]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - fs/ext4/super.c
Merge tag 'drm/tegra/for-5.1-rc5' of git://anongit.freedesktop.org/tegra/linux into...
[thirdparty/kernel/stable.git] / fs / ext4 / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48
49 #include "ext4.h"
50 #include "ext4_extents.h" /* Needed for trace points definition */
51 #include "ext4_jbd2.h"
52 #include "xattr.h"
53 #include "acl.h"
54 #include "mballoc.h"
55 #include "fsmap.h"
56
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/ext4.h>
59
60 static struct ext4_lazy_init *ext4_li_info;
61 static struct mutex ext4_li_mtx;
62 static struct ratelimit_state ext4_mount_msg_ratelimit;
63
64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
65 unsigned long journal_devnum);
66 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
67 static int ext4_commit_super(struct super_block *sb, int sync);
68 static void ext4_mark_recovery_complete(struct super_block *sb,
69 struct ext4_super_block *es);
70 static void ext4_clear_journal_err(struct super_block *sb,
71 struct ext4_super_block *es);
72 static int ext4_sync_fs(struct super_block *sb, int wait);
73 static int ext4_remount(struct super_block *sb, int *flags, char *data);
74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
75 static int ext4_unfreeze(struct super_block *sb);
76 static int ext4_freeze(struct super_block *sb);
77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 const char *dev_name, void *data);
79 static inline int ext2_feature_set_ok(struct super_block *sb);
80 static inline int ext3_feature_set_ok(struct super_block *sb);
81 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 unsigned int journal_inum);
87
88 /*
89 * Lock ordering
90 *
91 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
92 * i_mmap_rwsem (inode->i_mmap_rwsem)!
93 *
94 * page fault path:
95 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
96 * page lock -> i_data_sem (rw)
97 *
98 * buffered write path:
99 * sb_start_write -> i_mutex -> mmap_sem
100 * sb_start_write -> i_mutex -> transaction start -> page lock ->
101 * i_data_sem (rw)
102 *
103 * truncate:
104 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
106 * i_data_sem (rw)
107 *
108 * direct IO:
109 * sb_start_write -> i_mutex -> mmap_sem
110 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
111 *
112 * writepages:
113 * transaction start -> page lock(s) -> i_data_sem (rw)
114 */
115
116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
117 static struct file_system_type ext2_fs_type = {
118 .owner = THIS_MODULE,
119 .name = "ext2",
120 .mount = ext4_mount,
121 .kill_sb = kill_block_super,
122 .fs_flags = FS_REQUIRES_DEV,
123 };
124 MODULE_ALIAS_FS("ext2");
125 MODULE_ALIAS("ext2");
126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
127 #else
128 #define IS_EXT2_SB(sb) (0)
129 #endif
130
131
132 static struct file_system_type ext3_fs_type = {
133 .owner = THIS_MODULE,
134 .name = "ext3",
135 .mount = ext4_mount,
136 .kill_sb = kill_block_super,
137 .fs_flags = FS_REQUIRES_DEV,
138 };
139 MODULE_ALIAS_FS("ext3");
140 MODULE_ALIAS("ext3");
141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
142
143 /*
144 * This works like sb_bread() except it uses ERR_PTR for error
145 * returns. Currently with sb_bread it's impossible to distinguish
146 * between ENOMEM and EIO situations (since both result in a NULL
147 * return.
148 */
149 struct buffer_head *
150 ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags)
151 {
152 struct buffer_head *bh = sb_getblk(sb, block);
153
154 if (bh == NULL)
155 return ERR_PTR(-ENOMEM);
156 if (buffer_uptodate(bh))
157 return bh;
158 ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh);
159 wait_on_buffer(bh);
160 if (buffer_uptodate(bh))
161 return bh;
162 put_bh(bh);
163 return ERR_PTR(-EIO);
164 }
165
166 static int ext4_verify_csum_type(struct super_block *sb,
167 struct ext4_super_block *es)
168 {
169 if (!ext4_has_feature_metadata_csum(sb))
170 return 1;
171
172 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
173 }
174
175 static __le32 ext4_superblock_csum(struct super_block *sb,
176 struct ext4_super_block *es)
177 {
178 struct ext4_sb_info *sbi = EXT4_SB(sb);
179 int offset = offsetof(struct ext4_super_block, s_checksum);
180 __u32 csum;
181
182 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
183
184 return cpu_to_le32(csum);
185 }
186
187 static int ext4_superblock_csum_verify(struct super_block *sb,
188 struct ext4_super_block *es)
189 {
190 if (!ext4_has_metadata_csum(sb))
191 return 1;
192
193 return es->s_checksum == ext4_superblock_csum(sb, es);
194 }
195
196 void ext4_superblock_csum_set(struct super_block *sb)
197 {
198 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
199
200 if (!ext4_has_metadata_csum(sb))
201 return;
202
203 es->s_checksum = ext4_superblock_csum(sb, es);
204 }
205
206 void *ext4_kvmalloc(size_t size, gfp_t flags)
207 {
208 void *ret;
209
210 ret = kmalloc(size, flags | __GFP_NOWARN);
211 if (!ret)
212 ret = __vmalloc(size, flags, PAGE_KERNEL);
213 return ret;
214 }
215
216 void *ext4_kvzalloc(size_t size, gfp_t flags)
217 {
218 void *ret;
219
220 ret = kzalloc(size, flags | __GFP_NOWARN);
221 if (!ret)
222 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
223 return ret;
224 }
225
226 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
227 struct ext4_group_desc *bg)
228 {
229 return le32_to_cpu(bg->bg_block_bitmap_lo) |
230 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
231 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
232 }
233
234 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
235 struct ext4_group_desc *bg)
236 {
237 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
238 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
239 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
240 }
241
242 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
243 struct ext4_group_desc *bg)
244 {
245 return le32_to_cpu(bg->bg_inode_table_lo) |
246 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
247 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
248 }
249
250 __u32 ext4_free_group_clusters(struct super_block *sb,
251 struct ext4_group_desc *bg)
252 {
253 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
254 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
255 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
256 }
257
258 __u32 ext4_free_inodes_count(struct super_block *sb,
259 struct ext4_group_desc *bg)
260 {
261 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
262 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
263 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
264 }
265
266 __u32 ext4_used_dirs_count(struct super_block *sb,
267 struct ext4_group_desc *bg)
268 {
269 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
270 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
271 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
272 }
273
274 __u32 ext4_itable_unused_count(struct super_block *sb,
275 struct ext4_group_desc *bg)
276 {
277 return le16_to_cpu(bg->bg_itable_unused_lo) |
278 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
279 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
280 }
281
282 void ext4_block_bitmap_set(struct super_block *sb,
283 struct ext4_group_desc *bg, ext4_fsblk_t blk)
284 {
285 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
286 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
287 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
288 }
289
290 void ext4_inode_bitmap_set(struct super_block *sb,
291 struct ext4_group_desc *bg, ext4_fsblk_t blk)
292 {
293 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
294 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
295 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
296 }
297
298 void ext4_inode_table_set(struct super_block *sb,
299 struct ext4_group_desc *bg, ext4_fsblk_t blk)
300 {
301 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
302 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
303 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
304 }
305
306 void ext4_free_group_clusters_set(struct super_block *sb,
307 struct ext4_group_desc *bg, __u32 count)
308 {
309 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
310 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
311 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
312 }
313
314 void ext4_free_inodes_set(struct super_block *sb,
315 struct ext4_group_desc *bg, __u32 count)
316 {
317 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
318 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
319 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
320 }
321
322 void ext4_used_dirs_set(struct super_block *sb,
323 struct ext4_group_desc *bg, __u32 count)
324 {
325 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
326 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
327 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
328 }
329
330 void ext4_itable_unused_set(struct super_block *sb,
331 struct ext4_group_desc *bg, __u32 count)
332 {
333 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
334 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
335 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
336 }
337
338 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi)
339 {
340 time64_t now = ktime_get_real_seconds();
341
342 now = clamp_val(now, 0, (1ull << 40) - 1);
343
344 *lo = cpu_to_le32(lower_32_bits(now));
345 *hi = upper_32_bits(now);
346 }
347
348 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
349 {
350 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
351 }
352 #define ext4_update_tstamp(es, tstamp) \
353 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
354 #define ext4_get_tstamp(es, tstamp) \
355 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
356
357 static void __save_error_info(struct super_block *sb, const char *func,
358 unsigned int line)
359 {
360 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
361
362 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
363 if (bdev_read_only(sb->s_bdev))
364 return;
365 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
366 ext4_update_tstamp(es, s_last_error_time);
367 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
368 es->s_last_error_line = cpu_to_le32(line);
369 if (!es->s_first_error_time) {
370 es->s_first_error_time = es->s_last_error_time;
371 es->s_first_error_time_hi = es->s_last_error_time_hi;
372 strncpy(es->s_first_error_func, func,
373 sizeof(es->s_first_error_func));
374 es->s_first_error_line = cpu_to_le32(line);
375 es->s_first_error_ino = es->s_last_error_ino;
376 es->s_first_error_block = es->s_last_error_block;
377 }
378 /*
379 * Start the daily error reporting function if it hasn't been
380 * started already
381 */
382 if (!es->s_error_count)
383 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
384 le32_add_cpu(&es->s_error_count, 1);
385 }
386
387 static void save_error_info(struct super_block *sb, const char *func,
388 unsigned int line)
389 {
390 __save_error_info(sb, func, line);
391 ext4_commit_super(sb, 1);
392 }
393
394 /*
395 * The del_gendisk() function uninitializes the disk-specific data
396 * structures, including the bdi structure, without telling anyone
397 * else. Once this happens, any attempt to call mark_buffer_dirty()
398 * (for example, by ext4_commit_super), will cause a kernel OOPS.
399 * This is a kludge to prevent these oops until we can put in a proper
400 * hook in del_gendisk() to inform the VFS and file system layers.
401 */
402 static int block_device_ejected(struct super_block *sb)
403 {
404 struct inode *bd_inode = sb->s_bdev->bd_inode;
405 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
406
407 return bdi->dev == NULL;
408 }
409
410 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
411 {
412 struct super_block *sb = journal->j_private;
413 struct ext4_sb_info *sbi = EXT4_SB(sb);
414 int error = is_journal_aborted(journal);
415 struct ext4_journal_cb_entry *jce;
416
417 BUG_ON(txn->t_state == T_FINISHED);
418
419 ext4_process_freed_data(sb, txn->t_tid);
420
421 spin_lock(&sbi->s_md_lock);
422 while (!list_empty(&txn->t_private_list)) {
423 jce = list_entry(txn->t_private_list.next,
424 struct ext4_journal_cb_entry, jce_list);
425 list_del_init(&jce->jce_list);
426 spin_unlock(&sbi->s_md_lock);
427 jce->jce_func(sb, jce, error);
428 spin_lock(&sbi->s_md_lock);
429 }
430 spin_unlock(&sbi->s_md_lock);
431 }
432
433 static bool system_going_down(void)
434 {
435 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
436 || system_state == SYSTEM_RESTART;
437 }
438
439 /* Deal with the reporting of failure conditions on a filesystem such as
440 * inconsistencies detected or read IO failures.
441 *
442 * On ext2, we can store the error state of the filesystem in the
443 * superblock. That is not possible on ext4, because we may have other
444 * write ordering constraints on the superblock which prevent us from
445 * writing it out straight away; and given that the journal is about to
446 * be aborted, we can't rely on the current, or future, transactions to
447 * write out the superblock safely.
448 *
449 * We'll just use the jbd2_journal_abort() error code to record an error in
450 * the journal instead. On recovery, the journal will complain about
451 * that error until we've noted it down and cleared it.
452 */
453
454 static void ext4_handle_error(struct super_block *sb)
455 {
456 if (test_opt(sb, WARN_ON_ERROR))
457 WARN_ON_ONCE(1);
458
459 if (sb_rdonly(sb))
460 return;
461
462 if (!test_opt(sb, ERRORS_CONT)) {
463 journal_t *journal = EXT4_SB(sb)->s_journal;
464
465 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
466 if (journal)
467 jbd2_journal_abort(journal, -EIO);
468 }
469 /*
470 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
471 * could panic during 'reboot -f' as the underlying device got already
472 * disabled.
473 */
474 if (test_opt(sb, ERRORS_RO) || system_going_down()) {
475 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
476 /*
477 * Make sure updated value of ->s_mount_flags will be visible
478 * before ->s_flags update
479 */
480 smp_wmb();
481 sb->s_flags |= SB_RDONLY;
482 } else if (test_opt(sb, ERRORS_PANIC)) {
483 if (EXT4_SB(sb)->s_journal &&
484 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
485 return;
486 panic("EXT4-fs (device %s): panic forced after error\n",
487 sb->s_id);
488 }
489 }
490
491 #define ext4_error_ratelimit(sb) \
492 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
493 "EXT4-fs error")
494
495 void __ext4_error(struct super_block *sb, const char *function,
496 unsigned int line, const char *fmt, ...)
497 {
498 struct va_format vaf;
499 va_list args;
500
501 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
502 return;
503
504 trace_ext4_error(sb, function, line);
505 if (ext4_error_ratelimit(sb)) {
506 va_start(args, fmt);
507 vaf.fmt = fmt;
508 vaf.va = &args;
509 printk(KERN_CRIT
510 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
511 sb->s_id, function, line, current->comm, &vaf);
512 va_end(args);
513 }
514 save_error_info(sb, function, line);
515 ext4_handle_error(sb);
516 }
517
518 void __ext4_error_inode(struct inode *inode, const char *function,
519 unsigned int line, ext4_fsblk_t block,
520 const char *fmt, ...)
521 {
522 va_list args;
523 struct va_format vaf;
524 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
525
526 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
527 return;
528
529 trace_ext4_error(inode->i_sb, function, line);
530 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
531 es->s_last_error_block = cpu_to_le64(block);
532 if (ext4_error_ratelimit(inode->i_sb)) {
533 va_start(args, fmt);
534 vaf.fmt = fmt;
535 vaf.va = &args;
536 if (block)
537 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
538 "inode #%lu: block %llu: comm %s: %pV\n",
539 inode->i_sb->s_id, function, line, inode->i_ino,
540 block, current->comm, &vaf);
541 else
542 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
543 "inode #%lu: comm %s: %pV\n",
544 inode->i_sb->s_id, function, line, inode->i_ino,
545 current->comm, &vaf);
546 va_end(args);
547 }
548 save_error_info(inode->i_sb, function, line);
549 ext4_handle_error(inode->i_sb);
550 }
551
552 void __ext4_error_file(struct file *file, const char *function,
553 unsigned int line, ext4_fsblk_t block,
554 const char *fmt, ...)
555 {
556 va_list args;
557 struct va_format vaf;
558 struct ext4_super_block *es;
559 struct inode *inode = file_inode(file);
560 char pathname[80], *path;
561
562 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
563 return;
564
565 trace_ext4_error(inode->i_sb, function, line);
566 es = EXT4_SB(inode->i_sb)->s_es;
567 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
568 if (ext4_error_ratelimit(inode->i_sb)) {
569 path = file_path(file, pathname, sizeof(pathname));
570 if (IS_ERR(path))
571 path = "(unknown)";
572 va_start(args, fmt);
573 vaf.fmt = fmt;
574 vaf.va = &args;
575 if (block)
576 printk(KERN_CRIT
577 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
578 "block %llu: comm %s: path %s: %pV\n",
579 inode->i_sb->s_id, function, line, inode->i_ino,
580 block, current->comm, path, &vaf);
581 else
582 printk(KERN_CRIT
583 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
584 "comm %s: path %s: %pV\n",
585 inode->i_sb->s_id, function, line, inode->i_ino,
586 current->comm, path, &vaf);
587 va_end(args);
588 }
589 save_error_info(inode->i_sb, function, line);
590 ext4_handle_error(inode->i_sb);
591 }
592
593 const char *ext4_decode_error(struct super_block *sb, int errno,
594 char nbuf[16])
595 {
596 char *errstr = NULL;
597
598 switch (errno) {
599 case -EFSCORRUPTED:
600 errstr = "Corrupt filesystem";
601 break;
602 case -EFSBADCRC:
603 errstr = "Filesystem failed CRC";
604 break;
605 case -EIO:
606 errstr = "IO failure";
607 break;
608 case -ENOMEM:
609 errstr = "Out of memory";
610 break;
611 case -EROFS:
612 if (!sb || (EXT4_SB(sb)->s_journal &&
613 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
614 errstr = "Journal has aborted";
615 else
616 errstr = "Readonly filesystem";
617 break;
618 default:
619 /* If the caller passed in an extra buffer for unknown
620 * errors, textualise them now. Else we just return
621 * NULL. */
622 if (nbuf) {
623 /* Check for truncated error codes... */
624 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
625 errstr = nbuf;
626 }
627 break;
628 }
629
630 return errstr;
631 }
632
633 /* __ext4_std_error decodes expected errors from journaling functions
634 * automatically and invokes the appropriate error response. */
635
636 void __ext4_std_error(struct super_block *sb, const char *function,
637 unsigned int line, int errno)
638 {
639 char nbuf[16];
640 const char *errstr;
641
642 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
643 return;
644
645 /* Special case: if the error is EROFS, and we're not already
646 * inside a transaction, then there's really no point in logging
647 * an error. */
648 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
649 return;
650
651 if (ext4_error_ratelimit(sb)) {
652 errstr = ext4_decode_error(sb, errno, nbuf);
653 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
654 sb->s_id, function, line, errstr);
655 }
656
657 save_error_info(sb, function, line);
658 ext4_handle_error(sb);
659 }
660
661 /*
662 * ext4_abort is a much stronger failure handler than ext4_error. The
663 * abort function may be used to deal with unrecoverable failures such
664 * as journal IO errors or ENOMEM at a critical moment in log management.
665 *
666 * We unconditionally force the filesystem into an ABORT|READONLY state,
667 * unless the error response on the fs has been set to panic in which
668 * case we take the easy way out and panic immediately.
669 */
670
671 void __ext4_abort(struct super_block *sb, const char *function,
672 unsigned int line, const char *fmt, ...)
673 {
674 struct va_format vaf;
675 va_list args;
676
677 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
678 return;
679
680 save_error_info(sb, function, line);
681 va_start(args, fmt);
682 vaf.fmt = fmt;
683 vaf.va = &args;
684 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
685 sb->s_id, function, line, &vaf);
686 va_end(args);
687
688 if (sb_rdonly(sb) == 0) {
689 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
690 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
691 /*
692 * Make sure updated value of ->s_mount_flags will be visible
693 * before ->s_flags update
694 */
695 smp_wmb();
696 sb->s_flags |= SB_RDONLY;
697 if (EXT4_SB(sb)->s_journal)
698 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
699 save_error_info(sb, function, line);
700 }
701 if (test_opt(sb, ERRORS_PANIC)) {
702 if (EXT4_SB(sb)->s_journal &&
703 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
704 return;
705 panic("EXT4-fs panic from previous error\n");
706 }
707 }
708
709 void __ext4_msg(struct super_block *sb,
710 const char *prefix, const char *fmt, ...)
711 {
712 struct va_format vaf;
713 va_list args;
714
715 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
716 return;
717
718 va_start(args, fmt);
719 vaf.fmt = fmt;
720 vaf.va = &args;
721 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
722 va_end(args);
723 }
724
725 #define ext4_warning_ratelimit(sb) \
726 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
727 "EXT4-fs warning")
728
729 void __ext4_warning(struct super_block *sb, const char *function,
730 unsigned int line, const char *fmt, ...)
731 {
732 struct va_format vaf;
733 va_list args;
734
735 if (!ext4_warning_ratelimit(sb))
736 return;
737
738 va_start(args, fmt);
739 vaf.fmt = fmt;
740 vaf.va = &args;
741 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
742 sb->s_id, function, line, &vaf);
743 va_end(args);
744 }
745
746 void __ext4_warning_inode(const struct inode *inode, const char *function,
747 unsigned int line, const char *fmt, ...)
748 {
749 struct va_format vaf;
750 va_list args;
751
752 if (!ext4_warning_ratelimit(inode->i_sb))
753 return;
754
755 va_start(args, fmt);
756 vaf.fmt = fmt;
757 vaf.va = &args;
758 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
759 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
760 function, line, inode->i_ino, current->comm, &vaf);
761 va_end(args);
762 }
763
764 void __ext4_grp_locked_error(const char *function, unsigned int line,
765 struct super_block *sb, ext4_group_t grp,
766 unsigned long ino, ext4_fsblk_t block,
767 const char *fmt, ...)
768 __releases(bitlock)
769 __acquires(bitlock)
770 {
771 struct va_format vaf;
772 va_list args;
773 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
774
775 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
776 return;
777
778 trace_ext4_error(sb, function, line);
779 es->s_last_error_ino = cpu_to_le32(ino);
780 es->s_last_error_block = cpu_to_le64(block);
781 __save_error_info(sb, function, line);
782
783 if (ext4_error_ratelimit(sb)) {
784 va_start(args, fmt);
785 vaf.fmt = fmt;
786 vaf.va = &args;
787 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
788 sb->s_id, function, line, grp);
789 if (ino)
790 printk(KERN_CONT "inode %lu: ", ino);
791 if (block)
792 printk(KERN_CONT "block %llu:",
793 (unsigned long long) block);
794 printk(KERN_CONT "%pV\n", &vaf);
795 va_end(args);
796 }
797
798 if (test_opt(sb, WARN_ON_ERROR))
799 WARN_ON_ONCE(1);
800
801 if (test_opt(sb, ERRORS_CONT)) {
802 ext4_commit_super(sb, 0);
803 return;
804 }
805
806 ext4_unlock_group(sb, grp);
807 ext4_commit_super(sb, 1);
808 ext4_handle_error(sb);
809 /*
810 * We only get here in the ERRORS_RO case; relocking the group
811 * may be dangerous, but nothing bad will happen since the
812 * filesystem will have already been marked read/only and the
813 * journal has been aborted. We return 1 as a hint to callers
814 * who might what to use the return value from
815 * ext4_grp_locked_error() to distinguish between the
816 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
817 * aggressively from the ext4 function in question, with a
818 * more appropriate error code.
819 */
820 ext4_lock_group(sb, grp);
821 return;
822 }
823
824 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
825 ext4_group_t group,
826 unsigned int flags)
827 {
828 struct ext4_sb_info *sbi = EXT4_SB(sb);
829 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
830 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
831 int ret;
832
833 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
834 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
835 &grp->bb_state);
836 if (!ret)
837 percpu_counter_sub(&sbi->s_freeclusters_counter,
838 grp->bb_free);
839 }
840
841 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
842 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
843 &grp->bb_state);
844 if (!ret && gdp) {
845 int count;
846
847 count = ext4_free_inodes_count(sb, gdp);
848 percpu_counter_sub(&sbi->s_freeinodes_counter,
849 count);
850 }
851 }
852 }
853
854 void ext4_update_dynamic_rev(struct super_block *sb)
855 {
856 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
857
858 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
859 return;
860
861 ext4_warning(sb,
862 "updating to rev %d because of new feature flag, "
863 "running e2fsck is recommended",
864 EXT4_DYNAMIC_REV);
865
866 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
867 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
868 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
869 /* leave es->s_feature_*compat flags alone */
870 /* es->s_uuid will be set by e2fsck if empty */
871
872 /*
873 * The rest of the superblock fields should be zero, and if not it
874 * means they are likely already in use, so leave them alone. We
875 * can leave it up to e2fsck to clean up any inconsistencies there.
876 */
877 }
878
879 /*
880 * Open the external journal device
881 */
882 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
883 {
884 struct block_device *bdev;
885 char b[BDEVNAME_SIZE];
886
887 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
888 if (IS_ERR(bdev))
889 goto fail;
890 return bdev;
891
892 fail:
893 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
894 __bdevname(dev, b), PTR_ERR(bdev));
895 return NULL;
896 }
897
898 /*
899 * Release the journal device
900 */
901 static void ext4_blkdev_put(struct block_device *bdev)
902 {
903 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
904 }
905
906 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
907 {
908 struct block_device *bdev;
909 bdev = sbi->journal_bdev;
910 if (bdev) {
911 ext4_blkdev_put(bdev);
912 sbi->journal_bdev = NULL;
913 }
914 }
915
916 static inline struct inode *orphan_list_entry(struct list_head *l)
917 {
918 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
919 }
920
921 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
922 {
923 struct list_head *l;
924
925 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
926 le32_to_cpu(sbi->s_es->s_last_orphan));
927
928 printk(KERN_ERR "sb_info orphan list:\n");
929 list_for_each(l, &sbi->s_orphan) {
930 struct inode *inode = orphan_list_entry(l);
931 printk(KERN_ERR " "
932 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
933 inode->i_sb->s_id, inode->i_ino, inode,
934 inode->i_mode, inode->i_nlink,
935 NEXT_ORPHAN(inode));
936 }
937 }
938
939 #ifdef CONFIG_QUOTA
940 static int ext4_quota_off(struct super_block *sb, int type);
941
942 static inline void ext4_quota_off_umount(struct super_block *sb)
943 {
944 int type;
945
946 /* Use our quota_off function to clear inode flags etc. */
947 for (type = 0; type < EXT4_MAXQUOTAS; type++)
948 ext4_quota_off(sb, type);
949 }
950
951 /*
952 * This is a helper function which is used in the mount/remount
953 * codepaths (which holds s_umount) to fetch the quota file name.
954 */
955 static inline char *get_qf_name(struct super_block *sb,
956 struct ext4_sb_info *sbi,
957 int type)
958 {
959 return rcu_dereference_protected(sbi->s_qf_names[type],
960 lockdep_is_held(&sb->s_umount));
961 }
962 #else
963 static inline void ext4_quota_off_umount(struct super_block *sb)
964 {
965 }
966 #endif
967
968 static void ext4_put_super(struct super_block *sb)
969 {
970 struct ext4_sb_info *sbi = EXT4_SB(sb);
971 struct ext4_super_block *es = sbi->s_es;
972 int aborted = 0;
973 int i, err;
974
975 ext4_unregister_li_request(sb);
976 ext4_quota_off_umount(sb);
977
978 destroy_workqueue(sbi->rsv_conversion_wq);
979
980 if (sbi->s_journal) {
981 aborted = is_journal_aborted(sbi->s_journal);
982 err = jbd2_journal_destroy(sbi->s_journal);
983 sbi->s_journal = NULL;
984 if ((err < 0) && !aborted)
985 ext4_abort(sb, "Couldn't clean up the journal");
986 }
987
988 ext4_unregister_sysfs(sb);
989 ext4_es_unregister_shrinker(sbi);
990 del_timer_sync(&sbi->s_err_report);
991 ext4_release_system_zone(sb);
992 ext4_mb_release(sb);
993 ext4_ext_release(sb);
994
995 if (!sb_rdonly(sb) && !aborted) {
996 ext4_clear_feature_journal_needs_recovery(sb);
997 es->s_state = cpu_to_le16(sbi->s_mount_state);
998 }
999 if (!sb_rdonly(sb))
1000 ext4_commit_super(sb, 1);
1001
1002 for (i = 0; i < sbi->s_gdb_count; i++)
1003 brelse(sbi->s_group_desc[i]);
1004 kvfree(sbi->s_group_desc);
1005 kvfree(sbi->s_flex_groups);
1006 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1007 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1008 percpu_counter_destroy(&sbi->s_dirs_counter);
1009 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1010 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
1011 #ifdef CONFIG_QUOTA
1012 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1013 kfree(get_qf_name(sb, sbi, i));
1014 #endif
1015
1016 /* Debugging code just in case the in-memory inode orphan list
1017 * isn't empty. The on-disk one can be non-empty if we've
1018 * detected an error and taken the fs readonly, but the
1019 * in-memory list had better be clean by this point. */
1020 if (!list_empty(&sbi->s_orphan))
1021 dump_orphan_list(sb, sbi);
1022 J_ASSERT(list_empty(&sbi->s_orphan));
1023
1024 sync_blockdev(sb->s_bdev);
1025 invalidate_bdev(sb->s_bdev);
1026 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
1027 /*
1028 * Invalidate the journal device's buffers. We don't want them
1029 * floating about in memory - the physical journal device may
1030 * hotswapped, and it breaks the `ro-after' testing code.
1031 */
1032 sync_blockdev(sbi->journal_bdev);
1033 invalidate_bdev(sbi->journal_bdev);
1034 ext4_blkdev_remove(sbi);
1035 }
1036
1037 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1038 sbi->s_ea_inode_cache = NULL;
1039
1040 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1041 sbi->s_ea_block_cache = NULL;
1042
1043 if (sbi->s_mmp_tsk)
1044 kthread_stop(sbi->s_mmp_tsk);
1045 brelse(sbi->s_sbh);
1046 sb->s_fs_info = NULL;
1047 /*
1048 * Now that we are completely done shutting down the
1049 * superblock, we need to actually destroy the kobject.
1050 */
1051 kobject_put(&sbi->s_kobj);
1052 wait_for_completion(&sbi->s_kobj_unregister);
1053 if (sbi->s_chksum_driver)
1054 crypto_free_shash(sbi->s_chksum_driver);
1055 kfree(sbi->s_blockgroup_lock);
1056 fs_put_dax(sbi->s_daxdev);
1057 kfree(sbi);
1058 }
1059
1060 static struct kmem_cache *ext4_inode_cachep;
1061
1062 /*
1063 * Called inside transaction, so use GFP_NOFS
1064 */
1065 static struct inode *ext4_alloc_inode(struct super_block *sb)
1066 {
1067 struct ext4_inode_info *ei;
1068
1069 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1070 if (!ei)
1071 return NULL;
1072
1073 inode_set_iversion(&ei->vfs_inode, 1);
1074 spin_lock_init(&ei->i_raw_lock);
1075 INIT_LIST_HEAD(&ei->i_prealloc_list);
1076 spin_lock_init(&ei->i_prealloc_lock);
1077 ext4_es_init_tree(&ei->i_es_tree);
1078 rwlock_init(&ei->i_es_lock);
1079 INIT_LIST_HEAD(&ei->i_es_list);
1080 ei->i_es_all_nr = 0;
1081 ei->i_es_shk_nr = 0;
1082 ei->i_es_shrink_lblk = 0;
1083 ei->i_reserved_data_blocks = 0;
1084 ei->i_da_metadata_calc_len = 0;
1085 ei->i_da_metadata_calc_last_lblock = 0;
1086 spin_lock_init(&(ei->i_block_reservation_lock));
1087 ext4_init_pending_tree(&ei->i_pending_tree);
1088 #ifdef CONFIG_QUOTA
1089 ei->i_reserved_quota = 0;
1090 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1091 #endif
1092 ei->jinode = NULL;
1093 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1094 spin_lock_init(&ei->i_completed_io_lock);
1095 ei->i_sync_tid = 0;
1096 ei->i_datasync_tid = 0;
1097 atomic_set(&ei->i_unwritten, 0);
1098 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1099 return &ei->vfs_inode;
1100 }
1101
1102 static int ext4_drop_inode(struct inode *inode)
1103 {
1104 int drop = generic_drop_inode(inode);
1105
1106 trace_ext4_drop_inode(inode, drop);
1107 return drop;
1108 }
1109
1110 static void ext4_i_callback(struct rcu_head *head)
1111 {
1112 struct inode *inode = container_of(head, struct inode, i_rcu);
1113 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1114 }
1115
1116 static void ext4_destroy_inode(struct inode *inode)
1117 {
1118 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1119 ext4_msg(inode->i_sb, KERN_ERR,
1120 "Inode %lu (%p): orphan list check failed!",
1121 inode->i_ino, EXT4_I(inode));
1122 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1123 EXT4_I(inode), sizeof(struct ext4_inode_info),
1124 true);
1125 dump_stack();
1126 }
1127 call_rcu(&inode->i_rcu, ext4_i_callback);
1128 }
1129
1130 static void init_once(void *foo)
1131 {
1132 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1133
1134 INIT_LIST_HEAD(&ei->i_orphan);
1135 init_rwsem(&ei->xattr_sem);
1136 init_rwsem(&ei->i_data_sem);
1137 init_rwsem(&ei->i_mmap_sem);
1138 inode_init_once(&ei->vfs_inode);
1139 }
1140
1141 static int __init init_inodecache(void)
1142 {
1143 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1144 sizeof(struct ext4_inode_info), 0,
1145 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1146 SLAB_ACCOUNT),
1147 offsetof(struct ext4_inode_info, i_data),
1148 sizeof_field(struct ext4_inode_info, i_data),
1149 init_once);
1150 if (ext4_inode_cachep == NULL)
1151 return -ENOMEM;
1152 return 0;
1153 }
1154
1155 static void destroy_inodecache(void)
1156 {
1157 /*
1158 * Make sure all delayed rcu free inodes are flushed before we
1159 * destroy cache.
1160 */
1161 rcu_barrier();
1162 kmem_cache_destroy(ext4_inode_cachep);
1163 }
1164
1165 void ext4_clear_inode(struct inode *inode)
1166 {
1167 invalidate_inode_buffers(inode);
1168 clear_inode(inode);
1169 dquot_drop(inode);
1170 ext4_discard_preallocations(inode);
1171 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1172 if (EXT4_I(inode)->jinode) {
1173 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1174 EXT4_I(inode)->jinode);
1175 jbd2_free_inode(EXT4_I(inode)->jinode);
1176 EXT4_I(inode)->jinode = NULL;
1177 }
1178 fscrypt_put_encryption_info(inode);
1179 }
1180
1181 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1182 u64 ino, u32 generation)
1183 {
1184 struct inode *inode;
1185
1186 /*
1187 * Currently we don't know the generation for parent directory, so
1188 * a generation of 0 means "accept any"
1189 */
1190 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1191 if (IS_ERR(inode))
1192 return ERR_CAST(inode);
1193 if (generation && inode->i_generation != generation) {
1194 iput(inode);
1195 return ERR_PTR(-ESTALE);
1196 }
1197
1198 return inode;
1199 }
1200
1201 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1202 int fh_len, int fh_type)
1203 {
1204 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1205 ext4_nfs_get_inode);
1206 }
1207
1208 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1209 int fh_len, int fh_type)
1210 {
1211 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1212 ext4_nfs_get_inode);
1213 }
1214
1215 static int ext4_nfs_commit_metadata(struct inode *inode)
1216 {
1217 struct writeback_control wbc = {
1218 .sync_mode = WB_SYNC_ALL
1219 };
1220
1221 trace_ext4_nfs_commit_metadata(inode);
1222 return ext4_write_inode(inode, &wbc);
1223 }
1224
1225 /*
1226 * Try to release metadata pages (indirect blocks, directories) which are
1227 * mapped via the block device. Since these pages could have journal heads
1228 * which would prevent try_to_free_buffers() from freeing them, we must use
1229 * jbd2 layer's try_to_free_buffers() function to release them.
1230 */
1231 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1232 gfp_t wait)
1233 {
1234 journal_t *journal = EXT4_SB(sb)->s_journal;
1235
1236 WARN_ON(PageChecked(page));
1237 if (!page_has_buffers(page))
1238 return 0;
1239 if (journal)
1240 return jbd2_journal_try_to_free_buffers(journal, page,
1241 wait & ~__GFP_DIRECT_RECLAIM);
1242 return try_to_free_buffers(page);
1243 }
1244
1245 #ifdef CONFIG_FS_ENCRYPTION
1246 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1247 {
1248 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1249 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1250 }
1251
1252 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1253 void *fs_data)
1254 {
1255 handle_t *handle = fs_data;
1256 int res, res2, credits, retries = 0;
1257
1258 /*
1259 * Encrypting the root directory is not allowed because e2fsck expects
1260 * lost+found to exist and be unencrypted, and encrypting the root
1261 * directory would imply encrypting the lost+found directory as well as
1262 * the filename "lost+found" itself.
1263 */
1264 if (inode->i_ino == EXT4_ROOT_INO)
1265 return -EPERM;
1266
1267 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1268 return -EINVAL;
1269
1270 res = ext4_convert_inline_data(inode);
1271 if (res)
1272 return res;
1273
1274 /*
1275 * If a journal handle was specified, then the encryption context is
1276 * being set on a new inode via inheritance and is part of a larger
1277 * transaction to create the inode. Otherwise the encryption context is
1278 * being set on an existing inode in its own transaction. Only in the
1279 * latter case should the "retry on ENOSPC" logic be used.
1280 */
1281
1282 if (handle) {
1283 res = ext4_xattr_set_handle(handle, inode,
1284 EXT4_XATTR_INDEX_ENCRYPTION,
1285 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1286 ctx, len, 0);
1287 if (!res) {
1288 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1289 ext4_clear_inode_state(inode,
1290 EXT4_STATE_MAY_INLINE_DATA);
1291 /*
1292 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1293 * S_DAX may be disabled
1294 */
1295 ext4_set_inode_flags(inode);
1296 }
1297 return res;
1298 }
1299
1300 res = dquot_initialize(inode);
1301 if (res)
1302 return res;
1303 retry:
1304 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1305 &credits);
1306 if (res)
1307 return res;
1308
1309 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1310 if (IS_ERR(handle))
1311 return PTR_ERR(handle);
1312
1313 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1314 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1315 ctx, len, 0);
1316 if (!res) {
1317 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1318 /*
1319 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1320 * S_DAX may be disabled
1321 */
1322 ext4_set_inode_flags(inode);
1323 res = ext4_mark_inode_dirty(handle, inode);
1324 if (res)
1325 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1326 }
1327 res2 = ext4_journal_stop(handle);
1328
1329 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1330 goto retry;
1331 if (!res)
1332 res = res2;
1333 return res;
1334 }
1335
1336 static bool ext4_dummy_context(struct inode *inode)
1337 {
1338 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1339 }
1340
1341 static const struct fscrypt_operations ext4_cryptops = {
1342 .key_prefix = "ext4:",
1343 .get_context = ext4_get_context,
1344 .set_context = ext4_set_context,
1345 .dummy_context = ext4_dummy_context,
1346 .empty_dir = ext4_empty_dir,
1347 .max_namelen = EXT4_NAME_LEN,
1348 };
1349 #endif
1350
1351 #ifdef CONFIG_QUOTA
1352 static const char * const quotatypes[] = INITQFNAMES;
1353 #define QTYPE2NAME(t) (quotatypes[t])
1354
1355 static int ext4_write_dquot(struct dquot *dquot);
1356 static int ext4_acquire_dquot(struct dquot *dquot);
1357 static int ext4_release_dquot(struct dquot *dquot);
1358 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1359 static int ext4_write_info(struct super_block *sb, int type);
1360 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1361 const struct path *path);
1362 static int ext4_quota_on_mount(struct super_block *sb, int type);
1363 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1364 size_t len, loff_t off);
1365 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1366 const char *data, size_t len, loff_t off);
1367 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1368 unsigned int flags);
1369 static int ext4_enable_quotas(struct super_block *sb);
1370 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1371
1372 static struct dquot **ext4_get_dquots(struct inode *inode)
1373 {
1374 return EXT4_I(inode)->i_dquot;
1375 }
1376
1377 static const struct dquot_operations ext4_quota_operations = {
1378 .get_reserved_space = ext4_get_reserved_space,
1379 .write_dquot = ext4_write_dquot,
1380 .acquire_dquot = ext4_acquire_dquot,
1381 .release_dquot = ext4_release_dquot,
1382 .mark_dirty = ext4_mark_dquot_dirty,
1383 .write_info = ext4_write_info,
1384 .alloc_dquot = dquot_alloc,
1385 .destroy_dquot = dquot_destroy,
1386 .get_projid = ext4_get_projid,
1387 .get_inode_usage = ext4_get_inode_usage,
1388 .get_next_id = ext4_get_next_id,
1389 };
1390
1391 static const struct quotactl_ops ext4_qctl_operations = {
1392 .quota_on = ext4_quota_on,
1393 .quota_off = ext4_quota_off,
1394 .quota_sync = dquot_quota_sync,
1395 .get_state = dquot_get_state,
1396 .set_info = dquot_set_dqinfo,
1397 .get_dqblk = dquot_get_dqblk,
1398 .set_dqblk = dquot_set_dqblk,
1399 .get_nextdqblk = dquot_get_next_dqblk,
1400 };
1401 #endif
1402
1403 static const struct super_operations ext4_sops = {
1404 .alloc_inode = ext4_alloc_inode,
1405 .destroy_inode = ext4_destroy_inode,
1406 .write_inode = ext4_write_inode,
1407 .dirty_inode = ext4_dirty_inode,
1408 .drop_inode = ext4_drop_inode,
1409 .evict_inode = ext4_evict_inode,
1410 .put_super = ext4_put_super,
1411 .sync_fs = ext4_sync_fs,
1412 .freeze_fs = ext4_freeze,
1413 .unfreeze_fs = ext4_unfreeze,
1414 .statfs = ext4_statfs,
1415 .remount_fs = ext4_remount,
1416 .show_options = ext4_show_options,
1417 #ifdef CONFIG_QUOTA
1418 .quota_read = ext4_quota_read,
1419 .quota_write = ext4_quota_write,
1420 .get_dquots = ext4_get_dquots,
1421 #endif
1422 .bdev_try_to_free_page = bdev_try_to_free_page,
1423 };
1424
1425 static const struct export_operations ext4_export_ops = {
1426 .fh_to_dentry = ext4_fh_to_dentry,
1427 .fh_to_parent = ext4_fh_to_parent,
1428 .get_parent = ext4_get_parent,
1429 .commit_metadata = ext4_nfs_commit_metadata,
1430 };
1431
1432 enum {
1433 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1434 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1435 Opt_nouid32, Opt_debug, Opt_removed,
1436 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1437 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1438 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1439 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1440 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1441 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1442 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1443 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1444 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1445 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1446 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1447 Opt_nowarn_on_error, Opt_mblk_io_submit,
1448 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1449 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1450 Opt_inode_readahead_blks, Opt_journal_ioprio,
1451 Opt_dioread_nolock, Opt_dioread_lock,
1452 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1453 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1454 };
1455
1456 static const match_table_t tokens = {
1457 {Opt_bsd_df, "bsddf"},
1458 {Opt_minix_df, "minixdf"},
1459 {Opt_grpid, "grpid"},
1460 {Opt_grpid, "bsdgroups"},
1461 {Opt_nogrpid, "nogrpid"},
1462 {Opt_nogrpid, "sysvgroups"},
1463 {Opt_resgid, "resgid=%u"},
1464 {Opt_resuid, "resuid=%u"},
1465 {Opt_sb, "sb=%u"},
1466 {Opt_err_cont, "errors=continue"},
1467 {Opt_err_panic, "errors=panic"},
1468 {Opt_err_ro, "errors=remount-ro"},
1469 {Opt_nouid32, "nouid32"},
1470 {Opt_debug, "debug"},
1471 {Opt_removed, "oldalloc"},
1472 {Opt_removed, "orlov"},
1473 {Opt_user_xattr, "user_xattr"},
1474 {Opt_nouser_xattr, "nouser_xattr"},
1475 {Opt_acl, "acl"},
1476 {Opt_noacl, "noacl"},
1477 {Opt_noload, "norecovery"},
1478 {Opt_noload, "noload"},
1479 {Opt_removed, "nobh"},
1480 {Opt_removed, "bh"},
1481 {Opt_commit, "commit=%u"},
1482 {Opt_min_batch_time, "min_batch_time=%u"},
1483 {Opt_max_batch_time, "max_batch_time=%u"},
1484 {Opt_journal_dev, "journal_dev=%u"},
1485 {Opt_journal_path, "journal_path=%s"},
1486 {Opt_journal_checksum, "journal_checksum"},
1487 {Opt_nojournal_checksum, "nojournal_checksum"},
1488 {Opt_journal_async_commit, "journal_async_commit"},
1489 {Opt_abort, "abort"},
1490 {Opt_data_journal, "data=journal"},
1491 {Opt_data_ordered, "data=ordered"},
1492 {Opt_data_writeback, "data=writeback"},
1493 {Opt_data_err_abort, "data_err=abort"},
1494 {Opt_data_err_ignore, "data_err=ignore"},
1495 {Opt_offusrjquota, "usrjquota="},
1496 {Opt_usrjquota, "usrjquota=%s"},
1497 {Opt_offgrpjquota, "grpjquota="},
1498 {Opt_grpjquota, "grpjquota=%s"},
1499 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1500 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1501 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1502 {Opt_grpquota, "grpquota"},
1503 {Opt_noquota, "noquota"},
1504 {Opt_quota, "quota"},
1505 {Opt_usrquota, "usrquota"},
1506 {Opt_prjquota, "prjquota"},
1507 {Opt_barrier, "barrier=%u"},
1508 {Opt_barrier, "barrier"},
1509 {Opt_nobarrier, "nobarrier"},
1510 {Opt_i_version, "i_version"},
1511 {Opt_dax, "dax"},
1512 {Opt_stripe, "stripe=%u"},
1513 {Opt_delalloc, "delalloc"},
1514 {Opt_warn_on_error, "warn_on_error"},
1515 {Opt_nowarn_on_error, "nowarn_on_error"},
1516 {Opt_lazytime, "lazytime"},
1517 {Opt_nolazytime, "nolazytime"},
1518 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1519 {Opt_nodelalloc, "nodelalloc"},
1520 {Opt_removed, "mblk_io_submit"},
1521 {Opt_removed, "nomblk_io_submit"},
1522 {Opt_block_validity, "block_validity"},
1523 {Opt_noblock_validity, "noblock_validity"},
1524 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1525 {Opt_journal_ioprio, "journal_ioprio=%u"},
1526 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1527 {Opt_auto_da_alloc, "auto_da_alloc"},
1528 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1529 {Opt_dioread_nolock, "dioread_nolock"},
1530 {Opt_dioread_lock, "dioread_lock"},
1531 {Opt_discard, "discard"},
1532 {Opt_nodiscard, "nodiscard"},
1533 {Opt_init_itable, "init_itable=%u"},
1534 {Opt_init_itable, "init_itable"},
1535 {Opt_noinit_itable, "noinit_itable"},
1536 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1537 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1538 {Opt_nombcache, "nombcache"},
1539 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1540 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1541 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1542 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1543 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1544 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1545 {Opt_err, NULL},
1546 };
1547
1548 static ext4_fsblk_t get_sb_block(void **data)
1549 {
1550 ext4_fsblk_t sb_block;
1551 char *options = (char *) *data;
1552
1553 if (!options || strncmp(options, "sb=", 3) != 0)
1554 return 1; /* Default location */
1555
1556 options += 3;
1557 /* TODO: use simple_strtoll with >32bit ext4 */
1558 sb_block = simple_strtoul(options, &options, 0);
1559 if (*options && *options != ',') {
1560 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1561 (char *) *data);
1562 return 1;
1563 }
1564 if (*options == ',')
1565 options++;
1566 *data = (void *) options;
1567
1568 return sb_block;
1569 }
1570
1571 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1572 static const char deprecated_msg[] =
1573 "Mount option \"%s\" will be removed by %s\n"
1574 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1575
1576 #ifdef CONFIG_QUOTA
1577 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1578 {
1579 struct ext4_sb_info *sbi = EXT4_SB(sb);
1580 char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1581 int ret = -1;
1582
1583 if (sb_any_quota_loaded(sb) && !old_qname) {
1584 ext4_msg(sb, KERN_ERR,
1585 "Cannot change journaled "
1586 "quota options when quota turned on");
1587 return -1;
1588 }
1589 if (ext4_has_feature_quota(sb)) {
1590 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1591 "ignored when QUOTA feature is enabled");
1592 return 1;
1593 }
1594 qname = match_strdup(args);
1595 if (!qname) {
1596 ext4_msg(sb, KERN_ERR,
1597 "Not enough memory for storing quotafile name");
1598 return -1;
1599 }
1600 if (old_qname) {
1601 if (strcmp(old_qname, qname) == 0)
1602 ret = 1;
1603 else
1604 ext4_msg(sb, KERN_ERR,
1605 "%s quota file already specified",
1606 QTYPE2NAME(qtype));
1607 goto errout;
1608 }
1609 if (strchr(qname, '/')) {
1610 ext4_msg(sb, KERN_ERR,
1611 "quotafile must be on filesystem root");
1612 goto errout;
1613 }
1614 rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1615 set_opt(sb, QUOTA);
1616 return 1;
1617 errout:
1618 kfree(qname);
1619 return ret;
1620 }
1621
1622 static int clear_qf_name(struct super_block *sb, int qtype)
1623 {
1624
1625 struct ext4_sb_info *sbi = EXT4_SB(sb);
1626 char *old_qname = get_qf_name(sb, sbi, qtype);
1627
1628 if (sb_any_quota_loaded(sb) && old_qname) {
1629 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1630 " when quota turned on");
1631 return -1;
1632 }
1633 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1634 synchronize_rcu();
1635 kfree(old_qname);
1636 return 1;
1637 }
1638 #endif
1639
1640 #define MOPT_SET 0x0001
1641 #define MOPT_CLEAR 0x0002
1642 #define MOPT_NOSUPPORT 0x0004
1643 #define MOPT_EXPLICIT 0x0008
1644 #define MOPT_CLEAR_ERR 0x0010
1645 #define MOPT_GTE0 0x0020
1646 #ifdef CONFIG_QUOTA
1647 #define MOPT_Q 0
1648 #define MOPT_QFMT 0x0040
1649 #else
1650 #define MOPT_Q MOPT_NOSUPPORT
1651 #define MOPT_QFMT MOPT_NOSUPPORT
1652 #endif
1653 #define MOPT_DATAJ 0x0080
1654 #define MOPT_NO_EXT2 0x0100
1655 #define MOPT_NO_EXT3 0x0200
1656 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1657 #define MOPT_STRING 0x0400
1658
1659 static const struct mount_opts {
1660 int token;
1661 int mount_opt;
1662 int flags;
1663 } ext4_mount_opts[] = {
1664 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1665 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1666 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1667 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1668 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1669 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1670 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1671 MOPT_EXT4_ONLY | MOPT_SET},
1672 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1673 MOPT_EXT4_ONLY | MOPT_CLEAR},
1674 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1675 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1676 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1677 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1678 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1679 MOPT_EXT4_ONLY | MOPT_CLEAR},
1680 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1681 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1682 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1683 MOPT_EXT4_ONLY | MOPT_CLEAR},
1684 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1685 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1686 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1687 EXT4_MOUNT_JOURNAL_CHECKSUM),
1688 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1689 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1690 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1691 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1692 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1693 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1694 MOPT_NO_EXT2},
1695 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1696 MOPT_NO_EXT2},
1697 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1698 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1699 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1700 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1701 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1702 {Opt_commit, 0, MOPT_GTE0},
1703 {Opt_max_batch_time, 0, MOPT_GTE0},
1704 {Opt_min_batch_time, 0, MOPT_GTE0},
1705 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1706 {Opt_init_itable, 0, MOPT_GTE0},
1707 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1708 {Opt_stripe, 0, MOPT_GTE0},
1709 {Opt_resuid, 0, MOPT_GTE0},
1710 {Opt_resgid, 0, MOPT_GTE0},
1711 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1712 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1713 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1714 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1715 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1716 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1717 MOPT_NO_EXT2 | MOPT_DATAJ},
1718 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1719 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1720 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1721 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1722 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1723 #else
1724 {Opt_acl, 0, MOPT_NOSUPPORT},
1725 {Opt_noacl, 0, MOPT_NOSUPPORT},
1726 #endif
1727 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1728 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1729 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1730 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1731 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1732 MOPT_SET | MOPT_Q},
1733 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1734 MOPT_SET | MOPT_Q},
1735 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1736 MOPT_SET | MOPT_Q},
1737 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1738 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1739 MOPT_CLEAR | MOPT_Q},
1740 {Opt_usrjquota, 0, MOPT_Q},
1741 {Opt_grpjquota, 0, MOPT_Q},
1742 {Opt_offusrjquota, 0, MOPT_Q},
1743 {Opt_offgrpjquota, 0, MOPT_Q},
1744 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1745 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1746 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1747 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1748 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1749 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1750 {Opt_err, 0, 0}
1751 };
1752
1753 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1754 substring_t *args, unsigned long *journal_devnum,
1755 unsigned int *journal_ioprio, int is_remount)
1756 {
1757 struct ext4_sb_info *sbi = EXT4_SB(sb);
1758 const struct mount_opts *m;
1759 kuid_t uid;
1760 kgid_t gid;
1761 int arg = 0;
1762
1763 #ifdef CONFIG_QUOTA
1764 if (token == Opt_usrjquota)
1765 return set_qf_name(sb, USRQUOTA, &args[0]);
1766 else if (token == Opt_grpjquota)
1767 return set_qf_name(sb, GRPQUOTA, &args[0]);
1768 else if (token == Opt_offusrjquota)
1769 return clear_qf_name(sb, USRQUOTA);
1770 else if (token == Opt_offgrpjquota)
1771 return clear_qf_name(sb, GRPQUOTA);
1772 #endif
1773 switch (token) {
1774 case Opt_noacl:
1775 case Opt_nouser_xattr:
1776 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1777 break;
1778 case Opt_sb:
1779 return 1; /* handled by get_sb_block() */
1780 case Opt_removed:
1781 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1782 return 1;
1783 case Opt_abort:
1784 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1785 return 1;
1786 case Opt_i_version:
1787 sb->s_flags |= SB_I_VERSION;
1788 return 1;
1789 case Opt_lazytime:
1790 sb->s_flags |= SB_LAZYTIME;
1791 return 1;
1792 case Opt_nolazytime:
1793 sb->s_flags &= ~SB_LAZYTIME;
1794 return 1;
1795 }
1796
1797 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1798 if (token == m->token)
1799 break;
1800
1801 if (m->token == Opt_err) {
1802 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1803 "or missing value", opt);
1804 return -1;
1805 }
1806
1807 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1808 ext4_msg(sb, KERN_ERR,
1809 "Mount option \"%s\" incompatible with ext2", opt);
1810 return -1;
1811 }
1812 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1813 ext4_msg(sb, KERN_ERR,
1814 "Mount option \"%s\" incompatible with ext3", opt);
1815 return -1;
1816 }
1817
1818 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1819 return -1;
1820 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1821 return -1;
1822 if (m->flags & MOPT_EXPLICIT) {
1823 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1824 set_opt2(sb, EXPLICIT_DELALLOC);
1825 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1826 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1827 } else
1828 return -1;
1829 }
1830 if (m->flags & MOPT_CLEAR_ERR)
1831 clear_opt(sb, ERRORS_MASK);
1832 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1833 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1834 "options when quota turned on");
1835 return -1;
1836 }
1837
1838 if (m->flags & MOPT_NOSUPPORT) {
1839 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1840 } else if (token == Opt_commit) {
1841 if (arg == 0)
1842 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1843 sbi->s_commit_interval = HZ * arg;
1844 } else if (token == Opt_debug_want_extra_isize) {
1845 sbi->s_want_extra_isize = arg;
1846 } else if (token == Opt_max_batch_time) {
1847 sbi->s_max_batch_time = arg;
1848 } else if (token == Opt_min_batch_time) {
1849 sbi->s_min_batch_time = arg;
1850 } else if (token == Opt_inode_readahead_blks) {
1851 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1852 ext4_msg(sb, KERN_ERR,
1853 "EXT4-fs: inode_readahead_blks must be "
1854 "0 or a power of 2 smaller than 2^31");
1855 return -1;
1856 }
1857 sbi->s_inode_readahead_blks = arg;
1858 } else if (token == Opt_init_itable) {
1859 set_opt(sb, INIT_INODE_TABLE);
1860 if (!args->from)
1861 arg = EXT4_DEF_LI_WAIT_MULT;
1862 sbi->s_li_wait_mult = arg;
1863 } else if (token == Opt_max_dir_size_kb) {
1864 sbi->s_max_dir_size_kb = arg;
1865 } else if (token == Opt_stripe) {
1866 sbi->s_stripe = arg;
1867 } else if (token == Opt_resuid) {
1868 uid = make_kuid(current_user_ns(), arg);
1869 if (!uid_valid(uid)) {
1870 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1871 return -1;
1872 }
1873 sbi->s_resuid = uid;
1874 } else if (token == Opt_resgid) {
1875 gid = make_kgid(current_user_ns(), arg);
1876 if (!gid_valid(gid)) {
1877 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1878 return -1;
1879 }
1880 sbi->s_resgid = gid;
1881 } else if (token == Opt_journal_dev) {
1882 if (is_remount) {
1883 ext4_msg(sb, KERN_ERR,
1884 "Cannot specify journal on remount");
1885 return -1;
1886 }
1887 *journal_devnum = arg;
1888 } else if (token == Opt_journal_path) {
1889 char *journal_path;
1890 struct inode *journal_inode;
1891 struct path path;
1892 int error;
1893
1894 if (is_remount) {
1895 ext4_msg(sb, KERN_ERR,
1896 "Cannot specify journal on remount");
1897 return -1;
1898 }
1899 journal_path = match_strdup(&args[0]);
1900 if (!journal_path) {
1901 ext4_msg(sb, KERN_ERR, "error: could not dup "
1902 "journal device string");
1903 return -1;
1904 }
1905
1906 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1907 if (error) {
1908 ext4_msg(sb, KERN_ERR, "error: could not find "
1909 "journal device path: error %d", error);
1910 kfree(journal_path);
1911 return -1;
1912 }
1913
1914 journal_inode = d_inode(path.dentry);
1915 if (!S_ISBLK(journal_inode->i_mode)) {
1916 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1917 "is not a block device", journal_path);
1918 path_put(&path);
1919 kfree(journal_path);
1920 return -1;
1921 }
1922
1923 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1924 path_put(&path);
1925 kfree(journal_path);
1926 } else if (token == Opt_journal_ioprio) {
1927 if (arg > 7) {
1928 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1929 " (must be 0-7)");
1930 return -1;
1931 }
1932 *journal_ioprio =
1933 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1934 } else if (token == Opt_test_dummy_encryption) {
1935 #ifdef CONFIG_FS_ENCRYPTION
1936 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1937 ext4_msg(sb, KERN_WARNING,
1938 "Test dummy encryption mode enabled");
1939 #else
1940 ext4_msg(sb, KERN_WARNING,
1941 "Test dummy encryption mount option ignored");
1942 #endif
1943 } else if (m->flags & MOPT_DATAJ) {
1944 if (is_remount) {
1945 if (!sbi->s_journal)
1946 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1947 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1948 ext4_msg(sb, KERN_ERR,
1949 "Cannot change data mode on remount");
1950 return -1;
1951 }
1952 } else {
1953 clear_opt(sb, DATA_FLAGS);
1954 sbi->s_mount_opt |= m->mount_opt;
1955 }
1956 #ifdef CONFIG_QUOTA
1957 } else if (m->flags & MOPT_QFMT) {
1958 if (sb_any_quota_loaded(sb) &&
1959 sbi->s_jquota_fmt != m->mount_opt) {
1960 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1961 "quota options when quota turned on");
1962 return -1;
1963 }
1964 if (ext4_has_feature_quota(sb)) {
1965 ext4_msg(sb, KERN_INFO,
1966 "Quota format mount options ignored "
1967 "when QUOTA feature is enabled");
1968 return 1;
1969 }
1970 sbi->s_jquota_fmt = m->mount_opt;
1971 #endif
1972 } else if (token == Opt_dax) {
1973 #ifdef CONFIG_FS_DAX
1974 ext4_msg(sb, KERN_WARNING,
1975 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1976 sbi->s_mount_opt |= m->mount_opt;
1977 #else
1978 ext4_msg(sb, KERN_INFO, "dax option not supported");
1979 return -1;
1980 #endif
1981 } else if (token == Opt_data_err_abort) {
1982 sbi->s_mount_opt |= m->mount_opt;
1983 } else if (token == Opt_data_err_ignore) {
1984 sbi->s_mount_opt &= ~m->mount_opt;
1985 } else {
1986 if (!args->from)
1987 arg = 1;
1988 if (m->flags & MOPT_CLEAR)
1989 arg = !arg;
1990 else if (unlikely(!(m->flags & MOPT_SET))) {
1991 ext4_msg(sb, KERN_WARNING,
1992 "buggy handling of option %s", opt);
1993 WARN_ON(1);
1994 return -1;
1995 }
1996 if (arg != 0)
1997 sbi->s_mount_opt |= m->mount_opt;
1998 else
1999 sbi->s_mount_opt &= ~m->mount_opt;
2000 }
2001 return 1;
2002 }
2003
2004 static int parse_options(char *options, struct super_block *sb,
2005 unsigned long *journal_devnum,
2006 unsigned int *journal_ioprio,
2007 int is_remount)
2008 {
2009 struct ext4_sb_info *sbi = EXT4_SB(sb);
2010 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2011 substring_t args[MAX_OPT_ARGS];
2012 int token;
2013
2014 if (!options)
2015 return 1;
2016
2017 while ((p = strsep(&options, ",")) != NULL) {
2018 if (!*p)
2019 continue;
2020 /*
2021 * Initialize args struct so we know whether arg was
2022 * found; some options take optional arguments.
2023 */
2024 args[0].to = args[0].from = NULL;
2025 token = match_token(p, tokens, args);
2026 if (handle_mount_opt(sb, p, token, args, journal_devnum,
2027 journal_ioprio, is_remount) < 0)
2028 return 0;
2029 }
2030 #ifdef CONFIG_QUOTA
2031 /*
2032 * We do the test below only for project quotas. 'usrquota' and
2033 * 'grpquota' mount options are allowed even without quota feature
2034 * to support legacy quotas in quota files.
2035 */
2036 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2037 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2038 "Cannot enable project quota enforcement.");
2039 return 0;
2040 }
2041 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2042 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2043 if (usr_qf_name || grp_qf_name) {
2044 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2045 clear_opt(sb, USRQUOTA);
2046
2047 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2048 clear_opt(sb, GRPQUOTA);
2049
2050 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2051 ext4_msg(sb, KERN_ERR, "old and new quota "
2052 "format mixing");
2053 return 0;
2054 }
2055
2056 if (!sbi->s_jquota_fmt) {
2057 ext4_msg(sb, KERN_ERR, "journaled quota format "
2058 "not specified");
2059 return 0;
2060 }
2061 }
2062 #endif
2063 if (test_opt(sb, DIOREAD_NOLOCK)) {
2064 int blocksize =
2065 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2066
2067 if (blocksize < PAGE_SIZE) {
2068 ext4_msg(sb, KERN_ERR, "can't mount with "
2069 "dioread_nolock if block size != PAGE_SIZE");
2070 return 0;
2071 }
2072 }
2073 return 1;
2074 }
2075
2076 static inline void ext4_show_quota_options(struct seq_file *seq,
2077 struct super_block *sb)
2078 {
2079 #if defined(CONFIG_QUOTA)
2080 struct ext4_sb_info *sbi = EXT4_SB(sb);
2081 char *usr_qf_name, *grp_qf_name;
2082
2083 if (sbi->s_jquota_fmt) {
2084 char *fmtname = "";
2085
2086 switch (sbi->s_jquota_fmt) {
2087 case QFMT_VFS_OLD:
2088 fmtname = "vfsold";
2089 break;
2090 case QFMT_VFS_V0:
2091 fmtname = "vfsv0";
2092 break;
2093 case QFMT_VFS_V1:
2094 fmtname = "vfsv1";
2095 break;
2096 }
2097 seq_printf(seq, ",jqfmt=%s", fmtname);
2098 }
2099
2100 rcu_read_lock();
2101 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2102 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2103 if (usr_qf_name)
2104 seq_show_option(seq, "usrjquota", usr_qf_name);
2105 if (grp_qf_name)
2106 seq_show_option(seq, "grpjquota", grp_qf_name);
2107 rcu_read_unlock();
2108 #endif
2109 }
2110
2111 static const char *token2str(int token)
2112 {
2113 const struct match_token *t;
2114
2115 for (t = tokens; t->token != Opt_err; t++)
2116 if (t->token == token && !strchr(t->pattern, '='))
2117 break;
2118 return t->pattern;
2119 }
2120
2121 /*
2122 * Show an option if
2123 * - it's set to a non-default value OR
2124 * - if the per-sb default is different from the global default
2125 */
2126 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2127 int nodefs)
2128 {
2129 struct ext4_sb_info *sbi = EXT4_SB(sb);
2130 struct ext4_super_block *es = sbi->s_es;
2131 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2132 const struct mount_opts *m;
2133 char sep = nodefs ? '\n' : ',';
2134
2135 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2136 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2137
2138 if (sbi->s_sb_block != 1)
2139 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2140
2141 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2142 int want_set = m->flags & MOPT_SET;
2143 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2144 (m->flags & MOPT_CLEAR_ERR))
2145 continue;
2146 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2147 continue; /* skip if same as the default */
2148 if ((want_set &&
2149 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2150 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2151 continue; /* select Opt_noFoo vs Opt_Foo */
2152 SEQ_OPTS_PRINT("%s", token2str(m->token));
2153 }
2154
2155 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2156 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2157 SEQ_OPTS_PRINT("resuid=%u",
2158 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2159 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2160 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2161 SEQ_OPTS_PRINT("resgid=%u",
2162 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2163 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2164 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2165 SEQ_OPTS_PUTS("errors=remount-ro");
2166 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2167 SEQ_OPTS_PUTS("errors=continue");
2168 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2169 SEQ_OPTS_PUTS("errors=panic");
2170 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2171 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2172 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2173 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2174 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2175 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2176 if (sb->s_flags & SB_I_VERSION)
2177 SEQ_OPTS_PUTS("i_version");
2178 if (nodefs || sbi->s_stripe)
2179 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2180 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2181 (sbi->s_mount_opt ^ def_mount_opt)) {
2182 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2183 SEQ_OPTS_PUTS("data=journal");
2184 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2185 SEQ_OPTS_PUTS("data=ordered");
2186 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2187 SEQ_OPTS_PUTS("data=writeback");
2188 }
2189 if (nodefs ||
2190 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2191 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2192 sbi->s_inode_readahead_blks);
2193
2194 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2195 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2196 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2197 if (nodefs || sbi->s_max_dir_size_kb)
2198 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2199 if (test_opt(sb, DATA_ERR_ABORT))
2200 SEQ_OPTS_PUTS("data_err=abort");
2201 if (DUMMY_ENCRYPTION_ENABLED(sbi))
2202 SEQ_OPTS_PUTS("test_dummy_encryption");
2203
2204 ext4_show_quota_options(seq, sb);
2205 return 0;
2206 }
2207
2208 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2209 {
2210 return _ext4_show_options(seq, root->d_sb, 0);
2211 }
2212
2213 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2214 {
2215 struct super_block *sb = seq->private;
2216 int rc;
2217
2218 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2219 rc = _ext4_show_options(seq, sb, 1);
2220 seq_puts(seq, "\n");
2221 return rc;
2222 }
2223
2224 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2225 int read_only)
2226 {
2227 struct ext4_sb_info *sbi = EXT4_SB(sb);
2228 int err = 0;
2229
2230 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2231 ext4_msg(sb, KERN_ERR, "revision level too high, "
2232 "forcing read-only mode");
2233 err = -EROFS;
2234 }
2235 if (read_only)
2236 goto done;
2237 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2238 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2239 "running e2fsck is recommended");
2240 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2241 ext4_msg(sb, KERN_WARNING,
2242 "warning: mounting fs with errors, "
2243 "running e2fsck is recommended");
2244 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2245 le16_to_cpu(es->s_mnt_count) >=
2246 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2247 ext4_msg(sb, KERN_WARNING,
2248 "warning: maximal mount count reached, "
2249 "running e2fsck is recommended");
2250 else if (le32_to_cpu(es->s_checkinterval) &&
2251 (ext4_get_tstamp(es, s_lastcheck) +
2252 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2253 ext4_msg(sb, KERN_WARNING,
2254 "warning: checktime reached, "
2255 "running e2fsck is recommended");
2256 if (!sbi->s_journal)
2257 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2258 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2259 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2260 le16_add_cpu(&es->s_mnt_count, 1);
2261 ext4_update_tstamp(es, s_mtime);
2262 if (sbi->s_journal)
2263 ext4_set_feature_journal_needs_recovery(sb);
2264
2265 err = ext4_commit_super(sb, 1);
2266 done:
2267 if (test_opt(sb, DEBUG))
2268 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2269 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2270 sb->s_blocksize,
2271 sbi->s_groups_count,
2272 EXT4_BLOCKS_PER_GROUP(sb),
2273 EXT4_INODES_PER_GROUP(sb),
2274 sbi->s_mount_opt, sbi->s_mount_opt2);
2275
2276 cleancache_init_fs(sb);
2277 return err;
2278 }
2279
2280 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2281 {
2282 struct ext4_sb_info *sbi = EXT4_SB(sb);
2283 struct flex_groups *new_groups;
2284 int size;
2285
2286 if (!sbi->s_log_groups_per_flex)
2287 return 0;
2288
2289 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2290 if (size <= sbi->s_flex_groups_allocated)
2291 return 0;
2292
2293 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2294 new_groups = kvzalloc(size, GFP_KERNEL);
2295 if (!new_groups) {
2296 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2297 size / (int) sizeof(struct flex_groups));
2298 return -ENOMEM;
2299 }
2300
2301 if (sbi->s_flex_groups) {
2302 memcpy(new_groups, sbi->s_flex_groups,
2303 (sbi->s_flex_groups_allocated *
2304 sizeof(struct flex_groups)));
2305 kvfree(sbi->s_flex_groups);
2306 }
2307 sbi->s_flex_groups = new_groups;
2308 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2309 return 0;
2310 }
2311
2312 static int ext4_fill_flex_info(struct super_block *sb)
2313 {
2314 struct ext4_sb_info *sbi = EXT4_SB(sb);
2315 struct ext4_group_desc *gdp = NULL;
2316 ext4_group_t flex_group;
2317 int i, err;
2318
2319 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2320 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2321 sbi->s_log_groups_per_flex = 0;
2322 return 1;
2323 }
2324
2325 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2326 if (err)
2327 goto failed;
2328
2329 for (i = 0; i < sbi->s_groups_count; i++) {
2330 gdp = ext4_get_group_desc(sb, i, NULL);
2331
2332 flex_group = ext4_flex_group(sbi, i);
2333 atomic_add(ext4_free_inodes_count(sb, gdp),
2334 &sbi->s_flex_groups[flex_group].free_inodes);
2335 atomic64_add(ext4_free_group_clusters(sb, gdp),
2336 &sbi->s_flex_groups[flex_group].free_clusters);
2337 atomic_add(ext4_used_dirs_count(sb, gdp),
2338 &sbi->s_flex_groups[flex_group].used_dirs);
2339 }
2340
2341 return 1;
2342 failed:
2343 return 0;
2344 }
2345
2346 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2347 struct ext4_group_desc *gdp)
2348 {
2349 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2350 __u16 crc = 0;
2351 __le32 le_group = cpu_to_le32(block_group);
2352 struct ext4_sb_info *sbi = EXT4_SB(sb);
2353
2354 if (ext4_has_metadata_csum(sbi->s_sb)) {
2355 /* Use new metadata_csum algorithm */
2356 __u32 csum32;
2357 __u16 dummy_csum = 0;
2358
2359 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2360 sizeof(le_group));
2361 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2362 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2363 sizeof(dummy_csum));
2364 offset += sizeof(dummy_csum);
2365 if (offset < sbi->s_desc_size)
2366 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2367 sbi->s_desc_size - offset);
2368
2369 crc = csum32 & 0xFFFF;
2370 goto out;
2371 }
2372
2373 /* old crc16 code */
2374 if (!ext4_has_feature_gdt_csum(sb))
2375 return 0;
2376
2377 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2378 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2379 crc = crc16(crc, (__u8 *)gdp, offset);
2380 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2381 /* for checksum of struct ext4_group_desc do the rest...*/
2382 if (ext4_has_feature_64bit(sb) &&
2383 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2384 crc = crc16(crc, (__u8 *)gdp + offset,
2385 le16_to_cpu(sbi->s_es->s_desc_size) -
2386 offset);
2387
2388 out:
2389 return cpu_to_le16(crc);
2390 }
2391
2392 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2393 struct ext4_group_desc *gdp)
2394 {
2395 if (ext4_has_group_desc_csum(sb) &&
2396 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2397 return 0;
2398
2399 return 1;
2400 }
2401
2402 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2403 struct ext4_group_desc *gdp)
2404 {
2405 if (!ext4_has_group_desc_csum(sb))
2406 return;
2407 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2408 }
2409
2410 /* Called at mount-time, super-block is locked */
2411 static int ext4_check_descriptors(struct super_block *sb,
2412 ext4_fsblk_t sb_block,
2413 ext4_group_t *first_not_zeroed)
2414 {
2415 struct ext4_sb_info *sbi = EXT4_SB(sb);
2416 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2417 ext4_fsblk_t last_block;
2418 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2419 ext4_fsblk_t block_bitmap;
2420 ext4_fsblk_t inode_bitmap;
2421 ext4_fsblk_t inode_table;
2422 int flexbg_flag = 0;
2423 ext4_group_t i, grp = sbi->s_groups_count;
2424
2425 if (ext4_has_feature_flex_bg(sb))
2426 flexbg_flag = 1;
2427
2428 ext4_debug("Checking group descriptors");
2429
2430 for (i = 0; i < sbi->s_groups_count; i++) {
2431 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2432
2433 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2434 last_block = ext4_blocks_count(sbi->s_es) - 1;
2435 else
2436 last_block = first_block +
2437 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2438
2439 if ((grp == sbi->s_groups_count) &&
2440 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2441 grp = i;
2442
2443 block_bitmap = ext4_block_bitmap(sb, gdp);
2444 if (block_bitmap == sb_block) {
2445 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2446 "Block bitmap for group %u overlaps "
2447 "superblock", i);
2448 if (!sb_rdonly(sb))
2449 return 0;
2450 }
2451 if (block_bitmap >= sb_block + 1 &&
2452 block_bitmap <= last_bg_block) {
2453 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2454 "Block bitmap for group %u overlaps "
2455 "block group descriptors", i);
2456 if (!sb_rdonly(sb))
2457 return 0;
2458 }
2459 if (block_bitmap < first_block || block_bitmap > last_block) {
2460 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2461 "Block bitmap for group %u not in group "
2462 "(block %llu)!", i, block_bitmap);
2463 return 0;
2464 }
2465 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2466 if (inode_bitmap == sb_block) {
2467 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2468 "Inode bitmap for group %u overlaps "
2469 "superblock", i);
2470 if (!sb_rdonly(sb))
2471 return 0;
2472 }
2473 if (inode_bitmap >= sb_block + 1 &&
2474 inode_bitmap <= last_bg_block) {
2475 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2476 "Inode bitmap for group %u overlaps "
2477 "block group descriptors", i);
2478 if (!sb_rdonly(sb))
2479 return 0;
2480 }
2481 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2482 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2483 "Inode bitmap for group %u not in group "
2484 "(block %llu)!", i, inode_bitmap);
2485 return 0;
2486 }
2487 inode_table = ext4_inode_table(sb, gdp);
2488 if (inode_table == sb_block) {
2489 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2490 "Inode table for group %u overlaps "
2491 "superblock", i);
2492 if (!sb_rdonly(sb))
2493 return 0;
2494 }
2495 if (inode_table >= sb_block + 1 &&
2496 inode_table <= last_bg_block) {
2497 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2498 "Inode table for group %u overlaps "
2499 "block group descriptors", i);
2500 if (!sb_rdonly(sb))
2501 return 0;
2502 }
2503 if (inode_table < first_block ||
2504 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2505 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2506 "Inode table for group %u not in group "
2507 "(block %llu)!", i, inode_table);
2508 return 0;
2509 }
2510 ext4_lock_group(sb, i);
2511 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2512 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2513 "Checksum for group %u failed (%u!=%u)",
2514 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2515 gdp)), le16_to_cpu(gdp->bg_checksum));
2516 if (!sb_rdonly(sb)) {
2517 ext4_unlock_group(sb, i);
2518 return 0;
2519 }
2520 }
2521 ext4_unlock_group(sb, i);
2522 if (!flexbg_flag)
2523 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2524 }
2525 if (NULL != first_not_zeroed)
2526 *first_not_zeroed = grp;
2527 return 1;
2528 }
2529
2530 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2531 * the superblock) which were deleted from all directories, but held open by
2532 * a process at the time of a crash. We walk the list and try to delete these
2533 * inodes at recovery time (only with a read-write filesystem).
2534 *
2535 * In order to keep the orphan inode chain consistent during traversal (in
2536 * case of crash during recovery), we link each inode into the superblock
2537 * orphan list_head and handle it the same way as an inode deletion during
2538 * normal operation (which journals the operations for us).
2539 *
2540 * We only do an iget() and an iput() on each inode, which is very safe if we
2541 * accidentally point at an in-use or already deleted inode. The worst that
2542 * can happen in this case is that we get a "bit already cleared" message from
2543 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2544 * e2fsck was run on this filesystem, and it must have already done the orphan
2545 * inode cleanup for us, so we can safely abort without any further action.
2546 */
2547 static void ext4_orphan_cleanup(struct super_block *sb,
2548 struct ext4_super_block *es)
2549 {
2550 unsigned int s_flags = sb->s_flags;
2551 int ret, nr_orphans = 0, nr_truncates = 0;
2552 #ifdef CONFIG_QUOTA
2553 int quota_update = 0;
2554 int i;
2555 #endif
2556 if (!es->s_last_orphan) {
2557 jbd_debug(4, "no orphan inodes to clean up\n");
2558 return;
2559 }
2560
2561 if (bdev_read_only(sb->s_bdev)) {
2562 ext4_msg(sb, KERN_ERR, "write access "
2563 "unavailable, skipping orphan cleanup");
2564 return;
2565 }
2566
2567 /* Check if feature set would not allow a r/w mount */
2568 if (!ext4_feature_set_ok(sb, 0)) {
2569 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2570 "unknown ROCOMPAT features");
2571 return;
2572 }
2573
2574 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2575 /* don't clear list on RO mount w/ errors */
2576 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2577 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2578 "clearing orphan list.\n");
2579 es->s_last_orphan = 0;
2580 }
2581 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2582 return;
2583 }
2584
2585 if (s_flags & SB_RDONLY) {
2586 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2587 sb->s_flags &= ~SB_RDONLY;
2588 }
2589 #ifdef CONFIG_QUOTA
2590 /* Needed for iput() to work correctly and not trash data */
2591 sb->s_flags |= SB_ACTIVE;
2592
2593 /*
2594 * Turn on quotas which were not enabled for read-only mounts if
2595 * filesystem has quota feature, so that they are updated correctly.
2596 */
2597 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2598 int ret = ext4_enable_quotas(sb);
2599
2600 if (!ret)
2601 quota_update = 1;
2602 else
2603 ext4_msg(sb, KERN_ERR,
2604 "Cannot turn on quotas: error %d", ret);
2605 }
2606
2607 /* Turn on journaled quotas used for old sytle */
2608 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2609 if (EXT4_SB(sb)->s_qf_names[i]) {
2610 int ret = ext4_quota_on_mount(sb, i);
2611
2612 if (!ret)
2613 quota_update = 1;
2614 else
2615 ext4_msg(sb, KERN_ERR,
2616 "Cannot turn on journaled "
2617 "quota: type %d: error %d", i, ret);
2618 }
2619 }
2620 #endif
2621
2622 while (es->s_last_orphan) {
2623 struct inode *inode;
2624
2625 /*
2626 * We may have encountered an error during cleanup; if
2627 * so, skip the rest.
2628 */
2629 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2630 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2631 es->s_last_orphan = 0;
2632 break;
2633 }
2634
2635 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2636 if (IS_ERR(inode)) {
2637 es->s_last_orphan = 0;
2638 break;
2639 }
2640
2641 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2642 dquot_initialize(inode);
2643 if (inode->i_nlink) {
2644 if (test_opt(sb, DEBUG))
2645 ext4_msg(sb, KERN_DEBUG,
2646 "%s: truncating inode %lu to %lld bytes",
2647 __func__, inode->i_ino, inode->i_size);
2648 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2649 inode->i_ino, inode->i_size);
2650 inode_lock(inode);
2651 truncate_inode_pages(inode->i_mapping, inode->i_size);
2652 ret = ext4_truncate(inode);
2653 if (ret)
2654 ext4_std_error(inode->i_sb, ret);
2655 inode_unlock(inode);
2656 nr_truncates++;
2657 } else {
2658 if (test_opt(sb, DEBUG))
2659 ext4_msg(sb, KERN_DEBUG,
2660 "%s: deleting unreferenced inode %lu",
2661 __func__, inode->i_ino);
2662 jbd_debug(2, "deleting unreferenced inode %lu\n",
2663 inode->i_ino);
2664 nr_orphans++;
2665 }
2666 iput(inode); /* The delete magic happens here! */
2667 }
2668
2669 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2670
2671 if (nr_orphans)
2672 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2673 PLURAL(nr_orphans));
2674 if (nr_truncates)
2675 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2676 PLURAL(nr_truncates));
2677 #ifdef CONFIG_QUOTA
2678 /* Turn off quotas if they were enabled for orphan cleanup */
2679 if (quota_update) {
2680 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2681 if (sb_dqopt(sb)->files[i])
2682 dquot_quota_off(sb, i);
2683 }
2684 }
2685 #endif
2686 sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2687 }
2688
2689 /*
2690 * Maximal extent format file size.
2691 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2692 * extent format containers, within a sector_t, and within i_blocks
2693 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2694 * so that won't be a limiting factor.
2695 *
2696 * However there is other limiting factor. We do store extents in the form
2697 * of starting block and length, hence the resulting length of the extent
2698 * covering maximum file size must fit into on-disk format containers as
2699 * well. Given that length is always by 1 unit bigger than max unit (because
2700 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2701 *
2702 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2703 */
2704 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2705 {
2706 loff_t res;
2707 loff_t upper_limit = MAX_LFS_FILESIZE;
2708
2709 /* small i_blocks in vfs inode? */
2710 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2711 /*
2712 * CONFIG_LBDAF is not enabled implies the inode
2713 * i_block represent total blocks in 512 bytes
2714 * 32 == size of vfs inode i_blocks * 8
2715 */
2716 upper_limit = (1LL << 32) - 1;
2717
2718 /* total blocks in file system block size */
2719 upper_limit >>= (blkbits - 9);
2720 upper_limit <<= blkbits;
2721 }
2722
2723 /*
2724 * 32-bit extent-start container, ee_block. We lower the maxbytes
2725 * by one fs block, so ee_len can cover the extent of maximum file
2726 * size
2727 */
2728 res = (1LL << 32) - 1;
2729 res <<= blkbits;
2730
2731 /* Sanity check against vm- & vfs- imposed limits */
2732 if (res > upper_limit)
2733 res = upper_limit;
2734
2735 return res;
2736 }
2737
2738 /*
2739 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2740 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2741 * We need to be 1 filesystem block less than the 2^48 sector limit.
2742 */
2743 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2744 {
2745 loff_t res = EXT4_NDIR_BLOCKS;
2746 int meta_blocks;
2747 loff_t upper_limit;
2748 /* This is calculated to be the largest file size for a dense, block
2749 * mapped file such that the file's total number of 512-byte sectors,
2750 * including data and all indirect blocks, does not exceed (2^48 - 1).
2751 *
2752 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2753 * number of 512-byte sectors of the file.
2754 */
2755
2756 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2757 /*
2758 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2759 * the inode i_block field represents total file blocks in
2760 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2761 */
2762 upper_limit = (1LL << 32) - 1;
2763
2764 /* total blocks in file system block size */
2765 upper_limit >>= (bits - 9);
2766
2767 } else {
2768 /*
2769 * We use 48 bit ext4_inode i_blocks
2770 * With EXT4_HUGE_FILE_FL set the i_blocks
2771 * represent total number of blocks in
2772 * file system block size
2773 */
2774 upper_limit = (1LL << 48) - 1;
2775
2776 }
2777
2778 /* indirect blocks */
2779 meta_blocks = 1;
2780 /* double indirect blocks */
2781 meta_blocks += 1 + (1LL << (bits-2));
2782 /* tripple indirect blocks */
2783 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2784
2785 upper_limit -= meta_blocks;
2786 upper_limit <<= bits;
2787
2788 res += 1LL << (bits-2);
2789 res += 1LL << (2*(bits-2));
2790 res += 1LL << (3*(bits-2));
2791 res <<= bits;
2792 if (res > upper_limit)
2793 res = upper_limit;
2794
2795 if (res > MAX_LFS_FILESIZE)
2796 res = MAX_LFS_FILESIZE;
2797
2798 return res;
2799 }
2800
2801 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2802 ext4_fsblk_t logical_sb_block, int nr)
2803 {
2804 struct ext4_sb_info *sbi = EXT4_SB(sb);
2805 ext4_group_t bg, first_meta_bg;
2806 int has_super = 0;
2807
2808 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2809
2810 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2811 return logical_sb_block + nr + 1;
2812 bg = sbi->s_desc_per_block * nr;
2813 if (ext4_bg_has_super(sb, bg))
2814 has_super = 1;
2815
2816 /*
2817 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2818 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2819 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2820 * compensate.
2821 */
2822 if (sb->s_blocksize == 1024 && nr == 0 &&
2823 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
2824 has_super++;
2825
2826 return (has_super + ext4_group_first_block_no(sb, bg));
2827 }
2828
2829 /**
2830 * ext4_get_stripe_size: Get the stripe size.
2831 * @sbi: In memory super block info
2832 *
2833 * If we have specified it via mount option, then
2834 * use the mount option value. If the value specified at mount time is
2835 * greater than the blocks per group use the super block value.
2836 * If the super block value is greater than blocks per group return 0.
2837 * Allocator needs it be less than blocks per group.
2838 *
2839 */
2840 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2841 {
2842 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2843 unsigned long stripe_width =
2844 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2845 int ret;
2846
2847 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2848 ret = sbi->s_stripe;
2849 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2850 ret = stripe_width;
2851 else if (stride && stride <= sbi->s_blocks_per_group)
2852 ret = stride;
2853 else
2854 ret = 0;
2855
2856 /*
2857 * If the stripe width is 1, this makes no sense and
2858 * we set it to 0 to turn off stripe handling code.
2859 */
2860 if (ret <= 1)
2861 ret = 0;
2862
2863 return ret;
2864 }
2865
2866 /*
2867 * Check whether this filesystem can be mounted based on
2868 * the features present and the RDONLY/RDWR mount requested.
2869 * Returns 1 if this filesystem can be mounted as requested,
2870 * 0 if it cannot be.
2871 */
2872 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2873 {
2874 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2875 ext4_msg(sb, KERN_ERR,
2876 "Couldn't mount because of "
2877 "unsupported optional features (%x)",
2878 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2879 ~EXT4_FEATURE_INCOMPAT_SUPP));
2880 return 0;
2881 }
2882
2883 if (readonly)
2884 return 1;
2885
2886 if (ext4_has_feature_readonly(sb)) {
2887 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2888 sb->s_flags |= SB_RDONLY;
2889 return 1;
2890 }
2891
2892 /* Check that feature set is OK for a read-write mount */
2893 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2894 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2895 "unsupported optional features (%x)",
2896 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2897 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2898 return 0;
2899 }
2900 /*
2901 * Large file size enabled file system can only be mounted
2902 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2903 */
2904 if (ext4_has_feature_huge_file(sb)) {
2905 if (sizeof(blkcnt_t) < sizeof(u64)) {
2906 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2907 "cannot be mounted RDWR without "
2908 "CONFIG_LBDAF");
2909 return 0;
2910 }
2911 }
2912 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2913 ext4_msg(sb, KERN_ERR,
2914 "Can't support bigalloc feature without "
2915 "extents feature\n");
2916 return 0;
2917 }
2918
2919 #ifndef CONFIG_QUOTA
2920 if (ext4_has_feature_quota(sb) && !readonly) {
2921 ext4_msg(sb, KERN_ERR,
2922 "Filesystem with quota feature cannot be mounted RDWR "
2923 "without CONFIG_QUOTA");
2924 return 0;
2925 }
2926 if (ext4_has_feature_project(sb) && !readonly) {
2927 ext4_msg(sb, KERN_ERR,
2928 "Filesystem with project quota feature cannot be mounted RDWR "
2929 "without CONFIG_QUOTA");
2930 return 0;
2931 }
2932 #endif /* CONFIG_QUOTA */
2933 return 1;
2934 }
2935
2936 /*
2937 * This function is called once a day if we have errors logged
2938 * on the file system
2939 */
2940 static void print_daily_error_info(struct timer_list *t)
2941 {
2942 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
2943 struct super_block *sb = sbi->s_sb;
2944 struct ext4_super_block *es = sbi->s_es;
2945
2946 if (es->s_error_count)
2947 /* fsck newer than v1.41.13 is needed to clean this condition. */
2948 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2949 le32_to_cpu(es->s_error_count));
2950 if (es->s_first_error_time) {
2951 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
2952 sb->s_id,
2953 ext4_get_tstamp(es, s_first_error_time),
2954 (int) sizeof(es->s_first_error_func),
2955 es->s_first_error_func,
2956 le32_to_cpu(es->s_first_error_line));
2957 if (es->s_first_error_ino)
2958 printk(KERN_CONT ": inode %u",
2959 le32_to_cpu(es->s_first_error_ino));
2960 if (es->s_first_error_block)
2961 printk(KERN_CONT ": block %llu", (unsigned long long)
2962 le64_to_cpu(es->s_first_error_block));
2963 printk(KERN_CONT "\n");
2964 }
2965 if (es->s_last_error_time) {
2966 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
2967 sb->s_id,
2968 ext4_get_tstamp(es, s_last_error_time),
2969 (int) sizeof(es->s_last_error_func),
2970 es->s_last_error_func,
2971 le32_to_cpu(es->s_last_error_line));
2972 if (es->s_last_error_ino)
2973 printk(KERN_CONT ": inode %u",
2974 le32_to_cpu(es->s_last_error_ino));
2975 if (es->s_last_error_block)
2976 printk(KERN_CONT ": block %llu", (unsigned long long)
2977 le64_to_cpu(es->s_last_error_block));
2978 printk(KERN_CONT "\n");
2979 }
2980 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2981 }
2982
2983 /* Find next suitable group and run ext4_init_inode_table */
2984 static int ext4_run_li_request(struct ext4_li_request *elr)
2985 {
2986 struct ext4_group_desc *gdp = NULL;
2987 ext4_group_t group, ngroups;
2988 struct super_block *sb;
2989 unsigned long timeout = 0;
2990 int ret = 0;
2991
2992 sb = elr->lr_super;
2993 ngroups = EXT4_SB(sb)->s_groups_count;
2994
2995 for (group = elr->lr_next_group; group < ngroups; group++) {
2996 gdp = ext4_get_group_desc(sb, group, NULL);
2997 if (!gdp) {
2998 ret = 1;
2999 break;
3000 }
3001
3002 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3003 break;
3004 }
3005
3006 if (group >= ngroups)
3007 ret = 1;
3008
3009 if (!ret) {
3010 timeout = jiffies;
3011 ret = ext4_init_inode_table(sb, group,
3012 elr->lr_timeout ? 0 : 1);
3013 if (elr->lr_timeout == 0) {
3014 timeout = (jiffies - timeout) *
3015 elr->lr_sbi->s_li_wait_mult;
3016 elr->lr_timeout = timeout;
3017 }
3018 elr->lr_next_sched = jiffies + elr->lr_timeout;
3019 elr->lr_next_group = group + 1;
3020 }
3021 return ret;
3022 }
3023
3024 /*
3025 * Remove lr_request from the list_request and free the
3026 * request structure. Should be called with li_list_mtx held
3027 */
3028 static void ext4_remove_li_request(struct ext4_li_request *elr)
3029 {
3030 struct ext4_sb_info *sbi;
3031
3032 if (!elr)
3033 return;
3034
3035 sbi = elr->lr_sbi;
3036
3037 list_del(&elr->lr_request);
3038 sbi->s_li_request = NULL;
3039 kfree(elr);
3040 }
3041
3042 static void ext4_unregister_li_request(struct super_block *sb)
3043 {
3044 mutex_lock(&ext4_li_mtx);
3045 if (!ext4_li_info) {
3046 mutex_unlock(&ext4_li_mtx);
3047 return;
3048 }
3049
3050 mutex_lock(&ext4_li_info->li_list_mtx);
3051 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3052 mutex_unlock(&ext4_li_info->li_list_mtx);
3053 mutex_unlock(&ext4_li_mtx);
3054 }
3055
3056 static struct task_struct *ext4_lazyinit_task;
3057
3058 /*
3059 * This is the function where ext4lazyinit thread lives. It walks
3060 * through the request list searching for next scheduled filesystem.
3061 * When such a fs is found, run the lazy initialization request
3062 * (ext4_rn_li_request) and keep track of the time spend in this
3063 * function. Based on that time we compute next schedule time of
3064 * the request. When walking through the list is complete, compute
3065 * next waking time and put itself into sleep.
3066 */
3067 static int ext4_lazyinit_thread(void *arg)
3068 {
3069 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3070 struct list_head *pos, *n;
3071 struct ext4_li_request *elr;
3072 unsigned long next_wakeup, cur;
3073
3074 BUG_ON(NULL == eli);
3075
3076 cont_thread:
3077 while (true) {
3078 next_wakeup = MAX_JIFFY_OFFSET;
3079
3080 mutex_lock(&eli->li_list_mtx);
3081 if (list_empty(&eli->li_request_list)) {
3082 mutex_unlock(&eli->li_list_mtx);
3083 goto exit_thread;
3084 }
3085 list_for_each_safe(pos, n, &eli->li_request_list) {
3086 int err = 0;
3087 int progress = 0;
3088 elr = list_entry(pos, struct ext4_li_request,
3089 lr_request);
3090
3091 if (time_before(jiffies, elr->lr_next_sched)) {
3092 if (time_before(elr->lr_next_sched, next_wakeup))
3093 next_wakeup = elr->lr_next_sched;
3094 continue;
3095 }
3096 if (down_read_trylock(&elr->lr_super->s_umount)) {
3097 if (sb_start_write_trylock(elr->lr_super)) {
3098 progress = 1;
3099 /*
3100 * We hold sb->s_umount, sb can not
3101 * be removed from the list, it is
3102 * now safe to drop li_list_mtx
3103 */
3104 mutex_unlock(&eli->li_list_mtx);
3105 err = ext4_run_li_request(elr);
3106 sb_end_write(elr->lr_super);
3107 mutex_lock(&eli->li_list_mtx);
3108 n = pos->next;
3109 }
3110 up_read((&elr->lr_super->s_umount));
3111 }
3112 /* error, remove the lazy_init job */
3113 if (err) {
3114 ext4_remove_li_request(elr);
3115 continue;
3116 }
3117 if (!progress) {
3118 elr->lr_next_sched = jiffies +
3119 (prandom_u32()
3120 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3121 }
3122 if (time_before(elr->lr_next_sched, next_wakeup))
3123 next_wakeup = elr->lr_next_sched;
3124 }
3125 mutex_unlock(&eli->li_list_mtx);
3126
3127 try_to_freeze();
3128
3129 cur = jiffies;
3130 if ((time_after_eq(cur, next_wakeup)) ||
3131 (MAX_JIFFY_OFFSET == next_wakeup)) {
3132 cond_resched();
3133 continue;
3134 }
3135
3136 schedule_timeout_interruptible(next_wakeup - cur);
3137
3138 if (kthread_should_stop()) {
3139 ext4_clear_request_list();
3140 goto exit_thread;
3141 }
3142 }
3143
3144 exit_thread:
3145 /*
3146 * It looks like the request list is empty, but we need
3147 * to check it under the li_list_mtx lock, to prevent any
3148 * additions into it, and of course we should lock ext4_li_mtx
3149 * to atomically free the list and ext4_li_info, because at
3150 * this point another ext4 filesystem could be registering
3151 * new one.
3152 */
3153 mutex_lock(&ext4_li_mtx);
3154 mutex_lock(&eli->li_list_mtx);
3155 if (!list_empty(&eli->li_request_list)) {
3156 mutex_unlock(&eli->li_list_mtx);
3157 mutex_unlock(&ext4_li_mtx);
3158 goto cont_thread;
3159 }
3160 mutex_unlock(&eli->li_list_mtx);
3161 kfree(ext4_li_info);
3162 ext4_li_info = NULL;
3163 mutex_unlock(&ext4_li_mtx);
3164
3165 return 0;
3166 }
3167
3168 static void ext4_clear_request_list(void)
3169 {
3170 struct list_head *pos, *n;
3171 struct ext4_li_request *elr;
3172
3173 mutex_lock(&ext4_li_info->li_list_mtx);
3174 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3175 elr = list_entry(pos, struct ext4_li_request,
3176 lr_request);
3177 ext4_remove_li_request(elr);
3178 }
3179 mutex_unlock(&ext4_li_info->li_list_mtx);
3180 }
3181
3182 static int ext4_run_lazyinit_thread(void)
3183 {
3184 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3185 ext4_li_info, "ext4lazyinit");
3186 if (IS_ERR(ext4_lazyinit_task)) {
3187 int err = PTR_ERR(ext4_lazyinit_task);
3188 ext4_clear_request_list();
3189 kfree(ext4_li_info);
3190 ext4_li_info = NULL;
3191 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3192 "initialization thread\n",
3193 err);
3194 return err;
3195 }
3196 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3197 return 0;
3198 }
3199
3200 /*
3201 * Check whether it make sense to run itable init. thread or not.
3202 * If there is at least one uninitialized inode table, return
3203 * corresponding group number, else the loop goes through all
3204 * groups and return total number of groups.
3205 */
3206 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3207 {
3208 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3209 struct ext4_group_desc *gdp = NULL;
3210
3211 if (!ext4_has_group_desc_csum(sb))
3212 return ngroups;
3213
3214 for (group = 0; group < ngroups; group++) {
3215 gdp = ext4_get_group_desc(sb, group, NULL);
3216 if (!gdp)
3217 continue;
3218
3219 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3220 break;
3221 }
3222
3223 return group;
3224 }
3225
3226 static int ext4_li_info_new(void)
3227 {
3228 struct ext4_lazy_init *eli = NULL;
3229
3230 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3231 if (!eli)
3232 return -ENOMEM;
3233
3234 INIT_LIST_HEAD(&eli->li_request_list);
3235 mutex_init(&eli->li_list_mtx);
3236
3237 eli->li_state |= EXT4_LAZYINIT_QUIT;
3238
3239 ext4_li_info = eli;
3240
3241 return 0;
3242 }
3243
3244 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3245 ext4_group_t start)
3246 {
3247 struct ext4_sb_info *sbi = EXT4_SB(sb);
3248 struct ext4_li_request *elr;
3249
3250 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3251 if (!elr)
3252 return NULL;
3253
3254 elr->lr_super = sb;
3255 elr->lr_sbi = sbi;
3256 elr->lr_next_group = start;
3257
3258 /*
3259 * Randomize first schedule time of the request to
3260 * spread the inode table initialization requests
3261 * better.
3262 */
3263 elr->lr_next_sched = jiffies + (prandom_u32() %
3264 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3265 return elr;
3266 }
3267
3268 int ext4_register_li_request(struct super_block *sb,
3269 ext4_group_t first_not_zeroed)
3270 {
3271 struct ext4_sb_info *sbi = EXT4_SB(sb);
3272 struct ext4_li_request *elr = NULL;
3273 ext4_group_t ngroups = sbi->s_groups_count;
3274 int ret = 0;
3275
3276 mutex_lock(&ext4_li_mtx);
3277 if (sbi->s_li_request != NULL) {
3278 /*
3279 * Reset timeout so it can be computed again, because
3280 * s_li_wait_mult might have changed.
3281 */
3282 sbi->s_li_request->lr_timeout = 0;
3283 goto out;
3284 }
3285
3286 if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3287 !test_opt(sb, INIT_INODE_TABLE))
3288 goto out;
3289
3290 elr = ext4_li_request_new(sb, first_not_zeroed);
3291 if (!elr) {
3292 ret = -ENOMEM;
3293 goto out;
3294 }
3295
3296 if (NULL == ext4_li_info) {
3297 ret = ext4_li_info_new();
3298 if (ret)
3299 goto out;
3300 }
3301
3302 mutex_lock(&ext4_li_info->li_list_mtx);
3303 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3304 mutex_unlock(&ext4_li_info->li_list_mtx);
3305
3306 sbi->s_li_request = elr;
3307 /*
3308 * set elr to NULL here since it has been inserted to
3309 * the request_list and the removal and free of it is
3310 * handled by ext4_clear_request_list from now on.
3311 */
3312 elr = NULL;
3313
3314 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3315 ret = ext4_run_lazyinit_thread();
3316 if (ret)
3317 goto out;
3318 }
3319 out:
3320 mutex_unlock(&ext4_li_mtx);
3321 if (ret)
3322 kfree(elr);
3323 return ret;
3324 }
3325
3326 /*
3327 * We do not need to lock anything since this is called on
3328 * module unload.
3329 */
3330 static void ext4_destroy_lazyinit_thread(void)
3331 {
3332 /*
3333 * If thread exited earlier
3334 * there's nothing to be done.
3335 */
3336 if (!ext4_li_info || !ext4_lazyinit_task)
3337 return;
3338
3339 kthread_stop(ext4_lazyinit_task);
3340 }
3341
3342 static int set_journal_csum_feature_set(struct super_block *sb)
3343 {
3344 int ret = 1;
3345 int compat, incompat;
3346 struct ext4_sb_info *sbi = EXT4_SB(sb);
3347
3348 if (ext4_has_metadata_csum(sb)) {
3349 /* journal checksum v3 */
3350 compat = 0;
3351 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3352 } else {
3353 /* journal checksum v1 */
3354 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3355 incompat = 0;
3356 }
3357
3358 jbd2_journal_clear_features(sbi->s_journal,
3359 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3360 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3361 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3362 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3363 ret = jbd2_journal_set_features(sbi->s_journal,
3364 compat, 0,
3365 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3366 incompat);
3367 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3368 ret = jbd2_journal_set_features(sbi->s_journal,
3369 compat, 0,
3370 incompat);
3371 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3372 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3373 } else {
3374 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3375 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3376 }
3377
3378 return ret;
3379 }
3380
3381 /*
3382 * Note: calculating the overhead so we can be compatible with
3383 * historical BSD practice is quite difficult in the face of
3384 * clusters/bigalloc. This is because multiple metadata blocks from
3385 * different block group can end up in the same allocation cluster.
3386 * Calculating the exact overhead in the face of clustered allocation
3387 * requires either O(all block bitmaps) in memory or O(number of block
3388 * groups**2) in time. We will still calculate the superblock for
3389 * older file systems --- and if we come across with a bigalloc file
3390 * system with zero in s_overhead_clusters the estimate will be close to
3391 * correct especially for very large cluster sizes --- but for newer
3392 * file systems, it's better to calculate this figure once at mkfs
3393 * time, and store it in the superblock. If the superblock value is
3394 * present (even for non-bigalloc file systems), we will use it.
3395 */
3396 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3397 char *buf)
3398 {
3399 struct ext4_sb_info *sbi = EXT4_SB(sb);
3400 struct ext4_group_desc *gdp;
3401 ext4_fsblk_t first_block, last_block, b;
3402 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3403 int s, j, count = 0;
3404
3405 if (!ext4_has_feature_bigalloc(sb))
3406 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3407 sbi->s_itb_per_group + 2);
3408
3409 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3410 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3411 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3412 for (i = 0; i < ngroups; i++) {
3413 gdp = ext4_get_group_desc(sb, i, NULL);
3414 b = ext4_block_bitmap(sb, gdp);
3415 if (b >= first_block && b <= last_block) {
3416 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3417 count++;
3418 }
3419 b = ext4_inode_bitmap(sb, gdp);
3420 if (b >= first_block && b <= last_block) {
3421 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3422 count++;
3423 }
3424 b = ext4_inode_table(sb, gdp);
3425 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3426 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3427 int c = EXT4_B2C(sbi, b - first_block);
3428 ext4_set_bit(c, buf);
3429 count++;
3430 }
3431 if (i != grp)
3432 continue;
3433 s = 0;
3434 if (ext4_bg_has_super(sb, grp)) {
3435 ext4_set_bit(s++, buf);
3436 count++;
3437 }
3438 j = ext4_bg_num_gdb(sb, grp);
3439 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3440 ext4_error(sb, "Invalid number of block group "
3441 "descriptor blocks: %d", j);
3442 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3443 }
3444 count += j;
3445 for (; j > 0; j--)
3446 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3447 }
3448 if (!count)
3449 return 0;
3450 return EXT4_CLUSTERS_PER_GROUP(sb) -
3451 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3452 }
3453
3454 /*
3455 * Compute the overhead and stash it in sbi->s_overhead
3456 */
3457 int ext4_calculate_overhead(struct super_block *sb)
3458 {
3459 struct ext4_sb_info *sbi = EXT4_SB(sb);
3460 struct ext4_super_block *es = sbi->s_es;
3461 struct inode *j_inode;
3462 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3463 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3464 ext4_fsblk_t overhead = 0;
3465 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3466
3467 if (!buf)
3468 return -ENOMEM;
3469
3470 /*
3471 * Compute the overhead (FS structures). This is constant
3472 * for a given filesystem unless the number of block groups
3473 * changes so we cache the previous value until it does.
3474 */
3475
3476 /*
3477 * All of the blocks before first_data_block are overhead
3478 */
3479 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3480
3481 /*
3482 * Add the overhead found in each block group
3483 */
3484 for (i = 0; i < ngroups; i++) {
3485 int blks;
3486
3487 blks = count_overhead(sb, i, buf);
3488 overhead += blks;
3489 if (blks)
3490 memset(buf, 0, PAGE_SIZE);
3491 cond_resched();
3492 }
3493
3494 /*
3495 * Add the internal journal blocks whether the journal has been
3496 * loaded or not
3497 */
3498 if (sbi->s_journal && !sbi->journal_bdev)
3499 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3500 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3501 j_inode = ext4_get_journal_inode(sb, j_inum);
3502 if (j_inode) {
3503 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3504 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3505 iput(j_inode);
3506 } else {
3507 ext4_msg(sb, KERN_ERR, "can't get journal size");
3508 }
3509 }
3510 sbi->s_overhead = overhead;
3511 smp_wmb();
3512 free_page((unsigned long) buf);
3513 return 0;
3514 }
3515
3516 static void ext4_set_resv_clusters(struct super_block *sb)
3517 {
3518 ext4_fsblk_t resv_clusters;
3519 struct ext4_sb_info *sbi = EXT4_SB(sb);
3520
3521 /*
3522 * There's no need to reserve anything when we aren't using extents.
3523 * The space estimates are exact, there are no unwritten extents,
3524 * hole punching doesn't need new metadata... This is needed especially
3525 * to keep ext2/3 backward compatibility.
3526 */
3527 if (!ext4_has_feature_extents(sb))
3528 return;
3529 /*
3530 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3531 * This should cover the situations where we can not afford to run
3532 * out of space like for example punch hole, or converting
3533 * unwritten extents in delalloc path. In most cases such
3534 * allocation would require 1, or 2 blocks, higher numbers are
3535 * very rare.
3536 */
3537 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3538 sbi->s_cluster_bits);
3539
3540 do_div(resv_clusters, 50);
3541 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3542
3543 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3544 }
3545
3546 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3547 {
3548 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3549 char *orig_data = kstrdup(data, GFP_KERNEL);
3550 struct buffer_head *bh;
3551 struct ext4_super_block *es = NULL;
3552 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3553 ext4_fsblk_t block;
3554 ext4_fsblk_t sb_block = get_sb_block(&data);
3555 ext4_fsblk_t logical_sb_block;
3556 unsigned long offset = 0;
3557 unsigned long journal_devnum = 0;
3558 unsigned long def_mount_opts;
3559 struct inode *root;
3560 const char *descr;
3561 int ret = -ENOMEM;
3562 int blocksize, clustersize;
3563 unsigned int db_count;
3564 unsigned int i;
3565 int needs_recovery, has_huge_files, has_bigalloc;
3566 __u64 blocks_count;
3567 int err = 0;
3568 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3569 ext4_group_t first_not_zeroed;
3570
3571 if ((data && !orig_data) || !sbi)
3572 goto out_free_base;
3573
3574 sbi->s_daxdev = dax_dev;
3575 sbi->s_blockgroup_lock =
3576 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3577 if (!sbi->s_blockgroup_lock)
3578 goto out_free_base;
3579
3580 sb->s_fs_info = sbi;
3581 sbi->s_sb = sb;
3582 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3583 sbi->s_sb_block = sb_block;
3584 if (sb->s_bdev->bd_part)
3585 sbi->s_sectors_written_start =
3586 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
3587
3588 /* Cleanup superblock name */
3589 strreplace(sb->s_id, '/', '!');
3590
3591 /* -EINVAL is default */
3592 ret = -EINVAL;
3593 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3594 if (!blocksize) {
3595 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3596 goto out_fail;
3597 }
3598
3599 /*
3600 * The ext4 superblock will not be buffer aligned for other than 1kB
3601 * block sizes. We need to calculate the offset from buffer start.
3602 */
3603 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3604 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3605 offset = do_div(logical_sb_block, blocksize);
3606 } else {
3607 logical_sb_block = sb_block;
3608 }
3609
3610 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3611 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3612 goto out_fail;
3613 }
3614 /*
3615 * Note: s_es must be initialized as soon as possible because
3616 * some ext4 macro-instructions depend on its value
3617 */
3618 es = (struct ext4_super_block *) (bh->b_data + offset);
3619 sbi->s_es = es;
3620 sb->s_magic = le16_to_cpu(es->s_magic);
3621 if (sb->s_magic != EXT4_SUPER_MAGIC)
3622 goto cantfind_ext4;
3623 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3624
3625 /* Warn if metadata_csum and gdt_csum are both set. */
3626 if (ext4_has_feature_metadata_csum(sb) &&
3627 ext4_has_feature_gdt_csum(sb))
3628 ext4_warning(sb, "metadata_csum and uninit_bg are "
3629 "redundant flags; please run fsck.");
3630
3631 /* Check for a known checksum algorithm */
3632 if (!ext4_verify_csum_type(sb, es)) {
3633 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3634 "unknown checksum algorithm.");
3635 silent = 1;
3636 goto cantfind_ext4;
3637 }
3638
3639 /* Load the checksum driver */
3640 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3641 if (IS_ERR(sbi->s_chksum_driver)) {
3642 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3643 ret = PTR_ERR(sbi->s_chksum_driver);
3644 sbi->s_chksum_driver = NULL;
3645 goto failed_mount;
3646 }
3647
3648 /* Check superblock checksum */
3649 if (!ext4_superblock_csum_verify(sb, es)) {
3650 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3651 "invalid superblock checksum. Run e2fsck?");
3652 silent = 1;
3653 ret = -EFSBADCRC;
3654 goto cantfind_ext4;
3655 }
3656
3657 /* Precompute checksum seed for all metadata */
3658 if (ext4_has_feature_csum_seed(sb))
3659 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3660 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3661 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3662 sizeof(es->s_uuid));
3663
3664 /* Set defaults before we parse the mount options */
3665 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3666 set_opt(sb, INIT_INODE_TABLE);
3667 if (def_mount_opts & EXT4_DEFM_DEBUG)
3668 set_opt(sb, DEBUG);
3669 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3670 set_opt(sb, GRPID);
3671 if (def_mount_opts & EXT4_DEFM_UID16)
3672 set_opt(sb, NO_UID32);
3673 /* xattr user namespace & acls are now defaulted on */
3674 set_opt(sb, XATTR_USER);
3675 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3676 set_opt(sb, POSIX_ACL);
3677 #endif
3678 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3679 if (ext4_has_metadata_csum(sb))
3680 set_opt(sb, JOURNAL_CHECKSUM);
3681
3682 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3683 set_opt(sb, JOURNAL_DATA);
3684 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3685 set_opt(sb, ORDERED_DATA);
3686 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3687 set_opt(sb, WRITEBACK_DATA);
3688
3689 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3690 set_opt(sb, ERRORS_PANIC);
3691 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3692 set_opt(sb, ERRORS_CONT);
3693 else
3694 set_opt(sb, ERRORS_RO);
3695 /* block_validity enabled by default; disable with noblock_validity */
3696 set_opt(sb, BLOCK_VALIDITY);
3697 if (def_mount_opts & EXT4_DEFM_DISCARD)
3698 set_opt(sb, DISCARD);
3699
3700 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3701 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3702 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3703 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3704 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3705
3706 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3707 set_opt(sb, BARRIER);
3708
3709 /*
3710 * enable delayed allocation by default
3711 * Use -o nodelalloc to turn it off
3712 */
3713 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3714 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3715 set_opt(sb, DELALLOC);
3716
3717 /*
3718 * set default s_li_wait_mult for lazyinit, for the case there is
3719 * no mount option specified.
3720 */
3721 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3722
3723 if (sbi->s_es->s_mount_opts[0]) {
3724 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3725 sizeof(sbi->s_es->s_mount_opts),
3726 GFP_KERNEL);
3727 if (!s_mount_opts)
3728 goto failed_mount;
3729 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3730 &journal_ioprio, 0)) {
3731 ext4_msg(sb, KERN_WARNING,
3732 "failed to parse options in superblock: %s",
3733 s_mount_opts);
3734 }
3735 kfree(s_mount_opts);
3736 }
3737 sbi->s_def_mount_opt = sbi->s_mount_opt;
3738 if (!parse_options((char *) data, sb, &journal_devnum,
3739 &journal_ioprio, 0))
3740 goto failed_mount;
3741
3742 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3743 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3744 "with data=journal disables delayed "
3745 "allocation and O_DIRECT support!\n");
3746 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3747 ext4_msg(sb, KERN_ERR, "can't mount with "
3748 "both data=journal and delalloc");
3749 goto failed_mount;
3750 }
3751 if (test_opt(sb, DIOREAD_NOLOCK)) {
3752 ext4_msg(sb, KERN_ERR, "can't mount with "
3753 "both data=journal and dioread_nolock");
3754 goto failed_mount;
3755 }
3756 if (test_opt(sb, DAX)) {
3757 ext4_msg(sb, KERN_ERR, "can't mount with "
3758 "both data=journal and dax");
3759 goto failed_mount;
3760 }
3761 if (ext4_has_feature_encrypt(sb)) {
3762 ext4_msg(sb, KERN_WARNING,
3763 "encrypted files will use data=ordered "
3764 "instead of data journaling mode");
3765 }
3766 if (test_opt(sb, DELALLOC))
3767 clear_opt(sb, DELALLOC);
3768 } else {
3769 sb->s_iflags |= SB_I_CGROUPWB;
3770 }
3771
3772 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3773 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
3774
3775 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3776 (ext4_has_compat_features(sb) ||
3777 ext4_has_ro_compat_features(sb) ||
3778 ext4_has_incompat_features(sb)))
3779 ext4_msg(sb, KERN_WARNING,
3780 "feature flags set on rev 0 fs, "
3781 "running e2fsck is recommended");
3782
3783 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3784 set_opt2(sb, HURD_COMPAT);
3785 if (ext4_has_feature_64bit(sb)) {
3786 ext4_msg(sb, KERN_ERR,
3787 "The Hurd can't support 64-bit file systems");
3788 goto failed_mount;
3789 }
3790
3791 /*
3792 * ea_inode feature uses l_i_version field which is not
3793 * available in HURD_COMPAT mode.
3794 */
3795 if (ext4_has_feature_ea_inode(sb)) {
3796 ext4_msg(sb, KERN_ERR,
3797 "ea_inode feature is not supported for Hurd");
3798 goto failed_mount;
3799 }
3800 }
3801
3802 if (IS_EXT2_SB(sb)) {
3803 if (ext2_feature_set_ok(sb))
3804 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3805 "using the ext4 subsystem");
3806 else {
3807 /*
3808 * If we're probing be silent, if this looks like
3809 * it's actually an ext[34] filesystem.
3810 */
3811 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3812 goto failed_mount;
3813 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3814 "to feature incompatibilities");
3815 goto failed_mount;
3816 }
3817 }
3818
3819 if (IS_EXT3_SB(sb)) {
3820 if (ext3_feature_set_ok(sb))
3821 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3822 "using the ext4 subsystem");
3823 else {
3824 /*
3825 * If we're probing be silent, if this looks like
3826 * it's actually an ext4 filesystem.
3827 */
3828 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3829 goto failed_mount;
3830 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3831 "to feature incompatibilities");
3832 goto failed_mount;
3833 }
3834 }
3835
3836 /*
3837 * Check feature flags regardless of the revision level, since we
3838 * previously didn't change the revision level when setting the flags,
3839 * so there is a chance incompat flags are set on a rev 0 filesystem.
3840 */
3841 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
3842 goto failed_mount;
3843
3844 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3845 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3846 blocksize > EXT4_MAX_BLOCK_SIZE) {
3847 ext4_msg(sb, KERN_ERR,
3848 "Unsupported filesystem blocksize %d (%d log_block_size)",
3849 blocksize, le32_to_cpu(es->s_log_block_size));
3850 goto failed_mount;
3851 }
3852 if (le32_to_cpu(es->s_log_block_size) >
3853 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3854 ext4_msg(sb, KERN_ERR,
3855 "Invalid log block size: %u",
3856 le32_to_cpu(es->s_log_block_size));
3857 goto failed_mount;
3858 }
3859 if (le32_to_cpu(es->s_log_cluster_size) >
3860 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3861 ext4_msg(sb, KERN_ERR,
3862 "Invalid log cluster size: %u",
3863 le32_to_cpu(es->s_log_cluster_size));
3864 goto failed_mount;
3865 }
3866
3867 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3868 ext4_msg(sb, KERN_ERR,
3869 "Number of reserved GDT blocks insanely large: %d",
3870 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3871 goto failed_mount;
3872 }
3873
3874 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3875 if (ext4_has_feature_inline_data(sb)) {
3876 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
3877 " that may contain inline data");
3878 goto failed_mount;
3879 }
3880 if (!bdev_dax_supported(sb->s_bdev, blocksize)) {
3881 ext4_msg(sb, KERN_ERR,
3882 "DAX unsupported by block device.");
3883 goto failed_mount;
3884 }
3885 }
3886
3887 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3888 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3889 es->s_encryption_level);
3890 goto failed_mount;
3891 }
3892
3893 if (sb->s_blocksize != blocksize) {
3894 /* Validate the filesystem blocksize */
3895 if (!sb_set_blocksize(sb, blocksize)) {
3896 ext4_msg(sb, KERN_ERR, "bad block size %d",
3897 blocksize);
3898 goto failed_mount;
3899 }
3900
3901 brelse(bh);
3902 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3903 offset = do_div(logical_sb_block, blocksize);
3904 bh = sb_bread_unmovable(sb, logical_sb_block);
3905 if (!bh) {
3906 ext4_msg(sb, KERN_ERR,
3907 "Can't read superblock on 2nd try");
3908 goto failed_mount;
3909 }
3910 es = (struct ext4_super_block *)(bh->b_data + offset);
3911 sbi->s_es = es;
3912 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3913 ext4_msg(sb, KERN_ERR,
3914 "Magic mismatch, very weird!");
3915 goto failed_mount;
3916 }
3917 }
3918
3919 has_huge_files = ext4_has_feature_huge_file(sb);
3920 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3921 has_huge_files);
3922 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3923
3924 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3925 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3926 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3927 } else {
3928 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3929 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3930 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
3931 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
3932 sbi->s_first_ino);
3933 goto failed_mount;
3934 }
3935 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3936 (!is_power_of_2(sbi->s_inode_size)) ||
3937 (sbi->s_inode_size > blocksize)) {
3938 ext4_msg(sb, KERN_ERR,
3939 "unsupported inode size: %d",
3940 sbi->s_inode_size);
3941 goto failed_mount;
3942 }
3943 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3944 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3945 }
3946
3947 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3948 if (ext4_has_feature_64bit(sb)) {
3949 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3950 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3951 !is_power_of_2(sbi->s_desc_size)) {
3952 ext4_msg(sb, KERN_ERR,
3953 "unsupported descriptor size %lu",
3954 sbi->s_desc_size);
3955 goto failed_mount;
3956 }
3957 } else
3958 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3959
3960 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3961 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3962
3963 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3964 if (sbi->s_inodes_per_block == 0)
3965 goto cantfind_ext4;
3966 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3967 sbi->s_inodes_per_group > blocksize * 8) {
3968 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3969 sbi->s_blocks_per_group);
3970 goto failed_mount;
3971 }
3972 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3973 sbi->s_inodes_per_block;
3974 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3975 sbi->s_sbh = bh;
3976 sbi->s_mount_state = le16_to_cpu(es->s_state);
3977 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3978 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3979
3980 for (i = 0; i < 4; i++)
3981 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3982 sbi->s_def_hash_version = es->s_def_hash_version;
3983 if (ext4_has_feature_dir_index(sb)) {
3984 i = le32_to_cpu(es->s_flags);
3985 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3986 sbi->s_hash_unsigned = 3;
3987 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3988 #ifdef __CHAR_UNSIGNED__
3989 if (!sb_rdonly(sb))
3990 es->s_flags |=
3991 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3992 sbi->s_hash_unsigned = 3;
3993 #else
3994 if (!sb_rdonly(sb))
3995 es->s_flags |=
3996 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3997 #endif
3998 }
3999 }
4000
4001 /* Handle clustersize */
4002 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4003 has_bigalloc = ext4_has_feature_bigalloc(sb);
4004 if (has_bigalloc) {
4005 if (clustersize < blocksize) {
4006 ext4_msg(sb, KERN_ERR,
4007 "cluster size (%d) smaller than "
4008 "block size (%d)", clustersize, blocksize);
4009 goto failed_mount;
4010 }
4011 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4012 le32_to_cpu(es->s_log_block_size);
4013 sbi->s_clusters_per_group =
4014 le32_to_cpu(es->s_clusters_per_group);
4015 if (sbi->s_clusters_per_group > blocksize * 8) {
4016 ext4_msg(sb, KERN_ERR,
4017 "#clusters per group too big: %lu",
4018 sbi->s_clusters_per_group);
4019 goto failed_mount;
4020 }
4021 if (sbi->s_blocks_per_group !=
4022 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4023 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4024 "clusters per group (%lu) inconsistent",
4025 sbi->s_blocks_per_group,
4026 sbi->s_clusters_per_group);
4027 goto failed_mount;
4028 }
4029 } else {
4030 if (clustersize != blocksize) {
4031 ext4_msg(sb, KERN_ERR,
4032 "fragment/cluster size (%d) != "
4033 "block size (%d)", clustersize, blocksize);
4034 goto failed_mount;
4035 }
4036 if (sbi->s_blocks_per_group > blocksize * 8) {
4037 ext4_msg(sb, KERN_ERR,
4038 "#blocks per group too big: %lu",
4039 sbi->s_blocks_per_group);
4040 goto failed_mount;
4041 }
4042 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4043 sbi->s_cluster_bits = 0;
4044 }
4045 sbi->s_cluster_ratio = clustersize / blocksize;
4046
4047 /* Do we have standard group size of clustersize * 8 blocks ? */
4048 if (sbi->s_blocks_per_group == clustersize << 3)
4049 set_opt2(sb, STD_GROUP_SIZE);
4050
4051 /*
4052 * Test whether we have more sectors than will fit in sector_t,
4053 * and whether the max offset is addressable by the page cache.
4054 */
4055 err = generic_check_addressable(sb->s_blocksize_bits,
4056 ext4_blocks_count(es));
4057 if (err) {
4058 ext4_msg(sb, KERN_ERR, "filesystem"
4059 " too large to mount safely on this system");
4060 if (sizeof(sector_t) < 8)
4061 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
4062 goto failed_mount;
4063 }
4064
4065 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4066 goto cantfind_ext4;
4067
4068 /* check blocks count against device size */
4069 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4070 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4071 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4072 "exceeds size of device (%llu blocks)",
4073 ext4_blocks_count(es), blocks_count);
4074 goto failed_mount;
4075 }
4076
4077 /*
4078 * It makes no sense for the first data block to be beyond the end
4079 * of the filesystem.
4080 */
4081 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4082 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4083 "block %u is beyond end of filesystem (%llu)",
4084 le32_to_cpu(es->s_first_data_block),
4085 ext4_blocks_count(es));
4086 goto failed_mount;
4087 }
4088 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4089 (sbi->s_cluster_ratio == 1)) {
4090 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4091 "block is 0 with a 1k block and cluster size");
4092 goto failed_mount;
4093 }
4094
4095 blocks_count = (ext4_blocks_count(es) -
4096 le32_to_cpu(es->s_first_data_block) +
4097 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4098 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4099 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4100 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
4101 "(block count %llu, first data block %u, "
4102 "blocks per group %lu)", sbi->s_groups_count,
4103 ext4_blocks_count(es),
4104 le32_to_cpu(es->s_first_data_block),
4105 EXT4_BLOCKS_PER_GROUP(sb));
4106 goto failed_mount;
4107 }
4108 sbi->s_groups_count = blocks_count;
4109 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4110 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4111 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4112 le32_to_cpu(es->s_inodes_count)) {
4113 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4114 le32_to_cpu(es->s_inodes_count),
4115 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4116 ret = -EINVAL;
4117 goto failed_mount;
4118 }
4119 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4120 EXT4_DESC_PER_BLOCK(sb);
4121 if (ext4_has_feature_meta_bg(sb)) {
4122 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4123 ext4_msg(sb, KERN_WARNING,
4124 "first meta block group too large: %u "
4125 "(group descriptor block count %u)",
4126 le32_to_cpu(es->s_first_meta_bg), db_count);
4127 goto failed_mount;
4128 }
4129 }
4130 sbi->s_group_desc = kvmalloc_array(db_count,
4131 sizeof(struct buffer_head *),
4132 GFP_KERNEL);
4133 if (sbi->s_group_desc == NULL) {
4134 ext4_msg(sb, KERN_ERR, "not enough memory");
4135 ret = -ENOMEM;
4136 goto failed_mount;
4137 }
4138
4139 bgl_lock_init(sbi->s_blockgroup_lock);
4140
4141 /* Pre-read the descriptors into the buffer cache */
4142 for (i = 0; i < db_count; i++) {
4143 block = descriptor_loc(sb, logical_sb_block, i);
4144 sb_breadahead(sb, block);
4145 }
4146
4147 for (i = 0; i < db_count; i++) {
4148 block = descriptor_loc(sb, logical_sb_block, i);
4149 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
4150 if (!sbi->s_group_desc[i]) {
4151 ext4_msg(sb, KERN_ERR,
4152 "can't read group descriptor %d", i);
4153 db_count = i;
4154 goto failed_mount2;
4155 }
4156 }
4157 sbi->s_gdb_count = db_count;
4158 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4159 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4160 ret = -EFSCORRUPTED;
4161 goto failed_mount2;
4162 }
4163
4164 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4165
4166 /* Register extent status tree shrinker */
4167 if (ext4_es_register_shrinker(sbi))
4168 goto failed_mount3;
4169
4170 sbi->s_stripe = ext4_get_stripe_size(sbi);
4171 sbi->s_extent_max_zeroout_kb = 32;
4172
4173 /*
4174 * set up enough so that it can read an inode
4175 */
4176 sb->s_op = &ext4_sops;
4177 sb->s_export_op = &ext4_export_ops;
4178 sb->s_xattr = ext4_xattr_handlers;
4179 #ifdef CONFIG_FS_ENCRYPTION
4180 sb->s_cop = &ext4_cryptops;
4181 #endif
4182 #ifdef CONFIG_QUOTA
4183 sb->dq_op = &ext4_quota_operations;
4184 if (ext4_has_feature_quota(sb))
4185 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4186 else
4187 sb->s_qcop = &ext4_qctl_operations;
4188 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4189 #endif
4190 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4191
4192 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4193 mutex_init(&sbi->s_orphan_lock);
4194
4195 sb->s_root = NULL;
4196
4197 needs_recovery = (es->s_last_orphan != 0 ||
4198 ext4_has_feature_journal_needs_recovery(sb));
4199
4200 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4201 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4202 goto failed_mount3a;
4203
4204 /*
4205 * The first inode we look at is the journal inode. Don't try
4206 * root first: it may be modified in the journal!
4207 */
4208 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4209 err = ext4_load_journal(sb, es, journal_devnum);
4210 if (err)
4211 goto failed_mount3a;
4212 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4213 ext4_has_feature_journal_needs_recovery(sb)) {
4214 ext4_msg(sb, KERN_ERR, "required journal recovery "
4215 "suppressed and not mounted read-only");
4216 goto failed_mount_wq;
4217 } else {
4218 /* Nojournal mode, all journal mount options are illegal */
4219 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4220 ext4_msg(sb, KERN_ERR, "can't mount with "
4221 "journal_checksum, fs mounted w/o journal");
4222 goto failed_mount_wq;
4223 }
4224 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4225 ext4_msg(sb, KERN_ERR, "can't mount with "
4226 "journal_async_commit, fs mounted w/o journal");
4227 goto failed_mount_wq;
4228 }
4229 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4230 ext4_msg(sb, KERN_ERR, "can't mount with "
4231 "commit=%lu, fs mounted w/o journal",
4232 sbi->s_commit_interval / HZ);
4233 goto failed_mount_wq;
4234 }
4235 if (EXT4_MOUNT_DATA_FLAGS &
4236 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4237 ext4_msg(sb, KERN_ERR, "can't mount with "
4238 "data=, fs mounted w/o journal");
4239 goto failed_mount_wq;
4240 }
4241 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
4242 clear_opt(sb, JOURNAL_CHECKSUM);
4243 clear_opt(sb, DATA_FLAGS);
4244 sbi->s_journal = NULL;
4245 needs_recovery = 0;
4246 goto no_journal;
4247 }
4248
4249 if (ext4_has_feature_64bit(sb) &&
4250 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4251 JBD2_FEATURE_INCOMPAT_64BIT)) {
4252 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4253 goto failed_mount_wq;
4254 }
4255
4256 if (!set_journal_csum_feature_set(sb)) {
4257 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4258 "feature set");
4259 goto failed_mount_wq;
4260 }
4261
4262 /* We have now updated the journal if required, so we can
4263 * validate the data journaling mode. */
4264 switch (test_opt(sb, DATA_FLAGS)) {
4265 case 0:
4266 /* No mode set, assume a default based on the journal
4267 * capabilities: ORDERED_DATA if the journal can
4268 * cope, else JOURNAL_DATA
4269 */
4270 if (jbd2_journal_check_available_features
4271 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4272 set_opt(sb, ORDERED_DATA);
4273 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4274 } else {
4275 set_opt(sb, JOURNAL_DATA);
4276 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4277 }
4278 break;
4279
4280 case EXT4_MOUNT_ORDERED_DATA:
4281 case EXT4_MOUNT_WRITEBACK_DATA:
4282 if (!jbd2_journal_check_available_features
4283 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4284 ext4_msg(sb, KERN_ERR, "Journal does not support "
4285 "requested data journaling mode");
4286 goto failed_mount_wq;
4287 }
4288 default:
4289 break;
4290 }
4291
4292 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4293 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4294 ext4_msg(sb, KERN_ERR, "can't mount with "
4295 "journal_async_commit in data=ordered mode");
4296 goto failed_mount_wq;
4297 }
4298
4299 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4300
4301 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4302
4303 no_journal:
4304 if (!test_opt(sb, NO_MBCACHE)) {
4305 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4306 if (!sbi->s_ea_block_cache) {
4307 ext4_msg(sb, KERN_ERR,
4308 "Failed to create ea_block_cache");
4309 goto failed_mount_wq;
4310 }
4311
4312 if (ext4_has_feature_ea_inode(sb)) {
4313 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4314 if (!sbi->s_ea_inode_cache) {
4315 ext4_msg(sb, KERN_ERR,
4316 "Failed to create ea_inode_cache");
4317 goto failed_mount_wq;
4318 }
4319 }
4320 }
4321
4322 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4323 (blocksize != PAGE_SIZE)) {
4324 ext4_msg(sb, KERN_ERR,
4325 "Unsupported blocksize for fs encryption");
4326 goto failed_mount_wq;
4327 }
4328
4329 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4330 !ext4_has_feature_encrypt(sb)) {
4331 ext4_set_feature_encrypt(sb);
4332 ext4_commit_super(sb, 1);
4333 }
4334
4335 /*
4336 * Get the # of file system overhead blocks from the
4337 * superblock if present.
4338 */
4339 if (es->s_overhead_clusters)
4340 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4341 else {
4342 err = ext4_calculate_overhead(sb);
4343 if (err)
4344 goto failed_mount_wq;
4345 }
4346
4347 /*
4348 * The maximum number of concurrent works can be high and
4349 * concurrency isn't really necessary. Limit it to 1.
4350 */
4351 EXT4_SB(sb)->rsv_conversion_wq =
4352 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4353 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4354 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4355 ret = -ENOMEM;
4356 goto failed_mount4;
4357 }
4358
4359 /*
4360 * The jbd2_journal_load will have done any necessary log recovery,
4361 * so we can safely mount the rest of the filesystem now.
4362 */
4363
4364 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4365 if (IS_ERR(root)) {
4366 ext4_msg(sb, KERN_ERR, "get root inode failed");
4367 ret = PTR_ERR(root);
4368 root = NULL;
4369 goto failed_mount4;
4370 }
4371 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4372 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4373 iput(root);
4374 goto failed_mount4;
4375 }
4376 sb->s_root = d_make_root(root);
4377 if (!sb->s_root) {
4378 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4379 ret = -ENOMEM;
4380 goto failed_mount4;
4381 }
4382
4383 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4384 if (ret == -EROFS) {
4385 sb->s_flags |= SB_RDONLY;
4386 ret = 0;
4387 } else if (ret)
4388 goto failed_mount4a;
4389
4390 /* determine the minimum size of new large inodes, if present */
4391 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE &&
4392 sbi->s_want_extra_isize == 0) {
4393 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4394 EXT4_GOOD_OLD_INODE_SIZE;
4395 if (ext4_has_feature_extra_isize(sb)) {
4396 if (sbi->s_want_extra_isize <
4397 le16_to_cpu(es->s_want_extra_isize))
4398 sbi->s_want_extra_isize =
4399 le16_to_cpu(es->s_want_extra_isize);
4400 if (sbi->s_want_extra_isize <
4401 le16_to_cpu(es->s_min_extra_isize))
4402 sbi->s_want_extra_isize =
4403 le16_to_cpu(es->s_min_extra_isize);
4404 }
4405 }
4406 /* Check if enough inode space is available */
4407 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4408 sbi->s_inode_size) {
4409 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4410 EXT4_GOOD_OLD_INODE_SIZE;
4411 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4412 "available");
4413 }
4414
4415 ext4_set_resv_clusters(sb);
4416
4417 err = ext4_setup_system_zone(sb);
4418 if (err) {
4419 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4420 "zone (%d)", err);
4421 goto failed_mount4a;
4422 }
4423
4424 ext4_ext_init(sb);
4425 err = ext4_mb_init(sb);
4426 if (err) {
4427 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4428 err);
4429 goto failed_mount5;
4430 }
4431
4432 block = ext4_count_free_clusters(sb);
4433 ext4_free_blocks_count_set(sbi->s_es,
4434 EXT4_C2B(sbi, block));
4435 ext4_superblock_csum_set(sb);
4436 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4437 GFP_KERNEL);
4438 if (!err) {
4439 unsigned long freei = ext4_count_free_inodes(sb);
4440 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4441 ext4_superblock_csum_set(sb);
4442 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4443 GFP_KERNEL);
4444 }
4445 if (!err)
4446 err = percpu_counter_init(&sbi->s_dirs_counter,
4447 ext4_count_dirs(sb), GFP_KERNEL);
4448 if (!err)
4449 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4450 GFP_KERNEL);
4451 if (!err)
4452 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4453
4454 if (err) {
4455 ext4_msg(sb, KERN_ERR, "insufficient memory");
4456 goto failed_mount6;
4457 }
4458
4459 if (ext4_has_feature_flex_bg(sb))
4460 if (!ext4_fill_flex_info(sb)) {
4461 ext4_msg(sb, KERN_ERR,
4462 "unable to initialize "
4463 "flex_bg meta info!");
4464 goto failed_mount6;
4465 }
4466
4467 err = ext4_register_li_request(sb, first_not_zeroed);
4468 if (err)
4469 goto failed_mount6;
4470
4471 err = ext4_register_sysfs(sb);
4472 if (err)
4473 goto failed_mount7;
4474
4475 #ifdef CONFIG_QUOTA
4476 /* Enable quota usage during mount. */
4477 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4478 err = ext4_enable_quotas(sb);
4479 if (err)
4480 goto failed_mount8;
4481 }
4482 #endif /* CONFIG_QUOTA */
4483
4484 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4485 ext4_orphan_cleanup(sb, es);
4486 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4487 if (needs_recovery) {
4488 ext4_msg(sb, KERN_INFO, "recovery complete");
4489 ext4_mark_recovery_complete(sb, es);
4490 }
4491 if (EXT4_SB(sb)->s_journal) {
4492 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4493 descr = " journalled data mode";
4494 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4495 descr = " ordered data mode";
4496 else
4497 descr = " writeback data mode";
4498 } else
4499 descr = "out journal";
4500
4501 if (test_opt(sb, DISCARD)) {
4502 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4503 if (!blk_queue_discard(q))
4504 ext4_msg(sb, KERN_WARNING,
4505 "mounting with \"discard\" option, but "
4506 "the device does not support discard");
4507 }
4508
4509 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4510 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4511 "Opts: %.*s%s%s", descr,
4512 (int) sizeof(sbi->s_es->s_mount_opts),
4513 sbi->s_es->s_mount_opts,
4514 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4515
4516 if (es->s_error_count)
4517 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4518
4519 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4520 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4521 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4522 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4523
4524 kfree(orig_data);
4525 return 0;
4526
4527 cantfind_ext4:
4528 if (!silent)
4529 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4530 goto failed_mount;
4531
4532 #ifdef CONFIG_QUOTA
4533 failed_mount8:
4534 ext4_unregister_sysfs(sb);
4535 #endif
4536 failed_mount7:
4537 ext4_unregister_li_request(sb);
4538 failed_mount6:
4539 ext4_mb_release(sb);
4540 if (sbi->s_flex_groups)
4541 kvfree(sbi->s_flex_groups);
4542 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4543 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4544 percpu_counter_destroy(&sbi->s_dirs_counter);
4545 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4546 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
4547 failed_mount5:
4548 ext4_ext_release(sb);
4549 ext4_release_system_zone(sb);
4550 failed_mount4a:
4551 dput(sb->s_root);
4552 sb->s_root = NULL;
4553 failed_mount4:
4554 ext4_msg(sb, KERN_ERR, "mount failed");
4555 if (EXT4_SB(sb)->rsv_conversion_wq)
4556 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4557 failed_mount_wq:
4558 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4559 sbi->s_ea_inode_cache = NULL;
4560
4561 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4562 sbi->s_ea_block_cache = NULL;
4563
4564 if (sbi->s_journal) {
4565 jbd2_journal_destroy(sbi->s_journal);
4566 sbi->s_journal = NULL;
4567 }
4568 failed_mount3a:
4569 ext4_es_unregister_shrinker(sbi);
4570 failed_mount3:
4571 del_timer_sync(&sbi->s_err_report);
4572 if (sbi->s_mmp_tsk)
4573 kthread_stop(sbi->s_mmp_tsk);
4574 failed_mount2:
4575 for (i = 0; i < db_count; i++)
4576 brelse(sbi->s_group_desc[i]);
4577 kvfree(sbi->s_group_desc);
4578 failed_mount:
4579 if (sbi->s_chksum_driver)
4580 crypto_free_shash(sbi->s_chksum_driver);
4581 #ifdef CONFIG_QUOTA
4582 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4583 kfree(sbi->s_qf_names[i]);
4584 #endif
4585 ext4_blkdev_remove(sbi);
4586 brelse(bh);
4587 out_fail:
4588 sb->s_fs_info = NULL;
4589 kfree(sbi->s_blockgroup_lock);
4590 out_free_base:
4591 kfree(sbi);
4592 kfree(orig_data);
4593 fs_put_dax(dax_dev);
4594 return err ? err : ret;
4595 }
4596
4597 /*
4598 * Setup any per-fs journal parameters now. We'll do this both on
4599 * initial mount, once the journal has been initialised but before we've
4600 * done any recovery; and again on any subsequent remount.
4601 */
4602 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4603 {
4604 struct ext4_sb_info *sbi = EXT4_SB(sb);
4605
4606 journal->j_commit_interval = sbi->s_commit_interval;
4607 journal->j_min_batch_time = sbi->s_min_batch_time;
4608 journal->j_max_batch_time = sbi->s_max_batch_time;
4609
4610 write_lock(&journal->j_state_lock);
4611 if (test_opt(sb, BARRIER))
4612 journal->j_flags |= JBD2_BARRIER;
4613 else
4614 journal->j_flags &= ~JBD2_BARRIER;
4615 if (test_opt(sb, DATA_ERR_ABORT))
4616 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4617 else
4618 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4619 write_unlock(&journal->j_state_lock);
4620 }
4621
4622 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4623 unsigned int journal_inum)
4624 {
4625 struct inode *journal_inode;
4626
4627 /*
4628 * Test for the existence of a valid inode on disk. Bad things
4629 * happen if we iget() an unused inode, as the subsequent iput()
4630 * will try to delete it.
4631 */
4632 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
4633 if (IS_ERR(journal_inode)) {
4634 ext4_msg(sb, KERN_ERR, "no journal found");
4635 return NULL;
4636 }
4637 if (!journal_inode->i_nlink) {
4638 make_bad_inode(journal_inode);
4639 iput(journal_inode);
4640 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4641 return NULL;
4642 }
4643
4644 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4645 journal_inode, journal_inode->i_size);
4646 if (!S_ISREG(journal_inode->i_mode)) {
4647 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4648 iput(journal_inode);
4649 return NULL;
4650 }
4651 return journal_inode;
4652 }
4653
4654 static journal_t *ext4_get_journal(struct super_block *sb,
4655 unsigned int journal_inum)
4656 {
4657 struct inode *journal_inode;
4658 journal_t *journal;
4659
4660 BUG_ON(!ext4_has_feature_journal(sb));
4661
4662 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4663 if (!journal_inode)
4664 return NULL;
4665
4666 journal = jbd2_journal_init_inode(journal_inode);
4667 if (!journal) {
4668 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4669 iput(journal_inode);
4670 return NULL;
4671 }
4672 journal->j_private = sb;
4673 ext4_init_journal_params(sb, journal);
4674 return journal;
4675 }
4676
4677 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4678 dev_t j_dev)
4679 {
4680 struct buffer_head *bh;
4681 journal_t *journal;
4682 ext4_fsblk_t start;
4683 ext4_fsblk_t len;
4684 int hblock, blocksize;
4685 ext4_fsblk_t sb_block;
4686 unsigned long offset;
4687 struct ext4_super_block *es;
4688 struct block_device *bdev;
4689
4690 BUG_ON(!ext4_has_feature_journal(sb));
4691
4692 bdev = ext4_blkdev_get(j_dev, sb);
4693 if (bdev == NULL)
4694 return NULL;
4695
4696 blocksize = sb->s_blocksize;
4697 hblock = bdev_logical_block_size(bdev);
4698 if (blocksize < hblock) {
4699 ext4_msg(sb, KERN_ERR,
4700 "blocksize too small for journal device");
4701 goto out_bdev;
4702 }
4703
4704 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4705 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4706 set_blocksize(bdev, blocksize);
4707 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4708 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4709 "external journal");
4710 goto out_bdev;
4711 }
4712
4713 es = (struct ext4_super_block *) (bh->b_data + offset);
4714 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4715 !(le32_to_cpu(es->s_feature_incompat) &
4716 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4717 ext4_msg(sb, KERN_ERR, "external journal has "
4718 "bad superblock");
4719 brelse(bh);
4720 goto out_bdev;
4721 }
4722
4723 if ((le32_to_cpu(es->s_feature_ro_compat) &
4724 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4725 es->s_checksum != ext4_superblock_csum(sb, es)) {
4726 ext4_msg(sb, KERN_ERR, "external journal has "
4727 "corrupt superblock");
4728 brelse(bh);
4729 goto out_bdev;
4730 }
4731
4732 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4733 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4734 brelse(bh);
4735 goto out_bdev;
4736 }
4737
4738 len = ext4_blocks_count(es);
4739 start = sb_block + 1;
4740 brelse(bh); /* we're done with the superblock */
4741
4742 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4743 start, len, blocksize);
4744 if (!journal) {
4745 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4746 goto out_bdev;
4747 }
4748 journal->j_private = sb;
4749 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4750 wait_on_buffer(journal->j_sb_buffer);
4751 if (!buffer_uptodate(journal->j_sb_buffer)) {
4752 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4753 goto out_journal;
4754 }
4755 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4756 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4757 "user (unsupported) - %d",
4758 be32_to_cpu(journal->j_superblock->s_nr_users));
4759 goto out_journal;
4760 }
4761 EXT4_SB(sb)->journal_bdev = bdev;
4762 ext4_init_journal_params(sb, journal);
4763 return journal;
4764
4765 out_journal:
4766 jbd2_journal_destroy(journal);
4767 out_bdev:
4768 ext4_blkdev_put(bdev);
4769 return NULL;
4770 }
4771
4772 static int ext4_load_journal(struct super_block *sb,
4773 struct ext4_super_block *es,
4774 unsigned long journal_devnum)
4775 {
4776 journal_t *journal;
4777 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4778 dev_t journal_dev;
4779 int err = 0;
4780 int really_read_only;
4781
4782 BUG_ON(!ext4_has_feature_journal(sb));
4783
4784 if (journal_devnum &&
4785 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4786 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4787 "numbers have changed");
4788 journal_dev = new_decode_dev(journal_devnum);
4789 } else
4790 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4791
4792 really_read_only = bdev_read_only(sb->s_bdev);
4793
4794 /*
4795 * Are we loading a blank journal or performing recovery after a
4796 * crash? For recovery, we need to check in advance whether we
4797 * can get read-write access to the device.
4798 */
4799 if (ext4_has_feature_journal_needs_recovery(sb)) {
4800 if (sb_rdonly(sb)) {
4801 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4802 "required on readonly filesystem");
4803 if (really_read_only) {
4804 ext4_msg(sb, KERN_ERR, "write access "
4805 "unavailable, cannot proceed "
4806 "(try mounting with noload)");
4807 return -EROFS;
4808 }
4809 ext4_msg(sb, KERN_INFO, "write access will "
4810 "be enabled during recovery");
4811 }
4812 }
4813
4814 if (journal_inum && journal_dev) {
4815 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4816 "and inode journals!");
4817 return -EINVAL;
4818 }
4819
4820 if (journal_inum) {
4821 if (!(journal = ext4_get_journal(sb, journal_inum)))
4822 return -EINVAL;
4823 } else {
4824 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4825 return -EINVAL;
4826 }
4827
4828 if (!(journal->j_flags & JBD2_BARRIER))
4829 ext4_msg(sb, KERN_INFO, "barriers disabled");
4830
4831 if (!ext4_has_feature_journal_needs_recovery(sb))
4832 err = jbd2_journal_wipe(journal, !really_read_only);
4833 if (!err) {
4834 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4835 if (save)
4836 memcpy(save, ((char *) es) +
4837 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4838 err = jbd2_journal_load(journal);
4839 if (save)
4840 memcpy(((char *) es) + EXT4_S_ERR_START,
4841 save, EXT4_S_ERR_LEN);
4842 kfree(save);
4843 }
4844
4845 if (err) {
4846 ext4_msg(sb, KERN_ERR, "error loading journal");
4847 jbd2_journal_destroy(journal);
4848 return err;
4849 }
4850
4851 EXT4_SB(sb)->s_journal = journal;
4852 ext4_clear_journal_err(sb, es);
4853
4854 if (!really_read_only && journal_devnum &&
4855 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4856 es->s_journal_dev = cpu_to_le32(journal_devnum);
4857
4858 /* Make sure we flush the recovery flag to disk. */
4859 ext4_commit_super(sb, 1);
4860 }
4861
4862 return 0;
4863 }
4864
4865 static int ext4_commit_super(struct super_block *sb, int sync)
4866 {
4867 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4868 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4869 int error = 0;
4870
4871 if (!sbh || block_device_ejected(sb))
4872 return error;
4873
4874 /*
4875 * The superblock bh should be mapped, but it might not be if the
4876 * device was hot-removed. Not much we can do but fail the I/O.
4877 */
4878 if (!buffer_mapped(sbh))
4879 return error;
4880
4881 /*
4882 * If the file system is mounted read-only, don't update the
4883 * superblock write time. This avoids updating the superblock
4884 * write time when we are mounting the root file system
4885 * read/only but we need to replay the journal; at that point,
4886 * for people who are east of GMT and who make their clock
4887 * tick in localtime for Windows bug-for-bug compatibility,
4888 * the clock is set in the future, and this will cause e2fsck
4889 * to complain and force a full file system check.
4890 */
4891 if (!(sb->s_flags & SB_RDONLY))
4892 ext4_update_tstamp(es, s_wtime);
4893 if (sb->s_bdev->bd_part)
4894 es->s_kbytes_written =
4895 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4896 ((part_stat_read(sb->s_bdev->bd_part,
4897 sectors[STAT_WRITE]) -
4898 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4899 else
4900 es->s_kbytes_written =
4901 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4902 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4903 ext4_free_blocks_count_set(es,
4904 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4905 &EXT4_SB(sb)->s_freeclusters_counter)));
4906 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4907 es->s_free_inodes_count =
4908 cpu_to_le32(percpu_counter_sum_positive(
4909 &EXT4_SB(sb)->s_freeinodes_counter));
4910 BUFFER_TRACE(sbh, "marking dirty");
4911 ext4_superblock_csum_set(sb);
4912 if (sync)
4913 lock_buffer(sbh);
4914 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
4915 /*
4916 * Oh, dear. A previous attempt to write the
4917 * superblock failed. This could happen because the
4918 * USB device was yanked out. Or it could happen to
4919 * be a transient write error and maybe the block will
4920 * be remapped. Nothing we can do but to retry the
4921 * write and hope for the best.
4922 */
4923 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4924 "superblock detected");
4925 clear_buffer_write_io_error(sbh);
4926 set_buffer_uptodate(sbh);
4927 }
4928 mark_buffer_dirty(sbh);
4929 if (sync) {
4930 unlock_buffer(sbh);
4931 error = __sync_dirty_buffer(sbh,
4932 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
4933 if (buffer_write_io_error(sbh)) {
4934 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4935 "superblock");
4936 clear_buffer_write_io_error(sbh);
4937 set_buffer_uptodate(sbh);
4938 }
4939 }
4940 return error;
4941 }
4942
4943 /*
4944 * Have we just finished recovery? If so, and if we are mounting (or
4945 * remounting) the filesystem readonly, then we will end up with a
4946 * consistent fs on disk. Record that fact.
4947 */
4948 static void ext4_mark_recovery_complete(struct super_block *sb,
4949 struct ext4_super_block *es)
4950 {
4951 journal_t *journal = EXT4_SB(sb)->s_journal;
4952
4953 if (!ext4_has_feature_journal(sb)) {
4954 BUG_ON(journal != NULL);
4955 return;
4956 }
4957 jbd2_journal_lock_updates(journal);
4958 if (jbd2_journal_flush(journal) < 0)
4959 goto out;
4960
4961 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
4962 ext4_clear_feature_journal_needs_recovery(sb);
4963 ext4_commit_super(sb, 1);
4964 }
4965
4966 out:
4967 jbd2_journal_unlock_updates(journal);
4968 }
4969
4970 /*
4971 * If we are mounting (or read-write remounting) a filesystem whose journal
4972 * has recorded an error from a previous lifetime, move that error to the
4973 * main filesystem now.
4974 */
4975 static void ext4_clear_journal_err(struct super_block *sb,
4976 struct ext4_super_block *es)
4977 {
4978 journal_t *journal;
4979 int j_errno;
4980 const char *errstr;
4981
4982 BUG_ON(!ext4_has_feature_journal(sb));
4983
4984 journal = EXT4_SB(sb)->s_journal;
4985
4986 /*
4987 * Now check for any error status which may have been recorded in the
4988 * journal by a prior ext4_error() or ext4_abort()
4989 */
4990
4991 j_errno = jbd2_journal_errno(journal);
4992 if (j_errno) {
4993 char nbuf[16];
4994
4995 errstr = ext4_decode_error(sb, j_errno, nbuf);
4996 ext4_warning(sb, "Filesystem error recorded "
4997 "from previous mount: %s", errstr);
4998 ext4_warning(sb, "Marking fs in need of filesystem check.");
4999
5000 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5001 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5002 ext4_commit_super(sb, 1);
5003
5004 jbd2_journal_clear_err(journal);
5005 jbd2_journal_update_sb_errno(journal);
5006 }
5007 }
5008
5009 /*
5010 * Force the running and committing transactions to commit,
5011 * and wait on the commit.
5012 */
5013 int ext4_force_commit(struct super_block *sb)
5014 {
5015 journal_t *journal;
5016
5017 if (sb_rdonly(sb))
5018 return 0;
5019
5020 journal = EXT4_SB(sb)->s_journal;
5021 return ext4_journal_force_commit(journal);
5022 }
5023
5024 static int ext4_sync_fs(struct super_block *sb, int wait)
5025 {
5026 int ret = 0;
5027 tid_t target;
5028 bool needs_barrier = false;
5029 struct ext4_sb_info *sbi = EXT4_SB(sb);
5030
5031 if (unlikely(ext4_forced_shutdown(sbi)))
5032 return 0;
5033
5034 trace_ext4_sync_fs(sb, wait);
5035 flush_workqueue(sbi->rsv_conversion_wq);
5036 /*
5037 * Writeback quota in non-journalled quota case - journalled quota has
5038 * no dirty dquots
5039 */
5040 dquot_writeback_dquots(sb, -1);
5041 /*
5042 * Data writeback is possible w/o journal transaction, so barrier must
5043 * being sent at the end of the function. But we can skip it if
5044 * transaction_commit will do it for us.
5045 */
5046 if (sbi->s_journal) {
5047 target = jbd2_get_latest_transaction(sbi->s_journal);
5048 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5049 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5050 needs_barrier = true;
5051
5052 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5053 if (wait)
5054 ret = jbd2_log_wait_commit(sbi->s_journal,
5055 target);
5056 }
5057 } else if (wait && test_opt(sb, BARRIER))
5058 needs_barrier = true;
5059 if (needs_barrier) {
5060 int err;
5061 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
5062 if (!ret)
5063 ret = err;
5064 }
5065
5066 return ret;
5067 }
5068
5069 /*
5070 * LVM calls this function before a (read-only) snapshot is created. This
5071 * gives us a chance to flush the journal completely and mark the fs clean.
5072 *
5073 * Note that only this function cannot bring a filesystem to be in a clean
5074 * state independently. It relies on upper layer to stop all data & metadata
5075 * modifications.
5076 */
5077 static int ext4_freeze(struct super_block *sb)
5078 {
5079 int error = 0;
5080 journal_t *journal;
5081
5082 if (sb_rdonly(sb))
5083 return 0;
5084
5085 journal = EXT4_SB(sb)->s_journal;
5086
5087 if (journal) {
5088 /* Now we set up the journal barrier. */
5089 jbd2_journal_lock_updates(journal);
5090
5091 /*
5092 * Don't clear the needs_recovery flag if we failed to
5093 * flush the journal.
5094 */
5095 error = jbd2_journal_flush(journal);
5096 if (error < 0)
5097 goto out;
5098
5099 /* Journal blocked and flushed, clear needs_recovery flag. */
5100 ext4_clear_feature_journal_needs_recovery(sb);
5101 }
5102
5103 error = ext4_commit_super(sb, 1);
5104 out:
5105 if (journal)
5106 /* we rely on upper layer to stop further updates */
5107 jbd2_journal_unlock_updates(journal);
5108 return error;
5109 }
5110
5111 /*
5112 * Called by LVM after the snapshot is done. We need to reset the RECOVER
5113 * flag here, even though the filesystem is not technically dirty yet.
5114 */
5115 static int ext4_unfreeze(struct super_block *sb)
5116 {
5117 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5118 return 0;
5119
5120 if (EXT4_SB(sb)->s_journal) {
5121 /* Reset the needs_recovery flag before the fs is unlocked. */
5122 ext4_set_feature_journal_needs_recovery(sb);
5123 }
5124
5125 ext4_commit_super(sb, 1);
5126 return 0;
5127 }
5128
5129 /*
5130 * Structure to save mount options for ext4_remount's benefit
5131 */
5132 struct ext4_mount_options {
5133 unsigned long s_mount_opt;
5134 unsigned long s_mount_opt2;
5135 kuid_t s_resuid;
5136 kgid_t s_resgid;
5137 unsigned long s_commit_interval;
5138 u32 s_min_batch_time, s_max_batch_time;
5139 #ifdef CONFIG_QUOTA
5140 int s_jquota_fmt;
5141 char *s_qf_names[EXT4_MAXQUOTAS];
5142 #endif
5143 };
5144
5145 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5146 {
5147 struct ext4_super_block *es;
5148 struct ext4_sb_info *sbi = EXT4_SB(sb);
5149 unsigned long old_sb_flags;
5150 struct ext4_mount_options old_opts;
5151 int enable_quota = 0;
5152 ext4_group_t g;
5153 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5154 int err = 0;
5155 #ifdef CONFIG_QUOTA
5156 int i, j;
5157 char *to_free[EXT4_MAXQUOTAS];
5158 #endif
5159 char *orig_data = kstrdup(data, GFP_KERNEL);
5160
5161 if (data && !orig_data)
5162 return -ENOMEM;
5163
5164 /* Store the original options */
5165 old_sb_flags = sb->s_flags;
5166 old_opts.s_mount_opt = sbi->s_mount_opt;
5167 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5168 old_opts.s_resuid = sbi->s_resuid;
5169 old_opts.s_resgid = sbi->s_resgid;
5170 old_opts.s_commit_interval = sbi->s_commit_interval;
5171 old_opts.s_min_batch_time = sbi->s_min_batch_time;
5172 old_opts.s_max_batch_time = sbi->s_max_batch_time;
5173 #ifdef CONFIG_QUOTA
5174 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5175 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5176 if (sbi->s_qf_names[i]) {
5177 char *qf_name = get_qf_name(sb, sbi, i);
5178
5179 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5180 if (!old_opts.s_qf_names[i]) {
5181 for (j = 0; j < i; j++)
5182 kfree(old_opts.s_qf_names[j]);
5183 kfree(orig_data);
5184 return -ENOMEM;
5185 }
5186 } else
5187 old_opts.s_qf_names[i] = NULL;
5188 #endif
5189 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5190 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5191
5192 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5193 err = -EINVAL;
5194 goto restore_opts;
5195 }
5196
5197 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5198 test_opt(sb, JOURNAL_CHECKSUM)) {
5199 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5200 "during remount not supported; ignoring");
5201 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5202 }
5203
5204 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5205 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5206 ext4_msg(sb, KERN_ERR, "can't mount with "
5207 "both data=journal and delalloc");
5208 err = -EINVAL;
5209 goto restore_opts;
5210 }
5211 if (test_opt(sb, DIOREAD_NOLOCK)) {
5212 ext4_msg(sb, KERN_ERR, "can't mount with "
5213 "both data=journal and dioread_nolock");
5214 err = -EINVAL;
5215 goto restore_opts;
5216 }
5217 if (test_opt(sb, DAX)) {
5218 ext4_msg(sb, KERN_ERR, "can't mount with "
5219 "both data=journal and dax");
5220 err = -EINVAL;
5221 goto restore_opts;
5222 }
5223 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5224 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5225 ext4_msg(sb, KERN_ERR, "can't mount with "
5226 "journal_async_commit in data=ordered mode");
5227 err = -EINVAL;
5228 goto restore_opts;
5229 }
5230 }
5231
5232 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5233 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5234 err = -EINVAL;
5235 goto restore_opts;
5236 }
5237
5238 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5239 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5240 "dax flag with busy inodes while remounting");
5241 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5242 }
5243
5244 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5245 ext4_abort(sb, "Abort forced by user");
5246
5247 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5248 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5249
5250 es = sbi->s_es;
5251
5252 if (sbi->s_journal) {
5253 ext4_init_journal_params(sb, sbi->s_journal);
5254 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5255 }
5256
5257 if (*flags & SB_LAZYTIME)
5258 sb->s_flags |= SB_LAZYTIME;
5259
5260 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5261 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5262 err = -EROFS;
5263 goto restore_opts;
5264 }
5265
5266 if (*flags & SB_RDONLY) {
5267 err = sync_filesystem(sb);
5268 if (err < 0)
5269 goto restore_opts;
5270 err = dquot_suspend(sb, -1);
5271 if (err < 0)
5272 goto restore_opts;
5273
5274 /*
5275 * First of all, the unconditional stuff we have to do
5276 * to disable replay of the journal when we next remount
5277 */
5278 sb->s_flags |= SB_RDONLY;
5279
5280 /*
5281 * OK, test if we are remounting a valid rw partition
5282 * readonly, and if so set the rdonly flag and then
5283 * mark the partition as valid again.
5284 */
5285 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5286 (sbi->s_mount_state & EXT4_VALID_FS))
5287 es->s_state = cpu_to_le16(sbi->s_mount_state);
5288
5289 if (sbi->s_journal)
5290 ext4_mark_recovery_complete(sb, es);
5291 if (sbi->s_mmp_tsk)
5292 kthread_stop(sbi->s_mmp_tsk);
5293 } else {
5294 /* Make sure we can mount this feature set readwrite */
5295 if (ext4_has_feature_readonly(sb) ||
5296 !ext4_feature_set_ok(sb, 0)) {
5297 err = -EROFS;
5298 goto restore_opts;
5299 }
5300 /*
5301 * Make sure the group descriptor checksums
5302 * are sane. If they aren't, refuse to remount r/w.
5303 */
5304 for (g = 0; g < sbi->s_groups_count; g++) {
5305 struct ext4_group_desc *gdp =
5306 ext4_get_group_desc(sb, g, NULL);
5307
5308 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5309 ext4_msg(sb, KERN_ERR,
5310 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5311 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5312 le16_to_cpu(gdp->bg_checksum));
5313 err = -EFSBADCRC;
5314 goto restore_opts;
5315 }
5316 }
5317
5318 /*
5319 * If we have an unprocessed orphan list hanging
5320 * around from a previously readonly bdev mount,
5321 * require a full umount/remount for now.
5322 */
5323 if (es->s_last_orphan) {
5324 ext4_msg(sb, KERN_WARNING, "Couldn't "
5325 "remount RDWR because of unprocessed "
5326 "orphan inode list. Please "
5327 "umount/remount instead");
5328 err = -EINVAL;
5329 goto restore_opts;
5330 }
5331
5332 /*
5333 * Mounting a RDONLY partition read-write, so reread
5334 * and store the current valid flag. (It may have
5335 * been changed by e2fsck since we originally mounted
5336 * the partition.)
5337 */
5338 if (sbi->s_journal)
5339 ext4_clear_journal_err(sb, es);
5340 sbi->s_mount_state = le16_to_cpu(es->s_state);
5341
5342 err = ext4_setup_super(sb, es, 0);
5343 if (err)
5344 goto restore_opts;
5345
5346 sb->s_flags &= ~SB_RDONLY;
5347 if (ext4_has_feature_mmp(sb))
5348 if (ext4_multi_mount_protect(sb,
5349 le64_to_cpu(es->s_mmp_block))) {
5350 err = -EROFS;
5351 goto restore_opts;
5352 }
5353 enable_quota = 1;
5354 }
5355 }
5356
5357 /*
5358 * Reinitialize lazy itable initialization thread based on
5359 * current settings
5360 */
5361 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5362 ext4_unregister_li_request(sb);
5363 else {
5364 ext4_group_t first_not_zeroed;
5365 first_not_zeroed = ext4_has_uninit_itable(sb);
5366 ext4_register_li_request(sb, first_not_zeroed);
5367 }
5368
5369 ext4_setup_system_zone(sb);
5370 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5371 err = ext4_commit_super(sb, 1);
5372 if (err)
5373 goto restore_opts;
5374 }
5375
5376 #ifdef CONFIG_QUOTA
5377 /* Release old quota file names */
5378 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5379 kfree(old_opts.s_qf_names[i]);
5380 if (enable_quota) {
5381 if (sb_any_quota_suspended(sb))
5382 dquot_resume(sb, -1);
5383 else if (ext4_has_feature_quota(sb)) {
5384 err = ext4_enable_quotas(sb);
5385 if (err)
5386 goto restore_opts;
5387 }
5388 }
5389 #endif
5390
5391 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
5392 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5393 kfree(orig_data);
5394 return 0;
5395
5396 restore_opts:
5397 sb->s_flags = old_sb_flags;
5398 sbi->s_mount_opt = old_opts.s_mount_opt;
5399 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5400 sbi->s_resuid = old_opts.s_resuid;
5401 sbi->s_resgid = old_opts.s_resgid;
5402 sbi->s_commit_interval = old_opts.s_commit_interval;
5403 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5404 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5405 #ifdef CONFIG_QUOTA
5406 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5407 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5408 to_free[i] = get_qf_name(sb, sbi, i);
5409 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
5410 }
5411 synchronize_rcu();
5412 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5413 kfree(to_free[i]);
5414 #endif
5415 kfree(orig_data);
5416 return err;
5417 }
5418
5419 #ifdef CONFIG_QUOTA
5420 static int ext4_statfs_project(struct super_block *sb,
5421 kprojid_t projid, struct kstatfs *buf)
5422 {
5423 struct kqid qid;
5424 struct dquot *dquot;
5425 u64 limit;
5426 u64 curblock;
5427
5428 qid = make_kqid_projid(projid);
5429 dquot = dqget(sb, qid);
5430 if (IS_ERR(dquot))
5431 return PTR_ERR(dquot);
5432 spin_lock(&dquot->dq_dqb_lock);
5433
5434 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5435 dquot->dq_dqb.dqb_bsoftlimit :
5436 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5437 if (limit && buf->f_blocks > limit) {
5438 curblock = (dquot->dq_dqb.dqb_curspace +
5439 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
5440 buf->f_blocks = limit;
5441 buf->f_bfree = buf->f_bavail =
5442 (buf->f_blocks > curblock) ?
5443 (buf->f_blocks - curblock) : 0;
5444 }
5445
5446 limit = dquot->dq_dqb.dqb_isoftlimit ?
5447 dquot->dq_dqb.dqb_isoftlimit :
5448 dquot->dq_dqb.dqb_ihardlimit;
5449 if (limit && buf->f_files > limit) {
5450 buf->f_files = limit;
5451 buf->f_ffree =
5452 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5453 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5454 }
5455
5456 spin_unlock(&dquot->dq_dqb_lock);
5457 dqput(dquot);
5458 return 0;
5459 }
5460 #endif
5461
5462 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5463 {
5464 struct super_block *sb = dentry->d_sb;
5465 struct ext4_sb_info *sbi = EXT4_SB(sb);
5466 struct ext4_super_block *es = sbi->s_es;
5467 ext4_fsblk_t overhead = 0, resv_blocks;
5468 u64 fsid;
5469 s64 bfree;
5470 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5471
5472 if (!test_opt(sb, MINIX_DF))
5473 overhead = sbi->s_overhead;
5474
5475 buf->f_type = EXT4_SUPER_MAGIC;
5476 buf->f_bsize = sb->s_blocksize;
5477 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5478 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5479 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5480 /* prevent underflow in case that few free space is available */
5481 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5482 buf->f_bavail = buf->f_bfree -
5483 (ext4_r_blocks_count(es) + resv_blocks);
5484 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5485 buf->f_bavail = 0;
5486 buf->f_files = le32_to_cpu(es->s_inodes_count);
5487 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5488 buf->f_namelen = EXT4_NAME_LEN;
5489 fsid = le64_to_cpup((void *)es->s_uuid) ^
5490 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5491 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5492 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5493
5494 #ifdef CONFIG_QUOTA
5495 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5496 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5497 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5498 #endif
5499 return 0;
5500 }
5501
5502
5503 #ifdef CONFIG_QUOTA
5504
5505 /*
5506 * Helper functions so that transaction is started before we acquire dqio_sem
5507 * to keep correct lock ordering of transaction > dqio_sem
5508 */
5509 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5510 {
5511 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5512 }
5513
5514 static int ext4_write_dquot(struct dquot *dquot)
5515 {
5516 int ret, err;
5517 handle_t *handle;
5518 struct inode *inode;
5519
5520 inode = dquot_to_inode(dquot);
5521 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5522 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5523 if (IS_ERR(handle))
5524 return PTR_ERR(handle);
5525 ret = dquot_commit(dquot);
5526 err = ext4_journal_stop(handle);
5527 if (!ret)
5528 ret = err;
5529 return ret;
5530 }
5531
5532 static int ext4_acquire_dquot(struct dquot *dquot)
5533 {
5534 int ret, err;
5535 handle_t *handle;
5536
5537 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5538 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5539 if (IS_ERR(handle))
5540 return PTR_ERR(handle);
5541 ret = dquot_acquire(dquot);
5542 err = ext4_journal_stop(handle);
5543 if (!ret)
5544 ret = err;
5545 return ret;
5546 }
5547
5548 static int ext4_release_dquot(struct dquot *dquot)
5549 {
5550 int ret, err;
5551 handle_t *handle;
5552
5553 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5554 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5555 if (IS_ERR(handle)) {
5556 /* Release dquot anyway to avoid endless cycle in dqput() */
5557 dquot_release(dquot);
5558 return PTR_ERR(handle);
5559 }
5560 ret = dquot_release(dquot);
5561 err = ext4_journal_stop(handle);
5562 if (!ret)
5563 ret = err;
5564 return ret;
5565 }
5566
5567 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5568 {
5569 struct super_block *sb = dquot->dq_sb;
5570 struct ext4_sb_info *sbi = EXT4_SB(sb);
5571
5572 /* Are we journaling quotas? */
5573 if (ext4_has_feature_quota(sb) ||
5574 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5575 dquot_mark_dquot_dirty(dquot);
5576 return ext4_write_dquot(dquot);
5577 } else {
5578 return dquot_mark_dquot_dirty(dquot);
5579 }
5580 }
5581
5582 static int ext4_write_info(struct super_block *sb, int type)
5583 {
5584 int ret, err;
5585 handle_t *handle;
5586
5587 /* Data block + inode block */
5588 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5589 if (IS_ERR(handle))
5590 return PTR_ERR(handle);
5591 ret = dquot_commit_info(sb, type);
5592 err = ext4_journal_stop(handle);
5593 if (!ret)
5594 ret = err;
5595 return ret;
5596 }
5597
5598 /*
5599 * Turn on quotas during mount time - we need to find
5600 * the quota file and such...
5601 */
5602 static int ext4_quota_on_mount(struct super_block *sb, int type)
5603 {
5604 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
5605 EXT4_SB(sb)->s_jquota_fmt, type);
5606 }
5607
5608 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5609 {
5610 struct ext4_inode_info *ei = EXT4_I(inode);
5611
5612 /* The first argument of lockdep_set_subclass has to be
5613 * *exactly* the same as the argument to init_rwsem() --- in
5614 * this case, in init_once() --- or lockdep gets unhappy
5615 * because the name of the lock is set using the
5616 * stringification of the argument to init_rwsem().
5617 */
5618 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5619 lockdep_set_subclass(&ei->i_data_sem, subclass);
5620 }
5621
5622 /*
5623 * Standard function to be called on quota_on
5624 */
5625 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5626 const struct path *path)
5627 {
5628 int err;
5629
5630 if (!test_opt(sb, QUOTA))
5631 return -EINVAL;
5632
5633 /* Quotafile not on the same filesystem? */
5634 if (path->dentry->d_sb != sb)
5635 return -EXDEV;
5636 /* Journaling quota? */
5637 if (EXT4_SB(sb)->s_qf_names[type]) {
5638 /* Quotafile not in fs root? */
5639 if (path->dentry->d_parent != sb->s_root)
5640 ext4_msg(sb, KERN_WARNING,
5641 "Quota file not on filesystem root. "
5642 "Journaled quota will not work");
5643 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5644 } else {
5645 /*
5646 * Clear the flag just in case mount options changed since
5647 * last time.
5648 */
5649 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5650 }
5651
5652 /*
5653 * When we journal data on quota file, we have to flush journal to see
5654 * all updates to the file when we bypass pagecache...
5655 */
5656 if (EXT4_SB(sb)->s_journal &&
5657 ext4_should_journal_data(d_inode(path->dentry))) {
5658 /*
5659 * We don't need to lock updates but journal_flush() could
5660 * otherwise be livelocked...
5661 */
5662 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5663 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5664 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5665 if (err)
5666 return err;
5667 }
5668
5669 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5670 err = dquot_quota_on(sb, type, format_id, path);
5671 if (err) {
5672 lockdep_set_quota_inode(path->dentry->d_inode,
5673 I_DATA_SEM_NORMAL);
5674 } else {
5675 struct inode *inode = d_inode(path->dentry);
5676 handle_t *handle;
5677
5678 /*
5679 * Set inode flags to prevent userspace from messing with quota
5680 * files. If this fails, we return success anyway since quotas
5681 * are already enabled and this is not a hard failure.
5682 */
5683 inode_lock(inode);
5684 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5685 if (IS_ERR(handle))
5686 goto unlock_inode;
5687 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5688 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5689 S_NOATIME | S_IMMUTABLE);
5690 ext4_mark_inode_dirty(handle, inode);
5691 ext4_journal_stop(handle);
5692 unlock_inode:
5693 inode_unlock(inode);
5694 }
5695 return err;
5696 }
5697
5698 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5699 unsigned int flags)
5700 {
5701 int err;
5702 struct inode *qf_inode;
5703 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5704 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5705 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5706 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5707 };
5708
5709 BUG_ON(!ext4_has_feature_quota(sb));
5710
5711 if (!qf_inums[type])
5712 return -EPERM;
5713
5714 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
5715 if (IS_ERR(qf_inode)) {
5716 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5717 return PTR_ERR(qf_inode);
5718 }
5719
5720 /* Don't account quota for quota files to avoid recursion */
5721 qf_inode->i_flags |= S_NOQUOTA;
5722 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5723 err = dquot_enable(qf_inode, type, format_id, flags);
5724 if (err)
5725 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5726 iput(qf_inode);
5727
5728 return err;
5729 }
5730
5731 /* Enable usage tracking for all quota types. */
5732 static int ext4_enable_quotas(struct super_block *sb)
5733 {
5734 int type, err = 0;
5735 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5736 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5737 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5738 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5739 };
5740 bool quota_mopt[EXT4_MAXQUOTAS] = {
5741 test_opt(sb, USRQUOTA),
5742 test_opt(sb, GRPQUOTA),
5743 test_opt(sb, PRJQUOTA),
5744 };
5745
5746 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5747 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5748 if (qf_inums[type]) {
5749 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5750 DQUOT_USAGE_ENABLED |
5751 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5752 if (err) {
5753 ext4_warning(sb,
5754 "Failed to enable quota tracking "
5755 "(type=%d, err=%d). Please run "
5756 "e2fsck to fix.", type, err);
5757 for (type--; type >= 0; type--)
5758 dquot_quota_off(sb, type);
5759
5760 return err;
5761 }
5762 }
5763 }
5764 return 0;
5765 }
5766
5767 static int ext4_quota_off(struct super_block *sb, int type)
5768 {
5769 struct inode *inode = sb_dqopt(sb)->files[type];
5770 handle_t *handle;
5771 int err;
5772
5773 /* Force all delayed allocation blocks to be allocated.
5774 * Caller already holds s_umount sem */
5775 if (test_opt(sb, DELALLOC))
5776 sync_filesystem(sb);
5777
5778 if (!inode || !igrab(inode))
5779 goto out;
5780
5781 err = dquot_quota_off(sb, type);
5782 if (err || ext4_has_feature_quota(sb))
5783 goto out_put;
5784
5785 inode_lock(inode);
5786 /*
5787 * Update modification times of quota files when userspace can
5788 * start looking at them. If we fail, we return success anyway since
5789 * this is not a hard failure and quotas are already disabled.
5790 */
5791 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5792 if (IS_ERR(handle))
5793 goto out_unlock;
5794 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5795 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5796 inode->i_mtime = inode->i_ctime = current_time(inode);
5797 ext4_mark_inode_dirty(handle, inode);
5798 ext4_journal_stop(handle);
5799 out_unlock:
5800 inode_unlock(inode);
5801 out_put:
5802 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5803 iput(inode);
5804 return err;
5805 out:
5806 return dquot_quota_off(sb, type);
5807 }
5808
5809 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5810 * acquiring the locks... As quota files are never truncated and quota code
5811 * itself serializes the operations (and no one else should touch the files)
5812 * we don't have to be afraid of races */
5813 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5814 size_t len, loff_t off)
5815 {
5816 struct inode *inode = sb_dqopt(sb)->files[type];
5817 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5818 int offset = off & (sb->s_blocksize - 1);
5819 int tocopy;
5820 size_t toread;
5821 struct buffer_head *bh;
5822 loff_t i_size = i_size_read(inode);
5823
5824 if (off > i_size)
5825 return 0;
5826 if (off+len > i_size)
5827 len = i_size-off;
5828 toread = len;
5829 while (toread > 0) {
5830 tocopy = sb->s_blocksize - offset < toread ?
5831 sb->s_blocksize - offset : toread;
5832 bh = ext4_bread(NULL, inode, blk, 0);
5833 if (IS_ERR(bh))
5834 return PTR_ERR(bh);
5835 if (!bh) /* A hole? */
5836 memset(data, 0, tocopy);
5837 else
5838 memcpy(data, bh->b_data+offset, tocopy);
5839 brelse(bh);
5840 offset = 0;
5841 toread -= tocopy;
5842 data += tocopy;
5843 blk++;
5844 }
5845 return len;
5846 }
5847
5848 /* Write to quotafile (we know the transaction is already started and has
5849 * enough credits) */
5850 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5851 const char *data, size_t len, loff_t off)
5852 {
5853 struct inode *inode = sb_dqopt(sb)->files[type];
5854 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5855 int err, offset = off & (sb->s_blocksize - 1);
5856 int retries = 0;
5857 struct buffer_head *bh;
5858 handle_t *handle = journal_current_handle();
5859
5860 if (EXT4_SB(sb)->s_journal && !handle) {
5861 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5862 " cancelled because transaction is not started",
5863 (unsigned long long)off, (unsigned long long)len);
5864 return -EIO;
5865 }
5866 /*
5867 * Since we account only one data block in transaction credits,
5868 * then it is impossible to cross a block boundary.
5869 */
5870 if (sb->s_blocksize - offset < len) {
5871 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5872 " cancelled because not block aligned",
5873 (unsigned long long)off, (unsigned long long)len);
5874 return -EIO;
5875 }
5876
5877 do {
5878 bh = ext4_bread(handle, inode, blk,
5879 EXT4_GET_BLOCKS_CREATE |
5880 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5881 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5882 ext4_should_retry_alloc(inode->i_sb, &retries));
5883 if (IS_ERR(bh))
5884 return PTR_ERR(bh);
5885 if (!bh)
5886 goto out;
5887 BUFFER_TRACE(bh, "get write access");
5888 err = ext4_journal_get_write_access(handle, bh);
5889 if (err) {
5890 brelse(bh);
5891 return err;
5892 }
5893 lock_buffer(bh);
5894 memcpy(bh->b_data+offset, data, len);
5895 flush_dcache_page(bh->b_page);
5896 unlock_buffer(bh);
5897 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5898 brelse(bh);
5899 out:
5900 if (inode->i_size < off + len) {
5901 i_size_write(inode, off + len);
5902 EXT4_I(inode)->i_disksize = inode->i_size;
5903 ext4_mark_inode_dirty(handle, inode);
5904 }
5905 return len;
5906 }
5907
5908 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5909 {
5910 const struct quota_format_ops *ops;
5911
5912 if (!sb_has_quota_loaded(sb, qid->type))
5913 return -ESRCH;
5914 ops = sb_dqopt(sb)->ops[qid->type];
5915 if (!ops || !ops->get_next_id)
5916 return -ENOSYS;
5917 return dquot_get_next_id(sb, qid);
5918 }
5919 #endif
5920
5921 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5922 const char *dev_name, void *data)
5923 {
5924 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5925 }
5926
5927 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5928 static inline void register_as_ext2(void)
5929 {
5930 int err = register_filesystem(&ext2_fs_type);
5931 if (err)
5932 printk(KERN_WARNING
5933 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5934 }
5935
5936 static inline void unregister_as_ext2(void)
5937 {
5938 unregister_filesystem(&ext2_fs_type);
5939 }
5940
5941 static inline int ext2_feature_set_ok(struct super_block *sb)
5942 {
5943 if (ext4_has_unknown_ext2_incompat_features(sb))
5944 return 0;
5945 if (sb_rdonly(sb))
5946 return 1;
5947 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5948 return 0;
5949 return 1;
5950 }
5951 #else
5952 static inline void register_as_ext2(void) { }
5953 static inline void unregister_as_ext2(void) { }
5954 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5955 #endif
5956
5957 static inline void register_as_ext3(void)
5958 {
5959 int err = register_filesystem(&ext3_fs_type);
5960 if (err)
5961 printk(KERN_WARNING
5962 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5963 }
5964
5965 static inline void unregister_as_ext3(void)
5966 {
5967 unregister_filesystem(&ext3_fs_type);
5968 }
5969
5970 static inline int ext3_feature_set_ok(struct super_block *sb)
5971 {
5972 if (ext4_has_unknown_ext3_incompat_features(sb))
5973 return 0;
5974 if (!ext4_has_feature_journal(sb))
5975 return 0;
5976 if (sb_rdonly(sb))
5977 return 1;
5978 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5979 return 0;
5980 return 1;
5981 }
5982
5983 static struct file_system_type ext4_fs_type = {
5984 .owner = THIS_MODULE,
5985 .name = "ext4",
5986 .mount = ext4_mount,
5987 .kill_sb = kill_block_super,
5988 .fs_flags = FS_REQUIRES_DEV,
5989 };
5990 MODULE_ALIAS_FS("ext4");
5991
5992 /* Shared across all ext4 file systems */
5993 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5994
5995 static int __init ext4_init_fs(void)
5996 {
5997 int i, err;
5998
5999 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6000 ext4_li_info = NULL;
6001 mutex_init(&ext4_li_mtx);
6002
6003 /* Build-time check for flags consistency */
6004 ext4_check_flag_values();
6005
6006 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6007 init_waitqueue_head(&ext4__ioend_wq[i]);
6008
6009 err = ext4_init_es();
6010 if (err)
6011 return err;
6012
6013 err = ext4_init_pending();
6014 if (err)
6015 goto out6;
6016
6017 err = ext4_init_pageio();
6018 if (err)
6019 goto out5;
6020
6021 err = ext4_init_system_zone();
6022 if (err)
6023 goto out4;
6024
6025 err = ext4_init_sysfs();
6026 if (err)
6027 goto out3;
6028
6029 err = ext4_init_mballoc();
6030 if (err)
6031 goto out2;
6032 err = init_inodecache();
6033 if (err)
6034 goto out1;
6035 register_as_ext3();
6036 register_as_ext2();
6037 err = register_filesystem(&ext4_fs_type);
6038 if (err)
6039 goto out;
6040
6041 return 0;
6042 out:
6043 unregister_as_ext2();
6044 unregister_as_ext3();
6045 destroy_inodecache();
6046 out1:
6047 ext4_exit_mballoc();
6048 out2:
6049 ext4_exit_sysfs();
6050 out3:
6051 ext4_exit_system_zone();
6052 out4:
6053 ext4_exit_pageio();
6054 out5:
6055 ext4_exit_pending();
6056 out6:
6057 ext4_exit_es();
6058
6059 return err;
6060 }
6061
6062 static void __exit ext4_exit_fs(void)
6063 {
6064 ext4_destroy_lazyinit_thread();
6065 unregister_as_ext2();
6066 unregister_as_ext3();
6067 unregister_filesystem(&ext4_fs_type);
6068 destroy_inodecache();
6069 ext4_exit_mballoc();
6070 ext4_exit_sysfs();
6071 ext4_exit_system_zone();
6072 ext4_exit_pageio();
6073 ext4_exit_es();
6074 ext4_exit_pending();
6075 }
6076
6077 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6078 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6079 MODULE_LICENSE("GPL");
6080 MODULE_SOFTDEP("pre: crc32c");
6081 module_init(ext4_init_fs)
6082 module_exit(ext4_exit_fs)