]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - io_uring/io_uring.c
fs: Rename anon_inode_getfile_secure() and anon_inode_getfd_secure()
[thirdparty/kernel/stable.git] / io_uring / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <net/scm.h>
64 #include <linux/anon_inodes.h>
65 #include <linux/sched/mm.h>
66 #include <linux/uaccess.h>
67 #include <linux/nospec.h>
68 #include <linux/highmem.h>
69 #include <linux/fsnotify.h>
70 #include <linux/fadvise.h>
71 #include <linux/task_work.h>
72 #include <linux/io_uring.h>
73 #include <linux/audit.h>
74 #include <linux/security.h>
75 #include <asm/shmparam.h>
76
77 #define CREATE_TRACE_POINTS
78 #include <trace/events/io_uring.h>
79
80 #include <uapi/linux/io_uring.h>
81
82 #include "io-wq.h"
83
84 #include "io_uring.h"
85 #include "opdef.h"
86 #include "refs.h"
87 #include "tctx.h"
88 #include "sqpoll.h"
89 #include "fdinfo.h"
90 #include "kbuf.h"
91 #include "rsrc.h"
92 #include "cancel.h"
93 #include "net.h"
94 #include "notif.h"
95
96 #include "timeout.h"
97 #include "poll.h"
98 #include "rw.h"
99 #include "alloc_cache.h"
100
101 #define IORING_MAX_ENTRIES 32768
102 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
103
104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
105 IORING_REGISTER_LAST + IORING_OP_LAST)
106
107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
108 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
109
110 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
111 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
112
113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
115 REQ_F_ASYNC_DATA)
116
117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
118 IO_REQ_CLEAN_FLAGS)
119
120 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
121
122 #define IO_COMPL_BATCH 32
123 #define IO_REQ_ALLOC_BATCH 8
124
125 enum {
126 IO_CHECK_CQ_OVERFLOW_BIT,
127 IO_CHECK_CQ_DROPPED_BIT,
128 };
129
130 enum {
131 IO_EVENTFD_OP_SIGNAL_BIT,
132 IO_EVENTFD_OP_FREE_BIT,
133 };
134
135 struct io_defer_entry {
136 struct list_head list;
137 struct io_kiocb *req;
138 u32 seq;
139 };
140
141 /* requests with any of those set should undergo io_disarm_next() */
142 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
143 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
144
145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
146 struct task_struct *task,
147 bool cancel_all);
148
149 static void io_queue_sqe(struct io_kiocb *req);
150
151 struct kmem_cache *req_cachep;
152
153 static int __read_mostly sysctl_io_uring_disabled;
154 static int __read_mostly sysctl_io_uring_group = -1;
155
156 #ifdef CONFIG_SYSCTL
157 static struct ctl_table kernel_io_uring_disabled_table[] = {
158 {
159 .procname = "io_uring_disabled",
160 .data = &sysctl_io_uring_disabled,
161 .maxlen = sizeof(sysctl_io_uring_disabled),
162 .mode = 0644,
163 .proc_handler = proc_dointvec_minmax,
164 .extra1 = SYSCTL_ZERO,
165 .extra2 = SYSCTL_TWO,
166 },
167 {
168 .procname = "io_uring_group",
169 .data = &sysctl_io_uring_group,
170 .maxlen = sizeof(gid_t),
171 .mode = 0644,
172 .proc_handler = proc_dointvec,
173 },
174 {},
175 };
176 #endif
177
178 struct sock *io_uring_get_socket(struct file *file)
179 {
180 #if defined(CONFIG_UNIX)
181 if (io_is_uring_fops(file)) {
182 struct io_ring_ctx *ctx = file->private_data;
183
184 return ctx->ring_sock->sk;
185 }
186 #endif
187 return NULL;
188 }
189 EXPORT_SYMBOL(io_uring_get_socket);
190
191 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
192 {
193 if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
194 ctx->submit_state.cqes_count)
195 __io_submit_flush_completions(ctx);
196 }
197
198 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
199 {
200 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
201 }
202
203 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
204 {
205 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
206 }
207
208 static bool io_match_linked(struct io_kiocb *head)
209 {
210 struct io_kiocb *req;
211
212 io_for_each_link(req, head) {
213 if (req->flags & REQ_F_INFLIGHT)
214 return true;
215 }
216 return false;
217 }
218
219 /*
220 * As io_match_task() but protected against racing with linked timeouts.
221 * User must not hold timeout_lock.
222 */
223 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
224 bool cancel_all)
225 {
226 bool matched;
227
228 if (task && head->task != task)
229 return false;
230 if (cancel_all)
231 return true;
232
233 if (head->flags & REQ_F_LINK_TIMEOUT) {
234 struct io_ring_ctx *ctx = head->ctx;
235
236 /* protect against races with linked timeouts */
237 spin_lock_irq(&ctx->timeout_lock);
238 matched = io_match_linked(head);
239 spin_unlock_irq(&ctx->timeout_lock);
240 } else {
241 matched = io_match_linked(head);
242 }
243 return matched;
244 }
245
246 static inline void req_fail_link_node(struct io_kiocb *req, int res)
247 {
248 req_set_fail(req);
249 io_req_set_res(req, res, 0);
250 }
251
252 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
253 {
254 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
255 }
256
257 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
258 {
259 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
260
261 complete(&ctx->ref_comp);
262 }
263
264 static __cold void io_fallback_req_func(struct work_struct *work)
265 {
266 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
267 fallback_work.work);
268 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
269 struct io_kiocb *req, *tmp;
270 struct io_tw_state ts = { .locked = true, };
271
272 mutex_lock(&ctx->uring_lock);
273 llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
274 req->io_task_work.func(req, &ts);
275 if (WARN_ON_ONCE(!ts.locked))
276 return;
277 io_submit_flush_completions(ctx);
278 mutex_unlock(&ctx->uring_lock);
279 }
280
281 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
282 {
283 unsigned hash_buckets = 1U << bits;
284 size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
285
286 table->hbs = kmalloc(hash_size, GFP_KERNEL);
287 if (!table->hbs)
288 return -ENOMEM;
289
290 table->hash_bits = bits;
291 init_hash_table(table, hash_buckets);
292 return 0;
293 }
294
295 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
296 {
297 struct io_ring_ctx *ctx;
298 int hash_bits;
299
300 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
301 if (!ctx)
302 return NULL;
303
304 xa_init(&ctx->io_bl_xa);
305
306 /*
307 * Use 5 bits less than the max cq entries, that should give us around
308 * 32 entries per hash list if totally full and uniformly spread, but
309 * don't keep too many buckets to not overconsume memory.
310 */
311 hash_bits = ilog2(p->cq_entries) - 5;
312 hash_bits = clamp(hash_bits, 1, 8);
313 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
314 goto err;
315 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
316 goto err;
317 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
318 0, GFP_KERNEL))
319 goto err;
320
321 ctx->flags = p->flags;
322 init_waitqueue_head(&ctx->sqo_sq_wait);
323 INIT_LIST_HEAD(&ctx->sqd_list);
324 INIT_LIST_HEAD(&ctx->cq_overflow_list);
325 INIT_LIST_HEAD(&ctx->io_buffers_cache);
326 io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
327 sizeof(struct io_rsrc_node));
328 io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
329 sizeof(struct async_poll));
330 io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
331 sizeof(struct io_async_msghdr));
332 init_completion(&ctx->ref_comp);
333 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
334 mutex_init(&ctx->uring_lock);
335 init_waitqueue_head(&ctx->cq_wait);
336 init_waitqueue_head(&ctx->poll_wq);
337 init_waitqueue_head(&ctx->rsrc_quiesce_wq);
338 spin_lock_init(&ctx->completion_lock);
339 spin_lock_init(&ctx->timeout_lock);
340 INIT_WQ_LIST(&ctx->iopoll_list);
341 INIT_LIST_HEAD(&ctx->io_buffers_pages);
342 INIT_LIST_HEAD(&ctx->io_buffers_comp);
343 INIT_LIST_HEAD(&ctx->defer_list);
344 INIT_LIST_HEAD(&ctx->timeout_list);
345 INIT_LIST_HEAD(&ctx->ltimeout_list);
346 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
347 init_llist_head(&ctx->work_llist);
348 INIT_LIST_HEAD(&ctx->tctx_list);
349 ctx->submit_state.free_list.next = NULL;
350 INIT_WQ_LIST(&ctx->locked_free_list);
351 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
352 INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
353 return ctx;
354 err:
355 kfree(ctx->cancel_table.hbs);
356 kfree(ctx->cancel_table_locked.hbs);
357 kfree(ctx->io_bl);
358 xa_destroy(&ctx->io_bl_xa);
359 kfree(ctx);
360 return NULL;
361 }
362
363 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
364 {
365 struct io_rings *r = ctx->rings;
366
367 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
368 ctx->cq_extra--;
369 }
370
371 static bool req_need_defer(struct io_kiocb *req, u32 seq)
372 {
373 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
374 struct io_ring_ctx *ctx = req->ctx;
375
376 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
377 }
378
379 return false;
380 }
381
382 static void io_clean_op(struct io_kiocb *req)
383 {
384 if (req->flags & REQ_F_BUFFER_SELECTED) {
385 spin_lock(&req->ctx->completion_lock);
386 io_put_kbuf_comp(req);
387 spin_unlock(&req->ctx->completion_lock);
388 }
389
390 if (req->flags & REQ_F_NEED_CLEANUP) {
391 const struct io_cold_def *def = &io_cold_defs[req->opcode];
392
393 if (def->cleanup)
394 def->cleanup(req);
395 }
396 if ((req->flags & REQ_F_POLLED) && req->apoll) {
397 kfree(req->apoll->double_poll);
398 kfree(req->apoll);
399 req->apoll = NULL;
400 }
401 if (req->flags & REQ_F_INFLIGHT) {
402 struct io_uring_task *tctx = req->task->io_uring;
403
404 atomic_dec(&tctx->inflight_tracked);
405 }
406 if (req->flags & REQ_F_CREDS)
407 put_cred(req->creds);
408 if (req->flags & REQ_F_ASYNC_DATA) {
409 kfree(req->async_data);
410 req->async_data = NULL;
411 }
412 req->flags &= ~IO_REQ_CLEAN_FLAGS;
413 }
414
415 static inline void io_req_track_inflight(struct io_kiocb *req)
416 {
417 if (!(req->flags & REQ_F_INFLIGHT)) {
418 req->flags |= REQ_F_INFLIGHT;
419 atomic_inc(&req->task->io_uring->inflight_tracked);
420 }
421 }
422
423 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
424 {
425 if (WARN_ON_ONCE(!req->link))
426 return NULL;
427
428 req->flags &= ~REQ_F_ARM_LTIMEOUT;
429 req->flags |= REQ_F_LINK_TIMEOUT;
430
431 /* linked timeouts should have two refs once prep'ed */
432 io_req_set_refcount(req);
433 __io_req_set_refcount(req->link, 2);
434 return req->link;
435 }
436
437 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
438 {
439 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
440 return NULL;
441 return __io_prep_linked_timeout(req);
442 }
443
444 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
445 {
446 io_queue_linked_timeout(__io_prep_linked_timeout(req));
447 }
448
449 static inline void io_arm_ltimeout(struct io_kiocb *req)
450 {
451 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
452 __io_arm_ltimeout(req);
453 }
454
455 static void io_prep_async_work(struct io_kiocb *req)
456 {
457 const struct io_issue_def *def = &io_issue_defs[req->opcode];
458 struct io_ring_ctx *ctx = req->ctx;
459
460 if (!(req->flags & REQ_F_CREDS)) {
461 req->flags |= REQ_F_CREDS;
462 req->creds = get_current_cred();
463 }
464
465 req->work.list.next = NULL;
466 req->work.flags = 0;
467 req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
468 if (req->flags & REQ_F_FORCE_ASYNC)
469 req->work.flags |= IO_WQ_WORK_CONCURRENT;
470
471 if (req->file && !(req->flags & REQ_F_FIXED_FILE))
472 req->flags |= io_file_get_flags(req->file);
473
474 if (req->file && (req->flags & REQ_F_ISREG)) {
475 bool should_hash = def->hash_reg_file;
476
477 /* don't serialize this request if the fs doesn't need it */
478 if (should_hash && (req->file->f_flags & O_DIRECT) &&
479 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
480 should_hash = false;
481 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
482 io_wq_hash_work(&req->work, file_inode(req->file));
483 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
484 if (def->unbound_nonreg_file)
485 req->work.flags |= IO_WQ_WORK_UNBOUND;
486 }
487 }
488
489 static void io_prep_async_link(struct io_kiocb *req)
490 {
491 struct io_kiocb *cur;
492
493 if (req->flags & REQ_F_LINK_TIMEOUT) {
494 struct io_ring_ctx *ctx = req->ctx;
495
496 spin_lock_irq(&ctx->timeout_lock);
497 io_for_each_link(cur, req)
498 io_prep_async_work(cur);
499 spin_unlock_irq(&ctx->timeout_lock);
500 } else {
501 io_for_each_link(cur, req)
502 io_prep_async_work(cur);
503 }
504 }
505
506 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use)
507 {
508 struct io_kiocb *link = io_prep_linked_timeout(req);
509 struct io_uring_task *tctx = req->task->io_uring;
510
511 BUG_ON(!tctx);
512 BUG_ON(!tctx->io_wq);
513
514 /* init ->work of the whole link before punting */
515 io_prep_async_link(req);
516
517 /*
518 * Not expected to happen, but if we do have a bug where this _can_
519 * happen, catch it here and ensure the request is marked as
520 * canceled. That will make io-wq go through the usual work cancel
521 * procedure rather than attempt to run this request (or create a new
522 * worker for it).
523 */
524 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
525 req->work.flags |= IO_WQ_WORK_CANCEL;
526
527 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
528 io_wq_enqueue(tctx->io_wq, &req->work);
529 if (link)
530 io_queue_linked_timeout(link);
531 }
532
533 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
534 {
535 while (!list_empty(&ctx->defer_list)) {
536 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
537 struct io_defer_entry, list);
538
539 if (req_need_defer(de->req, de->seq))
540 break;
541 list_del_init(&de->list);
542 io_req_task_queue(de->req);
543 kfree(de);
544 }
545 }
546
547
548 static void io_eventfd_ops(struct rcu_head *rcu)
549 {
550 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
551 int ops = atomic_xchg(&ev_fd->ops, 0);
552
553 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
554 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
555
556 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
557 * ordering in a race but if references are 0 we know we have to free
558 * it regardless.
559 */
560 if (atomic_dec_and_test(&ev_fd->refs)) {
561 eventfd_ctx_put(ev_fd->cq_ev_fd);
562 kfree(ev_fd);
563 }
564 }
565
566 static void io_eventfd_signal(struct io_ring_ctx *ctx)
567 {
568 struct io_ev_fd *ev_fd = NULL;
569
570 rcu_read_lock();
571 /*
572 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
573 * and eventfd_signal
574 */
575 ev_fd = rcu_dereference(ctx->io_ev_fd);
576
577 /*
578 * Check again if ev_fd exists incase an io_eventfd_unregister call
579 * completed between the NULL check of ctx->io_ev_fd at the start of
580 * the function and rcu_read_lock.
581 */
582 if (unlikely(!ev_fd))
583 goto out;
584 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
585 goto out;
586 if (ev_fd->eventfd_async && !io_wq_current_is_worker())
587 goto out;
588
589 if (likely(eventfd_signal_allowed())) {
590 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
591 } else {
592 atomic_inc(&ev_fd->refs);
593 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
594 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
595 else
596 atomic_dec(&ev_fd->refs);
597 }
598
599 out:
600 rcu_read_unlock();
601 }
602
603 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
604 {
605 bool skip;
606
607 spin_lock(&ctx->completion_lock);
608
609 /*
610 * Eventfd should only get triggered when at least one event has been
611 * posted. Some applications rely on the eventfd notification count
612 * only changing IFF a new CQE has been added to the CQ ring. There's
613 * no depedency on 1:1 relationship between how many times this
614 * function is called (and hence the eventfd count) and number of CQEs
615 * posted to the CQ ring.
616 */
617 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
618 ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
619 spin_unlock(&ctx->completion_lock);
620 if (skip)
621 return;
622
623 io_eventfd_signal(ctx);
624 }
625
626 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
627 {
628 if (ctx->poll_activated)
629 io_poll_wq_wake(ctx);
630 if (ctx->off_timeout_used)
631 io_flush_timeouts(ctx);
632 if (ctx->drain_active) {
633 spin_lock(&ctx->completion_lock);
634 io_queue_deferred(ctx);
635 spin_unlock(&ctx->completion_lock);
636 }
637 if (ctx->has_evfd)
638 io_eventfd_flush_signal(ctx);
639 }
640
641 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
642 {
643 if (!ctx->lockless_cq)
644 spin_lock(&ctx->completion_lock);
645 }
646
647 static inline void io_cq_lock(struct io_ring_ctx *ctx)
648 __acquires(ctx->completion_lock)
649 {
650 spin_lock(&ctx->completion_lock);
651 }
652
653 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
654 {
655 io_commit_cqring(ctx);
656 if (!ctx->task_complete) {
657 if (!ctx->lockless_cq)
658 spin_unlock(&ctx->completion_lock);
659 /* IOPOLL rings only need to wake up if it's also SQPOLL */
660 if (!ctx->syscall_iopoll)
661 io_cqring_wake(ctx);
662 }
663 io_commit_cqring_flush(ctx);
664 }
665
666 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
667 __releases(ctx->completion_lock)
668 {
669 io_commit_cqring(ctx);
670 spin_unlock(&ctx->completion_lock);
671 io_cqring_wake(ctx);
672 io_commit_cqring_flush(ctx);
673 }
674
675 /* Returns true if there are no backlogged entries after the flush */
676 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
677 {
678 struct io_overflow_cqe *ocqe;
679 LIST_HEAD(list);
680
681 spin_lock(&ctx->completion_lock);
682 list_splice_init(&ctx->cq_overflow_list, &list);
683 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
684 spin_unlock(&ctx->completion_lock);
685
686 while (!list_empty(&list)) {
687 ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
688 list_del(&ocqe->list);
689 kfree(ocqe);
690 }
691 }
692
693 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
694 {
695 size_t cqe_size = sizeof(struct io_uring_cqe);
696
697 if (__io_cqring_events(ctx) == ctx->cq_entries)
698 return;
699
700 if (ctx->flags & IORING_SETUP_CQE32)
701 cqe_size <<= 1;
702
703 io_cq_lock(ctx);
704 while (!list_empty(&ctx->cq_overflow_list)) {
705 struct io_uring_cqe *cqe;
706 struct io_overflow_cqe *ocqe;
707
708 if (!io_get_cqe_overflow(ctx, &cqe, true))
709 break;
710 ocqe = list_first_entry(&ctx->cq_overflow_list,
711 struct io_overflow_cqe, list);
712 memcpy(cqe, &ocqe->cqe, cqe_size);
713 list_del(&ocqe->list);
714 kfree(ocqe);
715 }
716
717 if (list_empty(&ctx->cq_overflow_list)) {
718 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
719 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
720 }
721 io_cq_unlock_post(ctx);
722 }
723
724 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
725 {
726 /* iopoll syncs against uring_lock, not completion_lock */
727 if (ctx->flags & IORING_SETUP_IOPOLL)
728 mutex_lock(&ctx->uring_lock);
729 __io_cqring_overflow_flush(ctx);
730 if (ctx->flags & IORING_SETUP_IOPOLL)
731 mutex_unlock(&ctx->uring_lock);
732 }
733
734 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
735 {
736 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
737 io_cqring_do_overflow_flush(ctx);
738 }
739
740 /* can be called by any task */
741 static void io_put_task_remote(struct task_struct *task)
742 {
743 struct io_uring_task *tctx = task->io_uring;
744
745 percpu_counter_sub(&tctx->inflight, 1);
746 if (unlikely(atomic_read(&tctx->in_cancel)))
747 wake_up(&tctx->wait);
748 put_task_struct(task);
749 }
750
751 /* used by a task to put its own references */
752 static void io_put_task_local(struct task_struct *task)
753 {
754 task->io_uring->cached_refs++;
755 }
756
757 /* must to be called somewhat shortly after putting a request */
758 static inline void io_put_task(struct task_struct *task)
759 {
760 if (likely(task == current))
761 io_put_task_local(task);
762 else
763 io_put_task_remote(task);
764 }
765
766 void io_task_refs_refill(struct io_uring_task *tctx)
767 {
768 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
769
770 percpu_counter_add(&tctx->inflight, refill);
771 refcount_add(refill, &current->usage);
772 tctx->cached_refs += refill;
773 }
774
775 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
776 {
777 struct io_uring_task *tctx = task->io_uring;
778 unsigned int refs = tctx->cached_refs;
779
780 if (refs) {
781 tctx->cached_refs = 0;
782 percpu_counter_sub(&tctx->inflight, refs);
783 put_task_struct_many(task, refs);
784 }
785 }
786
787 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
788 s32 res, u32 cflags, u64 extra1, u64 extra2)
789 {
790 struct io_overflow_cqe *ocqe;
791 size_t ocq_size = sizeof(struct io_overflow_cqe);
792 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
793
794 lockdep_assert_held(&ctx->completion_lock);
795
796 if (is_cqe32)
797 ocq_size += sizeof(struct io_uring_cqe);
798
799 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
800 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
801 if (!ocqe) {
802 /*
803 * If we're in ring overflow flush mode, or in task cancel mode,
804 * or cannot allocate an overflow entry, then we need to drop it
805 * on the floor.
806 */
807 io_account_cq_overflow(ctx);
808 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
809 return false;
810 }
811 if (list_empty(&ctx->cq_overflow_list)) {
812 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
813 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
814
815 }
816 ocqe->cqe.user_data = user_data;
817 ocqe->cqe.res = res;
818 ocqe->cqe.flags = cflags;
819 if (is_cqe32) {
820 ocqe->cqe.big_cqe[0] = extra1;
821 ocqe->cqe.big_cqe[1] = extra2;
822 }
823 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
824 return true;
825 }
826
827 void io_req_cqe_overflow(struct io_kiocb *req)
828 {
829 io_cqring_event_overflow(req->ctx, req->cqe.user_data,
830 req->cqe.res, req->cqe.flags,
831 req->big_cqe.extra1, req->big_cqe.extra2);
832 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
833 }
834
835 /*
836 * writes to the cq entry need to come after reading head; the
837 * control dependency is enough as we're using WRITE_ONCE to
838 * fill the cq entry
839 */
840 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
841 {
842 struct io_rings *rings = ctx->rings;
843 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
844 unsigned int free, queued, len;
845
846 /*
847 * Posting into the CQ when there are pending overflowed CQEs may break
848 * ordering guarantees, which will affect links, F_MORE users and more.
849 * Force overflow the completion.
850 */
851 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
852 return false;
853
854 /* userspace may cheat modifying the tail, be safe and do min */
855 queued = min(__io_cqring_events(ctx), ctx->cq_entries);
856 free = ctx->cq_entries - queued;
857 /* we need a contiguous range, limit based on the current array offset */
858 len = min(free, ctx->cq_entries - off);
859 if (!len)
860 return false;
861
862 if (ctx->flags & IORING_SETUP_CQE32) {
863 off <<= 1;
864 len <<= 1;
865 }
866
867 ctx->cqe_cached = &rings->cqes[off];
868 ctx->cqe_sentinel = ctx->cqe_cached + len;
869 return true;
870 }
871
872 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
873 u32 cflags)
874 {
875 struct io_uring_cqe *cqe;
876
877 ctx->cq_extra++;
878
879 /*
880 * If we can't get a cq entry, userspace overflowed the
881 * submission (by quite a lot). Increment the overflow count in
882 * the ring.
883 */
884 if (likely(io_get_cqe(ctx, &cqe))) {
885 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
886
887 WRITE_ONCE(cqe->user_data, user_data);
888 WRITE_ONCE(cqe->res, res);
889 WRITE_ONCE(cqe->flags, cflags);
890
891 if (ctx->flags & IORING_SETUP_CQE32) {
892 WRITE_ONCE(cqe->big_cqe[0], 0);
893 WRITE_ONCE(cqe->big_cqe[1], 0);
894 }
895 return true;
896 }
897 return false;
898 }
899
900 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
901 __must_hold(&ctx->uring_lock)
902 {
903 struct io_submit_state *state = &ctx->submit_state;
904 unsigned int i;
905
906 lockdep_assert_held(&ctx->uring_lock);
907 for (i = 0; i < state->cqes_count; i++) {
908 struct io_uring_cqe *cqe = &ctx->completion_cqes[i];
909
910 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
911 if (ctx->lockless_cq) {
912 spin_lock(&ctx->completion_lock);
913 io_cqring_event_overflow(ctx, cqe->user_data,
914 cqe->res, cqe->flags, 0, 0);
915 spin_unlock(&ctx->completion_lock);
916 } else {
917 io_cqring_event_overflow(ctx, cqe->user_data,
918 cqe->res, cqe->flags, 0, 0);
919 }
920 }
921 }
922 state->cqes_count = 0;
923 }
924
925 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
926 bool allow_overflow)
927 {
928 bool filled;
929
930 io_cq_lock(ctx);
931 filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
932 if (!filled && allow_overflow)
933 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
934
935 io_cq_unlock_post(ctx);
936 return filled;
937 }
938
939 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
940 {
941 return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
942 }
943
944 /*
945 * A helper for multishot requests posting additional CQEs.
946 * Should only be used from a task_work including IO_URING_F_MULTISHOT.
947 */
948 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags)
949 {
950 struct io_ring_ctx *ctx = req->ctx;
951 u64 user_data = req->cqe.user_data;
952 struct io_uring_cqe *cqe;
953
954 if (!defer)
955 return __io_post_aux_cqe(ctx, user_data, res, cflags, false);
956
957 lockdep_assert_held(&ctx->uring_lock);
958
959 if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) {
960 __io_cq_lock(ctx);
961 __io_flush_post_cqes(ctx);
962 /* no need to flush - flush is deferred */
963 __io_cq_unlock_post(ctx);
964 }
965
966 /* For defered completions this is not as strict as it is otherwise,
967 * however it's main job is to prevent unbounded posted completions,
968 * and in that it works just as well.
969 */
970 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
971 return false;
972
973 cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++];
974 cqe->user_data = user_data;
975 cqe->res = res;
976 cqe->flags = cflags;
977 return true;
978 }
979
980 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
981 {
982 struct io_ring_ctx *ctx = req->ctx;
983 struct io_rsrc_node *rsrc_node = NULL;
984
985 io_cq_lock(ctx);
986 if (!(req->flags & REQ_F_CQE_SKIP)) {
987 if (!io_fill_cqe_req(ctx, req))
988 io_req_cqe_overflow(req);
989 }
990
991 /*
992 * If we're the last reference to this request, add to our locked
993 * free_list cache.
994 */
995 if (req_ref_put_and_test(req)) {
996 if (req->flags & IO_REQ_LINK_FLAGS) {
997 if (req->flags & IO_DISARM_MASK)
998 io_disarm_next(req);
999 if (req->link) {
1000 io_req_task_queue(req->link);
1001 req->link = NULL;
1002 }
1003 }
1004 io_put_kbuf_comp(req);
1005 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1006 io_clean_op(req);
1007 io_put_file(req);
1008
1009 rsrc_node = req->rsrc_node;
1010 /*
1011 * Selected buffer deallocation in io_clean_op() assumes that
1012 * we don't hold ->completion_lock. Clean them here to avoid
1013 * deadlocks.
1014 */
1015 io_put_task_remote(req->task);
1016 wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1017 ctx->locked_free_nr++;
1018 }
1019 io_cq_unlock_post(ctx);
1020
1021 if (rsrc_node) {
1022 io_ring_submit_lock(ctx, issue_flags);
1023 io_put_rsrc_node(ctx, rsrc_node);
1024 io_ring_submit_unlock(ctx, issue_flags);
1025 }
1026 }
1027
1028 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1029 {
1030 if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1031 req->io_task_work.func = io_req_task_complete;
1032 io_req_task_work_add(req);
1033 } else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1034 !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1035 __io_req_complete_post(req, issue_flags);
1036 } else {
1037 struct io_ring_ctx *ctx = req->ctx;
1038
1039 mutex_lock(&ctx->uring_lock);
1040 __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1041 mutex_unlock(&ctx->uring_lock);
1042 }
1043 }
1044
1045 void io_req_defer_failed(struct io_kiocb *req, s32 res)
1046 __must_hold(&ctx->uring_lock)
1047 {
1048 const struct io_cold_def *def = &io_cold_defs[req->opcode];
1049
1050 lockdep_assert_held(&req->ctx->uring_lock);
1051
1052 req_set_fail(req);
1053 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1054 if (def->fail)
1055 def->fail(req);
1056 io_req_complete_defer(req);
1057 }
1058
1059 /*
1060 * Don't initialise the fields below on every allocation, but do that in
1061 * advance and keep them valid across allocations.
1062 */
1063 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1064 {
1065 req->ctx = ctx;
1066 req->link = NULL;
1067 req->async_data = NULL;
1068 /* not necessary, but safer to zero */
1069 memset(&req->cqe, 0, sizeof(req->cqe));
1070 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
1071 }
1072
1073 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1074 struct io_submit_state *state)
1075 {
1076 spin_lock(&ctx->completion_lock);
1077 wq_list_splice(&ctx->locked_free_list, &state->free_list);
1078 ctx->locked_free_nr = 0;
1079 spin_unlock(&ctx->completion_lock);
1080 }
1081
1082 /*
1083 * A request might get retired back into the request caches even before opcode
1084 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1085 * Because of that, io_alloc_req() should be called only under ->uring_lock
1086 * and with extra caution to not get a request that is still worked on.
1087 */
1088 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1089 __must_hold(&ctx->uring_lock)
1090 {
1091 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1092 void *reqs[IO_REQ_ALLOC_BATCH];
1093 int ret, i;
1094
1095 /*
1096 * If we have more than a batch's worth of requests in our IRQ side
1097 * locked cache, grab the lock and move them over to our submission
1098 * side cache.
1099 */
1100 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1101 io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1102 if (!io_req_cache_empty(ctx))
1103 return true;
1104 }
1105
1106 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1107
1108 /*
1109 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1110 * retry single alloc to be on the safe side.
1111 */
1112 if (unlikely(ret <= 0)) {
1113 reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1114 if (!reqs[0])
1115 return false;
1116 ret = 1;
1117 }
1118
1119 percpu_ref_get_many(&ctx->refs, ret);
1120 for (i = 0; i < ret; i++) {
1121 struct io_kiocb *req = reqs[i];
1122
1123 io_preinit_req(req, ctx);
1124 io_req_add_to_cache(req, ctx);
1125 }
1126 return true;
1127 }
1128
1129 __cold void io_free_req(struct io_kiocb *req)
1130 {
1131 /* refs were already put, restore them for io_req_task_complete() */
1132 req->flags &= ~REQ_F_REFCOUNT;
1133 /* we only want to free it, don't post CQEs */
1134 req->flags |= REQ_F_CQE_SKIP;
1135 req->io_task_work.func = io_req_task_complete;
1136 io_req_task_work_add(req);
1137 }
1138
1139 static void __io_req_find_next_prep(struct io_kiocb *req)
1140 {
1141 struct io_ring_ctx *ctx = req->ctx;
1142
1143 spin_lock(&ctx->completion_lock);
1144 io_disarm_next(req);
1145 spin_unlock(&ctx->completion_lock);
1146 }
1147
1148 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1149 {
1150 struct io_kiocb *nxt;
1151
1152 /*
1153 * If LINK is set, we have dependent requests in this chain. If we
1154 * didn't fail this request, queue the first one up, moving any other
1155 * dependencies to the next request. In case of failure, fail the rest
1156 * of the chain.
1157 */
1158 if (unlikely(req->flags & IO_DISARM_MASK))
1159 __io_req_find_next_prep(req);
1160 nxt = req->link;
1161 req->link = NULL;
1162 return nxt;
1163 }
1164
1165 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1166 {
1167 if (!ctx)
1168 return;
1169 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1170 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1171 if (ts->locked) {
1172 io_submit_flush_completions(ctx);
1173 mutex_unlock(&ctx->uring_lock);
1174 ts->locked = false;
1175 }
1176 percpu_ref_put(&ctx->refs);
1177 }
1178
1179 static unsigned int handle_tw_list(struct llist_node *node,
1180 struct io_ring_ctx **ctx,
1181 struct io_tw_state *ts,
1182 struct llist_node *last)
1183 {
1184 unsigned int count = 0;
1185
1186 while (node && node != last) {
1187 struct llist_node *next = node->next;
1188 struct io_kiocb *req = container_of(node, struct io_kiocb,
1189 io_task_work.node);
1190
1191 prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1192
1193 if (req->ctx != *ctx) {
1194 ctx_flush_and_put(*ctx, ts);
1195 *ctx = req->ctx;
1196 /* if not contended, grab and improve batching */
1197 ts->locked = mutex_trylock(&(*ctx)->uring_lock);
1198 percpu_ref_get(&(*ctx)->refs);
1199 }
1200 INDIRECT_CALL_2(req->io_task_work.func,
1201 io_poll_task_func, io_req_rw_complete,
1202 req, ts);
1203 node = next;
1204 count++;
1205 if (unlikely(need_resched())) {
1206 ctx_flush_and_put(*ctx, ts);
1207 *ctx = NULL;
1208 cond_resched();
1209 }
1210 }
1211
1212 return count;
1213 }
1214
1215 /**
1216 * io_llist_xchg - swap all entries in a lock-less list
1217 * @head: the head of lock-less list to delete all entries
1218 * @new: new entry as the head of the list
1219 *
1220 * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1221 * The order of entries returned is from the newest to the oldest added one.
1222 */
1223 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1224 struct llist_node *new)
1225 {
1226 return xchg(&head->first, new);
1227 }
1228
1229 /**
1230 * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1231 * @head: the head of lock-less list to delete all entries
1232 * @old: expected old value of the first entry of the list
1233 * @new: new entry as the head of the list
1234 *
1235 * perform a cmpxchg on the first entry of the list.
1236 */
1237
1238 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1239 struct llist_node *old,
1240 struct llist_node *new)
1241 {
1242 return cmpxchg(&head->first, old, new);
1243 }
1244
1245 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1246 {
1247 struct llist_node *node = llist_del_all(&tctx->task_list);
1248 struct io_ring_ctx *last_ctx = NULL;
1249 struct io_kiocb *req;
1250
1251 while (node) {
1252 req = container_of(node, struct io_kiocb, io_task_work.node);
1253 node = node->next;
1254 if (sync && last_ctx != req->ctx) {
1255 if (last_ctx) {
1256 flush_delayed_work(&last_ctx->fallback_work);
1257 percpu_ref_put(&last_ctx->refs);
1258 }
1259 last_ctx = req->ctx;
1260 percpu_ref_get(&last_ctx->refs);
1261 }
1262 if (llist_add(&req->io_task_work.node,
1263 &req->ctx->fallback_llist))
1264 schedule_delayed_work(&req->ctx->fallback_work, 1);
1265 }
1266
1267 if (last_ctx) {
1268 flush_delayed_work(&last_ctx->fallback_work);
1269 percpu_ref_put(&last_ctx->refs);
1270 }
1271 }
1272
1273 void tctx_task_work(struct callback_head *cb)
1274 {
1275 struct io_tw_state ts = {};
1276 struct io_ring_ctx *ctx = NULL;
1277 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1278 task_work);
1279 struct llist_node fake = {};
1280 struct llist_node *node;
1281 unsigned int loops = 0;
1282 unsigned int count = 0;
1283
1284 if (unlikely(current->flags & PF_EXITING)) {
1285 io_fallback_tw(tctx, true);
1286 return;
1287 }
1288
1289 do {
1290 loops++;
1291 node = io_llist_xchg(&tctx->task_list, &fake);
1292 count += handle_tw_list(node, &ctx, &ts, &fake);
1293
1294 /* skip expensive cmpxchg if there are items in the list */
1295 if (READ_ONCE(tctx->task_list.first) != &fake)
1296 continue;
1297 if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) {
1298 io_submit_flush_completions(ctx);
1299 if (READ_ONCE(tctx->task_list.first) != &fake)
1300 continue;
1301 }
1302 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1303 } while (node != &fake);
1304
1305 ctx_flush_and_put(ctx, &ts);
1306
1307 /* relaxed read is enough as only the task itself sets ->in_cancel */
1308 if (unlikely(atomic_read(&tctx->in_cancel)))
1309 io_uring_drop_tctx_refs(current);
1310
1311 trace_io_uring_task_work_run(tctx, count, loops);
1312 }
1313
1314 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1315 {
1316 struct io_ring_ctx *ctx = req->ctx;
1317 unsigned nr_wait, nr_tw, nr_tw_prev;
1318 struct llist_node *first;
1319
1320 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1321 flags &= ~IOU_F_TWQ_LAZY_WAKE;
1322
1323 first = READ_ONCE(ctx->work_llist.first);
1324 do {
1325 nr_tw_prev = 0;
1326 if (first) {
1327 struct io_kiocb *first_req = container_of(first,
1328 struct io_kiocb,
1329 io_task_work.node);
1330 /*
1331 * Might be executed at any moment, rely on
1332 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1333 */
1334 nr_tw_prev = READ_ONCE(first_req->nr_tw);
1335 }
1336 nr_tw = nr_tw_prev + 1;
1337 /* Large enough to fail the nr_wait comparison below */
1338 if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1339 nr_tw = -1U;
1340
1341 req->nr_tw = nr_tw;
1342 req->io_task_work.node.next = first;
1343 } while (!try_cmpxchg(&ctx->work_llist.first, &first,
1344 &req->io_task_work.node));
1345
1346 if (!first) {
1347 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1348 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1349 if (ctx->has_evfd)
1350 io_eventfd_signal(ctx);
1351 }
1352
1353 nr_wait = atomic_read(&ctx->cq_wait_nr);
1354 /* no one is waiting */
1355 if (!nr_wait)
1356 return;
1357 /* either not enough or the previous add has already woken it up */
1358 if (nr_wait > nr_tw || nr_tw_prev >= nr_wait)
1359 return;
1360 /* pairs with set_current_state() in io_cqring_wait() */
1361 smp_mb__after_atomic();
1362 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1363 }
1364
1365 static void io_req_normal_work_add(struct io_kiocb *req)
1366 {
1367 struct io_uring_task *tctx = req->task->io_uring;
1368 struct io_ring_ctx *ctx = req->ctx;
1369
1370 /* task_work already pending, we're done */
1371 if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1372 return;
1373
1374 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1375 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1376
1377 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1378 return;
1379
1380 io_fallback_tw(tctx, false);
1381 }
1382
1383 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1384 {
1385 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1386 rcu_read_lock();
1387 io_req_local_work_add(req, flags);
1388 rcu_read_unlock();
1389 } else {
1390 io_req_normal_work_add(req);
1391 }
1392 }
1393
1394 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1395 {
1396 struct llist_node *node;
1397
1398 node = llist_del_all(&ctx->work_llist);
1399 while (node) {
1400 struct io_kiocb *req = container_of(node, struct io_kiocb,
1401 io_task_work.node);
1402
1403 node = node->next;
1404 io_req_normal_work_add(req);
1405 }
1406 }
1407
1408 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1409 {
1410 struct llist_node *node;
1411 unsigned int loops = 0;
1412 int ret = 0;
1413
1414 if (WARN_ON_ONCE(ctx->submitter_task != current))
1415 return -EEXIST;
1416 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1417 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1418 again:
1419 /*
1420 * llists are in reverse order, flip it back the right way before
1421 * running the pending items.
1422 */
1423 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1424 while (node) {
1425 struct llist_node *next = node->next;
1426 struct io_kiocb *req = container_of(node, struct io_kiocb,
1427 io_task_work.node);
1428 prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1429 INDIRECT_CALL_2(req->io_task_work.func,
1430 io_poll_task_func, io_req_rw_complete,
1431 req, ts);
1432 ret++;
1433 node = next;
1434 }
1435 loops++;
1436
1437 if (!llist_empty(&ctx->work_llist))
1438 goto again;
1439 if (ts->locked) {
1440 io_submit_flush_completions(ctx);
1441 if (!llist_empty(&ctx->work_llist))
1442 goto again;
1443 }
1444 trace_io_uring_local_work_run(ctx, ret, loops);
1445 return ret;
1446 }
1447
1448 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx)
1449 {
1450 struct io_tw_state ts = { .locked = true, };
1451 int ret;
1452
1453 if (llist_empty(&ctx->work_llist))
1454 return 0;
1455
1456 ret = __io_run_local_work(ctx, &ts);
1457 /* shouldn't happen! */
1458 if (WARN_ON_ONCE(!ts.locked))
1459 mutex_lock(&ctx->uring_lock);
1460 return ret;
1461 }
1462
1463 static int io_run_local_work(struct io_ring_ctx *ctx)
1464 {
1465 struct io_tw_state ts = {};
1466 int ret;
1467
1468 ts.locked = mutex_trylock(&ctx->uring_lock);
1469 ret = __io_run_local_work(ctx, &ts);
1470 if (ts.locked)
1471 mutex_unlock(&ctx->uring_lock);
1472
1473 return ret;
1474 }
1475
1476 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1477 {
1478 io_tw_lock(req->ctx, ts);
1479 io_req_defer_failed(req, req->cqe.res);
1480 }
1481
1482 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1483 {
1484 io_tw_lock(req->ctx, ts);
1485 /* req->task == current here, checking PF_EXITING is safe */
1486 if (unlikely(req->task->flags & PF_EXITING))
1487 io_req_defer_failed(req, -EFAULT);
1488 else if (req->flags & REQ_F_FORCE_ASYNC)
1489 io_queue_iowq(req, ts);
1490 else
1491 io_queue_sqe(req);
1492 }
1493
1494 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1495 {
1496 io_req_set_res(req, ret, 0);
1497 req->io_task_work.func = io_req_task_cancel;
1498 io_req_task_work_add(req);
1499 }
1500
1501 void io_req_task_queue(struct io_kiocb *req)
1502 {
1503 req->io_task_work.func = io_req_task_submit;
1504 io_req_task_work_add(req);
1505 }
1506
1507 void io_queue_next(struct io_kiocb *req)
1508 {
1509 struct io_kiocb *nxt = io_req_find_next(req);
1510
1511 if (nxt)
1512 io_req_task_queue(nxt);
1513 }
1514
1515 static void io_free_batch_list(struct io_ring_ctx *ctx,
1516 struct io_wq_work_node *node)
1517 __must_hold(&ctx->uring_lock)
1518 {
1519 do {
1520 struct io_kiocb *req = container_of(node, struct io_kiocb,
1521 comp_list);
1522
1523 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1524 if (req->flags & REQ_F_REFCOUNT) {
1525 node = req->comp_list.next;
1526 if (!req_ref_put_and_test(req))
1527 continue;
1528 }
1529 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1530 struct async_poll *apoll = req->apoll;
1531
1532 if (apoll->double_poll)
1533 kfree(apoll->double_poll);
1534 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1535 kfree(apoll);
1536 req->flags &= ~REQ_F_POLLED;
1537 }
1538 if (req->flags & IO_REQ_LINK_FLAGS)
1539 io_queue_next(req);
1540 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1541 io_clean_op(req);
1542 }
1543 io_put_file(req);
1544
1545 io_req_put_rsrc_locked(req, ctx);
1546
1547 io_put_task(req->task);
1548 node = req->comp_list.next;
1549 io_req_add_to_cache(req, ctx);
1550 } while (node);
1551 }
1552
1553 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1554 __must_hold(&ctx->uring_lock)
1555 {
1556 struct io_submit_state *state = &ctx->submit_state;
1557 struct io_wq_work_node *node;
1558
1559 __io_cq_lock(ctx);
1560 /* must come first to preserve CQE ordering in failure cases */
1561 if (state->cqes_count)
1562 __io_flush_post_cqes(ctx);
1563 __wq_list_for_each(node, &state->compl_reqs) {
1564 struct io_kiocb *req = container_of(node, struct io_kiocb,
1565 comp_list);
1566
1567 if (!(req->flags & REQ_F_CQE_SKIP) &&
1568 unlikely(!io_fill_cqe_req(ctx, req))) {
1569 if (ctx->lockless_cq) {
1570 spin_lock(&ctx->completion_lock);
1571 io_req_cqe_overflow(req);
1572 spin_unlock(&ctx->completion_lock);
1573 } else {
1574 io_req_cqe_overflow(req);
1575 }
1576 }
1577 }
1578 __io_cq_unlock_post(ctx);
1579
1580 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1581 io_free_batch_list(ctx, state->compl_reqs.first);
1582 INIT_WQ_LIST(&state->compl_reqs);
1583 }
1584 }
1585
1586 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1587 {
1588 /* See comment at the top of this file */
1589 smp_rmb();
1590 return __io_cqring_events(ctx);
1591 }
1592
1593 /*
1594 * We can't just wait for polled events to come to us, we have to actively
1595 * find and complete them.
1596 */
1597 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1598 {
1599 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1600 return;
1601
1602 mutex_lock(&ctx->uring_lock);
1603 while (!wq_list_empty(&ctx->iopoll_list)) {
1604 /* let it sleep and repeat later if can't complete a request */
1605 if (io_do_iopoll(ctx, true) == 0)
1606 break;
1607 /*
1608 * Ensure we allow local-to-the-cpu processing to take place,
1609 * in this case we need to ensure that we reap all events.
1610 * Also let task_work, etc. to progress by releasing the mutex
1611 */
1612 if (need_resched()) {
1613 mutex_unlock(&ctx->uring_lock);
1614 cond_resched();
1615 mutex_lock(&ctx->uring_lock);
1616 }
1617 }
1618 mutex_unlock(&ctx->uring_lock);
1619 }
1620
1621 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1622 {
1623 unsigned int nr_events = 0;
1624 unsigned long check_cq;
1625
1626 if (!io_allowed_run_tw(ctx))
1627 return -EEXIST;
1628
1629 check_cq = READ_ONCE(ctx->check_cq);
1630 if (unlikely(check_cq)) {
1631 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1632 __io_cqring_overflow_flush(ctx);
1633 /*
1634 * Similarly do not spin if we have not informed the user of any
1635 * dropped CQE.
1636 */
1637 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1638 return -EBADR;
1639 }
1640 /*
1641 * Don't enter poll loop if we already have events pending.
1642 * If we do, we can potentially be spinning for commands that
1643 * already triggered a CQE (eg in error).
1644 */
1645 if (io_cqring_events(ctx))
1646 return 0;
1647
1648 do {
1649 int ret = 0;
1650
1651 /*
1652 * If a submit got punted to a workqueue, we can have the
1653 * application entering polling for a command before it gets
1654 * issued. That app will hold the uring_lock for the duration
1655 * of the poll right here, so we need to take a breather every
1656 * now and then to ensure that the issue has a chance to add
1657 * the poll to the issued list. Otherwise we can spin here
1658 * forever, while the workqueue is stuck trying to acquire the
1659 * very same mutex.
1660 */
1661 if (wq_list_empty(&ctx->iopoll_list) ||
1662 io_task_work_pending(ctx)) {
1663 u32 tail = ctx->cached_cq_tail;
1664
1665 (void) io_run_local_work_locked(ctx);
1666
1667 if (task_work_pending(current) ||
1668 wq_list_empty(&ctx->iopoll_list)) {
1669 mutex_unlock(&ctx->uring_lock);
1670 io_run_task_work();
1671 mutex_lock(&ctx->uring_lock);
1672 }
1673 /* some requests don't go through iopoll_list */
1674 if (tail != ctx->cached_cq_tail ||
1675 wq_list_empty(&ctx->iopoll_list))
1676 break;
1677 }
1678 ret = io_do_iopoll(ctx, !min);
1679 if (unlikely(ret < 0))
1680 return ret;
1681
1682 if (task_sigpending(current))
1683 return -EINTR;
1684 if (need_resched())
1685 break;
1686
1687 nr_events += ret;
1688 } while (nr_events < min);
1689
1690 return 0;
1691 }
1692
1693 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1694 {
1695 if (ts->locked)
1696 io_req_complete_defer(req);
1697 else
1698 io_req_complete_post(req, IO_URING_F_UNLOCKED);
1699 }
1700
1701 /*
1702 * After the iocb has been issued, it's safe to be found on the poll list.
1703 * Adding the kiocb to the list AFTER submission ensures that we don't
1704 * find it from a io_do_iopoll() thread before the issuer is done
1705 * accessing the kiocb cookie.
1706 */
1707 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1708 {
1709 struct io_ring_ctx *ctx = req->ctx;
1710 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1711
1712 /* workqueue context doesn't hold uring_lock, grab it now */
1713 if (unlikely(needs_lock))
1714 mutex_lock(&ctx->uring_lock);
1715
1716 /*
1717 * Track whether we have multiple files in our lists. This will impact
1718 * how we do polling eventually, not spinning if we're on potentially
1719 * different devices.
1720 */
1721 if (wq_list_empty(&ctx->iopoll_list)) {
1722 ctx->poll_multi_queue = false;
1723 } else if (!ctx->poll_multi_queue) {
1724 struct io_kiocb *list_req;
1725
1726 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1727 comp_list);
1728 if (list_req->file != req->file)
1729 ctx->poll_multi_queue = true;
1730 }
1731
1732 /*
1733 * For fast devices, IO may have already completed. If it has, add
1734 * it to the front so we find it first.
1735 */
1736 if (READ_ONCE(req->iopoll_completed))
1737 wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1738 else
1739 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1740
1741 if (unlikely(needs_lock)) {
1742 /*
1743 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1744 * in sq thread task context or in io worker task context. If
1745 * current task context is sq thread, we don't need to check
1746 * whether should wake up sq thread.
1747 */
1748 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1749 wq_has_sleeper(&ctx->sq_data->wait))
1750 wake_up(&ctx->sq_data->wait);
1751
1752 mutex_unlock(&ctx->uring_lock);
1753 }
1754 }
1755
1756 unsigned int io_file_get_flags(struct file *file)
1757 {
1758 unsigned int res = 0;
1759
1760 if (S_ISREG(file_inode(file)->i_mode))
1761 res |= REQ_F_ISREG;
1762 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1763 res |= REQ_F_SUPPORT_NOWAIT;
1764 return res;
1765 }
1766
1767 bool io_alloc_async_data(struct io_kiocb *req)
1768 {
1769 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1770 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1771 if (req->async_data) {
1772 req->flags |= REQ_F_ASYNC_DATA;
1773 return false;
1774 }
1775 return true;
1776 }
1777
1778 int io_req_prep_async(struct io_kiocb *req)
1779 {
1780 const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1781 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1782
1783 /* assign early for deferred execution for non-fixed file */
1784 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1785 req->file = io_file_get_normal(req, req->cqe.fd);
1786 if (!cdef->prep_async)
1787 return 0;
1788 if (WARN_ON_ONCE(req_has_async_data(req)))
1789 return -EFAULT;
1790 if (!def->manual_alloc) {
1791 if (io_alloc_async_data(req))
1792 return -EAGAIN;
1793 }
1794 return cdef->prep_async(req);
1795 }
1796
1797 static u32 io_get_sequence(struct io_kiocb *req)
1798 {
1799 u32 seq = req->ctx->cached_sq_head;
1800 struct io_kiocb *cur;
1801
1802 /* need original cached_sq_head, but it was increased for each req */
1803 io_for_each_link(cur, req)
1804 seq--;
1805 return seq;
1806 }
1807
1808 static __cold void io_drain_req(struct io_kiocb *req)
1809 __must_hold(&ctx->uring_lock)
1810 {
1811 struct io_ring_ctx *ctx = req->ctx;
1812 struct io_defer_entry *de;
1813 int ret;
1814 u32 seq = io_get_sequence(req);
1815
1816 /* Still need defer if there is pending req in defer list. */
1817 spin_lock(&ctx->completion_lock);
1818 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1819 spin_unlock(&ctx->completion_lock);
1820 queue:
1821 ctx->drain_active = false;
1822 io_req_task_queue(req);
1823 return;
1824 }
1825 spin_unlock(&ctx->completion_lock);
1826
1827 io_prep_async_link(req);
1828 de = kmalloc(sizeof(*de), GFP_KERNEL);
1829 if (!de) {
1830 ret = -ENOMEM;
1831 io_req_defer_failed(req, ret);
1832 return;
1833 }
1834
1835 spin_lock(&ctx->completion_lock);
1836 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1837 spin_unlock(&ctx->completion_lock);
1838 kfree(de);
1839 goto queue;
1840 }
1841
1842 trace_io_uring_defer(req);
1843 de->req = req;
1844 de->seq = seq;
1845 list_add_tail(&de->list, &ctx->defer_list);
1846 spin_unlock(&ctx->completion_lock);
1847 }
1848
1849 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1850 unsigned int issue_flags)
1851 {
1852 if (req->file || !def->needs_file)
1853 return true;
1854
1855 if (req->flags & REQ_F_FIXED_FILE)
1856 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1857 else
1858 req->file = io_file_get_normal(req, req->cqe.fd);
1859
1860 return !!req->file;
1861 }
1862
1863 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1864 {
1865 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1866 const struct cred *creds = NULL;
1867 int ret;
1868
1869 if (unlikely(!io_assign_file(req, def, issue_flags)))
1870 return -EBADF;
1871
1872 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1873 creds = override_creds(req->creds);
1874
1875 if (!def->audit_skip)
1876 audit_uring_entry(req->opcode);
1877
1878 ret = def->issue(req, issue_flags);
1879
1880 if (!def->audit_skip)
1881 audit_uring_exit(!ret, ret);
1882
1883 if (creds)
1884 revert_creds(creds);
1885
1886 if (ret == IOU_OK) {
1887 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1888 io_req_complete_defer(req);
1889 else
1890 io_req_complete_post(req, issue_flags);
1891 } else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1892 return ret;
1893
1894 /* If the op doesn't have a file, we're not polling for it */
1895 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1896 io_iopoll_req_issued(req, issue_flags);
1897
1898 return 0;
1899 }
1900
1901 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1902 {
1903 io_tw_lock(req->ctx, ts);
1904 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1905 IO_URING_F_COMPLETE_DEFER);
1906 }
1907
1908 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1909 {
1910 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1911 struct io_kiocb *nxt = NULL;
1912
1913 if (req_ref_put_and_test(req)) {
1914 if (req->flags & IO_REQ_LINK_FLAGS)
1915 nxt = io_req_find_next(req);
1916 io_free_req(req);
1917 }
1918 return nxt ? &nxt->work : NULL;
1919 }
1920
1921 void io_wq_submit_work(struct io_wq_work *work)
1922 {
1923 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1924 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1925 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1926 bool needs_poll = false;
1927 int ret = 0, err = -ECANCELED;
1928
1929 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1930 if (!(req->flags & REQ_F_REFCOUNT))
1931 __io_req_set_refcount(req, 2);
1932 else
1933 req_ref_get(req);
1934
1935 io_arm_ltimeout(req);
1936
1937 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1938 if (work->flags & IO_WQ_WORK_CANCEL) {
1939 fail:
1940 io_req_task_queue_fail(req, err);
1941 return;
1942 }
1943 if (!io_assign_file(req, def, issue_flags)) {
1944 err = -EBADF;
1945 work->flags |= IO_WQ_WORK_CANCEL;
1946 goto fail;
1947 }
1948
1949 if (req->flags & REQ_F_FORCE_ASYNC) {
1950 bool opcode_poll = def->pollin || def->pollout;
1951
1952 if (opcode_poll && file_can_poll(req->file)) {
1953 needs_poll = true;
1954 issue_flags |= IO_URING_F_NONBLOCK;
1955 }
1956 }
1957
1958 do {
1959 ret = io_issue_sqe(req, issue_flags);
1960 if (ret != -EAGAIN)
1961 break;
1962
1963 /*
1964 * If REQ_F_NOWAIT is set, then don't wait or retry with
1965 * poll. -EAGAIN is final for that case.
1966 */
1967 if (req->flags & REQ_F_NOWAIT)
1968 break;
1969
1970 /*
1971 * We can get EAGAIN for iopolled IO even though we're
1972 * forcing a sync submission from here, since we can't
1973 * wait for request slots on the block side.
1974 */
1975 if (!needs_poll) {
1976 if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1977 break;
1978 if (io_wq_worker_stopped())
1979 break;
1980 cond_resched();
1981 continue;
1982 }
1983
1984 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1985 return;
1986 /* aborted or ready, in either case retry blocking */
1987 needs_poll = false;
1988 issue_flags &= ~IO_URING_F_NONBLOCK;
1989 } while (1);
1990
1991 /* avoid locking problems by failing it from a clean context */
1992 if (ret < 0)
1993 io_req_task_queue_fail(req, ret);
1994 }
1995
1996 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1997 unsigned int issue_flags)
1998 {
1999 struct io_ring_ctx *ctx = req->ctx;
2000 struct io_fixed_file *slot;
2001 struct file *file = NULL;
2002
2003 io_ring_submit_lock(ctx, issue_flags);
2004
2005 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
2006 goto out;
2007 fd = array_index_nospec(fd, ctx->nr_user_files);
2008 slot = io_fixed_file_slot(&ctx->file_table, fd);
2009 file = io_slot_file(slot);
2010 req->flags |= io_slot_flags(slot);
2011 io_req_set_rsrc_node(req, ctx, 0);
2012 out:
2013 io_ring_submit_unlock(ctx, issue_flags);
2014 return file;
2015 }
2016
2017 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2018 {
2019 struct file *file = fget(fd);
2020
2021 trace_io_uring_file_get(req, fd);
2022
2023 /* we don't allow fixed io_uring files */
2024 if (file && io_is_uring_fops(file))
2025 io_req_track_inflight(req);
2026 return file;
2027 }
2028
2029 static void io_queue_async(struct io_kiocb *req, int ret)
2030 __must_hold(&req->ctx->uring_lock)
2031 {
2032 struct io_kiocb *linked_timeout;
2033
2034 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2035 io_req_defer_failed(req, ret);
2036 return;
2037 }
2038
2039 linked_timeout = io_prep_linked_timeout(req);
2040
2041 switch (io_arm_poll_handler(req, 0)) {
2042 case IO_APOLL_READY:
2043 io_kbuf_recycle(req, 0);
2044 io_req_task_queue(req);
2045 break;
2046 case IO_APOLL_ABORTED:
2047 io_kbuf_recycle(req, 0);
2048 io_queue_iowq(req, NULL);
2049 break;
2050 case IO_APOLL_OK:
2051 break;
2052 }
2053
2054 if (linked_timeout)
2055 io_queue_linked_timeout(linked_timeout);
2056 }
2057
2058 static inline void io_queue_sqe(struct io_kiocb *req)
2059 __must_hold(&req->ctx->uring_lock)
2060 {
2061 int ret;
2062
2063 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2064
2065 /*
2066 * We async punt it if the file wasn't marked NOWAIT, or if the file
2067 * doesn't support non-blocking read/write attempts
2068 */
2069 if (likely(!ret))
2070 io_arm_ltimeout(req);
2071 else
2072 io_queue_async(req, ret);
2073 }
2074
2075 static void io_queue_sqe_fallback(struct io_kiocb *req)
2076 __must_hold(&req->ctx->uring_lock)
2077 {
2078 if (unlikely(req->flags & REQ_F_FAIL)) {
2079 /*
2080 * We don't submit, fail them all, for that replace hardlinks
2081 * with normal links. Extra REQ_F_LINK is tolerated.
2082 */
2083 req->flags &= ~REQ_F_HARDLINK;
2084 req->flags |= REQ_F_LINK;
2085 io_req_defer_failed(req, req->cqe.res);
2086 } else {
2087 int ret = io_req_prep_async(req);
2088
2089 if (unlikely(ret)) {
2090 io_req_defer_failed(req, ret);
2091 return;
2092 }
2093
2094 if (unlikely(req->ctx->drain_active))
2095 io_drain_req(req);
2096 else
2097 io_queue_iowq(req, NULL);
2098 }
2099 }
2100
2101 /*
2102 * Check SQE restrictions (opcode and flags).
2103 *
2104 * Returns 'true' if SQE is allowed, 'false' otherwise.
2105 */
2106 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2107 struct io_kiocb *req,
2108 unsigned int sqe_flags)
2109 {
2110 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2111 return false;
2112
2113 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2114 ctx->restrictions.sqe_flags_required)
2115 return false;
2116
2117 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2118 ctx->restrictions.sqe_flags_required))
2119 return false;
2120
2121 return true;
2122 }
2123
2124 static void io_init_req_drain(struct io_kiocb *req)
2125 {
2126 struct io_ring_ctx *ctx = req->ctx;
2127 struct io_kiocb *head = ctx->submit_state.link.head;
2128
2129 ctx->drain_active = true;
2130 if (head) {
2131 /*
2132 * If we need to drain a request in the middle of a link, drain
2133 * the head request and the next request/link after the current
2134 * link. Considering sequential execution of links,
2135 * REQ_F_IO_DRAIN will be maintained for every request of our
2136 * link.
2137 */
2138 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2139 ctx->drain_next = true;
2140 }
2141 }
2142
2143 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2144 const struct io_uring_sqe *sqe)
2145 __must_hold(&ctx->uring_lock)
2146 {
2147 const struct io_issue_def *def;
2148 unsigned int sqe_flags;
2149 int personality;
2150 u8 opcode;
2151
2152 /* req is partially pre-initialised, see io_preinit_req() */
2153 req->opcode = opcode = READ_ONCE(sqe->opcode);
2154 /* same numerical values with corresponding REQ_F_*, safe to copy */
2155 req->flags = sqe_flags = READ_ONCE(sqe->flags);
2156 req->cqe.user_data = READ_ONCE(sqe->user_data);
2157 req->file = NULL;
2158 req->rsrc_node = NULL;
2159 req->task = current;
2160
2161 if (unlikely(opcode >= IORING_OP_LAST)) {
2162 req->opcode = 0;
2163 return -EINVAL;
2164 }
2165 def = &io_issue_defs[opcode];
2166 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2167 /* enforce forwards compatibility on users */
2168 if (sqe_flags & ~SQE_VALID_FLAGS)
2169 return -EINVAL;
2170 if (sqe_flags & IOSQE_BUFFER_SELECT) {
2171 if (!def->buffer_select)
2172 return -EOPNOTSUPP;
2173 req->buf_index = READ_ONCE(sqe->buf_group);
2174 }
2175 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2176 ctx->drain_disabled = true;
2177 if (sqe_flags & IOSQE_IO_DRAIN) {
2178 if (ctx->drain_disabled)
2179 return -EOPNOTSUPP;
2180 io_init_req_drain(req);
2181 }
2182 }
2183 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2184 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2185 return -EACCES;
2186 /* knock it to the slow queue path, will be drained there */
2187 if (ctx->drain_active)
2188 req->flags |= REQ_F_FORCE_ASYNC;
2189 /* if there is no link, we're at "next" request and need to drain */
2190 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2191 ctx->drain_next = false;
2192 ctx->drain_active = true;
2193 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2194 }
2195 }
2196
2197 if (!def->ioprio && sqe->ioprio)
2198 return -EINVAL;
2199 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2200 return -EINVAL;
2201
2202 if (def->needs_file) {
2203 struct io_submit_state *state = &ctx->submit_state;
2204
2205 req->cqe.fd = READ_ONCE(sqe->fd);
2206
2207 /*
2208 * Plug now if we have more than 2 IO left after this, and the
2209 * target is potentially a read/write to block based storage.
2210 */
2211 if (state->need_plug && def->plug) {
2212 state->plug_started = true;
2213 state->need_plug = false;
2214 blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2215 }
2216 }
2217
2218 personality = READ_ONCE(sqe->personality);
2219 if (personality) {
2220 int ret;
2221
2222 req->creds = xa_load(&ctx->personalities, personality);
2223 if (!req->creds)
2224 return -EINVAL;
2225 get_cred(req->creds);
2226 ret = security_uring_override_creds(req->creds);
2227 if (ret) {
2228 put_cred(req->creds);
2229 return ret;
2230 }
2231 req->flags |= REQ_F_CREDS;
2232 }
2233
2234 return def->prep(req, sqe);
2235 }
2236
2237 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2238 struct io_kiocb *req, int ret)
2239 {
2240 struct io_ring_ctx *ctx = req->ctx;
2241 struct io_submit_link *link = &ctx->submit_state.link;
2242 struct io_kiocb *head = link->head;
2243
2244 trace_io_uring_req_failed(sqe, req, ret);
2245
2246 /*
2247 * Avoid breaking links in the middle as it renders links with SQPOLL
2248 * unusable. Instead of failing eagerly, continue assembling the link if
2249 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2250 * should find the flag and handle the rest.
2251 */
2252 req_fail_link_node(req, ret);
2253 if (head && !(head->flags & REQ_F_FAIL))
2254 req_fail_link_node(head, -ECANCELED);
2255
2256 if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2257 if (head) {
2258 link->last->link = req;
2259 link->head = NULL;
2260 req = head;
2261 }
2262 io_queue_sqe_fallback(req);
2263 return ret;
2264 }
2265
2266 if (head)
2267 link->last->link = req;
2268 else
2269 link->head = req;
2270 link->last = req;
2271 return 0;
2272 }
2273
2274 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2275 const struct io_uring_sqe *sqe)
2276 __must_hold(&ctx->uring_lock)
2277 {
2278 struct io_submit_link *link = &ctx->submit_state.link;
2279 int ret;
2280
2281 ret = io_init_req(ctx, req, sqe);
2282 if (unlikely(ret))
2283 return io_submit_fail_init(sqe, req, ret);
2284
2285 trace_io_uring_submit_req(req);
2286
2287 /*
2288 * If we already have a head request, queue this one for async
2289 * submittal once the head completes. If we don't have a head but
2290 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2291 * submitted sync once the chain is complete. If none of those
2292 * conditions are true (normal request), then just queue it.
2293 */
2294 if (unlikely(link->head)) {
2295 ret = io_req_prep_async(req);
2296 if (unlikely(ret))
2297 return io_submit_fail_init(sqe, req, ret);
2298
2299 trace_io_uring_link(req, link->head);
2300 link->last->link = req;
2301 link->last = req;
2302
2303 if (req->flags & IO_REQ_LINK_FLAGS)
2304 return 0;
2305 /* last request of the link, flush it */
2306 req = link->head;
2307 link->head = NULL;
2308 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2309 goto fallback;
2310
2311 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2312 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2313 if (req->flags & IO_REQ_LINK_FLAGS) {
2314 link->head = req;
2315 link->last = req;
2316 } else {
2317 fallback:
2318 io_queue_sqe_fallback(req);
2319 }
2320 return 0;
2321 }
2322
2323 io_queue_sqe(req);
2324 return 0;
2325 }
2326
2327 /*
2328 * Batched submission is done, ensure local IO is flushed out.
2329 */
2330 static void io_submit_state_end(struct io_ring_ctx *ctx)
2331 {
2332 struct io_submit_state *state = &ctx->submit_state;
2333
2334 if (unlikely(state->link.head))
2335 io_queue_sqe_fallback(state->link.head);
2336 /* flush only after queuing links as they can generate completions */
2337 io_submit_flush_completions(ctx);
2338 if (state->plug_started)
2339 blk_finish_plug(&state->plug);
2340 }
2341
2342 /*
2343 * Start submission side cache.
2344 */
2345 static void io_submit_state_start(struct io_submit_state *state,
2346 unsigned int max_ios)
2347 {
2348 state->plug_started = false;
2349 state->need_plug = max_ios > 2;
2350 state->submit_nr = max_ios;
2351 /* set only head, no need to init link_last in advance */
2352 state->link.head = NULL;
2353 }
2354
2355 static void io_commit_sqring(struct io_ring_ctx *ctx)
2356 {
2357 struct io_rings *rings = ctx->rings;
2358
2359 /*
2360 * Ensure any loads from the SQEs are done at this point,
2361 * since once we write the new head, the application could
2362 * write new data to them.
2363 */
2364 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2365 }
2366
2367 /*
2368 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2369 * that is mapped by userspace. This means that care needs to be taken to
2370 * ensure that reads are stable, as we cannot rely on userspace always
2371 * being a good citizen. If members of the sqe are validated and then later
2372 * used, it's important that those reads are done through READ_ONCE() to
2373 * prevent a re-load down the line.
2374 */
2375 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2376 {
2377 unsigned mask = ctx->sq_entries - 1;
2378 unsigned head = ctx->cached_sq_head++ & mask;
2379
2380 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) {
2381 head = READ_ONCE(ctx->sq_array[head]);
2382 if (unlikely(head >= ctx->sq_entries)) {
2383 /* drop invalid entries */
2384 spin_lock(&ctx->completion_lock);
2385 ctx->cq_extra--;
2386 spin_unlock(&ctx->completion_lock);
2387 WRITE_ONCE(ctx->rings->sq_dropped,
2388 READ_ONCE(ctx->rings->sq_dropped) + 1);
2389 return false;
2390 }
2391 }
2392
2393 /*
2394 * The cached sq head (or cq tail) serves two purposes:
2395 *
2396 * 1) allows us to batch the cost of updating the user visible
2397 * head updates.
2398 * 2) allows the kernel side to track the head on its own, even
2399 * though the application is the one updating it.
2400 */
2401
2402 /* double index for 128-byte SQEs, twice as long */
2403 if (ctx->flags & IORING_SETUP_SQE128)
2404 head <<= 1;
2405 *sqe = &ctx->sq_sqes[head];
2406 return true;
2407 }
2408
2409 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2410 __must_hold(&ctx->uring_lock)
2411 {
2412 unsigned int entries = io_sqring_entries(ctx);
2413 unsigned int left;
2414 int ret;
2415
2416 if (unlikely(!entries))
2417 return 0;
2418 /* make sure SQ entry isn't read before tail */
2419 ret = left = min(nr, entries);
2420 io_get_task_refs(left);
2421 io_submit_state_start(&ctx->submit_state, left);
2422
2423 do {
2424 const struct io_uring_sqe *sqe;
2425 struct io_kiocb *req;
2426
2427 if (unlikely(!io_alloc_req(ctx, &req)))
2428 break;
2429 if (unlikely(!io_get_sqe(ctx, &sqe))) {
2430 io_req_add_to_cache(req, ctx);
2431 break;
2432 }
2433
2434 /*
2435 * Continue submitting even for sqe failure if the
2436 * ring was setup with IORING_SETUP_SUBMIT_ALL
2437 */
2438 if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2439 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2440 left--;
2441 break;
2442 }
2443 } while (--left);
2444
2445 if (unlikely(left)) {
2446 ret -= left;
2447 /* try again if it submitted nothing and can't allocate a req */
2448 if (!ret && io_req_cache_empty(ctx))
2449 ret = -EAGAIN;
2450 current->io_uring->cached_refs += left;
2451 }
2452
2453 io_submit_state_end(ctx);
2454 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2455 io_commit_sqring(ctx);
2456 return ret;
2457 }
2458
2459 struct io_wait_queue {
2460 struct wait_queue_entry wq;
2461 struct io_ring_ctx *ctx;
2462 unsigned cq_tail;
2463 unsigned nr_timeouts;
2464 ktime_t timeout;
2465 };
2466
2467 static inline bool io_has_work(struct io_ring_ctx *ctx)
2468 {
2469 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2470 !llist_empty(&ctx->work_llist);
2471 }
2472
2473 static inline bool io_should_wake(struct io_wait_queue *iowq)
2474 {
2475 struct io_ring_ctx *ctx = iowq->ctx;
2476 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2477
2478 /*
2479 * Wake up if we have enough events, or if a timeout occurred since we
2480 * started waiting. For timeouts, we always want to return to userspace,
2481 * regardless of event count.
2482 */
2483 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2484 }
2485
2486 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2487 int wake_flags, void *key)
2488 {
2489 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2490
2491 /*
2492 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2493 * the task, and the next invocation will do it.
2494 */
2495 if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2496 return autoremove_wake_function(curr, mode, wake_flags, key);
2497 return -1;
2498 }
2499
2500 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2501 {
2502 if (!llist_empty(&ctx->work_llist)) {
2503 __set_current_state(TASK_RUNNING);
2504 if (io_run_local_work(ctx) > 0)
2505 return 0;
2506 }
2507 if (io_run_task_work() > 0)
2508 return 0;
2509 if (task_sigpending(current))
2510 return -EINTR;
2511 return 0;
2512 }
2513
2514 static bool current_pending_io(void)
2515 {
2516 struct io_uring_task *tctx = current->io_uring;
2517
2518 if (!tctx)
2519 return false;
2520 return percpu_counter_read_positive(&tctx->inflight);
2521 }
2522
2523 /* when returns >0, the caller should retry */
2524 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2525 struct io_wait_queue *iowq)
2526 {
2527 int io_wait, ret;
2528
2529 if (unlikely(READ_ONCE(ctx->check_cq)))
2530 return 1;
2531 if (unlikely(!llist_empty(&ctx->work_llist)))
2532 return 1;
2533 if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL)))
2534 return 1;
2535 if (unlikely(task_sigpending(current)))
2536 return -EINTR;
2537 if (unlikely(io_should_wake(iowq)))
2538 return 0;
2539
2540 /*
2541 * Mark us as being in io_wait if we have pending requests, so cpufreq
2542 * can take into account that the task is waiting for IO - turns out
2543 * to be important for low QD IO.
2544 */
2545 io_wait = current->in_iowait;
2546 if (current_pending_io())
2547 current->in_iowait = 1;
2548 ret = 0;
2549 if (iowq->timeout == KTIME_MAX)
2550 schedule();
2551 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2552 ret = -ETIME;
2553 current->in_iowait = io_wait;
2554 return ret;
2555 }
2556
2557 /*
2558 * Wait until events become available, if we don't already have some. The
2559 * application must reap them itself, as they reside on the shared cq ring.
2560 */
2561 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2562 const sigset_t __user *sig, size_t sigsz,
2563 struct __kernel_timespec __user *uts)
2564 {
2565 struct io_wait_queue iowq;
2566 struct io_rings *rings = ctx->rings;
2567 int ret;
2568
2569 if (!io_allowed_run_tw(ctx))
2570 return -EEXIST;
2571 if (!llist_empty(&ctx->work_llist))
2572 io_run_local_work(ctx);
2573 io_run_task_work();
2574 io_cqring_overflow_flush(ctx);
2575 /* if user messes with these they will just get an early return */
2576 if (__io_cqring_events_user(ctx) >= min_events)
2577 return 0;
2578
2579 if (sig) {
2580 #ifdef CONFIG_COMPAT
2581 if (in_compat_syscall())
2582 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2583 sigsz);
2584 else
2585 #endif
2586 ret = set_user_sigmask(sig, sigsz);
2587
2588 if (ret)
2589 return ret;
2590 }
2591
2592 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2593 iowq.wq.private = current;
2594 INIT_LIST_HEAD(&iowq.wq.entry);
2595 iowq.ctx = ctx;
2596 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2597 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2598 iowq.timeout = KTIME_MAX;
2599
2600 if (uts) {
2601 struct timespec64 ts;
2602
2603 if (get_timespec64(&ts, uts))
2604 return -EFAULT;
2605 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2606 }
2607
2608 trace_io_uring_cqring_wait(ctx, min_events);
2609 do {
2610 unsigned long check_cq;
2611
2612 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2613 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2614
2615 atomic_set(&ctx->cq_wait_nr, nr_wait);
2616 set_current_state(TASK_INTERRUPTIBLE);
2617 } else {
2618 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2619 TASK_INTERRUPTIBLE);
2620 }
2621
2622 ret = io_cqring_wait_schedule(ctx, &iowq);
2623 __set_current_state(TASK_RUNNING);
2624 atomic_set(&ctx->cq_wait_nr, 0);
2625
2626 if (ret < 0)
2627 break;
2628 /*
2629 * Run task_work after scheduling and before io_should_wake().
2630 * If we got woken because of task_work being processed, run it
2631 * now rather than let the caller do another wait loop.
2632 */
2633 io_run_task_work();
2634 if (!llist_empty(&ctx->work_llist))
2635 io_run_local_work(ctx);
2636
2637 check_cq = READ_ONCE(ctx->check_cq);
2638 if (unlikely(check_cq)) {
2639 /* let the caller flush overflows, retry */
2640 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2641 io_cqring_do_overflow_flush(ctx);
2642 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2643 ret = -EBADR;
2644 break;
2645 }
2646 }
2647
2648 if (io_should_wake(&iowq)) {
2649 ret = 0;
2650 break;
2651 }
2652 cond_resched();
2653 } while (1);
2654
2655 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2656 finish_wait(&ctx->cq_wait, &iowq.wq);
2657 restore_saved_sigmask_unless(ret == -EINTR);
2658
2659 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2660 }
2661
2662 static void io_mem_free(void *ptr)
2663 {
2664 if (!ptr)
2665 return;
2666
2667 folio_put(virt_to_folio(ptr));
2668 }
2669
2670 static void io_pages_free(struct page ***pages, int npages)
2671 {
2672 struct page **page_array;
2673 int i;
2674
2675 if (!pages)
2676 return;
2677
2678 page_array = *pages;
2679 if (!page_array)
2680 return;
2681
2682 for (i = 0; i < npages; i++)
2683 unpin_user_page(page_array[i]);
2684 kvfree(page_array);
2685 *pages = NULL;
2686 }
2687
2688 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
2689 unsigned long uaddr, size_t size)
2690 {
2691 struct page **page_array;
2692 unsigned int nr_pages;
2693 int ret, i;
2694
2695 *npages = 0;
2696
2697 if (uaddr & (PAGE_SIZE - 1) || !size)
2698 return ERR_PTR(-EINVAL);
2699
2700 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2701 if (nr_pages > USHRT_MAX)
2702 return ERR_PTR(-EINVAL);
2703 page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
2704 if (!page_array)
2705 return ERR_PTR(-ENOMEM);
2706
2707 ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
2708 page_array);
2709 if (ret != nr_pages) {
2710 err:
2711 io_pages_free(&page_array, ret > 0 ? ret : 0);
2712 return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT);
2713 }
2714 /*
2715 * Should be a single page. If the ring is small enough that we can
2716 * use a normal page, that is fine. If we need multiple pages, then
2717 * userspace should use a huge page. That's the only way to guarantee
2718 * that we get contigious memory, outside of just being lucky or
2719 * (currently) having low memory fragmentation.
2720 */
2721 if (page_array[0] != page_array[ret - 1])
2722 goto err;
2723
2724 /*
2725 * Can't support mapping user allocated ring memory on 32-bit archs
2726 * where it could potentially reside in highmem. Just fail those with
2727 * -EINVAL, just like we did on kernels that didn't support this
2728 * feature.
2729 */
2730 for (i = 0; i < nr_pages; i++) {
2731 if (PageHighMem(page_array[i])) {
2732 ret = -EINVAL;
2733 goto err;
2734 }
2735 }
2736
2737 *pages = page_array;
2738 *npages = nr_pages;
2739 return page_to_virt(page_array[0]);
2740 }
2741
2742 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2743 size_t size)
2744 {
2745 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2746 size);
2747 }
2748
2749 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2750 size_t size)
2751 {
2752 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2753 size);
2754 }
2755
2756 static void io_rings_free(struct io_ring_ctx *ctx)
2757 {
2758 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2759 io_mem_free(ctx->rings);
2760 io_mem_free(ctx->sq_sqes);
2761 ctx->rings = NULL;
2762 ctx->sq_sqes = NULL;
2763 } else {
2764 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2765 ctx->n_ring_pages = 0;
2766 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2767 ctx->n_sqe_pages = 0;
2768 }
2769 }
2770
2771 static void *io_mem_alloc(size_t size)
2772 {
2773 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2774 void *ret;
2775
2776 ret = (void *) __get_free_pages(gfp, get_order(size));
2777 if (ret)
2778 return ret;
2779 return ERR_PTR(-ENOMEM);
2780 }
2781
2782 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2783 unsigned int cq_entries, size_t *sq_offset)
2784 {
2785 struct io_rings *rings;
2786 size_t off, sq_array_size;
2787
2788 off = struct_size(rings, cqes, cq_entries);
2789 if (off == SIZE_MAX)
2790 return SIZE_MAX;
2791 if (ctx->flags & IORING_SETUP_CQE32) {
2792 if (check_shl_overflow(off, 1, &off))
2793 return SIZE_MAX;
2794 }
2795
2796 #ifdef CONFIG_SMP
2797 off = ALIGN(off, SMP_CACHE_BYTES);
2798 if (off == 0)
2799 return SIZE_MAX;
2800 #endif
2801
2802 if (ctx->flags & IORING_SETUP_NO_SQARRAY) {
2803 if (sq_offset)
2804 *sq_offset = SIZE_MAX;
2805 return off;
2806 }
2807
2808 if (sq_offset)
2809 *sq_offset = off;
2810
2811 sq_array_size = array_size(sizeof(u32), sq_entries);
2812 if (sq_array_size == SIZE_MAX)
2813 return SIZE_MAX;
2814
2815 if (check_add_overflow(off, sq_array_size, &off))
2816 return SIZE_MAX;
2817
2818 return off;
2819 }
2820
2821 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2822 unsigned int eventfd_async)
2823 {
2824 struct io_ev_fd *ev_fd;
2825 __s32 __user *fds = arg;
2826 int fd;
2827
2828 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2829 lockdep_is_held(&ctx->uring_lock));
2830 if (ev_fd)
2831 return -EBUSY;
2832
2833 if (copy_from_user(&fd, fds, sizeof(*fds)))
2834 return -EFAULT;
2835
2836 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2837 if (!ev_fd)
2838 return -ENOMEM;
2839
2840 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2841 if (IS_ERR(ev_fd->cq_ev_fd)) {
2842 int ret = PTR_ERR(ev_fd->cq_ev_fd);
2843 kfree(ev_fd);
2844 return ret;
2845 }
2846
2847 spin_lock(&ctx->completion_lock);
2848 ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2849 spin_unlock(&ctx->completion_lock);
2850
2851 ev_fd->eventfd_async = eventfd_async;
2852 ctx->has_evfd = true;
2853 rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2854 atomic_set(&ev_fd->refs, 1);
2855 atomic_set(&ev_fd->ops, 0);
2856 return 0;
2857 }
2858
2859 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2860 {
2861 struct io_ev_fd *ev_fd;
2862
2863 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2864 lockdep_is_held(&ctx->uring_lock));
2865 if (ev_fd) {
2866 ctx->has_evfd = false;
2867 rcu_assign_pointer(ctx->io_ev_fd, NULL);
2868 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2869 call_rcu(&ev_fd->rcu, io_eventfd_ops);
2870 return 0;
2871 }
2872
2873 return -ENXIO;
2874 }
2875
2876 static void io_req_caches_free(struct io_ring_ctx *ctx)
2877 {
2878 struct io_kiocb *req;
2879 int nr = 0;
2880
2881 mutex_lock(&ctx->uring_lock);
2882 io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2883
2884 while (!io_req_cache_empty(ctx)) {
2885 req = io_extract_req(ctx);
2886 kmem_cache_free(req_cachep, req);
2887 nr++;
2888 }
2889 if (nr)
2890 percpu_ref_put_many(&ctx->refs, nr);
2891 mutex_unlock(&ctx->uring_lock);
2892 }
2893
2894 static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
2895 {
2896 kfree(container_of(entry, struct io_rsrc_node, cache));
2897 }
2898
2899 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2900 {
2901 io_sq_thread_finish(ctx);
2902 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2903 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2904 return;
2905
2906 mutex_lock(&ctx->uring_lock);
2907 if (ctx->buf_data)
2908 __io_sqe_buffers_unregister(ctx);
2909 if (ctx->file_data)
2910 __io_sqe_files_unregister(ctx);
2911 io_cqring_overflow_kill(ctx);
2912 io_eventfd_unregister(ctx);
2913 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2914 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2915 io_destroy_buffers(ctx);
2916 mutex_unlock(&ctx->uring_lock);
2917 if (ctx->sq_creds)
2918 put_cred(ctx->sq_creds);
2919 if (ctx->submitter_task)
2920 put_task_struct(ctx->submitter_task);
2921
2922 /* there are no registered resources left, nobody uses it */
2923 if (ctx->rsrc_node)
2924 io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2925
2926 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2927
2928 #if defined(CONFIG_UNIX)
2929 if (ctx->ring_sock) {
2930 ctx->ring_sock->file = NULL; /* so that iput() is called */
2931 sock_release(ctx->ring_sock);
2932 }
2933 #endif
2934 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2935
2936 io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
2937 if (ctx->mm_account) {
2938 mmdrop(ctx->mm_account);
2939 ctx->mm_account = NULL;
2940 }
2941 io_rings_free(ctx);
2942
2943 percpu_ref_exit(&ctx->refs);
2944 free_uid(ctx->user);
2945 io_req_caches_free(ctx);
2946 if (ctx->hash_map)
2947 io_wq_put_hash(ctx->hash_map);
2948 kfree(ctx->cancel_table.hbs);
2949 kfree(ctx->cancel_table_locked.hbs);
2950 kfree(ctx->io_bl);
2951 xa_destroy(&ctx->io_bl_xa);
2952 kfree(ctx);
2953 }
2954
2955 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2956 {
2957 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2958 poll_wq_task_work);
2959
2960 mutex_lock(&ctx->uring_lock);
2961 ctx->poll_activated = true;
2962 mutex_unlock(&ctx->uring_lock);
2963
2964 /*
2965 * Wake ups for some events between start of polling and activation
2966 * might've been lost due to loose synchronisation.
2967 */
2968 wake_up_all(&ctx->poll_wq);
2969 percpu_ref_put(&ctx->refs);
2970 }
2971
2972 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2973 {
2974 spin_lock(&ctx->completion_lock);
2975 /* already activated or in progress */
2976 if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2977 goto out;
2978 if (WARN_ON_ONCE(!ctx->task_complete))
2979 goto out;
2980 if (!ctx->submitter_task)
2981 goto out;
2982 /*
2983 * with ->submitter_task only the submitter task completes requests, we
2984 * only need to sync with it, which is done by injecting a tw
2985 */
2986 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2987 percpu_ref_get(&ctx->refs);
2988 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2989 percpu_ref_put(&ctx->refs);
2990 out:
2991 spin_unlock(&ctx->completion_lock);
2992 }
2993
2994 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2995 {
2996 struct io_ring_ctx *ctx = file->private_data;
2997 __poll_t mask = 0;
2998
2999 if (unlikely(!ctx->poll_activated))
3000 io_activate_pollwq(ctx);
3001
3002 poll_wait(file, &ctx->poll_wq, wait);
3003 /*
3004 * synchronizes with barrier from wq_has_sleeper call in
3005 * io_commit_cqring
3006 */
3007 smp_rmb();
3008 if (!io_sqring_full(ctx))
3009 mask |= EPOLLOUT | EPOLLWRNORM;
3010
3011 /*
3012 * Don't flush cqring overflow list here, just do a simple check.
3013 * Otherwise there could possible be ABBA deadlock:
3014 * CPU0 CPU1
3015 * ---- ----
3016 * lock(&ctx->uring_lock);
3017 * lock(&ep->mtx);
3018 * lock(&ctx->uring_lock);
3019 * lock(&ep->mtx);
3020 *
3021 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
3022 * pushes them to do the flush.
3023 */
3024
3025 if (__io_cqring_events_user(ctx) || io_has_work(ctx))
3026 mask |= EPOLLIN | EPOLLRDNORM;
3027
3028 return mask;
3029 }
3030
3031 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
3032 {
3033 const struct cred *creds;
3034
3035 creds = xa_erase(&ctx->personalities, id);
3036 if (creds) {
3037 put_cred(creds);
3038 return 0;
3039 }
3040
3041 return -EINVAL;
3042 }
3043
3044 struct io_tctx_exit {
3045 struct callback_head task_work;
3046 struct completion completion;
3047 struct io_ring_ctx *ctx;
3048 };
3049
3050 static __cold void io_tctx_exit_cb(struct callback_head *cb)
3051 {
3052 struct io_uring_task *tctx = current->io_uring;
3053 struct io_tctx_exit *work;
3054
3055 work = container_of(cb, struct io_tctx_exit, task_work);
3056 /*
3057 * When @in_cancel, we're in cancellation and it's racy to remove the
3058 * node. It'll be removed by the end of cancellation, just ignore it.
3059 * tctx can be NULL if the queueing of this task_work raced with
3060 * work cancelation off the exec path.
3061 */
3062 if (tctx && !atomic_read(&tctx->in_cancel))
3063 io_uring_del_tctx_node((unsigned long)work->ctx);
3064 complete(&work->completion);
3065 }
3066
3067 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
3068 {
3069 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3070
3071 return req->ctx == data;
3072 }
3073
3074 static __cold void io_ring_exit_work(struct work_struct *work)
3075 {
3076 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3077 unsigned long timeout = jiffies + HZ * 60 * 5;
3078 unsigned long interval = HZ / 20;
3079 struct io_tctx_exit exit;
3080 struct io_tctx_node *node;
3081 int ret;
3082
3083 /*
3084 * If we're doing polled IO and end up having requests being
3085 * submitted async (out-of-line), then completions can come in while
3086 * we're waiting for refs to drop. We need to reap these manually,
3087 * as nobody else will be looking for them.
3088 */
3089 do {
3090 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3091 mutex_lock(&ctx->uring_lock);
3092 io_cqring_overflow_kill(ctx);
3093 mutex_unlock(&ctx->uring_lock);
3094 }
3095
3096 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3097 io_move_task_work_from_local(ctx);
3098
3099 while (io_uring_try_cancel_requests(ctx, NULL, true))
3100 cond_resched();
3101
3102 if (ctx->sq_data) {
3103 struct io_sq_data *sqd = ctx->sq_data;
3104 struct task_struct *tsk;
3105
3106 io_sq_thread_park(sqd);
3107 tsk = sqd->thread;
3108 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3109 io_wq_cancel_cb(tsk->io_uring->io_wq,
3110 io_cancel_ctx_cb, ctx, true);
3111 io_sq_thread_unpark(sqd);
3112 }
3113
3114 io_req_caches_free(ctx);
3115
3116 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3117 /* there is little hope left, don't run it too often */
3118 interval = HZ * 60;
3119 }
3120 /*
3121 * This is really an uninterruptible wait, as it has to be
3122 * complete. But it's also run from a kworker, which doesn't
3123 * take signals, so it's fine to make it interruptible. This
3124 * avoids scenarios where we knowingly can wait much longer
3125 * on completions, for example if someone does a SIGSTOP on
3126 * a task that needs to finish task_work to make this loop
3127 * complete. That's a synthetic situation that should not
3128 * cause a stuck task backtrace, and hence a potential panic
3129 * on stuck tasks if that is enabled.
3130 */
3131 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3132
3133 init_completion(&exit.completion);
3134 init_task_work(&exit.task_work, io_tctx_exit_cb);
3135 exit.ctx = ctx;
3136 /*
3137 * Some may use context even when all refs and requests have been put,
3138 * and they are free to do so while still holding uring_lock or
3139 * completion_lock, see io_req_task_submit(). Apart from other work,
3140 * this lock/unlock section also waits them to finish.
3141 */
3142 mutex_lock(&ctx->uring_lock);
3143 while (!list_empty(&ctx->tctx_list)) {
3144 WARN_ON_ONCE(time_after(jiffies, timeout));
3145
3146 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3147 ctx_node);
3148 /* don't spin on a single task if cancellation failed */
3149 list_rotate_left(&ctx->tctx_list);
3150 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3151 if (WARN_ON_ONCE(ret))
3152 continue;
3153
3154 mutex_unlock(&ctx->uring_lock);
3155 /*
3156 * See comment above for
3157 * wait_for_completion_interruptible_timeout() on why this
3158 * wait is marked as interruptible.
3159 */
3160 wait_for_completion_interruptible(&exit.completion);
3161 mutex_lock(&ctx->uring_lock);
3162 }
3163 mutex_unlock(&ctx->uring_lock);
3164 spin_lock(&ctx->completion_lock);
3165 spin_unlock(&ctx->completion_lock);
3166
3167 /* pairs with RCU read section in io_req_local_work_add() */
3168 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3169 synchronize_rcu();
3170
3171 io_ring_ctx_free(ctx);
3172 }
3173
3174 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3175 {
3176 unsigned long index;
3177 struct creds *creds;
3178
3179 mutex_lock(&ctx->uring_lock);
3180 percpu_ref_kill(&ctx->refs);
3181 xa_for_each(&ctx->personalities, index, creds)
3182 io_unregister_personality(ctx, index);
3183 if (ctx->rings)
3184 io_poll_remove_all(ctx, NULL, true);
3185 mutex_unlock(&ctx->uring_lock);
3186
3187 /*
3188 * If we failed setting up the ctx, we might not have any rings
3189 * and therefore did not submit any requests
3190 */
3191 if (ctx->rings)
3192 io_kill_timeouts(ctx, NULL, true);
3193
3194 flush_delayed_work(&ctx->fallback_work);
3195
3196 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3197 /*
3198 * Use system_unbound_wq to avoid spawning tons of event kworkers
3199 * if we're exiting a ton of rings at the same time. It just adds
3200 * noise and overhead, there's no discernable change in runtime
3201 * over using system_wq.
3202 */
3203 queue_work(system_unbound_wq, &ctx->exit_work);
3204 }
3205
3206 static int io_uring_release(struct inode *inode, struct file *file)
3207 {
3208 struct io_ring_ctx *ctx = file->private_data;
3209
3210 file->private_data = NULL;
3211 io_ring_ctx_wait_and_kill(ctx);
3212 return 0;
3213 }
3214
3215 struct io_task_cancel {
3216 struct task_struct *task;
3217 bool all;
3218 };
3219
3220 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3221 {
3222 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3223 struct io_task_cancel *cancel = data;
3224
3225 return io_match_task_safe(req, cancel->task, cancel->all);
3226 }
3227
3228 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3229 struct task_struct *task,
3230 bool cancel_all)
3231 {
3232 struct io_defer_entry *de;
3233 LIST_HEAD(list);
3234
3235 spin_lock(&ctx->completion_lock);
3236 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3237 if (io_match_task_safe(de->req, task, cancel_all)) {
3238 list_cut_position(&list, &ctx->defer_list, &de->list);
3239 break;
3240 }
3241 }
3242 spin_unlock(&ctx->completion_lock);
3243 if (list_empty(&list))
3244 return false;
3245
3246 while (!list_empty(&list)) {
3247 de = list_first_entry(&list, struct io_defer_entry, list);
3248 list_del_init(&de->list);
3249 io_req_task_queue_fail(de->req, -ECANCELED);
3250 kfree(de);
3251 }
3252 return true;
3253 }
3254
3255 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3256 {
3257 struct io_tctx_node *node;
3258 enum io_wq_cancel cret;
3259 bool ret = false;
3260
3261 mutex_lock(&ctx->uring_lock);
3262 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3263 struct io_uring_task *tctx = node->task->io_uring;
3264
3265 /*
3266 * io_wq will stay alive while we hold uring_lock, because it's
3267 * killed after ctx nodes, which requires to take the lock.
3268 */
3269 if (!tctx || !tctx->io_wq)
3270 continue;
3271 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3272 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3273 }
3274 mutex_unlock(&ctx->uring_lock);
3275
3276 return ret;
3277 }
3278
3279 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3280 struct task_struct *task,
3281 bool cancel_all)
3282 {
3283 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3284 struct io_uring_task *tctx = task ? task->io_uring : NULL;
3285 enum io_wq_cancel cret;
3286 bool ret = false;
3287
3288 /* set it so io_req_local_work_add() would wake us up */
3289 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3290 atomic_set(&ctx->cq_wait_nr, 1);
3291 smp_mb();
3292 }
3293
3294 /* failed during ring init, it couldn't have issued any requests */
3295 if (!ctx->rings)
3296 return false;
3297
3298 if (!task) {
3299 ret |= io_uring_try_cancel_iowq(ctx);
3300 } else if (tctx && tctx->io_wq) {
3301 /*
3302 * Cancels requests of all rings, not only @ctx, but
3303 * it's fine as the task is in exit/exec.
3304 */
3305 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3306 &cancel, true);
3307 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3308 }
3309
3310 /* SQPOLL thread does its own polling */
3311 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3312 (ctx->sq_data && ctx->sq_data->thread == current)) {
3313 while (!wq_list_empty(&ctx->iopoll_list)) {
3314 io_iopoll_try_reap_events(ctx);
3315 ret = true;
3316 cond_resched();
3317 }
3318 }
3319
3320 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3321 io_allowed_defer_tw_run(ctx))
3322 ret |= io_run_local_work(ctx) > 0;
3323 ret |= io_cancel_defer_files(ctx, task, cancel_all);
3324 mutex_lock(&ctx->uring_lock);
3325 ret |= io_poll_remove_all(ctx, task, cancel_all);
3326 mutex_unlock(&ctx->uring_lock);
3327 ret |= io_kill_timeouts(ctx, task, cancel_all);
3328 if (task)
3329 ret |= io_run_task_work() > 0;
3330 return ret;
3331 }
3332
3333 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3334 {
3335 if (tracked)
3336 return atomic_read(&tctx->inflight_tracked);
3337 return percpu_counter_sum(&tctx->inflight);
3338 }
3339
3340 /*
3341 * Find any io_uring ctx that this task has registered or done IO on, and cancel
3342 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3343 */
3344 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3345 {
3346 struct io_uring_task *tctx = current->io_uring;
3347 struct io_ring_ctx *ctx;
3348 struct io_tctx_node *node;
3349 unsigned long index;
3350 s64 inflight;
3351 DEFINE_WAIT(wait);
3352
3353 WARN_ON_ONCE(sqd && sqd->thread != current);
3354
3355 if (!current->io_uring)
3356 return;
3357 if (tctx->io_wq)
3358 io_wq_exit_start(tctx->io_wq);
3359
3360 atomic_inc(&tctx->in_cancel);
3361 do {
3362 bool loop = false;
3363
3364 io_uring_drop_tctx_refs(current);
3365 /* read completions before cancelations */
3366 inflight = tctx_inflight(tctx, !cancel_all);
3367 if (!inflight)
3368 break;
3369
3370 if (!sqd) {
3371 xa_for_each(&tctx->xa, index, node) {
3372 /* sqpoll task will cancel all its requests */
3373 if (node->ctx->sq_data)
3374 continue;
3375 loop |= io_uring_try_cancel_requests(node->ctx,
3376 current, cancel_all);
3377 }
3378 } else {
3379 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3380 loop |= io_uring_try_cancel_requests(ctx,
3381 current,
3382 cancel_all);
3383 }
3384
3385 if (loop) {
3386 cond_resched();
3387 continue;
3388 }
3389
3390 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3391 io_run_task_work();
3392 io_uring_drop_tctx_refs(current);
3393 xa_for_each(&tctx->xa, index, node) {
3394 if (!llist_empty(&node->ctx->work_llist)) {
3395 WARN_ON_ONCE(node->ctx->submitter_task &&
3396 node->ctx->submitter_task != current);
3397 goto end_wait;
3398 }
3399 }
3400 /*
3401 * If we've seen completions, retry without waiting. This
3402 * avoids a race where a completion comes in before we did
3403 * prepare_to_wait().
3404 */
3405 if (inflight == tctx_inflight(tctx, !cancel_all))
3406 schedule();
3407 end_wait:
3408 finish_wait(&tctx->wait, &wait);
3409 } while (1);
3410
3411 io_uring_clean_tctx(tctx);
3412 if (cancel_all) {
3413 /*
3414 * We shouldn't run task_works after cancel, so just leave
3415 * ->in_cancel set for normal exit.
3416 */
3417 atomic_dec(&tctx->in_cancel);
3418 /* for exec all current's requests should be gone, kill tctx */
3419 __io_uring_free(current);
3420 }
3421 }
3422
3423 void __io_uring_cancel(bool cancel_all)
3424 {
3425 io_uring_cancel_generic(cancel_all, NULL);
3426 }
3427
3428 static void *io_uring_validate_mmap_request(struct file *file,
3429 loff_t pgoff, size_t sz)
3430 {
3431 struct io_ring_ctx *ctx = file->private_data;
3432 loff_t offset = pgoff << PAGE_SHIFT;
3433 struct page *page;
3434 void *ptr;
3435
3436 /* Don't allow mmap if the ring was setup without it */
3437 if (ctx->flags & IORING_SETUP_NO_MMAP)
3438 return ERR_PTR(-EINVAL);
3439
3440 switch (offset & IORING_OFF_MMAP_MASK) {
3441 case IORING_OFF_SQ_RING:
3442 case IORING_OFF_CQ_RING:
3443 ptr = ctx->rings;
3444 break;
3445 case IORING_OFF_SQES:
3446 ptr = ctx->sq_sqes;
3447 break;
3448 case IORING_OFF_PBUF_RING: {
3449 unsigned int bgid;
3450
3451 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3452 mutex_lock(&ctx->uring_lock);
3453 ptr = io_pbuf_get_address(ctx, bgid);
3454 mutex_unlock(&ctx->uring_lock);
3455 if (!ptr)
3456 return ERR_PTR(-EINVAL);
3457 break;
3458 }
3459 default:
3460 return ERR_PTR(-EINVAL);
3461 }
3462
3463 page = virt_to_head_page(ptr);
3464 if (sz > page_size(page))
3465 return ERR_PTR(-EINVAL);
3466
3467 return ptr;
3468 }
3469
3470 #ifdef CONFIG_MMU
3471
3472 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3473 {
3474 size_t sz = vma->vm_end - vma->vm_start;
3475 unsigned long pfn;
3476 void *ptr;
3477
3478 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3479 if (IS_ERR(ptr))
3480 return PTR_ERR(ptr);
3481
3482 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3483 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3484 }
3485
3486 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3487 unsigned long addr, unsigned long len,
3488 unsigned long pgoff, unsigned long flags)
3489 {
3490 void *ptr;
3491
3492 /*
3493 * Do not allow to map to user-provided address to avoid breaking the
3494 * aliasing rules. Userspace is not able to guess the offset address of
3495 * kernel kmalloc()ed memory area.
3496 */
3497 if (addr)
3498 return -EINVAL;
3499
3500 ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3501 if (IS_ERR(ptr))
3502 return -ENOMEM;
3503
3504 /*
3505 * Some architectures have strong cache aliasing requirements.
3506 * For such architectures we need a coherent mapping which aliases
3507 * kernel memory *and* userspace memory. To achieve that:
3508 * - use a NULL file pointer to reference physical memory, and
3509 * - use the kernel virtual address of the shared io_uring context
3510 * (instead of the userspace-provided address, which has to be 0UL
3511 * anyway).
3512 * - use the same pgoff which the get_unmapped_area() uses to
3513 * calculate the page colouring.
3514 * For architectures without such aliasing requirements, the
3515 * architecture will return any suitable mapping because addr is 0.
3516 */
3517 filp = NULL;
3518 flags |= MAP_SHARED;
3519 pgoff = 0; /* has been translated to ptr above */
3520 #ifdef SHM_COLOUR
3521 addr = (uintptr_t) ptr;
3522 pgoff = addr >> PAGE_SHIFT;
3523 #else
3524 addr = 0UL;
3525 #endif
3526 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
3527 }
3528
3529 #else /* !CONFIG_MMU */
3530
3531 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3532 {
3533 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3534 }
3535
3536 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3537 {
3538 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3539 }
3540
3541 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3542 unsigned long addr, unsigned long len,
3543 unsigned long pgoff, unsigned long flags)
3544 {
3545 void *ptr;
3546
3547 ptr = io_uring_validate_mmap_request(file, pgoff, len);
3548 if (IS_ERR(ptr))
3549 return PTR_ERR(ptr);
3550
3551 return (unsigned long) ptr;
3552 }
3553
3554 #endif /* !CONFIG_MMU */
3555
3556 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3557 {
3558 if (flags & IORING_ENTER_EXT_ARG) {
3559 struct io_uring_getevents_arg arg;
3560
3561 if (argsz != sizeof(arg))
3562 return -EINVAL;
3563 if (copy_from_user(&arg, argp, sizeof(arg)))
3564 return -EFAULT;
3565 }
3566 return 0;
3567 }
3568
3569 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3570 struct __kernel_timespec __user **ts,
3571 const sigset_t __user **sig)
3572 {
3573 struct io_uring_getevents_arg arg;
3574
3575 /*
3576 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3577 * is just a pointer to the sigset_t.
3578 */
3579 if (!(flags & IORING_ENTER_EXT_ARG)) {
3580 *sig = (const sigset_t __user *) argp;
3581 *ts = NULL;
3582 return 0;
3583 }
3584
3585 /*
3586 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3587 * timespec and sigset_t pointers if good.
3588 */
3589 if (*argsz != sizeof(arg))
3590 return -EINVAL;
3591 if (copy_from_user(&arg, argp, sizeof(arg)))
3592 return -EFAULT;
3593 if (arg.pad)
3594 return -EINVAL;
3595 *sig = u64_to_user_ptr(arg.sigmask);
3596 *argsz = arg.sigmask_sz;
3597 *ts = u64_to_user_ptr(arg.ts);
3598 return 0;
3599 }
3600
3601 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3602 u32, min_complete, u32, flags, const void __user *, argp,
3603 size_t, argsz)
3604 {
3605 struct io_ring_ctx *ctx;
3606 struct fd f;
3607 long ret;
3608
3609 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3610 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3611 IORING_ENTER_REGISTERED_RING)))
3612 return -EINVAL;
3613
3614 /*
3615 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3616 * need only dereference our task private array to find it.
3617 */
3618 if (flags & IORING_ENTER_REGISTERED_RING) {
3619 struct io_uring_task *tctx = current->io_uring;
3620
3621 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3622 return -EINVAL;
3623 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3624 f.file = tctx->registered_rings[fd];
3625 f.flags = 0;
3626 if (unlikely(!f.file))
3627 return -EBADF;
3628 } else {
3629 f = fdget(fd);
3630 if (unlikely(!f.file))
3631 return -EBADF;
3632 ret = -EOPNOTSUPP;
3633 if (unlikely(!io_is_uring_fops(f.file)))
3634 goto out;
3635 }
3636
3637 ctx = f.file->private_data;
3638 ret = -EBADFD;
3639 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3640 goto out;
3641
3642 /*
3643 * For SQ polling, the thread will do all submissions and completions.
3644 * Just return the requested submit count, and wake the thread if
3645 * we were asked to.
3646 */
3647 ret = 0;
3648 if (ctx->flags & IORING_SETUP_SQPOLL) {
3649 io_cqring_overflow_flush(ctx);
3650
3651 if (unlikely(ctx->sq_data->thread == NULL)) {
3652 ret = -EOWNERDEAD;
3653 goto out;
3654 }
3655 if (flags & IORING_ENTER_SQ_WAKEUP)
3656 wake_up(&ctx->sq_data->wait);
3657 if (flags & IORING_ENTER_SQ_WAIT)
3658 io_sqpoll_wait_sq(ctx);
3659
3660 ret = to_submit;
3661 } else if (to_submit) {
3662 ret = io_uring_add_tctx_node(ctx);
3663 if (unlikely(ret))
3664 goto out;
3665
3666 mutex_lock(&ctx->uring_lock);
3667 ret = io_submit_sqes(ctx, to_submit);
3668 if (ret != to_submit) {
3669 mutex_unlock(&ctx->uring_lock);
3670 goto out;
3671 }
3672 if (flags & IORING_ENTER_GETEVENTS) {
3673 if (ctx->syscall_iopoll)
3674 goto iopoll_locked;
3675 /*
3676 * Ignore errors, we'll soon call io_cqring_wait() and
3677 * it should handle ownership problems if any.
3678 */
3679 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3680 (void)io_run_local_work_locked(ctx);
3681 }
3682 mutex_unlock(&ctx->uring_lock);
3683 }
3684
3685 if (flags & IORING_ENTER_GETEVENTS) {
3686 int ret2;
3687
3688 if (ctx->syscall_iopoll) {
3689 /*
3690 * We disallow the app entering submit/complete with
3691 * polling, but we still need to lock the ring to
3692 * prevent racing with polled issue that got punted to
3693 * a workqueue.
3694 */
3695 mutex_lock(&ctx->uring_lock);
3696 iopoll_locked:
3697 ret2 = io_validate_ext_arg(flags, argp, argsz);
3698 if (likely(!ret2)) {
3699 min_complete = min(min_complete,
3700 ctx->cq_entries);
3701 ret2 = io_iopoll_check(ctx, min_complete);
3702 }
3703 mutex_unlock(&ctx->uring_lock);
3704 } else {
3705 const sigset_t __user *sig;
3706 struct __kernel_timespec __user *ts;
3707
3708 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3709 if (likely(!ret2)) {
3710 min_complete = min(min_complete,
3711 ctx->cq_entries);
3712 ret2 = io_cqring_wait(ctx, min_complete, sig,
3713 argsz, ts);
3714 }
3715 }
3716
3717 if (!ret) {
3718 ret = ret2;
3719
3720 /*
3721 * EBADR indicates that one or more CQE were dropped.
3722 * Once the user has been informed we can clear the bit
3723 * as they are obviously ok with those drops.
3724 */
3725 if (unlikely(ret2 == -EBADR))
3726 clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3727 &ctx->check_cq);
3728 }
3729 }
3730 out:
3731 fdput(f);
3732 return ret;
3733 }
3734
3735 static const struct file_operations io_uring_fops = {
3736 .release = io_uring_release,
3737 .mmap = io_uring_mmap,
3738 #ifndef CONFIG_MMU
3739 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
3740 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
3741 #else
3742 .get_unmapped_area = io_uring_mmu_get_unmapped_area,
3743 #endif
3744 .poll = io_uring_poll,
3745 #ifdef CONFIG_PROC_FS
3746 .show_fdinfo = io_uring_show_fdinfo,
3747 #endif
3748 };
3749
3750 bool io_is_uring_fops(struct file *file)
3751 {
3752 return file->f_op == &io_uring_fops;
3753 }
3754
3755 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3756 struct io_uring_params *p)
3757 {
3758 struct io_rings *rings;
3759 size_t size, sq_array_offset;
3760 void *ptr;
3761
3762 /* make sure these are sane, as we already accounted them */
3763 ctx->sq_entries = p->sq_entries;
3764 ctx->cq_entries = p->cq_entries;
3765
3766 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3767 if (size == SIZE_MAX)
3768 return -EOVERFLOW;
3769
3770 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3771 rings = io_mem_alloc(size);
3772 else
3773 rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3774
3775 if (IS_ERR(rings))
3776 return PTR_ERR(rings);
3777
3778 ctx->rings = rings;
3779 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3780 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3781 rings->sq_ring_mask = p->sq_entries - 1;
3782 rings->cq_ring_mask = p->cq_entries - 1;
3783 rings->sq_ring_entries = p->sq_entries;
3784 rings->cq_ring_entries = p->cq_entries;
3785
3786 if (p->flags & IORING_SETUP_SQE128)
3787 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3788 else
3789 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3790 if (size == SIZE_MAX) {
3791 io_rings_free(ctx);
3792 return -EOVERFLOW;
3793 }
3794
3795 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3796 ptr = io_mem_alloc(size);
3797 else
3798 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3799
3800 if (IS_ERR(ptr)) {
3801 io_rings_free(ctx);
3802 return PTR_ERR(ptr);
3803 }
3804
3805 ctx->sq_sqes = ptr;
3806 return 0;
3807 }
3808
3809 static int io_uring_install_fd(struct file *file)
3810 {
3811 int fd;
3812
3813 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3814 if (fd < 0)
3815 return fd;
3816 fd_install(fd, file);
3817 return fd;
3818 }
3819
3820 /*
3821 * Allocate an anonymous fd, this is what constitutes the application
3822 * visible backing of an io_uring instance. The application mmaps this
3823 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3824 * we have to tie this fd to a socket for file garbage collection purposes.
3825 */
3826 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3827 {
3828 struct file *file;
3829 #if defined(CONFIG_UNIX)
3830 int ret;
3831
3832 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3833 &ctx->ring_sock);
3834 if (ret)
3835 return ERR_PTR(ret);
3836 #endif
3837
3838 /* Create a new inode so that the LSM can block the creation. */
3839 file = anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3840 O_RDWR | O_CLOEXEC, NULL);
3841 #if defined(CONFIG_UNIX)
3842 if (IS_ERR(file)) {
3843 sock_release(ctx->ring_sock);
3844 ctx->ring_sock = NULL;
3845 } else {
3846 ctx->ring_sock->file = file;
3847 }
3848 #endif
3849 return file;
3850 }
3851
3852 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3853 struct io_uring_params __user *params)
3854 {
3855 struct io_ring_ctx *ctx;
3856 struct io_uring_task *tctx;
3857 struct file *file;
3858 int ret;
3859
3860 if (!entries)
3861 return -EINVAL;
3862 if (entries > IORING_MAX_ENTRIES) {
3863 if (!(p->flags & IORING_SETUP_CLAMP))
3864 return -EINVAL;
3865 entries = IORING_MAX_ENTRIES;
3866 }
3867
3868 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3869 && !(p->flags & IORING_SETUP_NO_MMAP))
3870 return -EINVAL;
3871
3872 /*
3873 * Use twice as many entries for the CQ ring. It's possible for the
3874 * application to drive a higher depth than the size of the SQ ring,
3875 * since the sqes are only used at submission time. This allows for
3876 * some flexibility in overcommitting a bit. If the application has
3877 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3878 * of CQ ring entries manually.
3879 */
3880 p->sq_entries = roundup_pow_of_two(entries);
3881 if (p->flags & IORING_SETUP_CQSIZE) {
3882 /*
3883 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3884 * to a power-of-two, if it isn't already. We do NOT impose
3885 * any cq vs sq ring sizing.
3886 */
3887 if (!p->cq_entries)
3888 return -EINVAL;
3889 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3890 if (!(p->flags & IORING_SETUP_CLAMP))
3891 return -EINVAL;
3892 p->cq_entries = IORING_MAX_CQ_ENTRIES;
3893 }
3894 p->cq_entries = roundup_pow_of_two(p->cq_entries);
3895 if (p->cq_entries < p->sq_entries)
3896 return -EINVAL;
3897 } else {
3898 p->cq_entries = 2 * p->sq_entries;
3899 }
3900
3901 ctx = io_ring_ctx_alloc(p);
3902 if (!ctx)
3903 return -ENOMEM;
3904
3905 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3906 !(ctx->flags & IORING_SETUP_IOPOLL) &&
3907 !(ctx->flags & IORING_SETUP_SQPOLL))
3908 ctx->task_complete = true;
3909
3910 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3911 ctx->lockless_cq = true;
3912
3913 /*
3914 * lazy poll_wq activation relies on ->task_complete for synchronisation
3915 * purposes, see io_activate_pollwq()
3916 */
3917 if (!ctx->task_complete)
3918 ctx->poll_activated = true;
3919
3920 /*
3921 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3922 * space applications don't need to do io completion events
3923 * polling again, they can rely on io_sq_thread to do polling
3924 * work, which can reduce cpu usage and uring_lock contention.
3925 */
3926 if (ctx->flags & IORING_SETUP_IOPOLL &&
3927 !(ctx->flags & IORING_SETUP_SQPOLL))
3928 ctx->syscall_iopoll = 1;
3929
3930 ctx->compat = in_compat_syscall();
3931 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3932 ctx->user = get_uid(current_user());
3933
3934 /*
3935 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3936 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3937 */
3938 ret = -EINVAL;
3939 if (ctx->flags & IORING_SETUP_SQPOLL) {
3940 /* IPI related flags don't make sense with SQPOLL */
3941 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3942 IORING_SETUP_TASKRUN_FLAG |
3943 IORING_SETUP_DEFER_TASKRUN))
3944 goto err;
3945 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3946 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3947 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3948 } else {
3949 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3950 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3951 goto err;
3952 ctx->notify_method = TWA_SIGNAL;
3953 }
3954
3955 /*
3956 * For DEFER_TASKRUN we require the completion task to be the same as the
3957 * submission task. This implies that there is only one submitter, so enforce
3958 * that.
3959 */
3960 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3961 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3962 goto err;
3963 }
3964
3965 /*
3966 * This is just grabbed for accounting purposes. When a process exits,
3967 * the mm is exited and dropped before the files, hence we need to hang
3968 * on to this mm purely for the purposes of being able to unaccount
3969 * memory (locked/pinned vm). It's not used for anything else.
3970 */
3971 mmgrab(current->mm);
3972 ctx->mm_account = current->mm;
3973
3974 ret = io_allocate_scq_urings(ctx, p);
3975 if (ret)
3976 goto err;
3977
3978 ret = io_sq_offload_create(ctx, p);
3979 if (ret)
3980 goto err;
3981
3982 ret = io_rsrc_init(ctx);
3983 if (ret)
3984 goto err;
3985
3986 p->sq_off.head = offsetof(struct io_rings, sq.head);
3987 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3988 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3989 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3990 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3991 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3992 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3993 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3994 p->sq_off.resv1 = 0;
3995 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3996 p->sq_off.user_addr = 0;
3997
3998 p->cq_off.head = offsetof(struct io_rings, cq.head);
3999 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
4000 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
4001 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
4002 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
4003 p->cq_off.cqes = offsetof(struct io_rings, cqes);
4004 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
4005 p->cq_off.resv1 = 0;
4006 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
4007 p->cq_off.user_addr = 0;
4008
4009 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
4010 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
4011 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
4012 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
4013 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
4014 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
4015 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
4016
4017 if (copy_to_user(params, p, sizeof(*p))) {
4018 ret = -EFAULT;
4019 goto err;
4020 }
4021
4022 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
4023 && !(ctx->flags & IORING_SETUP_R_DISABLED))
4024 WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4025
4026 file = io_uring_get_file(ctx);
4027 if (IS_ERR(file)) {
4028 ret = PTR_ERR(file);
4029 goto err;
4030 }
4031
4032 ret = __io_uring_add_tctx_node(ctx);
4033 if (ret)
4034 goto err_fput;
4035 tctx = current->io_uring;
4036
4037 /*
4038 * Install ring fd as the very last thing, so we don't risk someone
4039 * having closed it before we finish setup
4040 */
4041 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
4042 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
4043 else
4044 ret = io_uring_install_fd(file);
4045 if (ret < 0)
4046 goto err_fput;
4047
4048 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
4049 return ret;
4050 err:
4051 io_ring_ctx_wait_and_kill(ctx);
4052 return ret;
4053 err_fput:
4054 fput(file);
4055 return ret;
4056 }
4057
4058 /*
4059 * Sets up an aio uring context, and returns the fd. Applications asks for a
4060 * ring size, we return the actual sq/cq ring sizes (among other things) in the
4061 * params structure passed in.
4062 */
4063 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
4064 {
4065 struct io_uring_params p;
4066 int i;
4067
4068 if (copy_from_user(&p, params, sizeof(p)))
4069 return -EFAULT;
4070 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
4071 if (p.resv[i])
4072 return -EINVAL;
4073 }
4074
4075 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4076 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
4077 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
4078 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
4079 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
4080 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
4081 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
4082 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
4083 IORING_SETUP_NO_SQARRAY))
4084 return -EINVAL;
4085
4086 return io_uring_create(entries, &p, params);
4087 }
4088
4089 static inline bool io_uring_allowed(void)
4090 {
4091 int disabled = READ_ONCE(sysctl_io_uring_disabled);
4092 kgid_t io_uring_group;
4093
4094 if (disabled == 2)
4095 return false;
4096
4097 if (disabled == 0 || capable(CAP_SYS_ADMIN))
4098 return true;
4099
4100 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
4101 if (!gid_valid(io_uring_group))
4102 return false;
4103
4104 return in_group_p(io_uring_group);
4105 }
4106
4107 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4108 struct io_uring_params __user *, params)
4109 {
4110 if (!io_uring_allowed())
4111 return -EPERM;
4112
4113 return io_uring_setup(entries, params);
4114 }
4115
4116 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
4117 unsigned nr_args)
4118 {
4119 struct io_uring_probe *p;
4120 size_t size;
4121 int i, ret;
4122
4123 size = struct_size(p, ops, nr_args);
4124 if (size == SIZE_MAX)
4125 return -EOVERFLOW;
4126 p = kzalloc(size, GFP_KERNEL);
4127 if (!p)
4128 return -ENOMEM;
4129
4130 ret = -EFAULT;
4131 if (copy_from_user(p, arg, size))
4132 goto out;
4133 ret = -EINVAL;
4134 if (memchr_inv(p, 0, size))
4135 goto out;
4136
4137 p->last_op = IORING_OP_LAST - 1;
4138 if (nr_args > IORING_OP_LAST)
4139 nr_args = IORING_OP_LAST;
4140
4141 for (i = 0; i < nr_args; i++) {
4142 p->ops[i].op = i;
4143 if (!io_issue_defs[i].not_supported)
4144 p->ops[i].flags = IO_URING_OP_SUPPORTED;
4145 }
4146 p->ops_len = i;
4147
4148 ret = 0;
4149 if (copy_to_user(arg, p, size))
4150 ret = -EFAULT;
4151 out:
4152 kfree(p);
4153 return ret;
4154 }
4155
4156 static int io_register_personality(struct io_ring_ctx *ctx)
4157 {
4158 const struct cred *creds;
4159 u32 id;
4160 int ret;
4161
4162 creds = get_current_cred();
4163
4164 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
4165 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
4166 if (ret < 0) {
4167 put_cred(creds);
4168 return ret;
4169 }
4170 return id;
4171 }
4172
4173 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
4174 void __user *arg, unsigned int nr_args)
4175 {
4176 struct io_uring_restriction *res;
4177 size_t size;
4178 int i, ret;
4179
4180 /* Restrictions allowed only if rings started disabled */
4181 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4182 return -EBADFD;
4183
4184 /* We allow only a single restrictions registration */
4185 if (ctx->restrictions.registered)
4186 return -EBUSY;
4187
4188 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
4189 return -EINVAL;
4190
4191 size = array_size(nr_args, sizeof(*res));
4192 if (size == SIZE_MAX)
4193 return -EOVERFLOW;
4194
4195 res = memdup_user(arg, size);
4196 if (IS_ERR(res))
4197 return PTR_ERR(res);
4198
4199 ret = 0;
4200
4201 for (i = 0; i < nr_args; i++) {
4202 switch (res[i].opcode) {
4203 case IORING_RESTRICTION_REGISTER_OP:
4204 if (res[i].register_op >= IORING_REGISTER_LAST) {
4205 ret = -EINVAL;
4206 goto out;
4207 }
4208
4209 __set_bit(res[i].register_op,
4210 ctx->restrictions.register_op);
4211 break;
4212 case IORING_RESTRICTION_SQE_OP:
4213 if (res[i].sqe_op >= IORING_OP_LAST) {
4214 ret = -EINVAL;
4215 goto out;
4216 }
4217
4218 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
4219 break;
4220 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
4221 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
4222 break;
4223 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
4224 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
4225 break;
4226 default:
4227 ret = -EINVAL;
4228 goto out;
4229 }
4230 }
4231
4232 out:
4233 /* Reset all restrictions if an error happened */
4234 if (ret != 0)
4235 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
4236 else
4237 ctx->restrictions.registered = true;
4238
4239 kfree(res);
4240 return ret;
4241 }
4242
4243 static int io_register_enable_rings(struct io_ring_ctx *ctx)
4244 {
4245 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4246 return -EBADFD;
4247
4248 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
4249 WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4250 /*
4251 * Lazy activation attempts would fail if it was polled before
4252 * submitter_task is set.
4253 */
4254 if (wq_has_sleeper(&ctx->poll_wq))
4255 io_activate_pollwq(ctx);
4256 }
4257
4258 if (ctx->restrictions.registered)
4259 ctx->restricted = 1;
4260
4261 ctx->flags &= ~IORING_SETUP_R_DISABLED;
4262 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
4263 wake_up(&ctx->sq_data->wait);
4264 return 0;
4265 }
4266
4267 static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx,
4268 cpumask_var_t new_mask)
4269 {
4270 int ret;
4271
4272 if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
4273 ret = io_wq_cpu_affinity(current->io_uring, new_mask);
4274 } else {
4275 mutex_unlock(&ctx->uring_lock);
4276 ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask);
4277 mutex_lock(&ctx->uring_lock);
4278 }
4279
4280 return ret;
4281 }
4282
4283 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
4284 void __user *arg, unsigned len)
4285 {
4286 cpumask_var_t new_mask;
4287 int ret;
4288
4289 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4290 return -ENOMEM;
4291
4292 cpumask_clear(new_mask);
4293 if (len > cpumask_size())
4294 len = cpumask_size();
4295
4296 if (in_compat_syscall()) {
4297 ret = compat_get_bitmap(cpumask_bits(new_mask),
4298 (const compat_ulong_t __user *)arg,
4299 len * 8 /* CHAR_BIT */);
4300 } else {
4301 ret = copy_from_user(new_mask, arg, len);
4302 }
4303
4304 if (ret) {
4305 free_cpumask_var(new_mask);
4306 return -EFAULT;
4307 }
4308
4309 ret = __io_register_iowq_aff(ctx, new_mask);
4310 free_cpumask_var(new_mask);
4311 return ret;
4312 }
4313
4314 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4315 {
4316 return __io_register_iowq_aff(ctx, NULL);
4317 }
4318
4319 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
4320 void __user *arg)
4321 __must_hold(&ctx->uring_lock)
4322 {
4323 struct io_tctx_node *node;
4324 struct io_uring_task *tctx = NULL;
4325 struct io_sq_data *sqd = NULL;
4326 __u32 new_count[2];
4327 int i, ret;
4328
4329 if (copy_from_user(new_count, arg, sizeof(new_count)))
4330 return -EFAULT;
4331 for (i = 0; i < ARRAY_SIZE(new_count); i++)
4332 if (new_count[i] > INT_MAX)
4333 return -EINVAL;
4334
4335 if (ctx->flags & IORING_SETUP_SQPOLL) {
4336 sqd = ctx->sq_data;
4337 if (sqd) {
4338 /*
4339 * Observe the correct sqd->lock -> ctx->uring_lock
4340 * ordering. Fine to drop uring_lock here, we hold
4341 * a ref to the ctx.
4342 */
4343 refcount_inc(&sqd->refs);
4344 mutex_unlock(&ctx->uring_lock);
4345 mutex_lock(&sqd->lock);
4346 mutex_lock(&ctx->uring_lock);
4347 if (sqd->thread)
4348 tctx = sqd->thread->io_uring;
4349 }
4350 } else {
4351 tctx = current->io_uring;
4352 }
4353
4354 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4355
4356 for (i = 0; i < ARRAY_SIZE(new_count); i++)
4357 if (new_count[i])
4358 ctx->iowq_limits[i] = new_count[i];
4359 ctx->iowq_limits_set = true;
4360
4361 if (tctx && tctx->io_wq) {
4362 ret = io_wq_max_workers(tctx->io_wq, new_count);
4363 if (ret)
4364 goto err;
4365 } else {
4366 memset(new_count, 0, sizeof(new_count));
4367 }
4368
4369 if (sqd) {
4370 mutex_unlock(&sqd->lock);
4371 io_put_sq_data(sqd);
4372 }
4373
4374 if (copy_to_user(arg, new_count, sizeof(new_count)))
4375 return -EFAULT;
4376
4377 /* that's it for SQPOLL, only the SQPOLL task creates requests */
4378 if (sqd)
4379 return 0;
4380
4381 /* now propagate the restriction to all registered users */
4382 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
4383 struct io_uring_task *tctx = node->task->io_uring;
4384
4385 if (WARN_ON_ONCE(!tctx->io_wq))
4386 continue;
4387
4388 for (i = 0; i < ARRAY_SIZE(new_count); i++)
4389 new_count[i] = ctx->iowq_limits[i];
4390 /* ignore errors, it always returns zero anyway */
4391 (void)io_wq_max_workers(tctx->io_wq, new_count);
4392 }
4393 return 0;
4394 err:
4395 if (sqd) {
4396 mutex_unlock(&sqd->lock);
4397 io_put_sq_data(sqd);
4398 }
4399 return ret;
4400 }
4401
4402 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4403 void __user *arg, unsigned nr_args)
4404 __releases(ctx->uring_lock)
4405 __acquires(ctx->uring_lock)
4406 {
4407 int ret;
4408
4409 /*
4410 * We don't quiesce the refs for register anymore and so it can't be
4411 * dying as we're holding a file ref here.
4412 */
4413 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4414 return -ENXIO;
4415
4416 if (ctx->submitter_task && ctx->submitter_task != current)
4417 return -EEXIST;
4418
4419 if (ctx->restricted) {
4420 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4421 if (!test_bit(opcode, ctx->restrictions.register_op))
4422 return -EACCES;
4423 }
4424
4425 switch (opcode) {
4426 case IORING_REGISTER_BUFFERS:
4427 ret = -EFAULT;
4428 if (!arg)
4429 break;
4430 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4431 break;
4432 case IORING_UNREGISTER_BUFFERS:
4433 ret = -EINVAL;
4434 if (arg || nr_args)
4435 break;
4436 ret = io_sqe_buffers_unregister(ctx);
4437 break;
4438 case IORING_REGISTER_FILES:
4439 ret = -EFAULT;
4440 if (!arg)
4441 break;
4442 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4443 break;
4444 case IORING_UNREGISTER_FILES:
4445 ret = -EINVAL;
4446 if (arg || nr_args)
4447 break;
4448 ret = io_sqe_files_unregister(ctx);
4449 break;
4450 case IORING_REGISTER_FILES_UPDATE:
4451 ret = io_register_files_update(ctx, arg, nr_args);
4452 break;
4453 case IORING_REGISTER_EVENTFD:
4454 ret = -EINVAL;
4455 if (nr_args != 1)
4456 break;
4457 ret = io_eventfd_register(ctx, arg, 0);
4458 break;
4459 case IORING_REGISTER_EVENTFD_ASYNC:
4460 ret = -EINVAL;
4461 if (nr_args != 1)
4462 break;
4463 ret = io_eventfd_register(ctx, arg, 1);
4464 break;
4465 case IORING_UNREGISTER_EVENTFD:
4466 ret = -EINVAL;
4467 if (arg || nr_args)
4468 break;
4469 ret = io_eventfd_unregister(ctx);
4470 break;
4471 case IORING_REGISTER_PROBE:
4472 ret = -EINVAL;
4473 if (!arg || nr_args > 256)
4474 break;
4475 ret = io_probe(ctx, arg, nr_args);
4476 break;
4477 case IORING_REGISTER_PERSONALITY:
4478 ret = -EINVAL;
4479 if (arg || nr_args)
4480 break;
4481 ret = io_register_personality(ctx);
4482 break;
4483 case IORING_UNREGISTER_PERSONALITY:
4484 ret = -EINVAL;
4485 if (arg)
4486 break;
4487 ret = io_unregister_personality(ctx, nr_args);
4488 break;
4489 case IORING_REGISTER_ENABLE_RINGS:
4490 ret = -EINVAL;
4491 if (arg || nr_args)
4492 break;
4493 ret = io_register_enable_rings(ctx);
4494 break;
4495 case IORING_REGISTER_RESTRICTIONS:
4496 ret = io_register_restrictions(ctx, arg, nr_args);
4497 break;
4498 case IORING_REGISTER_FILES2:
4499 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4500 break;
4501 case IORING_REGISTER_FILES_UPDATE2:
4502 ret = io_register_rsrc_update(ctx, arg, nr_args,
4503 IORING_RSRC_FILE);
4504 break;
4505 case IORING_REGISTER_BUFFERS2:
4506 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4507 break;
4508 case IORING_REGISTER_BUFFERS_UPDATE:
4509 ret = io_register_rsrc_update(ctx, arg, nr_args,
4510 IORING_RSRC_BUFFER);
4511 break;
4512 case IORING_REGISTER_IOWQ_AFF:
4513 ret = -EINVAL;
4514 if (!arg || !nr_args)
4515 break;
4516 ret = io_register_iowq_aff(ctx, arg, nr_args);
4517 break;
4518 case IORING_UNREGISTER_IOWQ_AFF:
4519 ret = -EINVAL;
4520 if (arg || nr_args)
4521 break;
4522 ret = io_unregister_iowq_aff(ctx);
4523 break;
4524 case IORING_REGISTER_IOWQ_MAX_WORKERS:
4525 ret = -EINVAL;
4526 if (!arg || nr_args != 2)
4527 break;
4528 ret = io_register_iowq_max_workers(ctx, arg);
4529 break;
4530 case IORING_REGISTER_RING_FDS:
4531 ret = io_ringfd_register(ctx, arg, nr_args);
4532 break;
4533 case IORING_UNREGISTER_RING_FDS:
4534 ret = io_ringfd_unregister(ctx, arg, nr_args);
4535 break;
4536 case IORING_REGISTER_PBUF_RING:
4537 ret = -EINVAL;
4538 if (!arg || nr_args != 1)
4539 break;
4540 ret = io_register_pbuf_ring(ctx, arg);
4541 break;
4542 case IORING_UNREGISTER_PBUF_RING:
4543 ret = -EINVAL;
4544 if (!arg || nr_args != 1)
4545 break;
4546 ret = io_unregister_pbuf_ring(ctx, arg);
4547 break;
4548 case IORING_REGISTER_SYNC_CANCEL:
4549 ret = -EINVAL;
4550 if (!arg || nr_args != 1)
4551 break;
4552 ret = io_sync_cancel(ctx, arg);
4553 break;
4554 case IORING_REGISTER_FILE_ALLOC_RANGE:
4555 ret = -EINVAL;
4556 if (!arg || nr_args)
4557 break;
4558 ret = io_register_file_alloc_range(ctx, arg);
4559 break;
4560 default:
4561 ret = -EINVAL;
4562 break;
4563 }
4564
4565 return ret;
4566 }
4567
4568 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4569 void __user *, arg, unsigned int, nr_args)
4570 {
4571 struct io_ring_ctx *ctx;
4572 long ret = -EBADF;
4573 struct fd f;
4574 bool use_registered_ring;
4575
4576 use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
4577 opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4578
4579 if (opcode >= IORING_REGISTER_LAST)
4580 return -EINVAL;
4581
4582 if (use_registered_ring) {
4583 /*
4584 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
4585 * need only dereference our task private array to find it.
4586 */
4587 struct io_uring_task *tctx = current->io_uring;
4588
4589 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
4590 return -EINVAL;
4591 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
4592 f.file = tctx->registered_rings[fd];
4593 f.flags = 0;
4594 if (unlikely(!f.file))
4595 return -EBADF;
4596 } else {
4597 f = fdget(fd);
4598 if (unlikely(!f.file))
4599 return -EBADF;
4600 ret = -EOPNOTSUPP;
4601 if (!io_is_uring_fops(f.file))
4602 goto out_fput;
4603 }
4604
4605 ctx = f.file->private_data;
4606
4607 mutex_lock(&ctx->uring_lock);
4608 ret = __io_uring_register(ctx, opcode, arg, nr_args);
4609 mutex_unlock(&ctx->uring_lock);
4610 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4611 out_fput:
4612 fdput(f);
4613 return ret;
4614 }
4615
4616 static int __init io_uring_init(void)
4617 {
4618 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4619 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4620 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4621 } while (0)
4622
4623 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4624 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4625 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4626 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4627 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4628 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
4629 BUILD_BUG_SQE_ELEM(1, __u8, flags);
4630 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
4631 BUILD_BUG_SQE_ELEM(4, __s32, fd);
4632 BUILD_BUG_SQE_ELEM(8, __u64, off);
4633 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
4634 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op);
4635 BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4636 BUILD_BUG_SQE_ELEM(16, __u64, addr);
4637 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
4638 BUILD_BUG_SQE_ELEM(24, __u32, len);
4639 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
4640 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
4641 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4642 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
4643 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
4644 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
4645 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
4646 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
4647 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
4648 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
4649 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
4650 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
4651 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
4652 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
4653 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
4654 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags);
4655 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags);
4656 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags);
4657 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags);
4658 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags);
4659 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
4660 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
4661 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
4662 BUILD_BUG_SQE_ELEM(42, __u16, personality);
4663 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
4664 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
4665 BUILD_BUG_SQE_ELEM(44, __u16, addr_len);
4666 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]);
4667 BUILD_BUG_SQE_ELEM(48, __u64, addr3);
4668 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4669 BUILD_BUG_SQE_ELEM(56, __u64, __pad2);
4670
4671 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4672 sizeof(struct io_uring_rsrc_update));
4673 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4674 sizeof(struct io_uring_rsrc_update2));
4675
4676 /* ->buf_index is u16 */
4677 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4678 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4679 offsetof(struct io_uring_buf_ring, tail));
4680
4681 /* should fit into one byte */
4682 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4683 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4684 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4685
4686 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4687
4688 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4689
4690 io_uring_optable_init();
4691
4692 /*
4693 * Allow user copy in the per-command field, which starts after the
4694 * file in io_kiocb and until the opcode field. The openat2 handling
4695 * requires copying in user memory into the io_kiocb object in that
4696 * range, and HARDENED_USERCOPY will complain if we haven't
4697 * correctly annotated this range.
4698 */
4699 req_cachep = kmem_cache_create_usercopy("io_kiocb",
4700 sizeof(struct io_kiocb), 0,
4701 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4702 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU,
4703 offsetof(struct io_kiocb, cmd.data),
4704 sizeof_field(struct io_kiocb, cmd.data), NULL);
4705
4706 #ifdef CONFIG_SYSCTL
4707 register_sysctl_init("kernel", kernel_io_uring_disabled_table);
4708 #endif
4709
4710 return 0;
4711 };
4712 __initcall(io_uring_init);