]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - fs/jbd2/journal.c
jbd2: introduce jbd2_inode dirty range scoping
[thirdparty/kernel/stable.git] / fs / jbd2 / journal.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * linux/fs/jbd2/journal.c
4 *
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 *
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 *
9 * Generic filesystem journal-writing code; part of the ext2fs
10 * journaling system.
11 *
12 * This file manages journals: areas of disk reserved for logging
13 * transactional updates. This includes the kernel journaling thread
14 * which is responsible for scheduling updates to the log.
15 *
16 * We do not actually manage the physical storage of the journal in this
17 * file: that is left to a per-journal policy function, which allows us
18 * to store the journal within a filesystem-specified area for ext2
19 * journaling (ext2 can use a reserved inode for storing the log).
20 */
21
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 #if 0
70 EXPORT_SYMBOL(journal_sync_buffer);
71 #endif
72 EXPORT_SYMBOL(jbd2_journal_flush);
73 EXPORT_SYMBOL(jbd2_journal_revoke);
74
75 EXPORT_SYMBOL(jbd2_journal_init_dev);
76 EXPORT_SYMBOL(jbd2_journal_init_inode);
77 EXPORT_SYMBOL(jbd2_journal_check_used_features);
78 EXPORT_SYMBOL(jbd2_journal_check_available_features);
79 EXPORT_SYMBOL(jbd2_journal_set_features);
80 EXPORT_SYMBOL(jbd2_journal_load);
81 EXPORT_SYMBOL(jbd2_journal_destroy);
82 EXPORT_SYMBOL(jbd2_journal_abort);
83 EXPORT_SYMBOL(jbd2_journal_errno);
84 EXPORT_SYMBOL(jbd2_journal_ack_err);
85 EXPORT_SYMBOL(jbd2_journal_clear_err);
86 EXPORT_SYMBOL(jbd2_log_wait_commit);
87 EXPORT_SYMBOL(jbd2_log_start_commit);
88 EXPORT_SYMBOL(jbd2_journal_start_commit);
89 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
90 EXPORT_SYMBOL(jbd2_journal_wipe);
91 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
92 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
93 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
94 EXPORT_SYMBOL(jbd2_journal_force_commit);
95 EXPORT_SYMBOL(jbd2_journal_inode_add_write);
96 EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
97 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
98 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
99 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
101 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
102 EXPORT_SYMBOL(jbd2_inode_cache);
103
104 static void __journal_abort_soft (journal_t *journal, int errno);
105 static int jbd2_journal_create_slab(size_t slab_size);
106
107 #ifdef CONFIG_JBD2_DEBUG
108 void __jbd2_debug(int level, const char *file, const char *func,
109 unsigned int line, const char *fmt, ...)
110 {
111 struct va_format vaf;
112 va_list args;
113
114 if (level > jbd2_journal_enable_debug)
115 return;
116 va_start(args, fmt);
117 vaf.fmt = fmt;
118 vaf.va = &args;
119 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
120 va_end(args);
121 }
122 EXPORT_SYMBOL(__jbd2_debug);
123 #endif
124
125 /* Checksumming functions */
126 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
127 {
128 if (!jbd2_journal_has_csum_v2or3_feature(j))
129 return 1;
130
131 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
132 }
133
134 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
135 {
136 __u32 csum;
137 __be32 old_csum;
138
139 old_csum = sb->s_checksum;
140 sb->s_checksum = 0;
141 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
142 sb->s_checksum = old_csum;
143
144 return cpu_to_be32(csum);
145 }
146
147 /*
148 * Helper function used to manage commit timeouts
149 */
150
151 static void commit_timeout(struct timer_list *t)
152 {
153 journal_t *journal = from_timer(journal, t, j_commit_timer);
154
155 wake_up_process(journal->j_task);
156 }
157
158 /*
159 * kjournald2: The main thread function used to manage a logging device
160 * journal.
161 *
162 * This kernel thread is responsible for two things:
163 *
164 * 1) COMMIT: Every so often we need to commit the current state of the
165 * filesystem to disk. The journal thread is responsible for writing
166 * all of the metadata buffers to disk.
167 *
168 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
169 * of the data in that part of the log has been rewritten elsewhere on
170 * the disk. Flushing these old buffers to reclaim space in the log is
171 * known as checkpointing, and this thread is responsible for that job.
172 */
173
174 static int kjournald2(void *arg)
175 {
176 journal_t *journal = arg;
177 transaction_t *transaction;
178
179 /*
180 * Set up an interval timer which can be used to trigger a commit wakeup
181 * after the commit interval expires
182 */
183 timer_setup(&journal->j_commit_timer, commit_timeout, 0);
184
185 set_freezable();
186
187 /* Record that the journal thread is running */
188 journal->j_task = current;
189 wake_up(&journal->j_wait_done_commit);
190
191 /*
192 * Make sure that no allocations from this kernel thread will ever
193 * recurse to the fs layer because we are responsible for the
194 * transaction commit and any fs involvement might get stuck waiting for
195 * the trasn. commit.
196 */
197 memalloc_nofs_save();
198
199 /*
200 * And now, wait forever for commit wakeup events.
201 */
202 write_lock(&journal->j_state_lock);
203
204 loop:
205 if (journal->j_flags & JBD2_UNMOUNT)
206 goto end_loop;
207
208 jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
209 journal->j_commit_sequence, journal->j_commit_request);
210
211 if (journal->j_commit_sequence != journal->j_commit_request) {
212 jbd_debug(1, "OK, requests differ\n");
213 write_unlock(&journal->j_state_lock);
214 del_timer_sync(&journal->j_commit_timer);
215 jbd2_journal_commit_transaction(journal);
216 write_lock(&journal->j_state_lock);
217 goto loop;
218 }
219
220 wake_up(&journal->j_wait_done_commit);
221 if (freezing(current)) {
222 /*
223 * The simpler the better. Flushing journal isn't a
224 * good idea, because that depends on threads that may
225 * be already stopped.
226 */
227 jbd_debug(1, "Now suspending kjournald2\n");
228 write_unlock(&journal->j_state_lock);
229 try_to_freeze();
230 write_lock(&journal->j_state_lock);
231 } else {
232 /*
233 * We assume on resume that commits are already there,
234 * so we don't sleep
235 */
236 DEFINE_WAIT(wait);
237 int should_sleep = 1;
238
239 prepare_to_wait(&journal->j_wait_commit, &wait,
240 TASK_INTERRUPTIBLE);
241 if (journal->j_commit_sequence != journal->j_commit_request)
242 should_sleep = 0;
243 transaction = journal->j_running_transaction;
244 if (transaction && time_after_eq(jiffies,
245 transaction->t_expires))
246 should_sleep = 0;
247 if (journal->j_flags & JBD2_UNMOUNT)
248 should_sleep = 0;
249 if (should_sleep) {
250 write_unlock(&journal->j_state_lock);
251 schedule();
252 write_lock(&journal->j_state_lock);
253 }
254 finish_wait(&journal->j_wait_commit, &wait);
255 }
256
257 jbd_debug(1, "kjournald2 wakes\n");
258
259 /*
260 * Were we woken up by a commit wakeup event?
261 */
262 transaction = journal->j_running_transaction;
263 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
264 journal->j_commit_request = transaction->t_tid;
265 jbd_debug(1, "woke because of timeout\n");
266 }
267 goto loop;
268
269 end_loop:
270 del_timer_sync(&journal->j_commit_timer);
271 journal->j_task = NULL;
272 wake_up(&journal->j_wait_done_commit);
273 jbd_debug(1, "Journal thread exiting.\n");
274 write_unlock(&journal->j_state_lock);
275 return 0;
276 }
277
278 static int jbd2_journal_start_thread(journal_t *journal)
279 {
280 struct task_struct *t;
281
282 t = kthread_run(kjournald2, journal, "jbd2/%s",
283 journal->j_devname);
284 if (IS_ERR(t))
285 return PTR_ERR(t);
286
287 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
288 return 0;
289 }
290
291 static void journal_kill_thread(journal_t *journal)
292 {
293 write_lock(&journal->j_state_lock);
294 journal->j_flags |= JBD2_UNMOUNT;
295
296 while (journal->j_task) {
297 write_unlock(&journal->j_state_lock);
298 wake_up(&journal->j_wait_commit);
299 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
300 write_lock(&journal->j_state_lock);
301 }
302 write_unlock(&journal->j_state_lock);
303 }
304
305 /*
306 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
307 *
308 * Writes a metadata buffer to a given disk block. The actual IO is not
309 * performed but a new buffer_head is constructed which labels the data
310 * to be written with the correct destination disk block.
311 *
312 * Any magic-number escaping which needs to be done will cause a
313 * copy-out here. If the buffer happens to start with the
314 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
315 * magic number is only written to the log for descripter blocks. In
316 * this case, we copy the data and replace the first word with 0, and we
317 * return a result code which indicates that this buffer needs to be
318 * marked as an escaped buffer in the corresponding log descriptor
319 * block. The missing word can then be restored when the block is read
320 * during recovery.
321 *
322 * If the source buffer has already been modified by a new transaction
323 * since we took the last commit snapshot, we use the frozen copy of
324 * that data for IO. If we end up using the existing buffer_head's data
325 * for the write, then we have to make sure nobody modifies it while the
326 * IO is in progress. do_get_write_access() handles this.
327 *
328 * The function returns a pointer to the buffer_head to be used for IO.
329 *
330 *
331 * Return value:
332 * <0: Error
333 * >=0: Finished OK
334 *
335 * On success:
336 * Bit 0 set == escape performed on the data
337 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
338 */
339
340 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
341 struct journal_head *jh_in,
342 struct buffer_head **bh_out,
343 sector_t blocknr)
344 {
345 int need_copy_out = 0;
346 int done_copy_out = 0;
347 int do_escape = 0;
348 char *mapped_data;
349 struct buffer_head *new_bh;
350 struct page *new_page;
351 unsigned int new_offset;
352 struct buffer_head *bh_in = jh2bh(jh_in);
353 journal_t *journal = transaction->t_journal;
354
355 /*
356 * The buffer really shouldn't be locked: only the current committing
357 * transaction is allowed to write it, so nobody else is allowed
358 * to do any IO.
359 *
360 * akpm: except if we're journalling data, and write() output is
361 * also part of a shared mapping, and another thread has
362 * decided to launch a writepage() against this buffer.
363 */
364 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
365
366 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
367
368 /* keep subsequent assertions sane */
369 atomic_set(&new_bh->b_count, 1);
370
371 jbd_lock_bh_state(bh_in);
372 repeat:
373 /*
374 * If a new transaction has already done a buffer copy-out, then
375 * we use that version of the data for the commit.
376 */
377 if (jh_in->b_frozen_data) {
378 done_copy_out = 1;
379 new_page = virt_to_page(jh_in->b_frozen_data);
380 new_offset = offset_in_page(jh_in->b_frozen_data);
381 } else {
382 new_page = jh2bh(jh_in)->b_page;
383 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
384 }
385
386 mapped_data = kmap_atomic(new_page);
387 /*
388 * Fire data frozen trigger if data already wasn't frozen. Do this
389 * before checking for escaping, as the trigger may modify the magic
390 * offset. If a copy-out happens afterwards, it will have the correct
391 * data in the buffer.
392 */
393 if (!done_copy_out)
394 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
395 jh_in->b_triggers);
396
397 /*
398 * Check for escaping
399 */
400 if (*((__be32 *)(mapped_data + new_offset)) ==
401 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
402 need_copy_out = 1;
403 do_escape = 1;
404 }
405 kunmap_atomic(mapped_data);
406
407 /*
408 * Do we need to do a data copy?
409 */
410 if (need_copy_out && !done_copy_out) {
411 char *tmp;
412
413 jbd_unlock_bh_state(bh_in);
414 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
415 if (!tmp) {
416 brelse(new_bh);
417 return -ENOMEM;
418 }
419 jbd_lock_bh_state(bh_in);
420 if (jh_in->b_frozen_data) {
421 jbd2_free(tmp, bh_in->b_size);
422 goto repeat;
423 }
424
425 jh_in->b_frozen_data = tmp;
426 mapped_data = kmap_atomic(new_page);
427 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
428 kunmap_atomic(mapped_data);
429
430 new_page = virt_to_page(tmp);
431 new_offset = offset_in_page(tmp);
432 done_copy_out = 1;
433
434 /*
435 * This isn't strictly necessary, as we're using frozen
436 * data for the escaping, but it keeps consistency with
437 * b_frozen_data usage.
438 */
439 jh_in->b_frozen_triggers = jh_in->b_triggers;
440 }
441
442 /*
443 * Did we need to do an escaping? Now we've done all the
444 * copying, we can finally do so.
445 */
446 if (do_escape) {
447 mapped_data = kmap_atomic(new_page);
448 *((unsigned int *)(mapped_data + new_offset)) = 0;
449 kunmap_atomic(mapped_data);
450 }
451
452 set_bh_page(new_bh, new_page, new_offset);
453 new_bh->b_size = bh_in->b_size;
454 new_bh->b_bdev = journal->j_dev;
455 new_bh->b_blocknr = blocknr;
456 new_bh->b_private = bh_in;
457 set_buffer_mapped(new_bh);
458 set_buffer_dirty(new_bh);
459
460 *bh_out = new_bh;
461
462 /*
463 * The to-be-written buffer needs to get moved to the io queue,
464 * and the original buffer whose contents we are shadowing or
465 * copying is moved to the transaction's shadow queue.
466 */
467 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
468 spin_lock(&journal->j_list_lock);
469 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
470 spin_unlock(&journal->j_list_lock);
471 set_buffer_shadow(bh_in);
472 jbd_unlock_bh_state(bh_in);
473
474 return do_escape | (done_copy_out << 1);
475 }
476
477 /*
478 * Allocation code for the journal file. Manage the space left in the
479 * journal, so that we can begin checkpointing when appropriate.
480 */
481
482 /*
483 * Called with j_state_lock locked for writing.
484 * Returns true if a transaction commit was started.
485 */
486 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
487 {
488 /* Return if the txn has already requested to be committed */
489 if (journal->j_commit_request == target)
490 return 0;
491
492 /*
493 * The only transaction we can possibly wait upon is the
494 * currently running transaction (if it exists). Otherwise,
495 * the target tid must be an old one.
496 */
497 if (journal->j_running_transaction &&
498 journal->j_running_transaction->t_tid == target) {
499 /*
500 * We want a new commit: OK, mark the request and wakeup the
501 * commit thread. We do _not_ do the commit ourselves.
502 */
503
504 journal->j_commit_request = target;
505 jbd_debug(1, "JBD2: requesting commit %u/%u\n",
506 journal->j_commit_request,
507 journal->j_commit_sequence);
508 journal->j_running_transaction->t_requested = jiffies;
509 wake_up(&journal->j_wait_commit);
510 return 1;
511 } else if (!tid_geq(journal->j_commit_request, target))
512 /* This should never happen, but if it does, preserve
513 the evidence before kjournald goes into a loop and
514 increments j_commit_sequence beyond all recognition. */
515 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
516 journal->j_commit_request,
517 journal->j_commit_sequence,
518 target, journal->j_running_transaction ?
519 journal->j_running_transaction->t_tid : 0);
520 return 0;
521 }
522
523 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
524 {
525 int ret;
526
527 write_lock(&journal->j_state_lock);
528 ret = __jbd2_log_start_commit(journal, tid);
529 write_unlock(&journal->j_state_lock);
530 return ret;
531 }
532
533 /*
534 * Force and wait any uncommitted transactions. We can only force the running
535 * transaction if we don't have an active handle, otherwise, we will deadlock.
536 * Returns: <0 in case of error,
537 * 0 if nothing to commit,
538 * 1 if transaction was successfully committed.
539 */
540 static int __jbd2_journal_force_commit(journal_t *journal)
541 {
542 transaction_t *transaction = NULL;
543 tid_t tid;
544 int need_to_start = 0, ret = 0;
545
546 read_lock(&journal->j_state_lock);
547 if (journal->j_running_transaction && !current->journal_info) {
548 transaction = journal->j_running_transaction;
549 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
550 need_to_start = 1;
551 } else if (journal->j_committing_transaction)
552 transaction = journal->j_committing_transaction;
553
554 if (!transaction) {
555 /* Nothing to commit */
556 read_unlock(&journal->j_state_lock);
557 return 0;
558 }
559 tid = transaction->t_tid;
560 read_unlock(&journal->j_state_lock);
561 if (need_to_start)
562 jbd2_log_start_commit(journal, tid);
563 ret = jbd2_log_wait_commit(journal, tid);
564 if (!ret)
565 ret = 1;
566
567 return ret;
568 }
569
570 /**
571 * Force and wait upon a commit if the calling process is not within
572 * transaction. This is used for forcing out undo-protected data which contains
573 * bitmaps, when the fs is running out of space.
574 *
575 * @journal: journal to force
576 * Returns true if progress was made.
577 */
578 int jbd2_journal_force_commit_nested(journal_t *journal)
579 {
580 int ret;
581
582 ret = __jbd2_journal_force_commit(journal);
583 return ret > 0;
584 }
585
586 /**
587 * int journal_force_commit() - force any uncommitted transactions
588 * @journal: journal to force
589 *
590 * Caller want unconditional commit. We can only force the running transaction
591 * if we don't have an active handle, otherwise, we will deadlock.
592 */
593 int jbd2_journal_force_commit(journal_t *journal)
594 {
595 int ret;
596
597 J_ASSERT(!current->journal_info);
598 ret = __jbd2_journal_force_commit(journal);
599 if (ret > 0)
600 ret = 0;
601 return ret;
602 }
603
604 /*
605 * Start a commit of the current running transaction (if any). Returns true
606 * if a transaction is going to be committed (or is currently already
607 * committing), and fills its tid in at *ptid
608 */
609 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
610 {
611 int ret = 0;
612
613 write_lock(&journal->j_state_lock);
614 if (journal->j_running_transaction) {
615 tid_t tid = journal->j_running_transaction->t_tid;
616
617 __jbd2_log_start_commit(journal, tid);
618 /* There's a running transaction and we've just made sure
619 * it's commit has been scheduled. */
620 if (ptid)
621 *ptid = tid;
622 ret = 1;
623 } else if (journal->j_committing_transaction) {
624 /*
625 * If commit has been started, then we have to wait for
626 * completion of that transaction.
627 */
628 if (ptid)
629 *ptid = journal->j_committing_transaction->t_tid;
630 ret = 1;
631 }
632 write_unlock(&journal->j_state_lock);
633 return ret;
634 }
635
636 /*
637 * Return 1 if a given transaction has not yet sent barrier request
638 * connected with a transaction commit. If 0 is returned, transaction
639 * may or may not have sent the barrier. Used to avoid sending barrier
640 * twice in common cases.
641 */
642 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
643 {
644 int ret = 0;
645 transaction_t *commit_trans;
646
647 if (!(journal->j_flags & JBD2_BARRIER))
648 return 0;
649 read_lock(&journal->j_state_lock);
650 /* Transaction already committed? */
651 if (tid_geq(journal->j_commit_sequence, tid))
652 goto out;
653 commit_trans = journal->j_committing_transaction;
654 if (!commit_trans || commit_trans->t_tid != tid) {
655 ret = 1;
656 goto out;
657 }
658 /*
659 * Transaction is being committed and we already proceeded to
660 * submitting a flush to fs partition?
661 */
662 if (journal->j_fs_dev != journal->j_dev) {
663 if (!commit_trans->t_need_data_flush ||
664 commit_trans->t_state >= T_COMMIT_DFLUSH)
665 goto out;
666 } else {
667 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
668 goto out;
669 }
670 ret = 1;
671 out:
672 read_unlock(&journal->j_state_lock);
673 return ret;
674 }
675 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
676
677 /*
678 * Wait for a specified commit to complete.
679 * The caller may not hold the journal lock.
680 */
681 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
682 {
683 int err = 0;
684
685 read_lock(&journal->j_state_lock);
686 #ifdef CONFIG_PROVE_LOCKING
687 /*
688 * Some callers make sure transaction is already committing and in that
689 * case we cannot block on open handles anymore. So don't warn in that
690 * case.
691 */
692 if (tid_gt(tid, journal->j_commit_sequence) &&
693 (!journal->j_committing_transaction ||
694 journal->j_committing_transaction->t_tid != tid)) {
695 read_unlock(&journal->j_state_lock);
696 jbd2_might_wait_for_commit(journal);
697 read_lock(&journal->j_state_lock);
698 }
699 #endif
700 #ifdef CONFIG_JBD2_DEBUG
701 if (!tid_geq(journal->j_commit_request, tid)) {
702 printk(KERN_ERR
703 "%s: error: j_commit_request=%u, tid=%u\n",
704 __func__, journal->j_commit_request, tid);
705 }
706 #endif
707 while (tid_gt(tid, journal->j_commit_sequence)) {
708 jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
709 tid, journal->j_commit_sequence);
710 read_unlock(&journal->j_state_lock);
711 wake_up(&journal->j_wait_commit);
712 wait_event(journal->j_wait_done_commit,
713 !tid_gt(tid, journal->j_commit_sequence));
714 read_lock(&journal->j_state_lock);
715 }
716 read_unlock(&journal->j_state_lock);
717
718 if (unlikely(is_journal_aborted(journal)))
719 err = -EIO;
720 return err;
721 }
722
723 /* Return 1 when transaction with given tid has already committed. */
724 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
725 {
726 int ret = 1;
727
728 read_lock(&journal->j_state_lock);
729 if (journal->j_running_transaction &&
730 journal->j_running_transaction->t_tid == tid)
731 ret = 0;
732 if (journal->j_committing_transaction &&
733 journal->j_committing_transaction->t_tid == tid)
734 ret = 0;
735 read_unlock(&journal->j_state_lock);
736 return ret;
737 }
738 EXPORT_SYMBOL(jbd2_transaction_committed);
739
740 /*
741 * When this function returns the transaction corresponding to tid
742 * will be completed. If the transaction has currently running, start
743 * committing that transaction before waiting for it to complete. If
744 * the transaction id is stale, it is by definition already completed,
745 * so just return SUCCESS.
746 */
747 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
748 {
749 int need_to_wait = 1;
750
751 read_lock(&journal->j_state_lock);
752 if (journal->j_running_transaction &&
753 journal->j_running_transaction->t_tid == tid) {
754 if (journal->j_commit_request != tid) {
755 /* transaction not yet started, so request it */
756 read_unlock(&journal->j_state_lock);
757 jbd2_log_start_commit(journal, tid);
758 goto wait_commit;
759 }
760 } else if (!(journal->j_committing_transaction &&
761 journal->j_committing_transaction->t_tid == tid))
762 need_to_wait = 0;
763 read_unlock(&journal->j_state_lock);
764 if (!need_to_wait)
765 return 0;
766 wait_commit:
767 return jbd2_log_wait_commit(journal, tid);
768 }
769 EXPORT_SYMBOL(jbd2_complete_transaction);
770
771 /*
772 * Log buffer allocation routines:
773 */
774
775 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
776 {
777 unsigned long blocknr;
778
779 write_lock(&journal->j_state_lock);
780 J_ASSERT(journal->j_free > 1);
781
782 blocknr = journal->j_head;
783 journal->j_head++;
784 journal->j_free--;
785 if (journal->j_head == journal->j_last)
786 journal->j_head = journal->j_first;
787 write_unlock(&journal->j_state_lock);
788 return jbd2_journal_bmap(journal, blocknr, retp);
789 }
790
791 /*
792 * Conversion of logical to physical block numbers for the journal
793 *
794 * On external journals the journal blocks are identity-mapped, so
795 * this is a no-op. If needed, we can use j_blk_offset - everything is
796 * ready.
797 */
798 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
799 unsigned long long *retp)
800 {
801 int err = 0;
802 unsigned long long ret;
803
804 if (journal->j_inode) {
805 ret = bmap(journal->j_inode, blocknr);
806 if (ret)
807 *retp = ret;
808 else {
809 printk(KERN_ALERT "%s: journal block not found "
810 "at offset %lu on %s\n",
811 __func__, blocknr, journal->j_devname);
812 err = -EIO;
813 __journal_abort_soft(journal, err);
814 }
815 } else {
816 *retp = blocknr; /* +journal->j_blk_offset */
817 }
818 return err;
819 }
820
821 /*
822 * We play buffer_head aliasing tricks to write data/metadata blocks to
823 * the journal without copying their contents, but for journal
824 * descriptor blocks we do need to generate bona fide buffers.
825 *
826 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
827 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
828 * But we don't bother doing that, so there will be coherency problems with
829 * mmaps of blockdevs which hold live JBD-controlled filesystems.
830 */
831 struct buffer_head *
832 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
833 {
834 journal_t *journal = transaction->t_journal;
835 struct buffer_head *bh;
836 unsigned long long blocknr;
837 journal_header_t *header;
838 int err;
839
840 err = jbd2_journal_next_log_block(journal, &blocknr);
841
842 if (err)
843 return NULL;
844
845 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
846 if (!bh)
847 return NULL;
848 lock_buffer(bh);
849 memset(bh->b_data, 0, journal->j_blocksize);
850 header = (journal_header_t *)bh->b_data;
851 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
852 header->h_blocktype = cpu_to_be32(type);
853 header->h_sequence = cpu_to_be32(transaction->t_tid);
854 set_buffer_uptodate(bh);
855 unlock_buffer(bh);
856 BUFFER_TRACE(bh, "return this buffer");
857 return bh;
858 }
859
860 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
861 {
862 struct jbd2_journal_block_tail *tail;
863 __u32 csum;
864
865 if (!jbd2_journal_has_csum_v2or3(j))
866 return;
867
868 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
869 sizeof(struct jbd2_journal_block_tail));
870 tail->t_checksum = 0;
871 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
872 tail->t_checksum = cpu_to_be32(csum);
873 }
874
875 /*
876 * Return tid of the oldest transaction in the journal and block in the journal
877 * where the transaction starts.
878 *
879 * If the journal is now empty, return which will be the next transaction ID
880 * we will write and where will that transaction start.
881 *
882 * The return value is 0 if journal tail cannot be pushed any further, 1 if
883 * it can.
884 */
885 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
886 unsigned long *block)
887 {
888 transaction_t *transaction;
889 int ret;
890
891 read_lock(&journal->j_state_lock);
892 spin_lock(&journal->j_list_lock);
893 transaction = journal->j_checkpoint_transactions;
894 if (transaction) {
895 *tid = transaction->t_tid;
896 *block = transaction->t_log_start;
897 } else if ((transaction = journal->j_committing_transaction) != NULL) {
898 *tid = transaction->t_tid;
899 *block = transaction->t_log_start;
900 } else if ((transaction = journal->j_running_transaction) != NULL) {
901 *tid = transaction->t_tid;
902 *block = journal->j_head;
903 } else {
904 *tid = journal->j_transaction_sequence;
905 *block = journal->j_head;
906 }
907 ret = tid_gt(*tid, journal->j_tail_sequence);
908 spin_unlock(&journal->j_list_lock);
909 read_unlock(&journal->j_state_lock);
910
911 return ret;
912 }
913
914 /*
915 * Update information in journal structure and in on disk journal superblock
916 * about log tail. This function does not check whether information passed in
917 * really pushes log tail further. It's responsibility of the caller to make
918 * sure provided log tail information is valid (e.g. by holding
919 * j_checkpoint_mutex all the time between computing log tail and calling this
920 * function as is the case with jbd2_cleanup_journal_tail()).
921 *
922 * Requires j_checkpoint_mutex
923 */
924 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
925 {
926 unsigned long freed;
927 int ret;
928
929 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
930
931 /*
932 * We cannot afford for write to remain in drive's caches since as
933 * soon as we update j_tail, next transaction can start reusing journal
934 * space and if we lose sb update during power failure we'd replay
935 * old transaction with possibly newly overwritten data.
936 */
937 ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
938 REQ_SYNC | REQ_FUA);
939 if (ret)
940 goto out;
941
942 write_lock(&journal->j_state_lock);
943 freed = block - journal->j_tail;
944 if (block < journal->j_tail)
945 freed += journal->j_last - journal->j_first;
946
947 trace_jbd2_update_log_tail(journal, tid, block, freed);
948 jbd_debug(1,
949 "Cleaning journal tail from %u to %u (offset %lu), "
950 "freeing %lu\n",
951 journal->j_tail_sequence, tid, block, freed);
952
953 journal->j_free += freed;
954 journal->j_tail_sequence = tid;
955 journal->j_tail = block;
956 write_unlock(&journal->j_state_lock);
957
958 out:
959 return ret;
960 }
961
962 /*
963 * This is a variation of __jbd2_update_log_tail which checks for validity of
964 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
965 * with other threads updating log tail.
966 */
967 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
968 {
969 mutex_lock_io(&journal->j_checkpoint_mutex);
970 if (tid_gt(tid, journal->j_tail_sequence))
971 __jbd2_update_log_tail(journal, tid, block);
972 mutex_unlock(&journal->j_checkpoint_mutex);
973 }
974
975 struct jbd2_stats_proc_session {
976 journal_t *journal;
977 struct transaction_stats_s *stats;
978 int start;
979 int max;
980 };
981
982 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
983 {
984 return *pos ? NULL : SEQ_START_TOKEN;
985 }
986
987 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
988 {
989 return NULL;
990 }
991
992 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
993 {
994 struct jbd2_stats_proc_session *s = seq->private;
995
996 if (v != SEQ_START_TOKEN)
997 return 0;
998 seq_printf(seq, "%lu transactions (%lu requested), "
999 "each up to %u blocks\n",
1000 s->stats->ts_tid, s->stats->ts_requested,
1001 s->journal->j_max_transaction_buffers);
1002 if (s->stats->ts_tid == 0)
1003 return 0;
1004 seq_printf(seq, "average: \n %ums waiting for transaction\n",
1005 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1006 seq_printf(seq, " %ums request delay\n",
1007 (s->stats->ts_requested == 0) ? 0 :
1008 jiffies_to_msecs(s->stats->run.rs_request_delay /
1009 s->stats->ts_requested));
1010 seq_printf(seq, " %ums running transaction\n",
1011 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1012 seq_printf(seq, " %ums transaction was being locked\n",
1013 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1014 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
1015 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1016 seq_printf(seq, " %ums logging transaction\n",
1017 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1018 seq_printf(seq, " %lluus average transaction commit time\n",
1019 div_u64(s->journal->j_average_commit_time, 1000));
1020 seq_printf(seq, " %lu handles per transaction\n",
1021 s->stats->run.rs_handle_count / s->stats->ts_tid);
1022 seq_printf(seq, " %lu blocks per transaction\n",
1023 s->stats->run.rs_blocks / s->stats->ts_tid);
1024 seq_printf(seq, " %lu logged blocks per transaction\n",
1025 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1026 return 0;
1027 }
1028
1029 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1030 {
1031 }
1032
1033 static const struct seq_operations jbd2_seq_info_ops = {
1034 .start = jbd2_seq_info_start,
1035 .next = jbd2_seq_info_next,
1036 .stop = jbd2_seq_info_stop,
1037 .show = jbd2_seq_info_show,
1038 };
1039
1040 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1041 {
1042 journal_t *journal = PDE_DATA(inode);
1043 struct jbd2_stats_proc_session *s;
1044 int rc, size;
1045
1046 s = kmalloc(sizeof(*s), GFP_KERNEL);
1047 if (s == NULL)
1048 return -ENOMEM;
1049 size = sizeof(struct transaction_stats_s);
1050 s->stats = kmalloc(size, GFP_KERNEL);
1051 if (s->stats == NULL) {
1052 kfree(s);
1053 return -ENOMEM;
1054 }
1055 spin_lock(&journal->j_history_lock);
1056 memcpy(s->stats, &journal->j_stats, size);
1057 s->journal = journal;
1058 spin_unlock(&journal->j_history_lock);
1059
1060 rc = seq_open(file, &jbd2_seq_info_ops);
1061 if (rc == 0) {
1062 struct seq_file *m = file->private_data;
1063 m->private = s;
1064 } else {
1065 kfree(s->stats);
1066 kfree(s);
1067 }
1068 return rc;
1069
1070 }
1071
1072 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1073 {
1074 struct seq_file *seq = file->private_data;
1075 struct jbd2_stats_proc_session *s = seq->private;
1076 kfree(s->stats);
1077 kfree(s);
1078 return seq_release(inode, file);
1079 }
1080
1081 static const struct file_operations jbd2_seq_info_fops = {
1082 .owner = THIS_MODULE,
1083 .open = jbd2_seq_info_open,
1084 .read = seq_read,
1085 .llseek = seq_lseek,
1086 .release = jbd2_seq_info_release,
1087 };
1088
1089 static struct proc_dir_entry *proc_jbd2_stats;
1090
1091 static void jbd2_stats_proc_init(journal_t *journal)
1092 {
1093 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1094 if (journal->j_proc_entry) {
1095 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1096 &jbd2_seq_info_fops, journal);
1097 }
1098 }
1099
1100 static void jbd2_stats_proc_exit(journal_t *journal)
1101 {
1102 remove_proc_entry("info", journal->j_proc_entry);
1103 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1104 }
1105
1106 /*
1107 * Management for journal control blocks: functions to create and
1108 * destroy journal_t structures, and to initialise and read existing
1109 * journal blocks from disk. */
1110
1111 /* First: create and setup a journal_t object in memory. We initialise
1112 * very few fields yet: that has to wait until we have created the
1113 * journal structures from from scratch, or loaded them from disk. */
1114
1115 static journal_t *journal_init_common(struct block_device *bdev,
1116 struct block_device *fs_dev,
1117 unsigned long long start, int len, int blocksize)
1118 {
1119 static struct lock_class_key jbd2_trans_commit_key;
1120 journal_t *journal;
1121 int err;
1122 struct buffer_head *bh;
1123 int n;
1124
1125 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1126 if (!journal)
1127 return NULL;
1128
1129 init_waitqueue_head(&journal->j_wait_transaction_locked);
1130 init_waitqueue_head(&journal->j_wait_done_commit);
1131 init_waitqueue_head(&journal->j_wait_commit);
1132 init_waitqueue_head(&journal->j_wait_updates);
1133 init_waitqueue_head(&journal->j_wait_reserved);
1134 mutex_init(&journal->j_barrier);
1135 mutex_init(&journal->j_checkpoint_mutex);
1136 spin_lock_init(&journal->j_revoke_lock);
1137 spin_lock_init(&journal->j_list_lock);
1138 rwlock_init(&journal->j_state_lock);
1139
1140 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1141 journal->j_min_batch_time = 0;
1142 journal->j_max_batch_time = 15000; /* 15ms */
1143 atomic_set(&journal->j_reserved_credits, 0);
1144
1145 /* The journal is marked for error until we succeed with recovery! */
1146 journal->j_flags = JBD2_ABORT;
1147
1148 /* Set up a default-sized revoke table for the new mount. */
1149 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1150 if (err)
1151 goto err_cleanup;
1152
1153 spin_lock_init(&journal->j_history_lock);
1154
1155 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1156 &jbd2_trans_commit_key, 0);
1157
1158 /* journal descriptor can store up to n blocks -bzzz */
1159 journal->j_blocksize = blocksize;
1160 journal->j_dev = bdev;
1161 journal->j_fs_dev = fs_dev;
1162 journal->j_blk_offset = start;
1163 journal->j_maxlen = len;
1164 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1165 journal->j_wbufsize = n;
1166 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1167 GFP_KERNEL);
1168 if (!journal->j_wbuf)
1169 goto err_cleanup;
1170
1171 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1172 if (!bh) {
1173 pr_err("%s: Cannot get buffer for journal superblock\n",
1174 __func__);
1175 goto err_cleanup;
1176 }
1177 journal->j_sb_buffer = bh;
1178 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1179
1180 return journal;
1181
1182 err_cleanup:
1183 kfree(journal->j_wbuf);
1184 jbd2_journal_destroy_revoke(journal);
1185 kfree(journal);
1186 return NULL;
1187 }
1188
1189 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1190 *
1191 * Create a journal structure assigned some fixed set of disk blocks to
1192 * the journal. We don't actually touch those disk blocks yet, but we
1193 * need to set up all of the mapping information to tell the journaling
1194 * system where the journal blocks are.
1195 *
1196 */
1197
1198 /**
1199 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1200 * @bdev: Block device on which to create the journal
1201 * @fs_dev: Device which hold journalled filesystem for this journal.
1202 * @start: Block nr Start of journal.
1203 * @len: Length of the journal in blocks.
1204 * @blocksize: blocksize of journalling device
1205 *
1206 * Returns: a newly created journal_t *
1207 *
1208 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1209 * range of blocks on an arbitrary block device.
1210 *
1211 */
1212 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1213 struct block_device *fs_dev,
1214 unsigned long long start, int len, int blocksize)
1215 {
1216 journal_t *journal;
1217
1218 journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1219 if (!journal)
1220 return NULL;
1221
1222 bdevname(journal->j_dev, journal->j_devname);
1223 strreplace(journal->j_devname, '/', '!');
1224 jbd2_stats_proc_init(journal);
1225
1226 return journal;
1227 }
1228
1229 /**
1230 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1231 * @inode: An inode to create the journal in
1232 *
1233 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1234 * the journal. The inode must exist already, must support bmap() and
1235 * must have all data blocks preallocated.
1236 */
1237 journal_t *jbd2_journal_init_inode(struct inode *inode)
1238 {
1239 journal_t *journal;
1240 char *p;
1241 unsigned long long blocknr;
1242
1243 blocknr = bmap(inode, 0);
1244 if (!blocknr) {
1245 pr_err("%s: Cannot locate journal superblock\n",
1246 __func__);
1247 return NULL;
1248 }
1249
1250 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1251 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1252 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1253
1254 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1255 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1256 inode->i_sb->s_blocksize);
1257 if (!journal)
1258 return NULL;
1259
1260 journal->j_inode = inode;
1261 bdevname(journal->j_dev, journal->j_devname);
1262 p = strreplace(journal->j_devname, '/', '!');
1263 sprintf(p, "-%lu", journal->j_inode->i_ino);
1264 jbd2_stats_proc_init(journal);
1265
1266 return journal;
1267 }
1268
1269 /*
1270 * If the journal init or create aborts, we need to mark the journal
1271 * superblock as being NULL to prevent the journal destroy from writing
1272 * back a bogus superblock.
1273 */
1274 static void journal_fail_superblock (journal_t *journal)
1275 {
1276 struct buffer_head *bh = journal->j_sb_buffer;
1277 brelse(bh);
1278 journal->j_sb_buffer = NULL;
1279 }
1280
1281 /*
1282 * Given a journal_t structure, initialise the various fields for
1283 * startup of a new journaling session. We use this both when creating
1284 * a journal, and after recovering an old journal to reset it for
1285 * subsequent use.
1286 */
1287
1288 static int journal_reset(journal_t *journal)
1289 {
1290 journal_superblock_t *sb = journal->j_superblock;
1291 unsigned long long first, last;
1292
1293 first = be32_to_cpu(sb->s_first);
1294 last = be32_to_cpu(sb->s_maxlen);
1295 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1296 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1297 first, last);
1298 journal_fail_superblock(journal);
1299 return -EINVAL;
1300 }
1301
1302 journal->j_first = first;
1303 journal->j_last = last;
1304
1305 journal->j_head = first;
1306 journal->j_tail = first;
1307 journal->j_free = last - first;
1308
1309 journal->j_tail_sequence = journal->j_transaction_sequence;
1310 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1311 journal->j_commit_request = journal->j_commit_sequence;
1312
1313 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1314
1315 /*
1316 * As a special case, if the on-disk copy is already marked as needing
1317 * no recovery (s_start == 0), then we can safely defer the superblock
1318 * update until the next commit by setting JBD2_FLUSHED. This avoids
1319 * attempting a write to a potential-readonly device.
1320 */
1321 if (sb->s_start == 0) {
1322 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1323 "(start %ld, seq %u, errno %d)\n",
1324 journal->j_tail, journal->j_tail_sequence,
1325 journal->j_errno);
1326 journal->j_flags |= JBD2_FLUSHED;
1327 } else {
1328 /* Lock here to make assertions happy... */
1329 mutex_lock_io(&journal->j_checkpoint_mutex);
1330 /*
1331 * Update log tail information. We use REQ_FUA since new
1332 * transaction will start reusing journal space and so we
1333 * must make sure information about current log tail is on
1334 * disk before that.
1335 */
1336 jbd2_journal_update_sb_log_tail(journal,
1337 journal->j_tail_sequence,
1338 journal->j_tail,
1339 REQ_SYNC | REQ_FUA);
1340 mutex_unlock(&journal->j_checkpoint_mutex);
1341 }
1342 return jbd2_journal_start_thread(journal);
1343 }
1344
1345 /*
1346 * This function expects that the caller will have locked the journal
1347 * buffer head, and will return with it unlocked
1348 */
1349 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1350 {
1351 struct buffer_head *bh = journal->j_sb_buffer;
1352 journal_superblock_t *sb = journal->j_superblock;
1353 int ret;
1354
1355 /* Buffer got discarded which means block device got invalidated */
1356 if (!buffer_mapped(bh))
1357 return -EIO;
1358
1359 trace_jbd2_write_superblock(journal, write_flags);
1360 if (!(journal->j_flags & JBD2_BARRIER))
1361 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1362 if (buffer_write_io_error(bh)) {
1363 /*
1364 * Oh, dear. A previous attempt to write the journal
1365 * superblock failed. This could happen because the
1366 * USB device was yanked out. Or it could happen to
1367 * be a transient write error and maybe the block will
1368 * be remapped. Nothing we can do but to retry the
1369 * write and hope for the best.
1370 */
1371 printk(KERN_ERR "JBD2: previous I/O error detected "
1372 "for journal superblock update for %s.\n",
1373 journal->j_devname);
1374 clear_buffer_write_io_error(bh);
1375 set_buffer_uptodate(bh);
1376 }
1377 if (jbd2_journal_has_csum_v2or3(journal))
1378 sb->s_checksum = jbd2_superblock_csum(journal, sb);
1379 get_bh(bh);
1380 bh->b_end_io = end_buffer_write_sync;
1381 ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1382 wait_on_buffer(bh);
1383 if (buffer_write_io_error(bh)) {
1384 clear_buffer_write_io_error(bh);
1385 set_buffer_uptodate(bh);
1386 ret = -EIO;
1387 }
1388 if (ret) {
1389 printk(KERN_ERR "JBD2: Error %d detected when updating "
1390 "journal superblock for %s.\n", ret,
1391 journal->j_devname);
1392 jbd2_journal_abort(journal, ret);
1393 }
1394
1395 return ret;
1396 }
1397
1398 /**
1399 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1400 * @journal: The journal to update.
1401 * @tail_tid: TID of the new transaction at the tail of the log
1402 * @tail_block: The first block of the transaction at the tail of the log
1403 * @write_op: With which operation should we write the journal sb
1404 *
1405 * Update a journal's superblock information about log tail and write it to
1406 * disk, waiting for the IO to complete.
1407 */
1408 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1409 unsigned long tail_block, int write_op)
1410 {
1411 journal_superblock_t *sb = journal->j_superblock;
1412 int ret;
1413
1414 if (is_journal_aborted(journal))
1415 return -EIO;
1416
1417 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1418 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1419 tail_block, tail_tid);
1420
1421 lock_buffer(journal->j_sb_buffer);
1422 sb->s_sequence = cpu_to_be32(tail_tid);
1423 sb->s_start = cpu_to_be32(tail_block);
1424
1425 ret = jbd2_write_superblock(journal, write_op);
1426 if (ret)
1427 goto out;
1428
1429 /* Log is no longer empty */
1430 write_lock(&journal->j_state_lock);
1431 WARN_ON(!sb->s_sequence);
1432 journal->j_flags &= ~JBD2_FLUSHED;
1433 write_unlock(&journal->j_state_lock);
1434
1435 out:
1436 return ret;
1437 }
1438
1439 /**
1440 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1441 * @journal: The journal to update.
1442 * @write_op: With which operation should we write the journal sb
1443 *
1444 * Update a journal's dynamic superblock fields to show that journal is empty.
1445 * Write updated superblock to disk waiting for IO to complete.
1446 */
1447 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1448 {
1449 journal_superblock_t *sb = journal->j_superblock;
1450
1451 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1452 lock_buffer(journal->j_sb_buffer);
1453 if (sb->s_start == 0) { /* Is it already empty? */
1454 unlock_buffer(journal->j_sb_buffer);
1455 return;
1456 }
1457
1458 jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1459 journal->j_tail_sequence);
1460
1461 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1462 sb->s_start = cpu_to_be32(0);
1463
1464 jbd2_write_superblock(journal, write_op);
1465
1466 /* Log is no longer empty */
1467 write_lock(&journal->j_state_lock);
1468 journal->j_flags |= JBD2_FLUSHED;
1469 write_unlock(&journal->j_state_lock);
1470 }
1471
1472
1473 /**
1474 * jbd2_journal_update_sb_errno() - Update error in the journal.
1475 * @journal: The journal to update.
1476 *
1477 * Update a journal's errno. Write updated superblock to disk waiting for IO
1478 * to complete.
1479 */
1480 void jbd2_journal_update_sb_errno(journal_t *journal)
1481 {
1482 journal_superblock_t *sb = journal->j_superblock;
1483 int errcode;
1484
1485 lock_buffer(journal->j_sb_buffer);
1486 errcode = journal->j_errno;
1487 if (errcode == -ESHUTDOWN)
1488 errcode = 0;
1489 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1490 sb->s_errno = cpu_to_be32(errcode);
1491
1492 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1493 }
1494 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1495
1496 /*
1497 * Read the superblock for a given journal, performing initial
1498 * validation of the format.
1499 */
1500 static int journal_get_superblock(journal_t *journal)
1501 {
1502 struct buffer_head *bh;
1503 journal_superblock_t *sb;
1504 int err = -EIO;
1505
1506 bh = journal->j_sb_buffer;
1507
1508 J_ASSERT(bh != NULL);
1509 if (!buffer_uptodate(bh)) {
1510 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1511 wait_on_buffer(bh);
1512 if (!buffer_uptodate(bh)) {
1513 printk(KERN_ERR
1514 "JBD2: IO error reading journal superblock\n");
1515 goto out;
1516 }
1517 }
1518
1519 if (buffer_verified(bh))
1520 return 0;
1521
1522 sb = journal->j_superblock;
1523
1524 err = -EINVAL;
1525
1526 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1527 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1528 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1529 goto out;
1530 }
1531
1532 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1533 case JBD2_SUPERBLOCK_V1:
1534 journal->j_format_version = 1;
1535 break;
1536 case JBD2_SUPERBLOCK_V2:
1537 journal->j_format_version = 2;
1538 break;
1539 default:
1540 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1541 goto out;
1542 }
1543
1544 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1545 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1546 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1547 printk(KERN_WARNING "JBD2: journal file too short\n");
1548 goto out;
1549 }
1550
1551 if (be32_to_cpu(sb->s_first) == 0 ||
1552 be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1553 printk(KERN_WARNING
1554 "JBD2: Invalid start block of journal: %u\n",
1555 be32_to_cpu(sb->s_first));
1556 goto out;
1557 }
1558
1559 if (jbd2_has_feature_csum2(journal) &&
1560 jbd2_has_feature_csum3(journal)) {
1561 /* Can't have checksum v2 and v3 at the same time! */
1562 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1563 "at the same time!\n");
1564 goto out;
1565 }
1566
1567 if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1568 jbd2_has_feature_checksum(journal)) {
1569 /* Can't have checksum v1 and v2 on at the same time! */
1570 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1571 "at the same time!\n");
1572 goto out;
1573 }
1574
1575 if (!jbd2_verify_csum_type(journal, sb)) {
1576 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1577 goto out;
1578 }
1579
1580 /* Load the checksum driver */
1581 if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1582 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1583 if (IS_ERR(journal->j_chksum_driver)) {
1584 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1585 err = PTR_ERR(journal->j_chksum_driver);
1586 journal->j_chksum_driver = NULL;
1587 goto out;
1588 }
1589 }
1590
1591 if (jbd2_journal_has_csum_v2or3(journal)) {
1592 /* Check superblock checksum */
1593 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1594 printk(KERN_ERR "JBD2: journal checksum error\n");
1595 err = -EFSBADCRC;
1596 goto out;
1597 }
1598
1599 /* Precompute checksum seed for all metadata */
1600 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1601 sizeof(sb->s_uuid));
1602 }
1603
1604 set_buffer_verified(bh);
1605
1606 return 0;
1607
1608 out:
1609 journal_fail_superblock(journal);
1610 return err;
1611 }
1612
1613 /*
1614 * Load the on-disk journal superblock and read the key fields into the
1615 * journal_t.
1616 */
1617
1618 static int load_superblock(journal_t *journal)
1619 {
1620 int err;
1621 journal_superblock_t *sb;
1622
1623 err = journal_get_superblock(journal);
1624 if (err)
1625 return err;
1626
1627 sb = journal->j_superblock;
1628
1629 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1630 journal->j_tail = be32_to_cpu(sb->s_start);
1631 journal->j_first = be32_to_cpu(sb->s_first);
1632 journal->j_last = be32_to_cpu(sb->s_maxlen);
1633 journal->j_errno = be32_to_cpu(sb->s_errno);
1634
1635 return 0;
1636 }
1637
1638
1639 /**
1640 * int jbd2_journal_load() - Read journal from disk.
1641 * @journal: Journal to act on.
1642 *
1643 * Given a journal_t structure which tells us which disk blocks contain
1644 * a journal, read the journal from disk to initialise the in-memory
1645 * structures.
1646 */
1647 int jbd2_journal_load(journal_t *journal)
1648 {
1649 int err;
1650 journal_superblock_t *sb;
1651
1652 err = load_superblock(journal);
1653 if (err)
1654 return err;
1655
1656 sb = journal->j_superblock;
1657 /* If this is a V2 superblock, then we have to check the
1658 * features flags on it. */
1659
1660 if (journal->j_format_version >= 2) {
1661 if ((sb->s_feature_ro_compat &
1662 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1663 (sb->s_feature_incompat &
1664 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1665 printk(KERN_WARNING
1666 "JBD2: Unrecognised features on journal\n");
1667 return -EINVAL;
1668 }
1669 }
1670
1671 /*
1672 * Create a slab for this blocksize
1673 */
1674 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1675 if (err)
1676 return err;
1677
1678 /* Let the recovery code check whether it needs to recover any
1679 * data from the journal. */
1680 if (jbd2_journal_recover(journal))
1681 goto recovery_error;
1682
1683 if (journal->j_failed_commit) {
1684 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1685 "is corrupt.\n", journal->j_failed_commit,
1686 journal->j_devname);
1687 return -EFSCORRUPTED;
1688 }
1689
1690 /* OK, we've finished with the dynamic journal bits:
1691 * reinitialise the dynamic contents of the superblock in memory
1692 * and reset them on disk. */
1693 if (journal_reset(journal))
1694 goto recovery_error;
1695
1696 journal->j_flags &= ~JBD2_ABORT;
1697 journal->j_flags |= JBD2_LOADED;
1698 return 0;
1699
1700 recovery_error:
1701 printk(KERN_WARNING "JBD2: recovery failed\n");
1702 return -EIO;
1703 }
1704
1705 /**
1706 * void jbd2_journal_destroy() - Release a journal_t structure.
1707 * @journal: Journal to act on.
1708 *
1709 * Release a journal_t structure once it is no longer in use by the
1710 * journaled object.
1711 * Return <0 if we couldn't clean up the journal.
1712 */
1713 int jbd2_journal_destroy(journal_t *journal)
1714 {
1715 int err = 0;
1716
1717 /* Wait for the commit thread to wake up and die. */
1718 journal_kill_thread(journal);
1719
1720 /* Force a final log commit */
1721 if (journal->j_running_transaction)
1722 jbd2_journal_commit_transaction(journal);
1723
1724 /* Force any old transactions to disk */
1725
1726 /* Totally anal locking here... */
1727 spin_lock(&journal->j_list_lock);
1728 while (journal->j_checkpoint_transactions != NULL) {
1729 spin_unlock(&journal->j_list_lock);
1730 mutex_lock_io(&journal->j_checkpoint_mutex);
1731 err = jbd2_log_do_checkpoint(journal);
1732 mutex_unlock(&journal->j_checkpoint_mutex);
1733 /*
1734 * If checkpointing failed, just free the buffers to avoid
1735 * looping forever
1736 */
1737 if (err) {
1738 jbd2_journal_destroy_checkpoint(journal);
1739 spin_lock(&journal->j_list_lock);
1740 break;
1741 }
1742 spin_lock(&journal->j_list_lock);
1743 }
1744
1745 J_ASSERT(journal->j_running_transaction == NULL);
1746 J_ASSERT(journal->j_committing_transaction == NULL);
1747 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1748 spin_unlock(&journal->j_list_lock);
1749
1750 if (journal->j_sb_buffer) {
1751 if (!is_journal_aborted(journal)) {
1752 mutex_lock_io(&journal->j_checkpoint_mutex);
1753
1754 write_lock(&journal->j_state_lock);
1755 journal->j_tail_sequence =
1756 ++journal->j_transaction_sequence;
1757 write_unlock(&journal->j_state_lock);
1758
1759 jbd2_mark_journal_empty(journal,
1760 REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1761 mutex_unlock(&journal->j_checkpoint_mutex);
1762 } else
1763 err = -EIO;
1764 brelse(journal->j_sb_buffer);
1765 }
1766
1767 if (journal->j_proc_entry)
1768 jbd2_stats_proc_exit(journal);
1769 iput(journal->j_inode);
1770 if (journal->j_revoke)
1771 jbd2_journal_destroy_revoke(journal);
1772 if (journal->j_chksum_driver)
1773 crypto_free_shash(journal->j_chksum_driver);
1774 kfree(journal->j_wbuf);
1775 kfree(journal);
1776
1777 return err;
1778 }
1779
1780
1781 /**
1782 *int jbd2_journal_check_used_features () - Check if features specified are used.
1783 * @journal: Journal to check.
1784 * @compat: bitmask of compatible features
1785 * @ro: bitmask of features that force read-only mount
1786 * @incompat: bitmask of incompatible features
1787 *
1788 * Check whether the journal uses all of a given set of
1789 * features. Return true (non-zero) if it does.
1790 **/
1791
1792 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1793 unsigned long ro, unsigned long incompat)
1794 {
1795 journal_superblock_t *sb;
1796
1797 if (!compat && !ro && !incompat)
1798 return 1;
1799 /* Load journal superblock if it is not loaded yet. */
1800 if (journal->j_format_version == 0 &&
1801 journal_get_superblock(journal) != 0)
1802 return 0;
1803 if (journal->j_format_version == 1)
1804 return 0;
1805
1806 sb = journal->j_superblock;
1807
1808 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1809 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1810 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1811 return 1;
1812
1813 return 0;
1814 }
1815
1816 /**
1817 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1818 * @journal: Journal to check.
1819 * @compat: bitmask of compatible features
1820 * @ro: bitmask of features that force read-only mount
1821 * @incompat: bitmask of incompatible features
1822 *
1823 * Check whether the journaling code supports the use of
1824 * all of a given set of features on this journal. Return true
1825 * (non-zero) if it can. */
1826
1827 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1828 unsigned long ro, unsigned long incompat)
1829 {
1830 if (!compat && !ro && !incompat)
1831 return 1;
1832
1833 /* We can support any known requested features iff the
1834 * superblock is in version 2. Otherwise we fail to support any
1835 * extended sb features. */
1836
1837 if (journal->j_format_version != 2)
1838 return 0;
1839
1840 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1841 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1842 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1843 return 1;
1844
1845 return 0;
1846 }
1847
1848 /**
1849 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1850 * @journal: Journal to act on.
1851 * @compat: bitmask of compatible features
1852 * @ro: bitmask of features that force read-only mount
1853 * @incompat: bitmask of incompatible features
1854 *
1855 * Mark a given journal feature as present on the
1856 * superblock. Returns true if the requested features could be set.
1857 *
1858 */
1859
1860 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1861 unsigned long ro, unsigned long incompat)
1862 {
1863 #define INCOMPAT_FEATURE_ON(f) \
1864 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1865 #define COMPAT_FEATURE_ON(f) \
1866 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1867 journal_superblock_t *sb;
1868
1869 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1870 return 1;
1871
1872 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1873 return 0;
1874
1875 /* If enabling v2 checksums, turn on v3 instead */
1876 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1877 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1878 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1879 }
1880
1881 /* Asking for checksumming v3 and v1? Only give them v3. */
1882 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1883 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1884 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1885
1886 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1887 compat, ro, incompat);
1888
1889 sb = journal->j_superblock;
1890
1891 /* Load the checksum driver if necessary */
1892 if ((journal->j_chksum_driver == NULL) &&
1893 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1894 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1895 if (IS_ERR(journal->j_chksum_driver)) {
1896 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1897 journal->j_chksum_driver = NULL;
1898 return 0;
1899 }
1900 /* Precompute checksum seed for all metadata */
1901 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1902 sizeof(sb->s_uuid));
1903 }
1904
1905 lock_buffer(journal->j_sb_buffer);
1906
1907 /* If enabling v3 checksums, update superblock */
1908 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1909 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1910 sb->s_feature_compat &=
1911 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1912 }
1913
1914 /* If enabling v1 checksums, downgrade superblock */
1915 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1916 sb->s_feature_incompat &=
1917 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1918 JBD2_FEATURE_INCOMPAT_CSUM_V3);
1919
1920 sb->s_feature_compat |= cpu_to_be32(compat);
1921 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1922 sb->s_feature_incompat |= cpu_to_be32(incompat);
1923 unlock_buffer(journal->j_sb_buffer);
1924
1925 return 1;
1926 #undef COMPAT_FEATURE_ON
1927 #undef INCOMPAT_FEATURE_ON
1928 }
1929
1930 /*
1931 * jbd2_journal_clear_features () - Clear a given journal feature in the
1932 * superblock
1933 * @journal: Journal to act on.
1934 * @compat: bitmask of compatible features
1935 * @ro: bitmask of features that force read-only mount
1936 * @incompat: bitmask of incompatible features
1937 *
1938 * Clear a given journal feature as present on the
1939 * superblock.
1940 */
1941 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1942 unsigned long ro, unsigned long incompat)
1943 {
1944 journal_superblock_t *sb;
1945
1946 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1947 compat, ro, incompat);
1948
1949 sb = journal->j_superblock;
1950
1951 sb->s_feature_compat &= ~cpu_to_be32(compat);
1952 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1953 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1954 }
1955 EXPORT_SYMBOL(jbd2_journal_clear_features);
1956
1957 /**
1958 * int jbd2_journal_flush () - Flush journal
1959 * @journal: Journal to act on.
1960 *
1961 * Flush all data for a given journal to disk and empty the journal.
1962 * Filesystems can use this when remounting readonly to ensure that
1963 * recovery does not need to happen on remount.
1964 */
1965
1966 int jbd2_journal_flush(journal_t *journal)
1967 {
1968 int err = 0;
1969 transaction_t *transaction = NULL;
1970
1971 write_lock(&journal->j_state_lock);
1972
1973 /* Force everything buffered to the log... */
1974 if (journal->j_running_transaction) {
1975 transaction = journal->j_running_transaction;
1976 __jbd2_log_start_commit(journal, transaction->t_tid);
1977 } else if (journal->j_committing_transaction)
1978 transaction = journal->j_committing_transaction;
1979
1980 /* Wait for the log commit to complete... */
1981 if (transaction) {
1982 tid_t tid = transaction->t_tid;
1983
1984 write_unlock(&journal->j_state_lock);
1985 jbd2_log_wait_commit(journal, tid);
1986 } else {
1987 write_unlock(&journal->j_state_lock);
1988 }
1989
1990 /* ...and flush everything in the log out to disk. */
1991 spin_lock(&journal->j_list_lock);
1992 while (!err && journal->j_checkpoint_transactions != NULL) {
1993 spin_unlock(&journal->j_list_lock);
1994 mutex_lock_io(&journal->j_checkpoint_mutex);
1995 err = jbd2_log_do_checkpoint(journal);
1996 mutex_unlock(&journal->j_checkpoint_mutex);
1997 spin_lock(&journal->j_list_lock);
1998 }
1999 spin_unlock(&journal->j_list_lock);
2000
2001 if (is_journal_aborted(journal))
2002 return -EIO;
2003
2004 mutex_lock_io(&journal->j_checkpoint_mutex);
2005 if (!err) {
2006 err = jbd2_cleanup_journal_tail(journal);
2007 if (err < 0) {
2008 mutex_unlock(&journal->j_checkpoint_mutex);
2009 goto out;
2010 }
2011 err = 0;
2012 }
2013
2014 /* Finally, mark the journal as really needing no recovery.
2015 * This sets s_start==0 in the underlying superblock, which is
2016 * the magic code for a fully-recovered superblock. Any future
2017 * commits of data to the journal will restore the current
2018 * s_start value. */
2019 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2020 mutex_unlock(&journal->j_checkpoint_mutex);
2021 write_lock(&journal->j_state_lock);
2022 J_ASSERT(!journal->j_running_transaction);
2023 J_ASSERT(!journal->j_committing_transaction);
2024 J_ASSERT(!journal->j_checkpoint_transactions);
2025 J_ASSERT(journal->j_head == journal->j_tail);
2026 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2027 write_unlock(&journal->j_state_lock);
2028 out:
2029 return err;
2030 }
2031
2032 /**
2033 * int jbd2_journal_wipe() - Wipe journal contents
2034 * @journal: Journal to act on.
2035 * @write: flag (see below)
2036 *
2037 * Wipe out all of the contents of a journal, safely. This will produce
2038 * a warning if the journal contains any valid recovery information.
2039 * Must be called between journal_init_*() and jbd2_journal_load().
2040 *
2041 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2042 * we merely suppress recovery.
2043 */
2044
2045 int jbd2_journal_wipe(journal_t *journal, int write)
2046 {
2047 int err = 0;
2048
2049 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2050
2051 err = load_superblock(journal);
2052 if (err)
2053 return err;
2054
2055 if (!journal->j_tail)
2056 goto no_recovery;
2057
2058 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2059 write ? "Clearing" : "Ignoring");
2060
2061 err = jbd2_journal_skip_recovery(journal);
2062 if (write) {
2063 /* Lock to make assertions happy... */
2064 mutex_lock_io(&journal->j_checkpoint_mutex);
2065 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2066 mutex_unlock(&journal->j_checkpoint_mutex);
2067 }
2068
2069 no_recovery:
2070 return err;
2071 }
2072
2073 /*
2074 * Journal abort has very specific semantics, which we describe
2075 * for journal abort.
2076 *
2077 * Two internal functions, which provide abort to the jbd layer
2078 * itself are here.
2079 */
2080
2081 /*
2082 * Quick version for internal journal use (doesn't lock the journal).
2083 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2084 * and don't attempt to make any other journal updates.
2085 */
2086 void __jbd2_journal_abort_hard(journal_t *journal)
2087 {
2088 transaction_t *transaction;
2089
2090 if (journal->j_flags & JBD2_ABORT)
2091 return;
2092
2093 printk(KERN_ERR "Aborting journal on device %s.\n",
2094 journal->j_devname);
2095
2096 write_lock(&journal->j_state_lock);
2097 journal->j_flags |= JBD2_ABORT;
2098 transaction = journal->j_running_transaction;
2099 if (transaction)
2100 __jbd2_log_start_commit(journal, transaction->t_tid);
2101 write_unlock(&journal->j_state_lock);
2102 }
2103
2104 /* Soft abort: record the abort error status in the journal superblock,
2105 * but don't do any other IO. */
2106 static void __journal_abort_soft (journal_t *journal, int errno)
2107 {
2108 int old_errno;
2109
2110 write_lock(&journal->j_state_lock);
2111 old_errno = journal->j_errno;
2112 if (!journal->j_errno || errno == -ESHUTDOWN)
2113 journal->j_errno = errno;
2114
2115 if (journal->j_flags & JBD2_ABORT) {
2116 write_unlock(&journal->j_state_lock);
2117 if (!old_errno && old_errno != -ESHUTDOWN &&
2118 errno == -ESHUTDOWN)
2119 jbd2_journal_update_sb_errno(journal);
2120 return;
2121 }
2122 write_unlock(&journal->j_state_lock);
2123
2124 __jbd2_journal_abort_hard(journal);
2125
2126 if (errno) {
2127 jbd2_journal_update_sb_errno(journal);
2128 write_lock(&journal->j_state_lock);
2129 journal->j_flags |= JBD2_REC_ERR;
2130 write_unlock(&journal->j_state_lock);
2131 }
2132 }
2133
2134 /**
2135 * void jbd2_journal_abort () - Shutdown the journal immediately.
2136 * @journal: the journal to shutdown.
2137 * @errno: an error number to record in the journal indicating
2138 * the reason for the shutdown.
2139 *
2140 * Perform a complete, immediate shutdown of the ENTIRE
2141 * journal (not of a single transaction). This operation cannot be
2142 * undone without closing and reopening the journal.
2143 *
2144 * The jbd2_journal_abort function is intended to support higher level error
2145 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2146 * mode.
2147 *
2148 * Journal abort has very specific semantics. Any existing dirty,
2149 * unjournaled buffers in the main filesystem will still be written to
2150 * disk by bdflush, but the journaling mechanism will be suspended
2151 * immediately and no further transaction commits will be honoured.
2152 *
2153 * Any dirty, journaled buffers will be written back to disk without
2154 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2155 * filesystem, but we _do_ attempt to leave as much data as possible
2156 * behind for fsck to use for cleanup.
2157 *
2158 * Any attempt to get a new transaction handle on a journal which is in
2159 * ABORT state will just result in an -EROFS error return. A
2160 * jbd2_journal_stop on an existing handle will return -EIO if we have
2161 * entered abort state during the update.
2162 *
2163 * Recursive transactions are not disturbed by journal abort until the
2164 * final jbd2_journal_stop, which will receive the -EIO error.
2165 *
2166 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2167 * which will be recorded (if possible) in the journal superblock. This
2168 * allows a client to record failure conditions in the middle of a
2169 * transaction without having to complete the transaction to record the
2170 * failure to disk. ext3_error, for example, now uses this
2171 * functionality.
2172 *
2173 * Errors which originate from within the journaling layer will NOT
2174 * supply an errno; a null errno implies that absolutely no further
2175 * writes are done to the journal (unless there are any already in
2176 * progress).
2177 *
2178 */
2179
2180 void jbd2_journal_abort(journal_t *journal, int errno)
2181 {
2182 __journal_abort_soft(journal, errno);
2183 }
2184
2185 /**
2186 * int jbd2_journal_errno () - returns the journal's error state.
2187 * @journal: journal to examine.
2188 *
2189 * This is the errno number set with jbd2_journal_abort(), the last
2190 * time the journal was mounted - if the journal was stopped
2191 * without calling abort this will be 0.
2192 *
2193 * If the journal has been aborted on this mount time -EROFS will
2194 * be returned.
2195 */
2196 int jbd2_journal_errno(journal_t *journal)
2197 {
2198 int err;
2199
2200 read_lock(&journal->j_state_lock);
2201 if (journal->j_flags & JBD2_ABORT)
2202 err = -EROFS;
2203 else
2204 err = journal->j_errno;
2205 read_unlock(&journal->j_state_lock);
2206 return err;
2207 }
2208
2209 /**
2210 * int jbd2_journal_clear_err () - clears the journal's error state
2211 * @journal: journal to act on.
2212 *
2213 * An error must be cleared or acked to take a FS out of readonly
2214 * mode.
2215 */
2216 int jbd2_journal_clear_err(journal_t *journal)
2217 {
2218 int err = 0;
2219
2220 write_lock(&journal->j_state_lock);
2221 if (journal->j_flags & JBD2_ABORT)
2222 err = -EROFS;
2223 else
2224 journal->j_errno = 0;
2225 write_unlock(&journal->j_state_lock);
2226 return err;
2227 }
2228
2229 /**
2230 * void jbd2_journal_ack_err() - Ack journal err.
2231 * @journal: journal to act on.
2232 *
2233 * An error must be cleared or acked to take a FS out of readonly
2234 * mode.
2235 */
2236 void jbd2_journal_ack_err(journal_t *journal)
2237 {
2238 write_lock(&journal->j_state_lock);
2239 if (journal->j_errno)
2240 journal->j_flags |= JBD2_ACK_ERR;
2241 write_unlock(&journal->j_state_lock);
2242 }
2243
2244 int jbd2_journal_blocks_per_page(struct inode *inode)
2245 {
2246 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2247 }
2248
2249 /*
2250 * helper functions to deal with 32 or 64bit block numbers.
2251 */
2252 size_t journal_tag_bytes(journal_t *journal)
2253 {
2254 size_t sz;
2255
2256 if (jbd2_has_feature_csum3(journal))
2257 return sizeof(journal_block_tag3_t);
2258
2259 sz = sizeof(journal_block_tag_t);
2260
2261 if (jbd2_has_feature_csum2(journal))
2262 sz += sizeof(__u16);
2263
2264 if (jbd2_has_feature_64bit(journal))
2265 return sz;
2266 else
2267 return sz - sizeof(__u32);
2268 }
2269
2270 /*
2271 * JBD memory management
2272 *
2273 * These functions are used to allocate block-sized chunks of memory
2274 * used for making copies of buffer_head data. Very often it will be
2275 * page-sized chunks of data, but sometimes it will be in
2276 * sub-page-size chunks. (For example, 16k pages on Power systems
2277 * with a 4k block file system.) For blocks smaller than a page, we
2278 * use a SLAB allocator. There are slab caches for each block size,
2279 * which are allocated at mount time, if necessary, and we only free
2280 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2281 * this reason we don't need to a mutex to protect access to
2282 * jbd2_slab[] allocating or releasing memory; only in
2283 * jbd2_journal_create_slab().
2284 */
2285 #define JBD2_MAX_SLABS 8
2286 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2287
2288 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2289 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2290 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2291 };
2292
2293
2294 static void jbd2_journal_destroy_slabs(void)
2295 {
2296 int i;
2297
2298 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2299 kmem_cache_destroy(jbd2_slab[i]);
2300 jbd2_slab[i] = NULL;
2301 }
2302 }
2303
2304 static int jbd2_journal_create_slab(size_t size)
2305 {
2306 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2307 int i = order_base_2(size) - 10;
2308 size_t slab_size;
2309
2310 if (size == PAGE_SIZE)
2311 return 0;
2312
2313 if (i >= JBD2_MAX_SLABS)
2314 return -EINVAL;
2315
2316 if (unlikely(i < 0))
2317 i = 0;
2318 mutex_lock(&jbd2_slab_create_mutex);
2319 if (jbd2_slab[i]) {
2320 mutex_unlock(&jbd2_slab_create_mutex);
2321 return 0; /* Already created */
2322 }
2323
2324 slab_size = 1 << (i+10);
2325 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2326 slab_size, 0, NULL);
2327 mutex_unlock(&jbd2_slab_create_mutex);
2328 if (!jbd2_slab[i]) {
2329 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2330 return -ENOMEM;
2331 }
2332 return 0;
2333 }
2334
2335 static struct kmem_cache *get_slab(size_t size)
2336 {
2337 int i = order_base_2(size) - 10;
2338
2339 BUG_ON(i >= JBD2_MAX_SLABS);
2340 if (unlikely(i < 0))
2341 i = 0;
2342 BUG_ON(jbd2_slab[i] == NULL);
2343 return jbd2_slab[i];
2344 }
2345
2346 void *jbd2_alloc(size_t size, gfp_t flags)
2347 {
2348 void *ptr;
2349
2350 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2351
2352 if (size < PAGE_SIZE)
2353 ptr = kmem_cache_alloc(get_slab(size), flags);
2354 else
2355 ptr = (void *)__get_free_pages(flags, get_order(size));
2356
2357 /* Check alignment; SLUB has gotten this wrong in the past,
2358 * and this can lead to user data corruption! */
2359 BUG_ON(((unsigned long) ptr) & (size-1));
2360
2361 return ptr;
2362 }
2363
2364 void jbd2_free(void *ptr, size_t size)
2365 {
2366 if (size < PAGE_SIZE)
2367 kmem_cache_free(get_slab(size), ptr);
2368 else
2369 free_pages((unsigned long)ptr, get_order(size));
2370 };
2371
2372 /*
2373 * Journal_head storage management
2374 */
2375 static struct kmem_cache *jbd2_journal_head_cache;
2376 #ifdef CONFIG_JBD2_DEBUG
2377 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2378 #endif
2379
2380 static int __init jbd2_journal_init_journal_head_cache(void)
2381 {
2382 J_ASSERT(!jbd2_journal_head_cache);
2383 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2384 sizeof(struct journal_head),
2385 0, /* offset */
2386 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2387 NULL); /* ctor */
2388 if (!jbd2_journal_head_cache) {
2389 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2390 return -ENOMEM;
2391 }
2392 return 0;
2393 }
2394
2395 static void jbd2_journal_destroy_journal_head_cache(void)
2396 {
2397 kmem_cache_destroy(jbd2_journal_head_cache);
2398 jbd2_journal_head_cache = NULL;
2399 }
2400
2401 /*
2402 * journal_head splicing and dicing
2403 */
2404 static struct journal_head *journal_alloc_journal_head(void)
2405 {
2406 struct journal_head *ret;
2407
2408 #ifdef CONFIG_JBD2_DEBUG
2409 atomic_inc(&nr_journal_heads);
2410 #endif
2411 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2412 if (!ret) {
2413 jbd_debug(1, "out of memory for journal_head\n");
2414 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2415 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2416 GFP_NOFS | __GFP_NOFAIL);
2417 }
2418 return ret;
2419 }
2420
2421 static void journal_free_journal_head(struct journal_head *jh)
2422 {
2423 #ifdef CONFIG_JBD2_DEBUG
2424 atomic_dec(&nr_journal_heads);
2425 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2426 #endif
2427 kmem_cache_free(jbd2_journal_head_cache, jh);
2428 }
2429
2430 /*
2431 * A journal_head is attached to a buffer_head whenever JBD has an
2432 * interest in the buffer.
2433 *
2434 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2435 * is set. This bit is tested in core kernel code where we need to take
2436 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2437 * there.
2438 *
2439 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2440 *
2441 * When a buffer has its BH_JBD bit set it is immune from being released by
2442 * core kernel code, mainly via ->b_count.
2443 *
2444 * A journal_head is detached from its buffer_head when the journal_head's
2445 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2446 * transaction (b_cp_transaction) hold their references to b_jcount.
2447 *
2448 * Various places in the kernel want to attach a journal_head to a buffer_head
2449 * _before_ attaching the journal_head to a transaction. To protect the
2450 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2451 * journal_head's b_jcount refcount by one. The caller must call
2452 * jbd2_journal_put_journal_head() to undo this.
2453 *
2454 * So the typical usage would be:
2455 *
2456 * (Attach a journal_head if needed. Increments b_jcount)
2457 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2458 * ...
2459 * (Get another reference for transaction)
2460 * jbd2_journal_grab_journal_head(bh);
2461 * jh->b_transaction = xxx;
2462 * (Put original reference)
2463 * jbd2_journal_put_journal_head(jh);
2464 */
2465
2466 /*
2467 * Give a buffer_head a journal_head.
2468 *
2469 * May sleep.
2470 */
2471 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2472 {
2473 struct journal_head *jh;
2474 struct journal_head *new_jh = NULL;
2475
2476 repeat:
2477 if (!buffer_jbd(bh))
2478 new_jh = journal_alloc_journal_head();
2479
2480 jbd_lock_bh_journal_head(bh);
2481 if (buffer_jbd(bh)) {
2482 jh = bh2jh(bh);
2483 } else {
2484 J_ASSERT_BH(bh,
2485 (atomic_read(&bh->b_count) > 0) ||
2486 (bh->b_page && bh->b_page->mapping));
2487
2488 if (!new_jh) {
2489 jbd_unlock_bh_journal_head(bh);
2490 goto repeat;
2491 }
2492
2493 jh = new_jh;
2494 new_jh = NULL; /* We consumed it */
2495 set_buffer_jbd(bh);
2496 bh->b_private = jh;
2497 jh->b_bh = bh;
2498 get_bh(bh);
2499 BUFFER_TRACE(bh, "added journal_head");
2500 }
2501 jh->b_jcount++;
2502 jbd_unlock_bh_journal_head(bh);
2503 if (new_jh)
2504 journal_free_journal_head(new_jh);
2505 return bh->b_private;
2506 }
2507
2508 /*
2509 * Grab a ref against this buffer_head's journal_head. If it ended up not
2510 * having a journal_head, return NULL
2511 */
2512 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2513 {
2514 struct journal_head *jh = NULL;
2515
2516 jbd_lock_bh_journal_head(bh);
2517 if (buffer_jbd(bh)) {
2518 jh = bh2jh(bh);
2519 jh->b_jcount++;
2520 }
2521 jbd_unlock_bh_journal_head(bh);
2522 return jh;
2523 }
2524
2525 static void __journal_remove_journal_head(struct buffer_head *bh)
2526 {
2527 struct journal_head *jh = bh2jh(bh);
2528
2529 J_ASSERT_JH(jh, jh->b_jcount >= 0);
2530 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2531 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2532 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2533 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2534 J_ASSERT_BH(bh, buffer_jbd(bh));
2535 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2536 BUFFER_TRACE(bh, "remove journal_head");
2537 if (jh->b_frozen_data) {
2538 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2539 jbd2_free(jh->b_frozen_data, bh->b_size);
2540 }
2541 if (jh->b_committed_data) {
2542 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2543 jbd2_free(jh->b_committed_data, bh->b_size);
2544 }
2545 bh->b_private = NULL;
2546 jh->b_bh = NULL; /* debug, really */
2547 clear_buffer_jbd(bh);
2548 journal_free_journal_head(jh);
2549 }
2550
2551 /*
2552 * Drop a reference on the passed journal_head. If it fell to zero then
2553 * release the journal_head from the buffer_head.
2554 */
2555 void jbd2_journal_put_journal_head(struct journal_head *jh)
2556 {
2557 struct buffer_head *bh = jh2bh(jh);
2558
2559 jbd_lock_bh_journal_head(bh);
2560 J_ASSERT_JH(jh, jh->b_jcount > 0);
2561 --jh->b_jcount;
2562 if (!jh->b_jcount) {
2563 __journal_remove_journal_head(bh);
2564 jbd_unlock_bh_journal_head(bh);
2565 __brelse(bh);
2566 } else
2567 jbd_unlock_bh_journal_head(bh);
2568 }
2569
2570 /*
2571 * Initialize jbd inode head
2572 */
2573 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2574 {
2575 jinode->i_transaction = NULL;
2576 jinode->i_next_transaction = NULL;
2577 jinode->i_vfs_inode = inode;
2578 jinode->i_flags = 0;
2579 jinode->i_dirty_start = 0;
2580 jinode->i_dirty_end = 0;
2581 INIT_LIST_HEAD(&jinode->i_list);
2582 }
2583
2584 /*
2585 * Function to be called before we start removing inode from memory (i.e.,
2586 * clear_inode() is a fine place to be called from). It removes inode from
2587 * transaction's lists.
2588 */
2589 void jbd2_journal_release_jbd_inode(journal_t *journal,
2590 struct jbd2_inode *jinode)
2591 {
2592 if (!journal)
2593 return;
2594 restart:
2595 spin_lock(&journal->j_list_lock);
2596 /* Is commit writing out inode - we have to wait */
2597 if (jinode->i_flags & JI_COMMIT_RUNNING) {
2598 wait_queue_head_t *wq;
2599 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2600 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2601 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2602 spin_unlock(&journal->j_list_lock);
2603 schedule();
2604 finish_wait(wq, &wait.wq_entry);
2605 goto restart;
2606 }
2607
2608 if (jinode->i_transaction) {
2609 list_del(&jinode->i_list);
2610 jinode->i_transaction = NULL;
2611 }
2612 spin_unlock(&journal->j_list_lock);
2613 }
2614
2615
2616 #ifdef CONFIG_PROC_FS
2617
2618 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2619
2620 static void __init jbd2_create_jbd_stats_proc_entry(void)
2621 {
2622 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2623 }
2624
2625 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2626 {
2627 if (proc_jbd2_stats)
2628 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2629 }
2630
2631 #else
2632
2633 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2634 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2635
2636 #endif
2637
2638 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2639
2640 static int __init jbd2_journal_init_inode_cache(void)
2641 {
2642 J_ASSERT(!jbd2_inode_cache);
2643 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2644 if (!jbd2_inode_cache) {
2645 pr_emerg("JBD2: failed to create inode cache\n");
2646 return -ENOMEM;
2647 }
2648 return 0;
2649 }
2650
2651 static int __init jbd2_journal_init_handle_cache(void)
2652 {
2653 J_ASSERT(!jbd2_handle_cache);
2654 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2655 if (!jbd2_handle_cache) {
2656 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2657 return -ENOMEM;
2658 }
2659 return 0;
2660 }
2661
2662 static void jbd2_journal_destroy_inode_cache(void)
2663 {
2664 kmem_cache_destroy(jbd2_inode_cache);
2665 jbd2_inode_cache = NULL;
2666 }
2667
2668 static void jbd2_journal_destroy_handle_cache(void)
2669 {
2670 kmem_cache_destroy(jbd2_handle_cache);
2671 jbd2_handle_cache = NULL;
2672 }
2673
2674 /*
2675 * Module startup and shutdown
2676 */
2677
2678 static int __init journal_init_caches(void)
2679 {
2680 int ret;
2681
2682 ret = jbd2_journal_init_revoke_record_cache();
2683 if (ret == 0)
2684 ret = jbd2_journal_init_revoke_table_cache();
2685 if (ret == 0)
2686 ret = jbd2_journal_init_journal_head_cache();
2687 if (ret == 0)
2688 ret = jbd2_journal_init_handle_cache();
2689 if (ret == 0)
2690 ret = jbd2_journal_init_inode_cache();
2691 if (ret == 0)
2692 ret = jbd2_journal_init_transaction_cache();
2693 return ret;
2694 }
2695
2696 static void jbd2_journal_destroy_caches(void)
2697 {
2698 jbd2_journal_destroy_revoke_record_cache();
2699 jbd2_journal_destroy_revoke_table_cache();
2700 jbd2_journal_destroy_journal_head_cache();
2701 jbd2_journal_destroy_handle_cache();
2702 jbd2_journal_destroy_inode_cache();
2703 jbd2_journal_destroy_transaction_cache();
2704 jbd2_journal_destroy_slabs();
2705 }
2706
2707 static int __init journal_init(void)
2708 {
2709 int ret;
2710
2711 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2712
2713 ret = journal_init_caches();
2714 if (ret == 0) {
2715 jbd2_create_jbd_stats_proc_entry();
2716 } else {
2717 jbd2_journal_destroy_caches();
2718 }
2719 return ret;
2720 }
2721
2722 static void __exit journal_exit(void)
2723 {
2724 #ifdef CONFIG_JBD2_DEBUG
2725 int n = atomic_read(&nr_journal_heads);
2726 if (n)
2727 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2728 #endif
2729 jbd2_remove_jbd_stats_proc_entry();
2730 jbd2_journal_destroy_caches();
2731 }
2732
2733 MODULE_LICENSE("GPL");
2734 module_init(journal_init);
2735 module_exit(journal_exit);
2736