]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - fs/io_uring.c
Merge branch 'work.mount' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[thirdparty/kernel/stable.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side. When the application reads the CQ ring
8 * tail, it must use an appropriate smp_rmb() to order with the smp_wmb()
9 * the kernel uses after writing the tail. Failure to do so could cause a
10 * delay in when the application notices that completion events available.
11 * This isn't a fatal condition. Likewise, the application must use an
12 * appropriate smp_wmb() both before writing the SQ tail, and after writing
13 * the SQ tail. The first one orders the sqe writes with the tail write, and
14 * the latter is paired with the smp_rmb() the kernel will issue before
15 * reading the SQ tail on submission.
16 *
17 * Also see the examples in the liburing library:
18 *
19 * git://git.kernel.dk/liburing
20 *
21 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
22 * from data shared between the kernel and application. This is done both
23 * for ordering purposes, but also to ensure that once a value is loaded from
24 * data that the application could potentially modify, it remains stable.
25 *
26 * Copyright (C) 2018-2019 Jens Axboe
27 * Copyright (c) 2018-2019 Christoph Hellwig
28 */
29 #include <linux/kernel.h>
30 #include <linux/init.h>
31 #include <linux/errno.h>
32 #include <linux/syscalls.h>
33 #include <linux/compat.h>
34 #include <linux/refcount.h>
35 #include <linux/uio.h>
36
37 #include <linux/sched/signal.h>
38 #include <linux/fs.h>
39 #include <linux/file.h>
40 #include <linux/fdtable.h>
41 #include <linux/mm.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_context.h>
44 #include <linux/percpu.h>
45 #include <linux/slab.h>
46 #include <linux/workqueue.h>
47 #include <linux/kthread.h>
48 #include <linux/blkdev.h>
49 #include <linux/bvec.h>
50 #include <linux/net.h>
51 #include <net/sock.h>
52 #include <net/af_unix.h>
53 #include <net/scm.h>
54 #include <linux/anon_inodes.h>
55 #include <linux/sched/mm.h>
56 #include <linux/uaccess.h>
57 #include <linux/nospec.h>
58 #include <linux/sizes.h>
59 #include <linux/hugetlb.h>
60
61 #include <uapi/linux/io_uring.h>
62
63 #include "internal.h"
64
65 #define IORING_MAX_ENTRIES 4096
66 #define IORING_MAX_FIXED_FILES 1024
67
68 struct io_uring {
69 u32 head ____cacheline_aligned_in_smp;
70 u32 tail ____cacheline_aligned_in_smp;
71 };
72
73 struct io_sq_ring {
74 struct io_uring r;
75 u32 ring_mask;
76 u32 ring_entries;
77 u32 dropped;
78 u32 flags;
79 u32 array[];
80 };
81
82 struct io_cq_ring {
83 struct io_uring r;
84 u32 ring_mask;
85 u32 ring_entries;
86 u32 overflow;
87 struct io_uring_cqe cqes[];
88 };
89
90 struct io_mapped_ubuf {
91 u64 ubuf;
92 size_t len;
93 struct bio_vec *bvec;
94 unsigned int nr_bvecs;
95 };
96
97 struct async_list {
98 spinlock_t lock;
99 atomic_t cnt;
100 struct list_head list;
101
102 struct file *file;
103 off_t io_end;
104 size_t io_pages;
105 };
106
107 struct io_ring_ctx {
108 struct {
109 struct percpu_ref refs;
110 } ____cacheline_aligned_in_smp;
111
112 struct {
113 unsigned int flags;
114 bool compat;
115 bool account_mem;
116
117 /* SQ ring */
118 struct io_sq_ring *sq_ring;
119 unsigned cached_sq_head;
120 unsigned sq_entries;
121 unsigned sq_mask;
122 unsigned sq_thread_idle;
123 struct io_uring_sqe *sq_sqes;
124 } ____cacheline_aligned_in_smp;
125
126 /* IO offload */
127 struct workqueue_struct *sqo_wq;
128 struct task_struct *sqo_thread; /* if using sq thread polling */
129 struct mm_struct *sqo_mm;
130 wait_queue_head_t sqo_wait;
131 unsigned sqo_stop;
132
133 struct {
134 /* CQ ring */
135 struct io_cq_ring *cq_ring;
136 unsigned cached_cq_tail;
137 unsigned cq_entries;
138 unsigned cq_mask;
139 struct wait_queue_head cq_wait;
140 struct fasync_struct *cq_fasync;
141 } ____cacheline_aligned_in_smp;
142
143 /*
144 * If used, fixed file set. Writers must ensure that ->refs is dead,
145 * readers must ensure that ->refs is alive as long as the file* is
146 * used. Only updated through io_uring_register(2).
147 */
148 struct file **user_files;
149 unsigned nr_user_files;
150
151 /* if used, fixed mapped user buffers */
152 unsigned nr_user_bufs;
153 struct io_mapped_ubuf *user_bufs;
154
155 struct user_struct *user;
156
157 struct completion ctx_done;
158
159 struct {
160 struct mutex uring_lock;
161 wait_queue_head_t wait;
162 } ____cacheline_aligned_in_smp;
163
164 struct {
165 spinlock_t completion_lock;
166 bool poll_multi_file;
167 /*
168 * ->poll_list is protected by the ctx->uring_lock for
169 * io_uring instances that don't use IORING_SETUP_SQPOLL.
170 * For SQPOLL, only the single threaded io_sq_thread() will
171 * manipulate the list, hence no extra locking is needed there.
172 */
173 struct list_head poll_list;
174 struct list_head cancel_list;
175 } ____cacheline_aligned_in_smp;
176
177 struct async_list pending_async[2];
178
179 #if defined(CONFIG_UNIX)
180 struct socket *ring_sock;
181 #endif
182 };
183
184 struct sqe_submit {
185 const struct io_uring_sqe *sqe;
186 unsigned short index;
187 bool has_user;
188 bool needs_lock;
189 bool needs_fixed_file;
190 };
191
192 struct io_poll_iocb {
193 struct file *file;
194 struct wait_queue_head *head;
195 __poll_t events;
196 bool woken;
197 bool canceled;
198 struct wait_queue_entry wait;
199 };
200
201 struct io_kiocb {
202 union {
203 struct kiocb rw;
204 struct io_poll_iocb poll;
205 };
206
207 struct sqe_submit submit;
208
209 struct io_ring_ctx *ctx;
210 struct list_head list;
211 unsigned int flags;
212 refcount_t refs;
213 #define REQ_F_FORCE_NONBLOCK 1 /* inline submission attempt */
214 #define REQ_F_IOPOLL_COMPLETED 2 /* polled IO has completed */
215 #define REQ_F_FIXED_FILE 4 /* ctx owns file */
216 #define REQ_F_SEQ_PREV 8 /* sequential with previous */
217 u64 user_data;
218 u64 error;
219
220 struct work_struct work;
221 };
222
223 #define IO_PLUG_THRESHOLD 2
224 #define IO_IOPOLL_BATCH 8
225
226 struct io_submit_state {
227 struct blk_plug plug;
228
229 /*
230 * io_kiocb alloc cache
231 */
232 void *reqs[IO_IOPOLL_BATCH];
233 unsigned int free_reqs;
234 unsigned int cur_req;
235
236 /*
237 * File reference cache
238 */
239 struct file *file;
240 unsigned int fd;
241 unsigned int has_refs;
242 unsigned int used_refs;
243 unsigned int ios_left;
244 };
245
246 static struct kmem_cache *req_cachep;
247
248 static const struct file_operations io_uring_fops;
249
250 struct sock *io_uring_get_socket(struct file *file)
251 {
252 #if defined(CONFIG_UNIX)
253 if (file->f_op == &io_uring_fops) {
254 struct io_ring_ctx *ctx = file->private_data;
255
256 return ctx->ring_sock->sk;
257 }
258 #endif
259 return NULL;
260 }
261 EXPORT_SYMBOL(io_uring_get_socket);
262
263 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
264 {
265 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
266
267 complete(&ctx->ctx_done);
268 }
269
270 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
271 {
272 struct io_ring_ctx *ctx;
273 int i;
274
275 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
276 if (!ctx)
277 return NULL;
278
279 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 0, GFP_KERNEL)) {
280 kfree(ctx);
281 return NULL;
282 }
283
284 ctx->flags = p->flags;
285 init_waitqueue_head(&ctx->cq_wait);
286 init_completion(&ctx->ctx_done);
287 mutex_init(&ctx->uring_lock);
288 init_waitqueue_head(&ctx->wait);
289 for (i = 0; i < ARRAY_SIZE(ctx->pending_async); i++) {
290 spin_lock_init(&ctx->pending_async[i].lock);
291 INIT_LIST_HEAD(&ctx->pending_async[i].list);
292 atomic_set(&ctx->pending_async[i].cnt, 0);
293 }
294 spin_lock_init(&ctx->completion_lock);
295 INIT_LIST_HEAD(&ctx->poll_list);
296 INIT_LIST_HEAD(&ctx->cancel_list);
297 return ctx;
298 }
299
300 static void io_commit_cqring(struct io_ring_ctx *ctx)
301 {
302 struct io_cq_ring *ring = ctx->cq_ring;
303
304 if (ctx->cached_cq_tail != READ_ONCE(ring->r.tail)) {
305 /* order cqe stores with ring update */
306 smp_store_release(&ring->r.tail, ctx->cached_cq_tail);
307
308 /*
309 * Write sider barrier of tail update, app has read side. See
310 * comment at the top of this file.
311 */
312 smp_wmb();
313
314 if (wq_has_sleeper(&ctx->cq_wait)) {
315 wake_up_interruptible(&ctx->cq_wait);
316 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
317 }
318 }
319 }
320
321 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
322 {
323 struct io_cq_ring *ring = ctx->cq_ring;
324 unsigned tail;
325
326 tail = ctx->cached_cq_tail;
327 /* See comment at the top of the file */
328 smp_rmb();
329 if (tail + 1 == READ_ONCE(ring->r.head))
330 return NULL;
331
332 ctx->cached_cq_tail++;
333 return &ring->cqes[tail & ctx->cq_mask];
334 }
335
336 static void io_cqring_fill_event(struct io_ring_ctx *ctx, u64 ki_user_data,
337 long res, unsigned ev_flags)
338 {
339 struct io_uring_cqe *cqe;
340
341 /*
342 * If we can't get a cq entry, userspace overflowed the
343 * submission (by quite a lot). Increment the overflow count in
344 * the ring.
345 */
346 cqe = io_get_cqring(ctx);
347 if (cqe) {
348 WRITE_ONCE(cqe->user_data, ki_user_data);
349 WRITE_ONCE(cqe->res, res);
350 WRITE_ONCE(cqe->flags, ev_flags);
351 } else {
352 unsigned overflow = READ_ONCE(ctx->cq_ring->overflow);
353
354 WRITE_ONCE(ctx->cq_ring->overflow, overflow + 1);
355 }
356 }
357
358 static void io_cqring_add_event(struct io_ring_ctx *ctx, u64 ki_user_data,
359 long res, unsigned ev_flags)
360 {
361 unsigned long flags;
362
363 spin_lock_irqsave(&ctx->completion_lock, flags);
364 io_cqring_fill_event(ctx, ki_user_data, res, ev_flags);
365 io_commit_cqring(ctx);
366 spin_unlock_irqrestore(&ctx->completion_lock, flags);
367
368 if (waitqueue_active(&ctx->wait))
369 wake_up(&ctx->wait);
370 if (waitqueue_active(&ctx->sqo_wait))
371 wake_up(&ctx->sqo_wait);
372 }
373
374 static void io_ring_drop_ctx_refs(struct io_ring_ctx *ctx, unsigned refs)
375 {
376 percpu_ref_put_many(&ctx->refs, refs);
377
378 if (waitqueue_active(&ctx->wait))
379 wake_up(&ctx->wait);
380 }
381
382 static struct io_kiocb *io_get_req(struct io_ring_ctx *ctx,
383 struct io_submit_state *state)
384 {
385 struct io_kiocb *req;
386
387 if (!percpu_ref_tryget(&ctx->refs))
388 return NULL;
389
390 if (!state) {
391 req = kmem_cache_alloc(req_cachep, __GFP_NOWARN);
392 if (unlikely(!req))
393 goto out;
394 } else if (!state->free_reqs) {
395 size_t sz;
396 int ret;
397
398 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
399 ret = kmem_cache_alloc_bulk(req_cachep, __GFP_NOWARN, sz,
400 state->reqs);
401 if (unlikely(ret <= 0))
402 goto out;
403 state->free_reqs = ret - 1;
404 state->cur_req = 1;
405 req = state->reqs[0];
406 } else {
407 req = state->reqs[state->cur_req];
408 state->free_reqs--;
409 state->cur_req++;
410 }
411
412 req->ctx = ctx;
413 req->flags = 0;
414 refcount_set(&req->refs, 0);
415 return req;
416 out:
417 io_ring_drop_ctx_refs(ctx, 1);
418 return NULL;
419 }
420
421 static void io_free_req_many(struct io_ring_ctx *ctx, void **reqs, int *nr)
422 {
423 if (*nr) {
424 kmem_cache_free_bulk(req_cachep, *nr, reqs);
425 io_ring_drop_ctx_refs(ctx, *nr);
426 *nr = 0;
427 }
428 }
429
430 static void io_free_req(struct io_kiocb *req)
431 {
432 if (!refcount_read(&req->refs) || refcount_dec_and_test(&req->refs)) {
433 io_ring_drop_ctx_refs(req->ctx, 1);
434 kmem_cache_free(req_cachep, req);
435 }
436 }
437
438 /*
439 * Find and free completed poll iocbs
440 */
441 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
442 struct list_head *done)
443 {
444 void *reqs[IO_IOPOLL_BATCH];
445 int file_count, to_free;
446 struct file *file = NULL;
447 struct io_kiocb *req;
448
449 file_count = to_free = 0;
450 while (!list_empty(done)) {
451 req = list_first_entry(done, struct io_kiocb, list);
452 list_del(&req->list);
453
454 io_cqring_fill_event(ctx, req->user_data, req->error, 0);
455
456 reqs[to_free++] = req;
457 (*nr_events)++;
458
459 /*
460 * Batched puts of the same file, to avoid dirtying the
461 * file usage count multiple times, if avoidable.
462 */
463 if (!(req->flags & REQ_F_FIXED_FILE)) {
464 if (!file) {
465 file = req->rw.ki_filp;
466 file_count = 1;
467 } else if (file == req->rw.ki_filp) {
468 file_count++;
469 } else {
470 fput_many(file, file_count);
471 file = req->rw.ki_filp;
472 file_count = 1;
473 }
474 }
475
476 if (to_free == ARRAY_SIZE(reqs))
477 io_free_req_many(ctx, reqs, &to_free);
478 }
479 io_commit_cqring(ctx);
480
481 if (file)
482 fput_many(file, file_count);
483 io_free_req_many(ctx, reqs, &to_free);
484 }
485
486 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
487 long min)
488 {
489 struct io_kiocb *req, *tmp;
490 LIST_HEAD(done);
491 bool spin;
492 int ret;
493
494 /*
495 * Only spin for completions if we don't have multiple devices hanging
496 * off our complete list, and we're under the requested amount.
497 */
498 spin = !ctx->poll_multi_file && *nr_events < min;
499
500 ret = 0;
501 list_for_each_entry_safe(req, tmp, &ctx->poll_list, list) {
502 struct kiocb *kiocb = &req->rw;
503
504 /*
505 * Move completed entries to our local list. If we find a
506 * request that requires polling, break out and complete
507 * the done list first, if we have entries there.
508 */
509 if (req->flags & REQ_F_IOPOLL_COMPLETED) {
510 list_move_tail(&req->list, &done);
511 continue;
512 }
513 if (!list_empty(&done))
514 break;
515
516 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
517 if (ret < 0)
518 break;
519
520 if (ret && spin)
521 spin = false;
522 ret = 0;
523 }
524
525 if (!list_empty(&done))
526 io_iopoll_complete(ctx, nr_events, &done);
527
528 return ret;
529 }
530
531 /*
532 * Poll for a mininum of 'min' events. Note that if min == 0 we consider that a
533 * non-spinning poll check - we'll still enter the driver poll loop, but only
534 * as a non-spinning completion check.
535 */
536 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
537 long min)
538 {
539 while (!list_empty(&ctx->poll_list)) {
540 int ret;
541
542 ret = io_do_iopoll(ctx, nr_events, min);
543 if (ret < 0)
544 return ret;
545 if (!min || *nr_events >= min)
546 return 0;
547 }
548
549 return 1;
550 }
551
552 /*
553 * We can't just wait for polled events to come to us, we have to actively
554 * find and complete them.
555 */
556 static void io_iopoll_reap_events(struct io_ring_ctx *ctx)
557 {
558 if (!(ctx->flags & IORING_SETUP_IOPOLL))
559 return;
560
561 mutex_lock(&ctx->uring_lock);
562 while (!list_empty(&ctx->poll_list)) {
563 unsigned int nr_events = 0;
564
565 io_iopoll_getevents(ctx, &nr_events, 1);
566 }
567 mutex_unlock(&ctx->uring_lock);
568 }
569
570 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned *nr_events,
571 long min)
572 {
573 int ret = 0;
574
575 do {
576 int tmin = 0;
577
578 if (*nr_events < min)
579 tmin = min - *nr_events;
580
581 ret = io_iopoll_getevents(ctx, nr_events, tmin);
582 if (ret <= 0)
583 break;
584 ret = 0;
585 } while (min && !*nr_events && !need_resched());
586
587 return ret;
588 }
589
590 static void kiocb_end_write(struct kiocb *kiocb)
591 {
592 if (kiocb->ki_flags & IOCB_WRITE) {
593 struct inode *inode = file_inode(kiocb->ki_filp);
594
595 /*
596 * Tell lockdep we inherited freeze protection from submission
597 * thread.
598 */
599 if (S_ISREG(inode->i_mode))
600 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
601 file_end_write(kiocb->ki_filp);
602 }
603 }
604
605 static void io_fput(struct io_kiocb *req)
606 {
607 if (!(req->flags & REQ_F_FIXED_FILE))
608 fput(req->rw.ki_filp);
609 }
610
611 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
612 {
613 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw);
614
615 kiocb_end_write(kiocb);
616
617 io_fput(req);
618 io_cqring_add_event(req->ctx, req->user_data, res, 0);
619 io_free_req(req);
620 }
621
622 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
623 {
624 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw);
625
626 kiocb_end_write(kiocb);
627
628 req->error = res;
629 if (res != -EAGAIN)
630 req->flags |= REQ_F_IOPOLL_COMPLETED;
631 }
632
633 /*
634 * After the iocb has been issued, it's safe to be found on the poll list.
635 * Adding the kiocb to the list AFTER submission ensures that we don't
636 * find it from a io_iopoll_getevents() thread before the issuer is done
637 * accessing the kiocb cookie.
638 */
639 static void io_iopoll_req_issued(struct io_kiocb *req)
640 {
641 struct io_ring_ctx *ctx = req->ctx;
642
643 /*
644 * Track whether we have multiple files in our lists. This will impact
645 * how we do polling eventually, not spinning if we're on potentially
646 * different devices.
647 */
648 if (list_empty(&ctx->poll_list)) {
649 ctx->poll_multi_file = false;
650 } else if (!ctx->poll_multi_file) {
651 struct io_kiocb *list_req;
652
653 list_req = list_first_entry(&ctx->poll_list, struct io_kiocb,
654 list);
655 if (list_req->rw.ki_filp != req->rw.ki_filp)
656 ctx->poll_multi_file = true;
657 }
658
659 /*
660 * For fast devices, IO may have already completed. If it has, add
661 * it to the front so we find it first.
662 */
663 if (req->flags & REQ_F_IOPOLL_COMPLETED)
664 list_add(&req->list, &ctx->poll_list);
665 else
666 list_add_tail(&req->list, &ctx->poll_list);
667 }
668
669 static void io_file_put(struct io_submit_state *state, struct file *file)
670 {
671 if (!state) {
672 fput(file);
673 } else if (state->file) {
674 int diff = state->has_refs - state->used_refs;
675
676 if (diff)
677 fput_many(state->file, diff);
678 state->file = NULL;
679 }
680 }
681
682 /*
683 * Get as many references to a file as we have IOs left in this submission,
684 * assuming most submissions are for one file, or at least that each file
685 * has more than one submission.
686 */
687 static struct file *io_file_get(struct io_submit_state *state, int fd)
688 {
689 if (!state)
690 return fget(fd);
691
692 if (state->file) {
693 if (state->fd == fd) {
694 state->used_refs++;
695 state->ios_left--;
696 return state->file;
697 }
698 io_file_put(state, NULL);
699 }
700 state->file = fget_many(fd, state->ios_left);
701 if (!state->file)
702 return NULL;
703
704 state->fd = fd;
705 state->has_refs = state->ios_left;
706 state->used_refs = 1;
707 state->ios_left--;
708 return state->file;
709 }
710
711 /*
712 * If we tracked the file through the SCM inflight mechanism, we could support
713 * any file. For now, just ensure that anything potentially problematic is done
714 * inline.
715 */
716 static bool io_file_supports_async(struct file *file)
717 {
718 umode_t mode = file_inode(file)->i_mode;
719
720 if (S_ISBLK(mode) || S_ISCHR(mode))
721 return true;
722 if (S_ISREG(mode) && file->f_op != &io_uring_fops)
723 return true;
724
725 return false;
726 }
727
728 static int io_prep_rw(struct io_kiocb *req, const struct sqe_submit *s,
729 bool force_nonblock, struct io_submit_state *state)
730 {
731 const struct io_uring_sqe *sqe = s->sqe;
732 struct io_ring_ctx *ctx = req->ctx;
733 struct kiocb *kiocb = &req->rw;
734 unsigned ioprio, flags;
735 int fd, ret;
736
737 /* For -EAGAIN retry, everything is already prepped */
738 if (kiocb->ki_filp)
739 return 0;
740
741 flags = READ_ONCE(sqe->flags);
742 fd = READ_ONCE(sqe->fd);
743
744 if (flags & IOSQE_FIXED_FILE) {
745 if (unlikely(!ctx->user_files ||
746 (unsigned) fd >= ctx->nr_user_files))
747 return -EBADF;
748 kiocb->ki_filp = ctx->user_files[fd];
749 req->flags |= REQ_F_FIXED_FILE;
750 } else {
751 if (s->needs_fixed_file)
752 return -EBADF;
753 kiocb->ki_filp = io_file_get(state, fd);
754 if (unlikely(!kiocb->ki_filp))
755 return -EBADF;
756 if (force_nonblock && !io_file_supports_async(kiocb->ki_filp))
757 force_nonblock = false;
758 }
759 kiocb->ki_pos = READ_ONCE(sqe->off);
760 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
761 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
762
763 ioprio = READ_ONCE(sqe->ioprio);
764 if (ioprio) {
765 ret = ioprio_check_cap(ioprio);
766 if (ret)
767 goto out_fput;
768
769 kiocb->ki_ioprio = ioprio;
770 } else
771 kiocb->ki_ioprio = get_current_ioprio();
772
773 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
774 if (unlikely(ret))
775 goto out_fput;
776 if (force_nonblock) {
777 kiocb->ki_flags |= IOCB_NOWAIT;
778 req->flags |= REQ_F_FORCE_NONBLOCK;
779 }
780 if (ctx->flags & IORING_SETUP_IOPOLL) {
781 ret = -EOPNOTSUPP;
782 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
783 !kiocb->ki_filp->f_op->iopoll)
784 goto out_fput;
785
786 req->error = 0;
787 kiocb->ki_flags |= IOCB_HIPRI;
788 kiocb->ki_complete = io_complete_rw_iopoll;
789 } else {
790 if (kiocb->ki_flags & IOCB_HIPRI) {
791 ret = -EINVAL;
792 goto out_fput;
793 }
794 kiocb->ki_complete = io_complete_rw;
795 }
796 return 0;
797 out_fput:
798 if (!(flags & IOSQE_FIXED_FILE)) {
799 /*
800 * in case of error, we didn't use this file reference. drop it.
801 */
802 if (state)
803 state->used_refs--;
804 io_file_put(state, kiocb->ki_filp);
805 }
806 return ret;
807 }
808
809 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
810 {
811 switch (ret) {
812 case -EIOCBQUEUED:
813 break;
814 case -ERESTARTSYS:
815 case -ERESTARTNOINTR:
816 case -ERESTARTNOHAND:
817 case -ERESTART_RESTARTBLOCK:
818 /*
819 * We can't just restart the syscall, since previously
820 * submitted sqes may already be in progress. Just fail this
821 * IO with EINTR.
822 */
823 ret = -EINTR;
824 /* fall through */
825 default:
826 kiocb->ki_complete(kiocb, ret, 0);
827 }
828 }
829
830 static int io_import_fixed(struct io_ring_ctx *ctx, int rw,
831 const struct io_uring_sqe *sqe,
832 struct iov_iter *iter)
833 {
834 size_t len = READ_ONCE(sqe->len);
835 struct io_mapped_ubuf *imu;
836 unsigned index, buf_index;
837 size_t offset;
838 u64 buf_addr;
839
840 /* attempt to use fixed buffers without having provided iovecs */
841 if (unlikely(!ctx->user_bufs))
842 return -EFAULT;
843
844 buf_index = READ_ONCE(sqe->buf_index);
845 if (unlikely(buf_index >= ctx->nr_user_bufs))
846 return -EFAULT;
847
848 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
849 imu = &ctx->user_bufs[index];
850 buf_addr = READ_ONCE(sqe->addr);
851
852 /* overflow */
853 if (buf_addr + len < buf_addr)
854 return -EFAULT;
855 /* not inside the mapped region */
856 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
857 return -EFAULT;
858
859 /*
860 * May not be a start of buffer, set size appropriately
861 * and advance us to the beginning.
862 */
863 offset = buf_addr - imu->ubuf;
864 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
865 if (offset)
866 iov_iter_advance(iter, offset);
867 return 0;
868 }
869
870 static int io_import_iovec(struct io_ring_ctx *ctx, int rw,
871 const struct sqe_submit *s, struct iovec **iovec,
872 struct iov_iter *iter)
873 {
874 const struct io_uring_sqe *sqe = s->sqe;
875 void __user *buf = u64_to_user_ptr(READ_ONCE(sqe->addr));
876 size_t sqe_len = READ_ONCE(sqe->len);
877 u8 opcode;
878
879 /*
880 * We're reading ->opcode for the second time, but the first read
881 * doesn't care whether it's _FIXED or not, so it doesn't matter
882 * whether ->opcode changes concurrently. The first read does care
883 * about whether it is a READ or a WRITE, so we don't trust this read
884 * for that purpose and instead let the caller pass in the read/write
885 * flag.
886 */
887 opcode = READ_ONCE(sqe->opcode);
888 if (opcode == IORING_OP_READ_FIXED ||
889 opcode == IORING_OP_WRITE_FIXED) {
890 ssize_t ret = io_import_fixed(ctx, rw, sqe, iter);
891 *iovec = NULL;
892 return ret;
893 }
894
895 if (!s->has_user)
896 return -EFAULT;
897
898 #ifdef CONFIG_COMPAT
899 if (ctx->compat)
900 return compat_import_iovec(rw, buf, sqe_len, UIO_FASTIOV,
901 iovec, iter);
902 #endif
903
904 return import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter);
905 }
906
907 /*
908 * Make a note of the last file/offset/direction we punted to async
909 * context. We'll use this information to see if we can piggy back a
910 * sequential request onto the previous one, if it's still hasn't been
911 * completed by the async worker.
912 */
913 static void io_async_list_note(int rw, struct io_kiocb *req, size_t len)
914 {
915 struct async_list *async_list = &req->ctx->pending_async[rw];
916 struct kiocb *kiocb = &req->rw;
917 struct file *filp = kiocb->ki_filp;
918 off_t io_end = kiocb->ki_pos + len;
919
920 if (filp == async_list->file && kiocb->ki_pos == async_list->io_end) {
921 unsigned long max_pages;
922
923 /* Use 8x RA size as a decent limiter for both reads/writes */
924 max_pages = filp->f_ra.ra_pages;
925 if (!max_pages)
926 max_pages = VM_READAHEAD_PAGES;
927 max_pages *= 8;
928
929 /* If max pages are exceeded, reset the state */
930 len >>= PAGE_SHIFT;
931 if (async_list->io_pages + len <= max_pages) {
932 req->flags |= REQ_F_SEQ_PREV;
933 async_list->io_pages += len;
934 } else {
935 io_end = 0;
936 async_list->io_pages = 0;
937 }
938 }
939
940 /* New file? Reset state. */
941 if (async_list->file != filp) {
942 async_list->io_pages = 0;
943 async_list->file = filp;
944 }
945 async_list->io_end = io_end;
946 }
947
948 static ssize_t io_read(struct io_kiocb *req, const struct sqe_submit *s,
949 bool force_nonblock, struct io_submit_state *state)
950 {
951 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
952 struct kiocb *kiocb = &req->rw;
953 struct iov_iter iter;
954 struct file *file;
955 size_t iov_count;
956 ssize_t ret;
957
958 ret = io_prep_rw(req, s, force_nonblock, state);
959 if (ret)
960 return ret;
961 file = kiocb->ki_filp;
962
963 ret = -EBADF;
964 if (unlikely(!(file->f_mode & FMODE_READ)))
965 goto out_fput;
966 ret = -EINVAL;
967 if (unlikely(!file->f_op->read_iter))
968 goto out_fput;
969
970 ret = io_import_iovec(req->ctx, READ, s, &iovec, &iter);
971 if (ret)
972 goto out_fput;
973
974 iov_count = iov_iter_count(&iter);
975 ret = rw_verify_area(READ, file, &kiocb->ki_pos, iov_count);
976 if (!ret) {
977 ssize_t ret2;
978
979 /* Catch -EAGAIN return for forced non-blocking submission */
980 ret2 = call_read_iter(file, kiocb, &iter);
981 if (!force_nonblock || ret2 != -EAGAIN) {
982 io_rw_done(kiocb, ret2);
983 } else {
984 /*
985 * If ->needs_lock is true, we're already in async
986 * context.
987 */
988 if (!s->needs_lock)
989 io_async_list_note(READ, req, iov_count);
990 ret = -EAGAIN;
991 }
992 }
993 kfree(iovec);
994 out_fput:
995 /* Hold on to the file for -EAGAIN */
996 if (unlikely(ret && ret != -EAGAIN))
997 io_fput(req);
998 return ret;
999 }
1000
1001 static ssize_t io_write(struct io_kiocb *req, const struct sqe_submit *s,
1002 bool force_nonblock, struct io_submit_state *state)
1003 {
1004 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1005 struct kiocb *kiocb = &req->rw;
1006 struct iov_iter iter;
1007 struct file *file;
1008 size_t iov_count;
1009 ssize_t ret;
1010
1011 ret = io_prep_rw(req, s, force_nonblock, state);
1012 if (ret)
1013 return ret;
1014
1015 ret = -EBADF;
1016 file = kiocb->ki_filp;
1017 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1018 goto out_fput;
1019 ret = -EINVAL;
1020 if (unlikely(!file->f_op->write_iter))
1021 goto out_fput;
1022
1023 ret = io_import_iovec(req->ctx, WRITE, s, &iovec, &iter);
1024 if (ret)
1025 goto out_fput;
1026
1027 iov_count = iov_iter_count(&iter);
1028
1029 ret = -EAGAIN;
1030 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT)) {
1031 /* If ->needs_lock is true, we're already in async context. */
1032 if (!s->needs_lock)
1033 io_async_list_note(WRITE, req, iov_count);
1034 goto out_free;
1035 }
1036
1037 ret = rw_verify_area(WRITE, file, &kiocb->ki_pos, iov_count);
1038 if (!ret) {
1039 /*
1040 * Open-code file_start_write here to grab freeze protection,
1041 * which will be released by another thread in
1042 * io_complete_rw(). Fool lockdep by telling it the lock got
1043 * released so that it doesn't complain about the held lock when
1044 * we return to userspace.
1045 */
1046 if (S_ISREG(file_inode(file)->i_mode)) {
1047 __sb_start_write(file_inode(file)->i_sb,
1048 SB_FREEZE_WRITE, true);
1049 __sb_writers_release(file_inode(file)->i_sb,
1050 SB_FREEZE_WRITE);
1051 }
1052 kiocb->ki_flags |= IOCB_WRITE;
1053 io_rw_done(kiocb, call_write_iter(file, kiocb, &iter));
1054 }
1055 out_free:
1056 kfree(iovec);
1057 out_fput:
1058 /* Hold on to the file for -EAGAIN */
1059 if (unlikely(ret && ret != -EAGAIN))
1060 io_fput(req);
1061 return ret;
1062 }
1063
1064 /*
1065 * IORING_OP_NOP just posts a completion event, nothing else.
1066 */
1067 static int io_nop(struct io_kiocb *req, u64 user_data)
1068 {
1069 struct io_ring_ctx *ctx = req->ctx;
1070 long err = 0;
1071
1072 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1073 return -EINVAL;
1074
1075 /*
1076 * Twilight zone - it's possible that someone issued an opcode that
1077 * has a file attached, then got -EAGAIN on submission, and changed
1078 * the sqe before we retried it from async context. Avoid dropping
1079 * a file reference for this malicious case, and flag the error.
1080 */
1081 if (req->rw.ki_filp) {
1082 err = -EBADF;
1083 io_fput(req);
1084 }
1085 io_cqring_add_event(ctx, user_data, err, 0);
1086 io_free_req(req);
1087 return 0;
1088 }
1089
1090 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1091 {
1092 struct io_ring_ctx *ctx = req->ctx;
1093 unsigned flags;
1094 int fd;
1095
1096 /* Prep already done */
1097 if (req->rw.ki_filp)
1098 return 0;
1099
1100 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1101 return -EINVAL;
1102 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
1103 return -EINVAL;
1104
1105 fd = READ_ONCE(sqe->fd);
1106 flags = READ_ONCE(sqe->flags);
1107
1108 if (flags & IOSQE_FIXED_FILE) {
1109 if (unlikely(!ctx->user_files || fd >= ctx->nr_user_files))
1110 return -EBADF;
1111 req->rw.ki_filp = ctx->user_files[fd];
1112 req->flags |= REQ_F_FIXED_FILE;
1113 } else {
1114 req->rw.ki_filp = fget(fd);
1115 if (unlikely(!req->rw.ki_filp))
1116 return -EBADF;
1117 }
1118
1119 return 0;
1120 }
1121
1122 static int io_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1123 bool force_nonblock)
1124 {
1125 loff_t sqe_off = READ_ONCE(sqe->off);
1126 loff_t sqe_len = READ_ONCE(sqe->len);
1127 loff_t end = sqe_off + sqe_len;
1128 unsigned fsync_flags;
1129 int ret;
1130
1131 fsync_flags = READ_ONCE(sqe->fsync_flags);
1132 if (unlikely(fsync_flags & ~IORING_FSYNC_DATASYNC))
1133 return -EINVAL;
1134
1135 ret = io_prep_fsync(req, sqe);
1136 if (ret)
1137 return ret;
1138
1139 /* fsync always requires a blocking context */
1140 if (force_nonblock)
1141 return -EAGAIN;
1142
1143 ret = vfs_fsync_range(req->rw.ki_filp, sqe_off,
1144 end > 0 ? end : LLONG_MAX,
1145 fsync_flags & IORING_FSYNC_DATASYNC);
1146
1147 io_fput(req);
1148 io_cqring_add_event(req->ctx, sqe->user_data, ret, 0);
1149 io_free_req(req);
1150 return 0;
1151 }
1152
1153 static void io_poll_remove_one(struct io_kiocb *req)
1154 {
1155 struct io_poll_iocb *poll = &req->poll;
1156
1157 spin_lock(&poll->head->lock);
1158 WRITE_ONCE(poll->canceled, true);
1159 if (!list_empty(&poll->wait.entry)) {
1160 list_del_init(&poll->wait.entry);
1161 queue_work(req->ctx->sqo_wq, &req->work);
1162 }
1163 spin_unlock(&poll->head->lock);
1164
1165 list_del_init(&req->list);
1166 }
1167
1168 static void io_poll_remove_all(struct io_ring_ctx *ctx)
1169 {
1170 struct io_kiocb *req;
1171
1172 spin_lock_irq(&ctx->completion_lock);
1173 while (!list_empty(&ctx->cancel_list)) {
1174 req = list_first_entry(&ctx->cancel_list, struct io_kiocb,list);
1175 io_poll_remove_one(req);
1176 }
1177 spin_unlock_irq(&ctx->completion_lock);
1178 }
1179
1180 /*
1181 * Find a running poll command that matches one specified in sqe->addr,
1182 * and remove it if found.
1183 */
1184 static int io_poll_remove(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1185 {
1186 struct io_ring_ctx *ctx = req->ctx;
1187 struct io_kiocb *poll_req, *next;
1188 int ret = -ENOENT;
1189
1190 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
1191 return -EINVAL;
1192 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
1193 sqe->poll_events)
1194 return -EINVAL;
1195
1196 spin_lock_irq(&ctx->completion_lock);
1197 list_for_each_entry_safe(poll_req, next, &ctx->cancel_list, list) {
1198 if (READ_ONCE(sqe->addr) == poll_req->user_data) {
1199 io_poll_remove_one(poll_req);
1200 ret = 0;
1201 break;
1202 }
1203 }
1204 spin_unlock_irq(&ctx->completion_lock);
1205
1206 io_cqring_add_event(req->ctx, sqe->user_data, ret, 0);
1207 io_free_req(req);
1208 return 0;
1209 }
1210
1211 static void io_poll_complete(struct io_kiocb *req, __poll_t mask)
1212 {
1213 io_cqring_add_event(req->ctx, req->user_data, mangle_poll(mask), 0);
1214 io_fput(req);
1215 io_free_req(req);
1216 }
1217
1218 static void io_poll_complete_work(struct work_struct *work)
1219 {
1220 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1221 struct io_poll_iocb *poll = &req->poll;
1222 struct poll_table_struct pt = { ._key = poll->events };
1223 struct io_ring_ctx *ctx = req->ctx;
1224 __poll_t mask = 0;
1225
1226 if (!READ_ONCE(poll->canceled))
1227 mask = vfs_poll(poll->file, &pt) & poll->events;
1228
1229 /*
1230 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1231 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1232 * synchronize with them. In the cancellation case the list_del_init
1233 * itself is not actually needed, but harmless so we keep it in to
1234 * avoid further branches in the fast path.
1235 */
1236 spin_lock_irq(&ctx->completion_lock);
1237 if (!mask && !READ_ONCE(poll->canceled)) {
1238 add_wait_queue(poll->head, &poll->wait);
1239 spin_unlock_irq(&ctx->completion_lock);
1240 return;
1241 }
1242 list_del_init(&req->list);
1243 spin_unlock_irq(&ctx->completion_lock);
1244
1245 io_poll_complete(req, mask);
1246 }
1247
1248 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1249 void *key)
1250 {
1251 struct io_poll_iocb *poll = container_of(wait, struct io_poll_iocb,
1252 wait);
1253 struct io_kiocb *req = container_of(poll, struct io_kiocb, poll);
1254 struct io_ring_ctx *ctx = req->ctx;
1255 __poll_t mask = key_to_poll(key);
1256
1257 poll->woken = true;
1258
1259 /* for instances that support it check for an event match first: */
1260 if (mask) {
1261 unsigned long flags;
1262
1263 if (!(mask & poll->events))
1264 return 0;
1265
1266 /* try to complete the iocb inline if we can: */
1267 if (spin_trylock_irqsave(&ctx->completion_lock, flags)) {
1268 list_del(&req->list);
1269 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1270
1271 list_del_init(&poll->wait.entry);
1272 io_poll_complete(req, mask);
1273 return 1;
1274 }
1275 }
1276
1277 list_del_init(&poll->wait.entry);
1278 queue_work(ctx->sqo_wq, &req->work);
1279 return 1;
1280 }
1281
1282 struct io_poll_table {
1283 struct poll_table_struct pt;
1284 struct io_kiocb *req;
1285 int error;
1286 };
1287
1288 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1289 struct poll_table_struct *p)
1290 {
1291 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
1292
1293 if (unlikely(pt->req->poll.head)) {
1294 pt->error = -EINVAL;
1295 return;
1296 }
1297
1298 pt->error = 0;
1299 pt->req->poll.head = head;
1300 add_wait_queue(head, &pt->req->poll.wait);
1301 }
1302
1303 static int io_poll_add(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1304 {
1305 struct io_poll_iocb *poll = &req->poll;
1306 struct io_ring_ctx *ctx = req->ctx;
1307 struct io_poll_table ipt;
1308 unsigned flags;
1309 __poll_t mask;
1310 u16 events;
1311 int fd;
1312
1313 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
1314 return -EINVAL;
1315 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
1316 return -EINVAL;
1317
1318 INIT_WORK(&req->work, io_poll_complete_work);
1319 events = READ_ONCE(sqe->poll_events);
1320 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP;
1321
1322 flags = READ_ONCE(sqe->flags);
1323 fd = READ_ONCE(sqe->fd);
1324
1325 if (flags & IOSQE_FIXED_FILE) {
1326 if (unlikely(!ctx->user_files || fd >= ctx->nr_user_files))
1327 return -EBADF;
1328 poll->file = ctx->user_files[fd];
1329 req->flags |= REQ_F_FIXED_FILE;
1330 } else {
1331 poll->file = fget(fd);
1332 }
1333 if (unlikely(!poll->file))
1334 return -EBADF;
1335
1336 poll->head = NULL;
1337 poll->woken = false;
1338 poll->canceled = false;
1339
1340 ipt.pt._qproc = io_poll_queue_proc;
1341 ipt.pt._key = poll->events;
1342 ipt.req = req;
1343 ipt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1344
1345 /* initialized the list so that we can do list_empty checks */
1346 INIT_LIST_HEAD(&poll->wait.entry);
1347 init_waitqueue_func_entry(&poll->wait, io_poll_wake);
1348
1349 /* one for removal from waitqueue, one for this function */
1350 refcount_set(&req->refs, 2);
1351
1352 mask = vfs_poll(poll->file, &ipt.pt) & poll->events;
1353 if (unlikely(!poll->head)) {
1354 /* we did not manage to set up a waitqueue, done */
1355 goto out;
1356 }
1357
1358 spin_lock_irq(&ctx->completion_lock);
1359 spin_lock(&poll->head->lock);
1360 if (poll->woken) {
1361 /* wake_up context handles the rest */
1362 mask = 0;
1363 ipt.error = 0;
1364 } else if (mask || ipt.error) {
1365 /* if we get an error or a mask we are done */
1366 WARN_ON_ONCE(list_empty(&poll->wait.entry));
1367 list_del_init(&poll->wait.entry);
1368 } else {
1369 /* actually waiting for an event */
1370 list_add_tail(&req->list, &ctx->cancel_list);
1371 }
1372 spin_unlock(&poll->head->lock);
1373 spin_unlock_irq(&ctx->completion_lock);
1374
1375 out:
1376 if (unlikely(ipt.error)) {
1377 if (!(flags & IOSQE_FIXED_FILE))
1378 fput(poll->file);
1379 /*
1380 * Drop one of our refs to this req, __io_submit_sqe() will
1381 * drop the other one since we're returning an error.
1382 */
1383 io_free_req(req);
1384 return ipt.error;
1385 }
1386
1387 if (mask)
1388 io_poll_complete(req, mask);
1389 io_free_req(req);
1390 return 0;
1391 }
1392
1393 static int __io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
1394 const struct sqe_submit *s, bool force_nonblock,
1395 struct io_submit_state *state)
1396 {
1397 ssize_t ret;
1398 int opcode;
1399
1400 if (unlikely(s->index >= ctx->sq_entries))
1401 return -EINVAL;
1402 req->user_data = READ_ONCE(s->sqe->user_data);
1403
1404 opcode = READ_ONCE(s->sqe->opcode);
1405 switch (opcode) {
1406 case IORING_OP_NOP:
1407 ret = io_nop(req, req->user_data);
1408 break;
1409 case IORING_OP_READV:
1410 if (unlikely(s->sqe->buf_index))
1411 return -EINVAL;
1412 ret = io_read(req, s, force_nonblock, state);
1413 break;
1414 case IORING_OP_WRITEV:
1415 if (unlikely(s->sqe->buf_index))
1416 return -EINVAL;
1417 ret = io_write(req, s, force_nonblock, state);
1418 break;
1419 case IORING_OP_READ_FIXED:
1420 ret = io_read(req, s, force_nonblock, state);
1421 break;
1422 case IORING_OP_WRITE_FIXED:
1423 ret = io_write(req, s, force_nonblock, state);
1424 break;
1425 case IORING_OP_FSYNC:
1426 ret = io_fsync(req, s->sqe, force_nonblock);
1427 break;
1428 case IORING_OP_POLL_ADD:
1429 ret = io_poll_add(req, s->sqe);
1430 break;
1431 case IORING_OP_POLL_REMOVE:
1432 ret = io_poll_remove(req, s->sqe);
1433 break;
1434 default:
1435 ret = -EINVAL;
1436 break;
1437 }
1438
1439 if (ret)
1440 return ret;
1441
1442 if (ctx->flags & IORING_SETUP_IOPOLL) {
1443 if (req->error == -EAGAIN)
1444 return -EAGAIN;
1445
1446 /* workqueue context doesn't hold uring_lock, grab it now */
1447 if (s->needs_lock)
1448 mutex_lock(&ctx->uring_lock);
1449 io_iopoll_req_issued(req);
1450 if (s->needs_lock)
1451 mutex_unlock(&ctx->uring_lock);
1452 }
1453
1454 return 0;
1455 }
1456
1457 static struct async_list *io_async_list_from_sqe(struct io_ring_ctx *ctx,
1458 const struct io_uring_sqe *sqe)
1459 {
1460 switch (sqe->opcode) {
1461 case IORING_OP_READV:
1462 case IORING_OP_READ_FIXED:
1463 return &ctx->pending_async[READ];
1464 case IORING_OP_WRITEV:
1465 case IORING_OP_WRITE_FIXED:
1466 return &ctx->pending_async[WRITE];
1467 default:
1468 return NULL;
1469 }
1470 }
1471
1472 static inline bool io_sqe_needs_user(const struct io_uring_sqe *sqe)
1473 {
1474 u8 opcode = READ_ONCE(sqe->opcode);
1475
1476 return !(opcode == IORING_OP_READ_FIXED ||
1477 opcode == IORING_OP_WRITE_FIXED);
1478 }
1479
1480 static void io_sq_wq_submit_work(struct work_struct *work)
1481 {
1482 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1483 struct io_ring_ctx *ctx = req->ctx;
1484 struct mm_struct *cur_mm = NULL;
1485 struct async_list *async_list;
1486 LIST_HEAD(req_list);
1487 mm_segment_t old_fs;
1488 int ret;
1489
1490 async_list = io_async_list_from_sqe(ctx, req->submit.sqe);
1491 restart:
1492 do {
1493 struct sqe_submit *s = &req->submit;
1494 const struct io_uring_sqe *sqe = s->sqe;
1495
1496 /* Ensure we clear previously set forced non-block flag */
1497 req->flags &= ~REQ_F_FORCE_NONBLOCK;
1498 req->rw.ki_flags &= ~IOCB_NOWAIT;
1499
1500 ret = 0;
1501 if (io_sqe_needs_user(sqe) && !cur_mm) {
1502 if (!mmget_not_zero(ctx->sqo_mm)) {
1503 ret = -EFAULT;
1504 } else {
1505 cur_mm = ctx->sqo_mm;
1506 use_mm(cur_mm);
1507 old_fs = get_fs();
1508 set_fs(USER_DS);
1509 }
1510 }
1511
1512 if (!ret) {
1513 s->has_user = cur_mm != NULL;
1514 s->needs_lock = true;
1515 do {
1516 ret = __io_submit_sqe(ctx, req, s, false, NULL);
1517 /*
1518 * We can get EAGAIN for polled IO even though
1519 * we're forcing a sync submission from here,
1520 * since we can't wait for request slots on the
1521 * block side.
1522 */
1523 if (ret != -EAGAIN)
1524 break;
1525 cond_resched();
1526 } while (1);
1527 }
1528 if (ret) {
1529 io_cqring_add_event(ctx, sqe->user_data, ret, 0);
1530 io_free_req(req);
1531 }
1532
1533 /* async context always use a copy of the sqe */
1534 kfree(sqe);
1535
1536 if (!async_list)
1537 break;
1538 if (!list_empty(&req_list)) {
1539 req = list_first_entry(&req_list, struct io_kiocb,
1540 list);
1541 list_del(&req->list);
1542 continue;
1543 }
1544 if (list_empty(&async_list->list))
1545 break;
1546
1547 req = NULL;
1548 spin_lock(&async_list->lock);
1549 if (list_empty(&async_list->list)) {
1550 spin_unlock(&async_list->lock);
1551 break;
1552 }
1553 list_splice_init(&async_list->list, &req_list);
1554 spin_unlock(&async_list->lock);
1555
1556 req = list_first_entry(&req_list, struct io_kiocb, list);
1557 list_del(&req->list);
1558 } while (req);
1559
1560 /*
1561 * Rare case of racing with a submitter. If we find the count has
1562 * dropped to zero AND we have pending work items, then restart
1563 * the processing. This is a tiny race window.
1564 */
1565 if (async_list) {
1566 ret = atomic_dec_return(&async_list->cnt);
1567 while (!ret && !list_empty(&async_list->list)) {
1568 spin_lock(&async_list->lock);
1569 atomic_inc(&async_list->cnt);
1570 list_splice_init(&async_list->list, &req_list);
1571 spin_unlock(&async_list->lock);
1572
1573 if (!list_empty(&req_list)) {
1574 req = list_first_entry(&req_list,
1575 struct io_kiocb, list);
1576 list_del(&req->list);
1577 goto restart;
1578 }
1579 ret = atomic_dec_return(&async_list->cnt);
1580 }
1581 }
1582
1583 if (cur_mm) {
1584 set_fs(old_fs);
1585 unuse_mm(cur_mm);
1586 mmput(cur_mm);
1587 }
1588 }
1589
1590 /*
1591 * See if we can piggy back onto previously submitted work, that is still
1592 * running. We currently only allow this if the new request is sequential
1593 * to the previous one we punted.
1594 */
1595 static bool io_add_to_prev_work(struct async_list *list, struct io_kiocb *req)
1596 {
1597 bool ret = false;
1598
1599 if (!list)
1600 return false;
1601 if (!(req->flags & REQ_F_SEQ_PREV))
1602 return false;
1603 if (!atomic_read(&list->cnt))
1604 return false;
1605
1606 ret = true;
1607 spin_lock(&list->lock);
1608 list_add_tail(&req->list, &list->list);
1609 if (!atomic_read(&list->cnt)) {
1610 list_del_init(&req->list);
1611 ret = false;
1612 }
1613 spin_unlock(&list->lock);
1614 return ret;
1615 }
1616
1617 static int io_submit_sqe(struct io_ring_ctx *ctx, struct sqe_submit *s,
1618 struct io_submit_state *state)
1619 {
1620 struct io_kiocb *req;
1621 ssize_t ret;
1622
1623 /* enforce forwards compatibility on users */
1624 if (unlikely(s->sqe->flags & ~IOSQE_FIXED_FILE))
1625 return -EINVAL;
1626
1627 req = io_get_req(ctx, state);
1628 if (unlikely(!req))
1629 return -EAGAIN;
1630
1631 req->rw.ki_filp = NULL;
1632
1633 ret = __io_submit_sqe(ctx, req, s, true, state);
1634 if (ret == -EAGAIN) {
1635 struct io_uring_sqe *sqe_copy;
1636
1637 sqe_copy = kmalloc(sizeof(*sqe_copy), GFP_KERNEL);
1638 if (sqe_copy) {
1639 struct async_list *list;
1640
1641 memcpy(sqe_copy, s->sqe, sizeof(*sqe_copy));
1642 s->sqe = sqe_copy;
1643
1644 memcpy(&req->submit, s, sizeof(*s));
1645 list = io_async_list_from_sqe(ctx, s->sqe);
1646 if (!io_add_to_prev_work(list, req)) {
1647 if (list)
1648 atomic_inc(&list->cnt);
1649 INIT_WORK(&req->work, io_sq_wq_submit_work);
1650 queue_work(ctx->sqo_wq, &req->work);
1651 }
1652 ret = 0;
1653 }
1654 }
1655 if (ret)
1656 io_free_req(req);
1657
1658 return ret;
1659 }
1660
1661 /*
1662 * Batched submission is done, ensure local IO is flushed out.
1663 */
1664 static void io_submit_state_end(struct io_submit_state *state)
1665 {
1666 blk_finish_plug(&state->plug);
1667 io_file_put(state, NULL);
1668 if (state->free_reqs)
1669 kmem_cache_free_bulk(req_cachep, state->free_reqs,
1670 &state->reqs[state->cur_req]);
1671 }
1672
1673 /*
1674 * Start submission side cache.
1675 */
1676 static void io_submit_state_start(struct io_submit_state *state,
1677 struct io_ring_ctx *ctx, unsigned max_ios)
1678 {
1679 blk_start_plug(&state->plug);
1680 state->free_reqs = 0;
1681 state->file = NULL;
1682 state->ios_left = max_ios;
1683 }
1684
1685 static void io_commit_sqring(struct io_ring_ctx *ctx)
1686 {
1687 struct io_sq_ring *ring = ctx->sq_ring;
1688
1689 if (ctx->cached_sq_head != READ_ONCE(ring->r.head)) {
1690 /*
1691 * Ensure any loads from the SQEs are done at this point,
1692 * since once we write the new head, the application could
1693 * write new data to them.
1694 */
1695 smp_store_release(&ring->r.head, ctx->cached_sq_head);
1696
1697 /*
1698 * write side barrier of head update, app has read side. See
1699 * comment at the top of this file
1700 */
1701 smp_wmb();
1702 }
1703 }
1704
1705 /*
1706 * Undo last io_get_sqring()
1707 */
1708 static void io_drop_sqring(struct io_ring_ctx *ctx)
1709 {
1710 ctx->cached_sq_head--;
1711 }
1712
1713 /*
1714 * Fetch an sqe, if one is available. Note that s->sqe will point to memory
1715 * that is mapped by userspace. This means that care needs to be taken to
1716 * ensure that reads are stable, as we cannot rely on userspace always
1717 * being a good citizen. If members of the sqe are validated and then later
1718 * used, it's important that those reads are done through READ_ONCE() to
1719 * prevent a re-load down the line.
1720 */
1721 static bool io_get_sqring(struct io_ring_ctx *ctx, struct sqe_submit *s)
1722 {
1723 struct io_sq_ring *ring = ctx->sq_ring;
1724 unsigned head;
1725
1726 /*
1727 * The cached sq head (or cq tail) serves two purposes:
1728 *
1729 * 1) allows us to batch the cost of updating the user visible
1730 * head updates.
1731 * 2) allows the kernel side to track the head on its own, even
1732 * though the application is the one updating it.
1733 */
1734 head = ctx->cached_sq_head;
1735 /* See comment at the top of this file */
1736 smp_rmb();
1737 if (head == READ_ONCE(ring->r.tail))
1738 return false;
1739
1740 head = READ_ONCE(ring->array[head & ctx->sq_mask]);
1741 if (head < ctx->sq_entries) {
1742 s->index = head;
1743 s->sqe = &ctx->sq_sqes[head];
1744 ctx->cached_sq_head++;
1745 return true;
1746 }
1747
1748 /* drop invalid entries */
1749 ctx->cached_sq_head++;
1750 ring->dropped++;
1751 /* See comment at the top of this file */
1752 smp_wmb();
1753 return false;
1754 }
1755
1756 static int io_submit_sqes(struct io_ring_ctx *ctx, struct sqe_submit *sqes,
1757 unsigned int nr, bool has_user, bool mm_fault)
1758 {
1759 struct io_submit_state state, *statep = NULL;
1760 int ret, i, submitted = 0;
1761
1762 if (nr > IO_PLUG_THRESHOLD) {
1763 io_submit_state_start(&state, ctx, nr);
1764 statep = &state;
1765 }
1766
1767 for (i = 0; i < nr; i++) {
1768 if (unlikely(mm_fault)) {
1769 ret = -EFAULT;
1770 } else {
1771 sqes[i].has_user = has_user;
1772 sqes[i].needs_lock = true;
1773 sqes[i].needs_fixed_file = true;
1774 ret = io_submit_sqe(ctx, &sqes[i], statep);
1775 }
1776 if (!ret) {
1777 submitted++;
1778 continue;
1779 }
1780
1781 io_cqring_add_event(ctx, sqes[i].sqe->user_data, ret, 0);
1782 }
1783
1784 if (statep)
1785 io_submit_state_end(&state);
1786
1787 return submitted;
1788 }
1789
1790 static int io_sq_thread(void *data)
1791 {
1792 struct sqe_submit sqes[IO_IOPOLL_BATCH];
1793 struct io_ring_ctx *ctx = data;
1794 struct mm_struct *cur_mm = NULL;
1795 mm_segment_t old_fs;
1796 DEFINE_WAIT(wait);
1797 unsigned inflight;
1798 unsigned long timeout;
1799
1800 old_fs = get_fs();
1801 set_fs(USER_DS);
1802
1803 timeout = inflight = 0;
1804 while (!kthread_should_stop() && !ctx->sqo_stop) {
1805 bool all_fixed, mm_fault = false;
1806 int i;
1807
1808 if (inflight) {
1809 unsigned nr_events = 0;
1810
1811 if (ctx->flags & IORING_SETUP_IOPOLL) {
1812 /*
1813 * We disallow the app entering submit/complete
1814 * with polling, but we still need to lock the
1815 * ring to prevent racing with polled issue
1816 * that got punted to a workqueue.
1817 */
1818 mutex_lock(&ctx->uring_lock);
1819 io_iopoll_check(ctx, &nr_events, 0);
1820 mutex_unlock(&ctx->uring_lock);
1821 } else {
1822 /*
1823 * Normal IO, just pretend everything completed.
1824 * We don't have to poll completions for that.
1825 */
1826 nr_events = inflight;
1827 }
1828
1829 inflight -= nr_events;
1830 if (!inflight)
1831 timeout = jiffies + ctx->sq_thread_idle;
1832 }
1833
1834 if (!io_get_sqring(ctx, &sqes[0])) {
1835 /*
1836 * We're polling. If we're within the defined idle
1837 * period, then let us spin without work before going
1838 * to sleep.
1839 */
1840 if (inflight || !time_after(jiffies, timeout)) {
1841 cpu_relax();
1842 continue;
1843 }
1844
1845 /*
1846 * Drop cur_mm before scheduling, we can't hold it for
1847 * long periods (or over schedule()). Do this before
1848 * adding ourselves to the waitqueue, as the unuse/drop
1849 * may sleep.
1850 */
1851 if (cur_mm) {
1852 unuse_mm(cur_mm);
1853 mmput(cur_mm);
1854 cur_mm = NULL;
1855 }
1856
1857 prepare_to_wait(&ctx->sqo_wait, &wait,
1858 TASK_INTERRUPTIBLE);
1859
1860 /* Tell userspace we may need a wakeup call */
1861 ctx->sq_ring->flags |= IORING_SQ_NEED_WAKEUP;
1862 smp_wmb();
1863
1864 if (!io_get_sqring(ctx, &sqes[0])) {
1865 if (kthread_should_stop()) {
1866 finish_wait(&ctx->sqo_wait, &wait);
1867 break;
1868 }
1869 if (signal_pending(current))
1870 flush_signals(current);
1871 schedule();
1872 finish_wait(&ctx->sqo_wait, &wait);
1873
1874 ctx->sq_ring->flags &= ~IORING_SQ_NEED_WAKEUP;
1875 smp_wmb();
1876 continue;
1877 }
1878 finish_wait(&ctx->sqo_wait, &wait);
1879
1880 ctx->sq_ring->flags &= ~IORING_SQ_NEED_WAKEUP;
1881 smp_wmb();
1882 }
1883
1884 i = 0;
1885 all_fixed = true;
1886 do {
1887 if (all_fixed && io_sqe_needs_user(sqes[i].sqe))
1888 all_fixed = false;
1889
1890 i++;
1891 if (i == ARRAY_SIZE(sqes))
1892 break;
1893 } while (io_get_sqring(ctx, &sqes[i]));
1894
1895 /* Unless all new commands are FIXED regions, grab mm */
1896 if (!all_fixed && !cur_mm) {
1897 mm_fault = !mmget_not_zero(ctx->sqo_mm);
1898 if (!mm_fault) {
1899 use_mm(ctx->sqo_mm);
1900 cur_mm = ctx->sqo_mm;
1901 }
1902 }
1903
1904 inflight += io_submit_sqes(ctx, sqes, i, cur_mm != NULL,
1905 mm_fault);
1906
1907 /* Commit SQ ring head once we've consumed all SQEs */
1908 io_commit_sqring(ctx);
1909 }
1910
1911 set_fs(old_fs);
1912 if (cur_mm) {
1913 unuse_mm(cur_mm);
1914 mmput(cur_mm);
1915 }
1916 return 0;
1917 }
1918
1919 static int io_ring_submit(struct io_ring_ctx *ctx, unsigned int to_submit)
1920 {
1921 struct io_submit_state state, *statep = NULL;
1922 int i, ret = 0, submit = 0;
1923
1924 if (to_submit > IO_PLUG_THRESHOLD) {
1925 io_submit_state_start(&state, ctx, to_submit);
1926 statep = &state;
1927 }
1928
1929 for (i = 0; i < to_submit; i++) {
1930 struct sqe_submit s;
1931
1932 if (!io_get_sqring(ctx, &s))
1933 break;
1934
1935 s.has_user = true;
1936 s.needs_lock = false;
1937 s.needs_fixed_file = false;
1938
1939 ret = io_submit_sqe(ctx, &s, statep);
1940 if (ret) {
1941 io_drop_sqring(ctx);
1942 break;
1943 }
1944
1945 submit++;
1946 }
1947 io_commit_sqring(ctx);
1948
1949 if (statep)
1950 io_submit_state_end(statep);
1951
1952 return submit ? submit : ret;
1953 }
1954
1955 static unsigned io_cqring_events(struct io_cq_ring *ring)
1956 {
1957 return READ_ONCE(ring->r.tail) - READ_ONCE(ring->r.head);
1958 }
1959
1960 /*
1961 * Wait until events become available, if we don't already have some. The
1962 * application must reap them itself, as they reside on the shared cq ring.
1963 */
1964 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
1965 const sigset_t __user *sig, size_t sigsz)
1966 {
1967 struct io_cq_ring *ring = ctx->cq_ring;
1968 sigset_t ksigmask, sigsaved;
1969 DEFINE_WAIT(wait);
1970 int ret;
1971
1972 /* See comment at the top of this file */
1973 smp_rmb();
1974 if (io_cqring_events(ring) >= min_events)
1975 return 0;
1976
1977 if (sig) {
1978 ret = set_user_sigmask(sig, &ksigmask, &sigsaved, sigsz);
1979 if (ret)
1980 return ret;
1981 }
1982
1983 do {
1984 prepare_to_wait(&ctx->wait, &wait, TASK_INTERRUPTIBLE);
1985
1986 ret = 0;
1987 /* See comment at the top of this file */
1988 smp_rmb();
1989 if (io_cqring_events(ring) >= min_events)
1990 break;
1991
1992 schedule();
1993
1994 ret = -EINTR;
1995 if (signal_pending(current))
1996 break;
1997 } while (1);
1998
1999 finish_wait(&ctx->wait, &wait);
2000
2001 if (sig)
2002 restore_user_sigmask(sig, &sigsaved);
2003
2004 return READ_ONCE(ring->r.head) == READ_ONCE(ring->r.tail) ? ret : 0;
2005 }
2006
2007 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
2008 {
2009 #if defined(CONFIG_UNIX)
2010 if (ctx->ring_sock) {
2011 struct sock *sock = ctx->ring_sock->sk;
2012 struct sk_buff *skb;
2013
2014 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
2015 kfree_skb(skb);
2016 }
2017 #else
2018 int i;
2019
2020 for (i = 0; i < ctx->nr_user_files; i++)
2021 fput(ctx->user_files[i]);
2022 #endif
2023 }
2024
2025 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
2026 {
2027 if (!ctx->user_files)
2028 return -ENXIO;
2029
2030 __io_sqe_files_unregister(ctx);
2031 kfree(ctx->user_files);
2032 ctx->user_files = NULL;
2033 ctx->nr_user_files = 0;
2034 return 0;
2035 }
2036
2037 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
2038 {
2039 if (ctx->sqo_thread) {
2040 ctx->sqo_stop = 1;
2041 mb();
2042 kthread_stop(ctx->sqo_thread);
2043 ctx->sqo_thread = NULL;
2044 }
2045 }
2046
2047 static void io_finish_async(struct io_ring_ctx *ctx)
2048 {
2049 io_sq_thread_stop(ctx);
2050
2051 if (ctx->sqo_wq) {
2052 destroy_workqueue(ctx->sqo_wq);
2053 ctx->sqo_wq = NULL;
2054 }
2055 }
2056
2057 #if defined(CONFIG_UNIX)
2058 static void io_destruct_skb(struct sk_buff *skb)
2059 {
2060 struct io_ring_ctx *ctx = skb->sk->sk_user_data;
2061
2062 io_finish_async(ctx);
2063 unix_destruct_scm(skb);
2064 }
2065
2066 /*
2067 * Ensure the UNIX gc is aware of our file set, so we are certain that
2068 * the io_uring can be safely unregistered on process exit, even if we have
2069 * loops in the file referencing.
2070 */
2071 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
2072 {
2073 struct sock *sk = ctx->ring_sock->sk;
2074 struct scm_fp_list *fpl;
2075 struct sk_buff *skb;
2076 int i;
2077
2078 if (!capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) {
2079 unsigned long inflight = ctx->user->unix_inflight + nr;
2080
2081 if (inflight > task_rlimit(current, RLIMIT_NOFILE))
2082 return -EMFILE;
2083 }
2084
2085 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
2086 if (!fpl)
2087 return -ENOMEM;
2088
2089 skb = alloc_skb(0, GFP_KERNEL);
2090 if (!skb) {
2091 kfree(fpl);
2092 return -ENOMEM;
2093 }
2094
2095 skb->sk = sk;
2096 skb->destructor = io_destruct_skb;
2097
2098 fpl->user = get_uid(ctx->user);
2099 for (i = 0; i < nr; i++) {
2100 fpl->fp[i] = get_file(ctx->user_files[i + offset]);
2101 unix_inflight(fpl->user, fpl->fp[i]);
2102 }
2103
2104 fpl->max = fpl->count = nr;
2105 UNIXCB(skb).fp = fpl;
2106 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2107 skb_queue_head(&sk->sk_receive_queue, skb);
2108
2109 for (i = 0; i < nr; i++)
2110 fput(fpl->fp[i]);
2111
2112 return 0;
2113 }
2114
2115 /*
2116 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
2117 * causes regular reference counting to break down. We rely on the UNIX
2118 * garbage collection to take care of this problem for us.
2119 */
2120 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
2121 {
2122 unsigned left, total;
2123 int ret = 0;
2124
2125 total = 0;
2126 left = ctx->nr_user_files;
2127 while (left) {
2128 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
2129 int ret;
2130
2131 ret = __io_sqe_files_scm(ctx, this_files, total);
2132 if (ret)
2133 break;
2134 left -= this_files;
2135 total += this_files;
2136 }
2137
2138 if (!ret)
2139 return 0;
2140
2141 while (total < ctx->nr_user_files) {
2142 fput(ctx->user_files[total]);
2143 total++;
2144 }
2145
2146 return ret;
2147 }
2148 #else
2149 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
2150 {
2151 return 0;
2152 }
2153 #endif
2154
2155 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
2156 unsigned nr_args)
2157 {
2158 __s32 __user *fds = (__s32 __user *) arg;
2159 int fd, ret = 0;
2160 unsigned i;
2161
2162 if (ctx->user_files)
2163 return -EBUSY;
2164 if (!nr_args)
2165 return -EINVAL;
2166 if (nr_args > IORING_MAX_FIXED_FILES)
2167 return -EMFILE;
2168
2169 ctx->user_files = kcalloc(nr_args, sizeof(struct file *), GFP_KERNEL);
2170 if (!ctx->user_files)
2171 return -ENOMEM;
2172
2173 for (i = 0; i < nr_args; i++) {
2174 ret = -EFAULT;
2175 if (copy_from_user(&fd, &fds[i], sizeof(fd)))
2176 break;
2177
2178 ctx->user_files[i] = fget(fd);
2179
2180 ret = -EBADF;
2181 if (!ctx->user_files[i])
2182 break;
2183 /*
2184 * Don't allow io_uring instances to be registered. If UNIX
2185 * isn't enabled, then this causes a reference cycle and this
2186 * instance can never get freed. If UNIX is enabled we'll
2187 * handle it just fine, but there's still no point in allowing
2188 * a ring fd as it doesn't support regular read/write anyway.
2189 */
2190 if (ctx->user_files[i]->f_op == &io_uring_fops) {
2191 fput(ctx->user_files[i]);
2192 break;
2193 }
2194 ctx->nr_user_files++;
2195 ret = 0;
2196 }
2197
2198 if (ret) {
2199 for (i = 0; i < ctx->nr_user_files; i++)
2200 fput(ctx->user_files[i]);
2201
2202 kfree(ctx->user_files);
2203 ctx->nr_user_files = 0;
2204 return ret;
2205 }
2206
2207 ret = io_sqe_files_scm(ctx);
2208 if (ret)
2209 io_sqe_files_unregister(ctx);
2210
2211 return ret;
2212 }
2213
2214 static int io_sq_offload_start(struct io_ring_ctx *ctx,
2215 struct io_uring_params *p)
2216 {
2217 int ret;
2218
2219 init_waitqueue_head(&ctx->sqo_wait);
2220 mmgrab(current->mm);
2221 ctx->sqo_mm = current->mm;
2222
2223 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
2224 if (!ctx->sq_thread_idle)
2225 ctx->sq_thread_idle = HZ;
2226
2227 ret = -EINVAL;
2228 if (!cpu_possible(p->sq_thread_cpu))
2229 goto err;
2230
2231 if (ctx->flags & IORING_SETUP_SQPOLL) {
2232 if (p->flags & IORING_SETUP_SQ_AFF) {
2233 int cpu;
2234
2235 cpu = array_index_nospec(p->sq_thread_cpu, NR_CPUS);
2236 ctx->sqo_thread = kthread_create_on_cpu(io_sq_thread,
2237 ctx, cpu,
2238 "io_uring-sq");
2239 } else {
2240 ctx->sqo_thread = kthread_create(io_sq_thread, ctx,
2241 "io_uring-sq");
2242 }
2243 if (IS_ERR(ctx->sqo_thread)) {
2244 ret = PTR_ERR(ctx->sqo_thread);
2245 ctx->sqo_thread = NULL;
2246 goto err;
2247 }
2248 wake_up_process(ctx->sqo_thread);
2249 } else if (p->flags & IORING_SETUP_SQ_AFF) {
2250 /* Can't have SQ_AFF without SQPOLL */
2251 ret = -EINVAL;
2252 goto err;
2253 }
2254
2255 /* Do QD, or 2 * CPUS, whatever is smallest */
2256 ctx->sqo_wq = alloc_workqueue("io_ring-wq", WQ_UNBOUND | WQ_FREEZABLE,
2257 min(ctx->sq_entries - 1, 2 * num_online_cpus()));
2258 if (!ctx->sqo_wq) {
2259 ret = -ENOMEM;
2260 goto err;
2261 }
2262
2263 return 0;
2264 err:
2265 io_sq_thread_stop(ctx);
2266 mmdrop(ctx->sqo_mm);
2267 ctx->sqo_mm = NULL;
2268 return ret;
2269 }
2270
2271 static void io_unaccount_mem(struct user_struct *user, unsigned long nr_pages)
2272 {
2273 atomic_long_sub(nr_pages, &user->locked_vm);
2274 }
2275
2276 static int io_account_mem(struct user_struct *user, unsigned long nr_pages)
2277 {
2278 unsigned long page_limit, cur_pages, new_pages;
2279
2280 /* Don't allow more pages than we can safely lock */
2281 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
2282
2283 do {
2284 cur_pages = atomic_long_read(&user->locked_vm);
2285 new_pages = cur_pages + nr_pages;
2286 if (new_pages > page_limit)
2287 return -ENOMEM;
2288 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
2289 new_pages) != cur_pages);
2290
2291 return 0;
2292 }
2293
2294 static void io_mem_free(void *ptr)
2295 {
2296 struct page *page = virt_to_head_page(ptr);
2297
2298 if (put_page_testzero(page))
2299 free_compound_page(page);
2300 }
2301
2302 static void *io_mem_alloc(size_t size)
2303 {
2304 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
2305 __GFP_NORETRY;
2306
2307 return (void *) __get_free_pages(gfp_flags, get_order(size));
2308 }
2309
2310 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
2311 {
2312 struct io_sq_ring *sq_ring;
2313 struct io_cq_ring *cq_ring;
2314 size_t bytes;
2315
2316 bytes = struct_size(sq_ring, array, sq_entries);
2317 bytes += array_size(sizeof(struct io_uring_sqe), sq_entries);
2318 bytes += struct_size(cq_ring, cqes, cq_entries);
2319
2320 return (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
2321 }
2322
2323 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
2324 {
2325 int i, j;
2326
2327 if (!ctx->user_bufs)
2328 return -ENXIO;
2329
2330 for (i = 0; i < ctx->nr_user_bufs; i++) {
2331 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
2332
2333 for (j = 0; j < imu->nr_bvecs; j++)
2334 put_page(imu->bvec[j].bv_page);
2335
2336 if (ctx->account_mem)
2337 io_unaccount_mem(ctx->user, imu->nr_bvecs);
2338 kfree(imu->bvec);
2339 imu->nr_bvecs = 0;
2340 }
2341
2342 kfree(ctx->user_bufs);
2343 ctx->user_bufs = NULL;
2344 ctx->nr_user_bufs = 0;
2345 return 0;
2346 }
2347
2348 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
2349 void __user *arg, unsigned index)
2350 {
2351 struct iovec __user *src;
2352
2353 #ifdef CONFIG_COMPAT
2354 if (ctx->compat) {
2355 struct compat_iovec __user *ciovs;
2356 struct compat_iovec ciov;
2357
2358 ciovs = (struct compat_iovec __user *) arg;
2359 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
2360 return -EFAULT;
2361
2362 dst->iov_base = (void __user *) (unsigned long) ciov.iov_base;
2363 dst->iov_len = ciov.iov_len;
2364 return 0;
2365 }
2366 #endif
2367 src = (struct iovec __user *) arg;
2368 if (copy_from_user(dst, &src[index], sizeof(*dst)))
2369 return -EFAULT;
2370 return 0;
2371 }
2372
2373 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
2374 unsigned nr_args)
2375 {
2376 struct vm_area_struct **vmas = NULL;
2377 struct page **pages = NULL;
2378 int i, j, got_pages = 0;
2379 int ret = -EINVAL;
2380
2381 if (ctx->user_bufs)
2382 return -EBUSY;
2383 if (!nr_args || nr_args > UIO_MAXIOV)
2384 return -EINVAL;
2385
2386 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
2387 GFP_KERNEL);
2388 if (!ctx->user_bufs)
2389 return -ENOMEM;
2390
2391 for (i = 0; i < nr_args; i++) {
2392 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
2393 unsigned long off, start, end, ubuf;
2394 int pret, nr_pages;
2395 struct iovec iov;
2396 size_t size;
2397
2398 ret = io_copy_iov(ctx, &iov, arg, i);
2399 if (ret)
2400 break;
2401
2402 /*
2403 * Don't impose further limits on the size and buffer
2404 * constraints here, we'll -EINVAL later when IO is
2405 * submitted if they are wrong.
2406 */
2407 ret = -EFAULT;
2408 if (!iov.iov_base || !iov.iov_len)
2409 goto err;
2410
2411 /* arbitrary limit, but we need something */
2412 if (iov.iov_len > SZ_1G)
2413 goto err;
2414
2415 ubuf = (unsigned long) iov.iov_base;
2416 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2417 start = ubuf >> PAGE_SHIFT;
2418 nr_pages = end - start;
2419
2420 if (ctx->account_mem) {
2421 ret = io_account_mem(ctx->user, nr_pages);
2422 if (ret)
2423 goto err;
2424 }
2425
2426 ret = 0;
2427 if (!pages || nr_pages > got_pages) {
2428 kfree(vmas);
2429 kfree(pages);
2430 pages = kmalloc_array(nr_pages, sizeof(struct page *),
2431 GFP_KERNEL);
2432 vmas = kmalloc_array(nr_pages,
2433 sizeof(struct vm_area_struct *),
2434 GFP_KERNEL);
2435 if (!pages || !vmas) {
2436 ret = -ENOMEM;
2437 if (ctx->account_mem)
2438 io_unaccount_mem(ctx->user, nr_pages);
2439 goto err;
2440 }
2441 got_pages = nr_pages;
2442 }
2443
2444 imu->bvec = kmalloc_array(nr_pages, sizeof(struct bio_vec),
2445 GFP_KERNEL);
2446 ret = -ENOMEM;
2447 if (!imu->bvec) {
2448 if (ctx->account_mem)
2449 io_unaccount_mem(ctx->user, nr_pages);
2450 goto err;
2451 }
2452
2453 ret = 0;
2454 down_read(&current->mm->mmap_sem);
2455 pret = get_user_pages_longterm(ubuf, nr_pages, FOLL_WRITE,
2456 pages, vmas);
2457 if (pret == nr_pages) {
2458 /* don't support file backed memory */
2459 for (j = 0; j < nr_pages; j++) {
2460 struct vm_area_struct *vma = vmas[j];
2461
2462 if (vma->vm_file &&
2463 !is_file_hugepages(vma->vm_file)) {
2464 ret = -EOPNOTSUPP;
2465 break;
2466 }
2467 }
2468 } else {
2469 ret = pret < 0 ? pret : -EFAULT;
2470 }
2471 up_read(&current->mm->mmap_sem);
2472 if (ret) {
2473 /*
2474 * if we did partial map, or found file backed vmas,
2475 * release any pages we did get
2476 */
2477 if (pret > 0) {
2478 for (j = 0; j < pret; j++)
2479 put_page(pages[j]);
2480 }
2481 if (ctx->account_mem)
2482 io_unaccount_mem(ctx->user, nr_pages);
2483 goto err;
2484 }
2485
2486 off = ubuf & ~PAGE_MASK;
2487 size = iov.iov_len;
2488 for (j = 0; j < nr_pages; j++) {
2489 size_t vec_len;
2490
2491 vec_len = min_t(size_t, size, PAGE_SIZE - off);
2492 imu->bvec[j].bv_page = pages[j];
2493 imu->bvec[j].bv_len = vec_len;
2494 imu->bvec[j].bv_offset = off;
2495 off = 0;
2496 size -= vec_len;
2497 }
2498 /* store original address for later verification */
2499 imu->ubuf = ubuf;
2500 imu->len = iov.iov_len;
2501 imu->nr_bvecs = nr_pages;
2502
2503 ctx->nr_user_bufs++;
2504 }
2505 kfree(pages);
2506 kfree(vmas);
2507 return 0;
2508 err:
2509 kfree(pages);
2510 kfree(vmas);
2511 io_sqe_buffer_unregister(ctx);
2512 return ret;
2513 }
2514
2515 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
2516 {
2517 io_finish_async(ctx);
2518 if (ctx->sqo_mm)
2519 mmdrop(ctx->sqo_mm);
2520
2521 io_iopoll_reap_events(ctx);
2522 io_sqe_buffer_unregister(ctx);
2523 io_sqe_files_unregister(ctx);
2524
2525 #if defined(CONFIG_UNIX)
2526 if (ctx->ring_sock)
2527 sock_release(ctx->ring_sock);
2528 #endif
2529
2530 io_mem_free(ctx->sq_ring);
2531 io_mem_free(ctx->sq_sqes);
2532 io_mem_free(ctx->cq_ring);
2533
2534 percpu_ref_exit(&ctx->refs);
2535 if (ctx->account_mem)
2536 io_unaccount_mem(ctx->user,
2537 ring_pages(ctx->sq_entries, ctx->cq_entries));
2538 free_uid(ctx->user);
2539 kfree(ctx);
2540 }
2541
2542 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2543 {
2544 struct io_ring_ctx *ctx = file->private_data;
2545 __poll_t mask = 0;
2546
2547 poll_wait(file, &ctx->cq_wait, wait);
2548 /* See comment at the top of this file */
2549 smp_rmb();
2550 if (READ_ONCE(ctx->sq_ring->r.tail) + 1 != ctx->cached_sq_head)
2551 mask |= EPOLLOUT | EPOLLWRNORM;
2552 if (READ_ONCE(ctx->cq_ring->r.head) != ctx->cached_cq_tail)
2553 mask |= EPOLLIN | EPOLLRDNORM;
2554
2555 return mask;
2556 }
2557
2558 static int io_uring_fasync(int fd, struct file *file, int on)
2559 {
2560 struct io_ring_ctx *ctx = file->private_data;
2561
2562 return fasync_helper(fd, file, on, &ctx->cq_fasync);
2563 }
2564
2565 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2566 {
2567 mutex_lock(&ctx->uring_lock);
2568 percpu_ref_kill(&ctx->refs);
2569 mutex_unlock(&ctx->uring_lock);
2570
2571 io_poll_remove_all(ctx);
2572 io_iopoll_reap_events(ctx);
2573 wait_for_completion(&ctx->ctx_done);
2574 io_ring_ctx_free(ctx);
2575 }
2576
2577 static int io_uring_release(struct inode *inode, struct file *file)
2578 {
2579 struct io_ring_ctx *ctx = file->private_data;
2580
2581 file->private_data = NULL;
2582 io_ring_ctx_wait_and_kill(ctx);
2583 return 0;
2584 }
2585
2586 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
2587 {
2588 loff_t offset = (loff_t) vma->vm_pgoff << PAGE_SHIFT;
2589 unsigned long sz = vma->vm_end - vma->vm_start;
2590 struct io_ring_ctx *ctx = file->private_data;
2591 unsigned long pfn;
2592 struct page *page;
2593 void *ptr;
2594
2595 switch (offset) {
2596 case IORING_OFF_SQ_RING:
2597 ptr = ctx->sq_ring;
2598 break;
2599 case IORING_OFF_SQES:
2600 ptr = ctx->sq_sqes;
2601 break;
2602 case IORING_OFF_CQ_RING:
2603 ptr = ctx->cq_ring;
2604 break;
2605 default:
2606 return -EINVAL;
2607 }
2608
2609 page = virt_to_head_page(ptr);
2610 if (sz > (PAGE_SIZE << compound_order(page)))
2611 return -EINVAL;
2612
2613 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
2614 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
2615 }
2616
2617 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
2618 u32, min_complete, u32, flags, const sigset_t __user *, sig,
2619 size_t, sigsz)
2620 {
2621 struct io_ring_ctx *ctx;
2622 long ret = -EBADF;
2623 int submitted = 0;
2624 struct fd f;
2625
2626 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP))
2627 return -EINVAL;
2628
2629 f = fdget(fd);
2630 if (!f.file)
2631 return -EBADF;
2632
2633 ret = -EOPNOTSUPP;
2634 if (f.file->f_op != &io_uring_fops)
2635 goto out_fput;
2636
2637 ret = -ENXIO;
2638 ctx = f.file->private_data;
2639 if (!percpu_ref_tryget(&ctx->refs))
2640 goto out_fput;
2641
2642 /*
2643 * For SQ polling, the thread will do all submissions and completions.
2644 * Just return the requested submit count, and wake the thread if
2645 * we were asked to.
2646 */
2647 if (ctx->flags & IORING_SETUP_SQPOLL) {
2648 if (flags & IORING_ENTER_SQ_WAKEUP)
2649 wake_up(&ctx->sqo_wait);
2650 submitted = to_submit;
2651 goto out_ctx;
2652 }
2653
2654 ret = 0;
2655 if (to_submit) {
2656 to_submit = min(to_submit, ctx->sq_entries);
2657
2658 mutex_lock(&ctx->uring_lock);
2659 submitted = io_ring_submit(ctx, to_submit);
2660 mutex_unlock(&ctx->uring_lock);
2661
2662 if (submitted < 0)
2663 goto out_ctx;
2664 }
2665 if (flags & IORING_ENTER_GETEVENTS) {
2666 unsigned nr_events = 0;
2667
2668 min_complete = min(min_complete, ctx->cq_entries);
2669
2670 /*
2671 * The application could have included the 'to_submit' count
2672 * in how many events it wanted to wait for. If we failed to
2673 * submit the desired count, we may need to adjust the number
2674 * of events to poll/wait for.
2675 */
2676 if (submitted < to_submit)
2677 min_complete = min_t(unsigned, submitted, min_complete);
2678
2679 if (ctx->flags & IORING_SETUP_IOPOLL) {
2680 mutex_lock(&ctx->uring_lock);
2681 ret = io_iopoll_check(ctx, &nr_events, min_complete);
2682 mutex_unlock(&ctx->uring_lock);
2683 } else {
2684 ret = io_cqring_wait(ctx, min_complete, sig, sigsz);
2685 }
2686 }
2687
2688 out_ctx:
2689 io_ring_drop_ctx_refs(ctx, 1);
2690 out_fput:
2691 fdput(f);
2692 return submitted ? submitted : ret;
2693 }
2694
2695 static const struct file_operations io_uring_fops = {
2696 .release = io_uring_release,
2697 .mmap = io_uring_mmap,
2698 .poll = io_uring_poll,
2699 .fasync = io_uring_fasync,
2700 };
2701
2702 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
2703 struct io_uring_params *p)
2704 {
2705 struct io_sq_ring *sq_ring;
2706 struct io_cq_ring *cq_ring;
2707 size_t size;
2708
2709 sq_ring = io_mem_alloc(struct_size(sq_ring, array, p->sq_entries));
2710 if (!sq_ring)
2711 return -ENOMEM;
2712
2713 ctx->sq_ring = sq_ring;
2714 sq_ring->ring_mask = p->sq_entries - 1;
2715 sq_ring->ring_entries = p->sq_entries;
2716 ctx->sq_mask = sq_ring->ring_mask;
2717 ctx->sq_entries = sq_ring->ring_entries;
2718
2719 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
2720 if (size == SIZE_MAX)
2721 return -EOVERFLOW;
2722
2723 ctx->sq_sqes = io_mem_alloc(size);
2724 if (!ctx->sq_sqes) {
2725 io_mem_free(ctx->sq_ring);
2726 return -ENOMEM;
2727 }
2728
2729 cq_ring = io_mem_alloc(struct_size(cq_ring, cqes, p->cq_entries));
2730 if (!cq_ring) {
2731 io_mem_free(ctx->sq_ring);
2732 io_mem_free(ctx->sq_sqes);
2733 return -ENOMEM;
2734 }
2735
2736 ctx->cq_ring = cq_ring;
2737 cq_ring->ring_mask = p->cq_entries - 1;
2738 cq_ring->ring_entries = p->cq_entries;
2739 ctx->cq_mask = cq_ring->ring_mask;
2740 ctx->cq_entries = cq_ring->ring_entries;
2741 return 0;
2742 }
2743
2744 /*
2745 * Allocate an anonymous fd, this is what constitutes the application
2746 * visible backing of an io_uring instance. The application mmaps this
2747 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
2748 * we have to tie this fd to a socket for file garbage collection purposes.
2749 */
2750 static int io_uring_get_fd(struct io_ring_ctx *ctx)
2751 {
2752 struct file *file;
2753 int ret;
2754
2755 #if defined(CONFIG_UNIX)
2756 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
2757 &ctx->ring_sock);
2758 if (ret)
2759 return ret;
2760 #endif
2761
2762 ret = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2763 if (ret < 0)
2764 goto err;
2765
2766 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
2767 O_RDWR | O_CLOEXEC);
2768 if (IS_ERR(file)) {
2769 put_unused_fd(ret);
2770 ret = PTR_ERR(file);
2771 goto err;
2772 }
2773
2774 #if defined(CONFIG_UNIX)
2775 ctx->ring_sock->file = file;
2776 ctx->ring_sock->sk->sk_user_data = ctx;
2777 #endif
2778 fd_install(ret, file);
2779 return ret;
2780 err:
2781 #if defined(CONFIG_UNIX)
2782 sock_release(ctx->ring_sock);
2783 ctx->ring_sock = NULL;
2784 #endif
2785 return ret;
2786 }
2787
2788 static int io_uring_create(unsigned entries, struct io_uring_params *p)
2789 {
2790 struct user_struct *user = NULL;
2791 struct io_ring_ctx *ctx;
2792 bool account_mem;
2793 int ret;
2794
2795 if (!entries || entries > IORING_MAX_ENTRIES)
2796 return -EINVAL;
2797
2798 /*
2799 * Use twice as many entries for the CQ ring. It's possible for the
2800 * application to drive a higher depth than the size of the SQ ring,
2801 * since the sqes are only used at submission time. This allows for
2802 * some flexibility in overcommitting a bit.
2803 */
2804 p->sq_entries = roundup_pow_of_two(entries);
2805 p->cq_entries = 2 * p->sq_entries;
2806
2807 user = get_uid(current_user());
2808 account_mem = !capable(CAP_IPC_LOCK);
2809
2810 if (account_mem) {
2811 ret = io_account_mem(user,
2812 ring_pages(p->sq_entries, p->cq_entries));
2813 if (ret) {
2814 free_uid(user);
2815 return ret;
2816 }
2817 }
2818
2819 ctx = io_ring_ctx_alloc(p);
2820 if (!ctx) {
2821 if (account_mem)
2822 io_unaccount_mem(user, ring_pages(p->sq_entries,
2823 p->cq_entries));
2824 free_uid(user);
2825 return -ENOMEM;
2826 }
2827 ctx->compat = in_compat_syscall();
2828 ctx->account_mem = account_mem;
2829 ctx->user = user;
2830
2831 ret = io_allocate_scq_urings(ctx, p);
2832 if (ret)
2833 goto err;
2834
2835 ret = io_sq_offload_start(ctx, p);
2836 if (ret)
2837 goto err;
2838
2839 ret = io_uring_get_fd(ctx);
2840 if (ret < 0)
2841 goto err;
2842
2843 memset(&p->sq_off, 0, sizeof(p->sq_off));
2844 p->sq_off.head = offsetof(struct io_sq_ring, r.head);
2845 p->sq_off.tail = offsetof(struct io_sq_ring, r.tail);
2846 p->sq_off.ring_mask = offsetof(struct io_sq_ring, ring_mask);
2847 p->sq_off.ring_entries = offsetof(struct io_sq_ring, ring_entries);
2848 p->sq_off.flags = offsetof(struct io_sq_ring, flags);
2849 p->sq_off.dropped = offsetof(struct io_sq_ring, dropped);
2850 p->sq_off.array = offsetof(struct io_sq_ring, array);
2851
2852 memset(&p->cq_off, 0, sizeof(p->cq_off));
2853 p->cq_off.head = offsetof(struct io_cq_ring, r.head);
2854 p->cq_off.tail = offsetof(struct io_cq_ring, r.tail);
2855 p->cq_off.ring_mask = offsetof(struct io_cq_ring, ring_mask);
2856 p->cq_off.ring_entries = offsetof(struct io_cq_ring, ring_entries);
2857 p->cq_off.overflow = offsetof(struct io_cq_ring, overflow);
2858 p->cq_off.cqes = offsetof(struct io_cq_ring, cqes);
2859 return ret;
2860 err:
2861 io_ring_ctx_wait_and_kill(ctx);
2862 return ret;
2863 }
2864
2865 /*
2866 * Sets up an aio uring context, and returns the fd. Applications asks for a
2867 * ring size, we return the actual sq/cq ring sizes (among other things) in the
2868 * params structure passed in.
2869 */
2870 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
2871 {
2872 struct io_uring_params p;
2873 long ret;
2874 int i;
2875
2876 if (copy_from_user(&p, params, sizeof(p)))
2877 return -EFAULT;
2878 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
2879 if (p.resv[i])
2880 return -EINVAL;
2881 }
2882
2883 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
2884 IORING_SETUP_SQ_AFF))
2885 return -EINVAL;
2886
2887 ret = io_uring_create(entries, &p);
2888 if (ret < 0)
2889 return ret;
2890
2891 if (copy_to_user(params, &p, sizeof(p)))
2892 return -EFAULT;
2893
2894 return ret;
2895 }
2896
2897 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
2898 struct io_uring_params __user *, params)
2899 {
2900 return io_uring_setup(entries, params);
2901 }
2902
2903 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
2904 void __user *arg, unsigned nr_args)
2905 {
2906 int ret;
2907
2908 percpu_ref_kill(&ctx->refs);
2909 wait_for_completion(&ctx->ctx_done);
2910
2911 switch (opcode) {
2912 case IORING_REGISTER_BUFFERS:
2913 ret = io_sqe_buffer_register(ctx, arg, nr_args);
2914 break;
2915 case IORING_UNREGISTER_BUFFERS:
2916 ret = -EINVAL;
2917 if (arg || nr_args)
2918 break;
2919 ret = io_sqe_buffer_unregister(ctx);
2920 break;
2921 case IORING_REGISTER_FILES:
2922 ret = io_sqe_files_register(ctx, arg, nr_args);
2923 break;
2924 case IORING_UNREGISTER_FILES:
2925 ret = -EINVAL;
2926 if (arg || nr_args)
2927 break;
2928 ret = io_sqe_files_unregister(ctx);
2929 break;
2930 default:
2931 ret = -EINVAL;
2932 break;
2933 }
2934
2935 /* bring the ctx back to life */
2936 reinit_completion(&ctx->ctx_done);
2937 percpu_ref_reinit(&ctx->refs);
2938 return ret;
2939 }
2940
2941 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
2942 void __user *, arg, unsigned int, nr_args)
2943 {
2944 struct io_ring_ctx *ctx;
2945 long ret = -EBADF;
2946 struct fd f;
2947
2948 f = fdget(fd);
2949 if (!f.file)
2950 return -EBADF;
2951
2952 ret = -EOPNOTSUPP;
2953 if (f.file->f_op != &io_uring_fops)
2954 goto out_fput;
2955
2956 ctx = f.file->private_data;
2957
2958 mutex_lock(&ctx->uring_lock);
2959 ret = __io_uring_register(ctx, opcode, arg, nr_args);
2960 mutex_unlock(&ctx->uring_lock);
2961 out_fput:
2962 fdput(f);
2963 return ret;
2964 }
2965
2966 static int __init io_uring_init(void)
2967 {
2968 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
2969 return 0;
2970 };
2971 __initcall(io_uring_init);