]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - kernel/events/ring_buffer.c
perf/ring_buffer: Fix exposing a temporarily decreased data_head
[thirdparty/kernel/stable.git] / kernel / events / ring_buffer.c
1 /*
2 * Performance events ring-buffer code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/perf_event.h>
13 #include <linux/vmalloc.h>
14 #include <linux/slab.h>
15 #include <linux/circ_buf.h>
16 #include <linux/poll.h>
17 #include <linux/nospec.h>
18
19 #include "internal.h"
20
21 static void perf_output_wakeup(struct perf_output_handle *handle)
22 {
23 atomic_set(&handle->rb->poll, EPOLLIN);
24
25 handle->event->pending_wakeup = 1;
26 irq_work_queue(&handle->event->pending);
27 }
28
29 /*
30 * We need to ensure a later event_id doesn't publish a head when a former
31 * event isn't done writing. However since we need to deal with NMIs we
32 * cannot fully serialize things.
33 *
34 * We only publish the head (and generate a wakeup) when the outer-most
35 * event completes.
36 */
37 static void perf_output_get_handle(struct perf_output_handle *handle)
38 {
39 struct ring_buffer *rb = handle->rb;
40
41 preempt_disable();
42 local_inc(&rb->nest);
43 handle->wakeup = local_read(&rb->wakeup);
44 }
45
46 static void perf_output_put_handle(struct perf_output_handle *handle)
47 {
48 struct ring_buffer *rb = handle->rb;
49 unsigned long head;
50
51 again:
52 head = local_read(&rb->head);
53
54 /*
55 * IRQ/NMI can happen here and advance @rb->head, causing our
56 * load above to be stale.
57 */
58
59 /*
60 * If this isn't the outermost nesting, we don't have to update
61 * @rb->user_page->data_head.
62 */
63 if (local_read(&rb->nest) > 1) {
64 local_dec(&rb->nest);
65 goto out;
66 }
67
68 /*
69 * Since the mmap() consumer (userspace) can run on a different CPU:
70 *
71 * kernel user
72 *
73 * if (LOAD ->data_tail) { LOAD ->data_head
74 * (A) smp_rmb() (C)
75 * STORE $data LOAD $data
76 * smp_wmb() (B) smp_mb() (D)
77 * STORE ->data_head STORE ->data_tail
78 * }
79 *
80 * Where A pairs with D, and B pairs with C.
81 *
82 * In our case (A) is a control dependency that separates the load of
83 * the ->data_tail and the stores of $data. In case ->data_tail
84 * indicates there is no room in the buffer to store $data we do not.
85 *
86 * D needs to be a full barrier since it separates the data READ
87 * from the tail WRITE.
88 *
89 * For B a WMB is sufficient since it separates two WRITEs, and for C
90 * an RMB is sufficient since it separates two READs.
91 *
92 * See perf_output_begin().
93 */
94 smp_wmb(); /* B, matches C */
95 rb->user_page->data_head = head;
96
97 /*
98 * We must publish the head before decrementing the nest count,
99 * otherwise an IRQ/NMI can publish a more recent head value and our
100 * write will (temporarily) publish a stale value.
101 */
102 barrier();
103 local_set(&rb->nest, 0);
104
105 /*
106 * Ensure we decrement @rb->nest before we validate the @rb->head.
107 * Otherwise we cannot be sure we caught the 'last' nested update.
108 */
109 barrier();
110 if (unlikely(head != local_read(&rb->head))) {
111 local_inc(&rb->nest);
112 goto again;
113 }
114
115 if (handle->wakeup != local_read(&rb->wakeup))
116 perf_output_wakeup(handle);
117
118 out:
119 preempt_enable();
120 }
121
122 static __always_inline bool
123 ring_buffer_has_space(unsigned long head, unsigned long tail,
124 unsigned long data_size, unsigned int size,
125 bool backward)
126 {
127 if (!backward)
128 return CIRC_SPACE(head, tail, data_size) >= size;
129 else
130 return CIRC_SPACE(tail, head, data_size) >= size;
131 }
132
133 static __always_inline int
134 __perf_output_begin(struct perf_output_handle *handle,
135 struct perf_event *event, unsigned int size,
136 bool backward)
137 {
138 struct ring_buffer *rb;
139 unsigned long tail, offset, head;
140 int have_lost, page_shift;
141 struct {
142 struct perf_event_header header;
143 u64 id;
144 u64 lost;
145 } lost_event;
146
147 rcu_read_lock();
148 /*
149 * For inherited events we send all the output towards the parent.
150 */
151 if (event->parent)
152 event = event->parent;
153
154 rb = rcu_dereference(event->rb);
155 if (unlikely(!rb))
156 goto out;
157
158 if (unlikely(rb->paused)) {
159 if (rb->nr_pages)
160 local_inc(&rb->lost);
161 goto out;
162 }
163
164 handle->rb = rb;
165 handle->event = event;
166
167 have_lost = local_read(&rb->lost);
168 if (unlikely(have_lost)) {
169 size += sizeof(lost_event);
170 if (event->attr.sample_id_all)
171 size += event->id_header_size;
172 }
173
174 perf_output_get_handle(handle);
175
176 do {
177 tail = READ_ONCE(rb->user_page->data_tail);
178 offset = head = local_read(&rb->head);
179 if (!rb->overwrite) {
180 if (unlikely(!ring_buffer_has_space(head, tail,
181 perf_data_size(rb),
182 size, backward)))
183 goto fail;
184 }
185
186 /*
187 * The above forms a control dependency barrier separating the
188 * @tail load above from the data stores below. Since the @tail
189 * load is required to compute the branch to fail below.
190 *
191 * A, matches D; the full memory barrier userspace SHOULD issue
192 * after reading the data and before storing the new tail
193 * position.
194 *
195 * See perf_output_put_handle().
196 */
197
198 if (!backward)
199 head += size;
200 else
201 head -= size;
202 } while (local_cmpxchg(&rb->head, offset, head) != offset);
203
204 if (backward) {
205 offset = head;
206 head = (u64)(-head);
207 }
208
209 /*
210 * We rely on the implied barrier() by local_cmpxchg() to ensure
211 * none of the data stores below can be lifted up by the compiler.
212 */
213
214 if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
215 local_add(rb->watermark, &rb->wakeup);
216
217 page_shift = PAGE_SHIFT + page_order(rb);
218
219 handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
220 offset &= (1UL << page_shift) - 1;
221 handle->addr = rb->data_pages[handle->page] + offset;
222 handle->size = (1UL << page_shift) - offset;
223
224 if (unlikely(have_lost)) {
225 struct perf_sample_data sample_data;
226
227 lost_event.header.size = sizeof(lost_event);
228 lost_event.header.type = PERF_RECORD_LOST;
229 lost_event.header.misc = 0;
230 lost_event.id = event->id;
231 lost_event.lost = local_xchg(&rb->lost, 0);
232
233 perf_event_header__init_id(&lost_event.header,
234 &sample_data, event);
235 perf_output_put(handle, lost_event);
236 perf_event__output_id_sample(event, handle, &sample_data);
237 }
238
239 return 0;
240
241 fail:
242 local_inc(&rb->lost);
243 perf_output_put_handle(handle);
244 out:
245 rcu_read_unlock();
246
247 return -ENOSPC;
248 }
249
250 int perf_output_begin_forward(struct perf_output_handle *handle,
251 struct perf_event *event, unsigned int size)
252 {
253 return __perf_output_begin(handle, event, size, false);
254 }
255
256 int perf_output_begin_backward(struct perf_output_handle *handle,
257 struct perf_event *event, unsigned int size)
258 {
259 return __perf_output_begin(handle, event, size, true);
260 }
261
262 int perf_output_begin(struct perf_output_handle *handle,
263 struct perf_event *event, unsigned int size)
264 {
265
266 return __perf_output_begin(handle, event, size,
267 unlikely(is_write_backward(event)));
268 }
269
270 unsigned int perf_output_copy(struct perf_output_handle *handle,
271 const void *buf, unsigned int len)
272 {
273 return __output_copy(handle, buf, len);
274 }
275
276 unsigned int perf_output_skip(struct perf_output_handle *handle,
277 unsigned int len)
278 {
279 return __output_skip(handle, NULL, len);
280 }
281
282 void perf_output_end(struct perf_output_handle *handle)
283 {
284 perf_output_put_handle(handle);
285 rcu_read_unlock();
286 }
287
288 static void
289 ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
290 {
291 long max_size = perf_data_size(rb);
292
293 if (watermark)
294 rb->watermark = min(max_size, watermark);
295
296 if (!rb->watermark)
297 rb->watermark = max_size / 2;
298
299 if (flags & RING_BUFFER_WRITABLE)
300 rb->overwrite = 0;
301 else
302 rb->overwrite = 1;
303
304 atomic_set(&rb->refcount, 1);
305
306 INIT_LIST_HEAD(&rb->event_list);
307 spin_lock_init(&rb->event_lock);
308
309 /*
310 * perf_output_begin() only checks rb->paused, therefore
311 * rb->paused must be true if we have no pages for output.
312 */
313 if (!rb->nr_pages)
314 rb->paused = 1;
315 }
316
317 void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags)
318 {
319 /*
320 * OVERWRITE is determined by perf_aux_output_end() and can't
321 * be passed in directly.
322 */
323 if (WARN_ON_ONCE(flags & PERF_AUX_FLAG_OVERWRITE))
324 return;
325
326 handle->aux_flags |= flags;
327 }
328 EXPORT_SYMBOL_GPL(perf_aux_output_flag);
329
330 /*
331 * This is called before hardware starts writing to the AUX area to
332 * obtain an output handle and make sure there's room in the buffer.
333 * When the capture completes, call perf_aux_output_end() to commit
334 * the recorded data to the buffer.
335 *
336 * The ordering is similar to that of perf_output_{begin,end}, with
337 * the exception of (B), which should be taken care of by the pmu
338 * driver, since ordering rules will differ depending on hardware.
339 *
340 * Call this from pmu::start(); see the comment in perf_aux_output_end()
341 * about its use in pmu callbacks. Both can also be called from the PMI
342 * handler if needed.
343 */
344 void *perf_aux_output_begin(struct perf_output_handle *handle,
345 struct perf_event *event)
346 {
347 struct perf_event *output_event = event;
348 unsigned long aux_head, aux_tail;
349 struct ring_buffer *rb;
350
351 if (output_event->parent)
352 output_event = output_event->parent;
353
354 /*
355 * Since this will typically be open across pmu::add/pmu::del, we
356 * grab ring_buffer's refcount instead of holding rcu read lock
357 * to make sure it doesn't disappear under us.
358 */
359 rb = ring_buffer_get(output_event);
360 if (!rb)
361 return NULL;
362
363 if (!rb_has_aux(rb))
364 goto err;
365
366 /*
367 * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(),
368 * about to get freed, so we leave immediately.
369 *
370 * Checking rb::aux_mmap_count and rb::refcount has to be done in
371 * the same order, see perf_mmap_close. Otherwise we end up freeing
372 * aux pages in this path, which is a bug, because in_atomic().
373 */
374 if (!atomic_read(&rb->aux_mmap_count))
375 goto err;
376
377 if (!atomic_inc_not_zero(&rb->aux_refcount))
378 goto err;
379
380 /*
381 * Nesting is not supported for AUX area, make sure nested
382 * writers are caught early
383 */
384 if (WARN_ON_ONCE(local_xchg(&rb->aux_nest, 1)))
385 goto err_put;
386
387 aux_head = rb->aux_head;
388
389 handle->rb = rb;
390 handle->event = event;
391 handle->head = aux_head;
392 handle->size = 0;
393 handle->aux_flags = 0;
394
395 /*
396 * In overwrite mode, AUX data stores do not depend on aux_tail,
397 * therefore (A) control dependency barrier does not exist. The
398 * (B) <-> (C) ordering is still observed by the pmu driver.
399 */
400 if (!rb->aux_overwrite) {
401 aux_tail = READ_ONCE(rb->user_page->aux_tail);
402 handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
403 if (aux_head - aux_tail < perf_aux_size(rb))
404 handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb));
405
406 /*
407 * handle->size computation depends on aux_tail load; this forms a
408 * control dependency barrier separating aux_tail load from aux data
409 * store that will be enabled on successful return
410 */
411 if (!handle->size) { /* A, matches D */
412 event->pending_disable = smp_processor_id();
413 perf_output_wakeup(handle);
414 local_set(&rb->aux_nest, 0);
415 goto err_put;
416 }
417 }
418
419 return handle->rb->aux_priv;
420
421 err_put:
422 /* can't be last */
423 rb_free_aux(rb);
424
425 err:
426 ring_buffer_put(rb);
427 handle->event = NULL;
428
429 return NULL;
430 }
431 EXPORT_SYMBOL_GPL(perf_aux_output_begin);
432
433 static __always_inline bool rb_need_aux_wakeup(struct ring_buffer *rb)
434 {
435 if (rb->aux_overwrite)
436 return false;
437
438 if (rb->aux_head - rb->aux_wakeup >= rb->aux_watermark) {
439 rb->aux_wakeup = rounddown(rb->aux_head, rb->aux_watermark);
440 return true;
441 }
442
443 return false;
444 }
445
446 /*
447 * Commit the data written by hardware into the ring buffer by adjusting
448 * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the
449 * pmu driver's responsibility to observe ordering rules of the hardware,
450 * so that all the data is externally visible before this is called.
451 *
452 * Note: this has to be called from pmu::stop() callback, as the assumption
453 * of the AUX buffer management code is that after pmu::stop(), the AUX
454 * transaction must be stopped and therefore drop the AUX reference count.
455 */
456 void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
457 {
458 bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED);
459 struct ring_buffer *rb = handle->rb;
460 unsigned long aux_head;
461
462 /* in overwrite mode, driver provides aux_head via handle */
463 if (rb->aux_overwrite) {
464 handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE;
465
466 aux_head = handle->head;
467 rb->aux_head = aux_head;
468 } else {
469 handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE;
470
471 aux_head = rb->aux_head;
472 rb->aux_head += size;
473 }
474
475 if (size || handle->aux_flags) {
476 /*
477 * Only send RECORD_AUX if we have something useful to communicate
478 */
479
480 perf_event_aux_event(handle->event, aux_head, size,
481 handle->aux_flags);
482 }
483
484 rb->user_page->aux_head = rb->aux_head;
485 if (rb_need_aux_wakeup(rb))
486 wakeup = true;
487
488 if (wakeup) {
489 if (handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)
490 handle->event->pending_disable = smp_processor_id();
491 perf_output_wakeup(handle);
492 }
493
494 handle->event = NULL;
495
496 local_set(&rb->aux_nest, 0);
497 /* can't be last */
498 rb_free_aux(rb);
499 ring_buffer_put(rb);
500 }
501 EXPORT_SYMBOL_GPL(perf_aux_output_end);
502
503 /*
504 * Skip over a given number of bytes in the AUX buffer, due to, for example,
505 * hardware's alignment constraints.
506 */
507 int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size)
508 {
509 struct ring_buffer *rb = handle->rb;
510
511 if (size > handle->size)
512 return -ENOSPC;
513
514 rb->aux_head += size;
515
516 rb->user_page->aux_head = rb->aux_head;
517 if (rb_need_aux_wakeup(rb)) {
518 perf_output_wakeup(handle);
519 handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
520 }
521
522 handle->head = rb->aux_head;
523 handle->size -= size;
524
525 return 0;
526 }
527 EXPORT_SYMBOL_GPL(perf_aux_output_skip);
528
529 void *perf_get_aux(struct perf_output_handle *handle)
530 {
531 /* this is only valid between perf_aux_output_begin and *_end */
532 if (!handle->event)
533 return NULL;
534
535 return handle->rb->aux_priv;
536 }
537 EXPORT_SYMBOL_GPL(perf_get_aux);
538
539 #define PERF_AUX_GFP (GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)
540
541 static struct page *rb_alloc_aux_page(int node, int order)
542 {
543 struct page *page;
544
545 if (order > MAX_ORDER)
546 order = MAX_ORDER;
547
548 do {
549 page = alloc_pages_node(node, PERF_AUX_GFP, order);
550 } while (!page && order--);
551
552 if (page && order) {
553 /*
554 * Communicate the allocation size to the driver:
555 * if we managed to secure a high-order allocation,
556 * set its first page's private to this order;
557 * !PagePrivate(page) means it's just a normal page.
558 */
559 split_page(page, order);
560 SetPagePrivate(page);
561 set_page_private(page, order);
562 }
563
564 return page;
565 }
566
567 static void rb_free_aux_page(struct ring_buffer *rb, int idx)
568 {
569 struct page *page = virt_to_page(rb->aux_pages[idx]);
570
571 ClearPagePrivate(page);
572 page->mapping = NULL;
573 __free_page(page);
574 }
575
576 static void __rb_free_aux(struct ring_buffer *rb)
577 {
578 int pg;
579
580 /*
581 * Should never happen, the last reference should be dropped from
582 * perf_mmap_close() path, which first stops aux transactions (which
583 * in turn are the atomic holders of aux_refcount) and then does the
584 * last rb_free_aux().
585 */
586 WARN_ON_ONCE(in_atomic());
587
588 if (rb->aux_priv) {
589 rb->free_aux(rb->aux_priv);
590 rb->free_aux = NULL;
591 rb->aux_priv = NULL;
592 }
593
594 if (rb->aux_nr_pages) {
595 for (pg = 0; pg < rb->aux_nr_pages; pg++)
596 rb_free_aux_page(rb, pg);
597
598 kfree(rb->aux_pages);
599 rb->aux_nr_pages = 0;
600 }
601 }
602
603 int rb_alloc_aux(struct ring_buffer *rb, struct perf_event *event,
604 pgoff_t pgoff, int nr_pages, long watermark, int flags)
605 {
606 bool overwrite = !(flags & RING_BUFFER_WRITABLE);
607 int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu);
608 int ret = -ENOMEM, max_order = 0;
609
610 if (!has_aux(event))
611 return -EOPNOTSUPP;
612
613 if (event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) {
614 /*
615 * We need to start with the max_order that fits in nr_pages,
616 * not the other way around, hence ilog2() and not get_order.
617 */
618 max_order = ilog2(nr_pages);
619
620 /*
621 * PMU requests more than one contiguous chunks of memory
622 * for SW double buffering
623 */
624 if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_SW_DOUBLEBUF) &&
625 !overwrite) {
626 if (!max_order)
627 return -EINVAL;
628
629 max_order--;
630 }
631 }
632
633 rb->aux_pages = kcalloc_node(nr_pages, sizeof(void *), GFP_KERNEL,
634 node);
635 if (!rb->aux_pages)
636 return -ENOMEM;
637
638 rb->free_aux = event->pmu->free_aux;
639 for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) {
640 struct page *page;
641 int last, order;
642
643 order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages));
644 page = rb_alloc_aux_page(node, order);
645 if (!page)
646 goto out;
647
648 for (last = rb->aux_nr_pages + (1 << page_private(page));
649 last > rb->aux_nr_pages; rb->aux_nr_pages++)
650 rb->aux_pages[rb->aux_nr_pages] = page_address(page++);
651 }
652
653 /*
654 * In overwrite mode, PMUs that don't support SG may not handle more
655 * than one contiguous allocation, since they rely on PMI to do double
656 * buffering. In this case, the entire buffer has to be one contiguous
657 * chunk.
658 */
659 if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) &&
660 overwrite) {
661 struct page *page = virt_to_page(rb->aux_pages[0]);
662
663 if (page_private(page) != max_order)
664 goto out;
665 }
666
667 rb->aux_priv = event->pmu->setup_aux(event, rb->aux_pages, nr_pages,
668 overwrite);
669 if (!rb->aux_priv)
670 goto out;
671
672 ret = 0;
673
674 /*
675 * aux_pages (and pmu driver's private data, aux_priv) will be
676 * referenced in both producer's and consumer's contexts, thus
677 * we keep a refcount here to make sure either of the two can
678 * reference them safely.
679 */
680 atomic_set(&rb->aux_refcount, 1);
681
682 rb->aux_overwrite = overwrite;
683 rb->aux_watermark = watermark;
684
685 if (!rb->aux_watermark && !rb->aux_overwrite)
686 rb->aux_watermark = nr_pages << (PAGE_SHIFT - 1);
687
688 out:
689 if (!ret)
690 rb->aux_pgoff = pgoff;
691 else
692 __rb_free_aux(rb);
693
694 return ret;
695 }
696
697 void rb_free_aux(struct ring_buffer *rb)
698 {
699 if (atomic_dec_and_test(&rb->aux_refcount))
700 __rb_free_aux(rb);
701 }
702
703 #ifndef CONFIG_PERF_USE_VMALLOC
704
705 /*
706 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
707 */
708
709 static struct page *
710 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
711 {
712 if (pgoff > rb->nr_pages)
713 return NULL;
714
715 if (pgoff == 0)
716 return virt_to_page(rb->user_page);
717
718 return virt_to_page(rb->data_pages[pgoff - 1]);
719 }
720
721 static void *perf_mmap_alloc_page(int cpu)
722 {
723 struct page *page;
724 int node;
725
726 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
727 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
728 if (!page)
729 return NULL;
730
731 return page_address(page);
732 }
733
734 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
735 {
736 struct ring_buffer *rb;
737 unsigned long size;
738 int i;
739
740 size = sizeof(struct ring_buffer);
741 size += nr_pages * sizeof(void *);
742
743 if (order_base_2(size) >= PAGE_SHIFT+MAX_ORDER)
744 goto fail;
745
746 rb = kzalloc(size, GFP_KERNEL);
747 if (!rb)
748 goto fail;
749
750 rb->user_page = perf_mmap_alloc_page(cpu);
751 if (!rb->user_page)
752 goto fail_user_page;
753
754 for (i = 0; i < nr_pages; i++) {
755 rb->data_pages[i] = perf_mmap_alloc_page(cpu);
756 if (!rb->data_pages[i])
757 goto fail_data_pages;
758 }
759
760 rb->nr_pages = nr_pages;
761
762 ring_buffer_init(rb, watermark, flags);
763
764 return rb;
765
766 fail_data_pages:
767 for (i--; i >= 0; i--)
768 free_page((unsigned long)rb->data_pages[i]);
769
770 free_page((unsigned long)rb->user_page);
771
772 fail_user_page:
773 kfree(rb);
774
775 fail:
776 return NULL;
777 }
778
779 static void perf_mmap_free_page(unsigned long addr)
780 {
781 struct page *page = virt_to_page((void *)addr);
782
783 page->mapping = NULL;
784 __free_page(page);
785 }
786
787 void rb_free(struct ring_buffer *rb)
788 {
789 int i;
790
791 perf_mmap_free_page((unsigned long)rb->user_page);
792 for (i = 0; i < rb->nr_pages; i++)
793 perf_mmap_free_page((unsigned long)rb->data_pages[i]);
794 kfree(rb);
795 }
796
797 #else
798 static int data_page_nr(struct ring_buffer *rb)
799 {
800 return rb->nr_pages << page_order(rb);
801 }
802
803 static struct page *
804 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
805 {
806 /* The '>' counts in the user page. */
807 if (pgoff > data_page_nr(rb))
808 return NULL;
809
810 return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
811 }
812
813 static void perf_mmap_unmark_page(void *addr)
814 {
815 struct page *page = vmalloc_to_page(addr);
816
817 page->mapping = NULL;
818 }
819
820 static void rb_free_work(struct work_struct *work)
821 {
822 struct ring_buffer *rb;
823 void *base;
824 int i, nr;
825
826 rb = container_of(work, struct ring_buffer, work);
827 nr = data_page_nr(rb);
828
829 base = rb->user_page;
830 /* The '<=' counts in the user page. */
831 for (i = 0; i <= nr; i++)
832 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
833
834 vfree(base);
835 kfree(rb);
836 }
837
838 void rb_free(struct ring_buffer *rb)
839 {
840 schedule_work(&rb->work);
841 }
842
843 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
844 {
845 struct ring_buffer *rb;
846 unsigned long size;
847 void *all_buf;
848
849 size = sizeof(struct ring_buffer);
850 size += sizeof(void *);
851
852 rb = kzalloc(size, GFP_KERNEL);
853 if (!rb)
854 goto fail;
855
856 INIT_WORK(&rb->work, rb_free_work);
857
858 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
859 if (!all_buf)
860 goto fail_all_buf;
861
862 rb->user_page = all_buf;
863 rb->data_pages[0] = all_buf + PAGE_SIZE;
864 if (nr_pages) {
865 rb->nr_pages = 1;
866 rb->page_order = ilog2(nr_pages);
867 }
868
869 ring_buffer_init(rb, watermark, flags);
870
871 return rb;
872
873 fail_all_buf:
874 kfree(rb);
875
876 fail:
877 return NULL;
878 }
879
880 #endif
881
882 struct page *
883 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
884 {
885 if (rb->aux_nr_pages) {
886 /* above AUX space */
887 if (pgoff > rb->aux_pgoff + rb->aux_nr_pages)
888 return NULL;
889
890 /* AUX space */
891 if (pgoff >= rb->aux_pgoff) {
892 int aux_pgoff = array_index_nospec(pgoff - rb->aux_pgoff, rb->aux_nr_pages);
893 return virt_to_page(rb->aux_pages[aux_pgoff]);
894 }
895 }
896
897 return __perf_mmap_to_page(rb, pgoff);
898 }