]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - fs/namei.c
Merge tag 'mmc-v5.1-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[thirdparty/kernel/stable.git] / fs / namei.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * Some corrections by tytso.
10 */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /* [Feb-1997 T. Schoebel-Theuer]
47 * Fundamental changes in the pathname lookup mechanisms (namei)
48 * were necessary because of omirr. The reason is that omirr needs
49 * to know the _real_ pathname, not the user-supplied one, in case
50 * of symlinks (and also when transname replacements occur).
51 *
52 * The new code replaces the old recursive symlink resolution with
53 * an iterative one (in case of non-nested symlink chains). It does
54 * this with calls to <fs>_follow_link().
55 * As a side effect, dir_namei(), _namei() and follow_link() are now
56 * replaced with a single function lookup_dentry() that can handle all
57 * the special cases of the former code.
58 *
59 * With the new dcache, the pathname is stored at each inode, at least as
60 * long as the refcount of the inode is positive. As a side effect, the
61 * size of the dcache depends on the inode cache and thus is dynamic.
62 *
63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64 * resolution to correspond with current state of the code.
65 *
66 * Note that the symlink resolution is not *completely* iterative.
67 * There is still a significant amount of tail- and mid- recursion in
68 * the algorithm. Also, note that <fs>_readlink() is not used in
69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70 * may return different results than <fs>_follow_link(). Many virtual
71 * filesystems (including /proc) exhibit this behavior.
72 */
73
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76 * and the name already exists in form of a symlink, try to create the new
77 * name indicated by the symlink. The old code always complained that the
78 * name already exists, due to not following the symlink even if its target
79 * is nonexistent. The new semantics affects also mknod() and link() when
80 * the name is a symlink pointing to a non-existent name.
81 *
82 * I don't know which semantics is the right one, since I have no access
83 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85 * "old" one. Personally, I think the new semantics is much more logical.
86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87 * file does succeed in both HP-UX and SunOs, but not in Solaris
88 * and in the old Linux semantics.
89 */
90
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92 * semantics. See the comments in "open_namei" and "do_link" below.
93 *
94 * [10-Sep-98 Alan Modra] Another symlink change.
95 */
96
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98 * inside the path - always follow.
99 * in the last component in creation/removal/renaming - never follow.
100 * if LOOKUP_FOLLOW passed - follow.
101 * if the pathname has trailing slashes - follow.
102 * otherwise - don't follow.
103 * (applied in that order).
104 *
105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107 * During the 2.4 we need to fix the userland stuff depending on it -
108 * hopefully we will be able to get rid of that wart in 2.5. So far only
109 * XEmacs seems to be relying on it...
110 */
111 /*
112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
114 * any extra contention...
115 */
116
117 /* In order to reduce some races, while at the same time doing additional
118 * checking and hopefully speeding things up, we copy filenames to the
119 * kernel data space before using them..
120 *
121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122 * PATH_MAX includes the nul terminator --RR.
123 */
124
125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
126
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 struct filename *result;
131 char *kname;
132 int len;
133
134 result = audit_reusename(filename);
135 if (result)
136 return result;
137
138 result = __getname();
139 if (unlikely(!result))
140 return ERR_PTR(-ENOMEM);
141
142 /*
143 * First, try to embed the struct filename inside the names_cache
144 * allocation
145 */
146 kname = (char *)result->iname;
147 result->name = kname;
148
149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 if (unlikely(len < 0)) {
151 __putname(result);
152 return ERR_PTR(len);
153 }
154
155 /*
156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 * separate struct filename so we can dedicate the entire
158 * names_cache allocation for the pathname, and re-do the copy from
159 * userland.
160 */
161 if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 const size_t size = offsetof(struct filename, iname[1]);
163 kname = (char *)result;
164
165 /*
166 * size is chosen that way we to guarantee that
167 * result->iname[0] is within the same object and that
168 * kname can't be equal to result->iname, no matter what.
169 */
170 result = kzalloc(size, GFP_KERNEL);
171 if (unlikely(!result)) {
172 __putname(kname);
173 return ERR_PTR(-ENOMEM);
174 }
175 result->name = kname;
176 len = strncpy_from_user(kname, filename, PATH_MAX);
177 if (unlikely(len < 0)) {
178 __putname(kname);
179 kfree(result);
180 return ERR_PTR(len);
181 }
182 if (unlikely(len == PATH_MAX)) {
183 __putname(kname);
184 kfree(result);
185 return ERR_PTR(-ENAMETOOLONG);
186 }
187 }
188
189 result->refcnt = 1;
190 /* The empty path is special. */
191 if (unlikely(!len)) {
192 if (empty)
193 *empty = 1;
194 if (!(flags & LOOKUP_EMPTY)) {
195 putname(result);
196 return ERR_PTR(-ENOENT);
197 }
198 }
199
200 result->uptr = filename;
201 result->aname = NULL;
202 audit_getname(result);
203 return result;
204 }
205
206 struct filename *
207 getname(const char __user * filename)
208 {
209 return getname_flags(filename, 0, NULL);
210 }
211
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215 struct filename *result;
216 int len = strlen(filename) + 1;
217
218 result = __getname();
219 if (unlikely(!result))
220 return ERR_PTR(-ENOMEM);
221
222 if (len <= EMBEDDED_NAME_MAX) {
223 result->name = (char *)result->iname;
224 } else if (len <= PATH_MAX) {
225 const size_t size = offsetof(struct filename, iname[1]);
226 struct filename *tmp;
227
228 tmp = kmalloc(size, GFP_KERNEL);
229 if (unlikely(!tmp)) {
230 __putname(result);
231 return ERR_PTR(-ENOMEM);
232 }
233 tmp->name = (char *)result;
234 result = tmp;
235 } else {
236 __putname(result);
237 return ERR_PTR(-ENAMETOOLONG);
238 }
239 memcpy((char *)result->name, filename, len);
240 result->uptr = NULL;
241 result->aname = NULL;
242 result->refcnt = 1;
243 audit_getname(result);
244
245 return result;
246 }
247
248 void putname(struct filename *name)
249 {
250 BUG_ON(name->refcnt <= 0);
251
252 if (--name->refcnt > 0)
253 return;
254
255 if (name->name != name->iname) {
256 __putname(name->name);
257 kfree(name);
258 } else
259 __putname(name);
260 }
261
262 static int check_acl(struct inode *inode, int mask)
263 {
264 #ifdef CONFIG_FS_POSIX_ACL
265 struct posix_acl *acl;
266
267 if (mask & MAY_NOT_BLOCK) {
268 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
269 if (!acl)
270 return -EAGAIN;
271 /* no ->get_acl() calls in RCU mode... */
272 if (is_uncached_acl(acl))
273 return -ECHILD;
274 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
275 }
276
277 acl = get_acl(inode, ACL_TYPE_ACCESS);
278 if (IS_ERR(acl))
279 return PTR_ERR(acl);
280 if (acl) {
281 int error = posix_acl_permission(inode, acl, mask);
282 posix_acl_release(acl);
283 return error;
284 }
285 #endif
286
287 return -EAGAIN;
288 }
289
290 /*
291 * This does the basic permission checking
292 */
293 static int acl_permission_check(struct inode *inode, int mask)
294 {
295 unsigned int mode = inode->i_mode;
296
297 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
298 mode >>= 6;
299 else {
300 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
301 int error = check_acl(inode, mask);
302 if (error != -EAGAIN)
303 return error;
304 }
305
306 if (in_group_p(inode->i_gid))
307 mode >>= 3;
308 }
309
310 /*
311 * If the DACs are ok we don't need any capability check.
312 */
313 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
314 return 0;
315 return -EACCES;
316 }
317
318 /**
319 * generic_permission - check for access rights on a Posix-like filesystem
320 * @inode: inode to check access rights for
321 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
322 *
323 * Used to check for read/write/execute permissions on a file.
324 * We use "fsuid" for this, letting us set arbitrary permissions
325 * for filesystem access without changing the "normal" uids which
326 * are used for other things.
327 *
328 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
329 * request cannot be satisfied (eg. requires blocking or too much complexity).
330 * It would then be called again in ref-walk mode.
331 */
332 int generic_permission(struct inode *inode, int mask)
333 {
334 int ret;
335
336 /*
337 * Do the basic permission checks.
338 */
339 ret = acl_permission_check(inode, mask);
340 if (ret != -EACCES)
341 return ret;
342
343 if (S_ISDIR(inode->i_mode)) {
344 /* DACs are overridable for directories */
345 if (!(mask & MAY_WRITE))
346 if (capable_wrt_inode_uidgid(inode,
347 CAP_DAC_READ_SEARCH))
348 return 0;
349 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
350 return 0;
351 return -EACCES;
352 }
353
354 /*
355 * Searching includes executable on directories, else just read.
356 */
357 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
358 if (mask == MAY_READ)
359 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
360 return 0;
361 /*
362 * Read/write DACs are always overridable.
363 * Executable DACs are overridable when there is
364 * at least one exec bit set.
365 */
366 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
367 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
368 return 0;
369
370 return -EACCES;
371 }
372 EXPORT_SYMBOL(generic_permission);
373
374 /*
375 * We _really_ want to just do "generic_permission()" without
376 * even looking at the inode->i_op values. So we keep a cache
377 * flag in inode->i_opflags, that says "this has not special
378 * permission function, use the fast case".
379 */
380 static inline int do_inode_permission(struct inode *inode, int mask)
381 {
382 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
383 if (likely(inode->i_op->permission))
384 return inode->i_op->permission(inode, mask);
385
386 /* This gets set once for the inode lifetime */
387 spin_lock(&inode->i_lock);
388 inode->i_opflags |= IOP_FASTPERM;
389 spin_unlock(&inode->i_lock);
390 }
391 return generic_permission(inode, mask);
392 }
393
394 /**
395 * sb_permission - Check superblock-level permissions
396 * @sb: Superblock of inode to check permission on
397 * @inode: Inode to check permission on
398 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
399 *
400 * Separate out file-system wide checks from inode-specific permission checks.
401 */
402 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
403 {
404 if (unlikely(mask & MAY_WRITE)) {
405 umode_t mode = inode->i_mode;
406
407 /* Nobody gets write access to a read-only fs. */
408 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
409 return -EROFS;
410 }
411 return 0;
412 }
413
414 /**
415 * inode_permission - Check for access rights to a given inode
416 * @inode: Inode to check permission on
417 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
418 *
419 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
420 * this, letting us set arbitrary permissions for filesystem access without
421 * changing the "normal" UIDs which are used for other things.
422 *
423 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
424 */
425 int inode_permission(struct inode *inode, int mask)
426 {
427 int retval;
428
429 retval = sb_permission(inode->i_sb, inode, mask);
430 if (retval)
431 return retval;
432
433 if (unlikely(mask & MAY_WRITE)) {
434 /*
435 * Nobody gets write access to an immutable file.
436 */
437 if (IS_IMMUTABLE(inode))
438 return -EPERM;
439
440 /*
441 * Updating mtime will likely cause i_uid and i_gid to be
442 * written back improperly if their true value is unknown
443 * to the vfs.
444 */
445 if (HAS_UNMAPPED_ID(inode))
446 return -EACCES;
447 }
448
449 retval = do_inode_permission(inode, mask);
450 if (retval)
451 return retval;
452
453 retval = devcgroup_inode_permission(inode, mask);
454 if (retval)
455 return retval;
456
457 return security_inode_permission(inode, mask);
458 }
459 EXPORT_SYMBOL(inode_permission);
460
461 /**
462 * path_get - get a reference to a path
463 * @path: path to get the reference to
464 *
465 * Given a path increment the reference count to the dentry and the vfsmount.
466 */
467 void path_get(const struct path *path)
468 {
469 mntget(path->mnt);
470 dget(path->dentry);
471 }
472 EXPORT_SYMBOL(path_get);
473
474 /**
475 * path_put - put a reference to a path
476 * @path: path to put the reference to
477 *
478 * Given a path decrement the reference count to the dentry and the vfsmount.
479 */
480 void path_put(const struct path *path)
481 {
482 dput(path->dentry);
483 mntput(path->mnt);
484 }
485 EXPORT_SYMBOL(path_put);
486
487 #define EMBEDDED_LEVELS 2
488 struct nameidata {
489 struct path path;
490 struct qstr last;
491 struct path root;
492 struct inode *inode; /* path.dentry.d_inode */
493 unsigned int flags;
494 unsigned seq, m_seq;
495 int last_type;
496 unsigned depth;
497 int total_link_count;
498 struct saved {
499 struct path link;
500 struct delayed_call done;
501 const char *name;
502 unsigned seq;
503 } *stack, internal[EMBEDDED_LEVELS];
504 struct filename *name;
505 struct nameidata *saved;
506 struct inode *link_inode;
507 unsigned root_seq;
508 int dfd;
509 } __randomize_layout;
510
511 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
512 {
513 struct nameidata *old = current->nameidata;
514 p->stack = p->internal;
515 p->dfd = dfd;
516 p->name = name;
517 p->total_link_count = old ? old->total_link_count : 0;
518 p->saved = old;
519 current->nameidata = p;
520 }
521
522 static void restore_nameidata(void)
523 {
524 struct nameidata *now = current->nameidata, *old = now->saved;
525
526 current->nameidata = old;
527 if (old)
528 old->total_link_count = now->total_link_count;
529 if (now->stack != now->internal)
530 kfree(now->stack);
531 }
532
533 static int __nd_alloc_stack(struct nameidata *nd)
534 {
535 struct saved *p;
536
537 if (nd->flags & LOOKUP_RCU) {
538 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
539 GFP_ATOMIC);
540 if (unlikely(!p))
541 return -ECHILD;
542 } else {
543 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
544 GFP_KERNEL);
545 if (unlikely(!p))
546 return -ENOMEM;
547 }
548 memcpy(p, nd->internal, sizeof(nd->internal));
549 nd->stack = p;
550 return 0;
551 }
552
553 /**
554 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
555 * @path: nameidate to verify
556 *
557 * Rename can sometimes move a file or directory outside of a bind
558 * mount, path_connected allows those cases to be detected.
559 */
560 static bool path_connected(const struct path *path)
561 {
562 struct vfsmount *mnt = path->mnt;
563 struct super_block *sb = mnt->mnt_sb;
564
565 /* Bind mounts and multi-root filesystems can have disconnected paths */
566 if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
567 return true;
568
569 return is_subdir(path->dentry, mnt->mnt_root);
570 }
571
572 static inline int nd_alloc_stack(struct nameidata *nd)
573 {
574 if (likely(nd->depth != EMBEDDED_LEVELS))
575 return 0;
576 if (likely(nd->stack != nd->internal))
577 return 0;
578 return __nd_alloc_stack(nd);
579 }
580
581 static void drop_links(struct nameidata *nd)
582 {
583 int i = nd->depth;
584 while (i--) {
585 struct saved *last = nd->stack + i;
586 do_delayed_call(&last->done);
587 clear_delayed_call(&last->done);
588 }
589 }
590
591 static void terminate_walk(struct nameidata *nd)
592 {
593 drop_links(nd);
594 if (!(nd->flags & LOOKUP_RCU)) {
595 int i;
596 path_put(&nd->path);
597 for (i = 0; i < nd->depth; i++)
598 path_put(&nd->stack[i].link);
599 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
600 path_put(&nd->root);
601 nd->root.mnt = NULL;
602 }
603 } else {
604 nd->flags &= ~LOOKUP_RCU;
605 if (!(nd->flags & LOOKUP_ROOT))
606 nd->root.mnt = NULL;
607 rcu_read_unlock();
608 }
609 nd->depth = 0;
610 }
611
612 /* path_put is needed afterwards regardless of success or failure */
613 static bool legitimize_path(struct nameidata *nd,
614 struct path *path, unsigned seq)
615 {
616 int res = __legitimize_mnt(path->mnt, nd->m_seq);
617 if (unlikely(res)) {
618 if (res > 0)
619 path->mnt = NULL;
620 path->dentry = NULL;
621 return false;
622 }
623 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
624 path->dentry = NULL;
625 return false;
626 }
627 return !read_seqcount_retry(&path->dentry->d_seq, seq);
628 }
629
630 static bool legitimize_links(struct nameidata *nd)
631 {
632 int i;
633 for (i = 0; i < nd->depth; i++) {
634 struct saved *last = nd->stack + i;
635 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
636 drop_links(nd);
637 nd->depth = i + 1;
638 return false;
639 }
640 }
641 return true;
642 }
643
644 /*
645 * Path walking has 2 modes, rcu-walk and ref-walk (see
646 * Documentation/filesystems/path-lookup.txt). In situations when we can't
647 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
648 * normal reference counts on dentries and vfsmounts to transition to ref-walk
649 * mode. Refcounts are grabbed at the last known good point before rcu-walk
650 * got stuck, so ref-walk may continue from there. If this is not successful
651 * (eg. a seqcount has changed), then failure is returned and it's up to caller
652 * to restart the path walk from the beginning in ref-walk mode.
653 */
654
655 /**
656 * unlazy_walk - try to switch to ref-walk mode.
657 * @nd: nameidata pathwalk data
658 * Returns: 0 on success, -ECHILD on failure
659 *
660 * unlazy_walk attempts to legitimize the current nd->path and nd->root
661 * for ref-walk mode.
662 * Must be called from rcu-walk context.
663 * Nothing should touch nameidata between unlazy_walk() failure and
664 * terminate_walk().
665 */
666 static int unlazy_walk(struct nameidata *nd)
667 {
668 struct dentry *parent = nd->path.dentry;
669
670 BUG_ON(!(nd->flags & LOOKUP_RCU));
671
672 nd->flags &= ~LOOKUP_RCU;
673 if (unlikely(!legitimize_links(nd)))
674 goto out2;
675 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
676 goto out1;
677 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
678 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
679 goto out;
680 }
681 rcu_read_unlock();
682 BUG_ON(nd->inode != parent->d_inode);
683 return 0;
684
685 out2:
686 nd->path.mnt = NULL;
687 nd->path.dentry = NULL;
688 out1:
689 if (!(nd->flags & LOOKUP_ROOT))
690 nd->root.mnt = NULL;
691 out:
692 rcu_read_unlock();
693 return -ECHILD;
694 }
695
696 /**
697 * unlazy_child - try to switch to ref-walk mode.
698 * @nd: nameidata pathwalk data
699 * @dentry: child of nd->path.dentry
700 * @seq: seq number to check dentry against
701 * Returns: 0 on success, -ECHILD on failure
702 *
703 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
704 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
705 * @nd. Must be called from rcu-walk context.
706 * Nothing should touch nameidata between unlazy_child() failure and
707 * terminate_walk().
708 */
709 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
710 {
711 BUG_ON(!(nd->flags & LOOKUP_RCU));
712
713 nd->flags &= ~LOOKUP_RCU;
714 if (unlikely(!legitimize_links(nd)))
715 goto out2;
716 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
717 goto out2;
718 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
719 goto out1;
720
721 /*
722 * We need to move both the parent and the dentry from the RCU domain
723 * to be properly refcounted. And the sequence number in the dentry
724 * validates *both* dentry counters, since we checked the sequence
725 * number of the parent after we got the child sequence number. So we
726 * know the parent must still be valid if the child sequence number is
727 */
728 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
729 goto out;
730 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
731 rcu_read_unlock();
732 dput(dentry);
733 goto drop_root_mnt;
734 }
735 /*
736 * Sequence counts matched. Now make sure that the root is
737 * still valid and get it if required.
738 */
739 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
740 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
741 rcu_read_unlock();
742 dput(dentry);
743 return -ECHILD;
744 }
745 }
746
747 rcu_read_unlock();
748 return 0;
749
750 out2:
751 nd->path.mnt = NULL;
752 out1:
753 nd->path.dentry = NULL;
754 out:
755 rcu_read_unlock();
756 drop_root_mnt:
757 if (!(nd->flags & LOOKUP_ROOT))
758 nd->root.mnt = NULL;
759 return -ECHILD;
760 }
761
762 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
763 {
764 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
765 return dentry->d_op->d_revalidate(dentry, flags);
766 else
767 return 1;
768 }
769
770 /**
771 * complete_walk - successful completion of path walk
772 * @nd: pointer nameidata
773 *
774 * If we had been in RCU mode, drop out of it and legitimize nd->path.
775 * Revalidate the final result, unless we'd already done that during
776 * the path walk or the filesystem doesn't ask for it. Return 0 on
777 * success, -error on failure. In case of failure caller does not
778 * need to drop nd->path.
779 */
780 static int complete_walk(struct nameidata *nd)
781 {
782 struct dentry *dentry = nd->path.dentry;
783 int status;
784
785 if (nd->flags & LOOKUP_RCU) {
786 if (!(nd->flags & LOOKUP_ROOT))
787 nd->root.mnt = NULL;
788 if (unlikely(unlazy_walk(nd)))
789 return -ECHILD;
790 }
791
792 if (likely(!(nd->flags & LOOKUP_JUMPED)))
793 return 0;
794
795 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
796 return 0;
797
798 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
799 if (status > 0)
800 return 0;
801
802 if (!status)
803 status = -ESTALE;
804
805 return status;
806 }
807
808 static void set_root(struct nameidata *nd)
809 {
810 struct fs_struct *fs = current->fs;
811
812 if (nd->flags & LOOKUP_RCU) {
813 unsigned seq;
814
815 do {
816 seq = read_seqcount_begin(&fs->seq);
817 nd->root = fs->root;
818 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
819 } while (read_seqcount_retry(&fs->seq, seq));
820 } else {
821 get_fs_root(fs, &nd->root);
822 }
823 }
824
825 static void path_put_conditional(struct path *path, struct nameidata *nd)
826 {
827 dput(path->dentry);
828 if (path->mnt != nd->path.mnt)
829 mntput(path->mnt);
830 }
831
832 static inline void path_to_nameidata(const struct path *path,
833 struct nameidata *nd)
834 {
835 if (!(nd->flags & LOOKUP_RCU)) {
836 dput(nd->path.dentry);
837 if (nd->path.mnt != path->mnt)
838 mntput(nd->path.mnt);
839 }
840 nd->path.mnt = path->mnt;
841 nd->path.dentry = path->dentry;
842 }
843
844 static int nd_jump_root(struct nameidata *nd)
845 {
846 if (nd->flags & LOOKUP_RCU) {
847 struct dentry *d;
848 nd->path = nd->root;
849 d = nd->path.dentry;
850 nd->inode = d->d_inode;
851 nd->seq = nd->root_seq;
852 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
853 return -ECHILD;
854 } else {
855 path_put(&nd->path);
856 nd->path = nd->root;
857 path_get(&nd->path);
858 nd->inode = nd->path.dentry->d_inode;
859 }
860 nd->flags |= LOOKUP_JUMPED;
861 return 0;
862 }
863
864 /*
865 * Helper to directly jump to a known parsed path from ->get_link,
866 * caller must have taken a reference to path beforehand.
867 */
868 void nd_jump_link(struct path *path)
869 {
870 struct nameidata *nd = current->nameidata;
871 path_put(&nd->path);
872
873 nd->path = *path;
874 nd->inode = nd->path.dentry->d_inode;
875 nd->flags |= LOOKUP_JUMPED;
876 }
877
878 static inline void put_link(struct nameidata *nd)
879 {
880 struct saved *last = nd->stack + --nd->depth;
881 do_delayed_call(&last->done);
882 if (!(nd->flags & LOOKUP_RCU))
883 path_put(&last->link);
884 }
885
886 int sysctl_protected_symlinks __read_mostly = 0;
887 int sysctl_protected_hardlinks __read_mostly = 0;
888 int sysctl_protected_fifos __read_mostly;
889 int sysctl_protected_regular __read_mostly;
890
891 /**
892 * may_follow_link - Check symlink following for unsafe situations
893 * @nd: nameidata pathwalk data
894 *
895 * In the case of the sysctl_protected_symlinks sysctl being enabled,
896 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
897 * in a sticky world-writable directory. This is to protect privileged
898 * processes from failing races against path names that may change out
899 * from under them by way of other users creating malicious symlinks.
900 * It will permit symlinks to be followed only when outside a sticky
901 * world-writable directory, or when the uid of the symlink and follower
902 * match, or when the directory owner matches the symlink's owner.
903 *
904 * Returns 0 if following the symlink is allowed, -ve on error.
905 */
906 static inline int may_follow_link(struct nameidata *nd)
907 {
908 const struct inode *inode;
909 const struct inode *parent;
910 kuid_t puid;
911
912 if (!sysctl_protected_symlinks)
913 return 0;
914
915 /* Allowed if owner and follower match. */
916 inode = nd->link_inode;
917 if (uid_eq(current_cred()->fsuid, inode->i_uid))
918 return 0;
919
920 /* Allowed if parent directory not sticky and world-writable. */
921 parent = nd->inode;
922 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
923 return 0;
924
925 /* Allowed if parent directory and link owner match. */
926 puid = parent->i_uid;
927 if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
928 return 0;
929
930 if (nd->flags & LOOKUP_RCU)
931 return -ECHILD;
932
933 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
934 audit_log_link_denied("follow_link");
935 return -EACCES;
936 }
937
938 /**
939 * safe_hardlink_source - Check for safe hardlink conditions
940 * @inode: the source inode to hardlink from
941 *
942 * Return false if at least one of the following conditions:
943 * - inode is not a regular file
944 * - inode is setuid
945 * - inode is setgid and group-exec
946 * - access failure for read and write
947 *
948 * Otherwise returns true.
949 */
950 static bool safe_hardlink_source(struct inode *inode)
951 {
952 umode_t mode = inode->i_mode;
953
954 /* Special files should not get pinned to the filesystem. */
955 if (!S_ISREG(mode))
956 return false;
957
958 /* Setuid files should not get pinned to the filesystem. */
959 if (mode & S_ISUID)
960 return false;
961
962 /* Executable setgid files should not get pinned to the filesystem. */
963 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
964 return false;
965
966 /* Hardlinking to unreadable or unwritable sources is dangerous. */
967 if (inode_permission(inode, MAY_READ | MAY_WRITE))
968 return false;
969
970 return true;
971 }
972
973 /**
974 * may_linkat - Check permissions for creating a hardlink
975 * @link: the source to hardlink from
976 *
977 * Block hardlink when all of:
978 * - sysctl_protected_hardlinks enabled
979 * - fsuid does not match inode
980 * - hardlink source is unsafe (see safe_hardlink_source() above)
981 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
982 *
983 * Returns 0 if successful, -ve on error.
984 */
985 static int may_linkat(struct path *link)
986 {
987 struct inode *inode = link->dentry->d_inode;
988
989 /* Inode writeback is not safe when the uid or gid are invalid. */
990 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
991 return -EOVERFLOW;
992
993 if (!sysctl_protected_hardlinks)
994 return 0;
995
996 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
997 * otherwise, it must be a safe source.
998 */
999 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1000 return 0;
1001
1002 audit_log_link_denied("linkat");
1003 return -EPERM;
1004 }
1005
1006 /**
1007 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1008 * should be allowed, or not, on files that already
1009 * exist.
1010 * @dir: the sticky parent directory
1011 * @inode: the inode of the file to open
1012 *
1013 * Block an O_CREAT open of a FIFO (or a regular file) when:
1014 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1015 * - the file already exists
1016 * - we are in a sticky directory
1017 * - we don't own the file
1018 * - the owner of the directory doesn't own the file
1019 * - the directory is world writable
1020 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1021 * the directory doesn't have to be world writable: being group writable will
1022 * be enough.
1023 *
1024 * Returns 0 if the open is allowed, -ve on error.
1025 */
1026 static int may_create_in_sticky(struct dentry * const dir,
1027 struct inode * const inode)
1028 {
1029 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1030 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1031 likely(!(dir->d_inode->i_mode & S_ISVTX)) ||
1032 uid_eq(inode->i_uid, dir->d_inode->i_uid) ||
1033 uid_eq(current_fsuid(), inode->i_uid))
1034 return 0;
1035
1036 if (likely(dir->d_inode->i_mode & 0002) ||
1037 (dir->d_inode->i_mode & 0020 &&
1038 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1039 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1040 return -EACCES;
1041 }
1042 return 0;
1043 }
1044
1045 static __always_inline
1046 const char *get_link(struct nameidata *nd)
1047 {
1048 struct saved *last = nd->stack + nd->depth - 1;
1049 struct dentry *dentry = last->link.dentry;
1050 struct inode *inode = nd->link_inode;
1051 int error;
1052 const char *res;
1053
1054 if (!(nd->flags & LOOKUP_RCU)) {
1055 touch_atime(&last->link);
1056 cond_resched();
1057 } else if (atime_needs_update(&last->link, inode)) {
1058 if (unlikely(unlazy_walk(nd)))
1059 return ERR_PTR(-ECHILD);
1060 touch_atime(&last->link);
1061 }
1062
1063 error = security_inode_follow_link(dentry, inode,
1064 nd->flags & LOOKUP_RCU);
1065 if (unlikely(error))
1066 return ERR_PTR(error);
1067
1068 nd->last_type = LAST_BIND;
1069 res = inode->i_link;
1070 if (!res) {
1071 const char * (*get)(struct dentry *, struct inode *,
1072 struct delayed_call *);
1073 get = inode->i_op->get_link;
1074 if (nd->flags & LOOKUP_RCU) {
1075 res = get(NULL, inode, &last->done);
1076 if (res == ERR_PTR(-ECHILD)) {
1077 if (unlikely(unlazy_walk(nd)))
1078 return ERR_PTR(-ECHILD);
1079 res = get(dentry, inode, &last->done);
1080 }
1081 } else {
1082 res = get(dentry, inode, &last->done);
1083 }
1084 if (IS_ERR_OR_NULL(res))
1085 return res;
1086 }
1087 if (*res == '/') {
1088 if (!nd->root.mnt)
1089 set_root(nd);
1090 if (unlikely(nd_jump_root(nd)))
1091 return ERR_PTR(-ECHILD);
1092 while (unlikely(*++res == '/'))
1093 ;
1094 }
1095 if (!*res)
1096 res = NULL;
1097 return res;
1098 }
1099
1100 /*
1101 * follow_up - Find the mountpoint of path's vfsmount
1102 *
1103 * Given a path, find the mountpoint of its source file system.
1104 * Replace @path with the path of the mountpoint in the parent mount.
1105 * Up is towards /.
1106 *
1107 * Return 1 if we went up a level and 0 if we were already at the
1108 * root.
1109 */
1110 int follow_up(struct path *path)
1111 {
1112 struct mount *mnt = real_mount(path->mnt);
1113 struct mount *parent;
1114 struct dentry *mountpoint;
1115
1116 read_seqlock_excl(&mount_lock);
1117 parent = mnt->mnt_parent;
1118 if (parent == mnt) {
1119 read_sequnlock_excl(&mount_lock);
1120 return 0;
1121 }
1122 mntget(&parent->mnt);
1123 mountpoint = dget(mnt->mnt_mountpoint);
1124 read_sequnlock_excl(&mount_lock);
1125 dput(path->dentry);
1126 path->dentry = mountpoint;
1127 mntput(path->mnt);
1128 path->mnt = &parent->mnt;
1129 return 1;
1130 }
1131 EXPORT_SYMBOL(follow_up);
1132
1133 /*
1134 * Perform an automount
1135 * - return -EISDIR to tell follow_managed() to stop and return the path we
1136 * were called with.
1137 */
1138 static int follow_automount(struct path *path, struct nameidata *nd,
1139 bool *need_mntput)
1140 {
1141 struct vfsmount *mnt;
1142 int err;
1143
1144 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1145 return -EREMOTE;
1146
1147 /* We don't want to mount if someone's just doing a stat -
1148 * unless they're stat'ing a directory and appended a '/' to
1149 * the name.
1150 *
1151 * We do, however, want to mount if someone wants to open or
1152 * create a file of any type under the mountpoint, wants to
1153 * traverse through the mountpoint or wants to open the
1154 * mounted directory. Also, autofs may mark negative dentries
1155 * as being automount points. These will need the attentions
1156 * of the daemon to instantiate them before they can be used.
1157 */
1158 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1159 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1160 path->dentry->d_inode)
1161 return -EISDIR;
1162
1163 nd->total_link_count++;
1164 if (nd->total_link_count >= 40)
1165 return -ELOOP;
1166
1167 mnt = path->dentry->d_op->d_automount(path);
1168 if (IS_ERR(mnt)) {
1169 /*
1170 * The filesystem is allowed to return -EISDIR here to indicate
1171 * it doesn't want to automount. For instance, autofs would do
1172 * this so that its userspace daemon can mount on this dentry.
1173 *
1174 * However, we can only permit this if it's a terminal point in
1175 * the path being looked up; if it wasn't then the remainder of
1176 * the path is inaccessible and we should say so.
1177 */
1178 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1179 return -EREMOTE;
1180 return PTR_ERR(mnt);
1181 }
1182
1183 if (!mnt) /* mount collision */
1184 return 0;
1185
1186 if (!*need_mntput) {
1187 /* lock_mount() may release path->mnt on error */
1188 mntget(path->mnt);
1189 *need_mntput = true;
1190 }
1191 err = finish_automount(mnt, path);
1192
1193 switch (err) {
1194 case -EBUSY:
1195 /* Someone else made a mount here whilst we were busy */
1196 return 0;
1197 case 0:
1198 path_put(path);
1199 path->mnt = mnt;
1200 path->dentry = dget(mnt->mnt_root);
1201 return 0;
1202 default:
1203 return err;
1204 }
1205
1206 }
1207
1208 /*
1209 * Handle a dentry that is managed in some way.
1210 * - Flagged for transit management (autofs)
1211 * - Flagged as mountpoint
1212 * - Flagged as automount point
1213 *
1214 * This may only be called in refwalk mode.
1215 *
1216 * Serialization is taken care of in namespace.c
1217 */
1218 static int follow_managed(struct path *path, struct nameidata *nd)
1219 {
1220 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1221 unsigned managed;
1222 bool need_mntput = false;
1223 int ret = 0;
1224
1225 /* Given that we're not holding a lock here, we retain the value in a
1226 * local variable for each dentry as we look at it so that we don't see
1227 * the components of that value change under us */
1228 while (managed = READ_ONCE(path->dentry->d_flags),
1229 managed &= DCACHE_MANAGED_DENTRY,
1230 unlikely(managed != 0)) {
1231 /* Allow the filesystem to manage the transit without i_mutex
1232 * being held. */
1233 if (managed & DCACHE_MANAGE_TRANSIT) {
1234 BUG_ON(!path->dentry->d_op);
1235 BUG_ON(!path->dentry->d_op->d_manage);
1236 ret = path->dentry->d_op->d_manage(path, false);
1237 if (ret < 0)
1238 break;
1239 }
1240
1241 /* Transit to a mounted filesystem. */
1242 if (managed & DCACHE_MOUNTED) {
1243 struct vfsmount *mounted = lookup_mnt(path);
1244 if (mounted) {
1245 dput(path->dentry);
1246 if (need_mntput)
1247 mntput(path->mnt);
1248 path->mnt = mounted;
1249 path->dentry = dget(mounted->mnt_root);
1250 need_mntput = true;
1251 continue;
1252 }
1253
1254 /* Something is mounted on this dentry in another
1255 * namespace and/or whatever was mounted there in this
1256 * namespace got unmounted before lookup_mnt() could
1257 * get it */
1258 }
1259
1260 /* Handle an automount point */
1261 if (managed & DCACHE_NEED_AUTOMOUNT) {
1262 ret = follow_automount(path, nd, &need_mntput);
1263 if (ret < 0)
1264 break;
1265 continue;
1266 }
1267
1268 /* We didn't change the current path point */
1269 break;
1270 }
1271
1272 if (need_mntput && path->mnt == mnt)
1273 mntput(path->mnt);
1274 if (ret == -EISDIR || !ret)
1275 ret = 1;
1276 if (need_mntput)
1277 nd->flags |= LOOKUP_JUMPED;
1278 if (unlikely(ret < 0))
1279 path_put_conditional(path, nd);
1280 return ret;
1281 }
1282
1283 int follow_down_one(struct path *path)
1284 {
1285 struct vfsmount *mounted;
1286
1287 mounted = lookup_mnt(path);
1288 if (mounted) {
1289 dput(path->dentry);
1290 mntput(path->mnt);
1291 path->mnt = mounted;
1292 path->dentry = dget(mounted->mnt_root);
1293 return 1;
1294 }
1295 return 0;
1296 }
1297 EXPORT_SYMBOL(follow_down_one);
1298
1299 static inline int managed_dentry_rcu(const struct path *path)
1300 {
1301 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1302 path->dentry->d_op->d_manage(path, true) : 0;
1303 }
1304
1305 /*
1306 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1307 * we meet a managed dentry that would need blocking.
1308 */
1309 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1310 struct inode **inode, unsigned *seqp)
1311 {
1312 for (;;) {
1313 struct mount *mounted;
1314 /*
1315 * Don't forget we might have a non-mountpoint managed dentry
1316 * that wants to block transit.
1317 */
1318 switch (managed_dentry_rcu(path)) {
1319 case -ECHILD:
1320 default:
1321 return false;
1322 case -EISDIR:
1323 return true;
1324 case 0:
1325 break;
1326 }
1327
1328 if (!d_mountpoint(path->dentry))
1329 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1330
1331 mounted = __lookup_mnt(path->mnt, path->dentry);
1332 if (!mounted)
1333 break;
1334 path->mnt = &mounted->mnt;
1335 path->dentry = mounted->mnt.mnt_root;
1336 nd->flags |= LOOKUP_JUMPED;
1337 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1338 /*
1339 * Update the inode too. We don't need to re-check the
1340 * dentry sequence number here after this d_inode read,
1341 * because a mount-point is always pinned.
1342 */
1343 *inode = path->dentry->d_inode;
1344 }
1345 return !read_seqretry(&mount_lock, nd->m_seq) &&
1346 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1347 }
1348
1349 static int follow_dotdot_rcu(struct nameidata *nd)
1350 {
1351 struct inode *inode = nd->inode;
1352
1353 while (1) {
1354 if (path_equal(&nd->path, &nd->root))
1355 break;
1356 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1357 struct dentry *old = nd->path.dentry;
1358 struct dentry *parent = old->d_parent;
1359 unsigned seq;
1360
1361 inode = parent->d_inode;
1362 seq = read_seqcount_begin(&parent->d_seq);
1363 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1364 return -ECHILD;
1365 nd->path.dentry = parent;
1366 nd->seq = seq;
1367 if (unlikely(!path_connected(&nd->path)))
1368 return -ENOENT;
1369 break;
1370 } else {
1371 struct mount *mnt = real_mount(nd->path.mnt);
1372 struct mount *mparent = mnt->mnt_parent;
1373 struct dentry *mountpoint = mnt->mnt_mountpoint;
1374 struct inode *inode2 = mountpoint->d_inode;
1375 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1376 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1377 return -ECHILD;
1378 if (&mparent->mnt == nd->path.mnt)
1379 break;
1380 /* we know that mountpoint was pinned */
1381 nd->path.dentry = mountpoint;
1382 nd->path.mnt = &mparent->mnt;
1383 inode = inode2;
1384 nd->seq = seq;
1385 }
1386 }
1387 while (unlikely(d_mountpoint(nd->path.dentry))) {
1388 struct mount *mounted;
1389 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1390 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1391 return -ECHILD;
1392 if (!mounted)
1393 break;
1394 nd->path.mnt = &mounted->mnt;
1395 nd->path.dentry = mounted->mnt.mnt_root;
1396 inode = nd->path.dentry->d_inode;
1397 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1398 }
1399 nd->inode = inode;
1400 return 0;
1401 }
1402
1403 /*
1404 * Follow down to the covering mount currently visible to userspace. At each
1405 * point, the filesystem owning that dentry may be queried as to whether the
1406 * caller is permitted to proceed or not.
1407 */
1408 int follow_down(struct path *path)
1409 {
1410 unsigned managed;
1411 int ret;
1412
1413 while (managed = READ_ONCE(path->dentry->d_flags),
1414 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1415 /* Allow the filesystem to manage the transit without i_mutex
1416 * being held.
1417 *
1418 * We indicate to the filesystem if someone is trying to mount
1419 * something here. This gives autofs the chance to deny anyone
1420 * other than its daemon the right to mount on its
1421 * superstructure.
1422 *
1423 * The filesystem may sleep at this point.
1424 */
1425 if (managed & DCACHE_MANAGE_TRANSIT) {
1426 BUG_ON(!path->dentry->d_op);
1427 BUG_ON(!path->dentry->d_op->d_manage);
1428 ret = path->dentry->d_op->d_manage(path, false);
1429 if (ret < 0)
1430 return ret == -EISDIR ? 0 : ret;
1431 }
1432
1433 /* Transit to a mounted filesystem. */
1434 if (managed & DCACHE_MOUNTED) {
1435 struct vfsmount *mounted = lookup_mnt(path);
1436 if (!mounted)
1437 break;
1438 dput(path->dentry);
1439 mntput(path->mnt);
1440 path->mnt = mounted;
1441 path->dentry = dget(mounted->mnt_root);
1442 continue;
1443 }
1444
1445 /* Don't handle automount points here */
1446 break;
1447 }
1448 return 0;
1449 }
1450 EXPORT_SYMBOL(follow_down);
1451
1452 /*
1453 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1454 */
1455 static void follow_mount(struct path *path)
1456 {
1457 while (d_mountpoint(path->dentry)) {
1458 struct vfsmount *mounted = lookup_mnt(path);
1459 if (!mounted)
1460 break;
1461 dput(path->dentry);
1462 mntput(path->mnt);
1463 path->mnt = mounted;
1464 path->dentry = dget(mounted->mnt_root);
1465 }
1466 }
1467
1468 static int path_parent_directory(struct path *path)
1469 {
1470 struct dentry *old = path->dentry;
1471 /* rare case of legitimate dget_parent()... */
1472 path->dentry = dget_parent(path->dentry);
1473 dput(old);
1474 if (unlikely(!path_connected(path)))
1475 return -ENOENT;
1476 return 0;
1477 }
1478
1479 static int follow_dotdot(struct nameidata *nd)
1480 {
1481 while(1) {
1482 if (path_equal(&nd->path, &nd->root))
1483 break;
1484 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1485 int ret = path_parent_directory(&nd->path);
1486 if (ret)
1487 return ret;
1488 break;
1489 }
1490 if (!follow_up(&nd->path))
1491 break;
1492 }
1493 follow_mount(&nd->path);
1494 nd->inode = nd->path.dentry->d_inode;
1495 return 0;
1496 }
1497
1498 /*
1499 * This looks up the name in dcache and possibly revalidates the found dentry.
1500 * NULL is returned if the dentry does not exist in the cache.
1501 */
1502 static struct dentry *lookup_dcache(const struct qstr *name,
1503 struct dentry *dir,
1504 unsigned int flags)
1505 {
1506 struct dentry *dentry = d_lookup(dir, name);
1507 if (dentry) {
1508 int error = d_revalidate(dentry, flags);
1509 if (unlikely(error <= 0)) {
1510 if (!error)
1511 d_invalidate(dentry);
1512 dput(dentry);
1513 return ERR_PTR(error);
1514 }
1515 }
1516 return dentry;
1517 }
1518
1519 /*
1520 * Parent directory has inode locked exclusive. This is one
1521 * and only case when ->lookup() gets called on non in-lookup
1522 * dentries - as the matter of fact, this only gets called
1523 * when directory is guaranteed to have no in-lookup children
1524 * at all.
1525 */
1526 static struct dentry *__lookup_hash(const struct qstr *name,
1527 struct dentry *base, unsigned int flags)
1528 {
1529 struct dentry *dentry = lookup_dcache(name, base, flags);
1530 struct dentry *old;
1531 struct inode *dir = base->d_inode;
1532
1533 if (dentry)
1534 return dentry;
1535
1536 /* Don't create child dentry for a dead directory. */
1537 if (unlikely(IS_DEADDIR(dir)))
1538 return ERR_PTR(-ENOENT);
1539
1540 dentry = d_alloc(base, name);
1541 if (unlikely(!dentry))
1542 return ERR_PTR(-ENOMEM);
1543
1544 old = dir->i_op->lookup(dir, dentry, flags);
1545 if (unlikely(old)) {
1546 dput(dentry);
1547 dentry = old;
1548 }
1549 return dentry;
1550 }
1551
1552 static int lookup_fast(struct nameidata *nd,
1553 struct path *path, struct inode **inode,
1554 unsigned *seqp)
1555 {
1556 struct vfsmount *mnt = nd->path.mnt;
1557 struct dentry *dentry, *parent = nd->path.dentry;
1558 int status = 1;
1559 int err;
1560
1561 /*
1562 * Rename seqlock is not required here because in the off chance
1563 * of a false negative due to a concurrent rename, the caller is
1564 * going to fall back to non-racy lookup.
1565 */
1566 if (nd->flags & LOOKUP_RCU) {
1567 unsigned seq;
1568 bool negative;
1569 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1570 if (unlikely(!dentry)) {
1571 if (unlazy_walk(nd))
1572 return -ECHILD;
1573 return 0;
1574 }
1575
1576 /*
1577 * This sequence count validates that the inode matches
1578 * the dentry name information from lookup.
1579 */
1580 *inode = d_backing_inode(dentry);
1581 negative = d_is_negative(dentry);
1582 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1583 return -ECHILD;
1584
1585 /*
1586 * This sequence count validates that the parent had no
1587 * changes while we did the lookup of the dentry above.
1588 *
1589 * The memory barrier in read_seqcount_begin of child is
1590 * enough, we can use __read_seqcount_retry here.
1591 */
1592 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1593 return -ECHILD;
1594
1595 *seqp = seq;
1596 status = d_revalidate(dentry, nd->flags);
1597 if (likely(status > 0)) {
1598 /*
1599 * Note: do negative dentry check after revalidation in
1600 * case that drops it.
1601 */
1602 if (unlikely(negative))
1603 return -ENOENT;
1604 path->mnt = mnt;
1605 path->dentry = dentry;
1606 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1607 return 1;
1608 }
1609 if (unlazy_child(nd, dentry, seq))
1610 return -ECHILD;
1611 if (unlikely(status == -ECHILD))
1612 /* we'd been told to redo it in non-rcu mode */
1613 status = d_revalidate(dentry, nd->flags);
1614 } else {
1615 dentry = __d_lookup(parent, &nd->last);
1616 if (unlikely(!dentry))
1617 return 0;
1618 status = d_revalidate(dentry, nd->flags);
1619 }
1620 if (unlikely(status <= 0)) {
1621 if (!status)
1622 d_invalidate(dentry);
1623 dput(dentry);
1624 return status;
1625 }
1626 if (unlikely(d_is_negative(dentry))) {
1627 dput(dentry);
1628 return -ENOENT;
1629 }
1630
1631 path->mnt = mnt;
1632 path->dentry = dentry;
1633 err = follow_managed(path, nd);
1634 if (likely(err > 0))
1635 *inode = d_backing_inode(path->dentry);
1636 return err;
1637 }
1638
1639 /* Fast lookup failed, do it the slow way */
1640 static struct dentry *__lookup_slow(const struct qstr *name,
1641 struct dentry *dir,
1642 unsigned int flags)
1643 {
1644 struct dentry *dentry, *old;
1645 struct inode *inode = dir->d_inode;
1646 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1647
1648 /* Don't go there if it's already dead */
1649 if (unlikely(IS_DEADDIR(inode)))
1650 return ERR_PTR(-ENOENT);
1651 again:
1652 dentry = d_alloc_parallel(dir, name, &wq);
1653 if (IS_ERR(dentry))
1654 return dentry;
1655 if (unlikely(!d_in_lookup(dentry))) {
1656 if (!(flags & LOOKUP_NO_REVAL)) {
1657 int error = d_revalidate(dentry, flags);
1658 if (unlikely(error <= 0)) {
1659 if (!error) {
1660 d_invalidate(dentry);
1661 dput(dentry);
1662 goto again;
1663 }
1664 dput(dentry);
1665 dentry = ERR_PTR(error);
1666 }
1667 }
1668 } else {
1669 old = inode->i_op->lookup(inode, dentry, flags);
1670 d_lookup_done(dentry);
1671 if (unlikely(old)) {
1672 dput(dentry);
1673 dentry = old;
1674 }
1675 }
1676 return dentry;
1677 }
1678
1679 static struct dentry *lookup_slow(const struct qstr *name,
1680 struct dentry *dir,
1681 unsigned int flags)
1682 {
1683 struct inode *inode = dir->d_inode;
1684 struct dentry *res;
1685 inode_lock_shared(inode);
1686 res = __lookup_slow(name, dir, flags);
1687 inode_unlock_shared(inode);
1688 return res;
1689 }
1690
1691 static inline int may_lookup(struct nameidata *nd)
1692 {
1693 if (nd->flags & LOOKUP_RCU) {
1694 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1695 if (err != -ECHILD)
1696 return err;
1697 if (unlazy_walk(nd))
1698 return -ECHILD;
1699 }
1700 return inode_permission(nd->inode, MAY_EXEC);
1701 }
1702
1703 static inline int handle_dots(struct nameidata *nd, int type)
1704 {
1705 if (type == LAST_DOTDOT) {
1706 if (!nd->root.mnt)
1707 set_root(nd);
1708 if (nd->flags & LOOKUP_RCU) {
1709 return follow_dotdot_rcu(nd);
1710 } else
1711 return follow_dotdot(nd);
1712 }
1713 return 0;
1714 }
1715
1716 static int pick_link(struct nameidata *nd, struct path *link,
1717 struct inode *inode, unsigned seq)
1718 {
1719 int error;
1720 struct saved *last;
1721 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1722 path_to_nameidata(link, nd);
1723 return -ELOOP;
1724 }
1725 if (!(nd->flags & LOOKUP_RCU)) {
1726 if (link->mnt == nd->path.mnt)
1727 mntget(link->mnt);
1728 }
1729 error = nd_alloc_stack(nd);
1730 if (unlikely(error)) {
1731 if (error == -ECHILD) {
1732 if (unlikely(!legitimize_path(nd, link, seq))) {
1733 drop_links(nd);
1734 nd->depth = 0;
1735 nd->flags &= ~LOOKUP_RCU;
1736 nd->path.mnt = NULL;
1737 nd->path.dentry = NULL;
1738 if (!(nd->flags & LOOKUP_ROOT))
1739 nd->root.mnt = NULL;
1740 rcu_read_unlock();
1741 } else if (likely(unlazy_walk(nd)) == 0)
1742 error = nd_alloc_stack(nd);
1743 }
1744 if (error) {
1745 path_put(link);
1746 return error;
1747 }
1748 }
1749
1750 last = nd->stack + nd->depth++;
1751 last->link = *link;
1752 clear_delayed_call(&last->done);
1753 nd->link_inode = inode;
1754 last->seq = seq;
1755 return 1;
1756 }
1757
1758 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1759
1760 /*
1761 * Do we need to follow links? We _really_ want to be able
1762 * to do this check without having to look at inode->i_op,
1763 * so we keep a cache of "no, this doesn't need follow_link"
1764 * for the common case.
1765 */
1766 static inline int step_into(struct nameidata *nd, struct path *path,
1767 int flags, struct inode *inode, unsigned seq)
1768 {
1769 if (!(flags & WALK_MORE) && nd->depth)
1770 put_link(nd);
1771 if (likely(!d_is_symlink(path->dentry)) ||
1772 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1773 /* not a symlink or should not follow */
1774 path_to_nameidata(path, nd);
1775 nd->inode = inode;
1776 nd->seq = seq;
1777 return 0;
1778 }
1779 /* make sure that d_is_symlink above matches inode */
1780 if (nd->flags & LOOKUP_RCU) {
1781 if (read_seqcount_retry(&path->dentry->d_seq, seq))
1782 return -ECHILD;
1783 }
1784 return pick_link(nd, path, inode, seq);
1785 }
1786
1787 static int walk_component(struct nameidata *nd, int flags)
1788 {
1789 struct path path;
1790 struct inode *inode;
1791 unsigned seq;
1792 int err;
1793 /*
1794 * "." and ".." are special - ".." especially so because it has
1795 * to be able to know about the current root directory and
1796 * parent relationships.
1797 */
1798 if (unlikely(nd->last_type != LAST_NORM)) {
1799 err = handle_dots(nd, nd->last_type);
1800 if (!(flags & WALK_MORE) && nd->depth)
1801 put_link(nd);
1802 return err;
1803 }
1804 err = lookup_fast(nd, &path, &inode, &seq);
1805 if (unlikely(err <= 0)) {
1806 if (err < 0)
1807 return err;
1808 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1809 nd->flags);
1810 if (IS_ERR(path.dentry))
1811 return PTR_ERR(path.dentry);
1812
1813 path.mnt = nd->path.mnt;
1814 err = follow_managed(&path, nd);
1815 if (unlikely(err < 0))
1816 return err;
1817
1818 if (unlikely(d_is_negative(path.dentry))) {
1819 path_to_nameidata(&path, nd);
1820 return -ENOENT;
1821 }
1822
1823 seq = 0; /* we are already out of RCU mode */
1824 inode = d_backing_inode(path.dentry);
1825 }
1826
1827 return step_into(nd, &path, flags, inode, seq);
1828 }
1829
1830 /*
1831 * We can do the critical dentry name comparison and hashing
1832 * operations one word at a time, but we are limited to:
1833 *
1834 * - Architectures with fast unaligned word accesses. We could
1835 * do a "get_unaligned()" if this helps and is sufficiently
1836 * fast.
1837 *
1838 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1839 * do not trap on the (extremely unlikely) case of a page
1840 * crossing operation.
1841 *
1842 * - Furthermore, we need an efficient 64-bit compile for the
1843 * 64-bit case in order to generate the "number of bytes in
1844 * the final mask". Again, that could be replaced with a
1845 * efficient population count instruction or similar.
1846 */
1847 #ifdef CONFIG_DCACHE_WORD_ACCESS
1848
1849 #include <asm/word-at-a-time.h>
1850
1851 #ifdef HASH_MIX
1852
1853 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1854
1855 #elif defined(CONFIG_64BIT)
1856 /*
1857 * Register pressure in the mixing function is an issue, particularly
1858 * on 32-bit x86, but almost any function requires one state value and
1859 * one temporary. Instead, use a function designed for two state values
1860 * and no temporaries.
1861 *
1862 * This function cannot create a collision in only two iterations, so
1863 * we have two iterations to achieve avalanche. In those two iterations,
1864 * we have six layers of mixing, which is enough to spread one bit's
1865 * influence out to 2^6 = 64 state bits.
1866 *
1867 * Rotate constants are scored by considering either 64 one-bit input
1868 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1869 * probability of that delta causing a change to each of the 128 output
1870 * bits, using a sample of random initial states.
1871 *
1872 * The Shannon entropy of the computed probabilities is then summed
1873 * to produce a score. Ideally, any input change has a 50% chance of
1874 * toggling any given output bit.
1875 *
1876 * Mixing scores (in bits) for (12,45):
1877 * Input delta: 1-bit 2-bit
1878 * 1 round: 713.3 42542.6
1879 * 2 rounds: 2753.7 140389.8
1880 * 3 rounds: 5954.1 233458.2
1881 * 4 rounds: 7862.6 256672.2
1882 * Perfect: 8192 258048
1883 * (64*128) (64*63/2 * 128)
1884 */
1885 #define HASH_MIX(x, y, a) \
1886 ( x ^= (a), \
1887 y ^= x, x = rol64(x,12),\
1888 x += y, y = rol64(y,45),\
1889 y *= 9 )
1890
1891 /*
1892 * Fold two longs into one 32-bit hash value. This must be fast, but
1893 * latency isn't quite as critical, as there is a fair bit of additional
1894 * work done before the hash value is used.
1895 */
1896 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1897 {
1898 y ^= x * GOLDEN_RATIO_64;
1899 y *= GOLDEN_RATIO_64;
1900 return y >> 32;
1901 }
1902
1903 #else /* 32-bit case */
1904
1905 /*
1906 * Mixing scores (in bits) for (7,20):
1907 * Input delta: 1-bit 2-bit
1908 * 1 round: 330.3 9201.6
1909 * 2 rounds: 1246.4 25475.4
1910 * 3 rounds: 1907.1 31295.1
1911 * 4 rounds: 2042.3 31718.6
1912 * Perfect: 2048 31744
1913 * (32*64) (32*31/2 * 64)
1914 */
1915 #define HASH_MIX(x, y, a) \
1916 ( x ^= (a), \
1917 y ^= x, x = rol32(x, 7),\
1918 x += y, y = rol32(y,20),\
1919 y *= 9 )
1920
1921 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1922 {
1923 /* Use arch-optimized multiply if one exists */
1924 return __hash_32(y ^ __hash_32(x));
1925 }
1926
1927 #endif
1928
1929 /*
1930 * Return the hash of a string of known length. This is carfully
1931 * designed to match hash_name(), which is the more critical function.
1932 * In particular, we must end by hashing a final word containing 0..7
1933 * payload bytes, to match the way that hash_name() iterates until it
1934 * finds the delimiter after the name.
1935 */
1936 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1937 {
1938 unsigned long a, x = 0, y = (unsigned long)salt;
1939
1940 for (;;) {
1941 if (!len)
1942 goto done;
1943 a = load_unaligned_zeropad(name);
1944 if (len < sizeof(unsigned long))
1945 break;
1946 HASH_MIX(x, y, a);
1947 name += sizeof(unsigned long);
1948 len -= sizeof(unsigned long);
1949 }
1950 x ^= a & bytemask_from_count(len);
1951 done:
1952 return fold_hash(x, y);
1953 }
1954 EXPORT_SYMBOL(full_name_hash);
1955
1956 /* Return the "hash_len" (hash and length) of a null-terminated string */
1957 u64 hashlen_string(const void *salt, const char *name)
1958 {
1959 unsigned long a = 0, x = 0, y = (unsigned long)salt;
1960 unsigned long adata, mask, len;
1961 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1962
1963 len = 0;
1964 goto inside;
1965
1966 do {
1967 HASH_MIX(x, y, a);
1968 len += sizeof(unsigned long);
1969 inside:
1970 a = load_unaligned_zeropad(name+len);
1971 } while (!has_zero(a, &adata, &constants));
1972
1973 adata = prep_zero_mask(a, adata, &constants);
1974 mask = create_zero_mask(adata);
1975 x ^= a & zero_bytemask(mask);
1976
1977 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1978 }
1979 EXPORT_SYMBOL(hashlen_string);
1980
1981 /*
1982 * Calculate the length and hash of the path component, and
1983 * return the "hash_len" as the result.
1984 */
1985 static inline u64 hash_name(const void *salt, const char *name)
1986 {
1987 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1988 unsigned long adata, bdata, mask, len;
1989 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1990
1991 len = 0;
1992 goto inside;
1993
1994 do {
1995 HASH_MIX(x, y, a);
1996 len += sizeof(unsigned long);
1997 inside:
1998 a = load_unaligned_zeropad(name+len);
1999 b = a ^ REPEAT_BYTE('/');
2000 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2001
2002 adata = prep_zero_mask(a, adata, &constants);
2003 bdata = prep_zero_mask(b, bdata, &constants);
2004 mask = create_zero_mask(adata | bdata);
2005 x ^= a & zero_bytemask(mask);
2006
2007 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2008 }
2009
2010 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2011
2012 /* Return the hash of a string of known length */
2013 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2014 {
2015 unsigned long hash = init_name_hash(salt);
2016 while (len--)
2017 hash = partial_name_hash((unsigned char)*name++, hash);
2018 return end_name_hash(hash);
2019 }
2020 EXPORT_SYMBOL(full_name_hash);
2021
2022 /* Return the "hash_len" (hash and length) of a null-terminated string */
2023 u64 hashlen_string(const void *salt, const char *name)
2024 {
2025 unsigned long hash = init_name_hash(salt);
2026 unsigned long len = 0, c;
2027
2028 c = (unsigned char)*name;
2029 while (c) {
2030 len++;
2031 hash = partial_name_hash(c, hash);
2032 c = (unsigned char)name[len];
2033 }
2034 return hashlen_create(end_name_hash(hash), len);
2035 }
2036 EXPORT_SYMBOL(hashlen_string);
2037
2038 /*
2039 * We know there's a real path component here of at least
2040 * one character.
2041 */
2042 static inline u64 hash_name(const void *salt, const char *name)
2043 {
2044 unsigned long hash = init_name_hash(salt);
2045 unsigned long len = 0, c;
2046
2047 c = (unsigned char)*name;
2048 do {
2049 len++;
2050 hash = partial_name_hash(c, hash);
2051 c = (unsigned char)name[len];
2052 } while (c && c != '/');
2053 return hashlen_create(end_name_hash(hash), len);
2054 }
2055
2056 #endif
2057
2058 /*
2059 * Name resolution.
2060 * This is the basic name resolution function, turning a pathname into
2061 * the final dentry. We expect 'base' to be positive and a directory.
2062 *
2063 * Returns 0 and nd will have valid dentry and mnt on success.
2064 * Returns error and drops reference to input namei data on failure.
2065 */
2066 static int link_path_walk(const char *name, struct nameidata *nd)
2067 {
2068 int err;
2069
2070 if (IS_ERR(name))
2071 return PTR_ERR(name);
2072 while (*name=='/')
2073 name++;
2074 if (!*name)
2075 return 0;
2076
2077 /* At this point we know we have a real path component. */
2078 for(;;) {
2079 u64 hash_len;
2080 int type;
2081
2082 err = may_lookup(nd);
2083 if (err)
2084 return err;
2085
2086 hash_len = hash_name(nd->path.dentry, name);
2087
2088 type = LAST_NORM;
2089 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2090 case 2:
2091 if (name[1] == '.') {
2092 type = LAST_DOTDOT;
2093 nd->flags |= LOOKUP_JUMPED;
2094 }
2095 break;
2096 case 1:
2097 type = LAST_DOT;
2098 }
2099 if (likely(type == LAST_NORM)) {
2100 struct dentry *parent = nd->path.dentry;
2101 nd->flags &= ~LOOKUP_JUMPED;
2102 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2103 struct qstr this = { { .hash_len = hash_len }, .name = name };
2104 err = parent->d_op->d_hash(parent, &this);
2105 if (err < 0)
2106 return err;
2107 hash_len = this.hash_len;
2108 name = this.name;
2109 }
2110 }
2111
2112 nd->last.hash_len = hash_len;
2113 nd->last.name = name;
2114 nd->last_type = type;
2115
2116 name += hashlen_len(hash_len);
2117 if (!*name)
2118 goto OK;
2119 /*
2120 * If it wasn't NUL, we know it was '/'. Skip that
2121 * slash, and continue until no more slashes.
2122 */
2123 do {
2124 name++;
2125 } while (unlikely(*name == '/'));
2126 if (unlikely(!*name)) {
2127 OK:
2128 /* pathname body, done */
2129 if (!nd->depth)
2130 return 0;
2131 name = nd->stack[nd->depth - 1].name;
2132 /* trailing symlink, done */
2133 if (!name)
2134 return 0;
2135 /* last component of nested symlink */
2136 err = walk_component(nd, WALK_FOLLOW);
2137 } else {
2138 /* not the last component */
2139 err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2140 }
2141 if (err < 0)
2142 return err;
2143
2144 if (err) {
2145 const char *s = get_link(nd);
2146
2147 if (IS_ERR(s))
2148 return PTR_ERR(s);
2149 err = 0;
2150 if (unlikely(!s)) {
2151 /* jumped */
2152 put_link(nd);
2153 } else {
2154 nd->stack[nd->depth - 1].name = name;
2155 name = s;
2156 continue;
2157 }
2158 }
2159 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2160 if (nd->flags & LOOKUP_RCU) {
2161 if (unlazy_walk(nd))
2162 return -ECHILD;
2163 }
2164 return -ENOTDIR;
2165 }
2166 }
2167 }
2168
2169 /* must be paired with terminate_walk() */
2170 static const char *path_init(struct nameidata *nd, unsigned flags)
2171 {
2172 const char *s = nd->name->name;
2173
2174 if (!*s)
2175 flags &= ~LOOKUP_RCU;
2176 if (flags & LOOKUP_RCU)
2177 rcu_read_lock();
2178
2179 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2180 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2181 nd->depth = 0;
2182 if (flags & LOOKUP_ROOT) {
2183 struct dentry *root = nd->root.dentry;
2184 struct inode *inode = root->d_inode;
2185 if (*s && unlikely(!d_can_lookup(root)))
2186 return ERR_PTR(-ENOTDIR);
2187 nd->path = nd->root;
2188 nd->inode = inode;
2189 if (flags & LOOKUP_RCU) {
2190 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2191 nd->root_seq = nd->seq;
2192 nd->m_seq = read_seqbegin(&mount_lock);
2193 } else {
2194 path_get(&nd->path);
2195 }
2196 return s;
2197 }
2198
2199 nd->root.mnt = NULL;
2200 nd->path.mnt = NULL;
2201 nd->path.dentry = NULL;
2202
2203 nd->m_seq = read_seqbegin(&mount_lock);
2204 if (*s == '/') {
2205 set_root(nd);
2206 if (likely(!nd_jump_root(nd)))
2207 return s;
2208 return ERR_PTR(-ECHILD);
2209 } else if (nd->dfd == AT_FDCWD) {
2210 if (flags & LOOKUP_RCU) {
2211 struct fs_struct *fs = current->fs;
2212 unsigned seq;
2213
2214 do {
2215 seq = read_seqcount_begin(&fs->seq);
2216 nd->path = fs->pwd;
2217 nd->inode = nd->path.dentry->d_inode;
2218 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2219 } while (read_seqcount_retry(&fs->seq, seq));
2220 } else {
2221 get_fs_pwd(current->fs, &nd->path);
2222 nd->inode = nd->path.dentry->d_inode;
2223 }
2224 return s;
2225 } else {
2226 /* Caller must check execute permissions on the starting path component */
2227 struct fd f = fdget_raw(nd->dfd);
2228 struct dentry *dentry;
2229
2230 if (!f.file)
2231 return ERR_PTR(-EBADF);
2232
2233 dentry = f.file->f_path.dentry;
2234
2235 if (*s && unlikely(!d_can_lookup(dentry))) {
2236 fdput(f);
2237 return ERR_PTR(-ENOTDIR);
2238 }
2239
2240 nd->path = f.file->f_path;
2241 if (flags & LOOKUP_RCU) {
2242 nd->inode = nd->path.dentry->d_inode;
2243 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2244 } else {
2245 path_get(&nd->path);
2246 nd->inode = nd->path.dentry->d_inode;
2247 }
2248 fdput(f);
2249 return s;
2250 }
2251 }
2252
2253 static const char *trailing_symlink(struct nameidata *nd)
2254 {
2255 const char *s;
2256 int error = may_follow_link(nd);
2257 if (unlikely(error))
2258 return ERR_PTR(error);
2259 nd->flags |= LOOKUP_PARENT;
2260 nd->stack[0].name = NULL;
2261 s = get_link(nd);
2262 return s ? s : "";
2263 }
2264
2265 static inline int lookup_last(struct nameidata *nd)
2266 {
2267 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2268 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2269
2270 nd->flags &= ~LOOKUP_PARENT;
2271 return walk_component(nd, 0);
2272 }
2273
2274 static int handle_lookup_down(struct nameidata *nd)
2275 {
2276 struct path path = nd->path;
2277 struct inode *inode = nd->inode;
2278 unsigned seq = nd->seq;
2279 int err;
2280
2281 if (nd->flags & LOOKUP_RCU) {
2282 /*
2283 * don't bother with unlazy_walk on failure - we are
2284 * at the very beginning of walk, so we lose nothing
2285 * if we simply redo everything in non-RCU mode
2286 */
2287 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2288 return -ECHILD;
2289 } else {
2290 dget(path.dentry);
2291 err = follow_managed(&path, nd);
2292 if (unlikely(err < 0))
2293 return err;
2294 inode = d_backing_inode(path.dentry);
2295 seq = 0;
2296 }
2297 path_to_nameidata(&path, nd);
2298 nd->inode = inode;
2299 nd->seq = seq;
2300 return 0;
2301 }
2302
2303 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2304 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2305 {
2306 const char *s = path_init(nd, flags);
2307 int err;
2308
2309 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2310 err = handle_lookup_down(nd);
2311 if (unlikely(err < 0))
2312 s = ERR_PTR(err);
2313 }
2314
2315 while (!(err = link_path_walk(s, nd))
2316 && ((err = lookup_last(nd)) > 0)) {
2317 s = trailing_symlink(nd);
2318 }
2319 if (!err)
2320 err = complete_walk(nd);
2321
2322 if (!err && nd->flags & LOOKUP_DIRECTORY)
2323 if (!d_can_lookup(nd->path.dentry))
2324 err = -ENOTDIR;
2325 if (!err) {
2326 *path = nd->path;
2327 nd->path.mnt = NULL;
2328 nd->path.dentry = NULL;
2329 }
2330 terminate_walk(nd);
2331 return err;
2332 }
2333
2334 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2335 struct path *path, struct path *root)
2336 {
2337 int retval;
2338 struct nameidata nd;
2339 if (IS_ERR(name))
2340 return PTR_ERR(name);
2341 if (unlikely(root)) {
2342 nd.root = *root;
2343 flags |= LOOKUP_ROOT;
2344 }
2345 set_nameidata(&nd, dfd, name);
2346 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2347 if (unlikely(retval == -ECHILD))
2348 retval = path_lookupat(&nd, flags, path);
2349 if (unlikely(retval == -ESTALE))
2350 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2351
2352 if (likely(!retval))
2353 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2354 restore_nameidata();
2355 putname(name);
2356 return retval;
2357 }
2358
2359 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2360 static int path_parentat(struct nameidata *nd, unsigned flags,
2361 struct path *parent)
2362 {
2363 const char *s = path_init(nd, flags);
2364 int err = link_path_walk(s, nd);
2365 if (!err)
2366 err = complete_walk(nd);
2367 if (!err) {
2368 *parent = nd->path;
2369 nd->path.mnt = NULL;
2370 nd->path.dentry = NULL;
2371 }
2372 terminate_walk(nd);
2373 return err;
2374 }
2375
2376 static struct filename *filename_parentat(int dfd, struct filename *name,
2377 unsigned int flags, struct path *parent,
2378 struct qstr *last, int *type)
2379 {
2380 int retval;
2381 struct nameidata nd;
2382
2383 if (IS_ERR(name))
2384 return name;
2385 set_nameidata(&nd, dfd, name);
2386 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2387 if (unlikely(retval == -ECHILD))
2388 retval = path_parentat(&nd, flags, parent);
2389 if (unlikely(retval == -ESTALE))
2390 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2391 if (likely(!retval)) {
2392 *last = nd.last;
2393 *type = nd.last_type;
2394 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2395 } else {
2396 putname(name);
2397 name = ERR_PTR(retval);
2398 }
2399 restore_nameidata();
2400 return name;
2401 }
2402
2403 /* does lookup, returns the object with parent locked */
2404 struct dentry *kern_path_locked(const char *name, struct path *path)
2405 {
2406 struct filename *filename;
2407 struct dentry *d;
2408 struct qstr last;
2409 int type;
2410
2411 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2412 &last, &type);
2413 if (IS_ERR(filename))
2414 return ERR_CAST(filename);
2415 if (unlikely(type != LAST_NORM)) {
2416 path_put(path);
2417 putname(filename);
2418 return ERR_PTR(-EINVAL);
2419 }
2420 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2421 d = __lookup_hash(&last, path->dentry, 0);
2422 if (IS_ERR(d)) {
2423 inode_unlock(path->dentry->d_inode);
2424 path_put(path);
2425 }
2426 putname(filename);
2427 return d;
2428 }
2429
2430 int kern_path(const char *name, unsigned int flags, struct path *path)
2431 {
2432 return filename_lookup(AT_FDCWD, getname_kernel(name),
2433 flags, path, NULL);
2434 }
2435 EXPORT_SYMBOL(kern_path);
2436
2437 /**
2438 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2439 * @dentry: pointer to dentry of the base directory
2440 * @mnt: pointer to vfs mount of the base directory
2441 * @name: pointer to file name
2442 * @flags: lookup flags
2443 * @path: pointer to struct path to fill
2444 */
2445 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2446 const char *name, unsigned int flags,
2447 struct path *path)
2448 {
2449 struct path root = {.mnt = mnt, .dentry = dentry};
2450 /* the first argument of filename_lookup() is ignored with root */
2451 return filename_lookup(AT_FDCWD, getname_kernel(name),
2452 flags , path, &root);
2453 }
2454 EXPORT_SYMBOL(vfs_path_lookup);
2455
2456 static int lookup_one_len_common(const char *name, struct dentry *base,
2457 int len, struct qstr *this)
2458 {
2459 this->name = name;
2460 this->len = len;
2461 this->hash = full_name_hash(base, name, len);
2462 if (!len)
2463 return -EACCES;
2464
2465 if (unlikely(name[0] == '.')) {
2466 if (len < 2 || (len == 2 && name[1] == '.'))
2467 return -EACCES;
2468 }
2469
2470 while (len--) {
2471 unsigned int c = *(const unsigned char *)name++;
2472 if (c == '/' || c == '\0')
2473 return -EACCES;
2474 }
2475 /*
2476 * See if the low-level filesystem might want
2477 * to use its own hash..
2478 */
2479 if (base->d_flags & DCACHE_OP_HASH) {
2480 int err = base->d_op->d_hash(base, this);
2481 if (err < 0)
2482 return err;
2483 }
2484
2485 return inode_permission(base->d_inode, MAY_EXEC);
2486 }
2487
2488 /**
2489 * try_lookup_one_len - filesystem helper to lookup single pathname component
2490 * @name: pathname component to lookup
2491 * @base: base directory to lookup from
2492 * @len: maximum length @len should be interpreted to
2493 *
2494 * Look up a dentry by name in the dcache, returning NULL if it does not
2495 * currently exist. The function does not try to create a dentry.
2496 *
2497 * Note that this routine is purely a helper for filesystem usage and should
2498 * not be called by generic code.
2499 *
2500 * The caller must hold base->i_mutex.
2501 */
2502 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2503 {
2504 struct qstr this;
2505 int err;
2506
2507 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2508
2509 err = lookup_one_len_common(name, base, len, &this);
2510 if (err)
2511 return ERR_PTR(err);
2512
2513 return lookup_dcache(&this, base, 0);
2514 }
2515 EXPORT_SYMBOL(try_lookup_one_len);
2516
2517 /**
2518 * lookup_one_len - filesystem helper to lookup single pathname component
2519 * @name: pathname component to lookup
2520 * @base: base directory to lookup from
2521 * @len: maximum length @len should be interpreted to
2522 *
2523 * Note that this routine is purely a helper for filesystem usage and should
2524 * not be called by generic code.
2525 *
2526 * The caller must hold base->i_mutex.
2527 */
2528 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2529 {
2530 struct dentry *dentry;
2531 struct qstr this;
2532 int err;
2533
2534 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2535
2536 err = lookup_one_len_common(name, base, len, &this);
2537 if (err)
2538 return ERR_PTR(err);
2539
2540 dentry = lookup_dcache(&this, base, 0);
2541 return dentry ? dentry : __lookup_slow(&this, base, 0);
2542 }
2543 EXPORT_SYMBOL(lookup_one_len);
2544
2545 /**
2546 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2547 * @name: pathname component to lookup
2548 * @base: base directory to lookup from
2549 * @len: maximum length @len should be interpreted to
2550 *
2551 * Note that this routine is purely a helper for filesystem usage and should
2552 * not be called by generic code.
2553 *
2554 * Unlike lookup_one_len, it should be called without the parent
2555 * i_mutex held, and will take the i_mutex itself if necessary.
2556 */
2557 struct dentry *lookup_one_len_unlocked(const char *name,
2558 struct dentry *base, int len)
2559 {
2560 struct qstr this;
2561 int err;
2562 struct dentry *ret;
2563
2564 err = lookup_one_len_common(name, base, len, &this);
2565 if (err)
2566 return ERR_PTR(err);
2567
2568 ret = lookup_dcache(&this, base, 0);
2569 if (!ret)
2570 ret = lookup_slow(&this, base, 0);
2571 return ret;
2572 }
2573 EXPORT_SYMBOL(lookup_one_len_unlocked);
2574
2575 #ifdef CONFIG_UNIX98_PTYS
2576 int path_pts(struct path *path)
2577 {
2578 /* Find something mounted on "pts" in the same directory as
2579 * the input path.
2580 */
2581 struct dentry *child, *parent;
2582 struct qstr this;
2583 int ret;
2584
2585 ret = path_parent_directory(path);
2586 if (ret)
2587 return ret;
2588
2589 parent = path->dentry;
2590 this.name = "pts";
2591 this.len = 3;
2592 child = d_hash_and_lookup(parent, &this);
2593 if (!child)
2594 return -ENOENT;
2595
2596 path->dentry = child;
2597 dput(parent);
2598 follow_mount(path);
2599 return 0;
2600 }
2601 #endif
2602
2603 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2604 struct path *path, int *empty)
2605 {
2606 return filename_lookup(dfd, getname_flags(name, flags, empty),
2607 flags, path, NULL);
2608 }
2609 EXPORT_SYMBOL(user_path_at_empty);
2610
2611 /**
2612 * mountpoint_last - look up last component for umount
2613 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2614 *
2615 * This is a special lookup_last function just for umount. In this case, we
2616 * need to resolve the path without doing any revalidation.
2617 *
2618 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2619 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2620 * in almost all cases, this lookup will be served out of the dcache. The only
2621 * cases where it won't are if nd->last refers to a symlink or the path is
2622 * bogus and it doesn't exist.
2623 *
2624 * Returns:
2625 * -error: if there was an error during lookup. This includes -ENOENT if the
2626 * lookup found a negative dentry.
2627 *
2628 * 0: if we successfully resolved nd->last and found it to not to be a
2629 * symlink that needs to be followed.
2630 *
2631 * 1: if we successfully resolved nd->last and found it to be a symlink
2632 * that needs to be followed.
2633 */
2634 static int
2635 mountpoint_last(struct nameidata *nd)
2636 {
2637 int error = 0;
2638 struct dentry *dir = nd->path.dentry;
2639 struct path path;
2640
2641 /* If we're in rcuwalk, drop out of it to handle last component */
2642 if (nd->flags & LOOKUP_RCU) {
2643 if (unlazy_walk(nd))
2644 return -ECHILD;
2645 }
2646
2647 nd->flags &= ~LOOKUP_PARENT;
2648
2649 if (unlikely(nd->last_type != LAST_NORM)) {
2650 error = handle_dots(nd, nd->last_type);
2651 if (error)
2652 return error;
2653 path.dentry = dget(nd->path.dentry);
2654 } else {
2655 path.dentry = d_lookup(dir, &nd->last);
2656 if (!path.dentry) {
2657 /*
2658 * No cached dentry. Mounted dentries are pinned in the
2659 * cache, so that means that this dentry is probably
2660 * a symlink or the path doesn't actually point
2661 * to a mounted dentry.
2662 */
2663 path.dentry = lookup_slow(&nd->last, dir,
2664 nd->flags | LOOKUP_NO_REVAL);
2665 if (IS_ERR(path.dentry))
2666 return PTR_ERR(path.dentry);
2667 }
2668 }
2669 if (d_is_negative(path.dentry)) {
2670 dput(path.dentry);
2671 return -ENOENT;
2672 }
2673 path.mnt = nd->path.mnt;
2674 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2675 }
2676
2677 /**
2678 * path_mountpoint - look up a path to be umounted
2679 * @nd: lookup context
2680 * @flags: lookup flags
2681 * @path: pointer to container for result
2682 *
2683 * Look up the given name, but don't attempt to revalidate the last component.
2684 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2685 */
2686 static int
2687 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2688 {
2689 const char *s = path_init(nd, flags);
2690 int err;
2691
2692 while (!(err = link_path_walk(s, nd)) &&
2693 (err = mountpoint_last(nd)) > 0) {
2694 s = trailing_symlink(nd);
2695 }
2696 if (!err) {
2697 *path = nd->path;
2698 nd->path.mnt = NULL;
2699 nd->path.dentry = NULL;
2700 follow_mount(path);
2701 }
2702 terminate_walk(nd);
2703 return err;
2704 }
2705
2706 static int
2707 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2708 unsigned int flags)
2709 {
2710 struct nameidata nd;
2711 int error;
2712 if (IS_ERR(name))
2713 return PTR_ERR(name);
2714 set_nameidata(&nd, dfd, name);
2715 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2716 if (unlikely(error == -ECHILD))
2717 error = path_mountpoint(&nd, flags, path);
2718 if (unlikely(error == -ESTALE))
2719 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2720 if (likely(!error))
2721 audit_inode(name, path->dentry, flags & LOOKUP_NO_EVAL);
2722 restore_nameidata();
2723 putname(name);
2724 return error;
2725 }
2726
2727 /**
2728 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2729 * @dfd: directory file descriptor
2730 * @name: pathname from userland
2731 * @flags: lookup flags
2732 * @path: pointer to container to hold result
2733 *
2734 * A umount is a special case for path walking. We're not actually interested
2735 * in the inode in this situation, and ESTALE errors can be a problem. We
2736 * simply want track down the dentry and vfsmount attached at the mountpoint
2737 * and avoid revalidating the last component.
2738 *
2739 * Returns 0 and populates "path" on success.
2740 */
2741 int
2742 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2743 struct path *path)
2744 {
2745 return filename_mountpoint(dfd, getname(name), path, flags);
2746 }
2747
2748 int
2749 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2750 unsigned int flags)
2751 {
2752 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2753 }
2754 EXPORT_SYMBOL(kern_path_mountpoint);
2755
2756 int __check_sticky(struct inode *dir, struct inode *inode)
2757 {
2758 kuid_t fsuid = current_fsuid();
2759
2760 if (uid_eq(inode->i_uid, fsuid))
2761 return 0;
2762 if (uid_eq(dir->i_uid, fsuid))
2763 return 0;
2764 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2765 }
2766 EXPORT_SYMBOL(__check_sticky);
2767
2768 /*
2769 * Check whether we can remove a link victim from directory dir, check
2770 * whether the type of victim is right.
2771 * 1. We can't do it if dir is read-only (done in permission())
2772 * 2. We should have write and exec permissions on dir
2773 * 3. We can't remove anything from append-only dir
2774 * 4. We can't do anything with immutable dir (done in permission())
2775 * 5. If the sticky bit on dir is set we should either
2776 * a. be owner of dir, or
2777 * b. be owner of victim, or
2778 * c. have CAP_FOWNER capability
2779 * 6. If the victim is append-only or immutable we can't do antyhing with
2780 * links pointing to it.
2781 * 7. If the victim has an unknown uid or gid we can't change the inode.
2782 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2783 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2784 * 10. We can't remove a root or mountpoint.
2785 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2786 * nfs_async_unlink().
2787 */
2788 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2789 {
2790 struct inode *inode = d_backing_inode(victim);
2791 int error;
2792
2793 if (d_is_negative(victim))
2794 return -ENOENT;
2795 BUG_ON(!inode);
2796
2797 BUG_ON(victim->d_parent->d_inode != dir);
2798
2799 /* Inode writeback is not safe when the uid or gid are invalid. */
2800 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2801 return -EOVERFLOW;
2802
2803 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2804
2805 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2806 if (error)
2807 return error;
2808 if (IS_APPEND(dir))
2809 return -EPERM;
2810
2811 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2812 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2813 return -EPERM;
2814 if (isdir) {
2815 if (!d_is_dir(victim))
2816 return -ENOTDIR;
2817 if (IS_ROOT(victim))
2818 return -EBUSY;
2819 } else if (d_is_dir(victim))
2820 return -EISDIR;
2821 if (IS_DEADDIR(dir))
2822 return -ENOENT;
2823 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2824 return -EBUSY;
2825 return 0;
2826 }
2827
2828 /* Check whether we can create an object with dentry child in directory
2829 * dir.
2830 * 1. We can't do it if child already exists (open has special treatment for
2831 * this case, but since we are inlined it's OK)
2832 * 2. We can't do it if dir is read-only (done in permission())
2833 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2834 * 4. We should have write and exec permissions on dir
2835 * 5. We can't do it if dir is immutable (done in permission())
2836 */
2837 static inline int may_create(struct inode *dir, struct dentry *child)
2838 {
2839 struct user_namespace *s_user_ns;
2840 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2841 if (child->d_inode)
2842 return -EEXIST;
2843 if (IS_DEADDIR(dir))
2844 return -ENOENT;
2845 s_user_ns = dir->i_sb->s_user_ns;
2846 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2847 !kgid_has_mapping(s_user_ns, current_fsgid()))
2848 return -EOVERFLOW;
2849 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2850 }
2851
2852 /*
2853 * p1 and p2 should be directories on the same fs.
2854 */
2855 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2856 {
2857 struct dentry *p;
2858
2859 if (p1 == p2) {
2860 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2861 return NULL;
2862 }
2863
2864 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2865
2866 p = d_ancestor(p2, p1);
2867 if (p) {
2868 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2869 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2870 return p;
2871 }
2872
2873 p = d_ancestor(p1, p2);
2874 if (p) {
2875 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2876 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2877 return p;
2878 }
2879
2880 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2881 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2882 return NULL;
2883 }
2884 EXPORT_SYMBOL(lock_rename);
2885
2886 void unlock_rename(struct dentry *p1, struct dentry *p2)
2887 {
2888 inode_unlock(p1->d_inode);
2889 if (p1 != p2) {
2890 inode_unlock(p2->d_inode);
2891 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2892 }
2893 }
2894 EXPORT_SYMBOL(unlock_rename);
2895
2896 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2897 bool want_excl)
2898 {
2899 int error = may_create(dir, dentry);
2900 if (error)
2901 return error;
2902
2903 if (!dir->i_op->create)
2904 return -EACCES; /* shouldn't it be ENOSYS? */
2905 mode &= S_IALLUGO;
2906 mode |= S_IFREG;
2907 error = security_inode_create(dir, dentry, mode);
2908 if (error)
2909 return error;
2910 error = dir->i_op->create(dir, dentry, mode, want_excl);
2911 if (!error)
2912 fsnotify_create(dir, dentry);
2913 return error;
2914 }
2915 EXPORT_SYMBOL(vfs_create);
2916
2917 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2918 int (*f)(struct dentry *, umode_t, void *),
2919 void *arg)
2920 {
2921 struct inode *dir = dentry->d_parent->d_inode;
2922 int error = may_create(dir, dentry);
2923 if (error)
2924 return error;
2925
2926 mode &= S_IALLUGO;
2927 mode |= S_IFREG;
2928 error = security_inode_create(dir, dentry, mode);
2929 if (error)
2930 return error;
2931 error = f(dentry, mode, arg);
2932 if (!error)
2933 fsnotify_create(dir, dentry);
2934 return error;
2935 }
2936 EXPORT_SYMBOL(vfs_mkobj);
2937
2938 bool may_open_dev(const struct path *path)
2939 {
2940 return !(path->mnt->mnt_flags & MNT_NODEV) &&
2941 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2942 }
2943
2944 static int may_open(const struct path *path, int acc_mode, int flag)
2945 {
2946 struct dentry *dentry = path->dentry;
2947 struct inode *inode = dentry->d_inode;
2948 int error;
2949
2950 if (!inode)
2951 return -ENOENT;
2952
2953 switch (inode->i_mode & S_IFMT) {
2954 case S_IFLNK:
2955 return -ELOOP;
2956 case S_IFDIR:
2957 if (acc_mode & MAY_WRITE)
2958 return -EISDIR;
2959 break;
2960 case S_IFBLK:
2961 case S_IFCHR:
2962 if (!may_open_dev(path))
2963 return -EACCES;
2964 /*FALLTHRU*/
2965 case S_IFIFO:
2966 case S_IFSOCK:
2967 flag &= ~O_TRUNC;
2968 break;
2969 }
2970
2971 error = inode_permission(inode, MAY_OPEN | acc_mode);
2972 if (error)
2973 return error;
2974
2975 /*
2976 * An append-only file must be opened in append mode for writing.
2977 */
2978 if (IS_APPEND(inode)) {
2979 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2980 return -EPERM;
2981 if (flag & O_TRUNC)
2982 return -EPERM;
2983 }
2984
2985 /* O_NOATIME can only be set by the owner or superuser */
2986 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2987 return -EPERM;
2988
2989 return 0;
2990 }
2991
2992 static int handle_truncate(struct file *filp)
2993 {
2994 const struct path *path = &filp->f_path;
2995 struct inode *inode = path->dentry->d_inode;
2996 int error = get_write_access(inode);
2997 if (error)
2998 return error;
2999 /*
3000 * Refuse to truncate files with mandatory locks held on them.
3001 */
3002 error = locks_verify_locked(filp);
3003 if (!error)
3004 error = security_path_truncate(path);
3005 if (!error) {
3006 error = do_truncate(path->dentry, 0,
3007 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3008 filp);
3009 }
3010 put_write_access(inode);
3011 return error;
3012 }
3013
3014 static inline int open_to_namei_flags(int flag)
3015 {
3016 if ((flag & O_ACCMODE) == 3)
3017 flag--;
3018 return flag;
3019 }
3020
3021 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
3022 {
3023 struct user_namespace *s_user_ns;
3024 int error = security_path_mknod(dir, dentry, mode, 0);
3025 if (error)
3026 return error;
3027
3028 s_user_ns = dir->dentry->d_sb->s_user_ns;
3029 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3030 !kgid_has_mapping(s_user_ns, current_fsgid()))
3031 return -EOVERFLOW;
3032
3033 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
3034 if (error)
3035 return error;
3036
3037 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3038 }
3039
3040 /*
3041 * Attempt to atomically look up, create and open a file from a negative
3042 * dentry.
3043 *
3044 * Returns 0 if successful. The file will have been created and attached to
3045 * @file by the filesystem calling finish_open().
3046 *
3047 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3048 * be set. The caller will need to perform the open themselves. @path will
3049 * have been updated to point to the new dentry. This may be negative.
3050 *
3051 * Returns an error code otherwise.
3052 */
3053 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3054 struct path *path, struct file *file,
3055 const struct open_flags *op,
3056 int open_flag, umode_t mode)
3057 {
3058 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3059 struct inode *dir = nd->path.dentry->d_inode;
3060 int error;
3061
3062 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
3063 open_flag &= ~O_TRUNC;
3064
3065 if (nd->flags & LOOKUP_DIRECTORY)
3066 open_flag |= O_DIRECTORY;
3067
3068 file->f_path.dentry = DENTRY_NOT_SET;
3069 file->f_path.mnt = nd->path.mnt;
3070 error = dir->i_op->atomic_open(dir, dentry, file,
3071 open_to_namei_flags(open_flag), mode);
3072 d_lookup_done(dentry);
3073 if (!error) {
3074 if (file->f_mode & FMODE_OPENED) {
3075 /*
3076 * We didn't have the inode before the open, so check open
3077 * permission here.
3078 */
3079 int acc_mode = op->acc_mode;
3080 if (file->f_mode & FMODE_CREATED) {
3081 WARN_ON(!(open_flag & O_CREAT));
3082 fsnotify_create(dir, dentry);
3083 acc_mode = 0;
3084 }
3085 error = may_open(&file->f_path, acc_mode, open_flag);
3086 if (WARN_ON(error > 0))
3087 error = -EINVAL;
3088 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3089 error = -EIO;
3090 } else {
3091 if (file->f_path.dentry) {
3092 dput(dentry);
3093 dentry = file->f_path.dentry;
3094 }
3095 if (file->f_mode & FMODE_CREATED)
3096 fsnotify_create(dir, dentry);
3097 if (unlikely(d_is_negative(dentry))) {
3098 error = -ENOENT;
3099 } else {
3100 path->dentry = dentry;
3101 path->mnt = nd->path.mnt;
3102 return 0;
3103 }
3104 }
3105 }
3106 dput(dentry);
3107 return error;
3108 }
3109
3110 /*
3111 * Look up and maybe create and open the last component.
3112 *
3113 * Must be called with parent locked (exclusive in O_CREAT case).
3114 *
3115 * Returns 0 on success, that is, if
3116 * the file was successfully atomically created (if necessary) and opened, or
3117 * the file was not completely opened at this time, though lookups and
3118 * creations were performed.
3119 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3120 * In the latter case dentry returned in @path might be negative if O_CREAT
3121 * hadn't been specified.
3122 *
3123 * An error code is returned on failure.
3124 */
3125 static int lookup_open(struct nameidata *nd, struct path *path,
3126 struct file *file,
3127 const struct open_flags *op,
3128 bool got_write)
3129 {
3130 struct dentry *dir = nd->path.dentry;
3131 struct inode *dir_inode = dir->d_inode;
3132 int open_flag = op->open_flag;
3133 struct dentry *dentry;
3134 int error, create_error = 0;
3135 umode_t mode = op->mode;
3136 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3137
3138 if (unlikely(IS_DEADDIR(dir_inode)))
3139 return -ENOENT;
3140
3141 file->f_mode &= ~FMODE_CREATED;
3142 dentry = d_lookup(dir, &nd->last);
3143 for (;;) {
3144 if (!dentry) {
3145 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3146 if (IS_ERR(dentry))
3147 return PTR_ERR(dentry);
3148 }
3149 if (d_in_lookup(dentry))
3150 break;
3151
3152 error = d_revalidate(dentry, nd->flags);
3153 if (likely(error > 0))
3154 break;
3155 if (error)
3156 goto out_dput;
3157 d_invalidate(dentry);
3158 dput(dentry);
3159 dentry = NULL;
3160 }
3161 if (dentry->d_inode) {
3162 /* Cached positive dentry: will open in f_op->open */
3163 goto out_no_open;
3164 }
3165
3166 /*
3167 * Checking write permission is tricky, bacuse we don't know if we are
3168 * going to actually need it: O_CREAT opens should work as long as the
3169 * file exists. But checking existence breaks atomicity. The trick is
3170 * to check access and if not granted clear O_CREAT from the flags.
3171 *
3172 * Another problem is returing the "right" error value (e.g. for an
3173 * O_EXCL open we want to return EEXIST not EROFS).
3174 */
3175 if (open_flag & O_CREAT) {
3176 if (!IS_POSIXACL(dir->d_inode))
3177 mode &= ~current_umask();
3178 if (unlikely(!got_write)) {
3179 create_error = -EROFS;
3180 open_flag &= ~O_CREAT;
3181 if (open_flag & (O_EXCL | O_TRUNC))
3182 goto no_open;
3183 /* No side effects, safe to clear O_CREAT */
3184 } else {
3185 create_error = may_o_create(&nd->path, dentry, mode);
3186 if (create_error) {
3187 open_flag &= ~O_CREAT;
3188 if (open_flag & O_EXCL)
3189 goto no_open;
3190 }
3191 }
3192 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3193 unlikely(!got_write)) {
3194 /*
3195 * No O_CREATE -> atomicity not a requirement -> fall
3196 * back to lookup + open
3197 */
3198 goto no_open;
3199 }
3200
3201 if (dir_inode->i_op->atomic_open) {
3202 error = atomic_open(nd, dentry, path, file, op, open_flag,
3203 mode);
3204 if (unlikely(error == -ENOENT) && create_error)
3205 error = create_error;
3206 return error;
3207 }
3208
3209 no_open:
3210 if (d_in_lookup(dentry)) {
3211 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3212 nd->flags);
3213 d_lookup_done(dentry);
3214 if (unlikely(res)) {
3215 if (IS_ERR(res)) {
3216 error = PTR_ERR(res);
3217 goto out_dput;
3218 }
3219 dput(dentry);
3220 dentry = res;
3221 }
3222 }
3223
3224 /* Negative dentry, just create the file */
3225 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3226 file->f_mode |= FMODE_CREATED;
3227 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3228 if (!dir_inode->i_op->create) {
3229 error = -EACCES;
3230 goto out_dput;
3231 }
3232 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3233 open_flag & O_EXCL);
3234 if (error)
3235 goto out_dput;
3236 fsnotify_create(dir_inode, dentry);
3237 }
3238 if (unlikely(create_error) && !dentry->d_inode) {
3239 error = create_error;
3240 goto out_dput;
3241 }
3242 out_no_open:
3243 path->dentry = dentry;
3244 path->mnt = nd->path.mnt;
3245 return 0;
3246
3247 out_dput:
3248 dput(dentry);
3249 return error;
3250 }
3251
3252 /*
3253 * Handle the last step of open()
3254 */
3255 static int do_last(struct nameidata *nd,
3256 struct file *file, const struct open_flags *op)
3257 {
3258 struct dentry *dir = nd->path.dentry;
3259 int open_flag = op->open_flag;
3260 bool will_truncate = (open_flag & O_TRUNC) != 0;
3261 bool got_write = false;
3262 int acc_mode = op->acc_mode;
3263 unsigned seq;
3264 struct inode *inode;
3265 struct path path;
3266 int error;
3267
3268 nd->flags &= ~LOOKUP_PARENT;
3269 nd->flags |= op->intent;
3270
3271 if (nd->last_type != LAST_NORM) {
3272 error = handle_dots(nd, nd->last_type);
3273 if (unlikely(error))
3274 return error;
3275 goto finish_open;
3276 }
3277
3278 if (!(open_flag & O_CREAT)) {
3279 if (nd->last.name[nd->last.len])
3280 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3281 /* we _can_ be in RCU mode here */
3282 error = lookup_fast(nd, &path, &inode, &seq);
3283 if (likely(error > 0))
3284 goto finish_lookup;
3285
3286 if (error < 0)
3287 return error;
3288
3289 BUG_ON(nd->inode != dir->d_inode);
3290 BUG_ON(nd->flags & LOOKUP_RCU);
3291 } else {
3292 /* create side of things */
3293 /*
3294 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3295 * has been cleared when we got to the last component we are
3296 * about to look up
3297 */
3298 error = complete_walk(nd);
3299 if (error)
3300 return error;
3301
3302 audit_inode(nd->name, dir, LOOKUP_PARENT);
3303 /* trailing slashes? */
3304 if (unlikely(nd->last.name[nd->last.len]))
3305 return -EISDIR;
3306 }
3307
3308 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3309 error = mnt_want_write(nd->path.mnt);
3310 if (!error)
3311 got_write = true;
3312 /*
3313 * do _not_ fail yet - we might not need that or fail with
3314 * a different error; let lookup_open() decide; we'll be
3315 * dropping this one anyway.
3316 */
3317 }
3318 if (open_flag & O_CREAT)
3319 inode_lock(dir->d_inode);
3320 else
3321 inode_lock_shared(dir->d_inode);
3322 error = lookup_open(nd, &path, file, op, got_write);
3323 if (open_flag & O_CREAT)
3324 inode_unlock(dir->d_inode);
3325 else
3326 inode_unlock_shared(dir->d_inode);
3327
3328 if (error)
3329 goto out;
3330
3331 if (file->f_mode & FMODE_OPENED) {
3332 if ((file->f_mode & FMODE_CREATED) ||
3333 !S_ISREG(file_inode(file)->i_mode))
3334 will_truncate = false;
3335
3336 audit_inode(nd->name, file->f_path.dentry, 0);
3337 goto opened;
3338 }
3339
3340 if (file->f_mode & FMODE_CREATED) {
3341 /* Don't check for write permission, don't truncate */
3342 open_flag &= ~O_TRUNC;
3343 will_truncate = false;
3344 acc_mode = 0;
3345 path_to_nameidata(&path, nd);
3346 goto finish_open_created;
3347 }
3348
3349 /*
3350 * If atomic_open() acquired write access it is dropped now due to
3351 * possible mount and symlink following (this might be optimized away if
3352 * necessary...)
3353 */
3354 if (got_write) {
3355 mnt_drop_write(nd->path.mnt);
3356 got_write = false;
3357 }
3358
3359 error = follow_managed(&path, nd);
3360 if (unlikely(error < 0))
3361 return error;
3362
3363 if (unlikely(d_is_negative(path.dentry))) {
3364 path_to_nameidata(&path, nd);
3365 return -ENOENT;
3366 }
3367
3368 /*
3369 * create/update audit record if it already exists.
3370 */
3371 audit_inode(nd->name, path.dentry, 0);
3372
3373 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3374 path_to_nameidata(&path, nd);
3375 return -EEXIST;
3376 }
3377
3378 seq = 0; /* out of RCU mode, so the value doesn't matter */
3379 inode = d_backing_inode(path.dentry);
3380 finish_lookup:
3381 error = step_into(nd, &path, 0, inode, seq);
3382 if (unlikely(error))
3383 return error;
3384 finish_open:
3385 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3386 error = complete_walk(nd);
3387 if (error)
3388 return error;
3389 audit_inode(nd->name, nd->path.dentry, 0);
3390 if (open_flag & O_CREAT) {
3391 error = -EISDIR;
3392 if (d_is_dir(nd->path.dentry))
3393 goto out;
3394 error = may_create_in_sticky(dir,
3395 d_backing_inode(nd->path.dentry));
3396 if (unlikely(error))
3397 goto out;
3398 }
3399 error = -ENOTDIR;
3400 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3401 goto out;
3402 if (!d_is_reg(nd->path.dentry))
3403 will_truncate = false;
3404
3405 if (will_truncate) {
3406 error = mnt_want_write(nd->path.mnt);
3407 if (error)
3408 goto out;
3409 got_write = true;
3410 }
3411 finish_open_created:
3412 error = may_open(&nd->path, acc_mode, open_flag);
3413 if (error)
3414 goto out;
3415 BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */
3416 error = vfs_open(&nd->path, file);
3417 if (error)
3418 goto out;
3419 opened:
3420 error = ima_file_check(file, op->acc_mode);
3421 if (!error && will_truncate)
3422 error = handle_truncate(file);
3423 out:
3424 if (unlikely(error > 0)) {
3425 WARN_ON(1);
3426 error = -EINVAL;
3427 }
3428 if (got_write)
3429 mnt_drop_write(nd->path.mnt);
3430 return error;
3431 }
3432
3433 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3434 {
3435 struct dentry *child = NULL;
3436 struct inode *dir = dentry->d_inode;
3437 struct inode *inode;
3438 int error;
3439
3440 /* we want directory to be writable */
3441 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3442 if (error)
3443 goto out_err;
3444 error = -EOPNOTSUPP;
3445 if (!dir->i_op->tmpfile)
3446 goto out_err;
3447 error = -ENOMEM;
3448 child = d_alloc(dentry, &slash_name);
3449 if (unlikely(!child))
3450 goto out_err;
3451 error = dir->i_op->tmpfile(dir, child, mode);
3452 if (error)
3453 goto out_err;
3454 error = -ENOENT;
3455 inode = child->d_inode;
3456 if (unlikely(!inode))
3457 goto out_err;
3458 if (!(open_flag & O_EXCL)) {
3459 spin_lock(&inode->i_lock);
3460 inode->i_state |= I_LINKABLE;
3461 spin_unlock(&inode->i_lock);
3462 }
3463 ima_post_create_tmpfile(inode);
3464 return child;
3465
3466 out_err:
3467 dput(child);
3468 return ERR_PTR(error);
3469 }
3470 EXPORT_SYMBOL(vfs_tmpfile);
3471
3472 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3473 const struct open_flags *op,
3474 struct file *file)
3475 {
3476 struct dentry *child;
3477 struct path path;
3478 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3479 if (unlikely(error))
3480 return error;
3481 error = mnt_want_write(path.mnt);
3482 if (unlikely(error))
3483 goto out;
3484 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3485 error = PTR_ERR(child);
3486 if (IS_ERR(child))
3487 goto out2;
3488 dput(path.dentry);
3489 path.dentry = child;
3490 audit_inode(nd->name, child, 0);
3491 /* Don't check for other permissions, the inode was just created */
3492 error = may_open(&path, 0, op->open_flag);
3493 if (error)
3494 goto out2;
3495 file->f_path.mnt = path.mnt;
3496 error = finish_open(file, child, NULL);
3497 out2:
3498 mnt_drop_write(path.mnt);
3499 out:
3500 path_put(&path);
3501 return error;
3502 }
3503
3504 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3505 {
3506 struct path path;
3507 int error = path_lookupat(nd, flags, &path);
3508 if (!error) {
3509 audit_inode(nd->name, path.dentry, 0);
3510 error = vfs_open(&path, file);
3511 path_put(&path);
3512 }
3513 return error;
3514 }
3515
3516 static struct file *path_openat(struct nameidata *nd,
3517 const struct open_flags *op, unsigned flags)
3518 {
3519 struct file *file;
3520 int error;
3521
3522 file = alloc_empty_file(op->open_flag, current_cred());
3523 if (IS_ERR(file))
3524 return file;
3525
3526 if (unlikely(file->f_flags & __O_TMPFILE)) {
3527 error = do_tmpfile(nd, flags, op, file);
3528 } else if (unlikely(file->f_flags & O_PATH)) {
3529 error = do_o_path(nd, flags, file);
3530 } else {
3531 const char *s = path_init(nd, flags);
3532 while (!(error = link_path_walk(s, nd)) &&
3533 (error = do_last(nd, file, op)) > 0) {
3534 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3535 s = trailing_symlink(nd);
3536 }
3537 terminate_walk(nd);
3538 }
3539 if (likely(!error)) {
3540 if (likely(file->f_mode & FMODE_OPENED))
3541 return file;
3542 WARN_ON(1);
3543 error = -EINVAL;
3544 }
3545 fput(file);
3546 if (error == -EOPENSTALE) {
3547 if (flags & LOOKUP_RCU)
3548 error = -ECHILD;
3549 else
3550 error = -ESTALE;
3551 }
3552 return ERR_PTR(error);
3553 }
3554
3555 struct file *do_filp_open(int dfd, struct filename *pathname,
3556 const struct open_flags *op)
3557 {
3558 struct nameidata nd;
3559 int flags = op->lookup_flags;
3560 struct file *filp;
3561
3562 set_nameidata(&nd, dfd, pathname);
3563 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3564 if (unlikely(filp == ERR_PTR(-ECHILD)))
3565 filp = path_openat(&nd, op, flags);
3566 if (unlikely(filp == ERR_PTR(-ESTALE)))
3567 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3568 restore_nameidata();
3569 return filp;
3570 }
3571
3572 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3573 const char *name, const struct open_flags *op)
3574 {
3575 struct nameidata nd;
3576 struct file *file;
3577 struct filename *filename;
3578 int flags = op->lookup_flags | LOOKUP_ROOT;
3579
3580 nd.root.mnt = mnt;
3581 nd.root.dentry = dentry;
3582
3583 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3584 return ERR_PTR(-ELOOP);
3585
3586 filename = getname_kernel(name);
3587 if (IS_ERR(filename))
3588 return ERR_CAST(filename);
3589
3590 set_nameidata(&nd, -1, filename);
3591 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3592 if (unlikely(file == ERR_PTR(-ECHILD)))
3593 file = path_openat(&nd, op, flags);
3594 if (unlikely(file == ERR_PTR(-ESTALE)))
3595 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3596 restore_nameidata();
3597 putname(filename);
3598 return file;
3599 }
3600
3601 static struct dentry *filename_create(int dfd, struct filename *name,
3602 struct path *path, unsigned int lookup_flags)
3603 {
3604 struct dentry *dentry = ERR_PTR(-EEXIST);
3605 struct qstr last;
3606 int type;
3607 int err2;
3608 int error;
3609 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3610
3611 /*
3612 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3613 * other flags passed in are ignored!
3614 */
3615 lookup_flags &= LOOKUP_REVAL;
3616
3617 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3618 if (IS_ERR(name))
3619 return ERR_CAST(name);
3620
3621 /*
3622 * Yucky last component or no last component at all?
3623 * (foo/., foo/.., /////)
3624 */
3625 if (unlikely(type != LAST_NORM))
3626 goto out;
3627
3628 /* don't fail immediately if it's r/o, at least try to report other errors */
3629 err2 = mnt_want_write(path->mnt);
3630 /*
3631 * Do the final lookup.
3632 */
3633 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3634 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3635 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3636 if (IS_ERR(dentry))
3637 goto unlock;
3638
3639 error = -EEXIST;
3640 if (d_is_positive(dentry))
3641 goto fail;
3642
3643 /*
3644 * Special case - lookup gave negative, but... we had foo/bar/
3645 * From the vfs_mknod() POV we just have a negative dentry -
3646 * all is fine. Let's be bastards - you had / on the end, you've
3647 * been asking for (non-existent) directory. -ENOENT for you.
3648 */
3649 if (unlikely(!is_dir && last.name[last.len])) {
3650 error = -ENOENT;
3651 goto fail;
3652 }
3653 if (unlikely(err2)) {
3654 error = err2;
3655 goto fail;
3656 }
3657 putname(name);
3658 return dentry;
3659 fail:
3660 dput(dentry);
3661 dentry = ERR_PTR(error);
3662 unlock:
3663 inode_unlock(path->dentry->d_inode);
3664 if (!err2)
3665 mnt_drop_write(path->mnt);
3666 out:
3667 path_put(path);
3668 putname(name);
3669 return dentry;
3670 }
3671
3672 struct dentry *kern_path_create(int dfd, const char *pathname,
3673 struct path *path, unsigned int lookup_flags)
3674 {
3675 return filename_create(dfd, getname_kernel(pathname),
3676 path, lookup_flags);
3677 }
3678 EXPORT_SYMBOL(kern_path_create);
3679
3680 void done_path_create(struct path *path, struct dentry *dentry)
3681 {
3682 dput(dentry);
3683 inode_unlock(path->dentry->d_inode);
3684 mnt_drop_write(path->mnt);
3685 path_put(path);
3686 }
3687 EXPORT_SYMBOL(done_path_create);
3688
3689 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3690 struct path *path, unsigned int lookup_flags)
3691 {
3692 return filename_create(dfd, getname(pathname), path, lookup_flags);
3693 }
3694 EXPORT_SYMBOL(user_path_create);
3695
3696 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3697 {
3698 int error = may_create(dir, dentry);
3699
3700 if (error)
3701 return error;
3702
3703 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3704 return -EPERM;
3705
3706 if (!dir->i_op->mknod)
3707 return -EPERM;
3708
3709 error = devcgroup_inode_mknod(mode, dev);
3710 if (error)
3711 return error;
3712
3713 error = security_inode_mknod(dir, dentry, mode, dev);
3714 if (error)
3715 return error;
3716
3717 error = dir->i_op->mknod(dir, dentry, mode, dev);
3718 if (!error)
3719 fsnotify_create(dir, dentry);
3720 return error;
3721 }
3722 EXPORT_SYMBOL(vfs_mknod);
3723
3724 static int may_mknod(umode_t mode)
3725 {
3726 switch (mode & S_IFMT) {
3727 case S_IFREG:
3728 case S_IFCHR:
3729 case S_IFBLK:
3730 case S_IFIFO:
3731 case S_IFSOCK:
3732 case 0: /* zero mode translates to S_IFREG */
3733 return 0;
3734 case S_IFDIR:
3735 return -EPERM;
3736 default:
3737 return -EINVAL;
3738 }
3739 }
3740
3741 long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3742 unsigned int dev)
3743 {
3744 struct dentry *dentry;
3745 struct path path;
3746 int error;
3747 unsigned int lookup_flags = 0;
3748
3749 error = may_mknod(mode);
3750 if (error)
3751 return error;
3752 retry:
3753 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3754 if (IS_ERR(dentry))
3755 return PTR_ERR(dentry);
3756
3757 if (!IS_POSIXACL(path.dentry->d_inode))
3758 mode &= ~current_umask();
3759 error = security_path_mknod(&path, dentry, mode, dev);
3760 if (error)
3761 goto out;
3762 switch (mode & S_IFMT) {
3763 case 0: case S_IFREG:
3764 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3765 if (!error)
3766 ima_post_path_mknod(dentry);
3767 break;
3768 case S_IFCHR: case S_IFBLK:
3769 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3770 new_decode_dev(dev));
3771 break;
3772 case S_IFIFO: case S_IFSOCK:
3773 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3774 break;
3775 }
3776 out:
3777 done_path_create(&path, dentry);
3778 if (retry_estale(error, lookup_flags)) {
3779 lookup_flags |= LOOKUP_REVAL;
3780 goto retry;
3781 }
3782 return error;
3783 }
3784
3785 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3786 unsigned int, dev)
3787 {
3788 return do_mknodat(dfd, filename, mode, dev);
3789 }
3790
3791 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3792 {
3793 return do_mknodat(AT_FDCWD, filename, mode, dev);
3794 }
3795
3796 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3797 {
3798 int error = may_create(dir, dentry);
3799 unsigned max_links = dir->i_sb->s_max_links;
3800
3801 if (error)
3802 return error;
3803
3804 if (!dir->i_op->mkdir)
3805 return -EPERM;
3806
3807 mode &= (S_IRWXUGO|S_ISVTX);
3808 error = security_inode_mkdir(dir, dentry, mode);
3809 if (error)
3810 return error;
3811
3812 if (max_links && dir->i_nlink >= max_links)
3813 return -EMLINK;
3814
3815 error = dir->i_op->mkdir(dir, dentry, mode);
3816 if (!error)
3817 fsnotify_mkdir(dir, dentry);
3818 return error;
3819 }
3820 EXPORT_SYMBOL(vfs_mkdir);
3821
3822 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3823 {
3824 struct dentry *dentry;
3825 struct path path;
3826 int error;
3827 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3828
3829 retry:
3830 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3831 if (IS_ERR(dentry))
3832 return PTR_ERR(dentry);
3833
3834 if (!IS_POSIXACL(path.dentry->d_inode))
3835 mode &= ~current_umask();
3836 error = security_path_mkdir(&path, dentry, mode);
3837 if (!error)
3838 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3839 done_path_create(&path, dentry);
3840 if (retry_estale(error, lookup_flags)) {
3841 lookup_flags |= LOOKUP_REVAL;
3842 goto retry;
3843 }
3844 return error;
3845 }
3846
3847 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3848 {
3849 return do_mkdirat(dfd, pathname, mode);
3850 }
3851
3852 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3853 {
3854 return do_mkdirat(AT_FDCWD, pathname, mode);
3855 }
3856
3857 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3858 {
3859 int error = may_delete(dir, dentry, 1);
3860
3861 if (error)
3862 return error;
3863
3864 if (!dir->i_op->rmdir)
3865 return -EPERM;
3866
3867 dget(dentry);
3868 inode_lock(dentry->d_inode);
3869
3870 error = -EBUSY;
3871 if (is_local_mountpoint(dentry))
3872 goto out;
3873
3874 error = security_inode_rmdir(dir, dentry);
3875 if (error)
3876 goto out;
3877
3878 error = dir->i_op->rmdir(dir, dentry);
3879 if (error)
3880 goto out;
3881
3882 shrink_dcache_parent(dentry);
3883 dentry->d_inode->i_flags |= S_DEAD;
3884 dont_mount(dentry);
3885 detach_mounts(dentry);
3886
3887 out:
3888 inode_unlock(dentry->d_inode);
3889 dput(dentry);
3890 if (!error)
3891 d_delete(dentry);
3892 return error;
3893 }
3894 EXPORT_SYMBOL(vfs_rmdir);
3895
3896 long do_rmdir(int dfd, const char __user *pathname)
3897 {
3898 int error = 0;
3899 struct filename *name;
3900 struct dentry *dentry;
3901 struct path path;
3902 struct qstr last;
3903 int type;
3904 unsigned int lookup_flags = 0;
3905 retry:
3906 name = filename_parentat(dfd, getname(pathname), lookup_flags,
3907 &path, &last, &type);
3908 if (IS_ERR(name))
3909 return PTR_ERR(name);
3910
3911 switch (type) {
3912 case LAST_DOTDOT:
3913 error = -ENOTEMPTY;
3914 goto exit1;
3915 case LAST_DOT:
3916 error = -EINVAL;
3917 goto exit1;
3918 case LAST_ROOT:
3919 error = -EBUSY;
3920 goto exit1;
3921 }
3922
3923 error = mnt_want_write(path.mnt);
3924 if (error)
3925 goto exit1;
3926
3927 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3928 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3929 error = PTR_ERR(dentry);
3930 if (IS_ERR(dentry))
3931 goto exit2;
3932 if (!dentry->d_inode) {
3933 error = -ENOENT;
3934 goto exit3;
3935 }
3936 error = security_path_rmdir(&path, dentry);
3937 if (error)
3938 goto exit3;
3939 error = vfs_rmdir(path.dentry->d_inode, dentry);
3940 exit3:
3941 dput(dentry);
3942 exit2:
3943 inode_unlock(path.dentry->d_inode);
3944 mnt_drop_write(path.mnt);
3945 exit1:
3946 path_put(&path);
3947 putname(name);
3948 if (retry_estale(error, lookup_flags)) {
3949 lookup_flags |= LOOKUP_REVAL;
3950 goto retry;
3951 }
3952 return error;
3953 }
3954
3955 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3956 {
3957 return do_rmdir(AT_FDCWD, pathname);
3958 }
3959
3960 /**
3961 * vfs_unlink - unlink a filesystem object
3962 * @dir: parent directory
3963 * @dentry: victim
3964 * @delegated_inode: returns victim inode, if the inode is delegated.
3965 *
3966 * The caller must hold dir->i_mutex.
3967 *
3968 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3969 * return a reference to the inode in delegated_inode. The caller
3970 * should then break the delegation on that inode and retry. Because
3971 * breaking a delegation may take a long time, the caller should drop
3972 * dir->i_mutex before doing so.
3973 *
3974 * Alternatively, a caller may pass NULL for delegated_inode. This may
3975 * be appropriate for callers that expect the underlying filesystem not
3976 * to be NFS exported.
3977 */
3978 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3979 {
3980 struct inode *target = dentry->d_inode;
3981 int error = may_delete(dir, dentry, 0);
3982
3983 if (error)
3984 return error;
3985
3986 if (!dir->i_op->unlink)
3987 return -EPERM;
3988
3989 inode_lock(target);
3990 if (is_local_mountpoint(dentry))
3991 error = -EBUSY;
3992 else {
3993 error = security_inode_unlink(dir, dentry);
3994 if (!error) {
3995 error = try_break_deleg(target, delegated_inode);
3996 if (error)
3997 goto out;
3998 error = dir->i_op->unlink(dir, dentry);
3999 if (!error) {
4000 dont_mount(dentry);
4001 detach_mounts(dentry);
4002 }
4003 }
4004 }
4005 out:
4006 inode_unlock(target);
4007
4008 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4009 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4010 fsnotify_link_count(target);
4011 d_delete(dentry);
4012 }
4013
4014 return error;
4015 }
4016 EXPORT_SYMBOL(vfs_unlink);
4017
4018 /*
4019 * Make sure that the actual truncation of the file will occur outside its
4020 * directory's i_mutex. Truncate can take a long time if there is a lot of
4021 * writeout happening, and we don't want to prevent access to the directory
4022 * while waiting on the I/O.
4023 */
4024 long do_unlinkat(int dfd, struct filename *name)
4025 {
4026 int error;
4027 struct dentry *dentry;
4028 struct path path;
4029 struct qstr last;
4030 int type;
4031 struct inode *inode = NULL;
4032 struct inode *delegated_inode = NULL;
4033 unsigned int lookup_flags = 0;
4034 retry:
4035 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4036 if (IS_ERR(name))
4037 return PTR_ERR(name);
4038
4039 error = -EISDIR;
4040 if (type != LAST_NORM)
4041 goto exit1;
4042
4043 error = mnt_want_write(path.mnt);
4044 if (error)
4045 goto exit1;
4046 retry_deleg:
4047 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4048 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4049 error = PTR_ERR(dentry);
4050 if (!IS_ERR(dentry)) {
4051 /* Why not before? Because we want correct error value */
4052 if (last.name[last.len])
4053 goto slashes;
4054 inode = dentry->d_inode;
4055 if (d_is_negative(dentry))
4056 goto slashes;
4057 ihold(inode);
4058 error = security_path_unlink(&path, dentry);
4059 if (error)
4060 goto exit2;
4061 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4062 exit2:
4063 dput(dentry);
4064 }
4065 inode_unlock(path.dentry->d_inode);
4066 if (inode)
4067 iput(inode); /* truncate the inode here */
4068 inode = NULL;
4069 if (delegated_inode) {
4070 error = break_deleg_wait(&delegated_inode);
4071 if (!error)
4072 goto retry_deleg;
4073 }
4074 mnt_drop_write(path.mnt);
4075 exit1:
4076 path_put(&path);
4077 if (retry_estale(error, lookup_flags)) {
4078 lookup_flags |= LOOKUP_REVAL;
4079 inode = NULL;
4080 goto retry;
4081 }
4082 putname(name);
4083 return error;
4084
4085 slashes:
4086 if (d_is_negative(dentry))
4087 error = -ENOENT;
4088 else if (d_is_dir(dentry))
4089 error = -EISDIR;
4090 else
4091 error = -ENOTDIR;
4092 goto exit2;
4093 }
4094
4095 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4096 {
4097 if ((flag & ~AT_REMOVEDIR) != 0)
4098 return -EINVAL;
4099
4100 if (flag & AT_REMOVEDIR)
4101 return do_rmdir(dfd, pathname);
4102
4103 return do_unlinkat(dfd, getname(pathname));
4104 }
4105
4106 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4107 {
4108 return do_unlinkat(AT_FDCWD, getname(pathname));
4109 }
4110
4111 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4112 {
4113 int error = may_create(dir, dentry);
4114
4115 if (error)
4116 return error;
4117
4118 if (!dir->i_op->symlink)
4119 return -EPERM;
4120
4121 error = security_inode_symlink(dir, dentry, oldname);
4122 if (error)
4123 return error;
4124
4125 error = dir->i_op->symlink(dir, dentry, oldname);
4126 if (!error)
4127 fsnotify_create(dir, dentry);
4128 return error;
4129 }
4130 EXPORT_SYMBOL(vfs_symlink);
4131
4132 long do_symlinkat(const char __user *oldname, int newdfd,
4133 const char __user *newname)
4134 {
4135 int error;
4136 struct filename *from;
4137 struct dentry *dentry;
4138 struct path path;
4139 unsigned int lookup_flags = 0;
4140
4141 from = getname(oldname);
4142 if (IS_ERR(from))
4143 return PTR_ERR(from);
4144 retry:
4145 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4146 error = PTR_ERR(dentry);
4147 if (IS_ERR(dentry))
4148 goto out_putname;
4149
4150 error = security_path_symlink(&path, dentry, from->name);
4151 if (!error)
4152 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4153 done_path_create(&path, dentry);
4154 if (retry_estale(error, lookup_flags)) {
4155 lookup_flags |= LOOKUP_REVAL;
4156 goto retry;
4157 }
4158 out_putname:
4159 putname(from);
4160 return error;
4161 }
4162
4163 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4164 int, newdfd, const char __user *, newname)
4165 {
4166 return do_symlinkat(oldname, newdfd, newname);
4167 }
4168
4169 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4170 {
4171 return do_symlinkat(oldname, AT_FDCWD, newname);
4172 }
4173
4174 /**
4175 * vfs_link - create a new link
4176 * @old_dentry: object to be linked
4177 * @dir: new parent
4178 * @new_dentry: where to create the new link
4179 * @delegated_inode: returns inode needing a delegation break
4180 *
4181 * The caller must hold dir->i_mutex
4182 *
4183 * If vfs_link discovers a delegation on the to-be-linked file in need
4184 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4185 * inode in delegated_inode. The caller should then break the delegation
4186 * and retry. Because breaking a delegation may take a long time, the
4187 * caller should drop the i_mutex before doing so.
4188 *
4189 * Alternatively, a caller may pass NULL for delegated_inode. This may
4190 * be appropriate for callers that expect the underlying filesystem not
4191 * to be NFS exported.
4192 */
4193 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4194 {
4195 struct inode *inode = old_dentry->d_inode;
4196 unsigned max_links = dir->i_sb->s_max_links;
4197 int error;
4198
4199 if (!inode)
4200 return -ENOENT;
4201
4202 error = may_create(dir, new_dentry);
4203 if (error)
4204 return error;
4205
4206 if (dir->i_sb != inode->i_sb)
4207 return -EXDEV;
4208
4209 /*
4210 * A link to an append-only or immutable file cannot be created.
4211 */
4212 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4213 return -EPERM;
4214 /*
4215 * Updating the link count will likely cause i_uid and i_gid to
4216 * be writen back improperly if their true value is unknown to
4217 * the vfs.
4218 */
4219 if (HAS_UNMAPPED_ID(inode))
4220 return -EPERM;
4221 if (!dir->i_op->link)
4222 return -EPERM;
4223 if (S_ISDIR(inode->i_mode))
4224 return -EPERM;
4225
4226 error = security_inode_link(old_dentry, dir, new_dentry);
4227 if (error)
4228 return error;
4229
4230 inode_lock(inode);
4231 /* Make sure we don't allow creating hardlink to an unlinked file */
4232 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4233 error = -ENOENT;
4234 else if (max_links && inode->i_nlink >= max_links)
4235 error = -EMLINK;
4236 else {
4237 error = try_break_deleg(inode, delegated_inode);
4238 if (!error)
4239 error = dir->i_op->link(old_dentry, dir, new_dentry);
4240 }
4241
4242 if (!error && (inode->i_state & I_LINKABLE)) {
4243 spin_lock(&inode->i_lock);
4244 inode->i_state &= ~I_LINKABLE;
4245 spin_unlock(&inode->i_lock);
4246 }
4247 inode_unlock(inode);
4248 if (!error)
4249 fsnotify_link(dir, inode, new_dentry);
4250 return error;
4251 }
4252 EXPORT_SYMBOL(vfs_link);
4253
4254 /*
4255 * Hardlinks are often used in delicate situations. We avoid
4256 * security-related surprises by not following symlinks on the
4257 * newname. --KAB
4258 *
4259 * We don't follow them on the oldname either to be compatible
4260 * with linux 2.0, and to avoid hard-linking to directories
4261 * and other special files. --ADM
4262 */
4263 int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4264 const char __user *newname, int flags)
4265 {
4266 struct dentry *new_dentry;
4267 struct path old_path, new_path;
4268 struct inode *delegated_inode = NULL;
4269 int how = 0;
4270 int error;
4271
4272 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4273 return -EINVAL;
4274 /*
4275 * To use null names we require CAP_DAC_READ_SEARCH
4276 * This ensures that not everyone will be able to create
4277 * handlink using the passed filedescriptor.
4278 */
4279 if (flags & AT_EMPTY_PATH) {
4280 if (!capable(CAP_DAC_READ_SEARCH))
4281 return -ENOENT;
4282 how = LOOKUP_EMPTY;
4283 }
4284
4285 if (flags & AT_SYMLINK_FOLLOW)
4286 how |= LOOKUP_FOLLOW;
4287 retry:
4288 error = user_path_at(olddfd, oldname, how, &old_path);
4289 if (error)
4290 return error;
4291
4292 new_dentry = user_path_create(newdfd, newname, &new_path,
4293 (how & LOOKUP_REVAL));
4294 error = PTR_ERR(new_dentry);
4295 if (IS_ERR(new_dentry))
4296 goto out;
4297
4298 error = -EXDEV;
4299 if (old_path.mnt != new_path.mnt)
4300 goto out_dput;
4301 error = may_linkat(&old_path);
4302 if (unlikely(error))
4303 goto out_dput;
4304 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4305 if (error)
4306 goto out_dput;
4307 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4308 out_dput:
4309 done_path_create(&new_path, new_dentry);
4310 if (delegated_inode) {
4311 error = break_deleg_wait(&delegated_inode);
4312 if (!error) {
4313 path_put(&old_path);
4314 goto retry;
4315 }
4316 }
4317 if (retry_estale(error, how)) {
4318 path_put(&old_path);
4319 how |= LOOKUP_REVAL;
4320 goto retry;
4321 }
4322 out:
4323 path_put(&old_path);
4324
4325 return error;
4326 }
4327
4328 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4329 int, newdfd, const char __user *, newname, int, flags)
4330 {
4331 return do_linkat(olddfd, oldname, newdfd, newname, flags);
4332 }
4333
4334 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4335 {
4336 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4337 }
4338
4339 /**
4340 * vfs_rename - rename a filesystem object
4341 * @old_dir: parent of source
4342 * @old_dentry: source
4343 * @new_dir: parent of destination
4344 * @new_dentry: destination
4345 * @delegated_inode: returns an inode needing a delegation break
4346 * @flags: rename flags
4347 *
4348 * The caller must hold multiple mutexes--see lock_rename()).
4349 *
4350 * If vfs_rename discovers a delegation in need of breaking at either
4351 * the source or destination, it will return -EWOULDBLOCK and return a
4352 * reference to the inode in delegated_inode. The caller should then
4353 * break the delegation and retry. Because breaking a delegation may
4354 * take a long time, the caller should drop all locks before doing
4355 * so.
4356 *
4357 * Alternatively, a caller may pass NULL for delegated_inode. This may
4358 * be appropriate for callers that expect the underlying filesystem not
4359 * to be NFS exported.
4360 *
4361 * The worst of all namespace operations - renaming directory. "Perverted"
4362 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4363 * Problems:
4364 *
4365 * a) we can get into loop creation.
4366 * b) race potential - two innocent renames can create a loop together.
4367 * That's where 4.4 screws up. Current fix: serialization on
4368 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4369 * story.
4370 * c) we have to lock _four_ objects - parents and victim (if it exists),
4371 * and source (if it is not a directory).
4372 * And that - after we got ->i_mutex on parents (until then we don't know
4373 * whether the target exists). Solution: try to be smart with locking
4374 * order for inodes. We rely on the fact that tree topology may change
4375 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4376 * move will be locked. Thus we can rank directories by the tree
4377 * (ancestors first) and rank all non-directories after them.
4378 * That works since everybody except rename does "lock parent, lookup,
4379 * lock child" and rename is under ->s_vfs_rename_mutex.
4380 * HOWEVER, it relies on the assumption that any object with ->lookup()
4381 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4382 * we'd better make sure that there's no link(2) for them.
4383 * d) conversion from fhandle to dentry may come in the wrong moment - when
4384 * we are removing the target. Solution: we will have to grab ->i_mutex
4385 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4386 * ->i_mutex on parents, which works but leads to some truly excessive
4387 * locking].
4388 */
4389 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4390 struct inode *new_dir, struct dentry *new_dentry,
4391 struct inode **delegated_inode, unsigned int flags)
4392 {
4393 int error;
4394 bool is_dir = d_is_dir(old_dentry);
4395 struct inode *source = old_dentry->d_inode;
4396 struct inode *target = new_dentry->d_inode;
4397 bool new_is_dir = false;
4398 unsigned max_links = new_dir->i_sb->s_max_links;
4399 struct name_snapshot old_name;
4400
4401 if (source == target)
4402 return 0;
4403
4404 error = may_delete(old_dir, old_dentry, is_dir);
4405 if (error)
4406 return error;
4407
4408 if (!target) {
4409 error = may_create(new_dir, new_dentry);
4410 } else {
4411 new_is_dir = d_is_dir(new_dentry);
4412
4413 if (!(flags & RENAME_EXCHANGE))
4414 error = may_delete(new_dir, new_dentry, is_dir);
4415 else
4416 error = may_delete(new_dir, new_dentry, new_is_dir);
4417 }
4418 if (error)
4419 return error;
4420
4421 if (!old_dir->i_op->rename)
4422 return -EPERM;
4423
4424 /*
4425 * If we are going to change the parent - check write permissions,
4426 * we'll need to flip '..'.
4427 */
4428 if (new_dir != old_dir) {
4429 if (is_dir) {
4430 error = inode_permission(source, MAY_WRITE);
4431 if (error)
4432 return error;
4433 }
4434 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4435 error = inode_permission(target, MAY_WRITE);
4436 if (error)
4437 return error;
4438 }
4439 }
4440
4441 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4442 flags);
4443 if (error)
4444 return error;
4445
4446 take_dentry_name_snapshot(&old_name, old_dentry);
4447 dget(new_dentry);
4448 if (!is_dir || (flags & RENAME_EXCHANGE))
4449 lock_two_nondirectories(source, target);
4450 else if (target)
4451 inode_lock(target);
4452
4453 error = -EBUSY;
4454 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4455 goto out;
4456
4457 if (max_links && new_dir != old_dir) {
4458 error = -EMLINK;
4459 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4460 goto out;
4461 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4462 old_dir->i_nlink >= max_links)
4463 goto out;
4464 }
4465 if (!is_dir) {
4466 error = try_break_deleg(source, delegated_inode);
4467 if (error)
4468 goto out;
4469 }
4470 if (target && !new_is_dir) {
4471 error = try_break_deleg(target, delegated_inode);
4472 if (error)
4473 goto out;
4474 }
4475 error = old_dir->i_op->rename(old_dir, old_dentry,
4476 new_dir, new_dentry, flags);
4477 if (error)
4478 goto out;
4479
4480 if (!(flags & RENAME_EXCHANGE) && target) {
4481 if (is_dir) {
4482 shrink_dcache_parent(new_dentry);
4483 target->i_flags |= S_DEAD;
4484 }
4485 dont_mount(new_dentry);
4486 detach_mounts(new_dentry);
4487 }
4488 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4489 if (!(flags & RENAME_EXCHANGE))
4490 d_move(old_dentry, new_dentry);
4491 else
4492 d_exchange(old_dentry, new_dentry);
4493 }
4494 out:
4495 if (!is_dir || (flags & RENAME_EXCHANGE))
4496 unlock_two_nondirectories(source, target);
4497 else if (target)
4498 inode_unlock(target);
4499 dput(new_dentry);
4500 if (!error) {
4501 fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4502 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4503 if (flags & RENAME_EXCHANGE) {
4504 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4505 new_is_dir, NULL, new_dentry);
4506 }
4507 }
4508 release_dentry_name_snapshot(&old_name);
4509
4510 return error;
4511 }
4512 EXPORT_SYMBOL(vfs_rename);
4513
4514 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4515 const char __user *newname, unsigned int flags)
4516 {
4517 struct dentry *old_dentry, *new_dentry;
4518 struct dentry *trap;
4519 struct path old_path, new_path;
4520 struct qstr old_last, new_last;
4521 int old_type, new_type;
4522 struct inode *delegated_inode = NULL;
4523 struct filename *from;
4524 struct filename *to;
4525 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4526 bool should_retry = false;
4527 int error;
4528
4529 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4530 return -EINVAL;
4531
4532 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4533 (flags & RENAME_EXCHANGE))
4534 return -EINVAL;
4535
4536 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4537 return -EPERM;
4538
4539 if (flags & RENAME_EXCHANGE)
4540 target_flags = 0;
4541
4542 retry:
4543 from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4544 &old_path, &old_last, &old_type);
4545 if (IS_ERR(from)) {
4546 error = PTR_ERR(from);
4547 goto exit;
4548 }
4549
4550 to = filename_parentat(newdfd, getname(newname), lookup_flags,
4551 &new_path, &new_last, &new_type);
4552 if (IS_ERR(to)) {
4553 error = PTR_ERR(to);
4554 goto exit1;
4555 }
4556
4557 error = -EXDEV;
4558 if (old_path.mnt != new_path.mnt)
4559 goto exit2;
4560
4561 error = -EBUSY;
4562 if (old_type != LAST_NORM)
4563 goto exit2;
4564
4565 if (flags & RENAME_NOREPLACE)
4566 error = -EEXIST;
4567 if (new_type != LAST_NORM)
4568 goto exit2;
4569
4570 error = mnt_want_write(old_path.mnt);
4571 if (error)
4572 goto exit2;
4573
4574 retry_deleg:
4575 trap = lock_rename(new_path.dentry, old_path.dentry);
4576
4577 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4578 error = PTR_ERR(old_dentry);
4579 if (IS_ERR(old_dentry))
4580 goto exit3;
4581 /* source must exist */
4582 error = -ENOENT;
4583 if (d_is_negative(old_dentry))
4584 goto exit4;
4585 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4586 error = PTR_ERR(new_dentry);
4587 if (IS_ERR(new_dentry))
4588 goto exit4;
4589 error = -EEXIST;
4590 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4591 goto exit5;
4592 if (flags & RENAME_EXCHANGE) {
4593 error = -ENOENT;
4594 if (d_is_negative(new_dentry))
4595 goto exit5;
4596
4597 if (!d_is_dir(new_dentry)) {
4598 error = -ENOTDIR;
4599 if (new_last.name[new_last.len])
4600 goto exit5;
4601 }
4602 }
4603 /* unless the source is a directory trailing slashes give -ENOTDIR */
4604 if (!d_is_dir(old_dentry)) {
4605 error = -ENOTDIR;
4606 if (old_last.name[old_last.len])
4607 goto exit5;
4608 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4609 goto exit5;
4610 }
4611 /* source should not be ancestor of target */
4612 error = -EINVAL;
4613 if (old_dentry == trap)
4614 goto exit5;
4615 /* target should not be an ancestor of source */
4616 if (!(flags & RENAME_EXCHANGE))
4617 error = -ENOTEMPTY;
4618 if (new_dentry == trap)
4619 goto exit5;
4620
4621 error = security_path_rename(&old_path, old_dentry,
4622 &new_path, new_dentry, flags);
4623 if (error)
4624 goto exit5;
4625 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4626 new_path.dentry->d_inode, new_dentry,
4627 &delegated_inode, flags);
4628 exit5:
4629 dput(new_dentry);
4630 exit4:
4631 dput(old_dentry);
4632 exit3:
4633 unlock_rename(new_path.dentry, old_path.dentry);
4634 if (delegated_inode) {
4635 error = break_deleg_wait(&delegated_inode);
4636 if (!error)
4637 goto retry_deleg;
4638 }
4639 mnt_drop_write(old_path.mnt);
4640 exit2:
4641 if (retry_estale(error, lookup_flags))
4642 should_retry = true;
4643 path_put(&new_path);
4644 putname(to);
4645 exit1:
4646 path_put(&old_path);
4647 putname(from);
4648 if (should_retry) {
4649 should_retry = false;
4650 lookup_flags |= LOOKUP_REVAL;
4651 goto retry;
4652 }
4653 exit:
4654 return error;
4655 }
4656
4657 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4658 int, newdfd, const char __user *, newname, unsigned int, flags)
4659 {
4660 return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4661 }
4662
4663 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4664 int, newdfd, const char __user *, newname)
4665 {
4666 return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4667 }
4668
4669 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4670 {
4671 return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4672 }
4673
4674 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4675 {
4676 int error = may_create(dir, dentry);
4677 if (error)
4678 return error;
4679
4680 if (!dir->i_op->mknod)
4681 return -EPERM;
4682
4683 return dir->i_op->mknod(dir, dentry,
4684 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4685 }
4686 EXPORT_SYMBOL(vfs_whiteout);
4687
4688 int readlink_copy(char __user *buffer, int buflen, const char *link)
4689 {
4690 int len = PTR_ERR(link);
4691 if (IS_ERR(link))
4692 goto out;
4693
4694 len = strlen(link);
4695 if (len > (unsigned) buflen)
4696 len = buflen;
4697 if (copy_to_user(buffer, link, len))
4698 len = -EFAULT;
4699 out:
4700 return len;
4701 }
4702
4703 /**
4704 * vfs_readlink - copy symlink body into userspace buffer
4705 * @dentry: dentry on which to get symbolic link
4706 * @buffer: user memory pointer
4707 * @buflen: size of buffer
4708 *
4709 * Does not touch atime. That's up to the caller if necessary
4710 *
4711 * Does not call security hook.
4712 */
4713 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4714 {
4715 struct inode *inode = d_inode(dentry);
4716 DEFINE_DELAYED_CALL(done);
4717 const char *link;
4718 int res;
4719
4720 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4721 if (unlikely(inode->i_op->readlink))
4722 return inode->i_op->readlink(dentry, buffer, buflen);
4723
4724 if (!d_is_symlink(dentry))
4725 return -EINVAL;
4726
4727 spin_lock(&inode->i_lock);
4728 inode->i_opflags |= IOP_DEFAULT_READLINK;
4729 spin_unlock(&inode->i_lock);
4730 }
4731
4732 link = inode->i_link;
4733 if (!link) {
4734 link = inode->i_op->get_link(dentry, inode, &done);
4735 if (IS_ERR(link))
4736 return PTR_ERR(link);
4737 }
4738 res = readlink_copy(buffer, buflen, link);
4739 do_delayed_call(&done);
4740 return res;
4741 }
4742 EXPORT_SYMBOL(vfs_readlink);
4743
4744 /**
4745 * vfs_get_link - get symlink body
4746 * @dentry: dentry on which to get symbolic link
4747 * @done: caller needs to free returned data with this
4748 *
4749 * Calls security hook and i_op->get_link() on the supplied inode.
4750 *
4751 * It does not touch atime. That's up to the caller if necessary.
4752 *
4753 * Does not work on "special" symlinks like /proc/$$/fd/N
4754 */
4755 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4756 {
4757 const char *res = ERR_PTR(-EINVAL);
4758 struct inode *inode = d_inode(dentry);
4759
4760 if (d_is_symlink(dentry)) {
4761 res = ERR_PTR(security_inode_readlink(dentry));
4762 if (!res)
4763 res = inode->i_op->get_link(dentry, inode, done);
4764 }
4765 return res;
4766 }
4767 EXPORT_SYMBOL(vfs_get_link);
4768
4769 /* get the link contents into pagecache */
4770 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4771 struct delayed_call *callback)
4772 {
4773 char *kaddr;
4774 struct page *page;
4775 struct address_space *mapping = inode->i_mapping;
4776
4777 if (!dentry) {
4778 page = find_get_page(mapping, 0);
4779 if (!page)
4780 return ERR_PTR(-ECHILD);
4781 if (!PageUptodate(page)) {
4782 put_page(page);
4783 return ERR_PTR(-ECHILD);
4784 }
4785 } else {
4786 page = read_mapping_page(mapping, 0, NULL);
4787 if (IS_ERR(page))
4788 return (char*)page;
4789 }
4790 set_delayed_call(callback, page_put_link, page);
4791 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4792 kaddr = page_address(page);
4793 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4794 return kaddr;
4795 }
4796
4797 EXPORT_SYMBOL(page_get_link);
4798
4799 void page_put_link(void *arg)
4800 {
4801 put_page(arg);
4802 }
4803 EXPORT_SYMBOL(page_put_link);
4804
4805 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4806 {
4807 DEFINE_DELAYED_CALL(done);
4808 int res = readlink_copy(buffer, buflen,
4809 page_get_link(dentry, d_inode(dentry),
4810 &done));
4811 do_delayed_call(&done);
4812 return res;
4813 }
4814 EXPORT_SYMBOL(page_readlink);
4815
4816 /*
4817 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4818 */
4819 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4820 {
4821 struct address_space *mapping = inode->i_mapping;
4822 struct page *page;
4823 void *fsdata;
4824 int err;
4825 unsigned int flags = 0;
4826 if (nofs)
4827 flags |= AOP_FLAG_NOFS;
4828
4829 retry:
4830 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4831 flags, &page, &fsdata);
4832 if (err)
4833 goto fail;
4834
4835 memcpy(page_address(page), symname, len-1);
4836
4837 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4838 page, fsdata);
4839 if (err < 0)
4840 goto fail;
4841 if (err < len-1)
4842 goto retry;
4843
4844 mark_inode_dirty(inode);
4845 return 0;
4846 fail:
4847 return err;
4848 }
4849 EXPORT_SYMBOL(__page_symlink);
4850
4851 int page_symlink(struct inode *inode, const char *symname, int len)
4852 {
4853 return __page_symlink(inode, symname, len,
4854 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4855 }
4856 EXPORT_SYMBOL(page_symlink);
4857
4858 const struct inode_operations page_symlink_inode_operations = {
4859 .get_link = page_get_link,
4860 };
4861 EXPORT_SYMBOL(page_symlink_inode_operations);