing free space tree");
3235 ret = btrfs_clear_free_space_tree(fs_info);
3236 if (ret) {
3237 btrfs_warn(fs_info,
3238 "failed to clear free space tree: %d", ret);
3239 close_ctree(fs_info);
3240 return ret;
3241 }
3242 }
3243
3244 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3245 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3246 btrfs_info(fs_info, "creating free space tree");
3247 ret = btrfs_create_free_space_tree(fs_info);
3248 if (ret) {
3249 btrfs_warn(fs_info,
3250 "failed to create free space tree: %d", ret);
3251 close_ctree(fs_info);
3252 return ret;
3253 }
3254 }
3255
3256 down_read(&fs_info->cleanup_work_sem);
3257 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3258 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3259 up_read(&fs_info->cleanup_work_sem);
3260 close_ctree(fs_info);
3261 return ret;
3262 }
3263 up_read(&fs_info->cleanup_work_sem);
3264
3265 ret = btrfs_resume_balance_async(fs_info);
3266 if (ret) {
3267 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3268 close_ctree(fs_info);
3269 return ret;
3270 }
3271
3272 ret = btrfs_resume_dev_replace_async(fs_info);
3273 if (ret) {
3274 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3275 close_ctree(fs_info);
3276 return ret;
3277 }
3278
3279 btrfs_qgroup_rescan_resume(fs_info);
3280
3281 if (!fs_info->uuid_root) {
3282 btrfs_info(fs_info, "creating UUID tree");
3283 ret = btrfs_create_uuid_tree(fs_info);
3284 if (ret) {
3285 btrfs_warn(fs_info,
3286 "failed to create the UUID tree: %d", ret);
3287 close_ctree(fs_info);
3288 return ret;
3289 }
3290 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3291 fs_info->generation !=
3292 btrfs_super_uuid_tree_generation(disk_super)) {
3293 btrfs_info(fs_info, "checking UUID tree");
3294 ret = btrfs_check_uuid_tree(fs_info);
3295 if (ret) {
3296 btrfs_warn(fs_info,
3297 "failed to check the UUID tree: %d", ret);
3298 close_ctree(fs_info);
3299 return ret;
3300 }
3301 } else {
3302 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3303 }
3304 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3305
3306 /*
3307 * backuproot only affect mount behavior, and if open_ctree succeeded,
3308 * no need to keep the flag
3309 */
3310 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3311
3312 return 0;
3313
3314 fail_qgroup:
3315 btrfs_free_qgroup_config(fs_info);
3316 fail_trans_kthread:
3317 kthread_stop(fs_info->transaction_kthread);
3318 btrfs_cleanup_transaction(fs_info);
3319 btrfs_free_fs_roots(fs_info);
3320 fail_cleaner:
3321 kthread_stop(fs_info->cleaner_kthread);
3322
3323 /*
3324 * make sure we're done with the btree inode before we stop our
3325 * kthreads
3326 */
3327 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3328
3329 fail_sysfs:
3330 btrfs_sysfs_remove_mounted(fs_info);
3331
3332 fail_fsdev_sysfs:
3333 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3334
3335 fail_block_groups:
3336 btrfs_put_block_group_cache(fs_info);
3337
3338 fail_tree_roots:
3339 free_root_pointers(fs_info, 1);
3340 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3341
3342 fail_sb_buffer:
3343 btrfs_stop_all_workers(fs_info);
3344 btrfs_free_block_groups(fs_info);
3345 fail_alloc:
3346 fail_iput:
3347 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3348
3349 iput(fs_info->btree_inode);
3350 fail_bio_counter:
3351 percpu_counter_destroy(&fs_info->bio_counter);
3352 fail_delalloc_bytes:
3353 percpu_counter_destroy(&fs_info->delalloc_bytes);
3354 fail_dirty_metadata_bytes:
3355 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3356 fail_srcu:
3357 cleanup_srcu_struct(&fs_info->subvol_srcu);
3358 fail:
3359 btrfs_free_stripe_hash_table(fs_info);
3360 btrfs_close_devices(fs_info->fs_devices);
3361 return err;
3362
3363 recovery_tree_root:
3364 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3365 goto fail_tree_roots;
3366
3367 free_root_pointers(fs_info, 0);
3368
3369 /* don't use the log in recovery mode, it won't be valid */
3370 btrfs_set_super_log_root(disk_super, 0);
3371
3372 /* we can't trust the free space cache either */
3373 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3374
3375 ret = next_root_backup(fs_info, fs_info->super_copy,
3376 &num_backups_tried, &backup_index);
3377 if (ret == -1)
3378 goto fail_block_groups;
3379 goto retry_root_backup;
3380 }
3381 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3382
3383 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3384 {
3385 if (uptodate) {
3386 set_buffer_uptodate(bh);
3387 } else {
3388 struct btrfs_device *device = (struct btrfs_device *)
3389 bh->b_private;
3390
3391 btrfs_warn_rl_in_rcu(device->fs_info,
3392 "lost page write due to IO error on %s",
3393 rcu_str_deref(device->name));
3394 /* note, we don't set_buffer_write_io_error because we have
3395 * our own ways of dealing with the IO errors
3396 */
3397 clear_buffer_uptodate(bh);
3398 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3399 }
3400 unlock_buffer(bh);
3401 put_bh(bh);
3402 }
3403
3404 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3405 struct buffer_head **bh_ret)
3406 {
3407 struct buffer_head *bh;
3408 struct btrfs_super_block *super;
3409 u64 bytenr;
3410
3411 bytenr = btrfs_sb_offset(copy_num);
3412 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3413 return -EINVAL;
3414
3415 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3416 /*
3417 * If we fail to read from the underlying devices, as of now
3418 * the best option we have is to mark it EIO.
3419 */
3420 if (!bh)
3421 return -EIO;
3422
3423 super = (struct btrfs_super_block *)bh->b_data;
3424 if (btrfs_super_bytenr(super) != bytenr ||
3425 btrfs_super_magic(super) != BTRFS_MAGIC) {
3426 brelse(bh);
3427 return -EINVAL;
3428 }
3429
3430 *bh_ret = bh;
3431 return 0;
3432 }
3433
3434
3435 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3436 {
3437 struct buffer_head *bh;
3438 struct buffer_head *latest = NULL;
3439 struct btrfs_super_block *super;
3440 int i;
3441 u64 transid = 0;
3442 int ret = -EINVAL;
3443
3444 /* we would like to check all the supers, but that would make
3445 * a btrfs mount succeed after a mkfs from a different FS.
3446 * So, we need to add a special mount option to scan for
3447 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3448 */
3449 for (i = 0; i < 1; i++) {
3450 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3451 if (ret)
3452 continue;
3453
3454 super = (struct btrfs_super_block *)bh->b_data;
3455
3456 if (!latest || btrfs_super_generation(super) > transid) {
3457 brelse(latest);
3458 latest = bh;
3459 transid = btrfs_super_generation(super);
3460 } else {
3461 brelse(bh);
3462 }
3463 }
3464
3465 if (!latest)
3466 return ERR_PTR(ret);
3467
3468 return latest;
3469 }
3470
3471 /*
3472 * Write superblock @sb to the @device. Do not wait for completion, all the
3473 * buffer heads we write are pinned.
3474 *
3475 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3476 * the expected device size at commit time. Note that max_mirrors must be
3477 * same for write and wait phases.
3478 *
3479 * Return number of errors when buffer head is not found or submission fails.
3480 */
3481 static int write_dev_supers(struct btrfs_device *device,
3482 struct btrfs_super_block *sb, int max_mirrors)
3483 {
3484 struct buffer_head *bh;
3485 int i;
3486 int ret;
3487 int errors = 0;
3488 u32 crc;
3489 u64 bytenr;
3490 int op_flags;
3491
3492 if (max_mirrors == 0)
3493 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3494
3495 for (i = 0; i < max_mirrors; i++) {
3496 bytenr = btrfs_sb_offset(i);
3497 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3498 device->commit_total_bytes)
3499 break;
3500
3501 btrfs_set_super_bytenr(sb, bytenr);
3502
3503 crc = ~(u32)0;
3504 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3505 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3506 btrfs_csum_final(crc, sb->csum);
3507
3508 /* One reference for us, and we leave it for the caller */
3509 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3510 BTRFS_SUPER_INFO_SIZE);
3511 if (!bh) {
3512 btrfs_err(device->fs_info,
3513 "couldn't get super buffer head for bytenr %llu",
3514 bytenr);
3515 errors++;
3516 continue;
3517 }
3518
3519 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3520
3521 /* one reference for submit_bh */
3522 get_bh(bh);
3523
3524 set_buffer_uptodate(bh);
3525 lock_buffer(bh);
3526 bh->b_end_io = btrfs_end_buffer_write_sync;
3527 bh->b_private = device;
3528
3529 /*
3530 * we fua the first super. The others we allow
3531 * to go down lazy.
3532 */
3533 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3534 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3535 op_flags |= REQ_FUA;
3536 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3537 if (ret)
3538 errors++;
3539 }
3540 return errors < i ? 0 : -1;
3541 }
3542
3543 /*
3544 * Wait for write completion of superblocks done by write_dev_supers,
3545 * @max_mirrors same for write and wait phases.
3546 *
3547 * Return number of errors when buffer head is not found or not marked up to
3548 * date.
3549 */
3550 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3551 {
3552 struct buffer_head *bh;
3553 int i;
3554 int errors = 0;
3555 bool primary_failed = false;
3556 u64 bytenr;
3557
3558 if (max_mirrors == 0)
3559 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3560
3561 for (i = 0; i < max_mirrors; i++) {
3562 bytenr = btrfs_sb_offset(i);
3563 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3564 device->commit_total_bytes)
3565 break;
3566
3567 bh = __find_get_block(device->bdev,
3568 bytenr / BTRFS_BDEV_BLOCKSIZE,
3569 BTRFS_SUPER_INFO_SIZE);
3570 if (!bh) {
3571 errors++;
3572 if (i == 0)
3573 primary_failed = true;
3574 continue;
3575 }
3576 wait_on_buffer(bh);
3577 if (!buffer_uptodate(bh)) {
3578 errors++;
3579 if (i == 0)
3580 primary_failed = true;
3581 }
3582
3583 /* drop our reference */
3584 brelse(bh);
3585
3586 /* drop the reference from the writing run */
3587 brelse(bh);
3588 }
3589
3590 /* log error, force error return */
3591 if (primary_failed) {
3592 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3593 device->devid);
3594 return -1;
3595 }
3596
3597 return errors < i ? 0 : -1;
3598 }
3599
3600 /*
3601 * endio for the write_dev_flush, this will wake anyone waiting
3602 * for the barrier when it is done
3603 */
3604 static void btrfs_end_empty_barrier(struct bio *bio)
3605 {
3606 complete(bio->bi_private);
3607 }
3608
3609 /*
3610 * Submit a flush request to the device if it supports it. Error handling is
3611 * done in the waiting counterpart.
3612 */
3613 static void write_dev_flush(struct btrfs_device *device)
3614 {
3615 struct request_queue *q = bdev_get_queue(device->bdev);
3616 struct bio *bio = device->flush_bio;
3617
3618 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3619 return;
3620
3621 bio_reset(bio);
3622 bio->bi_end_io = btrfs_end_empty_barrier;
3623 bio_set_dev(bio, device->bdev);
3624 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3625 init_completion(&device->flush_wait);
3626 bio->bi_private = &device->flush_wait;
3627
3628 btrfsic_submit_bio(bio);
3629 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3630 }
3631
3632 /*
3633 * If the flush bio has been submitted by write_dev_flush, wait for it.
3634 */
3635 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3636 {
3637 struct bio *bio = device->flush_bio;
3638
3639 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3640 return BLK_STS_OK;
3641
3642 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3643 wait_for_completion_io(&device->flush_wait);
3644
3645 return bio->bi_status;
3646 }
3647
3648 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3649 {
3650 if (!btrfs_check_rw_degradable(fs_info, NULL))
3651 return -EIO;
3652 return 0;
3653 }
3654
3655 /*
3656 * send an empty flush down to each device in parallel,
3657 * then wait for them
3658 */
3659 static int barrier_all_devices(struct btrfs_fs_info *info)
3660 {
3661 struct list_head *head;
3662 struct btrfs_device *dev;
3663 int errors_wait = 0;
3664 blk_status_t ret;
3665
3666 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3667 /* send down all the barriers */
3668 head = &info->fs_devices->devices;
3669 list_for_each_entry(dev, head, dev_list) {
3670 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3671 continue;
3672 if (!dev->bdev)
3673 continue;
3674 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3675 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3676 continue;
3677
3678 write_dev_flush(dev);
3679 dev->last_flush_error = BLK_STS_OK;
3680 }
3681
3682 /* wait for all the barriers */
3683 list_for_each_entry(dev, head, dev_list) {
3684 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3685 continue;
3686 if (!dev->bdev) {
3687 errors_wait++;
3688 continue;
3689 }
3690 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3691 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3692 continue;
3693
3694 ret = wait_dev_flush(dev);
3695 if (ret) {
3696 dev->last_flush_error = ret;
3697 btrfs_dev_stat_inc_and_print(dev,
3698 BTRFS_DEV_STAT_FLUSH_ERRS);
3699 errors_wait++;
3700 }
3701 }
3702
3703 if (errors_wait) {
3704 /*
3705 * At some point we need the status of all disks
3706 * to arrive at the volume status. So error checking
3707 * is being pushed to a separate loop.
3708 */
3709 return check_barrier_error(info);
3710 }
3711 return 0;
3712 }
3713
3714 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3715 {
3716 int raid_type;
3717 int min_tolerated = INT_MAX;
3718
3719 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3720 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3721 min_tolerated = min(min_tolerated,
3722 btrfs_raid_array[BTRFS_RAID_SINGLE].
3723 tolerated_failures);
3724
3725 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3726 if (raid_type == BTRFS_RAID_SINGLE)
3727 continue;
3728 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3729 continue;
3730 min_tolerated = min(min_tolerated,
3731 btrfs_raid_array[raid_type].
3732 tolerated_failures);
3733 }
3734
3735 if (min_tolerated == INT_MAX) {
3736 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3737 min_tolerated = 0;
3738 }
3739
3740 return min_tolerated;
3741 }
3742
3743 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3744 {
3745 struct list_head *head;
3746 struct btrfs_device *dev;
3747 struct btrfs_super_block *sb;
3748 struct btrfs_dev_item *dev_item;
3749 int ret;
3750 int do_barriers;
3751 int max_errors;
3752 int total_errors = 0;
3753 u64 flags;
3754
3755 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3756
3757 /*
3758 * max_mirrors == 0 indicates we're from commit_transaction,
3759 * not from fsync where the tree roots in fs_info have not
3760 * been consistent on disk.
3761 */
3762 if (max_mirrors == 0)
3763 backup_super_roots(fs_info);
3764
3765 sb = fs_info->super_for_commit;
3766 dev_item = &sb->dev_item;
3767
3768 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3769 head = &fs_info->fs_devices->devices;
3770 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3771
3772 if (do_barriers) {
3773 ret = barrier_all_devices(fs_info);
3774 if (ret) {
3775 mutex_unlock(
3776 &fs_info->fs_devices->device_list_mutex);
3777 btrfs_handle_fs_error(fs_info, ret,
3778 "errors while submitting device barriers.");
3779 return ret;
3780 }
3781 }
3782
3783 list_for_each_entry(dev, head, dev_list) {
3784 if (!dev->bdev) {
3785 total_errors++;
3786 continue;
3787 }
3788 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3789 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3790 continue;
3791
3792 btrfs_set_stack_device_generation(dev_item, 0);
3793 btrfs_set_stack_device_type(dev_item, dev->type);
3794 btrfs_set_stack_device_id(dev_item, dev->devid);
3795 btrfs_set_stack_device_total_bytes(dev_item,
3796 dev->commit_total_bytes);
3797 btrfs_set_stack_device_bytes_used(dev_item,
3798 dev->commit_bytes_used);
3799 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3800 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3801 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3802 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3803 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
3804
3805 flags = btrfs_super_flags(sb);
3806 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3807
3808 ret = btrfs_validate_write_super(fs_info, sb);
3809 if (ret < 0) {
3810 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3811 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3812 "unexpected superblock corruption detected");
3813 return -EUCLEAN;
3814 }
3815
3816 ret = write_dev_supers(dev, sb, max_mirrors);
3817 if (ret)
3818 total_errors++;
3819 }
3820 if (total_errors > max_errors) {
3821 btrfs_err(fs_info, "%d errors while writing supers",
3822 total_errors);
3823 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3824
3825 /* FUA is masked off if unsupported and can't be the reason */
3826 btrfs_handle_fs_error(fs_info, -EIO,
3827 "%d errors while writing supers",
3828 total_errors);
3829 return -EIO;
3830 }
3831
3832 total_errors = 0;
3833 list_for_each_entry(dev, head, dev_list) {
3834 if (!dev->bdev)
3835 continue;
3836 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3837 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3838 continue;
3839
3840 ret = wait_dev_supers(dev, max_mirrors);
3841 if (ret)
3842 total_errors++;
3843 }
3844 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3845 if (total_errors > max_errors) {
3846 btrfs_handle_fs_error(fs_info, -EIO,
3847 "%d errors while writing supers",
3848 total_errors);
3849 return -EIO;
3850 }
3851 return 0;
3852 }
3853
3854 /* Drop a fs root from the radix tree and free it. */
3855 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3856 struct btrfs_root *root)
3857 {
3858 spin_lock(&fs_info->fs_roots_radix_lock);
3859 radix_tree_delete(&fs_info->fs_roots_radix,
3860 (unsigned long)root->root_key.objectid);
3861 spin_unlock(&fs_info->fs_roots_radix_lock);
3862
3863 if (btrfs_root_refs(&root->root_item) == 0)
3864 synchronize_srcu(&fs_info->subvol_srcu);
3865
3866 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3867 btrfs_free_log(NULL, root);
3868 if (root->reloc_root) {
3869 free_extent_buffer(root->reloc_root->node);
3870 free_extent_buffer(root->reloc_root->commit_root);
3871 btrfs_put_fs_root(root->reloc_root);
3872 root->reloc_root = NULL;
3873 }
3874 }
3875
3876 if (root->free_ino_pinned)
3877 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3878 if (root->free_ino_ctl)
3879 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3880 free_fs_root(root);
3881 }
3882
3883 static void free_fs_root(struct btrfs_root *root)
3884 {
3885 iput(root->ino_cache_inode);
3886 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3887 if (root->anon_dev)
3888 free_anon_bdev(root->anon_dev);
3889 if (root->subv_writers)
3890 btrfs_free_subvolume_writers(root->subv_writers);
3891 free_extent_buffer(root->node);
3892 free_extent_buffer(root->commit_root);
3893 kfree(root->free_ino_ctl);
3894 kfree(root->free_ino_pinned);
3895 kfree(root->name);
3896 btrfs_put_fs_root(root);
3897 }
3898
3899 void btrfs_free_fs_root(struct btrfs_root *root)
3900 {
3901 free_fs_root(root);
3902 }
3903
3904 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3905 {
3906 u64 root_objectid = 0;
3907 struct btrfs_root *gang[8];
3908 int i = 0;
3909 int err = 0;
3910 unsigned int ret = 0;
3911 int index;
3912
3913 while (1) {
3914 index = srcu_read_lock(&fs_info->subvol_srcu);
3915 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3916 (void **)gang, root_objectid,
3917 ARRAY_SIZE(gang));
3918 if (!ret) {
3919 srcu_read_unlock(&fs_info->subvol_srcu, index);
3920 break;
3921 }
3922 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3923
3924 for (i = 0; i < ret; i++) {
3925 /* Avoid to grab roots in dead_roots */
3926 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3927 gang[i] = NULL;
3928 continue;
3929 }
3930 /* grab all the search result for later use */
3931 gang[i] = btrfs_grab_fs_root(gang[i]);
3932 }
3933 srcu_read_unlock(&fs_info->subvol_srcu, index);
3934
3935 for (i = 0; i < ret; i++) {
3936 if (!gang[i])
3937 continue;
3938 root_objectid = gang[i]->root_key.objectid;
3939 err = btrfs_orphan_cleanup(gang[i]);
3940 if (err)
3941 break;
3942 btrfs_put_fs_root(gang[i]);
3943 }
3944 root_objectid++;
3945 }
3946
3947 /* release the uncleaned roots due to error */
3948 for (; i < ret; i++) {
3949 if (gang[i])
3950 btrfs_put_fs_root(gang[i]);
3951 }
3952 return err;
3953 }
3954
3955 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3956 {
3957 struct btrfs_root *root = fs_info->tree_root;
3958 struct btrfs_trans_handle *trans;
3959
3960 mutex_lock(&fs_info->cleaner_mutex);
3961 btrfs_run_delayed_iputs(fs_info);
3962 mutex_unlock(&fs_info->cleaner_mutex);
3963 wake_up_process(fs_info->cleaner_kthread);
3964
3965 /* wait until ongoing cleanup work done */
3966 down_write(&fs_info->cleanup_work_sem);
3967 up_write(&fs_info->cleanup_work_sem);
3968
3969 trans = btrfs_join_transaction(root);
3970 if (IS_ERR(trans))
3971 return PTR_ERR(trans);
3972 return btrfs_commit_transaction(trans);
3973 }
3974
3975 void close_ctree(struct btrfs_fs_info *fs_info)
3976 {
3977 int ret;
3978
3979 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3980
3981 /* wait for the qgroup rescan worker to stop */
3982 btrfs_qgroup_wait_for_completion(fs_info, false);
3983
3984 /* wait for the uuid_scan task to finish */
3985 down(&fs_info->uuid_tree_rescan_sem);
3986 /* avoid complains from lockdep et al., set sem back to initial state */
3987 up(&fs_info->uuid_tree_rescan_sem);
3988
3989 /* pause restriper - we want to resume on mount */
3990 btrfs_pause_balance(fs_info);
3991
3992 btrfs_dev_replace_suspend_for_unmount(fs_info);
3993
3994 btrfs_scrub_cancel(fs_info);
3995
3996 /* wait for any defraggers to finish */
3997 wait_event(fs_info->transaction_wait,
3998 (atomic_read(&fs_info->defrag_running) == 0));
3999
4000 /* clear out the rbtree of defraggable inodes */
4001 btrfs_cleanup_defrag_inodes(fs_info);
4002
4003 cancel_work_sync(&fs_info->async_reclaim_work);
4004
4005 if (!sb_rdonly(fs_info->sb)) {
4006 /*
4007 * If the cleaner thread is stopped and there are
4008 * block groups queued for removal, the deletion will be
4009 * skipped when we quit the cleaner thread.
4010 */
4011 btrfs_delete_unused_bgs(fs_info);
4012
4013 ret = btrfs_commit_super(fs_info);
4014 if (ret)
4015 btrfs_err(fs_info, "commit super ret %d", ret);
4016 }
4017
4018 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4019 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4020 btrfs_error_commit_super(fs_info);
4021
4022 kthread_stop(fs_info->transaction_kthread);
4023 kthread_stop(fs_info->cleaner_kthread);
4024
4025 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4026
4027 btrfs_free_qgroup_config(fs_info);
4028 ASSERT(list_empty(&fs_info->delalloc_roots));
4029
4030 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4031 btrfs_info(fs_info, "at unmount delalloc count %lld",
4032 percpu_counter_sum(&fs_info->delalloc_bytes));
4033 }
4034
4035 btrfs_sysfs_remove_mounted(fs_info);
4036 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4037
4038 btrfs_free_fs_roots(fs_info);
4039
4040 btrfs_put_block_group_cache(fs_info);
4041
4042 /*
4043 * we must make sure there is not any read request to
4044 * submit after we stopping all workers.
4045 */
4046 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4047 btrfs_stop_all_workers(fs_info);
4048
4049 btrfs_free_block_groups(fs_info);
4050
4051 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4052 free_root_pointers(fs_info, 1);
4053
4054 iput(fs_info->btree_inode);
4055
4056 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4057 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4058 btrfsic_unmount(fs_info->fs_devices);
4059 #endif
4060
4061 btrfs_close_devices(fs_info->fs_devices);
4062 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4063
4064 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4065 percpu_counter_destroy(&fs_info->delalloc_bytes);
4066 percpu_counter_destroy(&fs_info->bio_counter);
4067 cleanup_srcu_struct(&fs_info->subvol_srcu);
4068
4069 btrfs_free_stripe_hash_table(fs_info);
4070 btrfs_free_ref_cache(fs_info);
4071
4072 while (!list_empty(&fs_info->pinned_chunks)) {
4073 struct extent_map *em;
4074
4075 em = list_first_entry(&fs_info->pinned_chunks,
4076 struct extent_map, list);
4077 list_del_init(&em->list);
4078 free_extent_map(em);
4079 }
4080 }
4081
4082 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4083 int atomic)
4084 {
4085 int ret;
4086 struct inode *btree_inode = buf->pages[0]->mapping->host;
4087
4088 ret = extent_buffer_uptodate(buf);
4089 if (!ret)
4090 return ret;
4091
4092 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4093 parent_transid, atomic);
4094 if (ret == -EAGAIN)
4095 return ret;
4096 return !ret;
4097 }
4098
4099 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4100 {
4101 struct btrfs_fs_info *fs_info;
4102 struct btrfs_root *root;
4103 u64 transid = btrfs_header_generation(buf);
4104 int was_dirty;
4105
4106 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4107 /*
4108 * This is a fast path so only do this check if we have sanity tests
4109 * enabled. Normal people shouldn't be marking dummy buffers as dirty
4110 * outside of the sanity tests.
4111 */
4112 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4113 return;
4114 #endif
4115 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4116 fs_info = root->fs_info;
4117 btrfs_assert_tree_locked(buf);
4118 if (transid != fs_info->generation)
4119 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4120 buf->start, transid, fs_info->generation);
4121 was_dirty = set_extent_buffer_dirty(buf);
4122 if (!was_dirty)
4123 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4124 buf->len,
4125 fs_info->dirty_metadata_batch);
4126 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4127 /*
4128 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4129 * but item data not updated.
4130 * So here we should only check item pointers, not item data.
4131 */
4132 if (btrfs_header_level(buf) == 0 &&
4133 btrfs_check_leaf_relaxed(fs_info, buf)) {
4134 btrfs_print_leaf(buf);
4135 ASSERT(0);
4136 }
4137 #endif
4138 }
4139
4140 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4141 int flush_delayed)
4142 {
4143 /*
4144 * looks as though older kernels can get into trouble with
4145 * this code, they end up stuck in balance_dirty_pages forever
4146 */
4147 int ret;
4148
4149 if (current->flags & PF_MEMALLOC)
4150 return;
4151
4152 if (flush_delayed)
4153 btrfs_balance_delayed_items(fs_info);
4154
4155 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4156 BTRFS_DIRTY_METADATA_THRESH,
4157 fs_info->dirty_metadata_batch);
4158 if (ret > 0) {
4159 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4160 }
4161 }
4162
4163 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4164 {
4165 __btrfs_btree_balance_dirty(fs_info, 1);
4166 }
4167
4168 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4169 {
4170 __btrfs_btree_balance_dirty(fs_info, 0);
4171 }
4172
4173 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4174 struct btrfs_key *first_key)
4175 {
4176 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4177 struct btrfs_fs_info *fs_info = root->fs_info;
4178
4179 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
4180 level, first_key);
4181 }
4182
4183 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4184 {
4185 /* cleanup FS via transaction */
4186 btrfs_cleanup_transaction(fs_info);
4187
4188 mutex_lock(&fs_info->cleaner_mutex);
4189 btrfs_run_delayed_iputs(fs_info);
4190 mutex_unlock(&fs_info->cleaner_mutex);
4191
4192 down_write(&fs_info->cleanup_work_sem);
4193 up_write(&fs_info->cleanup_work_sem);
4194 }
4195
4196 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4197 {
4198 struct btrfs_ordered_extent *ordered;
4199
4200 spin_lock(&root->ordered_extent_lock);
4201 /*
4202 * This will just short circuit the ordered completion stuff which will
4203 * make sure the ordered extent gets properly cleaned up.
4204 */
4205 list_for_each_entry(ordered, &root->ordered_extents,
4206 root_extent_list)
4207 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4208 spin_unlock(&root->ordered_extent_lock);
4209 }
4210
4211 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4212 {
4213 struct btrfs_root *root;
4214 struct list_head splice;
4215
4216 INIT_LIST_HEAD(&splice);
4217
4218 spin_lock(&fs_info->ordered_root_lock);
4219 list_splice_init(&fs_info->ordered_roots, &splice);
4220 while (!list_empty(&splice)) {
4221 root = list_first_entry(&splice, struct btrfs_root,
4222 ordered_root);
4223 list_move_tail(&root->ordered_root,
4224 &fs_info->ordered_roots);
4225
4226 spin_unlock(&fs_info->ordered_root_lock);
4227 btrfs_destroy_ordered_extents(root);
4228
4229 cond_resched();
4230 spin_lock(&fs_info->ordered_root_lock);
4231 }
4232 spin_unlock(&fs_info->ordered_root_lock);
4233 }
4234
4235 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4236 struct btrfs_fs_info *fs_info)
4237 {
4238 struct rb_node *node;
4239 struct btrfs_delayed_ref_root *delayed_refs;
4240 struct btrfs_delayed_ref_node *ref;
4241 int ret = 0;
4242
4243 delayed_refs = &trans->delayed_refs;
4244
4245 spin_lock(&delayed_refs->lock);
4246 if (atomic_read(&delayed_refs->num_entries) == 0) {
4247 spin_unlock(&delayed_refs->lock);
4248 btrfs_info(fs_info, "delayed_refs has NO entry");
4249 return ret;
4250 }
4251
4252 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4253 struct btrfs_delayed_ref_head *head;
4254 struct rb_node *n;
4255 bool pin_bytes = false;
4256
4257 head = rb_entry(node, struct btrfs_delayed_ref_head,
4258 href_node);
4259 if (!mutex_trylock(&head->mutex)) {
4260 refcount_inc(&head->refs);
4261 spin_unlock(&delayed_refs->lock);
4262
4263 mutex_lock(&head->mutex);
4264 mutex_unlock(&head->mutex);
4265 btrfs_put_delayed_ref_head(head);
4266 spin_lock(&delayed_refs->lock);
4267 continue;
4268 }
4269 spin_lock(&head->lock);
4270 while ((n = rb_first(&head->ref_tree)) != NULL) {
4271 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4272 ref_node);
4273 ref->in_tree = 0;
4274 rb_erase(&ref->ref_node, &head->ref_tree);
4275 RB_CLEAR_NODE(&ref->ref_node);
4276 if (!list_empty(&ref->add_list))
4277 list_del(&ref->add_list);
4278 atomic_dec(&delayed_refs->num_entries);
4279 btrfs_put_delayed_ref(ref);
4280 }
4281 if (head->must_insert_reserved)
4282 pin_bytes = true;
4283 btrfs_free_delayed_extent_op(head->extent_op);
4284 delayed_refs->num_heads--;
4285 if (head->processing == 0)
4286 delayed_refs->num_heads_ready--;
4287 atomic_dec(&delayed_refs->num_entries);
4288 rb_erase(&head->href_node, &delayed_refs->href_root);
4289 RB_CLEAR_NODE(&head->href_node);
4290 spin_unlock(&head->lock);
4291 spin_unlock(&delayed_refs->lock);
4292 mutex_unlock(&head->mutex);
4293
4294 if (pin_bytes)
4295 btrfs_pin_extent(fs_info, head->bytenr,
4296 head->num_bytes, 1);
4297 btrfs_put_delayed_ref_head(head);
4298 cond_resched();
4299 spin_lock(&delayed_refs->lock);
4300 }
4301
4302 spin_unlock(&delayed_refs->lock);
4303
4304 return ret;
4305 }
4306
4307 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4308 {
4309 struct btrfs_inode *btrfs_inode;
4310 struct list_head splice;
4311
4312 INIT_LIST_HEAD(&splice);
4313
4314 spin_lock(&root->delalloc_lock);
4315 list_splice_init(&root->delalloc_inodes, &splice);
4316
4317 while (!list_empty(&splice)) {
4318 struct inode *inode = NULL;
4319 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4320 delalloc_inodes);
4321 __btrfs_del_delalloc_inode(root, btrfs_inode);
4322 spin_unlock(&root->delalloc_lock);
4323
4324 /*
4325 * Make sure we get a live inode and that it'll not disappear
4326 * meanwhile.
4327 */
4328 inode = igrab(&btrfs_inode->vfs_inode);
4329 if (inode) {
4330 invalidate_inode_pages2(inode->i_mapping);
4331 iput(inode);
4332 }
4333 spin_lock(&root->delalloc_lock);
4334 }
4335 spin_unlock(&root->delalloc_lock);
4336 }
4337
4338 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4339 {
4340 struct btrfs_root *root;
4341 struct list_head splice;
4342
4343 INIT_LIST_HEAD(&splice);
4344
4345 spin_lock(&fs_info->delalloc_root_lock);
4346 list_splice_init(&fs_info->delalloc_roots, &splice);
4347 while (!list_empty(&splice)) {
4348 root = list_first_entry(&splice, struct btrfs_root,
4349 delalloc_root);
4350 root = btrfs_grab_fs_root(root);
4351 BUG_ON(!root);
4352 spin_unlock(&fs_info->delalloc_root_lock);
4353
4354 btrfs_destroy_delalloc_inodes(root);
4355 btrfs_put_fs_root(root);
4356
4357 spin_lock(&fs_info->delalloc_root_lock);
4358 }
4359 spin_unlock(&fs_info->delalloc_root_lock);
4360 }
4361
4362 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4363 struct extent_io_tree *dirty_pages,
4364 int mark)
4365 {
4366 int ret;
4367 struct extent_buffer *eb;
4368 u64 start = 0;
4369 u64 end;
4370
4371 while (1) {
4372 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4373 mark, NULL);
4374 if (ret)
4375 break;
4376
4377 clear_extent_bits(dirty_pages, start, end, mark);
4378 while (start <= end) {
4379 eb = find_extent_buffer(fs_info, start);
4380 start += fs_info->nodesize;
4381 if (!eb)
4382 continue;
4383 wait_on_extent_buffer_writeback(eb);
4384
4385 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4386 &eb->bflags))
4387 clear_extent_buffer_dirty(eb);
4388 free_extent_buffer_stale(eb);
4389 }
4390 }
4391
4392 return ret;
4393 }
4394
4395 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4396 struct extent_io_tree *pinned_extents)
4397 {
4398 struct extent_io_tree *unpin;
4399 u64 start;
4400 u64 end;
4401 int ret;
4402 bool loop = true;
4403
4404 unpin = pinned_extents;
4405 again:
4406 while (1) {
4407 /*
4408 * The btrfs_finish_extent_commit() may get the same range as
4409 * ours between find_first_extent_bit and clear_extent_dirty.
4410 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4411 * the same extent range.
4412 */
4413 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4414 ret = find_first_extent_bit(unpin, 0, &start, &end,
4415 EXTENT_DIRTY, NULL);
4416 if (ret) {
4417 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4418 break;
4419 }
4420
4421 clear_extent_dirty(unpin, start, end);
4422 btrfs_error_unpin_extent_range(fs_info, start, end);
4423 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4424 cond_resched();
4425 }
4426
4427 if (loop) {
4428 if (unpin == &fs_info->freed_extents[0])
4429 unpin = &fs_info->freed_extents[1];
4430 else
4431 unpin = &fs_info->freed_extents[0];
4432 loop = false;
4433 goto again;
4434 }
4435
4436 return 0;
4437 }
4438
4439 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4440 {
4441 struct inode *inode;
4442
4443 inode = cache->io_ctl.inode;
4444 if (inode) {
4445 invalidate_inode_pages2(inode->i_mapping);
4446 BTRFS_I(inode)->generation = 0;
4447 cache->io_ctl.inode = NULL;
4448 iput(inode);
4449 }
4450 btrfs_put_block_group(cache);
4451 }
4452
4453 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4454 struct btrfs_fs_info *fs_info)
4455 {
4456 struct btrfs_block_group_cache *cache;
4457
4458 spin_lock(&cur_trans->dirty_bgs_lock);
4459 while (!list_empty(&cur_trans->dirty_bgs)) {
4460 cache = list_first_entry(&cur_trans->dirty_bgs,
4461 struct btrfs_block_group_cache,
4462 dirty_list);
4463
4464 if (!list_empty(&cache->io_list)) {
4465 spin_unlock(&cur_trans->dirty_bgs_lock);
4466 list_del_init(&cache->io_list);
4467 btrfs_cleanup_bg_io(cache);
4468 spin_lock(&cur_trans->dirty_bgs_lock);
4469 }
4470
4471 list_del_init(&cache->dirty_list);
4472 spin_lock(&cache->lock);
4473 cache->disk_cache_state = BTRFS_DC_ERROR;
4474 spin_unlock(&cache->lock);
4475
4476 spin_unlock(&cur_trans->dirty_bgs_lock);
4477 btrfs_put_block_group(cache);
4478 spin_lock(&cur_trans->dirty_bgs_lock);
4479 }
4480 spin_unlock(&cur_trans->dirty_bgs_lock);
4481
4482 /*
4483 * Refer to the definition of io_bgs member for details why it's safe
4484 * to use it without any locking
4485 */
4486 while (!list_empty(&cur_trans->io_bgs)) {
4487 cache = list_first_entry(&cur_trans->io_bgs,
4488 struct btrfs_block_group_cache,
4489 io_list);
4490
4491 list_del_init(&cache->io_list);
4492 spin_lock(&cache->lock);
4493 cache->disk_cache_state = BTRFS_DC_ERROR;
4494 spin_unlock(&cache->lock);
4495 btrfs_cleanup_bg_io(cache);
4496 }
4497 }
4498
4499 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4500 struct btrfs_fs_info *fs_info)
4501 {
4502 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4503 ASSERT(list_empty(&cur_trans->dirty_bgs));
4504 ASSERT(list_empty(&cur_trans->io_bgs));
4505
4506 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4507
4508 cur_trans->state = TRANS_STATE_COMMIT_START;
4509 wake_up(&fs_info->transaction_blocked_wait);
4510
4511 cur_trans->state = TRANS_STATE_UNBLOCKED;
4512 wake_up(&fs_info->transaction_wait);
4513
4514 btrfs_destroy_delayed_inodes(fs_info);
4515 btrfs_assert_delayed_root_empty(fs_info);
4516
4517 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4518 EXTENT_DIRTY);
4519 btrfs_destroy_pinned_extent(fs_info,
4520 fs_info->pinned_extents);
4521
4522 cur_trans->state =TRANS_STATE_COMPLETED;
4523 wake_up(&cur_trans->commit_wait);
4524 }
4525
4526 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4527 {
4528 struct btrfs_transaction *t;
4529
4530 mutex_lock(&fs_info->transaction_kthread_mutex);
4531
4532 spin_lock(&fs_info->trans_lock);
4533 while (!list_empty(&fs_info->trans_list)) {
4534 t = list_first_entry(&fs_info->trans_list,
4535 struct btrfs_transaction, list);
4536 if (t->state >= TRANS_STATE_COMMIT_START) {
4537 refcount_inc(&t->use_count);
4538 spin_unlock(&fs_info->trans_lock);
4539 btrfs_wait_for_commit(fs_info, t->transid);
4540 btrfs_put_transaction(t);
4541 spin_lock(&fs_info->trans_lock);
4542 continue;
4543 }
4544 if (t == fs_info->running_transaction) {
4545 t->state = TRANS_STATE_COMMIT_DOING;
4546 spin_unlock(&fs_info->trans_lock);
4547 /*
4548 * We wait for 0 num_writers since we don't hold a trans
4549 * handle open currently for this transaction.
4550 */
4551 wait_event(t->writer_wait,
4552 atomic_read(&t->num_writers) == 0);
4553 } else {
4554 spin_unlock(&fs_info->trans_lock);
4555 }
4556 btrfs_cleanup_one_transaction(t, fs_info);
4557
4558 spin_lock(&fs_info->trans_lock);
4559 if (t == fs_info->running_transaction)
4560 fs_info->running_transaction = NULL;
4561 list_del_init(&t->list);
4562 spin_unlock(&fs_info->trans_lock);
4563
4564 btrfs_put_transaction(t);
4565 trace_btrfs_transaction_commit(fs_info->tree_root);
4566 spin_lock(&fs_info->trans_lock);
4567 }
4568 spin_unlock(&fs_info->trans_lock);
4569 btrfs_destroy_all_ordered_extents(fs_info);
4570 btrfs_destroy_delayed_inodes(fs_info);
4571 btrfs_assert_delayed_root_empty(fs_info);
4572 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4573 btrfs_destroy_all_delalloc_inodes(fs_info);
4574 mutex_unlock(&fs_info->transaction_kthread_mutex);
4575
4576 return 0;
4577 }
4578
4579 static struct btrfs_fs_info *btree_fs_info(void *private_data)
4580 {
4581 struct inode *inode = private_data;
4582 return btrfs_sb(inode->i_sb);
4583 }
4584
4585 static const struct extent_io_ops btree_extent_io_ops = {
4586 /* mandatory callbacks */
4587 .submit_bio_hook = btree_submit_bio_hook,
4588 .readpage_end_io_hook = btree_readpage_end_io_hook,
4589 /* note we're sharing with inode.c for the merge bio hook */
4590 .merge_bio_hook = btrfs_merge_bio_hook,
4591 .readpage_io_failed_hook = btree_io_failed_hook,
4592 .set_range_writeback = btrfs_set_range_writeback,
4593 .tree_fs_info = btree_fs_info,
4594
4595 /* optional callbacks */
4596 };