]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - fs/userfaultfd.c
coredump: fix race condition between mmget_not_zero()/get_task_mm() and core dumping
[thirdparty/kernel/stable.git] / fs / userfaultfd.c
1 /*
2 * fs/userfaultfd.c
3 *
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
10 *
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
13 */
14
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
35 enum userfaultfd_state {
36 UFFD_STATE_WAIT_API,
37 UFFD_STATE_RUNNING,
38 };
39
40 /*
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
43 */
44 struct userfaultfd_ctx {
45 /* waitqueue head for the pending (i.e. not read) userfaults */
46 wait_queue_head_t fault_pending_wqh;
47 /* waitqueue head for the userfaults */
48 wait_queue_head_t fault_wqh;
49 /* waitqueue head for the pseudo fd to wakeup poll/read */
50 wait_queue_head_t fd_wqh;
51 /* waitqueue head for events */
52 wait_queue_head_t event_wqh;
53 /* a refile sequence protected by fault_pending_wqh lock */
54 struct seqcount refile_seq;
55 /* pseudo fd refcounting */
56 refcount_t refcount;
57 /* userfaultfd syscall flags */
58 unsigned int flags;
59 /* features requested from the userspace */
60 unsigned int features;
61 /* state machine */
62 enum userfaultfd_state state;
63 /* released */
64 bool released;
65 /* memory mappings are changing because of non-cooperative event */
66 bool mmap_changing;
67 /* mm with one ore more vmas attached to this userfaultfd_ctx */
68 struct mm_struct *mm;
69 };
70
71 struct userfaultfd_fork_ctx {
72 struct userfaultfd_ctx *orig;
73 struct userfaultfd_ctx *new;
74 struct list_head list;
75 };
76
77 struct userfaultfd_unmap_ctx {
78 struct userfaultfd_ctx *ctx;
79 unsigned long start;
80 unsigned long end;
81 struct list_head list;
82 };
83
84 struct userfaultfd_wait_queue {
85 struct uffd_msg msg;
86 wait_queue_entry_t wq;
87 struct userfaultfd_ctx *ctx;
88 bool waken;
89 };
90
91 struct userfaultfd_wake_range {
92 unsigned long start;
93 unsigned long len;
94 };
95
96 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
97 int wake_flags, void *key)
98 {
99 struct userfaultfd_wake_range *range = key;
100 int ret;
101 struct userfaultfd_wait_queue *uwq;
102 unsigned long start, len;
103
104 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
105 ret = 0;
106 /* len == 0 means wake all */
107 start = range->start;
108 len = range->len;
109 if (len && (start > uwq->msg.arg.pagefault.address ||
110 start + len <= uwq->msg.arg.pagefault.address))
111 goto out;
112 WRITE_ONCE(uwq->waken, true);
113 /*
114 * The Program-Order guarantees provided by the scheduler
115 * ensure uwq->waken is visible before the task is woken.
116 */
117 ret = wake_up_state(wq->private, mode);
118 if (ret) {
119 /*
120 * Wake only once, autoremove behavior.
121 *
122 * After the effect of list_del_init is visible to the other
123 * CPUs, the waitqueue may disappear from under us, see the
124 * !list_empty_careful() in handle_userfault().
125 *
126 * try_to_wake_up() has an implicit smp_mb(), and the
127 * wq->private is read before calling the extern function
128 * "wake_up_state" (which in turns calls try_to_wake_up).
129 */
130 list_del_init(&wq->entry);
131 }
132 out:
133 return ret;
134 }
135
136 /**
137 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
138 * context.
139 * @ctx: [in] Pointer to the userfaultfd context.
140 */
141 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
142 {
143 refcount_inc(&ctx->refcount);
144 }
145
146 /**
147 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
148 * context.
149 * @ctx: [in] Pointer to userfaultfd context.
150 *
151 * The userfaultfd context reference must have been previously acquired either
152 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
153 */
154 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
155 {
156 if (refcount_dec_and_test(&ctx->refcount)) {
157 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
158 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
159 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
160 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
161 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
162 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
163 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
164 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
165 mmdrop(ctx->mm);
166 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
167 }
168 }
169
170 static inline void msg_init(struct uffd_msg *msg)
171 {
172 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
173 /*
174 * Must use memset to zero out the paddings or kernel data is
175 * leaked to userland.
176 */
177 memset(msg, 0, sizeof(struct uffd_msg));
178 }
179
180 static inline struct uffd_msg userfault_msg(unsigned long address,
181 unsigned int flags,
182 unsigned long reason,
183 unsigned int features)
184 {
185 struct uffd_msg msg;
186 msg_init(&msg);
187 msg.event = UFFD_EVENT_PAGEFAULT;
188 msg.arg.pagefault.address = address;
189 if (flags & FAULT_FLAG_WRITE)
190 /*
191 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
192 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
193 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
194 * was a read fault, otherwise if set it means it's
195 * a write fault.
196 */
197 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
198 if (reason & VM_UFFD_WP)
199 /*
200 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
201 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
202 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
203 * a missing fault, otherwise if set it means it's a
204 * write protect fault.
205 */
206 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
207 if (features & UFFD_FEATURE_THREAD_ID)
208 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
209 return msg;
210 }
211
212 #ifdef CONFIG_HUGETLB_PAGE
213 /*
214 * Same functionality as userfaultfd_must_wait below with modifications for
215 * hugepmd ranges.
216 */
217 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
218 struct vm_area_struct *vma,
219 unsigned long address,
220 unsigned long flags,
221 unsigned long reason)
222 {
223 struct mm_struct *mm = ctx->mm;
224 pte_t *ptep, pte;
225 bool ret = true;
226
227 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
228
229 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
230
231 if (!ptep)
232 goto out;
233
234 ret = false;
235 pte = huge_ptep_get(ptep);
236
237 /*
238 * Lockless access: we're in a wait_event so it's ok if it
239 * changes under us.
240 */
241 if (huge_pte_none(pte))
242 ret = true;
243 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
244 ret = true;
245 out:
246 return ret;
247 }
248 #else
249 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
250 struct vm_area_struct *vma,
251 unsigned long address,
252 unsigned long flags,
253 unsigned long reason)
254 {
255 return false; /* should never get here */
256 }
257 #endif /* CONFIG_HUGETLB_PAGE */
258
259 /*
260 * Verify the pagetables are still not ok after having reigstered into
261 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
262 * userfault that has already been resolved, if userfaultfd_read and
263 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
264 * threads.
265 */
266 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
267 unsigned long address,
268 unsigned long flags,
269 unsigned long reason)
270 {
271 struct mm_struct *mm = ctx->mm;
272 pgd_t *pgd;
273 p4d_t *p4d;
274 pud_t *pud;
275 pmd_t *pmd, _pmd;
276 pte_t *pte;
277 bool ret = true;
278
279 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
280
281 pgd = pgd_offset(mm, address);
282 if (!pgd_present(*pgd))
283 goto out;
284 p4d = p4d_offset(pgd, address);
285 if (!p4d_present(*p4d))
286 goto out;
287 pud = pud_offset(p4d, address);
288 if (!pud_present(*pud))
289 goto out;
290 pmd = pmd_offset(pud, address);
291 /*
292 * READ_ONCE must function as a barrier with narrower scope
293 * and it must be equivalent to:
294 * _pmd = *pmd; barrier();
295 *
296 * This is to deal with the instability (as in
297 * pmd_trans_unstable) of the pmd.
298 */
299 _pmd = READ_ONCE(*pmd);
300 if (pmd_none(_pmd))
301 goto out;
302
303 ret = false;
304 if (!pmd_present(_pmd))
305 goto out;
306
307 if (pmd_trans_huge(_pmd))
308 goto out;
309
310 /*
311 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
312 * and use the standard pte_offset_map() instead of parsing _pmd.
313 */
314 pte = pte_offset_map(pmd, address);
315 /*
316 * Lockless access: we're in a wait_event so it's ok if it
317 * changes under us.
318 */
319 if (pte_none(*pte))
320 ret = true;
321 pte_unmap(pte);
322
323 out:
324 return ret;
325 }
326
327 /*
328 * The locking rules involved in returning VM_FAULT_RETRY depending on
329 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
330 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
331 * recommendation in __lock_page_or_retry is not an understatement.
332 *
333 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
334 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
335 * not set.
336 *
337 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
338 * set, VM_FAULT_RETRY can still be returned if and only if there are
339 * fatal_signal_pending()s, and the mmap_sem must be released before
340 * returning it.
341 */
342 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
343 {
344 struct mm_struct *mm = vmf->vma->vm_mm;
345 struct userfaultfd_ctx *ctx;
346 struct userfaultfd_wait_queue uwq;
347 vm_fault_t ret = VM_FAULT_SIGBUS;
348 bool must_wait, return_to_userland;
349 long blocking_state;
350
351 /*
352 * We don't do userfault handling for the final child pid update.
353 *
354 * We also don't do userfault handling during
355 * coredumping. hugetlbfs has the special
356 * follow_hugetlb_page() to skip missing pages in the
357 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
358 * the no_page_table() helper in follow_page_mask(), but the
359 * shmem_vm_ops->fault method is invoked even during
360 * coredumping without mmap_sem and it ends up here.
361 */
362 if (current->flags & (PF_EXITING|PF_DUMPCORE))
363 goto out;
364
365 /*
366 * Coredumping runs without mmap_sem so we can only check that
367 * the mmap_sem is held, if PF_DUMPCORE was not set.
368 */
369 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
370
371 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
372 if (!ctx)
373 goto out;
374
375 BUG_ON(ctx->mm != mm);
376
377 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
378 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
379
380 if (ctx->features & UFFD_FEATURE_SIGBUS)
381 goto out;
382
383 /*
384 * If it's already released don't get it. This avoids to loop
385 * in __get_user_pages if userfaultfd_release waits on the
386 * caller of handle_userfault to release the mmap_sem.
387 */
388 if (unlikely(READ_ONCE(ctx->released))) {
389 /*
390 * Don't return VM_FAULT_SIGBUS in this case, so a non
391 * cooperative manager can close the uffd after the
392 * last UFFDIO_COPY, without risking to trigger an
393 * involuntary SIGBUS if the process was starting the
394 * userfaultfd while the userfaultfd was still armed
395 * (but after the last UFFDIO_COPY). If the uffd
396 * wasn't already closed when the userfault reached
397 * this point, that would normally be solved by
398 * userfaultfd_must_wait returning 'false'.
399 *
400 * If we were to return VM_FAULT_SIGBUS here, the non
401 * cooperative manager would be instead forced to
402 * always call UFFDIO_UNREGISTER before it can safely
403 * close the uffd.
404 */
405 ret = VM_FAULT_NOPAGE;
406 goto out;
407 }
408
409 /*
410 * Check that we can return VM_FAULT_RETRY.
411 *
412 * NOTE: it should become possible to return VM_FAULT_RETRY
413 * even if FAULT_FLAG_TRIED is set without leading to gup()
414 * -EBUSY failures, if the userfaultfd is to be extended for
415 * VM_UFFD_WP tracking and we intend to arm the userfault
416 * without first stopping userland access to the memory. For
417 * VM_UFFD_MISSING userfaults this is enough for now.
418 */
419 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
420 /*
421 * Validate the invariant that nowait must allow retry
422 * to be sure not to return SIGBUS erroneously on
423 * nowait invocations.
424 */
425 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
426 #ifdef CONFIG_DEBUG_VM
427 if (printk_ratelimit()) {
428 printk(KERN_WARNING
429 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
430 vmf->flags);
431 dump_stack();
432 }
433 #endif
434 goto out;
435 }
436
437 /*
438 * Handle nowait, not much to do other than tell it to retry
439 * and wait.
440 */
441 ret = VM_FAULT_RETRY;
442 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
443 goto out;
444
445 /* take the reference before dropping the mmap_sem */
446 userfaultfd_ctx_get(ctx);
447
448 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
449 uwq.wq.private = current;
450 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
451 ctx->features);
452 uwq.ctx = ctx;
453 uwq.waken = false;
454
455 return_to_userland =
456 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
457 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
458 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
459 TASK_KILLABLE;
460
461 spin_lock(&ctx->fault_pending_wqh.lock);
462 /*
463 * After the __add_wait_queue the uwq is visible to userland
464 * through poll/read().
465 */
466 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
467 /*
468 * The smp_mb() after __set_current_state prevents the reads
469 * following the spin_unlock to happen before the list_add in
470 * __add_wait_queue.
471 */
472 set_current_state(blocking_state);
473 spin_unlock(&ctx->fault_pending_wqh.lock);
474
475 if (!is_vm_hugetlb_page(vmf->vma))
476 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
477 reason);
478 else
479 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
480 vmf->address,
481 vmf->flags, reason);
482 up_read(&mm->mmap_sem);
483
484 if (likely(must_wait && !READ_ONCE(ctx->released) &&
485 (return_to_userland ? !signal_pending(current) :
486 !fatal_signal_pending(current)))) {
487 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
488 schedule();
489 ret |= VM_FAULT_MAJOR;
490
491 /*
492 * False wakeups can orginate even from rwsem before
493 * up_read() however userfaults will wait either for a
494 * targeted wakeup on the specific uwq waitqueue from
495 * wake_userfault() or for signals or for uffd
496 * release.
497 */
498 while (!READ_ONCE(uwq.waken)) {
499 /*
500 * This needs the full smp_store_mb()
501 * guarantee as the state write must be
502 * visible to other CPUs before reading
503 * uwq.waken from other CPUs.
504 */
505 set_current_state(blocking_state);
506 if (READ_ONCE(uwq.waken) ||
507 READ_ONCE(ctx->released) ||
508 (return_to_userland ? signal_pending(current) :
509 fatal_signal_pending(current)))
510 break;
511 schedule();
512 }
513 }
514
515 __set_current_state(TASK_RUNNING);
516
517 if (return_to_userland) {
518 if (signal_pending(current) &&
519 !fatal_signal_pending(current)) {
520 /*
521 * If we got a SIGSTOP or SIGCONT and this is
522 * a normal userland page fault, just let
523 * userland return so the signal will be
524 * handled and gdb debugging works. The page
525 * fault code immediately after we return from
526 * this function is going to release the
527 * mmap_sem and it's not depending on it
528 * (unlike gup would if we were not to return
529 * VM_FAULT_RETRY).
530 *
531 * If a fatal signal is pending we still take
532 * the streamlined VM_FAULT_RETRY failure path
533 * and there's no need to retake the mmap_sem
534 * in such case.
535 */
536 down_read(&mm->mmap_sem);
537 ret = VM_FAULT_NOPAGE;
538 }
539 }
540
541 /*
542 * Here we race with the list_del; list_add in
543 * userfaultfd_ctx_read(), however because we don't ever run
544 * list_del_init() to refile across the two lists, the prev
545 * and next pointers will never point to self. list_add also
546 * would never let any of the two pointers to point to
547 * self. So list_empty_careful won't risk to see both pointers
548 * pointing to self at any time during the list refile. The
549 * only case where list_del_init() is called is the full
550 * removal in the wake function and there we don't re-list_add
551 * and it's fine not to block on the spinlock. The uwq on this
552 * kernel stack can be released after the list_del_init.
553 */
554 if (!list_empty_careful(&uwq.wq.entry)) {
555 spin_lock(&ctx->fault_pending_wqh.lock);
556 /*
557 * No need of list_del_init(), the uwq on the stack
558 * will be freed shortly anyway.
559 */
560 list_del(&uwq.wq.entry);
561 spin_unlock(&ctx->fault_pending_wqh.lock);
562 }
563
564 /*
565 * ctx may go away after this if the userfault pseudo fd is
566 * already released.
567 */
568 userfaultfd_ctx_put(ctx);
569
570 out:
571 return ret;
572 }
573
574 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
575 struct userfaultfd_wait_queue *ewq)
576 {
577 struct userfaultfd_ctx *release_new_ctx;
578
579 if (WARN_ON_ONCE(current->flags & PF_EXITING))
580 goto out;
581
582 ewq->ctx = ctx;
583 init_waitqueue_entry(&ewq->wq, current);
584 release_new_ctx = NULL;
585
586 spin_lock(&ctx->event_wqh.lock);
587 /*
588 * After the __add_wait_queue the uwq is visible to userland
589 * through poll/read().
590 */
591 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
592 for (;;) {
593 set_current_state(TASK_KILLABLE);
594 if (ewq->msg.event == 0)
595 break;
596 if (READ_ONCE(ctx->released) ||
597 fatal_signal_pending(current)) {
598 /*
599 * &ewq->wq may be queued in fork_event, but
600 * __remove_wait_queue ignores the head
601 * parameter. It would be a problem if it
602 * didn't.
603 */
604 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
605 if (ewq->msg.event == UFFD_EVENT_FORK) {
606 struct userfaultfd_ctx *new;
607
608 new = (struct userfaultfd_ctx *)
609 (unsigned long)
610 ewq->msg.arg.reserved.reserved1;
611 release_new_ctx = new;
612 }
613 break;
614 }
615
616 spin_unlock(&ctx->event_wqh.lock);
617
618 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
619 schedule();
620
621 spin_lock(&ctx->event_wqh.lock);
622 }
623 __set_current_state(TASK_RUNNING);
624 spin_unlock(&ctx->event_wqh.lock);
625
626 if (release_new_ctx) {
627 struct vm_area_struct *vma;
628 struct mm_struct *mm = release_new_ctx->mm;
629
630 /* the various vma->vm_userfaultfd_ctx still points to it */
631 down_write(&mm->mmap_sem);
632 /* no task can run (and in turn coredump) yet */
633 VM_WARN_ON(!mmget_still_valid(mm));
634 for (vma = mm->mmap; vma; vma = vma->vm_next)
635 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
636 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
637 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
638 }
639 up_write(&mm->mmap_sem);
640
641 userfaultfd_ctx_put(release_new_ctx);
642 }
643
644 /*
645 * ctx may go away after this if the userfault pseudo fd is
646 * already released.
647 */
648 out:
649 WRITE_ONCE(ctx->mmap_changing, false);
650 userfaultfd_ctx_put(ctx);
651 }
652
653 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
654 struct userfaultfd_wait_queue *ewq)
655 {
656 ewq->msg.event = 0;
657 wake_up_locked(&ctx->event_wqh);
658 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
659 }
660
661 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
662 {
663 struct userfaultfd_ctx *ctx = NULL, *octx;
664 struct userfaultfd_fork_ctx *fctx;
665
666 octx = vma->vm_userfaultfd_ctx.ctx;
667 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
668 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
669 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
670 return 0;
671 }
672
673 list_for_each_entry(fctx, fcs, list)
674 if (fctx->orig == octx) {
675 ctx = fctx->new;
676 break;
677 }
678
679 if (!ctx) {
680 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
681 if (!fctx)
682 return -ENOMEM;
683
684 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
685 if (!ctx) {
686 kfree(fctx);
687 return -ENOMEM;
688 }
689
690 refcount_set(&ctx->refcount, 1);
691 ctx->flags = octx->flags;
692 ctx->state = UFFD_STATE_RUNNING;
693 ctx->features = octx->features;
694 ctx->released = false;
695 ctx->mmap_changing = false;
696 ctx->mm = vma->vm_mm;
697 mmgrab(ctx->mm);
698
699 userfaultfd_ctx_get(octx);
700 WRITE_ONCE(octx->mmap_changing, true);
701 fctx->orig = octx;
702 fctx->new = ctx;
703 list_add_tail(&fctx->list, fcs);
704 }
705
706 vma->vm_userfaultfd_ctx.ctx = ctx;
707 return 0;
708 }
709
710 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
711 {
712 struct userfaultfd_ctx *ctx = fctx->orig;
713 struct userfaultfd_wait_queue ewq;
714
715 msg_init(&ewq.msg);
716
717 ewq.msg.event = UFFD_EVENT_FORK;
718 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
719
720 userfaultfd_event_wait_completion(ctx, &ewq);
721 }
722
723 void dup_userfaultfd_complete(struct list_head *fcs)
724 {
725 struct userfaultfd_fork_ctx *fctx, *n;
726
727 list_for_each_entry_safe(fctx, n, fcs, list) {
728 dup_fctx(fctx);
729 list_del(&fctx->list);
730 kfree(fctx);
731 }
732 }
733
734 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
735 struct vm_userfaultfd_ctx *vm_ctx)
736 {
737 struct userfaultfd_ctx *ctx;
738
739 ctx = vma->vm_userfaultfd_ctx.ctx;
740
741 if (!ctx)
742 return;
743
744 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
745 vm_ctx->ctx = ctx;
746 userfaultfd_ctx_get(ctx);
747 WRITE_ONCE(ctx->mmap_changing, true);
748 } else {
749 /* Drop uffd context if remap feature not enabled */
750 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
751 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
752 }
753 }
754
755 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
756 unsigned long from, unsigned long to,
757 unsigned long len)
758 {
759 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
760 struct userfaultfd_wait_queue ewq;
761
762 if (!ctx)
763 return;
764
765 if (to & ~PAGE_MASK) {
766 userfaultfd_ctx_put(ctx);
767 return;
768 }
769
770 msg_init(&ewq.msg);
771
772 ewq.msg.event = UFFD_EVENT_REMAP;
773 ewq.msg.arg.remap.from = from;
774 ewq.msg.arg.remap.to = to;
775 ewq.msg.arg.remap.len = len;
776
777 userfaultfd_event_wait_completion(ctx, &ewq);
778 }
779
780 bool userfaultfd_remove(struct vm_area_struct *vma,
781 unsigned long start, unsigned long end)
782 {
783 struct mm_struct *mm = vma->vm_mm;
784 struct userfaultfd_ctx *ctx;
785 struct userfaultfd_wait_queue ewq;
786
787 ctx = vma->vm_userfaultfd_ctx.ctx;
788 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
789 return true;
790
791 userfaultfd_ctx_get(ctx);
792 WRITE_ONCE(ctx->mmap_changing, true);
793 up_read(&mm->mmap_sem);
794
795 msg_init(&ewq.msg);
796
797 ewq.msg.event = UFFD_EVENT_REMOVE;
798 ewq.msg.arg.remove.start = start;
799 ewq.msg.arg.remove.end = end;
800
801 userfaultfd_event_wait_completion(ctx, &ewq);
802
803 return false;
804 }
805
806 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
807 unsigned long start, unsigned long end)
808 {
809 struct userfaultfd_unmap_ctx *unmap_ctx;
810
811 list_for_each_entry(unmap_ctx, unmaps, list)
812 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
813 unmap_ctx->end == end)
814 return true;
815
816 return false;
817 }
818
819 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
820 unsigned long start, unsigned long end,
821 struct list_head *unmaps)
822 {
823 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
824 struct userfaultfd_unmap_ctx *unmap_ctx;
825 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
826
827 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
828 has_unmap_ctx(ctx, unmaps, start, end))
829 continue;
830
831 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
832 if (!unmap_ctx)
833 return -ENOMEM;
834
835 userfaultfd_ctx_get(ctx);
836 WRITE_ONCE(ctx->mmap_changing, true);
837 unmap_ctx->ctx = ctx;
838 unmap_ctx->start = start;
839 unmap_ctx->end = end;
840 list_add_tail(&unmap_ctx->list, unmaps);
841 }
842
843 return 0;
844 }
845
846 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
847 {
848 struct userfaultfd_unmap_ctx *ctx, *n;
849 struct userfaultfd_wait_queue ewq;
850
851 list_for_each_entry_safe(ctx, n, uf, list) {
852 msg_init(&ewq.msg);
853
854 ewq.msg.event = UFFD_EVENT_UNMAP;
855 ewq.msg.arg.remove.start = ctx->start;
856 ewq.msg.arg.remove.end = ctx->end;
857
858 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
859
860 list_del(&ctx->list);
861 kfree(ctx);
862 }
863 }
864
865 static int userfaultfd_release(struct inode *inode, struct file *file)
866 {
867 struct userfaultfd_ctx *ctx = file->private_data;
868 struct mm_struct *mm = ctx->mm;
869 struct vm_area_struct *vma, *prev;
870 /* len == 0 means wake all */
871 struct userfaultfd_wake_range range = { .len = 0, };
872 unsigned long new_flags;
873
874 WRITE_ONCE(ctx->released, true);
875
876 if (!mmget_not_zero(mm))
877 goto wakeup;
878
879 /*
880 * Flush page faults out of all CPUs. NOTE: all page faults
881 * must be retried without returning VM_FAULT_SIGBUS if
882 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
883 * changes while handle_userfault released the mmap_sem. So
884 * it's critical that released is set to true (above), before
885 * taking the mmap_sem for writing.
886 */
887 down_write(&mm->mmap_sem);
888 if (!mmget_still_valid(mm))
889 goto skip_mm;
890 prev = NULL;
891 for (vma = mm->mmap; vma; vma = vma->vm_next) {
892 cond_resched();
893 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
894 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
895 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
896 prev = vma;
897 continue;
898 }
899 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
900 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
901 new_flags, vma->anon_vma,
902 vma->vm_file, vma->vm_pgoff,
903 vma_policy(vma),
904 NULL_VM_UFFD_CTX);
905 if (prev)
906 vma = prev;
907 else
908 prev = vma;
909 vma->vm_flags = new_flags;
910 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
911 }
912 skip_mm:
913 up_write(&mm->mmap_sem);
914 mmput(mm);
915 wakeup:
916 /*
917 * After no new page faults can wait on this fault_*wqh, flush
918 * the last page faults that may have been already waiting on
919 * the fault_*wqh.
920 */
921 spin_lock(&ctx->fault_pending_wqh.lock);
922 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
923 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
924 spin_unlock(&ctx->fault_pending_wqh.lock);
925
926 /* Flush pending events that may still wait on event_wqh */
927 wake_up_all(&ctx->event_wqh);
928
929 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
930 userfaultfd_ctx_put(ctx);
931 return 0;
932 }
933
934 /* fault_pending_wqh.lock must be hold by the caller */
935 static inline struct userfaultfd_wait_queue *find_userfault_in(
936 wait_queue_head_t *wqh)
937 {
938 wait_queue_entry_t *wq;
939 struct userfaultfd_wait_queue *uwq;
940
941 lockdep_assert_held(&wqh->lock);
942
943 uwq = NULL;
944 if (!waitqueue_active(wqh))
945 goto out;
946 /* walk in reverse to provide FIFO behavior to read userfaults */
947 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
948 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
949 out:
950 return uwq;
951 }
952
953 static inline struct userfaultfd_wait_queue *find_userfault(
954 struct userfaultfd_ctx *ctx)
955 {
956 return find_userfault_in(&ctx->fault_pending_wqh);
957 }
958
959 static inline struct userfaultfd_wait_queue *find_userfault_evt(
960 struct userfaultfd_ctx *ctx)
961 {
962 return find_userfault_in(&ctx->event_wqh);
963 }
964
965 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
966 {
967 struct userfaultfd_ctx *ctx = file->private_data;
968 __poll_t ret;
969
970 poll_wait(file, &ctx->fd_wqh, wait);
971
972 switch (ctx->state) {
973 case UFFD_STATE_WAIT_API:
974 return EPOLLERR;
975 case UFFD_STATE_RUNNING:
976 /*
977 * poll() never guarantees that read won't block.
978 * userfaults can be waken before they're read().
979 */
980 if (unlikely(!(file->f_flags & O_NONBLOCK)))
981 return EPOLLERR;
982 /*
983 * lockless access to see if there are pending faults
984 * __pollwait last action is the add_wait_queue but
985 * the spin_unlock would allow the waitqueue_active to
986 * pass above the actual list_add inside
987 * add_wait_queue critical section. So use a full
988 * memory barrier to serialize the list_add write of
989 * add_wait_queue() with the waitqueue_active read
990 * below.
991 */
992 ret = 0;
993 smp_mb();
994 if (waitqueue_active(&ctx->fault_pending_wqh))
995 ret = EPOLLIN;
996 else if (waitqueue_active(&ctx->event_wqh))
997 ret = EPOLLIN;
998
999 return ret;
1000 default:
1001 WARN_ON_ONCE(1);
1002 return EPOLLERR;
1003 }
1004 }
1005
1006 static const struct file_operations userfaultfd_fops;
1007
1008 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
1009 struct userfaultfd_ctx *new,
1010 struct uffd_msg *msg)
1011 {
1012 int fd;
1013
1014 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
1015 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
1016 if (fd < 0)
1017 return fd;
1018
1019 msg->arg.reserved.reserved1 = 0;
1020 msg->arg.fork.ufd = fd;
1021 return 0;
1022 }
1023
1024 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1025 struct uffd_msg *msg)
1026 {
1027 ssize_t ret;
1028 DECLARE_WAITQUEUE(wait, current);
1029 struct userfaultfd_wait_queue *uwq;
1030 /*
1031 * Handling fork event requires sleeping operations, so
1032 * we drop the event_wqh lock, then do these ops, then
1033 * lock it back and wake up the waiter. While the lock is
1034 * dropped the ewq may go away so we keep track of it
1035 * carefully.
1036 */
1037 LIST_HEAD(fork_event);
1038 struct userfaultfd_ctx *fork_nctx = NULL;
1039
1040 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1041 spin_lock_irq(&ctx->fd_wqh.lock);
1042 __add_wait_queue(&ctx->fd_wqh, &wait);
1043 for (;;) {
1044 set_current_state(TASK_INTERRUPTIBLE);
1045 spin_lock(&ctx->fault_pending_wqh.lock);
1046 uwq = find_userfault(ctx);
1047 if (uwq) {
1048 /*
1049 * Use a seqcount to repeat the lockless check
1050 * in wake_userfault() to avoid missing
1051 * wakeups because during the refile both
1052 * waitqueue could become empty if this is the
1053 * only userfault.
1054 */
1055 write_seqcount_begin(&ctx->refile_seq);
1056
1057 /*
1058 * The fault_pending_wqh.lock prevents the uwq
1059 * to disappear from under us.
1060 *
1061 * Refile this userfault from
1062 * fault_pending_wqh to fault_wqh, it's not
1063 * pending anymore after we read it.
1064 *
1065 * Use list_del() by hand (as
1066 * userfaultfd_wake_function also uses
1067 * list_del_init() by hand) to be sure nobody
1068 * changes __remove_wait_queue() to use
1069 * list_del_init() in turn breaking the
1070 * !list_empty_careful() check in
1071 * handle_userfault(). The uwq->wq.head list
1072 * must never be empty at any time during the
1073 * refile, or the waitqueue could disappear
1074 * from under us. The "wait_queue_head_t"
1075 * parameter of __remove_wait_queue() is unused
1076 * anyway.
1077 */
1078 list_del(&uwq->wq.entry);
1079 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1080
1081 write_seqcount_end(&ctx->refile_seq);
1082
1083 /* careful to always initialize msg if ret == 0 */
1084 *msg = uwq->msg;
1085 spin_unlock(&ctx->fault_pending_wqh.lock);
1086 ret = 0;
1087 break;
1088 }
1089 spin_unlock(&ctx->fault_pending_wqh.lock);
1090
1091 spin_lock(&ctx->event_wqh.lock);
1092 uwq = find_userfault_evt(ctx);
1093 if (uwq) {
1094 *msg = uwq->msg;
1095
1096 if (uwq->msg.event == UFFD_EVENT_FORK) {
1097 fork_nctx = (struct userfaultfd_ctx *)
1098 (unsigned long)
1099 uwq->msg.arg.reserved.reserved1;
1100 list_move(&uwq->wq.entry, &fork_event);
1101 /*
1102 * fork_nctx can be freed as soon as
1103 * we drop the lock, unless we take a
1104 * reference on it.
1105 */
1106 userfaultfd_ctx_get(fork_nctx);
1107 spin_unlock(&ctx->event_wqh.lock);
1108 ret = 0;
1109 break;
1110 }
1111
1112 userfaultfd_event_complete(ctx, uwq);
1113 spin_unlock(&ctx->event_wqh.lock);
1114 ret = 0;
1115 break;
1116 }
1117 spin_unlock(&ctx->event_wqh.lock);
1118
1119 if (signal_pending(current)) {
1120 ret = -ERESTARTSYS;
1121 break;
1122 }
1123 if (no_wait) {
1124 ret = -EAGAIN;
1125 break;
1126 }
1127 spin_unlock_irq(&ctx->fd_wqh.lock);
1128 schedule();
1129 spin_lock_irq(&ctx->fd_wqh.lock);
1130 }
1131 __remove_wait_queue(&ctx->fd_wqh, &wait);
1132 __set_current_state(TASK_RUNNING);
1133 spin_unlock_irq(&ctx->fd_wqh.lock);
1134
1135 if (!ret && msg->event == UFFD_EVENT_FORK) {
1136 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1137 spin_lock(&ctx->event_wqh.lock);
1138 if (!list_empty(&fork_event)) {
1139 /*
1140 * The fork thread didn't abort, so we can
1141 * drop the temporary refcount.
1142 */
1143 userfaultfd_ctx_put(fork_nctx);
1144
1145 uwq = list_first_entry(&fork_event,
1146 typeof(*uwq),
1147 wq.entry);
1148 /*
1149 * If fork_event list wasn't empty and in turn
1150 * the event wasn't already released by fork
1151 * (the event is allocated on fork kernel
1152 * stack), put the event back to its place in
1153 * the event_wq. fork_event head will be freed
1154 * as soon as we return so the event cannot
1155 * stay queued there no matter the current
1156 * "ret" value.
1157 */
1158 list_del(&uwq->wq.entry);
1159 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1160
1161 /*
1162 * Leave the event in the waitqueue and report
1163 * error to userland if we failed to resolve
1164 * the userfault fork.
1165 */
1166 if (likely(!ret))
1167 userfaultfd_event_complete(ctx, uwq);
1168 } else {
1169 /*
1170 * Here the fork thread aborted and the
1171 * refcount from the fork thread on fork_nctx
1172 * has already been released. We still hold
1173 * the reference we took before releasing the
1174 * lock above. If resolve_userfault_fork
1175 * failed we've to drop it because the
1176 * fork_nctx has to be freed in such case. If
1177 * it succeeded we'll hold it because the new
1178 * uffd references it.
1179 */
1180 if (ret)
1181 userfaultfd_ctx_put(fork_nctx);
1182 }
1183 spin_unlock(&ctx->event_wqh.lock);
1184 }
1185
1186 return ret;
1187 }
1188
1189 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1190 size_t count, loff_t *ppos)
1191 {
1192 struct userfaultfd_ctx *ctx = file->private_data;
1193 ssize_t _ret, ret = 0;
1194 struct uffd_msg msg;
1195 int no_wait = file->f_flags & O_NONBLOCK;
1196
1197 if (ctx->state == UFFD_STATE_WAIT_API)
1198 return -EINVAL;
1199
1200 for (;;) {
1201 if (count < sizeof(msg))
1202 return ret ? ret : -EINVAL;
1203 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1204 if (_ret < 0)
1205 return ret ? ret : _ret;
1206 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1207 return ret ? ret : -EFAULT;
1208 ret += sizeof(msg);
1209 buf += sizeof(msg);
1210 count -= sizeof(msg);
1211 /*
1212 * Allow to read more than one fault at time but only
1213 * block if waiting for the very first one.
1214 */
1215 no_wait = O_NONBLOCK;
1216 }
1217 }
1218
1219 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1220 struct userfaultfd_wake_range *range)
1221 {
1222 spin_lock(&ctx->fault_pending_wqh.lock);
1223 /* wake all in the range and autoremove */
1224 if (waitqueue_active(&ctx->fault_pending_wqh))
1225 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1226 range);
1227 if (waitqueue_active(&ctx->fault_wqh))
1228 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1229 spin_unlock(&ctx->fault_pending_wqh.lock);
1230 }
1231
1232 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1233 struct userfaultfd_wake_range *range)
1234 {
1235 unsigned seq;
1236 bool need_wakeup;
1237
1238 /*
1239 * To be sure waitqueue_active() is not reordered by the CPU
1240 * before the pagetable update, use an explicit SMP memory
1241 * barrier here. PT lock release or up_read(mmap_sem) still
1242 * have release semantics that can allow the
1243 * waitqueue_active() to be reordered before the pte update.
1244 */
1245 smp_mb();
1246
1247 /*
1248 * Use waitqueue_active because it's very frequent to
1249 * change the address space atomically even if there are no
1250 * userfaults yet. So we take the spinlock only when we're
1251 * sure we've userfaults to wake.
1252 */
1253 do {
1254 seq = read_seqcount_begin(&ctx->refile_seq);
1255 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1256 waitqueue_active(&ctx->fault_wqh);
1257 cond_resched();
1258 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1259 if (need_wakeup)
1260 __wake_userfault(ctx, range);
1261 }
1262
1263 static __always_inline int validate_range(struct mm_struct *mm,
1264 __u64 start, __u64 len)
1265 {
1266 __u64 task_size = mm->task_size;
1267
1268 if (start & ~PAGE_MASK)
1269 return -EINVAL;
1270 if (len & ~PAGE_MASK)
1271 return -EINVAL;
1272 if (!len)
1273 return -EINVAL;
1274 if (start < mmap_min_addr)
1275 return -EINVAL;
1276 if (start >= task_size)
1277 return -EINVAL;
1278 if (len > task_size - start)
1279 return -EINVAL;
1280 return 0;
1281 }
1282
1283 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1284 {
1285 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1286 vma_is_shmem(vma);
1287 }
1288
1289 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1290 unsigned long arg)
1291 {
1292 struct mm_struct *mm = ctx->mm;
1293 struct vm_area_struct *vma, *prev, *cur;
1294 int ret;
1295 struct uffdio_register uffdio_register;
1296 struct uffdio_register __user *user_uffdio_register;
1297 unsigned long vm_flags, new_flags;
1298 bool found;
1299 bool basic_ioctls;
1300 unsigned long start, end, vma_end;
1301
1302 user_uffdio_register = (struct uffdio_register __user *) arg;
1303
1304 ret = -EFAULT;
1305 if (copy_from_user(&uffdio_register, user_uffdio_register,
1306 sizeof(uffdio_register)-sizeof(__u64)))
1307 goto out;
1308
1309 ret = -EINVAL;
1310 if (!uffdio_register.mode)
1311 goto out;
1312 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1313 UFFDIO_REGISTER_MODE_WP))
1314 goto out;
1315 vm_flags = 0;
1316 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1317 vm_flags |= VM_UFFD_MISSING;
1318 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1319 vm_flags |= VM_UFFD_WP;
1320 /*
1321 * FIXME: remove the below error constraint by
1322 * implementing the wprotect tracking mode.
1323 */
1324 ret = -EINVAL;
1325 goto out;
1326 }
1327
1328 ret = validate_range(mm, uffdio_register.range.start,
1329 uffdio_register.range.len);
1330 if (ret)
1331 goto out;
1332
1333 start = uffdio_register.range.start;
1334 end = start + uffdio_register.range.len;
1335
1336 ret = -ENOMEM;
1337 if (!mmget_not_zero(mm))
1338 goto out;
1339
1340 down_write(&mm->mmap_sem);
1341 if (!mmget_still_valid(mm))
1342 goto out_unlock;
1343 vma = find_vma_prev(mm, start, &prev);
1344 if (!vma)
1345 goto out_unlock;
1346
1347 /* check that there's at least one vma in the range */
1348 ret = -EINVAL;
1349 if (vma->vm_start >= end)
1350 goto out_unlock;
1351
1352 /*
1353 * If the first vma contains huge pages, make sure start address
1354 * is aligned to huge page size.
1355 */
1356 if (is_vm_hugetlb_page(vma)) {
1357 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1358
1359 if (start & (vma_hpagesize - 1))
1360 goto out_unlock;
1361 }
1362
1363 /*
1364 * Search for not compatible vmas.
1365 */
1366 found = false;
1367 basic_ioctls = false;
1368 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1369 cond_resched();
1370
1371 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1372 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1373
1374 /* check not compatible vmas */
1375 ret = -EINVAL;
1376 if (!vma_can_userfault(cur))
1377 goto out_unlock;
1378
1379 /*
1380 * UFFDIO_COPY will fill file holes even without
1381 * PROT_WRITE. This check enforces that if this is a
1382 * MAP_SHARED, the process has write permission to the backing
1383 * file. If VM_MAYWRITE is set it also enforces that on a
1384 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1385 * F_WRITE_SEAL can be taken until the vma is destroyed.
1386 */
1387 ret = -EPERM;
1388 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1389 goto out_unlock;
1390
1391 /*
1392 * If this vma contains ending address, and huge pages
1393 * check alignment.
1394 */
1395 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1396 end > cur->vm_start) {
1397 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1398
1399 ret = -EINVAL;
1400
1401 if (end & (vma_hpagesize - 1))
1402 goto out_unlock;
1403 }
1404
1405 /*
1406 * Check that this vma isn't already owned by a
1407 * different userfaultfd. We can't allow more than one
1408 * userfaultfd to own a single vma simultaneously or we
1409 * wouldn't know which one to deliver the userfaults to.
1410 */
1411 ret = -EBUSY;
1412 if (cur->vm_userfaultfd_ctx.ctx &&
1413 cur->vm_userfaultfd_ctx.ctx != ctx)
1414 goto out_unlock;
1415
1416 /*
1417 * Note vmas containing huge pages
1418 */
1419 if (is_vm_hugetlb_page(cur))
1420 basic_ioctls = true;
1421
1422 found = true;
1423 }
1424 BUG_ON(!found);
1425
1426 if (vma->vm_start < start)
1427 prev = vma;
1428
1429 ret = 0;
1430 do {
1431 cond_resched();
1432
1433 BUG_ON(!vma_can_userfault(vma));
1434 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1435 vma->vm_userfaultfd_ctx.ctx != ctx);
1436 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1437
1438 /*
1439 * Nothing to do: this vma is already registered into this
1440 * userfaultfd and with the right tracking mode too.
1441 */
1442 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1443 (vma->vm_flags & vm_flags) == vm_flags)
1444 goto skip;
1445
1446 if (vma->vm_start > start)
1447 start = vma->vm_start;
1448 vma_end = min(end, vma->vm_end);
1449
1450 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1451 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1452 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1453 vma_policy(vma),
1454 ((struct vm_userfaultfd_ctx){ ctx }));
1455 if (prev) {
1456 vma = prev;
1457 goto next;
1458 }
1459 if (vma->vm_start < start) {
1460 ret = split_vma(mm, vma, start, 1);
1461 if (ret)
1462 break;
1463 }
1464 if (vma->vm_end > end) {
1465 ret = split_vma(mm, vma, end, 0);
1466 if (ret)
1467 break;
1468 }
1469 next:
1470 /*
1471 * In the vma_merge() successful mprotect-like case 8:
1472 * the next vma was merged into the current one and
1473 * the current one has not been updated yet.
1474 */
1475 vma->vm_flags = new_flags;
1476 vma->vm_userfaultfd_ctx.ctx = ctx;
1477
1478 skip:
1479 prev = vma;
1480 start = vma->vm_end;
1481 vma = vma->vm_next;
1482 } while (vma && vma->vm_start < end);
1483 out_unlock:
1484 up_write(&mm->mmap_sem);
1485 mmput(mm);
1486 if (!ret) {
1487 /*
1488 * Now that we scanned all vmas we can already tell
1489 * userland which ioctls methods are guaranteed to
1490 * succeed on this range.
1491 */
1492 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1493 UFFD_API_RANGE_IOCTLS,
1494 &user_uffdio_register->ioctls))
1495 ret = -EFAULT;
1496 }
1497 out:
1498 return ret;
1499 }
1500
1501 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1502 unsigned long arg)
1503 {
1504 struct mm_struct *mm = ctx->mm;
1505 struct vm_area_struct *vma, *prev, *cur;
1506 int ret;
1507 struct uffdio_range uffdio_unregister;
1508 unsigned long new_flags;
1509 bool found;
1510 unsigned long start, end, vma_end;
1511 const void __user *buf = (void __user *)arg;
1512
1513 ret = -EFAULT;
1514 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1515 goto out;
1516
1517 ret = validate_range(mm, uffdio_unregister.start,
1518 uffdio_unregister.len);
1519 if (ret)
1520 goto out;
1521
1522 start = uffdio_unregister.start;
1523 end = start + uffdio_unregister.len;
1524
1525 ret = -ENOMEM;
1526 if (!mmget_not_zero(mm))
1527 goto out;
1528
1529 down_write(&mm->mmap_sem);
1530 if (!mmget_still_valid(mm))
1531 goto out_unlock;
1532 vma = find_vma_prev(mm, start, &prev);
1533 if (!vma)
1534 goto out_unlock;
1535
1536 /* check that there's at least one vma in the range */
1537 ret = -EINVAL;
1538 if (vma->vm_start >= end)
1539 goto out_unlock;
1540
1541 /*
1542 * If the first vma contains huge pages, make sure start address
1543 * is aligned to huge page size.
1544 */
1545 if (is_vm_hugetlb_page(vma)) {
1546 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1547
1548 if (start & (vma_hpagesize - 1))
1549 goto out_unlock;
1550 }
1551
1552 /*
1553 * Search for not compatible vmas.
1554 */
1555 found = false;
1556 ret = -EINVAL;
1557 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1558 cond_resched();
1559
1560 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1561 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1562
1563 /*
1564 * Check not compatible vmas, not strictly required
1565 * here as not compatible vmas cannot have an
1566 * userfaultfd_ctx registered on them, but this
1567 * provides for more strict behavior to notice
1568 * unregistration errors.
1569 */
1570 if (!vma_can_userfault(cur))
1571 goto out_unlock;
1572
1573 found = true;
1574 }
1575 BUG_ON(!found);
1576
1577 if (vma->vm_start < start)
1578 prev = vma;
1579
1580 ret = 0;
1581 do {
1582 cond_resched();
1583
1584 BUG_ON(!vma_can_userfault(vma));
1585
1586 /*
1587 * Nothing to do: this vma is already registered into this
1588 * userfaultfd and with the right tracking mode too.
1589 */
1590 if (!vma->vm_userfaultfd_ctx.ctx)
1591 goto skip;
1592
1593 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1594
1595 if (vma->vm_start > start)
1596 start = vma->vm_start;
1597 vma_end = min(end, vma->vm_end);
1598
1599 if (userfaultfd_missing(vma)) {
1600 /*
1601 * Wake any concurrent pending userfault while
1602 * we unregister, so they will not hang
1603 * permanently and it avoids userland to call
1604 * UFFDIO_WAKE explicitly.
1605 */
1606 struct userfaultfd_wake_range range;
1607 range.start = start;
1608 range.len = vma_end - start;
1609 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1610 }
1611
1612 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1613 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1614 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1615 vma_policy(vma),
1616 NULL_VM_UFFD_CTX);
1617 if (prev) {
1618 vma = prev;
1619 goto next;
1620 }
1621 if (vma->vm_start < start) {
1622 ret = split_vma(mm, vma, start, 1);
1623 if (ret)
1624 break;
1625 }
1626 if (vma->vm_end > end) {
1627 ret = split_vma(mm, vma, end, 0);
1628 if (ret)
1629 break;
1630 }
1631 next:
1632 /*
1633 * In the vma_merge() successful mprotect-like case 8:
1634 * the next vma was merged into the current one and
1635 * the current one has not been updated yet.
1636 */
1637 vma->vm_flags = new_flags;
1638 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1639
1640 skip:
1641 prev = vma;
1642 start = vma->vm_end;
1643 vma = vma->vm_next;
1644 } while (vma && vma->vm_start < end);
1645 out_unlock:
1646 up_write(&mm->mmap_sem);
1647 mmput(mm);
1648 out:
1649 return ret;
1650 }
1651
1652 /*
1653 * userfaultfd_wake may be used in combination with the
1654 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1655 */
1656 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1657 unsigned long arg)
1658 {
1659 int ret;
1660 struct uffdio_range uffdio_wake;
1661 struct userfaultfd_wake_range range;
1662 const void __user *buf = (void __user *)arg;
1663
1664 ret = -EFAULT;
1665 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1666 goto out;
1667
1668 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1669 if (ret)
1670 goto out;
1671
1672 range.start = uffdio_wake.start;
1673 range.len = uffdio_wake.len;
1674
1675 /*
1676 * len == 0 means wake all and we don't want to wake all here,
1677 * so check it again to be sure.
1678 */
1679 VM_BUG_ON(!range.len);
1680
1681 wake_userfault(ctx, &range);
1682 ret = 0;
1683
1684 out:
1685 return ret;
1686 }
1687
1688 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1689 unsigned long arg)
1690 {
1691 __s64 ret;
1692 struct uffdio_copy uffdio_copy;
1693 struct uffdio_copy __user *user_uffdio_copy;
1694 struct userfaultfd_wake_range range;
1695
1696 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1697
1698 ret = -EAGAIN;
1699 if (READ_ONCE(ctx->mmap_changing))
1700 goto out;
1701
1702 ret = -EFAULT;
1703 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1704 /* don't copy "copy" last field */
1705 sizeof(uffdio_copy)-sizeof(__s64)))
1706 goto out;
1707
1708 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1709 if (ret)
1710 goto out;
1711 /*
1712 * double check for wraparound just in case. copy_from_user()
1713 * will later check uffdio_copy.src + uffdio_copy.len to fit
1714 * in the userland range.
1715 */
1716 ret = -EINVAL;
1717 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1718 goto out;
1719 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1720 goto out;
1721 if (mmget_not_zero(ctx->mm)) {
1722 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1723 uffdio_copy.len, &ctx->mmap_changing);
1724 mmput(ctx->mm);
1725 } else {
1726 return -ESRCH;
1727 }
1728 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1729 return -EFAULT;
1730 if (ret < 0)
1731 goto out;
1732 BUG_ON(!ret);
1733 /* len == 0 would wake all */
1734 range.len = ret;
1735 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1736 range.start = uffdio_copy.dst;
1737 wake_userfault(ctx, &range);
1738 }
1739 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1740 out:
1741 return ret;
1742 }
1743
1744 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1745 unsigned long arg)
1746 {
1747 __s64 ret;
1748 struct uffdio_zeropage uffdio_zeropage;
1749 struct uffdio_zeropage __user *user_uffdio_zeropage;
1750 struct userfaultfd_wake_range range;
1751
1752 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1753
1754 ret = -EAGAIN;
1755 if (READ_ONCE(ctx->mmap_changing))
1756 goto out;
1757
1758 ret = -EFAULT;
1759 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1760 /* don't copy "zeropage" last field */
1761 sizeof(uffdio_zeropage)-sizeof(__s64)))
1762 goto out;
1763
1764 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1765 uffdio_zeropage.range.len);
1766 if (ret)
1767 goto out;
1768 ret = -EINVAL;
1769 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1770 goto out;
1771
1772 if (mmget_not_zero(ctx->mm)) {
1773 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1774 uffdio_zeropage.range.len,
1775 &ctx->mmap_changing);
1776 mmput(ctx->mm);
1777 } else {
1778 return -ESRCH;
1779 }
1780 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1781 return -EFAULT;
1782 if (ret < 0)
1783 goto out;
1784 /* len == 0 would wake all */
1785 BUG_ON(!ret);
1786 range.len = ret;
1787 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1788 range.start = uffdio_zeropage.range.start;
1789 wake_userfault(ctx, &range);
1790 }
1791 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1792 out:
1793 return ret;
1794 }
1795
1796 static inline unsigned int uffd_ctx_features(__u64 user_features)
1797 {
1798 /*
1799 * For the current set of features the bits just coincide
1800 */
1801 return (unsigned int)user_features;
1802 }
1803
1804 /*
1805 * userland asks for a certain API version and we return which bits
1806 * and ioctl commands are implemented in this kernel for such API
1807 * version or -EINVAL if unknown.
1808 */
1809 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1810 unsigned long arg)
1811 {
1812 struct uffdio_api uffdio_api;
1813 void __user *buf = (void __user *)arg;
1814 int ret;
1815 __u64 features;
1816
1817 ret = -EINVAL;
1818 if (ctx->state != UFFD_STATE_WAIT_API)
1819 goto out;
1820 ret = -EFAULT;
1821 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1822 goto out;
1823 features = uffdio_api.features;
1824 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1825 memset(&uffdio_api, 0, sizeof(uffdio_api));
1826 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1827 goto out;
1828 ret = -EINVAL;
1829 goto out;
1830 }
1831 /* report all available features and ioctls to userland */
1832 uffdio_api.features = UFFD_API_FEATURES;
1833 uffdio_api.ioctls = UFFD_API_IOCTLS;
1834 ret = -EFAULT;
1835 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1836 goto out;
1837 ctx->state = UFFD_STATE_RUNNING;
1838 /* only enable the requested features for this uffd context */
1839 ctx->features = uffd_ctx_features(features);
1840 ret = 0;
1841 out:
1842 return ret;
1843 }
1844
1845 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1846 unsigned long arg)
1847 {
1848 int ret = -EINVAL;
1849 struct userfaultfd_ctx *ctx = file->private_data;
1850
1851 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1852 return -EINVAL;
1853
1854 switch(cmd) {
1855 case UFFDIO_API:
1856 ret = userfaultfd_api(ctx, arg);
1857 break;
1858 case UFFDIO_REGISTER:
1859 ret = userfaultfd_register(ctx, arg);
1860 break;
1861 case UFFDIO_UNREGISTER:
1862 ret = userfaultfd_unregister(ctx, arg);
1863 break;
1864 case UFFDIO_WAKE:
1865 ret = userfaultfd_wake(ctx, arg);
1866 break;
1867 case UFFDIO_COPY:
1868 ret = userfaultfd_copy(ctx, arg);
1869 break;
1870 case UFFDIO_ZEROPAGE:
1871 ret = userfaultfd_zeropage(ctx, arg);
1872 break;
1873 }
1874 return ret;
1875 }
1876
1877 #ifdef CONFIG_PROC_FS
1878 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1879 {
1880 struct userfaultfd_ctx *ctx = f->private_data;
1881 wait_queue_entry_t *wq;
1882 unsigned long pending = 0, total = 0;
1883
1884 spin_lock(&ctx->fault_pending_wqh.lock);
1885 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1886 pending++;
1887 total++;
1888 }
1889 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1890 total++;
1891 }
1892 spin_unlock(&ctx->fault_pending_wqh.lock);
1893
1894 /*
1895 * If more protocols will be added, there will be all shown
1896 * separated by a space. Like this:
1897 * protocols: aa:... bb:...
1898 */
1899 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1900 pending, total, UFFD_API, ctx->features,
1901 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1902 }
1903 #endif
1904
1905 static const struct file_operations userfaultfd_fops = {
1906 #ifdef CONFIG_PROC_FS
1907 .show_fdinfo = userfaultfd_show_fdinfo,
1908 #endif
1909 .release = userfaultfd_release,
1910 .poll = userfaultfd_poll,
1911 .read = userfaultfd_read,
1912 .unlocked_ioctl = userfaultfd_ioctl,
1913 .compat_ioctl = userfaultfd_ioctl,
1914 .llseek = noop_llseek,
1915 };
1916
1917 static void init_once_userfaultfd_ctx(void *mem)
1918 {
1919 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1920
1921 init_waitqueue_head(&ctx->fault_pending_wqh);
1922 init_waitqueue_head(&ctx->fault_wqh);
1923 init_waitqueue_head(&ctx->event_wqh);
1924 init_waitqueue_head(&ctx->fd_wqh);
1925 seqcount_init(&ctx->refile_seq);
1926 }
1927
1928 SYSCALL_DEFINE1(userfaultfd, int, flags)
1929 {
1930 struct userfaultfd_ctx *ctx;
1931 int fd;
1932
1933 BUG_ON(!current->mm);
1934
1935 /* Check the UFFD_* constants for consistency. */
1936 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1937 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1938
1939 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1940 return -EINVAL;
1941
1942 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1943 if (!ctx)
1944 return -ENOMEM;
1945
1946 refcount_set(&ctx->refcount, 1);
1947 ctx->flags = flags;
1948 ctx->features = 0;
1949 ctx->state = UFFD_STATE_WAIT_API;
1950 ctx->released = false;
1951 ctx->mmap_changing = false;
1952 ctx->mm = current->mm;
1953 /* prevent the mm struct to be freed */
1954 mmgrab(ctx->mm);
1955
1956 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1957 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1958 if (fd < 0) {
1959 mmdrop(ctx->mm);
1960 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1961 }
1962 return fd;
1963 }
1964
1965 static int __init userfaultfd_init(void)
1966 {
1967 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1968 sizeof(struct userfaultfd_ctx),
1969 0,
1970 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1971 init_once_userfaultfd_ctx);
1972 return 0;
1973 }
1974 __initcall(userfaultfd_init);