]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - kernel/cpu.c
Merge tag 'trace-5.1-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[thirdparty/kernel/stable.git] / kernel / cpu.c
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/smt.h>
14 #include <linux/unistd.h>
15 #include <linux/cpu.h>
16 #include <linux/oom.h>
17 #include <linux/rcupdate.h>
18 #include <linux/export.h>
19 #include <linux/bug.h>
20 #include <linux/kthread.h>
21 #include <linux/stop_machine.h>
22 #include <linux/mutex.h>
23 #include <linux/gfp.h>
24 #include <linux/suspend.h>
25 #include <linux/lockdep.h>
26 #include <linux/tick.h>
27 #include <linux/irq.h>
28 #include <linux/nmi.h>
29 #include <linux/smpboot.h>
30 #include <linux/relay.h>
31 #include <linux/slab.h>
32 #include <linux/percpu-rwsem.h>
33
34 #include <trace/events/power.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/cpuhp.h>
37
38 #include "smpboot.h"
39
40 /**
41 * cpuhp_cpu_state - Per cpu hotplug state storage
42 * @state: The current cpu state
43 * @target: The target state
44 * @thread: Pointer to the hotplug thread
45 * @should_run: Thread should execute
46 * @rollback: Perform a rollback
47 * @single: Single callback invocation
48 * @bringup: Single callback bringup or teardown selector
49 * @cb_state: The state for a single callback (install/uninstall)
50 * @result: Result of the operation
51 * @done_up: Signal completion to the issuer of the task for cpu-up
52 * @done_down: Signal completion to the issuer of the task for cpu-down
53 */
54 struct cpuhp_cpu_state {
55 enum cpuhp_state state;
56 enum cpuhp_state target;
57 enum cpuhp_state fail;
58 #ifdef CONFIG_SMP
59 struct task_struct *thread;
60 bool should_run;
61 bool rollback;
62 bool single;
63 bool bringup;
64 bool booted_once;
65 struct hlist_node *node;
66 struct hlist_node *last;
67 enum cpuhp_state cb_state;
68 int result;
69 struct completion done_up;
70 struct completion done_down;
71 #endif
72 };
73
74 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
75 .fail = CPUHP_INVALID,
76 };
77
78 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
79 static struct lockdep_map cpuhp_state_up_map =
80 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
81 static struct lockdep_map cpuhp_state_down_map =
82 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
83
84
85 static inline void cpuhp_lock_acquire(bool bringup)
86 {
87 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
88 }
89
90 static inline void cpuhp_lock_release(bool bringup)
91 {
92 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
93 }
94 #else
95
96 static inline void cpuhp_lock_acquire(bool bringup) { }
97 static inline void cpuhp_lock_release(bool bringup) { }
98
99 #endif
100
101 /**
102 * cpuhp_step - Hotplug state machine step
103 * @name: Name of the step
104 * @startup: Startup function of the step
105 * @teardown: Teardown function of the step
106 * @cant_stop: Bringup/teardown can't be stopped at this step
107 */
108 struct cpuhp_step {
109 const char *name;
110 union {
111 int (*single)(unsigned int cpu);
112 int (*multi)(unsigned int cpu,
113 struct hlist_node *node);
114 } startup;
115 union {
116 int (*single)(unsigned int cpu);
117 int (*multi)(unsigned int cpu,
118 struct hlist_node *node);
119 } teardown;
120 struct hlist_head list;
121 bool cant_stop;
122 bool multi_instance;
123 };
124
125 static DEFINE_MUTEX(cpuhp_state_mutex);
126 static struct cpuhp_step cpuhp_hp_states[];
127
128 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
129 {
130 return cpuhp_hp_states + state;
131 }
132
133 /**
134 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
135 * @cpu: The cpu for which the callback should be invoked
136 * @state: The state to do callbacks for
137 * @bringup: True if the bringup callback should be invoked
138 * @node: For multi-instance, do a single entry callback for install/remove
139 * @lastp: For multi-instance rollback, remember how far we got
140 *
141 * Called from cpu hotplug and from the state register machinery.
142 */
143 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
144 bool bringup, struct hlist_node *node,
145 struct hlist_node **lastp)
146 {
147 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
148 struct cpuhp_step *step = cpuhp_get_step(state);
149 int (*cbm)(unsigned int cpu, struct hlist_node *node);
150 int (*cb)(unsigned int cpu);
151 int ret, cnt;
152
153 if (st->fail == state) {
154 st->fail = CPUHP_INVALID;
155
156 if (!(bringup ? step->startup.single : step->teardown.single))
157 return 0;
158
159 return -EAGAIN;
160 }
161
162 if (!step->multi_instance) {
163 WARN_ON_ONCE(lastp && *lastp);
164 cb = bringup ? step->startup.single : step->teardown.single;
165 if (!cb)
166 return 0;
167 trace_cpuhp_enter(cpu, st->target, state, cb);
168 ret = cb(cpu);
169 trace_cpuhp_exit(cpu, st->state, state, ret);
170 return ret;
171 }
172 cbm = bringup ? step->startup.multi : step->teardown.multi;
173 if (!cbm)
174 return 0;
175
176 /* Single invocation for instance add/remove */
177 if (node) {
178 WARN_ON_ONCE(lastp && *lastp);
179 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
180 ret = cbm(cpu, node);
181 trace_cpuhp_exit(cpu, st->state, state, ret);
182 return ret;
183 }
184
185 /* State transition. Invoke on all instances */
186 cnt = 0;
187 hlist_for_each(node, &step->list) {
188 if (lastp && node == *lastp)
189 break;
190
191 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
192 ret = cbm(cpu, node);
193 trace_cpuhp_exit(cpu, st->state, state, ret);
194 if (ret) {
195 if (!lastp)
196 goto err;
197
198 *lastp = node;
199 return ret;
200 }
201 cnt++;
202 }
203 if (lastp)
204 *lastp = NULL;
205 return 0;
206 err:
207 /* Rollback the instances if one failed */
208 cbm = !bringup ? step->startup.multi : step->teardown.multi;
209 if (!cbm)
210 return ret;
211
212 hlist_for_each(node, &step->list) {
213 if (!cnt--)
214 break;
215
216 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
217 ret = cbm(cpu, node);
218 trace_cpuhp_exit(cpu, st->state, state, ret);
219 /*
220 * Rollback must not fail,
221 */
222 WARN_ON_ONCE(ret);
223 }
224 return ret;
225 }
226
227 #ifdef CONFIG_SMP
228 static bool cpuhp_is_ap_state(enum cpuhp_state state)
229 {
230 /*
231 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
232 * purposes as that state is handled explicitly in cpu_down.
233 */
234 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
235 }
236
237 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
238 {
239 struct completion *done = bringup ? &st->done_up : &st->done_down;
240 wait_for_completion(done);
241 }
242
243 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
244 {
245 struct completion *done = bringup ? &st->done_up : &st->done_down;
246 complete(done);
247 }
248
249 /*
250 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
251 */
252 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
253 {
254 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
255 }
256
257 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
258 static DEFINE_MUTEX(cpu_add_remove_lock);
259 bool cpuhp_tasks_frozen;
260 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
261
262 /*
263 * The following two APIs (cpu_maps_update_begin/done) must be used when
264 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
265 */
266 void cpu_maps_update_begin(void)
267 {
268 mutex_lock(&cpu_add_remove_lock);
269 }
270
271 void cpu_maps_update_done(void)
272 {
273 mutex_unlock(&cpu_add_remove_lock);
274 }
275
276 /*
277 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
278 * Should always be manipulated under cpu_add_remove_lock
279 */
280 static int cpu_hotplug_disabled;
281
282 #ifdef CONFIG_HOTPLUG_CPU
283
284 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
285
286 void cpus_read_lock(void)
287 {
288 percpu_down_read(&cpu_hotplug_lock);
289 }
290 EXPORT_SYMBOL_GPL(cpus_read_lock);
291
292 int cpus_read_trylock(void)
293 {
294 return percpu_down_read_trylock(&cpu_hotplug_lock);
295 }
296 EXPORT_SYMBOL_GPL(cpus_read_trylock);
297
298 void cpus_read_unlock(void)
299 {
300 percpu_up_read(&cpu_hotplug_lock);
301 }
302 EXPORT_SYMBOL_GPL(cpus_read_unlock);
303
304 void cpus_write_lock(void)
305 {
306 percpu_down_write(&cpu_hotplug_lock);
307 }
308
309 void cpus_write_unlock(void)
310 {
311 percpu_up_write(&cpu_hotplug_lock);
312 }
313
314 void lockdep_assert_cpus_held(void)
315 {
316 /*
317 * We can't have hotplug operations before userspace starts running,
318 * and some init codepaths will knowingly not take the hotplug lock.
319 * This is all valid, so mute lockdep until it makes sense to report
320 * unheld locks.
321 */
322 if (system_state < SYSTEM_RUNNING)
323 return;
324
325 percpu_rwsem_assert_held(&cpu_hotplug_lock);
326 }
327
328 static void lockdep_acquire_cpus_lock(void)
329 {
330 rwsem_acquire(&cpu_hotplug_lock.rw_sem.dep_map, 0, 0, _THIS_IP_);
331 }
332
333 static void lockdep_release_cpus_lock(void)
334 {
335 rwsem_release(&cpu_hotplug_lock.rw_sem.dep_map, 1, _THIS_IP_);
336 }
337
338 /*
339 * Wait for currently running CPU hotplug operations to complete (if any) and
340 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
341 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
342 * hotplug path before performing hotplug operations. So acquiring that lock
343 * guarantees mutual exclusion from any currently running hotplug operations.
344 */
345 void cpu_hotplug_disable(void)
346 {
347 cpu_maps_update_begin();
348 cpu_hotplug_disabled++;
349 cpu_maps_update_done();
350 }
351 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
352
353 static void __cpu_hotplug_enable(void)
354 {
355 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
356 return;
357 cpu_hotplug_disabled--;
358 }
359
360 void cpu_hotplug_enable(void)
361 {
362 cpu_maps_update_begin();
363 __cpu_hotplug_enable();
364 cpu_maps_update_done();
365 }
366 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
367
368 #else
369
370 static void lockdep_acquire_cpus_lock(void)
371 {
372 }
373
374 static void lockdep_release_cpus_lock(void)
375 {
376 }
377
378 #endif /* CONFIG_HOTPLUG_CPU */
379
380 /*
381 * Architectures that need SMT-specific errata handling during SMT hotplug
382 * should override this.
383 */
384 void __weak arch_smt_update(void) { }
385
386 #ifdef CONFIG_HOTPLUG_SMT
387 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
388
389 void __init cpu_smt_disable(bool force)
390 {
391 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
392 cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
393 return;
394
395 if (force) {
396 pr_info("SMT: Force disabled\n");
397 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
398 } else {
399 pr_info("SMT: disabled\n");
400 cpu_smt_control = CPU_SMT_DISABLED;
401 }
402 }
403
404 /*
405 * The decision whether SMT is supported can only be done after the full
406 * CPU identification. Called from architecture code.
407 */
408 void __init cpu_smt_check_topology(void)
409 {
410 if (!topology_smt_supported())
411 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
412 }
413
414 static int __init smt_cmdline_disable(char *str)
415 {
416 cpu_smt_disable(str && !strcmp(str, "force"));
417 return 0;
418 }
419 early_param("nosmt", smt_cmdline_disable);
420
421 static inline bool cpu_smt_allowed(unsigned int cpu)
422 {
423 if (cpu_smt_control == CPU_SMT_ENABLED)
424 return true;
425
426 if (topology_is_primary_thread(cpu))
427 return true;
428
429 /*
430 * On x86 it's required to boot all logical CPUs at least once so
431 * that the init code can get a chance to set CR4.MCE on each
432 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
433 * core will shutdown the machine.
434 */
435 return !per_cpu(cpuhp_state, cpu).booted_once;
436 }
437 #else
438 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
439 #endif
440
441 static inline enum cpuhp_state
442 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
443 {
444 enum cpuhp_state prev_state = st->state;
445
446 st->rollback = false;
447 st->last = NULL;
448
449 st->target = target;
450 st->single = false;
451 st->bringup = st->state < target;
452
453 return prev_state;
454 }
455
456 static inline void
457 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
458 {
459 st->rollback = true;
460
461 /*
462 * If we have st->last we need to undo partial multi_instance of this
463 * state first. Otherwise start undo at the previous state.
464 */
465 if (!st->last) {
466 if (st->bringup)
467 st->state--;
468 else
469 st->state++;
470 }
471
472 st->target = prev_state;
473 st->bringup = !st->bringup;
474 }
475
476 /* Regular hotplug invocation of the AP hotplug thread */
477 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
478 {
479 if (!st->single && st->state == st->target)
480 return;
481
482 st->result = 0;
483 /*
484 * Make sure the above stores are visible before should_run becomes
485 * true. Paired with the mb() above in cpuhp_thread_fun()
486 */
487 smp_mb();
488 st->should_run = true;
489 wake_up_process(st->thread);
490 wait_for_ap_thread(st, st->bringup);
491 }
492
493 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
494 {
495 enum cpuhp_state prev_state;
496 int ret;
497
498 prev_state = cpuhp_set_state(st, target);
499 __cpuhp_kick_ap(st);
500 if ((ret = st->result)) {
501 cpuhp_reset_state(st, prev_state);
502 __cpuhp_kick_ap(st);
503 }
504
505 return ret;
506 }
507
508 static int bringup_wait_for_ap(unsigned int cpu)
509 {
510 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
511
512 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
513 wait_for_ap_thread(st, true);
514 if (WARN_ON_ONCE((!cpu_online(cpu))))
515 return -ECANCELED;
516
517 /* Unpark the stopper thread and the hotplug thread of the target cpu */
518 stop_machine_unpark(cpu);
519 kthread_unpark(st->thread);
520
521 /*
522 * SMT soft disabling on X86 requires to bring the CPU out of the
523 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
524 * CPU marked itself as booted_once in cpu_notify_starting() so the
525 * cpu_smt_allowed() check will now return false if this is not the
526 * primary sibling.
527 */
528 if (!cpu_smt_allowed(cpu))
529 return -ECANCELED;
530
531 if (st->target <= CPUHP_AP_ONLINE_IDLE)
532 return 0;
533
534 return cpuhp_kick_ap(st, st->target);
535 }
536
537 static int bringup_cpu(unsigned int cpu)
538 {
539 struct task_struct *idle = idle_thread_get(cpu);
540 int ret;
541
542 /*
543 * Some architectures have to walk the irq descriptors to
544 * setup the vector space for the cpu which comes online.
545 * Prevent irq alloc/free across the bringup.
546 */
547 irq_lock_sparse();
548
549 /* Arch-specific enabling code. */
550 ret = __cpu_up(cpu, idle);
551 irq_unlock_sparse();
552 if (ret)
553 return ret;
554 return bringup_wait_for_ap(cpu);
555 }
556
557 /*
558 * Hotplug state machine related functions
559 */
560
561 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
562 {
563 for (st->state--; st->state > st->target; st->state--)
564 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
565 }
566
567 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
568 {
569 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
570 return true;
571 /*
572 * When CPU hotplug is disabled, then taking the CPU down is not
573 * possible because takedown_cpu() and the architecture and
574 * subsystem specific mechanisms are not available. So the CPU
575 * which would be completely unplugged again needs to stay around
576 * in the current state.
577 */
578 return st->state <= CPUHP_BRINGUP_CPU;
579 }
580
581 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
582 enum cpuhp_state target)
583 {
584 enum cpuhp_state prev_state = st->state;
585 int ret = 0;
586
587 while (st->state < target) {
588 st->state++;
589 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
590 if (ret) {
591 if (can_rollback_cpu(st)) {
592 st->target = prev_state;
593 undo_cpu_up(cpu, st);
594 }
595 break;
596 }
597 }
598 return ret;
599 }
600
601 /*
602 * The cpu hotplug threads manage the bringup and teardown of the cpus
603 */
604 static void cpuhp_create(unsigned int cpu)
605 {
606 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
607
608 init_completion(&st->done_up);
609 init_completion(&st->done_down);
610 }
611
612 static int cpuhp_should_run(unsigned int cpu)
613 {
614 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
615
616 return st->should_run;
617 }
618
619 /*
620 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
621 * callbacks when a state gets [un]installed at runtime.
622 *
623 * Each invocation of this function by the smpboot thread does a single AP
624 * state callback.
625 *
626 * It has 3 modes of operation:
627 * - single: runs st->cb_state
628 * - up: runs ++st->state, while st->state < st->target
629 * - down: runs st->state--, while st->state > st->target
630 *
631 * When complete or on error, should_run is cleared and the completion is fired.
632 */
633 static void cpuhp_thread_fun(unsigned int cpu)
634 {
635 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
636 bool bringup = st->bringup;
637 enum cpuhp_state state;
638
639 if (WARN_ON_ONCE(!st->should_run))
640 return;
641
642 /*
643 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
644 * that if we see ->should_run we also see the rest of the state.
645 */
646 smp_mb();
647
648 /*
649 * The BP holds the hotplug lock, but we're now running on the AP,
650 * ensure that anybody asserting the lock is held, will actually find
651 * it so.
652 */
653 lockdep_acquire_cpus_lock();
654 cpuhp_lock_acquire(bringup);
655
656 if (st->single) {
657 state = st->cb_state;
658 st->should_run = false;
659 } else {
660 if (bringup) {
661 st->state++;
662 state = st->state;
663 st->should_run = (st->state < st->target);
664 WARN_ON_ONCE(st->state > st->target);
665 } else {
666 state = st->state;
667 st->state--;
668 st->should_run = (st->state > st->target);
669 WARN_ON_ONCE(st->state < st->target);
670 }
671 }
672
673 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
674
675 if (cpuhp_is_atomic_state(state)) {
676 local_irq_disable();
677 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
678 local_irq_enable();
679
680 /*
681 * STARTING/DYING must not fail!
682 */
683 WARN_ON_ONCE(st->result);
684 } else {
685 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
686 }
687
688 if (st->result) {
689 /*
690 * If we fail on a rollback, we're up a creek without no
691 * paddle, no way forward, no way back. We loose, thanks for
692 * playing.
693 */
694 WARN_ON_ONCE(st->rollback);
695 st->should_run = false;
696 }
697
698 cpuhp_lock_release(bringup);
699 lockdep_release_cpus_lock();
700
701 if (!st->should_run)
702 complete_ap_thread(st, bringup);
703 }
704
705 /* Invoke a single callback on a remote cpu */
706 static int
707 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
708 struct hlist_node *node)
709 {
710 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
711 int ret;
712
713 if (!cpu_online(cpu))
714 return 0;
715
716 cpuhp_lock_acquire(false);
717 cpuhp_lock_release(false);
718
719 cpuhp_lock_acquire(true);
720 cpuhp_lock_release(true);
721
722 /*
723 * If we are up and running, use the hotplug thread. For early calls
724 * we invoke the thread function directly.
725 */
726 if (!st->thread)
727 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
728
729 st->rollback = false;
730 st->last = NULL;
731
732 st->node = node;
733 st->bringup = bringup;
734 st->cb_state = state;
735 st->single = true;
736
737 __cpuhp_kick_ap(st);
738
739 /*
740 * If we failed and did a partial, do a rollback.
741 */
742 if ((ret = st->result) && st->last) {
743 st->rollback = true;
744 st->bringup = !bringup;
745
746 __cpuhp_kick_ap(st);
747 }
748
749 /*
750 * Clean up the leftovers so the next hotplug operation wont use stale
751 * data.
752 */
753 st->node = st->last = NULL;
754 return ret;
755 }
756
757 static int cpuhp_kick_ap_work(unsigned int cpu)
758 {
759 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
760 enum cpuhp_state prev_state = st->state;
761 int ret;
762
763 cpuhp_lock_acquire(false);
764 cpuhp_lock_release(false);
765
766 cpuhp_lock_acquire(true);
767 cpuhp_lock_release(true);
768
769 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
770 ret = cpuhp_kick_ap(st, st->target);
771 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
772
773 return ret;
774 }
775
776 static struct smp_hotplug_thread cpuhp_threads = {
777 .store = &cpuhp_state.thread,
778 .create = &cpuhp_create,
779 .thread_should_run = cpuhp_should_run,
780 .thread_fn = cpuhp_thread_fun,
781 .thread_comm = "cpuhp/%u",
782 .selfparking = true,
783 };
784
785 void __init cpuhp_threads_init(void)
786 {
787 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
788 kthread_unpark(this_cpu_read(cpuhp_state.thread));
789 }
790
791 #ifdef CONFIG_HOTPLUG_CPU
792 /**
793 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
794 * @cpu: a CPU id
795 *
796 * This function walks all processes, finds a valid mm struct for each one and
797 * then clears a corresponding bit in mm's cpumask. While this all sounds
798 * trivial, there are various non-obvious corner cases, which this function
799 * tries to solve in a safe manner.
800 *
801 * Also note that the function uses a somewhat relaxed locking scheme, so it may
802 * be called only for an already offlined CPU.
803 */
804 void clear_tasks_mm_cpumask(int cpu)
805 {
806 struct task_struct *p;
807
808 /*
809 * This function is called after the cpu is taken down and marked
810 * offline, so its not like new tasks will ever get this cpu set in
811 * their mm mask. -- Peter Zijlstra
812 * Thus, we may use rcu_read_lock() here, instead of grabbing
813 * full-fledged tasklist_lock.
814 */
815 WARN_ON(cpu_online(cpu));
816 rcu_read_lock();
817 for_each_process(p) {
818 struct task_struct *t;
819
820 /*
821 * Main thread might exit, but other threads may still have
822 * a valid mm. Find one.
823 */
824 t = find_lock_task_mm(p);
825 if (!t)
826 continue;
827 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
828 task_unlock(t);
829 }
830 rcu_read_unlock();
831 }
832
833 /* Take this CPU down. */
834 static int take_cpu_down(void *_param)
835 {
836 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
837 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
838 int err, cpu = smp_processor_id();
839 int ret;
840
841 /* Ensure this CPU doesn't handle any more interrupts. */
842 err = __cpu_disable();
843 if (err < 0)
844 return err;
845
846 /*
847 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
848 * do this step again.
849 */
850 WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
851 st->state--;
852 /* Invoke the former CPU_DYING callbacks */
853 for (; st->state > target; st->state--) {
854 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
855 /*
856 * DYING must not fail!
857 */
858 WARN_ON_ONCE(ret);
859 }
860
861 /* Give up timekeeping duties */
862 tick_handover_do_timer();
863 /* Park the stopper thread */
864 stop_machine_park(cpu);
865 return 0;
866 }
867
868 static int takedown_cpu(unsigned int cpu)
869 {
870 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
871 int err;
872
873 /* Park the smpboot threads */
874 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
875
876 /*
877 * Prevent irq alloc/free while the dying cpu reorganizes the
878 * interrupt affinities.
879 */
880 irq_lock_sparse();
881
882 /*
883 * So now all preempt/rcu users must observe !cpu_active().
884 */
885 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
886 if (err) {
887 /* CPU refused to die */
888 irq_unlock_sparse();
889 /* Unpark the hotplug thread so we can rollback there */
890 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
891 return err;
892 }
893 BUG_ON(cpu_online(cpu));
894
895 /*
896 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
897 * all runnable tasks from the CPU, there's only the idle task left now
898 * that the migration thread is done doing the stop_machine thing.
899 *
900 * Wait for the stop thread to go away.
901 */
902 wait_for_ap_thread(st, false);
903 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
904
905 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
906 irq_unlock_sparse();
907
908 hotplug_cpu__broadcast_tick_pull(cpu);
909 /* This actually kills the CPU. */
910 __cpu_die(cpu);
911
912 tick_cleanup_dead_cpu(cpu);
913 rcutree_migrate_callbacks(cpu);
914 return 0;
915 }
916
917 static void cpuhp_complete_idle_dead(void *arg)
918 {
919 struct cpuhp_cpu_state *st = arg;
920
921 complete_ap_thread(st, false);
922 }
923
924 void cpuhp_report_idle_dead(void)
925 {
926 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
927
928 BUG_ON(st->state != CPUHP_AP_OFFLINE);
929 rcu_report_dead(smp_processor_id());
930 st->state = CPUHP_AP_IDLE_DEAD;
931 /*
932 * We cannot call complete after rcu_report_dead() so we delegate it
933 * to an online cpu.
934 */
935 smp_call_function_single(cpumask_first(cpu_online_mask),
936 cpuhp_complete_idle_dead, st, 0);
937 }
938
939 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
940 {
941 for (st->state++; st->state < st->target; st->state++)
942 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
943 }
944
945 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
946 enum cpuhp_state target)
947 {
948 enum cpuhp_state prev_state = st->state;
949 int ret = 0;
950
951 for (; st->state > target; st->state--) {
952 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
953 if (ret) {
954 st->target = prev_state;
955 if (st->state < prev_state)
956 undo_cpu_down(cpu, st);
957 break;
958 }
959 }
960 return ret;
961 }
962
963 /* Requires cpu_add_remove_lock to be held */
964 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
965 enum cpuhp_state target)
966 {
967 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
968 int prev_state, ret = 0;
969
970 if (num_online_cpus() == 1)
971 return -EBUSY;
972
973 if (!cpu_present(cpu))
974 return -EINVAL;
975
976 cpus_write_lock();
977
978 cpuhp_tasks_frozen = tasks_frozen;
979
980 prev_state = cpuhp_set_state(st, target);
981 /*
982 * If the current CPU state is in the range of the AP hotplug thread,
983 * then we need to kick the thread.
984 */
985 if (st->state > CPUHP_TEARDOWN_CPU) {
986 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
987 ret = cpuhp_kick_ap_work(cpu);
988 /*
989 * The AP side has done the error rollback already. Just
990 * return the error code..
991 */
992 if (ret)
993 goto out;
994
995 /*
996 * We might have stopped still in the range of the AP hotplug
997 * thread. Nothing to do anymore.
998 */
999 if (st->state > CPUHP_TEARDOWN_CPU)
1000 goto out;
1001
1002 st->target = target;
1003 }
1004 /*
1005 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1006 * to do the further cleanups.
1007 */
1008 ret = cpuhp_down_callbacks(cpu, st, target);
1009 if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1010 cpuhp_reset_state(st, prev_state);
1011 __cpuhp_kick_ap(st);
1012 }
1013
1014 out:
1015 cpus_write_unlock();
1016 /*
1017 * Do post unplug cleanup. This is still protected against
1018 * concurrent CPU hotplug via cpu_add_remove_lock.
1019 */
1020 lockup_detector_cleanup();
1021 arch_smt_update();
1022 return ret;
1023 }
1024
1025 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1026 {
1027 if (cpu_hotplug_disabled)
1028 return -EBUSY;
1029 return _cpu_down(cpu, 0, target);
1030 }
1031
1032 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
1033 {
1034 int err;
1035
1036 cpu_maps_update_begin();
1037 err = cpu_down_maps_locked(cpu, target);
1038 cpu_maps_update_done();
1039 return err;
1040 }
1041
1042 int cpu_down(unsigned int cpu)
1043 {
1044 return do_cpu_down(cpu, CPUHP_OFFLINE);
1045 }
1046 EXPORT_SYMBOL(cpu_down);
1047
1048 #else
1049 #define takedown_cpu NULL
1050 #endif /*CONFIG_HOTPLUG_CPU*/
1051
1052 /**
1053 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1054 * @cpu: cpu that just started
1055 *
1056 * It must be called by the arch code on the new cpu, before the new cpu
1057 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1058 */
1059 void notify_cpu_starting(unsigned int cpu)
1060 {
1061 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1062 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1063 int ret;
1064
1065 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1066 st->booted_once = true;
1067 while (st->state < target) {
1068 st->state++;
1069 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1070 /*
1071 * STARTING must not fail!
1072 */
1073 WARN_ON_ONCE(ret);
1074 }
1075 }
1076
1077 /*
1078 * Called from the idle task. Wake up the controlling task which brings the
1079 * stopper and the hotplug thread of the upcoming CPU up and then delegates
1080 * the rest of the online bringup to the hotplug thread.
1081 */
1082 void cpuhp_online_idle(enum cpuhp_state state)
1083 {
1084 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1085
1086 /* Happens for the boot cpu */
1087 if (state != CPUHP_AP_ONLINE_IDLE)
1088 return;
1089
1090 st->state = CPUHP_AP_ONLINE_IDLE;
1091 complete_ap_thread(st, true);
1092 }
1093
1094 /* Requires cpu_add_remove_lock to be held */
1095 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1096 {
1097 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1098 struct task_struct *idle;
1099 int ret = 0;
1100
1101 cpus_write_lock();
1102
1103 if (!cpu_present(cpu)) {
1104 ret = -EINVAL;
1105 goto out;
1106 }
1107
1108 /*
1109 * The caller of do_cpu_up might have raced with another
1110 * caller. Ignore it for now.
1111 */
1112 if (st->state >= target)
1113 goto out;
1114
1115 if (st->state == CPUHP_OFFLINE) {
1116 /* Let it fail before we try to bring the cpu up */
1117 idle = idle_thread_get(cpu);
1118 if (IS_ERR(idle)) {
1119 ret = PTR_ERR(idle);
1120 goto out;
1121 }
1122 }
1123
1124 cpuhp_tasks_frozen = tasks_frozen;
1125
1126 cpuhp_set_state(st, target);
1127 /*
1128 * If the current CPU state is in the range of the AP hotplug thread,
1129 * then we need to kick the thread once more.
1130 */
1131 if (st->state > CPUHP_BRINGUP_CPU) {
1132 ret = cpuhp_kick_ap_work(cpu);
1133 /*
1134 * The AP side has done the error rollback already. Just
1135 * return the error code..
1136 */
1137 if (ret)
1138 goto out;
1139 }
1140
1141 /*
1142 * Try to reach the target state. We max out on the BP at
1143 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1144 * responsible for bringing it up to the target state.
1145 */
1146 target = min((int)target, CPUHP_BRINGUP_CPU);
1147 ret = cpuhp_up_callbacks(cpu, st, target);
1148 out:
1149 cpus_write_unlock();
1150 arch_smt_update();
1151 return ret;
1152 }
1153
1154 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1155 {
1156 int err = 0;
1157
1158 if (!cpu_possible(cpu)) {
1159 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1160 cpu);
1161 #if defined(CONFIG_IA64)
1162 pr_err("please check additional_cpus= boot parameter\n");
1163 #endif
1164 return -EINVAL;
1165 }
1166
1167 err = try_online_node(cpu_to_node(cpu));
1168 if (err)
1169 return err;
1170
1171 cpu_maps_update_begin();
1172
1173 if (cpu_hotplug_disabled) {
1174 err = -EBUSY;
1175 goto out;
1176 }
1177 if (!cpu_smt_allowed(cpu)) {
1178 err = -EPERM;
1179 goto out;
1180 }
1181
1182 err = _cpu_up(cpu, 0, target);
1183 out:
1184 cpu_maps_update_done();
1185 return err;
1186 }
1187
1188 int cpu_up(unsigned int cpu)
1189 {
1190 return do_cpu_up(cpu, CPUHP_ONLINE);
1191 }
1192 EXPORT_SYMBOL_GPL(cpu_up);
1193
1194 #ifdef CONFIG_PM_SLEEP_SMP
1195 static cpumask_var_t frozen_cpus;
1196
1197 int freeze_secondary_cpus(int primary)
1198 {
1199 int cpu, error = 0;
1200
1201 cpu_maps_update_begin();
1202 if (!cpu_online(primary))
1203 primary = cpumask_first(cpu_online_mask);
1204 /*
1205 * We take down all of the non-boot CPUs in one shot to avoid races
1206 * with the userspace trying to use the CPU hotplug at the same time
1207 */
1208 cpumask_clear(frozen_cpus);
1209
1210 pr_info("Disabling non-boot CPUs ...\n");
1211 for_each_online_cpu(cpu) {
1212 if (cpu == primary)
1213 continue;
1214 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1215 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1216 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1217 if (!error)
1218 cpumask_set_cpu(cpu, frozen_cpus);
1219 else {
1220 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1221 break;
1222 }
1223 }
1224
1225 if (!error)
1226 BUG_ON(num_online_cpus() > 1);
1227 else
1228 pr_err("Non-boot CPUs are not disabled\n");
1229
1230 /*
1231 * Make sure the CPUs won't be enabled by someone else. We need to do
1232 * this even in case of failure as all disable_nonboot_cpus() users are
1233 * supposed to do enable_nonboot_cpus() on the failure path.
1234 */
1235 cpu_hotplug_disabled++;
1236
1237 cpu_maps_update_done();
1238 return error;
1239 }
1240
1241 void __weak arch_enable_nonboot_cpus_begin(void)
1242 {
1243 }
1244
1245 void __weak arch_enable_nonboot_cpus_end(void)
1246 {
1247 }
1248
1249 void enable_nonboot_cpus(void)
1250 {
1251 int cpu, error;
1252
1253 /* Allow everyone to use the CPU hotplug again */
1254 cpu_maps_update_begin();
1255 __cpu_hotplug_enable();
1256 if (cpumask_empty(frozen_cpus))
1257 goto out;
1258
1259 pr_info("Enabling non-boot CPUs ...\n");
1260
1261 arch_enable_nonboot_cpus_begin();
1262
1263 for_each_cpu(cpu, frozen_cpus) {
1264 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1265 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1266 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1267 if (!error) {
1268 pr_info("CPU%d is up\n", cpu);
1269 continue;
1270 }
1271 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1272 }
1273
1274 arch_enable_nonboot_cpus_end();
1275
1276 cpumask_clear(frozen_cpus);
1277 out:
1278 cpu_maps_update_done();
1279 }
1280
1281 static int __init alloc_frozen_cpus(void)
1282 {
1283 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1284 return -ENOMEM;
1285 return 0;
1286 }
1287 core_initcall(alloc_frozen_cpus);
1288
1289 /*
1290 * When callbacks for CPU hotplug notifications are being executed, we must
1291 * ensure that the state of the system with respect to the tasks being frozen
1292 * or not, as reported by the notification, remains unchanged *throughout the
1293 * duration* of the execution of the callbacks.
1294 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1295 *
1296 * This synchronization is implemented by mutually excluding regular CPU
1297 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1298 * Hibernate notifications.
1299 */
1300 static int
1301 cpu_hotplug_pm_callback(struct notifier_block *nb,
1302 unsigned long action, void *ptr)
1303 {
1304 switch (action) {
1305
1306 case PM_SUSPEND_PREPARE:
1307 case PM_HIBERNATION_PREPARE:
1308 cpu_hotplug_disable();
1309 break;
1310
1311 case PM_POST_SUSPEND:
1312 case PM_POST_HIBERNATION:
1313 cpu_hotplug_enable();
1314 break;
1315
1316 default:
1317 return NOTIFY_DONE;
1318 }
1319
1320 return NOTIFY_OK;
1321 }
1322
1323
1324 static int __init cpu_hotplug_pm_sync_init(void)
1325 {
1326 /*
1327 * cpu_hotplug_pm_callback has higher priority than x86
1328 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1329 * to disable cpu hotplug to avoid cpu hotplug race.
1330 */
1331 pm_notifier(cpu_hotplug_pm_callback, 0);
1332 return 0;
1333 }
1334 core_initcall(cpu_hotplug_pm_sync_init);
1335
1336 #endif /* CONFIG_PM_SLEEP_SMP */
1337
1338 int __boot_cpu_id;
1339
1340 #endif /* CONFIG_SMP */
1341
1342 /* Boot processor state steps */
1343 static struct cpuhp_step cpuhp_hp_states[] = {
1344 [CPUHP_OFFLINE] = {
1345 .name = "offline",
1346 .startup.single = NULL,
1347 .teardown.single = NULL,
1348 },
1349 #ifdef CONFIG_SMP
1350 [CPUHP_CREATE_THREADS]= {
1351 .name = "threads:prepare",
1352 .startup.single = smpboot_create_threads,
1353 .teardown.single = NULL,
1354 .cant_stop = true,
1355 },
1356 [CPUHP_PERF_PREPARE] = {
1357 .name = "perf:prepare",
1358 .startup.single = perf_event_init_cpu,
1359 .teardown.single = perf_event_exit_cpu,
1360 },
1361 [CPUHP_WORKQUEUE_PREP] = {
1362 .name = "workqueue:prepare",
1363 .startup.single = workqueue_prepare_cpu,
1364 .teardown.single = NULL,
1365 },
1366 [CPUHP_HRTIMERS_PREPARE] = {
1367 .name = "hrtimers:prepare",
1368 .startup.single = hrtimers_prepare_cpu,
1369 .teardown.single = hrtimers_dead_cpu,
1370 },
1371 [CPUHP_SMPCFD_PREPARE] = {
1372 .name = "smpcfd:prepare",
1373 .startup.single = smpcfd_prepare_cpu,
1374 .teardown.single = smpcfd_dead_cpu,
1375 },
1376 [CPUHP_RELAY_PREPARE] = {
1377 .name = "relay:prepare",
1378 .startup.single = relay_prepare_cpu,
1379 .teardown.single = NULL,
1380 },
1381 [CPUHP_SLAB_PREPARE] = {
1382 .name = "slab:prepare",
1383 .startup.single = slab_prepare_cpu,
1384 .teardown.single = slab_dead_cpu,
1385 },
1386 [CPUHP_RCUTREE_PREP] = {
1387 .name = "RCU/tree:prepare",
1388 .startup.single = rcutree_prepare_cpu,
1389 .teardown.single = rcutree_dead_cpu,
1390 },
1391 /*
1392 * On the tear-down path, timers_dead_cpu() must be invoked
1393 * before blk_mq_queue_reinit_notify() from notify_dead(),
1394 * otherwise a RCU stall occurs.
1395 */
1396 [CPUHP_TIMERS_PREPARE] = {
1397 .name = "timers:prepare",
1398 .startup.single = timers_prepare_cpu,
1399 .teardown.single = timers_dead_cpu,
1400 },
1401 /* Kicks the plugged cpu into life */
1402 [CPUHP_BRINGUP_CPU] = {
1403 .name = "cpu:bringup",
1404 .startup.single = bringup_cpu,
1405 .teardown.single = NULL,
1406 .cant_stop = true,
1407 },
1408 /* Final state before CPU kills itself */
1409 [CPUHP_AP_IDLE_DEAD] = {
1410 .name = "idle:dead",
1411 },
1412 /*
1413 * Last state before CPU enters the idle loop to die. Transient state
1414 * for synchronization.
1415 */
1416 [CPUHP_AP_OFFLINE] = {
1417 .name = "ap:offline",
1418 .cant_stop = true,
1419 },
1420 /* First state is scheduler control. Interrupts are disabled */
1421 [CPUHP_AP_SCHED_STARTING] = {
1422 .name = "sched:starting",
1423 .startup.single = sched_cpu_starting,
1424 .teardown.single = sched_cpu_dying,
1425 },
1426 [CPUHP_AP_RCUTREE_DYING] = {
1427 .name = "RCU/tree:dying",
1428 .startup.single = NULL,
1429 .teardown.single = rcutree_dying_cpu,
1430 },
1431 [CPUHP_AP_SMPCFD_DYING] = {
1432 .name = "smpcfd:dying",
1433 .startup.single = NULL,
1434 .teardown.single = smpcfd_dying_cpu,
1435 },
1436 /* Entry state on starting. Interrupts enabled from here on. Transient
1437 * state for synchronsization */
1438 [CPUHP_AP_ONLINE] = {
1439 .name = "ap:online",
1440 },
1441 /*
1442 * Handled on controll processor until the plugged processor manages
1443 * this itself.
1444 */
1445 [CPUHP_TEARDOWN_CPU] = {
1446 .name = "cpu:teardown",
1447 .startup.single = NULL,
1448 .teardown.single = takedown_cpu,
1449 .cant_stop = true,
1450 },
1451 /* Handle smpboot threads park/unpark */
1452 [CPUHP_AP_SMPBOOT_THREADS] = {
1453 .name = "smpboot/threads:online",
1454 .startup.single = smpboot_unpark_threads,
1455 .teardown.single = smpboot_park_threads,
1456 },
1457 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1458 .name = "irq/affinity:online",
1459 .startup.single = irq_affinity_online_cpu,
1460 .teardown.single = NULL,
1461 },
1462 [CPUHP_AP_PERF_ONLINE] = {
1463 .name = "perf:online",
1464 .startup.single = perf_event_init_cpu,
1465 .teardown.single = perf_event_exit_cpu,
1466 },
1467 [CPUHP_AP_WATCHDOG_ONLINE] = {
1468 .name = "lockup_detector:online",
1469 .startup.single = lockup_detector_online_cpu,
1470 .teardown.single = lockup_detector_offline_cpu,
1471 },
1472 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1473 .name = "workqueue:online",
1474 .startup.single = workqueue_online_cpu,
1475 .teardown.single = workqueue_offline_cpu,
1476 },
1477 [CPUHP_AP_RCUTREE_ONLINE] = {
1478 .name = "RCU/tree:online",
1479 .startup.single = rcutree_online_cpu,
1480 .teardown.single = rcutree_offline_cpu,
1481 },
1482 #endif
1483 /*
1484 * The dynamically registered state space is here
1485 */
1486
1487 #ifdef CONFIG_SMP
1488 /* Last state is scheduler control setting the cpu active */
1489 [CPUHP_AP_ACTIVE] = {
1490 .name = "sched:active",
1491 .startup.single = sched_cpu_activate,
1492 .teardown.single = sched_cpu_deactivate,
1493 },
1494 #endif
1495
1496 /* CPU is fully up and running. */
1497 [CPUHP_ONLINE] = {
1498 .name = "online",
1499 .startup.single = NULL,
1500 .teardown.single = NULL,
1501 },
1502 };
1503
1504 /* Sanity check for callbacks */
1505 static int cpuhp_cb_check(enum cpuhp_state state)
1506 {
1507 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1508 return -EINVAL;
1509 return 0;
1510 }
1511
1512 /*
1513 * Returns a free for dynamic slot assignment of the Online state. The states
1514 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1515 * by having no name assigned.
1516 */
1517 static int cpuhp_reserve_state(enum cpuhp_state state)
1518 {
1519 enum cpuhp_state i, end;
1520 struct cpuhp_step *step;
1521
1522 switch (state) {
1523 case CPUHP_AP_ONLINE_DYN:
1524 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1525 end = CPUHP_AP_ONLINE_DYN_END;
1526 break;
1527 case CPUHP_BP_PREPARE_DYN:
1528 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1529 end = CPUHP_BP_PREPARE_DYN_END;
1530 break;
1531 default:
1532 return -EINVAL;
1533 }
1534
1535 for (i = state; i <= end; i++, step++) {
1536 if (!step->name)
1537 return i;
1538 }
1539 WARN(1, "No more dynamic states available for CPU hotplug\n");
1540 return -ENOSPC;
1541 }
1542
1543 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1544 int (*startup)(unsigned int cpu),
1545 int (*teardown)(unsigned int cpu),
1546 bool multi_instance)
1547 {
1548 /* (Un)Install the callbacks for further cpu hotplug operations */
1549 struct cpuhp_step *sp;
1550 int ret = 0;
1551
1552 /*
1553 * If name is NULL, then the state gets removed.
1554 *
1555 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1556 * the first allocation from these dynamic ranges, so the removal
1557 * would trigger a new allocation and clear the wrong (already
1558 * empty) state, leaving the callbacks of the to be cleared state
1559 * dangling, which causes wreckage on the next hotplug operation.
1560 */
1561 if (name && (state == CPUHP_AP_ONLINE_DYN ||
1562 state == CPUHP_BP_PREPARE_DYN)) {
1563 ret = cpuhp_reserve_state(state);
1564 if (ret < 0)
1565 return ret;
1566 state = ret;
1567 }
1568 sp = cpuhp_get_step(state);
1569 if (name && sp->name)
1570 return -EBUSY;
1571
1572 sp->startup.single = startup;
1573 sp->teardown.single = teardown;
1574 sp->name = name;
1575 sp->multi_instance = multi_instance;
1576 INIT_HLIST_HEAD(&sp->list);
1577 return ret;
1578 }
1579
1580 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1581 {
1582 return cpuhp_get_step(state)->teardown.single;
1583 }
1584
1585 /*
1586 * Call the startup/teardown function for a step either on the AP or
1587 * on the current CPU.
1588 */
1589 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1590 struct hlist_node *node)
1591 {
1592 struct cpuhp_step *sp = cpuhp_get_step(state);
1593 int ret;
1594
1595 /*
1596 * If there's nothing to do, we done.
1597 * Relies on the union for multi_instance.
1598 */
1599 if ((bringup && !sp->startup.single) ||
1600 (!bringup && !sp->teardown.single))
1601 return 0;
1602 /*
1603 * The non AP bound callbacks can fail on bringup. On teardown
1604 * e.g. module removal we crash for now.
1605 */
1606 #ifdef CONFIG_SMP
1607 if (cpuhp_is_ap_state(state))
1608 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1609 else
1610 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1611 #else
1612 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1613 #endif
1614 BUG_ON(ret && !bringup);
1615 return ret;
1616 }
1617
1618 /*
1619 * Called from __cpuhp_setup_state on a recoverable failure.
1620 *
1621 * Note: The teardown callbacks for rollback are not allowed to fail!
1622 */
1623 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1624 struct hlist_node *node)
1625 {
1626 int cpu;
1627
1628 /* Roll back the already executed steps on the other cpus */
1629 for_each_present_cpu(cpu) {
1630 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1631 int cpustate = st->state;
1632
1633 if (cpu >= failedcpu)
1634 break;
1635
1636 /* Did we invoke the startup call on that cpu ? */
1637 if (cpustate >= state)
1638 cpuhp_issue_call(cpu, state, false, node);
1639 }
1640 }
1641
1642 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1643 struct hlist_node *node,
1644 bool invoke)
1645 {
1646 struct cpuhp_step *sp;
1647 int cpu;
1648 int ret;
1649
1650 lockdep_assert_cpus_held();
1651
1652 sp = cpuhp_get_step(state);
1653 if (sp->multi_instance == false)
1654 return -EINVAL;
1655
1656 mutex_lock(&cpuhp_state_mutex);
1657
1658 if (!invoke || !sp->startup.multi)
1659 goto add_node;
1660
1661 /*
1662 * Try to call the startup callback for each present cpu
1663 * depending on the hotplug state of the cpu.
1664 */
1665 for_each_present_cpu(cpu) {
1666 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1667 int cpustate = st->state;
1668
1669 if (cpustate < state)
1670 continue;
1671
1672 ret = cpuhp_issue_call(cpu, state, true, node);
1673 if (ret) {
1674 if (sp->teardown.multi)
1675 cpuhp_rollback_install(cpu, state, node);
1676 goto unlock;
1677 }
1678 }
1679 add_node:
1680 ret = 0;
1681 hlist_add_head(node, &sp->list);
1682 unlock:
1683 mutex_unlock(&cpuhp_state_mutex);
1684 return ret;
1685 }
1686
1687 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1688 bool invoke)
1689 {
1690 int ret;
1691
1692 cpus_read_lock();
1693 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1694 cpus_read_unlock();
1695 return ret;
1696 }
1697 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1698
1699 /**
1700 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1701 * @state: The state to setup
1702 * @invoke: If true, the startup function is invoked for cpus where
1703 * cpu state >= @state
1704 * @startup: startup callback function
1705 * @teardown: teardown callback function
1706 * @multi_instance: State is set up for multiple instances which get
1707 * added afterwards.
1708 *
1709 * The caller needs to hold cpus read locked while calling this function.
1710 * Returns:
1711 * On success:
1712 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1713 * 0 for all other states
1714 * On failure: proper (negative) error code
1715 */
1716 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1717 const char *name, bool invoke,
1718 int (*startup)(unsigned int cpu),
1719 int (*teardown)(unsigned int cpu),
1720 bool multi_instance)
1721 {
1722 int cpu, ret = 0;
1723 bool dynstate;
1724
1725 lockdep_assert_cpus_held();
1726
1727 if (cpuhp_cb_check(state) || !name)
1728 return -EINVAL;
1729
1730 mutex_lock(&cpuhp_state_mutex);
1731
1732 ret = cpuhp_store_callbacks(state, name, startup, teardown,
1733 multi_instance);
1734
1735 dynstate = state == CPUHP_AP_ONLINE_DYN;
1736 if (ret > 0 && dynstate) {
1737 state = ret;
1738 ret = 0;
1739 }
1740
1741 if (ret || !invoke || !startup)
1742 goto out;
1743
1744 /*
1745 * Try to call the startup callback for each present cpu
1746 * depending on the hotplug state of the cpu.
1747 */
1748 for_each_present_cpu(cpu) {
1749 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1750 int cpustate = st->state;
1751
1752 if (cpustate < state)
1753 continue;
1754
1755 ret = cpuhp_issue_call(cpu, state, true, NULL);
1756 if (ret) {
1757 if (teardown)
1758 cpuhp_rollback_install(cpu, state, NULL);
1759 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1760 goto out;
1761 }
1762 }
1763 out:
1764 mutex_unlock(&cpuhp_state_mutex);
1765 /*
1766 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1767 * dynamically allocated state in case of success.
1768 */
1769 if (!ret && dynstate)
1770 return state;
1771 return ret;
1772 }
1773 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1774
1775 int __cpuhp_setup_state(enum cpuhp_state state,
1776 const char *name, bool invoke,
1777 int (*startup)(unsigned int cpu),
1778 int (*teardown)(unsigned int cpu),
1779 bool multi_instance)
1780 {
1781 int ret;
1782
1783 cpus_read_lock();
1784 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1785 teardown, multi_instance);
1786 cpus_read_unlock();
1787 return ret;
1788 }
1789 EXPORT_SYMBOL(__cpuhp_setup_state);
1790
1791 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1792 struct hlist_node *node, bool invoke)
1793 {
1794 struct cpuhp_step *sp = cpuhp_get_step(state);
1795 int cpu;
1796
1797 BUG_ON(cpuhp_cb_check(state));
1798
1799 if (!sp->multi_instance)
1800 return -EINVAL;
1801
1802 cpus_read_lock();
1803 mutex_lock(&cpuhp_state_mutex);
1804
1805 if (!invoke || !cpuhp_get_teardown_cb(state))
1806 goto remove;
1807 /*
1808 * Call the teardown callback for each present cpu depending
1809 * on the hotplug state of the cpu. This function is not
1810 * allowed to fail currently!
1811 */
1812 for_each_present_cpu(cpu) {
1813 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1814 int cpustate = st->state;
1815
1816 if (cpustate >= state)
1817 cpuhp_issue_call(cpu, state, false, node);
1818 }
1819
1820 remove:
1821 hlist_del(node);
1822 mutex_unlock(&cpuhp_state_mutex);
1823 cpus_read_unlock();
1824
1825 return 0;
1826 }
1827 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1828
1829 /**
1830 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1831 * @state: The state to remove
1832 * @invoke: If true, the teardown function is invoked for cpus where
1833 * cpu state >= @state
1834 *
1835 * The caller needs to hold cpus read locked while calling this function.
1836 * The teardown callback is currently not allowed to fail. Think
1837 * about module removal!
1838 */
1839 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1840 {
1841 struct cpuhp_step *sp = cpuhp_get_step(state);
1842 int cpu;
1843
1844 BUG_ON(cpuhp_cb_check(state));
1845
1846 lockdep_assert_cpus_held();
1847
1848 mutex_lock(&cpuhp_state_mutex);
1849 if (sp->multi_instance) {
1850 WARN(!hlist_empty(&sp->list),
1851 "Error: Removing state %d which has instances left.\n",
1852 state);
1853 goto remove;
1854 }
1855
1856 if (!invoke || !cpuhp_get_teardown_cb(state))
1857 goto remove;
1858
1859 /*
1860 * Call the teardown callback for each present cpu depending
1861 * on the hotplug state of the cpu. This function is not
1862 * allowed to fail currently!
1863 */
1864 for_each_present_cpu(cpu) {
1865 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1866 int cpustate = st->state;
1867
1868 if (cpustate >= state)
1869 cpuhp_issue_call(cpu, state, false, NULL);
1870 }
1871 remove:
1872 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1873 mutex_unlock(&cpuhp_state_mutex);
1874 }
1875 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1876
1877 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1878 {
1879 cpus_read_lock();
1880 __cpuhp_remove_state_cpuslocked(state, invoke);
1881 cpus_read_unlock();
1882 }
1883 EXPORT_SYMBOL(__cpuhp_remove_state);
1884
1885 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1886 static ssize_t show_cpuhp_state(struct device *dev,
1887 struct device_attribute *attr, char *buf)
1888 {
1889 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1890
1891 return sprintf(buf, "%d\n", st->state);
1892 }
1893 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1894
1895 static ssize_t write_cpuhp_target(struct device *dev,
1896 struct device_attribute *attr,
1897 const char *buf, size_t count)
1898 {
1899 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1900 struct cpuhp_step *sp;
1901 int target, ret;
1902
1903 ret = kstrtoint(buf, 10, &target);
1904 if (ret)
1905 return ret;
1906
1907 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1908 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1909 return -EINVAL;
1910 #else
1911 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1912 return -EINVAL;
1913 #endif
1914
1915 ret = lock_device_hotplug_sysfs();
1916 if (ret)
1917 return ret;
1918
1919 mutex_lock(&cpuhp_state_mutex);
1920 sp = cpuhp_get_step(target);
1921 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1922 mutex_unlock(&cpuhp_state_mutex);
1923 if (ret)
1924 goto out;
1925
1926 if (st->state < target)
1927 ret = do_cpu_up(dev->id, target);
1928 else
1929 ret = do_cpu_down(dev->id, target);
1930 out:
1931 unlock_device_hotplug();
1932 return ret ? ret : count;
1933 }
1934
1935 static ssize_t show_cpuhp_target(struct device *dev,
1936 struct device_attribute *attr, char *buf)
1937 {
1938 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1939
1940 return sprintf(buf, "%d\n", st->target);
1941 }
1942 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1943
1944
1945 static ssize_t write_cpuhp_fail(struct device *dev,
1946 struct device_attribute *attr,
1947 const char *buf, size_t count)
1948 {
1949 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1950 struct cpuhp_step *sp;
1951 int fail, ret;
1952
1953 ret = kstrtoint(buf, 10, &fail);
1954 if (ret)
1955 return ret;
1956
1957 /*
1958 * Cannot fail STARTING/DYING callbacks.
1959 */
1960 if (cpuhp_is_atomic_state(fail))
1961 return -EINVAL;
1962
1963 /*
1964 * Cannot fail anything that doesn't have callbacks.
1965 */
1966 mutex_lock(&cpuhp_state_mutex);
1967 sp = cpuhp_get_step(fail);
1968 if (!sp->startup.single && !sp->teardown.single)
1969 ret = -EINVAL;
1970 mutex_unlock(&cpuhp_state_mutex);
1971 if (ret)
1972 return ret;
1973
1974 st->fail = fail;
1975
1976 return count;
1977 }
1978
1979 static ssize_t show_cpuhp_fail(struct device *dev,
1980 struct device_attribute *attr, char *buf)
1981 {
1982 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1983
1984 return sprintf(buf, "%d\n", st->fail);
1985 }
1986
1987 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1988
1989 static struct attribute *cpuhp_cpu_attrs[] = {
1990 &dev_attr_state.attr,
1991 &dev_attr_target.attr,
1992 &dev_attr_fail.attr,
1993 NULL
1994 };
1995
1996 static const struct attribute_group cpuhp_cpu_attr_group = {
1997 .attrs = cpuhp_cpu_attrs,
1998 .name = "hotplug",
1999 NULL
2000 };
2001
2002 static ssize_t show_cpuhp_states(struct device *dev,
2003 struct device_attribute *attr, char *buf)
2004 {
2005 ssize_t cur, res = 0;
2006 int i;
2007
2008 mutex_lock(&cpuhp_state_mutex);
2009 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2010 struct cpuhp_step *sp = cpuhp_get_step(i);
2011
2012 if (sp->name) {
2013 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2014 buf += cur;
2015 res += cur;
2016 }
2017 }
2018 mutex_unlock(&cpuhp_state_mutex);
2019 return res;
2020 }
2021 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2022
2023 static struct attribute *cpuhp_cpu_root_attrs[] = {
2024 &dev_attr_states.attr,
2025 NULL
2026 };
2027
2028 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2029 .attrs = cpuhp_cpu_root_attrs,
2030 .name = "hotplug",
2031 NULL
2032 };
2033
2034 #ifdef CONFIG_HOTPLUG_SMT
2035
2036 static const char *smt_states[] = {
2037 [CPU_SMT_ENABLED] = "on",
2038 [CPU_SMT_DISABLED] = "off",
2039 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2040 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2041 };
2042
2043 static ssize_t
2044 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2045 {
2046 return snprintf(buf, PAGE_SIZE - 2, "%s\n", smt_states[cpu_smt_control]);
2047 }
2048
2049 static void cpuhp_offline_cpu_device(unsigned int cpu)
2050 {
2051 struct device *dev = get_cpu_device(cpu);
2052
2053 dev->offline = true;
2054 /* Tell user space about the state change */
2055 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2056 }
2057
2058 static void cpuhp_online_cpu_device(unsigned int cpu)
2059 {
2060 struct device *dev = get_cpu_device(cpu);
2061
2062 dev->offline = false;
2063 /* Tell user space about the state change */
2064 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2065 }
2066
2067 static int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2068 {
2069 int cpu, ret = 0;
2070
2071 cpu_maps_update_begin();
2072 for_each_online_cpu(cpu) {
2073 if (topology_is_primary_thread(cpu))
2074 continue;
2075 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2076 if (ret)
2077 break;
2078 /*
2079 * As this needs to hold the cpu maps lock it's impossible
2080 * to call device_offline() because that ends up calling
2081 * cpu_down() which takes cpu maps lock. cpu maps lock
2082 * needs to be held as this might race against in kernel
2083 * abusers of the hotplug machinery (thermal management).
2084 *
2085 * So nothing would update device:offline state. That would
2086 * leave the sysfs entry stale and prevent onlining after
2087 * smt control has been changed to 'off' again. This is
2088 * called under the sysfs hotplug lock, so it is properly
2089 * serialized against the regular offline usage.
2090 */
2091 cpuhp_offline_cpu_device(cpu);
2092 }
2093 if (!ret)
2094 cpu_smt_control = ctrlval;
2095 cpu_maps_update_done();
2096 return ret;
2097 }
2098
2099 static int cpuhp_smt_enable(void)
2100 {
2101 int cpu, ret = 0;
2102
2103 cpu_maps_update_begin();
2104 cpu_smt_control = CPU_SMT_ENABLED;
2105 for_each_present_cpu(cpu) {
2106 /* Skip online CPUs and CPUs on offline nodes */
2107 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2108 continue;
2109 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2110 if (ret)
2111 break;
2112 /* See comment in cpuhp_smt_disable() */
2113 cpuhp_online_cpu_device(cpu);
2114 }
2115 cpu_maps_update_done();
2116 return ret;
2117 }
2118
2119 static ssize_t
2120 store_smt_control(struct device *dev, struct device_attribute *attr,
2121 const char *buf, size_t count)
2122 {
2123 int ctrlval, ret;
2124
2125 if (sysfs_streq(buf, "on"))
2126 ctrlval = CPU_SMT_ENABLED;
2127 else if (sysfs_streq(buf, "off"))
2128 ctrlval = CPU_SMT_DISABLED;
2129 else if (sysfs_streq(buf, "forceoff"))
2130 ctrlval = CPU_SMT_FORCE_DISABLED;
2131 else
2132 return -EINVAL;
2133
2134 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2135 return -EPERM;
2136
2137 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2138 return -ENODEV;
2139
2140 ret = lock_device_hotplug_sysfs();
2141 if (ret)
2142 return ret;
2143
2144 if (ctrlval != cpu_smt_control) {
2145 switch (ctrlval) {
2146 case CPU_SMT_ENABLED:
2147 ret = cpuhp_smt_enable();
2148 break;
2149 case CPU_SMT_DISABLED:
2150 case CPU_SMT_FORCE_DISABLED:
2151 ret = cpuhp_smt_disable(ctrlval);
2152 break;
2153 }
2154 }
2155
2156 unlock_device_hotplug();
2157 return ret ? ret : count;
2158 }
2159 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2160
2161 static ssize_t
2162 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2163 {
2164 bool active = topology_max_smt_threads() > 1;
2165
2166 return snprintf(buf, PAGE_SIZE - 2, "%d\n", active);
2167 }
2168 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2169
2170 static struct attribute *cpuhp_smt_attrs[] = {
2171 &dev_attr_control.attr,
2172 &dev_attr_active.attr,
2173 NULL
2174 };
2175
2176 static const struct attribute_group cpuhp_smt_attr_group = {
2177 .attrs = cpuhp_smt_attrs,
2178 .name = "smt",
2179 NULL
2180 };
2181
2182 static int __init cpu_smt_state_init(void)
2183 {
2184 return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2185 &cpuhp_smt_attr_group);
2186 }
2187
2188 #else
2189 static inline int cpu_smt_state_init(void) { return 0; }
2190 #endif
2191
2192 static int __init cpuhp_sysfs_init(void)
2193 {
2194 int cpu, ret;
2195
2196 ret = cpu_smt_state_init();
2197 if (ret)
2198 return ret;
2199
2200 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2201 &cpuhp_cpu_root_attr_group);
2202 if (ret)
2203 return ret;
2204
2205 for_each_possible_cpu(cpu) {
2206 struct device *dev = get_cpu_device(cpu);
2207
2208 if (!dev)
2209 continue;
2210 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2211 if (ret)
2212 return ret;
2213 }
2214 return 0;
2215 }
2216 device_initcall(cpuhp_sysfs_init);
2217 #endif
2218
2219 /*
2220 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2221 * represents all NR_CPUS bits binary values of 1<<nr.
2222 *
2223 * It is used by cpumask_of() to get a constant address to a CPU
2224 * mask value that has a single bit set only.
2225 */
2226
2227 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2228 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2229 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2230 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2231 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2232
2233 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2234
2235 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2236 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2237 #if BITS_PER_LONG > 32
2238 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2239 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2240 #endif
2241 };
2242 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2243
2244 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2245 EXPORT_SYMBOL(cpu_all_bits);
2246
2247 #ifdef CONFIG_INIT_ALL_POSSIBLE
2248 struct cpumask __cpu_possible_mask __read_mostly
2249 = {CPU_BITS_ALL};
2250 #else
2251 struct cpumask __cpu_possible_mask __read_mostly;
2252 #endif
2253 EXPORT_SYMBOL(__cpu_possible_mask);
2254
2255 struct cpumask __cpu_online_mask __read_mostly;
2256 EXPORT_SYMBOL(__cpu_online_mask);
2257
2258 struct cpumask __cpu_present_mask __read_mostly;
2259 EXPORT_SYMBOL(__cpu_present_mask);
2260
2261 struct cpumask __cpu_active_mask __read_mostly;
2262 EXPORT_SYMBOL(__cpu_active_mask);
2263
2264 void init_cpu_present(const struct cpumask *src)
2265 {
2266 cpumask_copy(&__cpu_present_mask, src);
2267 }
2268
2269 void init_cpu_possible(const struct cpumask *src)
2270 {
2271 cpumask_copy(&__cpu_possible_mask, src);
2272 }
2273
2274 void init_cpu_online(const struct cpumask *src)
2275 {
2276 cpumask_copy(&__cpu_online_mask, src);
2277 }
2278
2279 /*
2280 * Activate the first processor.
2281 */
2282 void __init boot_cpu_init(void)
2283 {
2284 int cpu = smp_processor_id();
2285
2286 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2287 set_cpu_online(cpu, true);
2288 set_cpu_active(cpu, true);
2289 set_cpu_present(cpu, true);
2290 set_cpu_possible(cpu, true);
2291
2292 #ifdef CONFIG_SMP
2293 __boot_cpu_id = cpu;
2294 #endif
2295 }
2296
2297 /*
2298 * Must be called _AFTER_ setting up the per_cpu areas
2299 */
2300 void __init boot_cpu_hotplug_init(void)
2301 {
2302 #ifdef CONFIG_SMP
2303 this_cpu_write(cpuhp_state.booted_once, true);
2304 #endif
2305 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2306 }