]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - kernel/relay.c
Merge branch 'x86-kdump-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/kernel/stable.git] / kernel / relay.c
1 /*
2 * Public API and common code for kernel->userspace relay file support.
3 *
4 * See Documentation/filesystems/relay.txt for an overview.
5 *
6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8 *
9 * Moved to kernel/relay.c by Paul Mundt, 2006.
10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
11 * (mathieu.desnoyers@polymtl.ca)
12 *
13 * This file is released under the GPL.
14 */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29
30 /*
31 * close() vm_op implementation for relay file mapping.
32 */
33 static void relay_file_mmap_close(struct vm_area_struct *vma)
34 {
35 struct rchan_buf *buf = vma->vm_private_data;
36 buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37 }
38
39 /*
40 * fault() vm_op implementation for relay file mapping.
41 */
42 static vm_fault_t relay_buf_fault(struct vm_fault *vmf)
43 {
44 struct page *page;
45 struct rchan_buf *buf = vmf->vma->vm_private_data;
46 pgoff_t pgoff = vmf->pgoff;
47
48 if (!buf)
49 return VM_FAULT_OOM;
50
51 page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52 if (!page)
53 return VM_FAULT_SIGBUS;
54 get_page(page);
55 vmf->page = page;
56
57 return 0;
58 }
59
60 /*
61 * vm_ops for relay file mappings.
62 */
63 static const struct vm_operations_struct relay_file_mmap_ops = {
64 .fault = relay_buf_fault,
65 .close = relay_file_mmap_close,
66 };
67
68 /*
69 * allocate an array of pointers of struct page
70 */
71 static struct page **relay_alloc_page_array(unsigned int n_pages)
72 {
73 const size_t pa_size = n_pages * sizeof(struct page *);
74 if (pa_size > PAGE_SIZE)
75 return vzalloc(pa_size);
76 return kzalloc(pa_size, GFP_KERNEL);
77 }
78
79 /*
80 * free an array of pointers of struct page
81 */
82 static void relay_free_page_array(struct page **array)
83 {
84 kvfree(array);
85 }
86
87 /**
88 * relay_mmap_buf: - mmap channel buffer to process address space
89 * @buf: relay channel buffer
90 * @vma: vm_area_struct describing memory to be mapped
91 *
92 * Returns 0 if ok, negative on error
93 *
94 * Caller should already have grabbed mmap_sem.
95 */
96 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
97 {
98 unsigned long length = vma->vm_end - vma->vm_start;
99 struct file *filp = vma->vm_file;
100
101 if (!buf)
102 return -EBADF;
103
104 if (length != (unsigned long)buf->chan->alloc_size)
105 return -EINVAL;
106
107 vma->vm_ops = &relay_file_mmap_ops;
108 vma->vm_flags |= VM_DONTEXPAND;
109 vma->vm_private_data = buf;
110 buf->chan->cb->buf_mapped(buf, filp);
111
112 return 0;
113 }
114
115 /**
116 * relay_alloc_buf - allocate a channel buffer
117 * @buf: the buffer struct
118 * @size: total size of the buffer
119 *
120 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
121 * passed in size will get page aligned, if it isn't already.
122 */
123 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
124 {
125 void *mem;
126 unsigned int i, j, n_pages;
127
128 *size = PAGE_ALIGN(*size);
129 n_pages = *size >> PAGE_SHIFT;
130
131 buf->page_array = relay_alloc_page_array(n_pages);
132 if (!buf->page_array)
133 return NULL;
134
135 for (i = 0; i < n_pages; i++) {
136 buf->page_array[i] = alloc_page(GFP_KERNEL);
137 if (unlikely(!buf->page_array[i]))
138 goto depopulate;
139 set_page_private(buf->page_array[i], (unsigned long)buf);
140 }
141 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
142 if (!mem)
143 goto depopulate;
144
145 memset(mem, 0, *size);
146 buf->page_count = n_pages;
147 return mem;
148
149 depopulate:
150 for (j = 0; j < i; j++)
151 __free_page(buf->page_array[j]);
152 relay_free_page_array(buf->page_array);
153 return NULL;
154 }
155
156 /**
157 * relay_create_buf - allocate and initialize a channel buffer
158 * @chan: the relay channel
159 *
160 * Returns channel buffer if successful, %NULL otherwise.
161 */
162 static struct rchan_buf *relay_create_buf(struct rchan *chan)
163 {
164 struct rchan_buf *buf;
165
166 if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t *))
167 return NULL;
168
169 buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
170 if (!buf)
171 return NULL;
172 buf->padding = kmalloc_array(chan->n_subbufs, sizeof(size_t *),
173 GFP_KERNEL);
174 if (!buf->padding)
175 goto free_buf;
176
177 buf->start = relay_alloc_buf(buf, &chan->alloc_size);
178 if (!buf->start)
179 goto free_buf;
180
181 buf->chan = chan;
182 kref_get(&buf->chan->kref);
183 return buf;
184
185 free_buf:
186 kfree(buf->padding);
187 kfree(buf);
188 return NULL;
189 }
190
191 /**
192 * relay_destroy_channel - free the channel struct
193 * @kref: target kernel reference that contains the relay channel
194 *
195 * Should only be called from kref_put().
196 */
197 static void relay_destroy_channel(struct kref *kref)
198 {
199 struct rchan *chan = container_of(kref, struct rchan, kref);
200 kfree(chan);
201 }
202
203 /**
204 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer
205 * @buf: the buffer struct
206 */
207 static void relay_destroy_buf(struct rchan_buf *buf)
208 {
209 struct rchan *chan = buf->chan;
210 unsigned int i;
211
212 if (likely(buf->start)) {
213 vunmap(buf->start);
214 for (i = 0; i < buf->page_count; i++)
215 __free_page(buf->page_array[i]);
216 relay_free_page_array(buf->page_array);
217 }
218 *per_cpu_ptr(chan->buf, buf->cpu) = NULL;
219 kfree(buf->padding);
220 kfree(buf);
221 kref_put(&chan->kref, relay_destroy_channel);
222 }
223
224 /**
225 * relay_remove_buf - remove a channel buffer
226 * @kref: target kernel reference that contains the relay buffer
227 *
228 * Removes the file from the filesystem, which also frees the
229 * rchan_buf_struct and the channel buffer. Should only be called from
230 * kref_put().
231 */
232 static void relay_remove_buf(struct kref *kref)
233 {
234 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
235 relay_destroy_buf(buf);
236 }
237
238 /**
239 * relay_buf_empty - boolean, is the channel buffer empty?
240 * @buf: channel buffer
241 *
242 * Returns 1 if the buffer is empty, 0 otherwise.
243 */
244 static int relay_buf_empty(struct rchan_buf *buf)
245 {
246 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
247 }
248
249 /**
250 * relay_buf_full - boolean, is the channel buffer full?
251 * @buf: channel buffer
252 *
253 * Returns 1 if the buffer is full, 0 otherwise.
254 */
255 int relay_buf_full(struct rchan_buf *buf)
256 {
257 size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
258 return (ready >= buf->chan->n_subbufs) ? 1 : 0;
259 }
260 EXPORT_SYMBOL_GPL(relay_buf_full);
261
262 /*
263 * High-level relay kernel API and associated functions.
264 */
265
266 /*
267 * rchan_callback implementations defining default channel behavior. Used
268 * in place of corresponding NULL values in client callback struct.
269 */
270
271 /*
272 * subbuf_start() default callback. Does nothing.
273 */
274 static int subbuf_start_default_callback (struct rchan_buf *buf,
275 void *subbuf,
276 void *prev_subbuf,
277 size_t prev_padding)
278 {
279 if (relay_buf_full(buf))
280 return 0;
281
282 return 1;
283 }
284
285 /*
286 * buf_mapped() default callback. Does nothing.
287 */
288 static void buf_mapped_default_callback(struct rchan_buf *buf,
289 struct file *filp)
290 {
291 }
292
293 /*
294 * buf_unmapped() default callback. Does nothing.
295 */
296 static void buf_unmapped_default_callback(struct rchan_buf *buf,
297 struct file *filp)
298 {
299 }
300
301 /*
302 * create_buf_file_create() default callback. Does nothing.
303 */
304 static struct dentry *create_buf_file_default_callback(const char *filename,
305 struct dentry *parent,
306 umode_t mode,
307 struct rchan_buf *buf,
308 int *is_global)
309 {
310 return NULL;
311 }
312
313 /*
314 * remove_buf_file() default callback. Does nothing.
315 */
316 static int remove_buf_file_default_callback(struct dentry *dentry)
317 {
318 return -EINVAL;
319 }
320
321 /* relay channel default callbacks */
322 static struct rchan_callbacks default_channel_callbacks = {
323 .subbuf_start = subbuf_start_default_callback,
324 .buf_mapped = buf_mapped_default_callback,
325 .buf_unmapped = buf_unmapped_default_callback,
326 .create_buf_file = create_buf_file_default_callback,
327 .remove_buf_file = remove_buf_file_default_callback,
328 };
329
330 /**
331 * wakeup_readers - wake up readers waiting on a channel
332 * @work: contains the channel buffer
333 *
334 * This is the function used to defer reader waking
335 */
336 static void wakeup_readers(struct irq_work *work)
337 {
338 struct rchan_buf *buf;
339
340 buf = container_of(work, struct rchan_buf, wakeup_work);
341 wake_up_interruptible(&buf->read_wait);
342 }
343
344 /**
345 * __relay_reset - reset a channel buffer
346 * @buf: the channel buffer
347 * @init: 1 if this is a first-time initialization
348 *
349 * See relay_reset() for description of effect.
350 */
351 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
352 {
353 size_t i;
354
355 if (init) {
356 init_waitqueue_head(&buf->read_wait);
357 kref_init(&buf->kref);
358 init_irq_work(&buf->wakeup_work, wakeup_readers);
359 } else {
360 irq_work_sync(&buf->wakeup_work);
361 }
362
363 buf->subbufs_produced = 0;
364 buf->subbufs_consumed = 0;
365 buf->bytes_consumed = 0;
366 buf->finalized = 0;
367 buf->data = buf->start;
368 buf->offset = 0;
369
370 for (i = 0; i < buf->chan->n_subbufs; i++)
371 buf->padding[i] = 0;
372
373 buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
374 }
375
376 /**
377 * relay_reset - reset the channel
378 * @chan: the channel
379 *
380 * This has the effect of erasing all data from all channel buffers
381 * and restarting the channel in its initial state. The buffers
382 * are not freed, so any mappings are still in effect.
383 *
384 * NOTE. Care should be taken that the channel isn't actually
385 * being used by anything when this call is made.
386 */
387 void relay_reset(struct rchan *chan)
388 {
389 struct rchan_buf *buf;
390 unsigned int i;
391
392 if (!chan)
393 return;
394
395 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
396 __relay_reset(buf, 0);
397 return;
398 }
399
400 mutex_lock(&relay_channels_mutex);
401 for_each_possible_cpu(i)
402 if ((buf = *per_cpu_ptr(chan->buf, i)))
403 __relay_reset(buf, 0);
404 mutex_unlock(&relay_channels_mutex);
405 }
406 EXPORT_SYMBOL_GPL(relay_reset);
407
408 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
409 struct dentry *dentry)
410 {
411 buf->dentry = dentry;
412 d_inode(buf->dentry)->i_size = buf->early_bytes;
413 }
414
415 static struct dentry *relay_create_buf_file(struct rchan *chan,
416 struct rchan_buf *buf,
417 unsigned int cpu)
418 {
419 struct dentry *dentry;
420 char *tmpname;
421
422 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
423 if (!tmpname)
424 return NULL;
425 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
426
427 /* Create file in fs */
428 dentry = chan->cb->create_buf_file(tmpname, chan->parent,
429 S_IRUSR, buf,
430 &chan->is_global);
431 if (IS_ERR(dentry))
432 dentry = NULL;
433
434 kfree(tmpname);
435
436 return dentry;
437 }
438
439 /*
440 * relay_open_buf - create a new relay channel buffer
441 *
442 * used by relay_open() and CPU hotplug.
443 */
444 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
445 {
446 struct rchan_buf *buf = NULL;
447 struct dentry *dentry;
448
449 if (chan->is_global)
450 return *per_cpu_ptr(chan->buf, 0);
451
452 buf = relay_create_buf(chan);
453 if (!buf)
454 return NULL;
455
456 if (chan->has_base_filename) {
457 dentry = relay_create_buf_file(chan, buf, cpu);
458 if (!dentry)
459 goto free_buf;
460 relay_set_buf_dentry(buf, dentry);
461 } else {
462 /* Only retrieve global info, nothing more, nothing less */
463 dentry = chan->cb->create_buf_file(NULL, NULL,
464 S_IRUSR, buf,
465 &chan->is_global);
466 if (IS_ERR_OR_NULL(dentry))
467 goto free_buf;
468 }
469
470 buf->cpu = cpu;
471 __relay_reset(buf, 1);
472
473 if(chan->is_global) {
474 *per_cpu_ptr(chan->buf, 0) = buf;
475 buf->cpu = 0;
476 }
477
478 return buf;
479
480 free_buf:
481 relay_destroy_buf(buf);
482 return NULL;
483 }
484
485 /**
486 * relay_close_buf - close a channel buffer
487 * @buf: channel buffer
488 *
489 * Marks the buffer finalized and restores the default callbacks.
490 * The channel buffer and channel buffer data structure are then freed
491 * automatically when the last reference is given up.
492 */
493 static void relay_close_buf(struct rchan_buf *buf)
494 {
495 buf->finalized = 1;
496 irq_work_sync(&buf->wakeup_work);
497 buf->chan->cb->remove_buf_file(buf->dentry);
498 kref_put(&buf->kref, relay_remove_buf);
499 }
500
501 static void setup_callbacks(struct rchan *chan,
502 struct rchan_callbacks *cb)
503 {
504 if (!cb) {
505 chan->cb = &default_channel_callbacks;
506 return;
507 }
508
509 if (!cb->subbuf_start)
510 cb->subbuf_start = subbuf_start_default_callback;
511 if (!cb->buf_mapped)
512 cb->buf_mapped = buf_mapped_default_callback;
513 if (!cb->buf_unmapped)
514 cb->buf_unmapped = buf_unmapped_default_callback;
515 if (!cb->create_buf_file)
516 cb->create_buf_file = create_buf_file_default_callback;
517 if (!cb->remove_buf_file)
518 cb->remove_buf_file = remove_buf_file_default_callback;
519 chan->cb = cb;
520 }
521
522 int relay_prepare_cpu(unsigned int cpu)
523 {
524 struct rchan *chan;
525 struct rchan_buf *buf;
526
527 mutex_lock(&relay_channels_mutex);
528 list_for_each_entry(chan, &relay_channels, list) {
529 if ((buf = *per_cpu_ptr(chan->buf, cpu)))
530 continue;
531 buf = relay_open_buf(chan, cpu);
532 if (!buf) {
533 pr_err("relay: cpu %d buffer creation failed\n", cpu);
534 mutex_unlock(&relay_channels_mutex);
535 return -ENOMEM;
536 }
537 *per_cpu_ptr(chan->buf, cpu) = buf;
538 }
539 mutex_unlock(&relay_channels_mutex);
540 return 0;
541 }
542
543 /**
544 * relay_open - create a new relay channel
545 * @base_filename: base name of files to create, %NULL for buffering only
546 * @parent: dentry of parent directory, %NULL for root directory or buffer
547 * @subbuf_size: size of sub-buffers
548 * @n_subbufs: number of sub-buffers
549 * @cb: client callback functions
550 * @private_data: user-defined data
551 *
552 * Returns channel pointer if successful, %NULL otherwise.
553 *
554 * Creates a channel buffer for each cpu using the sizes and
555 * attributes specified. The created channel buffer files
556 * will be named base_filename0...base_filenameN-1. File
557 * permissions will be %S_IRUSR.
558 *
559 * If opening a buffer (@parent = NULL) that you later wish to register
560 * in a filesystem, call relay_late_setup_files() once the @parent dentry
561 * is available.
562 */
563 struct rchan *relay_open(const char *base_filename,
564 struct dentry *parent,
565 size_t subbuf_size,
566 size_t n_subbufs,
567 struct rchan_callbacks *cb,
568 void *private_data)
569 {
570 unsigned int i;
571 struct rchan *chan;
572 struct rchan_buf *buf;
573
574 if (!(subbuf_size && n_subbufs))
575 return NULL;
576 if (subbuf_size > UINT_MAX / n_subbufs)
577 return NULL;
578
579 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
580 if (!chan)
581 return NULL;
582
583 chan->buf = alloc_percpu(struct rchan_buf *);
584 chan->version = RELAYFS_CHANNEL_VERSION;
585 chan->n_subbufs = n_subbufs;
586 chan->subbuf_size = subbuf_size;
587 chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
588 chan->parent = parent;
589 chan->private_data = private_data;
590 if (base_filename) {
591 chan->has_base_filename = 1;
592 strlcpy(chan->base_filename, base_filename, NAME_MAX);
593 }
594 setup_callbacks(chan, cb);
595 kref_init(&chan->kref);
596
597 mutex_lock(&relay_channels_mutex);
598 for_each_online_cpu(i) {
599 buf = relay_open_buf(chan, i);
600 if (!buf)
601 goto free_bufs;
602 *per_cpu_ptr(chan->buf, i) = buf;
603 }
604 list_add(&chan->list, &relay_channels);
605 mutex_unlock(&relay_channels_mutex);
606
607 return chan;
608
609 free_bufs:
610 for_each_possible_cpu(i) {
611 if ((buf = *per_cpu_ptr(chan->buf, i)))
612 relay_close_buf(buf);
613 }
614
615 kref_put(&chan->kref, relay_destroy_channel);
616 mutex_unlock(&relay_channels_mutex);
617 return NULL;
618 }
619 EXPORT_SYMBOL_GPL(relay_open);
620
621 struct rchan_percpu_buf_dispatcher {
622 struct rchan_buf *buf;
623 struct dentry *dentry;
624 };
625
626 /* Called in atomic context. */
627 static void __relay_set_buf_dentry(void *info)
628 {
629 struct rchan_percpu_buf_dispatcher *p = info;
630
631 relay_set_buf_dentry(p->buf, p->dentry);
632 }
633
634 /**
635 * relay_late_setup_files - triggers file creation
636 * @chan: channel to operate on
637 * @base_filename: base name of files to create
638 * @parent: dentry of parent directory, %NULL for root directory
639 *
640 * Returns 0 if successful, non-zero otherwise.
641 *
642 * Use to setup files for a previously buffer-only channel created
643 * by relay_open() with a NULL parent dentry.
644 *
645 * For example, this is useful for perfomring early tracing in kernel,
646 * before VFS is up and then exposing the early results once the dentry
647 * is available.
648 */
649 int relay_late_setup_files(struct rchan *chan,
650 const char *base_filename,
651 struct dentry *parent)
652 {
653 int err = 0;
654 unsigned int i, curr_cpu;
655 unsigned long flags;
656 struct dentry *dentry;
657 struct rchan_buf *buf;
658 struct rchan_percpu_buf_dispatcher disp;
659
660 if (!chan || !base_filename)
661 return -EINVAL;
662
663 strlcpy(chan->base_filename, base_filename, NAME_MAX);
664
665 mutex_lock(&relay_channels_mutex);
666 /* Is chan already set up? */
667 if (unlikely(chan->has_base_filename)) {
668 mutex_unlock(&relay_channels_mutex);
669 return -EEXIST;
670 }
671 chan->has_base_filename = 1;
672 chan->parent = parent;
673
674 if (chan->is_global) {
675 err = -EINVAL;
676 buf = *per_cpu_ptr(chan->buf, 0);
677 if (!WARN_ON_ONCE(!buf)) {
678 dentry = relay_create_buf_file(chan, buf, 0);
679 if (dentry && !WARN_ON_ONCE(!chan->is_global)) {
680 relay_set_buf_dentry(buf, dentry);
681 err = 0;
682 }
683 }
684 mutex_unlock(&relay_channels_mutex);
685 return err;
686 }
687
688 curr_cpu = get_cpu();
689 /*
690 * The CPU hotplug notifier ran before us and created buffers with
691 * no files associated. So it's safe to call relay_setup_buf_file()
692 * on all currently online CPUs.
693 */
694 for_each_online_cpu(i) {
695 buf = *per_cpu_ptr(chan->buf, i);
696 if (unlikely(!buf)) {
697 WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
698 err = -EINVAL;
699 break;
700 }
701
702 dentry = relay_create_buf_file(chan, buf, i);
703 if (unlikely(!dentry)) {
704 err = -EINVAL;
705 break;
706 }
707
708 if (curr_cpu == i) {
709 local_irq_save(flags);
710 relay_set_buf_dentry(buf, dentry);
711 local_irq_restore(flags);
712 } else {
713 disp.buf = buf;
714 disp.dentry = dentry;
715 smp_mb();
716 /* relay_channels_mutex must be held, so wait. */
717 err = smp_call_function_single(i,
718 __relay_set_buf_dentry,
719 &disp, 1);
720 }
721 if (unlikely(err))
722 break;
723 }
724 put_cpu();
725 mutex_unlock(&relay_channels_mutex);
726
727 return err;
728 }
729 EXPORT_SYMBOL_GPL(relay_late_setup_files);
730
731 /**
732 * relay_switch_subbuf - switch to a new sub-buffer
733 * @buf: channel buffer
734 * @length: size of current event
735 *
736 * Returns either the length passed in or 0 if full.
737 *
738 * Performs sub-buffer-switch tasks such as invoking callbacks,
739 * updating padding counts, waking up readers, etc.
740 */
741 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
742 {
743 void *old, *new;
744 size_t old_subbuf, new_subbuf;
745
746 if (unlikely(length > buf->chan->subbuf_size))
747 goto toobig;
748
749 if (buf->offset != buf->chan->subbuf_size + 1) {
750 buf->prev_padding = buf->chan->subbuf_size - buf->offset;
751 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
752 buf->padding[old_subbuf] = buf->prev_padding;
753 buf->subbufs_produced++;
754 if (buf->dentry)
755 d_inode(buf->dentry)->i_size +=
756 buf->chan->subbuf_size -
757 buf->padding[old_subbuf];
758 else
759 buf->early_bytes += buf->chan->subbuf_size -
760 buf->padding[old_subbuf];
761 smp_mb();
762 if (waitqueue_active(&buf->read_wait)) {
763 /*
764 * Calling wake_up_interruptible() from here
765 * will deadlock if we happen to be logging
766 * from the scheduler (trying to re-grab
767 * rq->lock), so defer it.
768 */
769 irq_work_queue(&buf->wakeup_work);
770 }
771 }
772
773 old = buf->data;
774 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
775 new = buf->start + new_subbuf * buf->chan->subbuf_size;
776 buf->offset = 0;
777 if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
778 buf->offset = buf->chan->subbuf_size + 1;
779 return 0;
780 }
781 buf->data = new;
782 buf->padding[new_subbuf] = 0;
783
784 if (unlikely(length + buf->offset > buf->chan->subbuf_size))
785 goto toobig;
786
787 return length;
788
789 toobig:
790 buf->chan->last_toobig = length;
791 return 0;
792 }
793 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
794
795 /**
796 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
797 * @chan: the channel
798 * @cpu: the cpu associated with the channel buffer to update
799 * @subbufs_consumed: number of sub-buffers to add to current buf's count
800 *
801 * Adds to the channel buffer's consumed sub-buffer count.
802 * subbufs_consumed should be the number of sub-buffers newly consumed,
803 * not the total consumed.
804 *
805 * NOTE. Kernel clients don't need to call this function if the channel
806 * mode is 'overwrite'.
807 */
808 void relay_subbufs_consumed(struct rchan *chan,
809 unsigned int cpu,
810 size_t subbufs_consumed)
811 {
812 struct rchan_buf *buf;
813
814 if (!chan || cpu >= NR_CPUS)
815 return;
816
817 buf = *per_cpu_ptr(chan->buf, cpu);
818 if (!buf || subbufs_consumed > chan->n_subbufs)
819 return;
820
821 if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
822 buf->subbufs_consumed = buf->subbufs_produced;
823 else
824 buf->subbufs_consumed += subbufs_consumed;
825 }
826 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
827
828 /**
829 * relay_close - close the channel
830 * @chan: the channel
831 *
832 * Closes all channel buffers and frees the channel.
833 */
834 void relay_close(struct rchan *chan)
835 {
836 struct rchan_buf *buf;
837 unsigned int i;
838
839 if (!chan)
840 return;
841
842 mutex_lock(&relay_channels_mutex);
843 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0)))
844 relay_close_buf(buf);
845 else
846 for_each_possible_cpu(i)
847 if ((buf = *per_cpu_ptr(chan->buf, i)))
848 relay_close_buf(buf);
849
850 if (chan->last_toobig)
851 printk(KERN_WARNING "relay: one or more items not logged "
852 "[item size (%zd) > sub-buffer size (%zd)]\n",
853 chan->last_toobig, chan->subbuf_size);
854
855 list_del(&chan->list);
856 kref_put(&chan->kref, relay_destroy_channel);
857 mutex_unlock(&relay_channels_mutex);
858 }
859 EXPORT_SYMBOL_GPL(relay_close);
860
861 /**
862 * relay_flush - close the channel
863 * @chan: the channel
864 *
865 * Flushes all channel buffers, i.e. forces buffer switch.
866 */
867 void relay_flush(struct rchan *chan)
868 {
869 struct rchan_buf *buf;
870 unsigned int i;
871
872 if (!chan)
873 return;
874
875 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
876 relay_switch_subbuf(buf, 0);
877 return;
878 }
879
880 mutex_lock(&relay_channels_mutex);
881 for_each_possible_cpu(i)
882 if ((buf = *per_cpu_ptr(chan->buf, i)))
883 relay_switch_subbuf(buf, 0);
884 mutex_unlock(&relay_channels_mutex);
885 }
886 EXPORT_SYMBOL_GPL(relay_flush);
887
888 /**
889 * relay_file_open - open file op for relay files
890 * @inode: the inode
891 * @filp: the file
892 *
893 * Increments the channel buffer refcount.
894 */
895 static int relay_file_open(struct inode *inode, struct file *filp)
896 {
897 struct rchan_buf *buf = inode->i_private;
898 kref_get(&buf->kref);
899 filp->private_data = buf;
900
901 return nonseekable_open(inode, filp);
902 }
903
904 /**
905 * relay_file_mmap - mmap file op for relay files
906 * @filp: the file
907 * @vma: the vma describing what to map
908 *
909 * Calls upon relay_mmap_buf() to map the file into user space.
910 */
911 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
912 {
913 struct rchan_buf *buf = filp->private_data;
914 return relay_mmap_buf(buf, vma);
915 }
916
917 /**
918 * relay_file_poll - poll file op for relay files
919 * @filp: the file
920 * @wait: poll table
921 *
922 * Poll implemention.
923 */
924 static __poll_t relay_file_poll(struct file *filp, poll_table *wait)
925 {
926 __poll_t mask = 0;
927 struct rchan_buf *buf = filp->private_data;
928
929 if (buf->finalized)
930 return EPOLLERR;
931
932 if (filp->f_mode & FMODE_READ) {
933 poll_wait(filp, &buf->read_wait, wait);
934 if (!relay_buf_empty(buf))
935 mask |= EPOLLIN | EPOLLRDNORM;
936 }
937
938 return mask;
939 }
940
941 /**
942 * relay_file_release - release file op for relay files
943 * @inode: the inode
944 * @filp: the file
945 *
946 * Decrements the channel refcount, as the filesystem is
947 * no longer using it.
948 */
949 static int relay_file_release(struct inode *inode, struct file *filp)
950 {
951 struct rchan_buf *buf = filp->private_data;
952 kref_put(&buf->kref, relay_remove_buf);
953
954 return 0;
955 }
956
957 /*
958 * relay_file_read_consume - update the consumed count for the buffer
959 */
960 static void relay_file_read_consume(struct rchan_buf *buf,
961 size_t read_pos,
962 size_t bytes_consumed)
963 {
964 size_t subbuf_size = buf->chan->subbuf_size;
965 size_t n_subbufs = buf->chan->n_subbufs;
966 size_t read_subbuf;
967
968 if (buf->subbufs_produced == buf->subbufs_consumed &&
969 buf->offset == buf->bytes_consumed)
970 return;
971
972 if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
973 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
974 buf->bytes_consumed = 0;
975 }
976
977 buf->bytes_consumed += bytes_consumed;
978 if (!read_pos)
979 read_subbuf = buf->subbufs_consumed % n_subbufs;
980 else
981 read_subbuf = read_pos / buf->chan->subbuf_size;
982 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
983 if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
984 (buf->offset == subbuf_size))
985 return;
986 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
987 buf->bytes_consumed = 0;
988 }
989 }
990
991 /*
992 * relay_file_read_avail - boolean, are there unconsumed bytes available?
993 */
994 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
995 {
996 size_t subbuf_size = buf->chan->subbuf_size;
997 size_t n_subbufs = buf->chan->n_subbufs;
998 size_t produced = buf->subbufs_produced;
999 size_t consumed = buf->subbufs_consumed;
1000
1001 relay_file_read_consume(buf, read_pos, 0);
1002
1003 consumed = buf->subbufs_consumed;
1004
1005 if (unlikely(buf->offset > subbuf_size)) {
1006 if (produced == consumed)
1007 return 0;
1008 return 1;
1009 }
1010
1011 if (unlikely(produced - consumed >= n_subbufs)) {
1012 consumed = produced - n_subbufs + 1;
1013 buf->subbufs_consumed = consumed;
1014 buf->bytes_consumed = 0;
1015 }
1016
1017 produced = (produced % n_subbufs) * subbuf_size + buf->offset;
1018 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
1019
1020 if (consumed > produced)
1021 produced += n_subbufs * subbuf_size;
1022
1023 if (consumed == produced) {
1024 if (buf->offset == subbuf_size &&
1025 buf->subbufs_produced > buf->subbufs_consumed)
1026 return 1;
1027 return 0;
1028 }
1029
1030 return 1;
1031 }
1032
1033 /**
1034 * relay_file_read_subbuf_avail - return bytes available in sub-buffer
1035 * @read_pos: file read position
1036 * @buf: relay channel buffer
1037 */
1038 static size_t relay_file_read_subbuf_avail(size_t read_pos,
1039 struct rchan_buf *buf)
1040 {
1041 size_t padding, avail = 0;
1042 size_t read_subbuf, read_offset, write_subbuf, write_offset;
1043 size_t subbuf_size = buf->chan->subbuf_size;
1044
1045 write_subbuf = (buf->data - buf->start) / subbuf_size;
1046 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1047 read_subbuf = read_pos / subbuf_size;
1048 read_offset = read_pos % subbuf_size;
1049 padding = buf->padding[read_subbuf];
1050
1051 if (read_subbuf == write_subbuf) {
1052 if (read_offset + padding < write_offset)
1053 avail = write_offset - (read_offset + padding);
1054 } else
1055 avail = (subbuf_size - padding) - read_offset;
1056
1057 return avail;
1058 }
1059
1060 /**
1061 * relay_file_read_start_pos - find the first available byte to read
1062 * @read_pos: file read position
1063 * @buf: relay channel buffer
1064 *
1065 * If the @read_pos is in the middle of padding, return the
1066 * position of the first actually available byte, otherwise
1067 * return the original value.
1068 */
1069 static size_t relay_file_read_start_pos(size_t read_pos,
1070 struct rchan_buf *buf)
1071 {
1072 size_t read_subbuf, padding, padding_start, padding_end;
1073 size_t subbuf_size = buf->chan->subbuf_size;
1074 size_t n_subbufs = buf->chan->n_subbufs;
1075 size_t consumed = buf->subbufs_consumed % n_subbufs;
1076
1077 if (!read_pos)
1078 read_pos = consumed * subbuf_size + buf->bytes_consumed;
1079 read_subbuf = read_pos / subbuf_size;
1080 padding = buf->padding[read_subbuf];
1081 padding_start = (read_subbuf + 1) * subbuf_size - padding;
1082 padding_end = (read_subbuf + 1) * subbuf_size;
1083 if (read_pos >= padding_start && read_pos < padding_end) {
1084 read_subbuf = (read_subbuf + 1) % n_subbufs;
1085 read_pos = read_subbuf * subbuf_size;
1086 }
1087
1088 return read_pos;
1089 }
1090
1091 /**
1092 * relay_file_read_end_pos - return the new read position
1093 * @read_pos: file read position
1094 * @buf: relay channel buffer
1095 * @count: number of bytes to be read
1096 */
1097 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1098 size_t read_pos,
1099 size_t count)
1100 {
1101 size_t read_subbuf, padding, end_pos;
1102 size_t subbuf_size = buf->chan->subbuf_size;
1103 size_t n_subbufs = buf->chan->n_subbufs;
1104
1105 read_subbuf = read_pos / subbuf_size;
1106 padding = buf->padding[read_subbuf];
1107 if (read_pos % subbuf_size + count + padding == subbuf_size)
1108 end_pos = (read_subbuf + 1) * subbuf_size;
1109 else
1110 end_pos = read_pos + count;
1111 if (end_pos >= subbuf_size * n_subbufs)
1112 end_pos = 0;
1113
1114 return end_pos;
1115 }
1116
1117 static ssize_t relay_file_read(struct file *filp,
1118 char __user *buffer,
1119 size_t count,
1120 loff_t *ppos)
1121 {
1122 struct rchan_buf *buf = filp->private_data;
1123 size_t read_start, avail;
1124 size_t written = 0;
1125 int ret;
1126
1127 if (!count)
1128 return 0;
1129
1130 inode_lock(file_inode(filp));
1131 do {
1132 void *from;
1133
1134 if (!relay_file_read_avail(buf, *ppos))
1135 break;
1136
1137 read_start = relay_file_read_start_pos(*ppos, buf);
1138 avail = relay_file_read_subbuf_avail(read_start, buf);
1139 if (!avail)
1140 break;
1141
1142 avail = min(count, avail);
1143 from = buf->start + read_start;
1144 ret = avail;
1145 if (copy_to_user(buffer, from, avail))
1146 break;
1147
1148 buffer += ret;
1149 written += ret;
1150 count -= ret;
1151
1152 relay_file_read_consume(buf, read_start, ret);
1153 *ppos = relay_file_read_end_pos(buf, read_start, ret);
1154 } while (count);
1155 inode_unlock(file_inode(filp));
1156
1157 return written;
1158 }
1159
1160 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1161 {
1162 rbuf->bytes_consumed += bytes_consumed;
1163
1164 if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1165 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1166 rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1167 }
1168 }
1169
1170 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1171 struct pipe_buffer *buf)
1172 {
1173 struct rchan_buf *rbuf;
1174
1175 rbuf = (struct rchan_buf *)page_private(buf->page);
1176 relay_consume_bytes(rbuf, buf->private);
1177 }
1178
1179 static const struct pipe_buf_operations relay_pipe_buf_ops = {
1180 .can_merge = 0,
1181 .confirm = generic_pipe_buf_confirm,
1182 .release = relay_pipe_buf_release,
1183 .steal = generic_pipe_buf_steal,
1184 .get = generic_pipe_buf_get,
1185 };
1186
1187 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1188 {
1189 }
1190
1191 /*
1192 * subbuf_splice_actor - splice up to one subbuf's worth of data
1193 */
1194 static ssize_t subbuf_splice_actor(struct file *in,
1195 loff_t *ppos,
1196 struct pipe_inode_info *pipe,
1197 size_t len,
1198 unsigned int flags,
1199 int *nonpad_ret)
1200 {
1201 unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1202 struct rchan_buf *rbuf = in->private_data;
1203 unsigned int subbuf_size = rbuf->chan->subbuf_size;
1204 uint64_t pos = (uint64_t) *ppos;
1205 uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1206 size_t read_start = (size_t) do_div(pos, alloc_size);
1207 size_t read_subbuf = read_start / subbuf_size;
1208 size_t padding = rbuf->padding[read_subbuf];
1209 size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1210 struct page *pages[PIPE_DEF_BUFFERS];
1211 struct partial_page partial[PIPE_DEF_BUFFERS];
1212 struct splice_pipe_desc spd = {
1213 .pages = pages,
1214 .nr_pages = 0,
1215 .nr_pages_max = PIPE_DEF_BUFFERS,
1216 .partial = partial,
1217 .ops = &relay_pipe_buf_ops,
1218 .spd_release = relay_page_release,
1219 };
1220 ssize_t ret;
1221
1222 if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1223 return 0;
1224 if (splice_grow_spd(pipe, &spd))
1225 return -ENOMEM;
1226
1227 /*
1228 * Adjust read len, if longer than what is available
1229 */
1230 if (len > (subbuf_size - read_start % subbuf_size))
1231 len = subbuf_size - read_start % subbuf_size;
1232
1233 subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1234 pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1235 poff = read_start & ~PAGE_MASK;
1236 nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max);
1237
1238 for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1239 unsigned int this_len, this_end, private;
1240 unsigned int cur_pos = read_start + total_len;
1241
1242 if (!len)
1243 break;
1244
1245 this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1246 private = this_len;
1247
1248 spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1249 spd.partial[spd.nr_pages].offset = poff;
1250
1251 this_end = cur_pos + this_len;
1252 if (this_end >= nonpad_end) {
1253 this_len = nonpad_end - cur_pos;
1254 private = this_len + padding;
1255 }
1256 spd.partial[spd.nr_pages].len = this_len;
1257 spd.partial[spd.nr_pages].private = private;
1258
1259 len -= this_len;
1260 total_len += this_len;
1261 poff = 0;
1262 pidx = (pidx + 1) % subbuf_pages;
1263
1264 if (this_end >= nonpad_end) {
1265 spd.nr_pages++;
1266 break;
1267 }
1268 }
1269
1270 ret = 0;
1271 if (!spd.nr_pages)
1272 goto out;
1273
1274 ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1275 if (ret < 0 || ret < total_len)
1276 goto out;
1277
1278 if (read_start + ret == nonpad_end)
1279 ret += padding;
1280
1281 out:
1282 splice_shrink_spd(&spd);
1283 return ret;
1284 }
1285
1286 static ssize_t relay_file_splice_read(struct file *in,
1287 loff_t *ppos,
1288 struct pipe_inode_info *pipe,
1289 size_t len,
1290 unsigned int flags)
1291 {
1292 ssize_t spliced;
1293 int ret;
1294 int nonpad_ret = 0;
1295
1296 ret = 0;
1297 spliced = 0;
1298
1299 while (len && !spliced) {
1300 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1301 if (ret < 0)
1302 break;
1303 else if (!ret) {
1304 if (flags & SPLICE_F_NONBLOCK)
1305 ret = -EAGAIN;
1306 break;
1307 }
1308
1309 *ppos += ret;
1310 if (ret > len)
1311 len = 0;
1312 else
1313 len -= ret;
1314 spliced += nonpad_ret;
1315 nonpad_ret = 0;
1316 }
1317
1318 if (spliced)
1319 return spliced;
1320
1321 return ret;
1322 }
1323
1324 const struct file_operations relay_file_operations = {
1325 .open = relay_file_open,
1326 .poll = relay_file_poll,
1327 .mmap = relay_file_mmap,
1328 .read = relay_file_read,
1329 .llseek = no_llseek,
1330 .release = relay_file_release,
1331 .splice_read = relay_file_splice_read,
1332 };
1333 EXPORT_SYMBOL_GPL(relay_file_operations);