]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - kernel/cgroup/cpuset.c
cpuset: restore sanity to cpuset_cpus_allowed_fallback()
[thirdparty/kernel/stable.git] / kernel / cgroup / cpuset.c
1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/fs_context.h>
43 #include <linux/namei.h>
44 #include <linux/pagemap.h>
45 #include <linux/proc_fs.h>
46 #include <linux/rcupdate.h>
47 #include <linux/sched.h>
48 #include <linux/sched/mm.h>
49 #include <linux/sched/task.h>
50 #include <linux/seq_file.h>
51 #include <linux/security.h>
52 #include <linux/slab.h>
53 #include <linux/spinlock.h>
54 #include <linux/stat.h>
55 #include <linux/string.h>
56 #include <linux/time.h>
57 #include <linux/time64.h>
58 #include <linux/backing-dev.h>
59 #include <linux/sort.h>
60 #include <linux/oom.h>
61 #include <linux/sched/isolation.h>
62 #include <linux/uaccess.h>
63 #include <linux/atomic.h>
64 #include <linux/mutex.h>
65 #include <linux/cgroup.h>
66 #include <linux/wait.h>
67
68 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
69 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
70
71 /* See "Frequency meter" comments, below. */
72
73 struct fmeter {
74 int cnt; /* unprocessed events count */
75 int val; /* most recent output value */
76 time64_t time; /* clock (secs) when val computed */
77 spinlock_t lock; /* guards read or write of above */
78 };
79
80 struct cpuset {
81 struct cgroup_subsys_state css;
82
83 unsigned long flags; /* "unsigned long" so bitops work */
84
85 /*
86 * On default hierarchy:
87 *
88 * The user-configured masks can only be changed by writing to
89 * cpuset.cpus and cpuset.mems, and won't be limited by the
90 * parent masks.
91 *
92 * The effective masks is the real masks that apply to the tasks
93 * in the cpuset. They may be changed if the configured masks are
94 * changed or hotplug happens.
95 *
96 * effective_mask == configured_mask & parent's effective_mask,
97 * and if it ends up empty, it will inherit the parent's mask.
98 *
99 *
100 * On legacy hierachy:
101 *
102 * The user-configured masks are always the same with effective masks.
103 */
104
105 /* user-configured CPUs and Memory Nodes allow to tasks */
106 cpumask_var_t cpus_allowed;
107 nodemask_t mems_allowed;
108
109 /* effective CPUs and Memory Nodes allow to tasks */
110 cpumask_var_t effective_cpus;
111 nodemask_t effective_mems;
112
113 /*
114 * CPUs allocated to child sub-partitions (default hierarchy only)
115 * - CPUs granted by the parent = effective_cpus U subparts_cpus
116 * - effective_cpus and subparts_cpus are mutually exclusive.
117 *
118 * effective_cpus contains only onlined CPUs, but subparts_cpus
119 * may have offlined ones.
120 */
121 cpumask_var_t subparts_cpus;
122
123 /*
124 * This is old Memory Nodes tasks took on.
125 *
126 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
127 * - A new cpuset's old_mems_allowed is initialized when some
128 * task is moved into it.
129 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
130 * cpuset.mems_allowed and have tasks' nodemask updated, and
131 * then old_mems_allowed is updated to mems_allowed.
132 */
133 nodemask_t old_mems_allowed;
134
135 struct fmeter fmeter; /* memory_pressure filter */
136
137 /*
138 * Tasks are being attached to this cpuset. Used to prevent
139 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
140 */
141 int attach_in_progress;
142
143 /* partition number for rebuild_sched_domains() */
144 int pn;
145
146 /* for custom sched domain */
147 int relax_domain_level;
148
149 /* number of CPUs in subparts_cpus */
150 int nr_subparts_cpus;
151
152 /* partition root state */
153 int partition_root_state;
154
155 /*
156 * Default hierarchy only:
157 * use_parent_ecpus - set if using parent's effective_cpus
158 * child_ecpus_count - # of children with use_parent_ecpus set
159 */
160 int use_parent_ecpus;
161 int child_ecpus_count;
162 };
163
164 /*
165 * Partition root states:
166 *
167 * 0 - not a partition root
168 *
169 * 1 - partition root
170 *
171 * -1 - invalid partition root
172 * None of the cpus in cpus_allowed can be put into the parent's
173 * subparts_cpus. In this case, the cpuset is not a real partition
174 * root anymore. However, the CPU_EXCLUSIVE bit will still be set
175 * and the cpuset can be restored back to a partition root if the
176 * parent cpuset can give more CPUs back to this child cpuset.
177 */
178 #define PRS_DISABLED 0
179 #define PRS_ENABLED 1
180 #define PRS_ERROR -1
181
182 /*
183 * Temporary cpumasks for working with partitions that are passed among
184 * functions to avoid memory allocation in inner functions.
185 */
186 struct tmpmasks {
187 cpumask_var_t addmask, delmask; /* For partition root */
188 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */
189 };
190
191 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
192 {
193 return css ? container_of(css, struct cpuset, css) : NULL;
194 }
195
196 /* Retrieve the cpuset for a task */
197 static inline struct cpuset *task_cs(struct task_struct *task)
198 {
199 return css_cs(task_css(task, cpuset_cgrp_id));
200 }
201
202 static inline struct cpuset *parent_cs(struct cpuset *cs)
203 {
204 return css_cs(cs->css.parent);
205 }
206
207 /* bits in struct cpuset flags field */
208 typedef enum {
209 CS_ONLINE,
210 CS_CPU_EXCLUSIVE,
211 CS_MEM_EXCLUSIVE,
212 CS_MEM_HARDWALL,
213 CS_MEMORY_MIGRATE,
214 CS_SCHED_LOAD_BALANCE,
215 CS_SPREAD_PAGE,
216 CS_SPREAD_SLAB,
217 } cpuset_flagbits_t;
218
219 /* convenient tests for these bits */
220 static inline bool is_cpuset_online(struct cpuset *cs)
221 {
222 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
223 }
224
225 static inline int is_cpu_exclusive(const struct cpuset *cs)
226 {
227 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
228 }
229
230 static inline int is_mem_exclusive(const struct cpuset *cs)
231 {
232 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
233 }
234
235 static inline int is_mem_hardwall(const struct cpuset *cs)
236 {
237 return test_bit(CS_MEM_HARDWALL, &cs->flags);
238 }
239
240 static inline int is_sched_load_balance(const struct cpuset *cs)
241 {
242 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
243 }
244
245 static inline int is_memory_migrate(const struct cpuset *cs)
246 {
247 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
248 }
249
250 static inline int is_spread_page(const struct cpuset *cs)
251 {
252 return test_bit(CS_SPREAD_PAGE, &cs->flags);
253 }
254
255 static inline int is_spread_slab(const struct cpuset *cs)
256 {
257 return test_bit(CS_SPREAD_SLAB, &cs->flags);
258 }
259
260 static inline int is_partition_root(const struct cpuset *cs)
261 {
262 return cs->partition_root_state > 0;
263 }
264
265 static struct cpuset top_cpuset = {
266 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
267 (1 << CS_MEM_EXCLUSIVE)),
268 .partition_root_state = PRS_ENABLED,
269 };
270
271 /**
272 * cpuset_for_each_child - traverse online children of a cpuset
273 * @child_cs: loop cursor pointing to the current child
274 * @pos_css: used for iteration
275 * @parent_cs: target cpuset to walk children of
276 *
277 * Walk @child_cs through the online children of @parent_cs. Must be used
278 * with RCU read locked.
279 */
280 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
281 css_for_each_child((pos_css), &(parent_cs)->css) \
282 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
283
284 /**
285 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
286 * @des_cs: loop cursor pointing to the current descendant
287 * @pos_css: used for iteration
288 * @root_cs: target cpuset to walk ancestor of
289 *
290 * Walk @des_cs through the online descendants of @root_cs. Must be used
291 * with RCU read locked. The caller may modify @pos_css by calling
292 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
293 * iteration and the first node to be visited.
294 */
295 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
296 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
297 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
298
299 /*
300 * There are two global locks guarding cpuset structures - cpuset_mutex and
301 * callback_lock. We also require taking task_lock() when dereferencing a
302 * task's cpuset pointer. See "The task_lock() exception", at the end of this
303 * comment.
304 *
305 * A task must hold both locks to modify cpusets. If a task holds
306 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
307 * is the only task able to also acquire callback_lock and be able to
308 * modify cpusets. It can perform various checks on the cpuset structure
309 * first, knowing nothing will change. It can also allocate memory while
310 * just holding cpuset_mutex. While it is performing these checks, various
311 * callback routines can briefly acquire callback_lock to query cpusets.
312 * Once it is ready to make the changes, it takes callback_lock, blocking
313 * everyone else.
314 *
315 * Calls to the kernel memory allocator can not be made while holding
316 * callback_lock, as that would risk double tripping on callback_lock
317 * from one of the callbacks into the cpuset code from within
318 * __alloc_pages().
319 *
320 * If a task is only holding callback_lock, then it has read-only
321 * access to cpusets.
322 *
323 * Now, the task_struct fields mems_allowed and mempolicy may be changed
324 * by other task, we use alloc_lock in the task_struct fields to protect
325 * them.
326 *
327 * The cpuset_common_file_read() handlers only hold callback_lock across
328 * small pieces of code, such as when reading out possibly multi-word
329 * cpumasks and nodemasks.
330 *
331 * Accessing a task's cpuset should be done in accordance with the
332 * guidelines for accessing subsystem state in kernel/cgroup.c
333 */
334
335 static DEFINE_MUTEX(cpuset_mutex);
336 static DEFINE_SPINLOCK(callback_lock);
337
338 static struct workqueue_struct *cpuset_migrate_mm_wq;
339
340 /*
341 * CPU / memory hotplug is handled asynchronously.
342 */
343 static void cpuset_hotplug_workfn(struct work_struct *work);
344 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
345
346 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
347
348 /*
349 * Cgroup v2 behavior is used when on default hierarchy or the
350 * cgroup_v2_mode flag is set.
351 */
352 static inline bool is_in_v2_mode(void)
353 {
354 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
355 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
356 }
357
358 /*
359 * This is ugly, but preserves the userspace API for existing cpuset
360 * users. If someone tries to mount the "cpuset" filesystem, we
361 * silently switch it to mount "cgroup" instead
362 */
363 static int cpuset_get_tree(struct fs_context *fc)
364 {
365 struct file_system_type *cgroup_fs;
366 struct fs_context *new_fc;
367 int ret;
368
369 cgroup_fs = get_fs_type("cgroup");
370 if (!cgroup_fs)
371 return -ENODEV;
372
373 new_fc = fs_context_for_mount(cgroup_fs, fc->sb_flags);
374 if (IS_ERR(new_fc)) {
375 ret = PTR_ERR(new_fc);
376 } else {
377 static const char agent_path[] = "/sbin/cpuset_release_agent";
378 ret = vfs_parse_fs_string(new_fc, "cpuset", NULL, 0);
379 if (!ret)
380 ret = vfs_parse_fs_string(new_fc, "noprefix", NULL, 0);
381 if (!ret)
382 ret = vfs_parse_fs_string(new_fc, "release_agent",
383 agent_path, sizeof(agent_path) - 1);
384 if (!ret)
385 ret = vfs_get_tree(new_fc);
386 if (!ret) { /* steal the result */
387 fc->root = new_fc->root;
388 new_fc->root = NULL;
389 }
390 put_fs_context(new_fc);
391 }
392 put_filesystem(cgroup_fs);
393 return ret;
394 }
395
396 static const struct fs_context_operations cpuset_fs_context_ops = {
397 .get_tree = cpuset_get_tree,
398 };
399
400 static int cpuset_init_fs_context(struct fs_context *fc)
401 {
402 fc->ops = &cpuset_fs_context_ops;
403 return 0;
404 }
405
406 static struct file_system_type cpuset_fs_type = {
407 .name = "cpuset",
408 .init_fs_context = cpuset_init_fs_context,
409 };
410
411 /*
412 * Return in pmask the portion of a cpusets's cpus_allowed that
413 * are online. If none are online, walk up the cpuset hierarchy
414 * until we find one that does have some online cpus.
415 *
416 * One way or another, we guarantee to return some non-empty subset
417 * of cpu_online_mask.
418 *
419 * Call with callback_lock or cpuset_mutex held.
420 */
421 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
422 {
423 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
424 cs = parent_cs(cs);
425 if (unlikely(!cs)) {
426 /*
427 * The top cpuset doesn't have any online cpu as a
428 * consequence of a race between cpuset_hotplug_work
429 * and cpu hotplug notifier. But we know the top
430 * cpuset's effective_cpus is on its way to to be
431 * identical to cpu_online_mask.
432 */
433 cpumask_copy(pmask, cpu_online_mask);
434 return;
435 }
436 }
437 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
438 }
439
440 /*
441 * Return in *pmask the portion of a cpusets's mems_allowed that
442 * are online, with memory. If none are online with memory, walk
443 * up the cpuset hierarchy until we find one that does have some
444 * online mems. The top cpuset always has some mems online.
445 *
446 * One way or another, we guarantee to return some non-empty subset
447 * of node_states[N_MEMORY].
448 *
449 * Call with callback_lock or cpuset_mutex held.
450 */
451 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
452 {
453 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
454 cs = parent_cs(cs);
455 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
456 }
457
458 /*
459 * update task's spread flag if cpuset's page/slab spread flag is set
460 *
461 * Call with callback_lock or cpuset_mutex held.
462 */
463 static void cpuset_update_task_spread_flag(struct cpuset *cs,
464 struct task_struct *tsk)
465 {
466 if (is_spread_page(cs))
467 task_set_spread_page(tsk);
468 else
469 task_clear_spread_page(tsk);
470
471 if (is_spread_slab(cs))
472 task_set_spread_slab(tsk);
473 else
474 task_clear_spread_slab(tsk);
475 }
476
477 /*
478 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
479 *
480 * One cpuset is a subset of another if all its allowed CPUs and
481 * Memory Nodes are a subset of the other, and its exclusive flags
482 * are only set if the other's are set. Call holding cpuset_mutex.
483 */
484
485 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
486 {
487 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
488 nodes_subset(p->mems_allowed, q->mems_allowed) &&
489 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
490 is_mem_exclusive(p) <= is_mem_exclusive(q);
491 }
492
493 /**
494 * alloc_cpumasks - allocate three cpumasks for cpuset
495 * @cs: the cpuset that have cpumasks to be allocated.
496 * @tmp: the tmpmasks structure pointer
497 * Return: 0 if successful, -ENOMEM otherwise.
498 *
499 * Only one of the two input arguments should be non-NULL.
500 */
501 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
502 {
503 cpumask_var_t *pmask1, *pmask2, *pmask3;
504
505 if (cs) {
506 pmask1 = &cs->cpus_allowed;
507 pmask2 = &cs->effective_cpus;
508 pmask3 = &cs->subparts_cpus;
509 } else {
510 pmask1 = &tmp->new_cpus;
511 pmask2 = &tmp->addmask;
512 pmask3 = &tmp->delmask;
513 }
514
515 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
516 return -ENOMEM;
517
518 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
519 goto free_one;
520
521 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
522 goto free_two;
523
524 return 0;
525
526 free_two:
527 free_cpumask_var(*pmask2);
528 free_one:
529 free_cpumask_var(*pmask1);
530 return -ENOMEM;
531 }
532
533 /**
534 * free_cpumasks - free cpumasks in a tmpmasks structure
535 * @cs: the cpuset that have cpumasks to be free.
536 * @tmp: the tmpmasks structure pointer
537 */
538 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
539 {
540 if (cs) {
541 free_cpumask_var(cs->cpus_allowed);
542 free_cpumask_var(cs->effective_cpus);
543 free_cpumask_var(cs->subparts_cpus);
544 }
545 if (tmp) {
546 free_cpumask_var(tmp->new_cpus);
547 free_cpumask_var(tmp->addmask);
548 free_cpumask_var(tmp->delmask);
549 }
550 }
551
552 /**
553 * alloc_trial_cpuset - allocate a trial cpuset
554 * @cs: the cpuset that the trial cpuset duplicates
555 */
556 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
557 {
558 struct cpuset *trial;
559
560 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
561 if (!trial)
562 return NULL;
563
564 if (alloc_cpumasks(trial, NULL)) {
565 kfree(trial);
566 return NULL;
567 }
568
569 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
570 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
571 return trial;
572 }
573
574 /**
575 * free_cpuset - free the cpuset
576 * @cs: the cpuset to be freed
577 */
578 static inline void free_cpuset(struct cpuset *cs)
579 {
580 free_cpumasks(cs, NULL);
581 kfree(cs);
582 }
583
584 /*
585 * validate_change() - Used to validate that any proposed cpuset change
586 * follows the structural rules for cpusets.
587 *
588 * If we replaced the flag and mask values of the current cpuset
589 * (cur) with those values in the trial cpuset (trial), would
590 * our various subset and exclusive rules still be valid? Presumes
591 * cpuset_mutex held.
592 *
593 * 'cur' is the address of an actual, in-use cpuset. Operations
594 * such as list traversal that depend on the actual address of the
595 * cpuset in the list must use cur below, not trial.
596 *
597 * 'trial' is the address of bulk structure copy of cur, with
598 * perhaps one or more of the fields cpus_allowed, mems_allowed,
599 * or flags changed to new, trial values.
600 *
601 * Return 0 if valid, -errno if not.
602 */
603
604 static int validate_change(struct cpuset *cur, struct cpuset *trial)
605 {
606 struct cgroup_subsys_state *css;
607 struct cpuset *c, *par;
608 int ret;
609
610 rcu_read_lock();
611
612 /* Each of our child cpusets must be a subset of us */
613 ret = -EBUSY;
614 cpuset_for_each_child(c, css, cur)
615 if (!is_cpuset_subset(c, trial))
616 goto out;
617
618 /* Remaining checks don't apply to root cpuset */
619 ret = 0;
620 if (cur == &top_cpuset)
621 goto out;
622
623 par = parent_cs(cur);
624
625 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
626 ret = -EACCES;
627 if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
628 goto out;
629
630 /*
631 * If either I or some sibling (!= me) is exclusive, we can't
632 * overlap
633 */
634 ret = -EINVAL;
635 cpuset_for_each_child(c, css, par) {
636 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
637 c != cur &&
638 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
639 goto out;
640 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
641 c != cur &&
642 nodes_intersects(trial->mems_allowed, c->mems_allowed))
643 goto out;
644 }
645
646 /*
647 * Cpusets with tasks - existing or newly being attached - can't
648 * be changed to have empty cpus_allowed or mems_allowed.
649 */
650 ret = -ENOSPC;
651 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
652 if (!cpumask_empty(cur->cpus_allowed) &&
653 cpumask_empty(trial->cpus_allowed))
654 goto out;
655 if (!nodes_empty(cur->mems_allowed) &&
656 nodes_empty(trial->mems_allowed))
657 goto out;
658 }
659
660 /*
661 * We can't shrink if we won't have enough room for SCHED_DEADLINE
662 * tasks.
663 */
664 ret = -EBUSY;
665 if (is_cpu_exclusive(cur) &&
666 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
667 trial->cpus_allowed))
668 goto out;
669
670 ret = 0;
671 out:
672 rcu_read_unlock();
673 return ret;
674 }
675
676 #ifdef CONFIG_SMP
677 /*
678 * Helper routine for generate_sched_domains().
679 * Do cpusets a, b have overlapping effective cpus_allowed masks?
680 */
681 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
682 {
683 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
684 }
685
686 static void
687 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
688 {
689 if (dattr->relax_domain_level < c->relax_domain_level)
690 dattr->relax_domain_level = c->relax_domain_level;
691 return;
692 }
693
694 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
695 struct cpuset *root_cs)
696 {
697 struct cpuset *cp;
698 struct cgroup_subsys_state *pos_css;
699
700 rcu_read_lock();
701 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
702 /* skip the whole subtree if @cp doesn't have any CPU */
703 if (cpumask_empty(cp->cpus_allowed)) {
704 pos_css = css_rightmost_descendant(pos_css);
705 continue;
706 }
707
708 if (is_sched_load_balance(cp))
709 update_domain_attr(dattr, cp);
710 }
711 rcu_read_unlock();
712 }
713
714 /* Must be called with cpuset_mutex held. */
715 static inline int nr_cpusets(void)
716 {
717 /* jump label reference count + the top-level cpuset */
718 return static_key_count(&cpusets_enabled_key.key) + 1;
719 }
720
721 /*
722 * generate_sched_domains()
723 *
724 * This function builds a partial partition of the systems CPUs
725 * A 'partial partition' is a set of non-overlapping subsets whose
726 * union is a subset of that set.
727 * The output of this function needs to be passed to kernel/sched/core.c
728 * partition_sched_domains() routine, which will rebuild the scheduler's
729 * load balancing domains (sched domains) as specified by that partial
730 * partition.
731 *
732 * See "What is sched_load_balance" in Documentation/cgroup-v1/cpusets.txt
733 * for a background explanation of this.
734 *
735 * Does not return errors, on the theory that the callers of this
736 * routine would rather not worry about failures to rebuild sched
737 * domains when operating in the severe memory shortage situations
738 * that could cause allocation failures below.
739 *
740 * Must be called with cpuset_mutex held.
741 *
742 * The three key local variables below are:
743 * cp - cpuset pointer, used (together with pos_css) to perform a
744 * top-down scan of all cpusets. For our purposes, rebuilding
745 * the schedulers sched domains, we can ignore !is_sched_load_
746 * balance cpusets.
747 * csa - (for CpuSet Array) Array of pointers to all the cpusets
748 * that need to be load balanced, for convenient iterative
749 * access by the subsequent code that finds the best partition,
750 * i.e the set of domains (subsets) of CPUs such that the
751 * cpus_allowed of every cpuset marked is_sched_load_balance
752 * is a subset of one of these domains, while there are as
753 * many such domains as possible, each as small as possible.
754 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
755 * the kernel/sched/core.c routine partition_sched_domains() in a
756 * convenient format, that can be easily compared to the prior
757 * value to determine what partition elements (sched domains)
758 * were changed (added or removed.)
759 *
760 * Finding the best partition (set of domains):
761 * The triple nested loops below over i, j, k scan over the
762 * load balanced cpusets (using the array of cpuset pointers in
763 * csa[]) looking for pairs of cpusets that have overlapping
764 * cpus_allowed, but which don't have the same 'pn' partition
765 * number and gives them in the same partition number. It keeps
766 * looping on the 'restart' label until it can no longer find
767 * any such pairs.
768 *
769 * The union of the cpus_allowed masks from the set of
770 * all cpusets having the same 'pn' value then form the one
771 * element of the partition (one sched domain) to be passed to
772 * partition_sched_domains().
773 */
774 static int generate_sched_domains(cpumask_var_t **domains,
775 struct sched_domain_attr **attributes)
776 {
777 struct cpuset *cp; /* top-down scan of cpusets */
778 struct cpuset **csa; /* array of all cpuset ptrs */
779 int csn; /* how many cpuset ptrs in csa so far */
780 int i, j, k; /* indices for partition finding loops */
781 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
782 struct sched_domain_attr *dattr; /* attributes for custom domains */
783 int ndoms = 0; /* number of sched domains in result */
784 int nslot; /* next empty doms[] struct cpumask slot */
785 struct cgroup_subsys_state *pos_css;
786 bool root_load_balance = is_sched_load_balance(&top_cpuset);
787
788 doms = NULL;
789 dattr = NULL;
790 csa = NULL;
791
792 /* Special case for the 99% of systems with one, full, sched domain */
793 if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
794 ndoms = 1;
795 doms = alloc_sched_domains(ndoms);
796 if (!doms)
797 goto done;
798
799 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
800 if (dattr) {
801 *dattr = SD_ATTR_INIT;
802 update_domain_attr_tree(dattr, &top_cpuset);
803 }
804 cpumask_and(doms[0], top_cpuset.effective_cpus,
805 housekeeping_cpumask(HK_FLAG_DOMAIN));
806
807 goto done;
808 }
809
810 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
811 if (!csa)
812 goto done;
813 csn = 0;
814
815 rcu_read_lock();
816 if (root_load_balance)
817 csa[csn++] = &top_cpuset;
818 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
819 if (cp == &top_cpuset)
820 continue;
821 /*
822 * Continue traversing beyond @cp iff @cp has some CPUs and
823 * isn't load balancing. The former is obvious. The
824 * latter: All child cpusets contain a subset of the
825 * parent's cpus, so just skip them, and then we call
826 * update_domain_attr_tree() to calc relax_domain_level of
827 * the corresponding sched domain.
828 *
829 * If root is load-balancing, we can skip @cp if it
830 * is a subset of the root's effective_cpus.
831 */
832 if (!cpumask_empty(cp->cpus_allowed) &&
833 !(is_sched_load_balance(cp) &&
834 cpumask_intersects(cp->cpus_allowed,
835 housekeeping_cpumask(HK_FLAG_DOMAIN))))
836 continue;
837
838 if (root_load_balance &&
839 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
840 continue;
841
842 if (is_sched_load_balance(cp))
843 csa[csn++] = cp;
844
845 /* skip @cp's subtree if not a partition root */
846 if (!is_partition_root(cp))
847 pos_css = css_rightmost_descendant(pos_css);
848 }
849 rcu_read_unlock();
850
851 for (i = 0; i < csn; i++)
852 csa[i]->pn = i;
853 ndoms = csn;
854
855 restart:
856 /* Find the best partition (set of sched domains) */
857 for (i = 0; i < csn; i++) {
858 struct cpuset *a = csa[i];
859 int apn = a->pn;
860
861 for (j = 0; j < csn; j++) {
862 struct cpuset *b = csa[j];
863 int bpn = b->pn;
864
865 if (apn != bpn && cpusets_overlap(a, b)) {
866 for (k = 0; k < csn; k++) {
867 struct cpuset *c = csa[k];
868
869 if (c->pn == bpn)
870 c->pn = apn;
871 }
872 ndoms--; /* one less element */
873 goto restart;
874 }
875 }
876 }
877
878 /*
879 * Now we know how many domains to create.
880 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
881 */
882 doms = alloc_sched_domains(ndoms);
883 if (!doms)
884 goto done;
885
886 /*
887 * The rest of the code, including the scheduler, can deal with
888 * dattr==NULL case. No need to abort if alloc fails.
889 */
890 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
891 GFP_KERNEL);
892
893 for (nslot = 0, i = 0; i < csn; i++) {
894 struct cpuset *a = csa[i];
895 struct cpumask *dp;
896 int apn = a->pn;
897
898 if (apn < 0) {
899 /* Skip completed partitions */
900 continue;
901 }
902
903 dp = doms[nslot];
904
905 if (nslot == ndoms) {
906 static int warnings = 10;
907 if (warnings) {
908 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
909 nslot, ndoms, csn, i, apn);
910 warnings--;
911 }
912 continue;
913 }
914
915 cpumask_clear(dp);
916 if (dattr)
917 *(dattr + nslot) = SD_ATTR_INIT;
918 for (j = i; j < csn; j++) {
919 struct cpuset *b = csa[j];
920
921 if (apn == b->pn) {
922 cpumask_or(dp, dp, b->effective_cpus);
923 cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
924 if (dattr)
925 update_domain_attr_tree(dattr + nslot, b);
926
927 /* Done with this partition */
928 b->pn = -1;
929 }
930 }
931 nslot++;
932 }
933 BUG_ON(nslot != ndoms);
934
935 done:
936 kfree(csa);
937
938 /*
939 * Fallback to the default domain if kmalloc() failed.
940 * See comments in partition_sched_domains().
941 */
942 if (doms == NULL)
943 ndoms = 1;
944
945 *domains = doms;
946 *attributes = dattr;
947 return ndoms;
948 }
949
950 /*
951 * Rebuild scheduler domains.
952 *
953 * If the flag 'sched_load_balance' of any cpuset with non-empty
954 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
955 * which has that flag enabled, or if any cpuset with a non-empty
956 * 'cpus' is removed, then call this routine to rebuild the
957 * scheduler's dynamic sched domains.
958 *
959 * Call with cpuset_mutex held. Takes get_online_cpus().
960 */
961 static void rebuild_sched_domains_locked(void)
962 {
963 struct sched_domain_attr *attr;
964 cpumask_var_t *doms;
965 int ndoms;
966
967 lockdep_assert_held(&cpuset_mutex);
968 get_online_cpus();
969
970 /*
971 * We have raced with CPU hotplug. Don't do anything to avoid
972 * passing doms with offlined cpu to partition_sched_domains().
973 * Anyways, hotplug work item will rebuild sched domains.
974 */
975 if (!top_cpuset.nr_subparts_cpus &&
976 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
977 goto out;
978
979 if (top_cpuset.nr_subparts_cpus &&
980 !cpumask_subset(top_cpuset.effective_cpus, cpu_active_mask))
981 goto out;
982
983 /* Generate domain masks and attrs */
984 ndoms = generate_sched_domains(&doms, &attr);
985
986 /* Have scheduler rebuild the domains */
987 partition_sched_domains(ndoms, doms, attr);
988 out:
989 put_online_cpus();
990 }
991 #else /* !CONFIG_SMP */
992 static void rebuild_sched_domains_locked(void)
993 {
994 }
995 #endif /* CONFIG_SMP */
996
997 void rebuild_sched_domains(void)
998 {
999 mutex_lock(&cpuset_mutex);
1000 rebuild_sched_domains_locked();
1001 mutex_unlock(&cpuset_mutex);
1002 }
1003
1004 /**
1005 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1006 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1007 *
1008 * Iterate through each task of @cs updating its cpus_allowed to the
1009 * effective cpuset's. As this function is called with cpuset_mutex held,
1010 * cpuset membership stays stable.
1011 */
1012 static void update_tasks_cpumask(struct cpuset *cs)
1013 {
1014 struct css_task_iter it;
1015 struct task_struct *task;
1016
1017 css_task_iter_start(&cs->css, 0, &it);
1018 while ((task = css_task_iter_next(&it)))
1019 set_cpus_allowed_ptr(task, cs->effective_cpus);
1020 css_task_iter_end(&it);
1021 }
1022
1023 /**
1024 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1025 * @new_cpus: the temp variable for the new effective_cpus mask
1026 * @cs: the cpuset the need to recompute the new effective_cpus mask
1027 * @parent: the parent cpuset
1028 *
1029 * If the parent has subpartition CPUs, include them in the list of
1030 * allowable CPUs in computing the new effective_cpus mask. Since offlined
1031 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1032 * to mask those out.
1033 */
1034 static void compute_effective_cpumask(struct cpumask *new_cpus,
1035 struct cpuset *cs, struct cpuset *parent)
1036 {
1037 if (parent->nr_subparts_cpus) {
1038 cpumask_or(new_cpus, parent->effective_cpus,
1039 parent->subparts_cpus);
1040 cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1041 cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1042 } else {
1043 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1044 }
1045 }
1046
1047 /*
1048 * Commands for update_parent_subparts_cpumask
1049 */
1050 enum subparts_cmd {
1051 partcmd_enable, /* Enable partition root */
1052 partcmd_disable, /* Disable partition root */
1053 partcmd_update, /* Update parent's subparts_cpus */
1054 };
1055
1056 /**
1057 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1058 * @cpuset: The cpuset that requests change in partition root state
1059 * @cmd: Partition root state change command
1060 * @newmask: Optional new cpumask for partcmd_update
1061 * @tmp: Temporary addmask and delmask
1062 * Return: 0, 1 or an error code
1063 *
1064 * For partcmd_enable, the cpuset is being transformed from a non-partition
1065 * root to a partition root. The cpus_allowed mask of the given cpuset will
1066 * be put into parent's subparts_cpus and taken away from parent's
1067 * effective_cpus. The function will return 0 if all the CPUs listed in
1068 * cpus_allowed can be granted or an error code will be returned.
1069 *
1070 * For partcmd_disable, the cpuset is being transofrmed from a partition
1071 * root back to a non-partition root. any CPUs in cpus_allowed that are in
1072 * parent's subparts_cpus will be taken away from that cpumask and put back
1073 * into parent's effective_cpus. 0 should always be returned.
1074 *
1075 * For partcmd_update, if the optional newmask is specified, the cpu
1076 * list is to be changed from cpus_allowed to newmask. Otherwise,
1077 * cpus_allowed is assumed to remain the same. The cpuset should either
1078 * be a partition root or an invalid partition root. The partition root
1079 * state may change if newmask is NULL and none of the requested CPUs can
1080 * be granted by the parent. The function will return 1 if changes to
1081 * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1082 * Error code should only be returned when newmask is non-NULL.
1083 *
1084 * The partcmd_enable and partcmd_disable commands are used by
1085 * update_prstate(). The partcmd_update command is used by
1086 * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1087 * newmask set.
1088 *
1089 * The checking is more strict when enabling partition root than the
1090 * other two commands.
1091 *
1092 * Because of the implicit cpu exclusive nature of a partition root,
1093 * cpumask changes that violates the cpu exclusivity rule will not be
1094 * permitted when checked by validate_change(). The validate_change()
1095 * function will also prevent any changes to the cpu list if it is not
1096 * a superset of children's cpu lists.
1097 */
1098 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1099 struct cpumask *newmask,
1100 struct tmpmasks *tmp)
1101 {
1102 struct cpuset *parent = parent_cs(cpuset);
1103 int adding; /* Moving cpus from effective_cpus to subparts_cpus */
1104 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */
1105 bool part_error = false; /* Partition error? */
1106
1107 lockdep_assert_held(&cpuset_mutex);
1108
1109 /*
1110 * The parent must be a partition root.
1111 * The new cpumask, if present, or the current cpus_allowed must
1112 * not be empty.
1113 */
1114 if (!is_partition_root(parent) ||
1115 (newmask && cpumask_empty(newmask)) ||
1116 (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1117 return -EINVAL;
1118
1119 /*
1120 * Enabling/disabling partition root is not allowed if there are
1121 * online children.
1122 */
1123 if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1124 return -EBUSY;
1125
1126 /*
1127 * Enabling partition root is not allowed if not all the CPUs
1128 * can be granted from parent's effective_cpus or at least one
1129 * CPU will be left after that.
1130 */
1131 if ((cmd == partcmd_enable) &&
1132 (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1133 cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1134 return -EINVAL;
1135
1136 /*
1137 * A cpumask update cannot make parent's effective_cpus become empty.
1138 */
1139 adding = deleting = false;
1140 if (cmd == partcmd_enable) {
1141 cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1142 adding = true;
1143 } else if (cmd == partcmd_disable) {
1144 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1145 parent->subparts_cpus);
1146 } else if (newmask) {
1147 /*
1148 * partcmd_update with newmask:
1149 *
1150 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1151 * addmask = newmask & parent->effective_cpus
1152 * & ~parent->subparts_cpus
1153 */
1154 cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1155 deleting = cpumask_and(tmp->delmask, tmp->delmask,
1156 parent->subparts_cpus);
1157
1158 cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1159 adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1160 parent->subparts_cpus);
1161 /*
1162 * Return error if the new effective_cpus could become empty.
1163 */
1164 if (adding &&
1165 cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1166 if (!deleting)
1167 return -EINVAL;
1168 /*
1169 * As some of the CPUs in subparts_cpus might have
1170 * been offlined, we need to compute the real delmask
1171 * to confirm that.
1172 */
1173 if (!cpumask_and(tmp->addmask, tmp->delmask,
1174 cpu_active_mask))
1175 return -EINVAL;
1176 cpumask_copy(tmp->addmask, parent->effective_cpus);
1177 }
1178 } else {
1179 /*
1180 * partcmd_update w/o newmask:
1181 *
1182 * addmask = cpus_allowed & parent->effectiveb_cpus
1183 *
1184 * Note that parent's subparts_cpus may have been
1185 * pre-shrunk in case there is a change in the cpu list.
1186 * So no deletion is needed.
1187 */
1188 adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1189 parent->effective_cpus);
1190 part_error = cpumask_equal(tmp->addmask,
1191 parent->effective_cpus);
1192 }
1193
1194 if (cmd == partcmd_update) {
1195 int prev_prs = cpuset->partition_root_state;
1196
1197 /*
1198 * Check for possible transition between PRS_ENABLED
1199 * and PRS_ERROR.
1200 */
1201 switch (cpuset->partition_root_state) {
1202 case PRS_ENABLED:
1203 if (part_error)
1204 cpuset->partition_root_state = PRS_ERROR;
1205 break;
1206 case PRS_ERROR:
1207 if (!part_error)
1208 cpuset->partition_root_state = PRS_ENABLED;
1209 break;
1210 }
1211 /*
1212 * Set part_error if previously in invalid state.
1213 */
1214 part_error = (prev_prs == PRS_ERROR);
1215 }
1216
1217 if (!part_error && (cpuset->partition_root_state == PRS_ERROR))
1218 return 0; /* Nothing need to be done */
1219
1220 if (cpuset->partition_root_state == PRS_ERROR) {
1221 /*
1222 * Remove all its cpus from parent's subparts_cpus.
1223 */
1224 adding = false;
1225 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1226 parent->subparts_cpus);
1227 }
1228
1229 if (!adding && !deleting)
1230 return 0;
1231
1232 /*
1233 * Change the parent's subparts_cpus.
1234 * Newly added CPUs will be removed from effective_cpus and
1235 * newly deleted ones will be added back to effective_cpus.
1236 */
1237 spin_lock_irq(&callback_lock);
1238 if (adding) {
1239 cpumask_or(parent->subparts_cpus,
1240 parent->subparts_cpus, tmp->addmask);
1241 cpumask_andnot(parent->effective_cpus,
1242 parent->effective_cpus, tmp->addmask);
1243 }
1244 if (deleting) {
1245 cpumask_andnot(parent->subparts_cpus,
1246 parent->subparts_cpus, tmp->delmask);
1247 /*
1248 * Some of the CPUs in subparts_cpus might have been offlined.
1249 */
1250 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1251 cpumask_or(parent->effective_cpus,
1252 parent->effective_cpus, tmp->delmask);
1253 }
1254
1255 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1256 spin_unlock_irq(&callback_lock);
1257
1258 return cmd == partcmd_update;
1259 }
1260
1261 /*
1262 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1263 * @cs: the cpuset to consider
1264 * @tmp: temp variables for calculating effective_cpus & partition setup
1265 *
1266 * When congifured cpumask is changed, the effective cpumasks of this cpuset
1267 * and all its descendants need to be updated.
1268 *
1269 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
1270 *
1271 * Called with cpuset_mutex held
1272 */
1273 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1274 {
1275 struct cpuset *cp;
1276 struct cgroup_subsys_state *pos_css;
1277 bool need_rebuild_sched_domains = false;
1278
1279 rcu_read_lock();
1280 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1281 struct cpuset *parent = parent_cs(cp);
1282
1283 compute_effective_cpumask(tmp->new_cpus, cp, parent);
1284
1285 /*
1286 * If it becomes empty, inherit the effective mask of the
1287 * parent, which is guaranteed to have some CPUs.
1288 */
1289 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1290 cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1291 if (!cp->use_parent_ecpus) {
1292 cp->use_parent_ecpus = true;
1293 parent->child_ecpus_count++;
1294 }
1295 } else if (cp->use_parent_ecpus) {
1296 cp->use_parent_ecpus = false;
1297 WARN_ON_ONCE(!parent->child_ecpus_count);
1298 parent->child_ecpus_count--;
1299 }
1300
1301 /*
1302 * Skip the whole subtree if the cpumask remains the same
1303 * and has no partition root state.
1304 */
1305 if (!cp->partition_root_state &&
1306 cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1307 pos_css = css_rightmost_descendant(pos_css);
1308 continue;
1309 }
1310
1311 /*
1312 * update_parent_subparts_cpumask() should have been called
1313 * for cs already in update_cpumask(). We should also call
1314 * update_tasks_cpumask() again for tasks in the parent
1315 * cpuset if the parent's subparts_cpus changes.
1316 */
1317 if ((cp != cs) && cp->partition_root_state) {
1318 switch (parent->partition_root_state) {
1319 case PRS_DISABLED:
1320 /*
1321 * If parent is not a partition root or an
1322 * invalid partition root, clear the state
1323 * state and the CS_CPU_EXCLUSIVE flag.
1324 */
1325 WARN_ON_ONCE(cp->partition_root_state
1326 != PRS_ERROR);
1327 cp->partition_root_state = 0;
1328
1329 /*
1330 * clear_bit() is an atomic operation and
1331 * readers aren't interested in the state
1332 * of CS_CPU_EXCLUSIVE anyway. So we can
1333 * just update the flag without holding
1334 * the callback_lock.
1335 */
1336 clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1337 break;
1338
1339 case PRS_ENABLED:
1340 if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1341 update_tasks_cpumask(parent);
1342 break;
1343
1344 case PRS_ERROR:
1345 /*
1346 * When parent is invalid, it has to be too.
1347 */
1348 cp->partition_root_state = PRS_ERROR;
1349 if (cp->nr_subparts_cpus) {
1350 cp->nr_subparts_cpus = 0;
1351 cpumask_clear(cp->subparts_cpus);
1352 }
1353 break;
1354 }
1355 }
1356
1357 if (!css_tryget_online(&cp->css))
1358 continue;
1359 rcu_read_unlock();
1360
1361 spin_lock_irq(&callback_lock);
1362
1363 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1364 if (cp->nr_subparts_cpus &&
1365 (cp->partition_root_state != PRS_ENABLED)) {
1366 cp->nr_subparts_cpus = 0;
1367 cpumask_clear(cp->subparts_cpus);
1368 } else if (cp->nr_subparts_cpus) {
1369 /*
1370 * Make sure that effective_cpus & subparts_cpus
1371 * are mutually exclusive.
1372 *
1373 * In the unlikely event that effective_cpus
1374 * becomes empty. we clear cp->nr_subparts_cpus and
1375 * let its child partition roots to compete for
1376 * CPUs again.
1377 */
1378 cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1379 cp->subparts_cpus);
1380 if (cpumask_empty(cp->effective_cpus)) {
1381 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1382 cpumask_clear(cp->subparts_cpus);
1383 cp->nr_subparts_cpus = 0;
1384 } else if (!cpumask_subset(cp->subparts_cpus,
1385 tmp->new_cpus)) {
1386 cpumask_andnot(cp->subparts_cpus,
1387 cp->subparts_cpus, tmp->new_cpus);
1388 cp->nr_subparts_cpus
1389 = cpumask_weight(cp->subparts_cpus);
1390 }
1391 }
1392 spin_unlock_irq(&callback_lock);
1393
1394 WARN_ON(!is_in_v2_mode() &&
1395 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1396
1397 update_tasks_cpumask(cp);
1398
1399 /*
1400 * On legacy hierarchy, if the effective cpumask of any non-
1401 * empty cpuset is changed, we need to rebuild sched domains.
1402 * On default hierarchy, the cpuset needs to be a partition
1403 * root as well.
1404 */
1405 if (!cpumask_empty(cp->cpus_allowed) &&
1406 is_sched_load_balance(cp) &&
1407 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1408 is_partition_root(cp)))
1409 need_rebuild_sched_domains = true;
1410
1411 rcu_read_lock();
1412 css_put(&cp->css);
1413 }
1414 rcu_read_unlock();
1415
1416 if (need_rebuild_sched_domains)
1417 rebuild_sched_domains_locked();
1418 }
1419
1420 /**
1421 * update_sibling_cpumasks - Update siblings cpumasks
1422 * @parent: Parent cpuset
1423 * @cs: Current cpuset
1424 * @tmp: Temp variables
1425 */
1426 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1427 struct tmpmasks *tmp)
1428 {
1429 struct cpuset *sibling;
1430 struct cgroup_subsys_state *pos_css;
1431
1432 /*
1433 * Check all its siblings and call update_cpumasks_hier()
1434 * if their use_parent_ecpus flag is set in order for them
1435 * to use the right effective_cpus value.
1436 */
1437 rcu_read_lock();
1438 cpuset_for_each_child(sibling, pos_css, parent) {
1439 if (sibling == cs)
1440 continue;
1441 if (!sibling->use_parent_ecpus)
1442 continue;
1443
1444 update_cpumasks_hier(sibling, tmp);
1445 }
1446 rcu_read_unlock();
1447 }
1448
1449 /**
1450 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1451 * @cs: the cpuset to consider
1452 * @trialcs: trial cpuset
1453 * @buf: buffer of cpu numbers written to this cpuset
1454 */
1455 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1456 const char *buf)
1457 {
1458 int retval;
1459 struct tmpmasks tmp;
1460
1461 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1462 if (cs == &top_cpuset)
1463 return -EACCES;
1464
1465 /*
1466 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1467 * Since cpulist_parse() fails on an empty mask, we special case
1468 * that parsing. The validate_change() call ensures that cpusets
1469 * with tasks have cpus.
1470 */
1471 if (!*buf) {
1472 cpumask_clear(trialcs->cpus_allowed);
1473 } else {
1474 retval = cpulist_parse(buf, trialcs->cpus_allowed);
1475 if (retval < 0)
1476 return retval;
1477
1478 if (!cpumask_subset(trialcs->cpus_allowed,
1479 top_cpuset.cpus_allowed))
1480 return -EINVAL;
1481 }
1482
1483 /* Nothing to do if the cpus didn't change */
1484 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1485 return 0;
1486
1487 retval = validate_change(cs, trialcs);
1488 if (retval < 0)
1489 return retval;
1490
1491 #ifdef CONFIG_CPUMASK_OFFSTACK
1492 /*
1493 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1494 * to allocated cpumasks.
1495 */
1496 tmp.addmask = trialcs->subparts_cpus;
1497 tmp.delmask = trialcs->effective_cpus;
1498 tmp.new_cpus = trialcs->cpus_allowed;
1499 #endif
1500
1501 if (cs->partition_root_state) {
1502 /* Cpumask of a partition root cannot be empty */
1503 if (cpumask_empty(trialcs->cpus_allowed))
1504 return -EINVAL;
1505 if (update_parent_subparts_cpumask(cs, partcmd_update,
1506 trialcs->cpus_allowed, &tmp) < 0)
1507 return -EINVAL;
1508 }
1509
1510 spin_lock_irq(&callback_lock);
1511 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1512
1513 /*
1514 * Make sure that subparts_cpus is a subset of cpus_allowed.
1515 */
1516 if (cs->nr_subparts_cpus) {
1517 cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus,
1518 cs->cpus_allowed);
1519 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1520 }
1521 spin_unlock_irq(&callback_lock);
1522
1523 update_cpumasks_hier(cs, &tmp);
1524
1525 if (cs->partition_root_state) {
1526 struct cpuset *parent = parent_cs(cs);
1527
1528 /*
1529 * For partition root, update the cpumasks of sibling
1530 * cpusets if they use parent's effective_cpus.
1531 */
1532 if (parent->child_ecpus_count)
1533 update_sibling_cpumasks(parent, cs, &tmp);
1534 }
1535 return 0;
1536 }
1537
1538 /*
1539 * Migrate memory region from one set of nodes to another. This is
1540 * performed asynchronously as it can be called from process migration path
1541 * holding locks involved in process management. All mm migrations are
1542 * performed in the queued order and can be waited for by flushing
1543 * cpuset_migrate_mm_wq.
1544 */
1545
1546 struct cpuset_migrate_mm_work {
1547 struct work_struct work;
1548 struct mm_struct *mm;
1549 nodemask_t from;
1550 nodemask_t to;
1551 };
1552
1553 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1554 {
1555 struct cpuset_migrate_mm_work *mwork =
1556 container_of(work, struct cpuset_migrate_mm_work, work);
1557
1558 /* on a wq worker, no need to worry about %current's mems_allowed */
1559 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1560 mmput(mwork->mm);
1561 kfree(mwork);
1562 }
1563
1564 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1565 const nodemask_t *to)
1566 {
1567 struct cpuset_migrate_mm_work *mwork;
1568
1569 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1570 if (mwork) {
1571 mwork->mm = mm;
1572 mwork->from = *from;
1573 mwork->to = *to;
1574 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1575 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1576 } else {
1577 mmput(mm);
1578 }
1579 }
1580
1581 static void cpuset_post_attach(void)
1582 {
1583 flush_workqueue(cpuset_migrate_mm_wq);
1584 }
1585
1586 /*
1587 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1588 * @tsk: the task to change
1589 * @newmems: new nodes that the task will be set
1590 *
1591 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1592 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1593 * parallel, it might temporarily see an empty intersection, which results in
1594 * a seqlock check and retry before OOM or allocation failure.
1595 */
1596 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1597 nodemask_t *newmems)
1598 {
1599 task_lock(tsk);
1600
1601 local_irq_disable();
1602 write_seqcount_begin(&tsk->mems_allowed_seq);
1603
1604 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1605 mpol_rebind_task(tsk, newmems);
1606 tsk->mems_allowed = *newmems;
1607
1608 write_seqcount_end(&tsk->mems_allowed_seq);
1609 local_irq_enable();
1610
1611 task_unlock(tsk);
1612 }
1613
1614 static void *cpuset_being_rebound;
1615
1616 /**
1617 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1618 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1619 *
1620 * Iterate through each task of @cs updating its mems_allowed to the
1621 * effective cpuset's. As this function is called with cpuset_mutex held,
1622 * cpuset membership stays stable.
1623 */
1624 static void update_tasks_nodemask(struct cpuset *cs)
1625 {
1626 static nodemask_t newmems; /* protected by cpuset_mutex */
1627 struct css_task_iter it;
1628 struct task_struct *task;
1629
1630 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1631
1632 guarantee_online_mems(cs, &newmems);
1633
1634 /*
1635 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1636 * take while holding tasklist_lock. Forks can happen - the
1637 * mpol_dup() cpuset_being_rebound check will catch such forks,
1638 * and rebind their vma mempolicies too. Because we still hold
1639 * the global cpuset_mutex, we know that no other rebind effort
1640 * will be contending for the global variable cpuset_being_rebound.
1641 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1642 * is idempotent. Also migrate pages in each mm to new nodes.
1643 */
1644 css_task_iter_start(&cs->css, 0, &it);
1645 while ((task = css_task_iter_next(&it))) {
1646 struct mm_struct *mm;
1647 bool migrate;
1648
1649 cpuset_change_task_nodemask(task, &newmems);
1650
1651 mm = get_task_mm(task);
1652 if (!mm)
1653 continue;
1654
1655 migrate = is_memory_migrate(cs);
1656
1657 mpol_rebind_mm(mm, &cs->mems_allowed);
1658 if (migrate)
1659 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1660 else
1661 mmput(mm);
1662 }
1663 css_task_iter_end(&it);
1664
1665 /*
1666 * All the tasks' nodemasks have been updated, update
1667 * cs->old_mems_allowed.
1668 */
1669 cs->old_mems_allowed = newmems;
1670
1671 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1672 cpuset_being_rebound = NULL;
1673 }
1674
1675 /*
1676 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1677 * @cs: the cpuset to consider
1678 * @new_mems: a temp variable for calculating new effective_mems
1679 *
1680 * When configured nodemask is changed, the effective nodemasks of this cpuset
1681 * and all its descendants need to be updated.
1682 *
1683 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1684 *
1685 * Called with cpuset_mutex held
1686 */
1687 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1688 {
1689 struct cpuset *cp;
1690 struct cgroup_subsys_state *pos_css;
1691
1692 rcu_read_lock();
1693 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1694 struct cpuset *parent = parent_cs(cp);
1695
1696 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1697
1698 /*
1699 * If it becomes empty, inherit the effective mask of the
1700 * parent, which is guaranteed to have some MEMs.
1701 */
1702 if (is_in_v2_mode() && nodes_empty(*new_mems))
1703 *new_mems = parent->effective_mems;
1704
1705 /* Skip the whole subtree if the nodemask remains the same. */
1706 if (nodes_equal(*new_mems, cp->effective_mems)) {
1707 pos_css = css_rightmost_descendant(pos_css);
1708 continue;
1709 }
1710
1711 if (!css_tryget_online(&cp->css))
1712 continue;
1713 rcu_read_unlock();
1714
1715 spin_lock_irq(&callback_lock);
1716 cp->effective_mems = *new_mems;
1717 spin_unlock_irq(&callback_lock);
1718
1719 WARN_ON(!is_in_v2_mode() &&
1720 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1721
1722 update_tasks_nodemask(cp);
1723
1724 rcu_read_lock();
1725 css_put(&cp->css);
1726 }
1727 rcu_read_unlock();
1728 }
1729
1730 /*
1731 * Handle user request to change the 'mems' memory placement
1732 * of a cpuset. Needs to validate the request, update the
1733 * cpusets mems_allowed, and for each task in the cpuset,
1734 * update mems_allowed and rebind task's mempolicy and any vma
1735 * mempolicies and if the cpuset is marked 'memory_migrate',
1736 * migrate the tasks pages to the new memory.
1737 *
1738 * Call with cpuset_mutex held. May take callback_lock during call.
1739 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1740 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1741 * their mempolicies to the cpusets new mems_allowed.
1742 */
1743 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1744 const char *buf)
1745 {
1746 int retval;
1747
1748 /*
1749 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1750 * it's read-only
1751 */
1752 if (cs == &top_cpuset) {
1753 retval = -EACCES;
1754 goto done;
1755 }
1756
1757 /*
1758 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1759 * Since nodelist_parse() fails on an empty mask, we special case
1760 * that parsing. The validate_change() call ensures that cpusets
1761 * with tasks have memory.
1762 */
1763 if (!*buf) {
1764 nodes_clear(trialcs->mems_allowed);
1765 } else {
1766 retval = nodelist_parse(buf, trialcs->mems_allowed);
1767 if (retval < 0)
1768 goto done;
1769
1770 if (!nodes_subset(trialcs->mems_allowed,
1771 top_cpuset.mems_allowed)) {
1772 retval = -EINVAL;
1773 goto done;
1774 }
1775 }
1776
1777 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1778 retval = 0; /* Too easy - nothing to do */
1779 goto done;
1780 }
1781 retval = validate_change(cs, trialcs);
1782 if (retval < 0)
1783 goto done;
1784
1785 spin_lock_irq(&callback_lock);
1786 cs->mems_allowed = trialcs->mems_allowed;
1787 spin_unlock_irq(&callback_lock);
1788
1789 /* use trialcs->mems_allowed as a temp variable */
1790 update_nodemasks_hier(cs, &trialcs->mems_allowed);
1791 done:
1792 return retval;
1793 }
1794
1795 bool current_cpuset_is_being_rebound(void)
1796 {
1797 bool ret;
1798
1799 rcu_read_lock();
1800 ret = task_cs(current) == cpuset_being_rebound;
1801 rcu_read_unlock();
1802
1803 return ret;
1804 }
1805
1806 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1807 {
1808 #ifdef CONFIG_SMP
1809 if (val < -1 || val >= sched_domain_level_max)
1810 return -EINVAL;
1811 #endif
1812
1813 if (val != cs->relax_domain_level) {
1814 cs->relax_domain_level = val;
1815 if (!cpumask_empty(cs->cpus_allowed) &&
1816 is_sched_load_balance(cs))
1817 rebuild_sched_domains_locked();
1818 }
1819
1820 return 0;
1821 }
1822
1823 /**
1824 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1825 * @cs: the cpuset in which each task's spread flags needs to be changed
1826 *
1827 * Iterate through each task of @cs updating its spread flags. As this
1828 * function is called with cpuset_mutex held, cpuset membership stays
1829 * stable.
1830 */
1831 static void update_tasks_flags(struct cpuset *cs)
1832 {
1833 struct css_task_iter it;
1834 struct task_struct *task;
1835
1836 css_task_iter_start(&cs->css, 0, &it);
1837 while ((task = css_task_iter_next(&it)))
1838 cpuset_update_task_spread_flag(cs, task);
1839 css_task_iter_end(&it);
1840 }
1841
1842 /*
1843 * update_flag - read a 0 or a 1 in a file and update associated flag
1844 * bit: the bit to update (see cpuset_flagbits_t)
1845 * cs: the cpuset to update
1846 * turning_on: whether the flag is being set or cleared
1847 *
1848 * Call with cpuset_mutex held.
1849 */
1850
1851 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1852 int turning_on)
1853 {
1854 struct cpuset *trialcs;
1855 int balance_flag_changed;
1856 int spread_flag_changed;
1857 int err;
1858
1859 trialcs = alloc_trial_cpuset(cs);
1860 if (!trialcs)
1861 return -ENOMEM;
1862
1863 if (turning_on)
1864 set_bit(bit, &trialcs->flags);
1865 else
1866 clear_bit(bit, &trialcs->flags);
1867
1868 err = validate_change(cs, trialcs);
1869 if (err < 0)
1870 goto out;
1871
1872 balance_flag_changed = (is_sched_load_balance(cs) !=
1873 is_sched_load_balance(trialcs));
1874
1875 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1876 || (is_spread_page(cs) != is_spread_page(trialcs)));
1877
1878 spin_lock_irq(&callback_lock);
1879 cs->flags = trialcs->flags;
1880 spin_unlock_irq(&callback_lock);
1881
1882 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1883 rebuild_sched_domains_locked();
1884
1885 if (spread_flag_changed)
1886 update_tasks_flags(cs);
1887 out:
1888 free_cpuset(trialcs);
1889 return err;
1890 }
1891
1892 /*
1893 * update_prstate - update partititon_root_state
1894 * cs: the cpuset to update
1895 * val: 0 - disabled, 1 - enabled
1896 *
1897 * Call with cpuset_mutex held.
1898 */
1899 static int update_prstate(struct cpuset *cs, int val)
1900 {
1901 int err;
1902 struct cpuset *parent = parent_cs(cs);
1903 struct tmpmasks tmp;
1904
1905 if ((val != 0) && (val != 1))
1906 return -EINVAL;
1907 if (val == cs->partition_root_state)
1908 return 0;
1909
1910 /*
1911 * Cannot force a partial or invalid partition root to a full
1912 * partition root.
1913 */
1914 if (val && cs->partition_root_state)
1915 return -EINVAL;
1916
1917 if (alloc_cpumasks(NULL, &tmp))
1918 return -ENOMEM;
1919
1920 err = -EINVAL;
1921 if (!cs->partition_root_state) {
1922 /*
1923 * Turning on partition root requires setting the
1924 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
1925 * cannot be NULL.
1926 */
1927 if (cpumask_empty(cs->cpus_allowed))
1928 goto out;
1929
1930 err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
1931 if (err)
1932 goto out;
1933
1934 err = update_parent_subparts_cpumask(cs, partcmd_enable,
1935 NULL, &tmp);
1936 if (err) {
1937 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1938 goto out;
1939 }
1940 cs->partition_root_state = PRS_ENABLED;
1941 } else {
1942 /*
1943 * Turning off partition root will clear the
1944 * CS_CPU_EXCLUSIVE bit.
1945 */
1946 if (cs->partition_root_state == PRS_ERROR) {
1947 cs->partition_root_state = 0;
1948 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1949 err = 0;
1950 goto out;
1951 }
1952
1953 err = update_parent_subparts_cpumask(cs, partcmd_disable,
1954 NULL, &tmp);
1955 if (err)
1956 goto out;
1957
1958 cs->partition_root_state = 0;
1959
1960 /* Turning off CS_CPU_EXCLUSIVE will not return error */
1961 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1962 }
1963
1964 /*
1965 * Update cpumask of parent's tasks except when it is the top
1966 * cpuset as some system daemons cannot be mapped to other CPUs.
1967 */
1968 if (parent != &top_cpuset)
1969 update_tasks_cpumask(parent);
1970
1971 if (parent->child_ecpus_count)
1972 update_sibling_cpumasks(parent, cs, &tmp);
1973
1974 rebuild_sched_domains_locked();
1975 out:
1976 free_cpumasks(NULL, &tmp);
1977 return err;
1978 }
1979
1980 /*
1981 * Frequency meter - How fast is some event occurring?
1982 *
1983 * These routines manage a digitally filtered, constant time based,
1984 * event frequency meter. There are four routines:
1985 * fmeter_init() - initialize a frequency meter.
1986 * fmeter_markevent() - called each time the event happens.
1987 * fmeter_getrate() - returns the recent rate of such events.
1988 * fmeter_update() - internal routine used to update fmeter.
1989 *
1990 * A common data structure is passed to each of these routines,
1991 * which is used to keep track of the state required to manage the
1992 * frequency meter and its digital filter.
1993 *
1994 * The filter works on the number of events marked per unit time.
1995 * The filter is single-pole low-pass recursive (IIR). The time unit
1996 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1997 * simulate 3 decimal digits of precision (multiplied by 1000).
1998 *
1999 * With an FM_COEF of 933, and a time base of 1 second, the filter
2000 * has a half-life of 10 seconds, meaning that if the events quit
2001 * happening, then the rate returned from the fmeter_getrate()
2002 * will be cut in half each 10 seconds, until it converges to zero.
2003 *
2004 * It is not worth doing a real infinitely recursive filter. If more
2005 * than FM_MAXTICKS ticks have elapsed since the last filter event,
2006 * just compute FM_MAXTICKS ticks worth, by which point the level
2007 * will be stable.
2008 *
2009 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2010 * arithmetic overflow in the fmeter_update() routine.
2011 *
2012 * Given the simple 32 bit integer arithmetic used, this meter works
2013 * best for reporting rates between one per millisecond (msec) and
2014 * one per 32 (approx) seconds. At constant rates faster than one
2015 * per msec it maxes out at values just under 1,000,000. At constant
2016 * rates between one per msec, and one per second it will stabilize
2017 * to a value N*1000, where N is the rate of events per second.
2018 * At constant rates between one per second and one per 32 seconds,
2019 * it will be choppy, moving up on the seconds that have an event,
2020 * and then decaying until the next event. At rates slower than
2021 * about one in 32 seconds, it decays all the way back to zero between
2022 * each event.
2023 */
2024
2025 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
2026 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
2027 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
2028 #define FM_SCALE 1000 /* faux fixed point scale */
2029
2030 /* Initialize a frequency meter */
2031 static void fmeter_init(struct fmeter *fmp)
2032 {
2033 fmp->cnt = 0;
2034 fmp->val = 0;
2035 fmp->time = 0;
2036 spin_lock_init(&fmp->lock);
2037 }
2038
2039 /* Internal meter update - process cnt events and update value */
2040 static void fmeter_update(struct fmeter *fmp)
2041 {
2042 time64_t now;
2043 u32 ticks;
2044
2045 now = ktime_get_seconds();
2046 ticks = now - fmp->time;
2047
2048 if (ticks == 0)
2049 return;
2050
2051 ticks = min(FM_MAXTICKS, ticks);
2052 while (ticks-- > 0)
2053 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2054 fmp->time = now;
2055
2056 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2057 fmp->cnt = 0;
2058 }
2059
2060 /* Process any previous ticks, then bump cnt by one (times scale). */
2061 static void fmeter_markevent(struct fmeter *fmp)
2062 {
2063 spin_lock(&fmp->lock);
2064 fmeter_update(fmp);
2065 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2066 spin_unlock(&fmp->lock);
2067 }
2068
2069 /* Process any previous ticks, then return current value. */
2070 static int fmeter_getrate(struct fmeter *fmp)
2071 {
2072 int val;
2073
2074 spin_lock(&fmp->lock);
2075 fmeter_update(fmp);
2076 val = fmp->val;
2077 spin_unlock(&fmp->lock);
2078 return val;
2079 }
2080
2081 static struct cpuset *cpuset_attach_old_cs;
2082
2083 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
2084 static int cpuset_can_attach(struct cgroup_taskset *tset)
2085 {
2086 struct cgroup_subsys_state *css;
2087 struct cpuset *cs;
2088 struct task_struct *task;
2089 int ret;
2090
2091 /* used later by cpuset_attach() */
2092 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2093 cs = css_cs(css);
2094
2095 mutex_lock(&cpuset_mutex);
2096
2097 /* allow moving tasks into an empty cpuset if on default hierarchy */
2098 ret = -ENOSPC;
2099 if (!is_in_v2_mode() &&
2100 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2101 goto out_unlock;
2102
2103 cgroup_taskset_for_each(task, css, tset) {
2104 ret = task_can_attach(task, cs->cpus_allowed);
2105 if (ret)
2106 goto out_unlock;
2107 ret = security_task_setscheduler(task);
2108 if (ret)
2109 goto out_unlock;
2110 }
2111
2112 /*
2113 * Mark attach is in progress. This makes validate_change() fail
2114 * changes which zero cpus/mems_allowed.
2115 */
2116 cs->attach_in_progress++;
2117 ret = 0;
2118 out_unlock:
2119 mutex_unlock(&cpuset_mutex);
2120 return ret;
2121 }
2122
2123 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2124 {
2125 struct cgroup_subsys_state *css;
2126
2127 cgroup_taskset_first(tset, &css);
2128
2129 mutex_lock(&cpuset_mutex);
2130 css_cs(css)->attach_in_progress--;
2131 mutex_unlock(&cpuset_mutex);
2132 }
2133
2134 /*
2135 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
2136 * but we can't allocate it dynamically there. Define it global and
2137 * allocate from cpuset_init().
2138 */
2139 static cpumask_var_t cpus_attach;
2140
2141 static void cpuset_attach(struct cgroup_taskset *tset)
2142 {
2143 /* static buf protected by cpuset_mutex */
2144 static nodemask_t cpuset_attach_nodemask_to;
2145 struct task_struct *task;
2146 struct task_struct *leader;
2147 struct cgroup_subsys_state *css;
2148 struct cpuset *cs;
2149 struct cpuset *oldcs = cpuset_attach_old_cs;
2150
2151 cgroup_taskset_first(tset, &css);
2152 cs = css_cs(css);
2153
2154 mutex_lock(&cpuset_mutex);
2155
2156 /* prepare for attach */
2157 if (cs == &top_cpuset)
2158 cpumask_copy(cpus_attach, cpu_possible_mask);
2159 else
2160 guarantee_online_cpus(cs, cpus_attach);
2161
2162 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2163
2164 cgroup_taskset_for_each(task, css, tset) {
2165 /*
2166 * can_attach beforehand should guarantee that this doesn't
2167 * fail. TODO: have a better way to handle failure here
2168 */
2169 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2170
2171 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2172 cpuset_update_task_spread_flag(cs, task);
2173 }
2174
2175 /*
2176 * Change mm for all threadgroup leaders. This is expensive and may
2177 * sleep and should be moved outside migration path proper.
2178 */
2179 cpuset_attach_nodemask_to = cs->effective_mems;
2180 cgroup_taskset_for_each_leader(leader, css, tset) {
2181 struct mm_struct *mm = get_task_mm(leader);
2182
2183 if (mm) {
2184 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2185
2186 /*
2187 * old_mems_allowed is the same with mems_allowed
2188 * here, except if this task is being moved
2189 * automatically due to hotplug. In that case
2190 * @mems_allowed has been updated and is empty, so
2191 * @old_mems_allowed is the right nodesets that we
2192 * migrate mm from.
2193 */
2194 if (is_memory_migrate(cs))
2195 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2196 &cpuset_attach_nodemask_to);
2197 else
2198 mmput(mm);
2199 }
2200 }
2201
2202 cs->old_mems_allowed = cpuset_attach_nodemask_to;
2203
2204 cs->attach_in_progress--;
2205 if (!cs->attach_in_progress)
2206 wake_up(&cpuset_attach_wq);
2207
2208 mutex_unlock(&cpuset_mutex);
2209 }
2210
2211 /* The various types of files and directories in a cpuset file system */
2212
2213 typedef enum {
2214 FILE_MEMORY_MIGRATE,
2215 FILE_CPULIST,
2216 FILE_MEMLIST,
2217 FILE_EFFECTIVE_CPULIST,
2218 FILE_EFFECTIVE_MEMLIST,
2219 FILE_SUBPARTS_CPULIST,
2220 FILE_CPU_EXCLUSIVE,
2221 FILE_MEM_EXCLUSIVE,
2222 FILE_MEM_HARDWALL,
2223 FILE_SCHED_LOAD_BALANCE,
2224 FILE_PARTITION_ROOT,
2225 FILE_SCHED_RELAX_DOMAIN_LEVEL,
2226 FILE_MEMORY_PRESSURE_ENABLED,
2227 FILE_MEMORY_PRESSURE,
2228 FILE_SPREAD_PAGE,
2229 FILE_SPREAD_SLAB,
2230 } cpuset_filetype_t;
2231
2232 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2233 u64 val)
2234 {
2235 struct cpuset *cs = css_cs(css);
2236 cpuset_filetype_t type = cft->private;
2237 int retval = 0;
2238
2239 mutex_lock(&cpuset_mutex);
2240 if (!is_cpuset_online(cs)) {
2241 retval = -ENODEV;
2242 goto out_unlock;
2243 }
2244
2245 switch (type) {
2246 case FILE_CPU_EXCLUSIVE:
2247 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2248 break;
2249 case FILE_MEM_EXCLUSIVE:
2250 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2251 break;
2252 case FILE_MEM_HARDWALL:
2253 retval = update_flag(CS_MEM_HARDWALL, cs, val);
2254 break;
2255 case FILE_SCHED_LOAD_BALANCE:
2256 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2257 break;
2258 case FILE_MEMORY_MIGRATE:
2259 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2260 break;
2261 case FILE_MEMORY_PRESSURE_ENABLED:
2262 cpuset_memory_pressure_enabled = !!val;
2263 break;
2264 case FILE_SPREAD_PAGE:
2265 retval = update_flag(CS_SPREAD_PAGE, cs, val);
2266 break;
2267 case FILE_SPREAD_SLAB:
2268 retval = update_flag(CS_SPREAD_SLAB, cs, val);
2269 break;
2270 default:
2271 retval = -EINVAL;
2272 break;
2273 }
2274 out_unlock:
2275 mutex_unlock(&cpuset_mutex);
2276 return retval;
2277 }
2278
2279 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2280 s64 val)
2281 {
2282 struct cpuset *cs = css_cs(css);
2283 cpuset_filetype_t type = cft->private;
2284 int retval = -ENODEV;
2285
2286 mutex_lock(&cpuset_mutex);
2287 if (!is_cpuset_online(cs))
2288 goto out_unlock;
2289
2290 switch (type) {
2291 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2292 retval = update_relax_domain_level(cs, val);
2293 break;
2294 default:
2295 retval = -EINVAL;
2296 break;
2297 }
2298 out_unlock:
2299 mutex_unlock(&cpuset_mutex);
2300 return retval;
2301 }
2302
2303 /*
2304 * Common handling for a write to a "cpus" or "mems" file.
2305 */
2306 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2307 char *buf, size_t nbytes, loff_t off)
2308 {
2309 struct cpuset *cs = css_cs(of_css(of));
2310 struct cpuset *trialcs;
2311 int retval = -ENODEV;
2312
2313 buf = strstrip(buf);
2314
2315 /*
2316 * CPU or memory hotunplug may leave @cs w/o any execution
2317 * resources, in which case the hotplug code asynchronously updates
2318 * configuration and transfers all tasks to the nearest ancestor
2319 * which can execute.
2320 *
2321 * As writes to "cpus" or "mems" may restore @cs's execution
2322 * resources, wait for the previously scheduled operations before
2323 * proceeding, so that we don't end up keep removing tasks added
2324 * after execution capability is restored.
2325 *
2326 * cpuset_hotplug_work calls back into cgroup core via
2327 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2328 * operation like this one can lead to a deadlock through kernfs
2329 * active_ref protection. Let's break the protection. Losing the
2330 * protection is okay as we check whether @cs is online after
2331 * grabbing cpuset_mutex anyway. This only happens on the legacy
2332 * hierarchies.
2333 */
2334 css_get(&cs->css);
2335 kernfs_break_active_protection(of->kn);
2336 flush_work(&cpuset_hotplug_work);
2337
2338 mutex_lock(&cpuset_mutex);
2339 if (!is_cpuset_online(cs))
2340 goto out_unlock;
2341
2342 trialcs = alloc_trial_cpuset(cs);
2343 if (!trialcs) {
2344 retval = -ENOMEM;
2345 goto out_unlock;
2346 }
2347
2348 switch (of_cft(of)->private) {
2349 case FILE_CPULIST:
2350 retval = update_cpumask(cs, trialcs, buf);
2351 break;
2352 case FILE_MEMLIST:
2353 retval = update_nodemask(cs, trialcs, buf);
2354 break;
2355 default:
2356 retval = -EINVAL;
2357 break;
2358 }
2359
2360 free_cpuset(trialcs);
2361 out_unlock:
2362 mutex_unlock(&cpuset_mutex);
2363 kernfs_unbreak_active_protection(of->kn);
2364 css_put(&cs->css);
2365 flush_workqueue(cpuset_migrate_mm_wq);
2366 return retval ?: nbytes;
2367 }
2368
2369 /*
2370 * These ascii lists should be read in a single call, by using a user
2371 * buffer large enough to hold the entire map. If read in smaller
2372 * chunks, there is no guarantee of atomicity. Since the display format
2373 * used, list of ranges of sequential numbers, is variable length,
2374 * and since these maps can change value dynamically, one could read
2375 * gibberish by doing partial reads while a list was changing.
2376 */
2377 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2378 {
2379 struct cpuset *cs = css_cs(seq_css(sf));
2380 cpuset_filetype_t type = seq_cft(sf)->private;
2381 int ret = 0;
2382
2383 spin_lock_irq(&callback_lock);
2384
2385 switch (type) {
2386 case FILE_CPULIST:
2387 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2388 break;
2389 case FILE_MEMLIST:
2390 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2391 break;
2392 case FILE_EFFECTIVE_CPULIST:
2393 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2394 break;
2395 case FILE_EFFECTIVE_MEMLIST:
2396 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2397 break;
2398 case FILE_SUBPARTS_CPULIST:
2399 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2400 break;
2401 default:
2402 ret = -EINVAL;
2403 }
2404
2405 spin_unlock_irq(&callback_lock);
2406 return ret;
2407 }
2408
2409 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2410 {
2411 struct cpuset *cs = css_cs(css);
2412 cpuset_filetype_t type = cft->private;
2413 switch (type) {
2414 case FILE_CPU_EXCLUSIVE:
2415 return is_cpu_exclusive(cs);
2416 case FILE_MEM_EXCLUSIVE:
2417 return is_mem_exclusive(cs);
2418 case FILE_MEM_HARDWALL:
2419 return is_mem_hardwall(cs);
2420 case FILE_SCHED_LOAD_BALANCE:
2421 return is_sched_load_balance(cs);
2422 case FILE_MEMORY_MIGRATE:
2423 return is_memory_migrate(cs);
2424 case FILE_MEMORY_PRESSURE_ENABLED:
2425 return cpuset_memory_pressure_enabled;
2426 case FILE_MEMORY_PRESSURE:
2427 return fmeter_getrate(&cs->fmeter);
2428 case FILE_SPREAD_PAGE:
2429 return is_spread_page(cs);
2430 case FILE_SPREAD_SLAB:
2431 return is_spread_slab(cs);
2432 default:
2433 BUG();
2434 }
2435
2436 /* Unreachable but makes gcc happy */
2437 return 0;
2438 }
2439
2440 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2441 {
2442 struct cpuset *cs = css_cs(css);
2443 cpuset_filetype_t type = cft->private;
2444 switch (type) {
2445 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2446 return cs->relax_domain_level;
2447 default:
2448 BUG();
2449 }
2450
2451 /* Unrechable but makes gcc happy */
2452 return 0;
2453 }
2454
2455 static int sched_partition_show(struct seq_file *seq, void *v)
2456 {
2457 struct cpuset *cs = css_cs(seq_css(seq));
2458
2459 switch (cs->partition_root_state) {
2460 case PRS_ENABLED:
2461 seq_puts(seq, "root\n");
2462 break;
2463 case PRS_DISABLED:
2464 seq_puts(seq, "member\n");
2465 break;
2466 case PRS_ERROR:
2467 seq_puts(seq, "root invalid\n");
2468 break;
2469 }
2470 return 0;
2471 }
2472
2473 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2474 size_t nbytes, loff_t off)
2475 {
2476 struct cpuset *cs = css_cs(of_css(of));
2477 int val;
2478 int retval = -ENODEV;
2479
2480 buf = strstrip(buf);
2481
2482 /*
2483 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2484 */
2485 if (!strcmp(buf, "root"))
2486 val = PRS_ENABLED;
2487 else if (!strcmp(buf, "member"))
2488 val = PRS_DISABLED;
2489 else
2490 return -EINVAL;
2491
2492 css_get(&cs->css);
2493 mutex_lock(&cpuset_mutex);
2494 if (!is_cpuset_online(cs))
2495 goto out_unlock;
2496
2497 retval = update_prstate(cs, val);
2498 out_unlock:
2499 mutex_unlock(&cpuset_mutex);
2500 css_put(&cs->css);
2501 return retval ?: nbytes;
2502 }
2503
2504 /*
2505 * for the common functions, 'private' gives the type of file
2506 */
2507
2508 static struct cftype legacy_files[] = {
2509 {
2510 .name = "cpus",
2511 .seq_show = cpuset_common_seq_show,
2512 .write = cpuset_write_resmask,
2513 .max_write_len = (100U + 6 * NR_CPUS),
2514 .private = FILE_CPULIST,
2515 },
2516
2517 {
2518 .name = "mems",
2519 .seq_show = cpuset_common_seq_show,
2520 .write = cpuset_write_resmask,
2521 .max_write_len = (100U + 6 * MAX_NUMNODES),
2522 .private = FILE_MEMLIST,
2523 },
2524
2525 {
2526 .name = "effective_cpus",
2527 .seq_show = cpuset_common_seq_show,
2528 .private = FILE_EFFECTIVE_CPULIST,
2529 },
2530
2531 {
2532 .name = "effective_mems",
2533 .seq_show = cpuset_common_seq_show,
2534 .private = FILE_EFFECTIVE_MEMLIST,
2535 },
2536
2537 {
2538 .name = "cpu_exclusive",
2539 .read_u64 = cpuset_read_u64,
2540 .write_u64 = cpuset_write_u64,
2541 .private = FILE_CPU_EXCLUSIVE,
2542 },
2543
2544 {
2545 .name = "mem_exclusive",
2546 .read_u64 = cpuset_read_u64,
2547 .write_u64 = cpuset_write_u64,
2548 .private = FILE_MEM_EXCLUSIVE,
2549 },
2550
2551 {
2552 .name = "mem_hardwall",
2553 .read_u64 = cpuset_read_u64,
2554 .write_u64 = cpuset_write_u64,
2555 .private = FILE_MEM_HARDWALL,
2556 },
2557
2558 {
2559 .name = "sched_load_balance",
2560 .read_u64 = cpuset_read_u64,
2561 .write_u64 = cpuset_write_u64,
2562 .private = FILE_SCHED_LOAD_BALANCE,
2563 },
2564
2565 {
2566 .name = "sched_relax_domain_level",
2567 .read_s64 = cpuset_read_s64,
2568 .write_s64 = cpuset_write_s64,
2569 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2570 },
2571
2572 {
2573 .name = "memory_migrate",
2574 .read_u64 = cpuset_read_u64,
2575 .write_u64 = cpuset_write_u64,
2576 .private = FILE_MEMORY_MIGRATE,
2577 },
2578
2579 {
2580 .name = "memory_pressure",
2581 .read_u64 = cpuset_read_u64,
2582 .private = FILE_MEMORY_PRESSURE,
2583 },
2584
2585 {
2586 .name = "memory_spread_page",
2587 .read_u64 = cpuset_read_u64,
2588 .write_u64 = cpuset_write_u64,
2589 .private = FILE_SPREAD_PAGE,
2590 },
2591
2592 {
2593 .name = "memory_spread_slab",
2594 .read_u64 = cpuset_read_u64,
2595 .write_u64 = cpuset_write_u64,
2596 .private = FILE_SPREAD_SLAB,
2597 },
2598
2599 {
2600 .name = "memory_pressure_enabled",
2601 .flags = CFTYPE_ONLY_ON_ROOT,
2602 .read_u64 = cpuset_read_u64,
2603 .write_u64 = cpuset_write_u64,
2604 .private = FILE_MEMORY_PRESSURE_ENABLED,
2605 },
2606
2607 { } /* terminate */
2608 };
2609
2610 /*
2611 * This is currently a minimal set for the default hierarchy. It can be
2612 * expanded later on by migrating more features and control files from v1.
2613 */
2614 static struct cftype dfl_files[] = {
2615 {
2616 .name = "cpus",
2617 .seq_show = cpuset_common_seq_show,
2618 .write = cpuset_write_resmask,
2619 .max_write_len = (100U + 6 * NR_CPUS),
2620 .private = FILE_CPULIST,
2621 .flags = CFTYPE_NOT_ON_ROOT,
2622 },
2623
2624 {
2625 .name = "mems",
2626 .seq_show = cpuset_common_seq_show,
2627 .write = cpuset_write_resmask,
2628 .max_write_len = (100U + 6 * MAX_NUMNODES),
2629 .private = FILE_MEMLIST,
2630 .flags = CFTYPE_NOT_ON_ROOT,
2631 },
2632
2633 {
2634 .name = "cpus.effective",
2635 .seq_show = cpuset_common_seq_show,
2636 .private = FILE_EFFECTIVE_CPULIST,
2637 },
2638
2639 {
2640 .name = "mems.effective",
2641 .seq_show = cpuset_common_seq_show,
2642 .private = FILE_EFFECTIVE_MEMLIST,
2643 },
2644
2645 {
2646 .name = "cpus.partition",
2647 .seq_show = sched_partition_show,
2648 .write = sched_partition_write,
2649 .private = FILE_PARTITION_ROOT,
2650 .flags = CFTYPE_NOT_ON_ROOT,
2651 },
2652
2653 {
2654 .name = "cpus.subpartitions",
2655 .seq_show = cpuset_common_seq_show,
2656 .private = FILE_SUBPARTS_CPULIST,
2657 .flags = CFTYPE_DEBUG,
2658 },
2659
2660 { } /* terminate */
2661 };
2662
2663
2664 /*
2665 * cpuset_css_alloc - allocate a cpuset css
2666 * cgrp: control group that the new cpuset will be part of
2667 */
2668
2669 static struct cgroup_subsys_state *
2670 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2671 {
2672 struct cpuset *cs;
2673
2674 if (!parent_css)
2675 return &top_cpuset.css;
2676
2677 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2678 if (!cs)
2679 return ERR_PTR(-ENOMEM);
2680
2681 if (alloc_cpumasks(cs, NULL)) {
2682 kfree(cs);
2683 return ERR_PTR(-ENOMEM);
2684 }
2685
2686 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2687 nodes_clear(cs->mems_allowed);
2688 nodes_clear(cs->effective_mems);
2689 fmeter_init(&cs->fmeter);
2690 cs->relax_domain_level = -1;
2691
2692 return &cs->css;
2693 }
2694
2695 static int cpuset_css_online(struct cgroup_subsys_state *css)
2696 {
2697 struct cpuset *cs = css_cs(css);
2698 struct cpuset *parent = parent_cs(cs);
2699 struct cpuset *tmp_cs;
2700 struct cgroup_subsys_state *pos_css;
2701
2702 if (!parent)
2703 return 0;
2704
2705 mutex_lock(&cpuset_mutex);
2706
2707 set_bit(CS_ONLINE, &cs->flags);
2708 if (is_spread_page(parent))
2709 set_bit(CS_SPREAD_PAGE, &cs->flags);
2710 if (is_spread_slab(parent))
2711 set_bit(CS_SPREAD_SLAB, &cs->flags);
2712
2713 cpuset_inc();
2714
2715 spin_lock_irq(&callback_lock);
2716 if (is_in_v2_mode()) {
2717 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2718 cs->effective_mems = parent->effective_mems;
2719 cs->use_parent_ecpus = true;
2720 parent->child_ecpus_count++;
2721 }
2722 spin_unlock_irq(&callback_lock);
2723
2724 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2725 goto out_unlock;
2726
2727 /*
2728 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2729 * set. This flag handling is implemented in cgroup core for
2730 * histrical reasons - the flag may be specified during mount.
2731 *
2732 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2733 * refuse to clone the configuration - thereby refusing the task to
2734 * be entered, and as a result refusing the sys_unshare() or
2735 * clone() which initiated it. If this becomes a problem for some
2736 * users who wish to allow that scenario, then this could be
2737 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2738 * (and likewise for mems) to the new cgroup.
2739 */
2740 rcu_read_lock();
2741 cpuset_for_each_child(tmp_cs, pos_css, parent) {
2742 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2743 rcu_read_unlock();
2744 goto out_unlock;
2745 }
2746 }
2747 rcu_read_unlock();
2748
2749 spin_lock_irq(&callback_lock);
2750 cs->mems_allowed = parent->mems_allowed;
2751 cs->effective_mems = parent->mems_allowed;
2752 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2753 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2754 spin_unlock_irq(&callback_lock);
2755 out_unlock:
2756 mutex_unlock(&cpuset_mutex);
2757 return 0;
2758 }
2759
2760 /*
2761 * If the cpuset being removed has its flag 'sched_load_balance'
2762 * enabled, then simulate turning sched_load_balance off, which
2763 * will call rebuild_sched_domains_locked(). That is not needed
2764 * in the default hierarchy where only changes in partition
2765 * will cause repartitioning.
2766 *
2767 * If the cpuset has the 'sched.partition' flag enabled, simulate
2768 * turning 'sched.partition" off.
2769 */
2770
2771 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2772 {
2773 struct cpuset *cs = css_cs(css);
2774
2775 mutex_lock(&cpuset_mutex);
2776
2777 if (is_partition_root(cs))
2778 update_prstate(cs, 0);
2779
2780 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2781 is_sched_load_balance(cs))
2782 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2783
2784 if (cs->use_parent_ecpus) {
2785 struct cpuset *parent = parent_cs(cs);
2786
2787 cs->use_parent_ecpus = false;
2788 parent->child_ecpus_count--;
2789 }
2790
2791 cpuset_dec();
2792 clear_bit(CS_ONLINE, &cs->flags);
2793
2794 mutex_unlock(&cpuset_mutex);
2795 }
2796
2797 static void cpuset_css_free(struct cgroup_subsys_state *css)
2798 {
2799 struct cpuset *cs = css_cs(css);
2800
2801 free_cpuset(cs);
2802 }
2803
2804 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2805 {
2806 mutex_lock(&cpuset_mutex);
2807 spin_lock_irq(&callback_lock);
2808
2809 if (is_in_v2_mode()) {
2810 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2811 top_cpuset.mems_allowed = node_possible_map;
2812 } else {
2813 cpumask_copy(top_cpuset.cpus_allowed,
2814 top_cpuset.effective_cpus);
2815 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2816 }
2817
2818 spin_unlock_irq(&callback_lock);
2819 mutex_unlock(&cpuset_mutex);
2820 }
2821
2822 /*
2823 * Make sure the new task conform to the current state of its parent,
2824 * which could have been changed by cpuset just after it inherits the
2825 * state from the parent and before it sits on the cgroup's task list.
2826 */
2827 static void cpuset_fork(struct task_struct *task)
2828 {
2829 if (task_css_is_root(task, cpuset_cgrp_id))
2830 return;
2831
2832 set_cpus_allowed_ptr(task, &current->cpus_allowed);
2833 task->mems_allowed = current->mems_allowed;
2834 }
2835
2836 struct cgroup_subsys cpuset_cgrp_subsys = {
2837 .css_alloc = cpuset_css_alloc,
2838 .css_online = cpuset_css_online,
2839 .css_offline = cpuset_css_offline,
2840 .css_free = cpuset_css_free,
2841 .can_attach = cpuset_can_attach,
2842 .cancel_attach = cpuset_cancel_attach,
2843 .attach = cpuset_attach,
2844 .post_attach = cpuset_post_attach,
2845 .bind = cpuset_bind,
2846 .fork = cpuset_fork,
2847 .legacy_cftypes = legacy_files,
2848 .dfl_cftypes = dfl_files,
2849 .early_init = true,
2850 .threaded = true,
2851 };
2852
2853 /**
2854 * cpuset_init - initialize cpusets at system boot
2855 *
2856 * Description: Initialize top_cpuset and the cpuset internal file system,
2857 **/
2858
2859 int __init cpuset_init(void)
2860 {
2861 int err = 0;
2862
2863 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2864 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2865 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
2866
2867 cpumask_setall(top_cpuset.cpus_allowed);
2868 nodes_setall(top_cpuset.mems_allowed);
2869 cpumask_setall(top_cpuset.effective_cpus);
2870 nodes_setall(top_cpuset.effective_mems);
2871
2872 fmeter_init(&top_cpuset.fmeter);
2873 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2874 top_cpuset.relax_domain_level = -1;
2875
2876 err = register_filesystem(&cpuset_fs_type);
2877 if (err < 0)
2878 return err;
2879
2880 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2881
2882 return 0;
2883 }
2884
2885 /*
2886 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2887 * or memory nodes, we need to walk over the cpuset hierarchy,
2888 * removing that CPU or node from all cpusets. If this removes the
2889 * last CPU or node from a cpuset, then move the tasks in the empty
2890 * cpuset to its next-highest non-empty parent.
2891 */
2892 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2893 {
2894 struct cpuset *parent;
2895
2896 /*
2897 * Find its next-highest non-empty parent, (top cpuset
2898 * has online cpus, so can't be empty).
2899 */
2900 parent = parent_cs(cs);
2901 while (cpumask_empty(parent->cpus_allowed) ||
2902 nodes_empty(parent->mems_allowed))
2903 parent = parent_cs(parent);
2904
2905 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2906 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2907 pr_cont_cgroup_name(cs->css.cgroup);
2908 pr_cont("\n");
2909 }
2910 }
2911
2912 static void
2913 hotplug_update_tasks_legacy(struct cpuset *cs,
2914 struct cpumask *new_cpus, nodemask_t *new_mems,
2915 bool cpus_updated, bool mems_updated)
2916 {
2917 bool is_empty;
2918
2919 spin_lock_irq(&callback_lock);
2920 cpumask_copy(cs->cpus_allowed, new_cpus);
2921 cpumask_copy(cs->effective_cpus, new_cpus);
2922 cs->mems_allowed = *new_mems;
2923 cs->effective_mems = *new_mems;
2924 spin_unlock_irq(&callback_lock);
2925
2926 /*
2927 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2928 * as the tasks will be migratecd to an ancestor.
2929 */
2930 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2931 update_tasks_cpumask(cs);
2932 if (mems_updated && !nodes_empty(cs->mems_allowed))
2933 update_tasks_nodemask(cs);
2934
2935 is_empty = cpumask_empty(cs->cpus_allowed) ||
2936 nodes_empty(cs->mems_allowed);
2937
2938 mutex_unlock(&cpuset_mutex);
2939
2940 /*
2941 * Move tasks to the nearest ancestor with execution resources,
2942 * This is full cgroup operation which will also call back into
2943 * cpuset. Should be done outside any lock.
2944 */
2945 if (is_empty)
2946 remove_tasks_in_empty_cpuset(cs);
2947
2948 mutex_lock(&cpuset_mutex);
2949 }
2950
2951 static void
2952 hotplug_update_tasks(struct cpuset *cs,
2953 struct cpumask *new_cpus, nodemask_t *new_mems,
2954 bool cpus_updated, bool mems_updated)
2955 {
2956 if (cpumask_empty(new_cpus))
2957 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2958 if (nodes_empty(*new_mems))
2959 *new_mems = parent_cs(cs)->effective_mems;
2960
2961 spin_lock_irq(&callback_lock);
2962 cpumask_copy(cs->effective_cpus, new_cpus);
2963 cs->effective_mems = *new_mems;
2964 spin_unlock_irq(&callback_lock);
2965
2966 if (cpus_updated)
2967 update_tasks_cpumask(cs);
2968 if (mems_updated)
2969 update_tasks_nodemask(cs);
2970 }
2971
2972 static bool force_rebuild;
2973
2974 void cpuset_force_rebuild(void)
2975 {
2976 force_rebuild = true;
2977 }
2978
2979 /**
2980 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2981 * @cs: cpuset in interest
2982 * @tmp: the tmpmasks structure pointer
2983 *
2984 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2985 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2986 * all its tasks are moved to the nearest ancestor with both resources.
2987 */
2988 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
2989 {
2990 static cpumask_t new_cpus;
2991 static nodemask_t new_mems;
2992 bool cpus_updated;
2993 bool mems_updated;
2994 struct cpuset *parent;
2995 retry:
2996 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2997
2998 mutex_lock(&cpuset_mutex);
2999
3000 /*
3001 * We have raced with task attaching. We wait until attaching
3002 * is finished, so we won't attach a task to an empty cpuset.
3003 */
3004 if (cs->attach_in_progress) {
3005 mutex_unlock(&cpuset_mutex);
3006 goto retry;
3007 }
3008
3009 parent = parent_cs(cs);
3010 compute_effective_cpumask(&new_cpus, cs, parent);
3011 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3012
3013 if (cs->nr_subparts_cpus)
3014 /*
3015 * Make sure that CPUs allocated to child partitions
3016 * do not show up in effective_cpus.
3017 */
3018 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3019
3020 if (!tmp || !cs->partition_root_state)
3021 goto update_tasks;
3022
3023 /*
3024 * In the unlikely event that a partition root has empty
3025 * effective_cpus or its parent becomes erroneous, we have to
3026 * transition it to the erroneous state.
3027 */
3028 if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3029 (parent->partition_root_state == PRS_ERROR))) {
3030 if (cs->nr_subparts_cpus) {
3031 cs->nr_subparts_cpus = 0;
3032 cpumask_clear(cs->subparts_cpus);
3033 compute_effective_cpumask(&new_cpus, cs, parent);
3034 }
3035
3036 /*
3037 * If the effective_cpus is empty because the child
3038 * partitions take away all the CPUs, we can keep
3039 * the current partition and let the child partitions
3040 * fight for available CPUs.
3041 */
3042 if ((parent->partition_root_state == PRS_ERROR) ||
3043 cpumask_empty(&new_cpus)) {
3044 update_parent_subparts_cpumask(cs, partcmd_disable,
3045 NULL, tmp);
3046 cs->partition_root_state = PRS_ERROR;
3047 }
3048 cpuset_force_rebuild();
3049 }
3050
3051 /*
3052 * On the other hand, an erroneous partition root may be transitioned
3053 * back to a regular one or a partition root with no CPU allocated
3054 * from the parent may change to erroneous.
3055 */
3056 if (is_partition_root(parent) &&
3057 ((cs->partition_root_state == PRS_ERROR) ||
3058 !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3059 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3060 cpuset_force_rebuild();
3061
3062 update_tasks:
3063 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3064 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3065
3066 if (is_in_v2_mode())
3067 hotplug_update_tasks(cs, &new_cpus, &new_mems,
3068 cpus_updated, mems_updated);
3069 else
3070 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3071 cpus_updated, mems_updated);
3072
3073 mutex_unlock(&cpuset_mutex);
3074 }
3075
3076 /**
3077 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3078 *
3079 * This function is called after either CPU or memory configuration has
3080 * changed and updates cpuset accordingly. The top_cpuset is always
3081 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3082 * order to make cpusets transparent (of no affect) on systems that are
3083 * actively using CPU hotplug but making no active use of cpusets.
3084 *
3085 * Non-root cpusets are only affected by offlining. If any CPUs or memory
3086 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3087 * all descendants.
3088 *
3089 * Note that CPU offlining during suspend is ignored. We don't modify
3090 * cpusets across suspend/resume cycles at all.
3091 */
3092 static void cpuset_hotplug_workfn(struct work_struct *work)
3093 {
3094 static cpumask_t new_cpus;
3095 static nodemask_t new_mems;
3096 bool cpus_updated, mems_updated;
3097 bool on_dfl = is_in_v2_mode();
3098 struct tmpmasks tmp, *ptmp = NULL;
3099
3100 if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3101 ptmp = &tmp;
3102
3103 mutex_lock(&cpuset_mutex);
3104
3105 /* fetch the available cpus/mems and find out which changed how */
3106 cpumask_copy(&new_cpus, cpu_active_mask);
3107 new_mems = node_states[N_MEMORY];
3108
3109 /*
3110 * If subparts_cpus is populated, it is likely that the check below
3111 * will produce a false positive on cpus_updated when the cpu list
3112 * isn't changed. It is extra work, but it is better to be safe.
3113 */
3114 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3115 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3116
3117 /* synchronize cpus_allowed to cpu_active_mask */
3118 if (cpus_updated) {
3119 spin_lock_irq(&callback_lock);
3120 if (!on_dfl)
3121 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3122 /*
3123 * Make sure that CPUs allocated to child partitions
3124 * do not show up in effective_cpus. If no CPU is left,
3125 * we clear the subparts_cpus & let the child partitions
3126 * fight for the CPUs again.
3127 */
3128 if (top_cpuset.nr_subparts_cpus) {
3129 if (cpumask_subset(&new_cpus,
3130 top_cpuset.subparts_cpus)) {
3131 top_cpuset.nr_subparts_cpus = 0;
3132 cpumask_clear(top_cpuset.subparts_cpus);
3133 } else {
3134 cpumask_andnot(&new_cpus, &new_cpus,
3135 top_cpuset.subparts_cpus);
3136 }
3137 }
3138 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3139 spin_unlock_irq(&callback_lock);
3140 /* we don't mess with cpumasks of tasks in top_cpuset */
3141 }
3142
3143 /* synchronize mems_allowed to N_MEMORY */
3144 if (mems_updated) {
3145 spin_lock_irq(&callback_lock);
3146 if (!on_dfl)
3147 top_cpuset.mems_allowed = new_mems;
3148 top_cpuset.effective_mems = new_mems;
3149 spin_unlock_irq(&callback_lock);
3150 update_tasks_nodemask(&top_cpuset);
3151 }
3152
3153 mutex_unlock(&cpuset_mutex);
3154
3155 /* if cpus or mems changed, we need to propagate to descendants */
3156 if (cpus_updated || mems_updated) {
3157 struct cpuset *cs;
3158 struct cgroup_subsys_state *pos_css;
3159
3160 rcu_read_lock();
3161 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3162 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3163 continue;
3164 rcu_read_unlock();
3165
3166 cpuset_hotplug_update_tasks(cs, ptmp);
3167
3168 rcu_read_lock();
3169 css_put(&cs->css);
3170 }
3171 rcu_read_unlock();
3172 }
3173
3174 /* rebuild sched domains if cpus_allowed has changed */
3175 if (cpus_updated || force_rebuild) {
3176 force_rebuild = false;
3177 rebuild_sched_domains();
3178 }
3179
3180 free_cpumasks(NULL, ptmp);
3181 }
3182
3183 void cpuset_update_active_cpus(void)
3184 {
3185 /*
3186 * We're inside cpu hotplug critical region which usually nests
3187 * inside cgroup synchronization. Bounce actual hotplug processing
3188 * to a work item to avoid reverse locking order.
3189 */
3190 schedule_work(&cpuset_hotplug_work);
3191 }
3192
3193 void cpuset_wait_for_hotplug(void)
3194 {
3195 flush_work(&cpuset_hotplug_work);
3196 }
3197
3198 /*
3199 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3200 * Call this routine anytime after node_states[N_MEMORY] changes.
3201 * See cpuset_update_active_cpus() for CPU hotplug handling.
3202 */
3203 static int cpuset_track_online_nodes(struct notifier_block *self,
3204 unsigned long action, void *arg)
3205 {
3206 schedule_work(&cpuset_hotplug_work);
3207 return NOTIFY_OK;
3208 }
3209
3210 static struct notifier_block cpuset_track_online_nodes_nb = {
3211 .notifier_call = cpuset_track_online_nodes,
3212 .priority = 10, /* ??! */
3213 };
3214
3215 /**
3216 * cpuset_init_smp - initialize cpus_allowed
3217 *
3218 * Description: Finish top cpuset after cpu, node maps are initialized
3219 */
3220 void __init cpuset_init_smp(void)
3221 {
3222 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
3223 top_cpuset.mems_allowed = node_states[N_MEMORY];
3224 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3225
3226 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3227 top_cpuset.effective_mems = node_states[N_MEMORY];
3228
3229 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3230
3231 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3232 BUG_ON(!cpuset_migrate_mm_wq);
3233 }
3234
3235 /**
3236 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3237 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3238 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3239 *
3240 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3241 * attached to the specified @tsk. Guaranteed to return some non-empty
3242 * subset of cpu_online_mask, even if this means going outside the
3243 * tasks cpuset.
3244 **/
3245
3246 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3247 {
3248 unsigned long flags;
3249
3250 spin_lock_irqsave(&callback_lock, flags);
3251 rcu_read_lock();
3252 guarantee_online_cpus(task_cs(tsk), pmask);
3253 rcu_read_unlock();
3254 spin_unlock_irqrestore(&callback_lock, flags);
3255 }
3256
3257 /**
3258 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3259 * @tsk: pointer to task_struct with which the scheduler is struggling
3260 *
3261 * Description: In the case that the scheduler cannot find an allowed cpu in
3262 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3263 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3264 * which will not contain a sane cpumask during cases such as cpu hotplugging.
3265 * This is the absolute last resort for the scheduler and it is only used if
3266 * _every_ other avenue has been traveled.
3267 **/
3268
3269 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3270 {
3271 rcu_read_lock();
3272 do_set_cpus_allowed(tsk, is_in_v2_mode() ?
3273 task_cs(tsk)->cpus_allowed : cpu_possible_mask);
3274 rcu_read_unlock();
3275
3276 /*
3277 * We own tsk->cpus_allowed, nobody can change it under us.
3278 *
3279 * But we used cs && cs->cpus_allowed lockless and thus can
3280 * race with cgroup_attach_task() or update_cpumask() and get
3281 * the wrong tsk->cpus_allowed. However, both cases imply the
3282 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3283 * which takes task_rq_lock().
3284 *
3285 * If we are called after it dropped the lock we must see all
3286 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3287 * set any mask even if it is not right from task_cs() pov,
3288 * the pending set_cpus_allowed_ptr() will fix things.
3289 *
3290 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3291 * if required.
3292 */
3293 }
3294
3295 void __init cpuset_init_current_mems_allowed(void)
3296 {
3297 nodes_setall(current->mems_allowed);
3298 }
3299
3300 /**
3301 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3302 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3303 *
3304 * Description: Returns the nodemask_t mems_allowed of the cpuset
3305 * attached to the specified @tsk. Guaranteed to return some non-empty
3306 * subset of node_states[N_MEMORY], even if this means going outside the
3307 * tasks cpuset.
3308 **/
3309
3310 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3311 {
3312 nodemask_t mask;
3313 unsigned long flags;
3314
3315 spin_lock_irqsave(&callback_lock, flags);
3316 rcu_read_lock();
3317 guarantee_online_mems(task_cs(tsk), &mask);
3318 rcu_read_unlock();
3319 spin_unlock_irqrestore(&callback_lock, flags);
3320
3321 return mask;
3322 }
3323
3324 /**
3325 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
3326 * @nodemask: the nodemask to be checked
3327 *
3328 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3329 */
3330 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3331 {
3332 return nodes_intersects(*nodemask, current->mems_allowed);
3333 }
3334
3335 /*
3336 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3337 * mem_hardwall ancestor to the specified cpuset. Call holding
3338 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
3339 * (an unusual configuration), then returns the root cpuset.
3340 */
3341 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3342 {
3343 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3344 cs = parent_cs(cs);
3345 return cs;
3346 }
3347
3348 /**
3349 * cpuset_node_allowed - Can we allocate on a memory node?
3350 * @node: is this an allowed node?
3351 * @gfp_mask: memory allocation flags
3352 *
3353 * If we're in interrupt, yes, we can always allocate. If @node is set in
3354 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
3355 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3356 * yes. If current has access to memory reserves as an oom victim, yes.
3357 * Otherwise, no.
3358 *
3359 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3360 * and do not allow allocations outside the current tasks cpuset
3361 * unless the task has been OOM killed.
3362 * GFP_KERNEL allocations are not so marked, so can escape to the
3363 * nearest enclosing hardwalled ancestor cpuset.
3364 *
3365 * Scanning up parent cpusets requires callback_lock. The
3366 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3367 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3368 * current tasks mems_allowed came up empty on the first pass over
3369 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
3370 * cpuset are short of memory, might require taking the callback_lock.
3371 *
3372 * The first call here from mm/page_alloc:get_page_from_freelist()
3373 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3374 * so no allocation on a node outside the cpuset is allowed (unless
3375 * in interrupt, of course).
3376 *
3377 * The second pass through get_page_from_freelist() doesn't even call
3378 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
3379 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3380 * in alloc_flags. That logic and the checks below have the combined
3381 * affect that:
3382 * in_interrupt - any node ok (current task context irrelevant)
3383 * GFP_ATOMIC - any node ok
3384 * tsk_is_oom_victim - any node ok
3385 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
3386 * GFP_USER - only nodes in current tasks mems allowed ok.
3387 */
3388 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3389 {
3390 struct cpuset *cs; /* current cpuset ancestors */
3391 int allowed; /* is allocation in zone z allowed? */
3392 unsigned long flags;
3393
3394 if (in_interrupt())
3395 return true;
3396 if (node_isset(node, current->mems_allowed))
3397 return true;
3398 /*
3399 * Allow tasks that have access to memory reserves because they have
3400 * been OOM killed to get memory anywhere.
3401 */
3402 if (unlikely(tsk_is_oom_victim(current)))
3403 return true;
3404 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
3405 return false;
3406
3407 if (current->flags & PF_EXITING) /* Let dying task have memory */
3408 return true;
3409
3410 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3411 spin_lock_irqsave(&callback_lock, flags);
3412
3413 rcu_read_lock();
3414 cs = nearest_hardwall_ancestor(task_cs(current));
3415 allowed = node_isset(node, cs->mems_allowed);
3416 rcu_read_unlock();
3417
3418 spin_unlock_irqrestore(&callback_lock, flags);
3419 return allowed;
3420 }
3421
3422 /**
3423 * cpuset_mem_spread_node() - On which node to begin search for a file page
3424 * cpuset_slab_spread_node() - On which node to begin search for a slab page
3425 *
3426 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3427 * tasks in a cpuset with is_spread_page or is_spread_slab set),
3428 * and if the memory allocation used cpuset_mem_spread_node()
3429 * to determine on which node to start looking, as it will for
3430 * certain page cache or slab cache pages such as used for file
3431 * system buffers and inode caches, then instead of starting on the
3432 * local node to look for a free page, rather spread the starting
3433 * node around the tasks mems_allowed nodes.
3434 *
3435 * We don't have to worry about the returned node being offline
3436 * because "it can't happen", and even if it did, it would be ok.
3437 *
3438 * The routines calling guarantee_online_mems() are careful to
3439 * only set nodes in task->mems_allowed that are online. So it
3440 * should not be possible for the following code to return an
3441 * offline node. But if it did, that would be ok, as this routine
3442 * is not returning the node where the allocation must be, only
3443 * the node where the search should start. The zonelist passed to
3444 * __alloc_pages() will include all nodes. If the slab allocator
3445 * is passed an offline node, it will fall back to the local node.
3446 * See kmem_cache_alloc_node().
3447 */
3448
3449 static int cpuset_spread_node(int *rotor)
3450 {
3451 return *rotor = next_node_in(*rotor, current->mems_allowed);
3452 }
3453
3454 int cpuset_mem_spread_node(void)
3455 {
3456 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3457 current->cpuset_mem_spread_rotor =
3458 node_random(&current->mems_allowed);
3459
3460 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
3461 }
3462
3463 int cpuset_slab_spread_node(void)
3464 {
3465 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3466 current->cpuset_slab_spread_rotor =
3467 node_random(&current->mems_allowed);
3468
3469 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
3470 }
3471
3472 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3473
3474 /**
3475 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3476 * @tsk1: pointer to task_struct of some task.
3477 * @tsk2: pointer to task_struct of some other task.
3478 *
3479 * Description: Return true if @tsk1's mems_allowed intersects the
3480 * mems_allowed of @tsk2. Used by the OOM killer to determine if
3481 * one of the task's memory usage might impact the memory available
3482 * to the other.
3483 **/
3484
3485 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3486 const struct task_struct *tsk2)
3487 {
3488 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3489 }
3490
3491 /**
3492 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3493 *
3494 * Description: Prints current's name, cpuset name, and cached copy of its
3495 * mems_allowed to the kernel log.
3496 */
3497 void cpuset_print_current_mems_allowed(void)
3498 {
3499 struct cgroup *cgrp;
3500
3501 rcu_read_lock();
3502
3503 cgrp = task_cs(current)->css.cgroup;
3504 pr_cont(",cpuset=");
3505 pr_cont_cgroup_name(cgrp);
3506 pr_cont(",mems_allowed=%*pbl",
3507 nodemask_pr_args(&current->mems_allowed));
3508
3509 rcu_read_unlock();
3510 }
3511
3512 /*
3513 * Collection of memory_pressure is suppressed unless
3514 * this flag is enabled by writing "1" to the special
3515 * cpuset file 'memory_pressure_enabled' in the root cpuset.
3516 */
3517
3518 int cpuset_memory_pressure_enabled __read_mostly;
3519
3520 /**
3521 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3522 *
3523 * Keep a running average of the rate of synchronous (direct)
3524 * page reclaim efforts initiated by tasks in each cpuset.
3525 *
3526 * This represents the rate at which some task in the cpuset
3527 * ran low on memory on all nodes it was allowed to use, and
3528 * had to enter the kernels page reclaim code in an effort to
3529 * create more free memory by tossing clean pages or swapping
3530 * or writing dirty pages.
3531 *
3532 * Display to user space in the per-cpuset read-only file
3533 * "memory_pressure". Value displayed is an integer
3534 * representing the recent rate of entry into the synchronous
3535 * (direct) page reclaim by any task attached to the cpuset.
3536 **/
3537
3538 void __cpuset_memory_pressure_bump(void)
3539 {
3540 rcu_read_lock();
3541 fmeter_markevent(&task_cs(current)->fmeter);
3542 rcu_read_unlock();
3543 }
3544
3545 #ifdef CONFIG_PROC_PID_CPUSET
3546 /*
3547 * proc_cpuset_show()
3548 * - Print tasks cpuset path into seq_file.
3549 * - Used for /proc/<pid>/cpuset.
3550 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3551 * doesn't really matter if tsk->cpuset changes after we read it,
3552 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
3553 * anyway.
3554 */
3555 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3556 struct pid *pid, struct task_struct *tsk)
3557 {
3558 char *buf;
3559 struct cgroup_subsys_state *css;
3560 int retval;
3561
3562 retval = -ENOMEM;
3563 buf = kmalloc(PATH_MAX, GFP_KERNEL);
3564 if (!buf)
3565 goto out;
3566
3567 css = task_get_css(tsk, cpuset_cgrp_id);
3568 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3569 current->nsproxy->cgroup_ns);
3570 css_put(css);
3571 if (retval >= PATH_MAX)
3572 retval = -ENAMETOOLONG;
3573 if (retval < 0)
3574 goto out_free;
3575 seq_puts(m, buf);
3576 seq_putc(m, '\n');
3577 retval = 0;
3578 out_free:
3579 kfree(buf);
3580 out:
3581 return retval;
3582 }
3583 #endif /* CONFIG_PROC_PID_CPUSET */
3584
3585 /* Display task mems_allowed in /proc/<pid>/status file. */
3586 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3587 {
3588 seq_printf(m, "Mems_allowed:\t%*pb\n",
3589 nodemask_pr_args(&task->mems_allowed));
3590 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3591 nodemask_pr_args(&task->mems_allowed));
3592 }