]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/filemap.c
Linux 4.20.17
[thirdparty/kernel/stable.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/shmem_fs.h>
38 #include <linux/rmap.h>
39 #include <linux/delayacct.h>
40 #include <linux/psi.h>
41 #include "internal.h"
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/filemap.h>
45
46 /*
47 * FIXME: remove all knowledge of the buffer layer from the core VM
48 */
49 #include <linux/buffer_head.h> /* for try_to_free_buffers */
50
51 #include <asm/mman.h>
52
53 /*
54 * Shared mappings implemented 30.11.1994. It's not fully working yet,
55 * though.
56 *
57 * Shared mappings now work. 15.8.1995 Bruno.
58 *
59 * finished 'unifying' the page and buffer cache and SMP-threaded the
60 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
61 *
62 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
63 */
64
65 /*
66 * Lock ordering:
67 *
68 * ->i_mmap_rwsem (truncate_pagecache)
69 * ->private_lock (__free_pte->__set_page_dirty_buffers)
70 * ->swap_lock (exclusive_swap_page, others)
71 * ->i_pages lock
72 *
73 * ->i_mutex
74 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
75 *
76 * ->mmap_sem
77 * ->i_mmap_rwsem
78 * ->page_table_lock or pte_lock (various, mainly in memory.c)
79 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
80 *
81 * ->mmap_sem
82 * ->lock_page (access_process_vm)
83 *
84 * ->i_mutex (generic_perform_write)
85 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
86 *
87 * bdi->wb.list_lock
88 * sb_lock (fs/fs-writeback.c)
89 * ->i_pages lock (__sync_single_inode)
90 *
91 * ->i_mmap_rwsem
92 * ->anon_vma.lock (vma_adjust)
93 *
94 * ->anon_vma.lock
95 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
96 *
97 * ->page_table_lock or pte_lock
98 * ->swap_lock (try_to_unmap_one)
99 * ->private_lock (try_to_unmap_one)
100 * ->i_pages lock (try_to_unmap_one)
101 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
102 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
103 * ->private_lock (page_remove_rmap->set_page_dirty)
104 * ->i_pages lock (page_remove_rmap->set_page_dirty)
105 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
106 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
107 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
108 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
109 * ->inode->i_lock (zap_pte_range->set_page_dirty)
110 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
111 *
112 * ->i_mmap_rwsem
113 * ->tasklist_lock (memory_failure, collect_procs_ao)
114 */
115
116 static void page_cache_delete(struct address_space *mapping,
117 struct page *page, void *shadow)
118 {
119 XA_STATE(xas, &mapping->i_pages, page->index);
120 unsigned int nr = 1;
121
122 mapping_set_update(&xas, mapping);
123
124 /* hugetlb pages are represented by a single entry in the xarray */
125 if (!PageHuge(page)) {
126 xas_set_order(&xas, page->index, compound_order(page));
127 nr = 1U << compound_order(page);
128 }
129
130 VM_BUG_ON_PAGE(!PageLocked(page), page);
131 VM_BUG_ON_PAGE(PageTail(page), page);
132 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
133
134 xas_store(&xas, shadow);
135 xas_init_marks(&xas);
136
137 page->mapping = NULL;
138 /* Leave page->index set: truncation lookup relies upon it */
139
140 if (shadow) {
141 mapping->nrexceptional += nr;
142 /*
143 * Make sure the nrexceptional update is committed before
144 * the nrpages update so that final truncate racing
145 * with reclaim does not see both counters 0 at the
146 * same time and miss a shadow entry.
147 */
148 smp_wmb();
149 }
150 mapping->nrpages -= nr;
151 }
152
153 static void unaccount_page_cache_page(struct address_space *mapping,
154 struct page *page)
155 {
156 int nr;
157
158 /*
159 * if we're uptodate, flush out into the cleancache, otherwise
160 * invalidate any existing cleancache entries. We can't leave
161 * stale data around in the cleancache once our page is gone
162 */
163 if (PageUptodate(page) && PageMappedToDisk(page))
164 cleancache_put_page(page);
165 else
166 cleancache_invalidate_page(mapping, page);
167
168 VM_BUG_ON_PAGE(PageTail(page), page);
169 VM_BUG_ON_PAGE(page_mapped(page), page);
170 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
171 int mapcount;
172
173 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
174 current->comm, page_to_pfn(page));
175 dump_page(page, "still mapped when deleted");
176 dump_stack();
177 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
178
179 mapcount = page_mapcount(page);
180 if (mapping_exiting(mapping) &&
181 page_count(page) >= mapcount + 2) {
182 /*
183 * All vmas have already been torn down, so it's
184 * a good bet that actually the page is unmapped,
185 * and we'd prefer not to leak it: if we're wrong,
186 * some other bad page check should catch it later.
187 */
188 page_mapcount_reset(page);
189 page_ref_sub(page, mapcount);
190 }
191 }
192
193 /* hugetlb pages do not participate in page cache accounting. */
194 if (PageHuge(page))
195 return;
196
197 nr = hpage_nr_pages(page);
198
199 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
200 if (PageSwapBacked(page)) {
201 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
202 if (PageTransHuge(page))
203 __dec_node_page_state(page, NR_SHMEM_THPS);
204 } else {
205 VM_BUG_ON_PAGE(PageTransHuge(page), page);
206 }
207
208 /*
209 * At this point page must be either written or cleaned by
210 * truncate. Dirty page here signals a bug and loss of
211 * unwritten data.
212 *
213 * This fixes dirty accounting after removing the page entirely
214 * but leaves PageDirty set: it has no effect for truncated
215 * page and anyway will be cleared before returning page into
216 * buddy allocator.
217 */
218 if (WARN_ON_ONCE(PageDirty(page)))
219 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
220 }
221
222 /*
223 * Delete a page from the page cache and free it. Caller has to make
224 * sure the page is locked and that nobody else uses it - or that usage
225 * is safe. The caller must hold the i_pages lock.
226 */
227 void __delete_from_page_cache(struct page *page, void *shadow)
228 {
229 struct address_space *mapping = page->mapping;
230
231 trace_mm_filemap_delete_from_page_cache(page);
232
233 unaccount_page_cache_page(mapping, page);
234 page_cache_delete(mapping, page, shadow);
235 }
236
237 static void page_cache_free_page(struct address_space *mapping,
238 struct page *page)
239 {
240 void (*freepage)(struct page *);
241
242 freepage = mapping->a_ops->freepage;
243 if (freepage)
244 freepage(page);
245
246 if (PageTransHuge(page) && !PageHuge(page)) {
247 page_ref_sub(page, HPAGE_PMD_NR);
248 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
249 } else {
250 put_page(page);
251 }
252 }
253
254 /**
255 * delete_from_page_cache - delete page from page cache
256 * @page: the page which the kernel is trying to remove from page cache
257 *
258 * This must be called only on pages that have been verified to be in the page
259 * cache and locked. It will never put the page into the free list, the caller
260 * has a reference on the page.
261 */
262 void delete_from_page_cache(struct page *page)
263 {
264 struct address_space *mapping = page_mapping(page);
265 unsigned long flags;
266
267 BUG_ON(!PageLocked(page));
268 xa_lock_irqsave(&mapping->i_pages, flags);
269 __delete_from_page_cache(page, NULL);
270 xa_unlock_irqrestore(&mapping->i_pages, flags);
271
272 page_cache_free_page(mapping, page);
273 }
274 EXPORT_SYMBOL(delete_from_page_cache);
275
276 /*
277 * page_cache_delete_batch - delete several pages from page cache
278 * @mapping: the mapping to which pages belong
279 * @pvec: pagevec with pages to delete
280 *
281 * The function walks over mapping->i_pages and removes pages passed in @pvec
282 * from the mapping. The function expects @pvec to be sorted by page index.
283 * It tolerates holes in @pvec (mapping entries at those indices are not
284 * modified). The function expects only THP head pages to be present in the
285 * @pvec and takes care to delete all corresponding tail pages from the
286 * mapping as well.
287 *
288 * The function expects the i_pages lock to be held.
289 */
290 static void page_cache_delete_batch(struct address_space *mapping,
291 struct pagevec *pvec)
292 {
293 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
294 int total_pages = 0;
295 int i = 0, tail_pages = 0;
296 struct page *page;
297
298 mapping_set_update(&xas, mapping);
299 xas_for_each(&xas, page, ULONG_MAX) {
300 if (i >= pagevec_count(pvec) && !tail_pages)
301 break;
302 if (xa_is_value(page))
303 continue;
304 if (!tail_pages) {
305 /*
306 * Some page got inserted in our range? Skip it. We
307 * have our pages locked so they are protected from
308 * being removed.
309 */
310 if (page != pvec->pages[i]) {
311 VM_BUG_ON_PAGE(page->index >
312 pvec->pages[i]->index, page);
313 continue;
314 }
315 WARN_ON_ONCE(!PageLocked(page));
316 if (PageTransHuge(page) && !PageHuge(page))
317 tail_pages = HPAGE_PMD_NR - 1;
318 page->mapping = NULL;
319 /*
320 * Leave page->index set: truncation lookup relies
321 * upon it
322 */
323 i++;
324 } else {
325 VM_BUG_ON_PAGE(page->index + HPAGE_PMD_NR - tail_pages
326 != pvec->pages[i]->index, page);
327 tail_pages--;
328 }
329 xas_store(&xas, NULL);
330 total_pages++;
331 }
332 mapping->nrpages -= total_pages;
333 }
334
335 void delete_from_page_cache_batch(struct address_space *mapping,
336 struct pagevec *pvec)
337 {
338 int i;
339 unsigned long flags;
340
341 if (!pagevec_count(pvec))
342 return;
343
344 xa_lock_irqsave(&mapping->i_pages, flags);
345 for (i = 0; i < pagevec_count(pvec); i++) {
346 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
347
348 unaccount_page_cache_page(mapping, pvec->pages[i]);
349 }
350 page_cache_delete_batch(mapping, pvec);
351 xa_unlock_irqrestore(&mapping->i_pages, flags);
352
353 for (i = 0; i < pagevec_count(pvec); i++)
354 page_cache_free_page(mapping, pvec->pages[i]);
355 }
356
357 int filemap_check_errors(struct address_space *mapping)
358 {
359 int ret = 0;
360 /* Check for outstanding write errors */
361 if (test_bit(AS_ENOSPC, &mapping->flags) &&
362 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
363 ret = -ENOSPC;
364 if (test_bit(AS_EIO, &mapping->flags) &&
365 test_and_clear_bit(AS_EIO, &mapping->flags))
366 ret = -EIO;
367 return ret;
368 }
369 EXPORT_SYMBOL(filemap_check_errors);
370
371 static int filemap_check_and_keep_errors(struct address_space *mapping)
372 {
373 /* Check for outstanding write errors */
374 if (test_bit(AS_EIO, &mapping->flags))
375 return -EIO;
376 if (test_bit(AS_ENOSPC, &mapping->flags))
377 return -ENOSPC;
378 return 0;
379 }
380
381 /**
382 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
383 * @mapping: address space structure to write
384 * @start: offset in bytes where the range starts
385 * @end: offset in bytes where the range ends (inclusive)
386 * @sync_mode: enable synchronous operation
387 *
388 * Start writeback against all of a mapping's dirty pages that lie
389 * within the byte offsets <start, end> inclusive.
390 *
391 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
392 * opposed to a regular memory cleansing writeback. The difference between
393 * these two operations is that if a dirty page/buffer is encountered, it must
394 * be waited upon, and not just skipped over.
395 */
396 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
397 loff_t end, int sync_mode)
398 {
399 int ret;
400 struct writeback_control wbc = {
401 .sync_mode = sync_mode,
402 .nr_to_write = LONG_MAX,
403 .range_start = start,
404 .range_end = end,
405 };
406
407 if (!mapping_cap_writeback_dirty(mapping))
408 return 0;
409
410 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
411 ret = do_writepages(mapping, &wbc);
412 wbc_detach_inode(&wbc);
413 return ret;
414 }
415
416 static inline int __filemap_fdatawrite(struct address_space *mapping,
417 int sync_mode)
418 {
419 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
420 }
421
422 int filemap_fdatawrite(struct address_space *mapping)
423 {
424 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
425 }
426 EXPORT_SYMBOL(filemap_fdatawrite);
427
428 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
429 loff_t end)
430 {
431 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
432 }
433 EXPORT_SYMBOL(filemap_fdatawrite_range);
434
435 /**
436 * filemap_flush - mostly a non-blocking flush
437 * @mapping: target address_space
438 *
439 * This is a mostly non-blocking flush. Not suitable for data-integrity
440 * purposes - I/O may not be started against all dirty pages.
441 */
442 int filemap_flush(struct address_space *mapping)
443 {
444 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
445 }
446 EXPORT_SYMBOL(filemap_flush);
447
448 /**
449 * filemap_range_has_page - check if a page exists in range.
450 * @mapping: address space within which to check
451 * @start_byte: offset in bytes where the range starts
452 * @end_byte: offset in bytes where the range ends (inclusive)
453 *
454 * Find at least one page in the range supplied, usually used to check if
455 * direct writing in this range will trigger a writeback.
456 */
457 bool filemap_range_has_page(struct address_space *mapping,
458 loff_t start_byte, loff_t end_byte)
459 {
460 struct page *page;
461 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
462 pgoff_t max = end_byte >> PAGE_SHIFT;
463
464 if (end_byte < start_byte)
465 return false;
466
467 rcu_read_lock();
468 for (;;) {
469 page = xas_find(&xas, max);
470 if (xas_retry(&xas, page))
471 continue;
472 /* Shadow entries don't count */
473 if (xa_is_value(page))
474 continue;
475 /*
476 * We don't need to try to pin this page; we're about to
477 * release the RCU lock anyway. It is enough to know that
478 * there was a page here recently.
479 */
480 break;
481 }
482 rcu_read_unlock();
483
484 return page != NULL;
485 }
486 EXPORT_SYMBOL(filemap_range_has_page);
487
488 static void __filemap_fdatawait_range(struct address_space *mapping,
489 loff_t start_byte, loff_t end_byte)
490 {
491 pgoff_t index = start_byte >> PAGE_SHIFT;
492 pgoff_t end = end_byte >> PAGE_SHIFT;
493 struct pagevec pvec;
494 int nr_pages;
495
496 if (end_byte < start_byte)
497 return;
498
499 pagevec_init(&pvec);
500 while (index <= end) {
501 unsigned i;
502
503 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
504 end, PAGECACHE_TAG_WRITEBACK);
505 if (!nr_pages)
506 break;
507
508 for (i = 0; i < nr_pages; i++) {
509 struct page *page = pvec.pages[i];
510
511 wait_on_page_writeback(page);
512 ClearPageError(page);
513 }
514 pagevec_release(&pvec);
515 cond_resched();
516 }
517 }
518
519 /**
520 * filemap_fdatawait_range - wait for writeback to complete
521 * @mapping: address space structure to wait for
522 * @start_byte: offset in bytes where the range starts
523 * @end_byte: offset in bytes where the range ends (inclusive)
524 *
525 * Walk the list of under-writeback pages of the given address space
526 * in the given range and wait for all of them. Check error status of
527 * the address space and return it.
528 *
529 * Since the error status of the address space is cleared by this function,
530 * callers are responsible for checking the return value and handling and/or
531 * reporting the error.
532 */
533 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
534 loff_t end_byte)
535 {
536 __filemap_fdatawait_range(mapping, start_byte, end_byte);
537 return filemap_check_errors(mapping);
538 }
539 EXPORT_SYMBOL(filemap_fdatawait_range);
540
541 /**
542 * file_fdatawait_range - wait for writeback to complete
543 * @file: file pointing to address space structure to wait for
544 * @start_byte: offset in bytes where the range starts
545 * @end_byte: offset in bytes where the range ends (inclusive)
546 *
547 * Walk the list of under-writeback pages of the address space that file
548 * refers to, in the given range and wait for all of them. Check error
549 * status of the address space vs. the file->f_wb_err cursor and return it.
550 *
551 * Since the error status of the file is advanced by this function,
552 * callers are responsible for checking the return value and handling and/or
553 * reporting the error.
554 */
555 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
556 {
557 struct address_space *mapping = file->f_mapping;
558
559 __filemap_fdatawait_range(mapping, start_byte, end_byte);
560 return file_check_and_advance_wb_err(file);
561 }
562 EXPORT_SYMBOL(file_fdatawait_range);
563
564 /**
565 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
566 * @mapping: address space structure to wait for
567 *
568 * Walk the list of under-writeback pages of the given address space
569 * and wait for all of them. Unlike filemap_fdatawait(), this function
570 * does not clear error status of the address space.
571 *
572 * Use this function if callers don't handle errors themselves. Expected
573 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
574 * fsfreeze(8)
575 */
576 int filemap_fdatawait_keep_errors(struct address_space *mapping)
577 {
578 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
579 return filemap_check_and_keep_errors(mapping);
580 }
581 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
582
583 static bool mapping_needs_writeback(struct address_space *mapping)
584 {
585 return (!dax_mapping(mapping) && mapping->nrpages) ||
586 (dax_mapping(mapping) && mapping->nrexceptional);
587 }
588
589 int filemap_write_and_wait(struct address_space *mapping)
590 {
591 int err = 0;
592
593 if (mapping_needs_writeback(mapping)) {
594 err = filemap_fdatawrite(mapping);
595 /*
596 * Even if the above returned error, the pages may be
597 * written partially (e.g. -ENOSPC), so we wait for it.
598 * But the -EIO is special case, it may indicate the worst
599 * thing (e.g. bug) happened, so we avoid waiting for it.
600 */
601 if (err != -EIO) {
602 int err2 = filemap_fdatawait(mapping);
603 if (!err)
604 err = err2;
605 } else {
606 /* Clear any previously stored errors */
607 filemap_check_errors(mapping);
608 }
609 } else {
610 err = filemap_check_errors(mapping);
611 }
612 return err;
613 }
614 EXPORT_SYMBOL(filemap_write_and_wait);
615
616 /**
617 * filemap_write_and_wait_range - write out & wait on a file range
618 * @mapping: the address_space for the pages
619 * @lstart: offset in bytes where the range starts
620 * @lend: offset in bytes where the range ends (inclusive)
621 *
622 * Write out and wait upon file offsets lstart->lend, inclusive.
623 *
624 * Note that @lend is inclusive (describes the last byte to be written) so
625 * that this function can be used to write to the very end-of-file (end = -1).
626 */
627 int filemap_write_and_wait_range(struct address_space *mapping,
628 loff_t lstart, loff_t lend)
629 {
630 int err = 0;
631
632 if (mapping_needs_writeback(mapping)) {
633 err = __filemap_fdatawrite_range(mapping, lstart, lend,
634 WB_SYNC_ALL);
635 /* See comment of filemap_write_and_wait() */
636 if (err != -EIO) {
637 int err2 = filemap_fdatawait_range(mapping,
638 lstart, lend);
639 if (!err)
640 err = err2;
641 } else {
642 /* Clear any previously stored errors */
643 filemap_check_errors(mapping);
644 }
645 } else {
646 err = filemap_check_errors(mapping);
647 }
648 return err;
649 }
650 EXPORT_SYMBOL(filemap_write_and_wait_range);
651
652 void __filemap_set_wb_err(struct address_space *mapping, int err)
653 {
654 errseq_t eseq = errseq_set(&mapping->wb_err, err);
655
656 trace_filemap_set_wb_err(mapping, eseq);
657 }
658 EXPORT_SYMBOL(__filemap_set_wb_err);
659
660 /**
661 * file_check_and_advance_wb_err - report wb error (if any) that was previously
662 * and advance wb_err to current one
663 * @file: struct file on which the error is being reported
664 *
665 * When userland calls fsync (or something like nfsd does the equivalent), we
666 * want to report any writeback errors that occurred since the last fsync (or
667 * since the file was opened if there haven't been any).
668 *
669 * Grab the wb_err from the mapping. If it matches what we have in the file,
670 * then just quickly return 0. The file is all caught up.
671 *
672 * If it doesn't match, then take the mapping value, set the "seen" flag in
673 * it and try to swap it into place. If it works, or another task beat us
674 * to it with the new value, then update the f_wb_err and return the error
675 * portion. The error at this point must be reported via proper channels
676 * (a'la fsync, or NFS COMMIT operation, etc.).
677 *
678 * While we handle mapping->wb_err with atomic operations, the f_wb_err
679 * value is protected by the f_lock since we must ensure that it reflects
680 * the latest value swapped in for this file descriptor.
681 */
682 int file_check_and_advance_wb_err(struct file *file)
683 {
684 int err = 0;
685 errseq_t old = READ_ONCE(file->f_wb_err);
686 struct address_space *mapping = file->f_mapping;
687
688 /* Locklessly handle the common case where nothing has changed */
689 if (errseq_check(&mapping->wb_err, old)) {
690 /* Something changed, must use slow path */
691 spin_lock(&file->f_lock);
692 old = file->f_wb_err;
693 err = errseq_check_and_advance(&mapping->wb_err,
694 &file->f_wb_err);
695 trace_file_check_and_advance_wb_err(file, old);
696 spin_unlock(&file->f_lock);
697 }
698
699 /*
700 * We're mostly using this function as a drop in replacement for
701 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
702 * that the legacy code would have had on these flags.
703 */
704 clear_bit(AS_EIO, &mapping->flags);
705 clear_bit(AS_ENOSPC, &mapping->flags);
706 return err;
707 }
708 EXPORT_SYMBOL(file_check_and_advance_wb_err);
709
710 /**
711 * file_write_and_wait_range - write out & wait on a file range
712 * @file: file pointing to address_space with pages
713 * @lstart: offset in bytes where the range starts
714 * @lend: offset in bytes where the range ends (inclusive)
715 *
716 * Write out and wait upon file offsets lstart->lend, inclusive.
717 *
718 * Note that @lend is inclusive (describes the last byte to be written) so
719 * that this function can be used to write to the very end-of-file (end = -1).
720 *
721 * After writing out and waiting on the data, we check and advance the
722 * f_wb_err cursor to the latest value, and return any errors detected there.
723 */
724 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
725 {
726 int err = 0, err2;
727 struct address_space *mapping = file->f_mapping;
728
729 if (mapping_needs_writeback(mapping)) {
730 err = __filemap_fdatawrite_range(mapping, lstart, lend,
731 WB_SYNC_ALL);
732 /* See comment of filemap_write_and_wait() */
733 if (err != -EIO)
734 __filemap_fdatawait_range(mapping, lstart, lend);
735 }
736 err2 = file_check_and_advance_wb_err(file);
737 if (!err)
738 err = err2;
739 return err;
740 }
741 EXPORT_SYMBOL(file_write_and_wait_range);
742
743 /**
744 * replace_page_cache_page - replace a pagecache page with a new one
745 * @old: page to be replaced
746 * @new: page to replace with
747 * @gfp_mask: allocation mode
748 *
749 * This function replaces a page in the pagecache with a new one. On
750 * success it acquires the pagecache reference for the new page and
751 * drops it for the old page. Both the old and new pages must be
752 * locked. This function does not add the new page to the LRU, the
753 * caller must do that.
754 *
755 * The remove + add is atomic. This function cannot fail.
756 */
757 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
758 {
759 struct address_space *mapping = old->mapping;
760 void (*freepage)(struct page *) = mapping->a_ops->freepage;
761 pgoff_t offset = old->index;
762 XA_STATE(xas, &mapping->i_pages, offset);
763 unsigned long flags;
764
765 VM_BUG_ON_PAGE(!PageLocked(old), old);
766 VM_BUG_ON_PAGE(!PageLocked(new), new);
767 VM_BUG_ON_PAGE(new->mapping, new);
768
769 get_page(new);
770 new->mapping = mapping;
771 new->index = offset;
772
773 xas_lock_irqsave(&xas, flags);
774 xas_store(&xas, new);
775
776 old->mapping = NULL;
777 /* hugetlb pages do not participate in page cache accounting. */
778 if (!PageHuge(old))
779 __dec_node_page_state(new, NR_FILE_PAGES);
780 if (!PageHuge(new))
781 __inc_node_page_state(new, NR_FILE_PAGES);
782 if (PageSwapBacked(old))
783 __dec_node_page_state(new, NR_SHMEM);
784 if (PageSwapBacked(new))
785 __inc_node_page_state(new, NR_SHMEM);
786 xas_unlock_irqrestore(&xas, flags);
787 mem_cgroup_migrate(old, new);
788 if (freepage)
789 freepage(old);
790 put_page(old);
791
792 return 0;
793 }
794 EXPORT_SYMBOL_GPL(replace_page_cache_page);
795
796 static int __add_to_page_cache_locked(struct page *page,
797 struct address_space *mapping,
798 pgoff_t offset, gfp_t gfp_mask,
799 void **shadowp)
800 {
801 XA_STATE(xas, &mapping->i_pages, offset);
802 int huge = PageHuge(page);
803 struct mem_cgroup *memcg;
804 int error;
805 void *old;
806
807 VM_BUG_ON_PAGE(!PageLocked(page), page);
808 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
809 mapping_set_update(&xas, mapping);
810
811 if (!huge) {
812 error = mem_cgroup_try_charge(page, current->mm,
813 gfp_mask, &memcg, false);
814 if (error)
815 return error;
816 }
817
818 get_page(page);
819 page->mapping = mapping;
820 page->index = offset;
821
822 do {
823 xas_lock_irq(&xas);
824 old = xas_load(&xas);
825 if (old && !xa_is_value(old))
826 xas_set_err(&xas, -EEXIST);
827 xas_store(&xas, page);
828 if (xas_error(&xas))
829 goto unlock;
830
831 if (xa_is_value(old)) {
832 mapping->nrexceptional--;
833 if (shadowp)
834 *shadowp = old;
835 }
836 mapping->nrpages++;
837
838 /* hugetlb pages do not participate in page cache accounting */
839 if (!huge)
840 __inc_node_page_state(page, NR_FILE_PAGES);
841 unlock:
842 xas_unlock_irq(&xas);
843 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
844
845 if (xas_error(&xas))
846 goto error;
847
848 if (!huge)
849 mem_cgroup_commit_charge(page, memcg, false, false);
850 trace_mm_filemap_add_to_page_cache(page);
851 return 0;
852 error:
853 page->mapping = NULL;
854 /* Leave page->index set: truncation relies upon it */
855 if (!huge)
856 mem_cgroup_cancel_charge(page, memcg, false);
857 put_page(page);
858 return xas_error(&xas);
859 }
860
861 /**
862 * add_to_page_cache_locked - add a locked page to the pagecache
863 * @page: page to add
864 * @mapping: the page's address_space
865 * @offset: page index
866 * @gfp_mask: page allocation mode
867 *
868 * This function is used to add a page to the pagecache. It must be locked.
869 * This function does not add the page to the LRU. The caller must do that.
870 */
871 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
872 pgoff_t offset, gfp_t gfp_mask)
873 {
874 return __add_to_page_cache_locked(page, mapping, offset,
875 gfp_mask, NULL);
876 }
877 EXPORT_SYMBOL(add_to_page_cache_locked);
878
879 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
880 pgoff_t offset, gfp_t gfp_mask)
881 {
882 void *shadow = NULL;
883 int ret;
884
885 __SetPageLocked(page);
886 ret = __add_to_page_cache_locked(page, mapping, offset,
887 gfp_mask, &shadow);
888 if (unlikely(ret))
889 __ClearPageLocked(page);
890 else {
891 /*
892 * The page might have been evicted from cache only
893 * recently, in which case it should be activated like
894 * any other repeatedly accessed page.
895 * The exception is pages getting rewritten; evicting other
896 * data from the working set, only to cache data that will
897 * get overwritten with something else, is a waste of memory.
898 */
899 WARN_ON_ONCE(PageActive(page));
900 if (!(gfp_mask & __GFP_WRITE) && shadow)
901 workingset_refault(page, shadow);
902 lru_cache_add(page);
903 }
904 return ret;
905 }
906 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
907
908 #ifdef CONFIG_NUMA
909 struct page *__page_cache_alloc(gfp_t gfp)
910 {
911 int n;
912 struct page *page;
913
914 if (cpuset_do_page_mem_spread()) {
915 unsigned int cpuset_mems_cookie;
916 do {
917 cpuset_mems_cookie = read_mems_allowed_begin();
918 n = cpuset_mem_spread_node();
919 page = __alloc_pages_node(n, gfp, 0);
920 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
921
922 return page;
923 }
924 return alloc_pages(gfp, 0);
925 }
926 EXPORT_SYMBOL(__page_cache_alloc);
927 #endif
928
929 /*
930 * In order to wait for pages to become available there must be
931 * waitqueues associated with pages. By using a hash table of
932 * waitqueues where the bucket discipline is to maintain all
933 * waiters on the same queue and wake all when any of the pages
934 * become available, and for the woken contexts to check to be
935 * sure the appropriate page became available, this saves space
936 * at a cost of "thundering herd" phenomena during rare hash
937 * collisions.
938 */
939 #define PAGE_WAIT_TABLE_BITS 8
940 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
941 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
942
943 static wait_queue_head_t *page_waitqueue(struct page *page)
944 {
945 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
946 }
947
948 void __init pagecache_init(void)
949 {
950 int i;
951
952 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
953 init_waitqueue_head(&page_wait_table[i]);
954
955 page_writeback_init();
956 }
957
958 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
959 struct wait_page_key {
960 struct page *page;
961 int bit_nr;
962 int page_match;
963 };
964
965 struct wait_page_queue {
966 struct page *page;
967 int bit_nr;
968 wait_queue_entry_t wait;
969 };
970
971 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
972 {
973 struct wait_page_key *key = arg;
974 struct wait_page_queue *wait_page
975 = container_of(wait, struct wait_page_queue, wait);
976
977 if (wait_page->page != key->page)
978 return 0;
979 key->page_match = 1;
980
981 if (wait_page->bit_nr != key->bit_nr)
982 return 0;
983
984 /* Stop walking if it's locked */
985 if (test_bit(key->bit_nr, &key->page->flags))
986 return -1;
987
988 return autoremove_wake_function(wait, mode, sync, key);
989 }
990
991 static void wake_up_page_bit(struct page *page, int bit_nr)
992 {
993 wait_queue_head_t *q = page_waitqueue(page);
994 struct wait_page_key key;
995 unsigned long flags;
996 wait_queue_entry_t bookmark;
997
998 key.page = page;
999 key.bit_nr = bit_nr;
1000 key.page_match = 0;
1001
1002 bookmark.flags = 0;
1003 bookmark.private = NULL;
1004 bookmark.func = NULL;
1005 INIT_LIST_HEAD(&bookmark.entry);
1006
1007 spin_lock_irqsave(&q->lock, flags);
1008 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1009
1010 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1011 /*
1012 * Take a breather from holding the lock,
1013 * allow pages that finish wake up asynchronously
1014 * to acquire the lock and remove themselves
1015 * from wait queue
1016 */
1017 spin_unlock_irqrestore(&q->lock, flags);
1018 cpu_relax();
1019 spin_lock_irqsave(&q->lock, flags);
1020 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1021 }
1022
1023 /*
1024 * It is possible for other pages to have collided on the waitqueue
1025 * hash, so in that case check for a page match. That prevents a long-
1026 * term waiter
1027 *
1028 * It is still possible to miss a case here, when we woke page waiters
1029 * and removed them from the waitqueue, but there are still other
1030 * page waiters.
1031 */
1032 if (!waitqueue_active(q) || !key.page_match) {
1033 ClearPageWaiters(page);
1034 /*
1035 * It's possible to miss clearing Waiters here, when we woke
1036 * our page waiters, but the hashed waitqueue has waiters for
1037 * other pages on it.
1038 *
1039 * That's okay, it's a rare case. The next waker will clear it.
1040 */
1041 }
1042 spin_unlock_irqrestore(&q->lock, flags);
1043 }
1044
1045 static void wake_up_page(struct page *page, int bit)
1046 {
1047 if (!PageWaiters(page))
1048 return;
1049 wake_up_page_bit(page, bit);
1050 }
1051
1052 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1053 struct page *page, int bit_nr, int state, bool lock)
1054 {
1055 struct wait_page_queue wait_page;
1056 wait_queue_entry_t *wait = &wait_page.wait;
1057 bool thrashing = false;
1058 unsigned long pflags;
1059 int ret = 0;
1060
1061 if (bit_nr == PG_locked &&
1062 !PageUptodate(page) && PageWorkingset(page)) {
1063 if (!PageSwapBacked(page))
1064 delayacct_thrashing_start();
1065 psi_memstall_enter(&pflags);
1066 thrashing = true;
1067 }
1068
1069 init_wait(wait);
1070 wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
1071 wait->func = wake_page_function;
1072 wait_page.page = page;
1073 wait_page.bit_nr = bit_nr;
1074
1075 for (;;) {
1076 spin_lock_irq(&q->lock);
1077
1078 if (likely(list_empty(&wait->entry))) {
1079 __add_wait_queue_entry_tail(q, wait);
1080 SetPageWaiters(page);
1081 }
1082
1083 set_current_state(state);
1084
1085 spin_unlock_irq(&q->lock);
1086
1087 if (likely(test_bit(bit_nr, &page->flags))) {
1088 io_schedule();
1089 }
1090
1091 if (lock) {
1092 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1093 break;
1094 } else {
1095 if (!test_bit(bit_nr, &page->flags))
1096 break;
1097 }
1098
1099 if (unlikely(signal_pending_state(state, current))) {
1100 ret = -EINTR;
1101 break;
1102 }
1103 }
1104
1105 finish_wait(q, wait);
1106
1107 if (thrashing) {
1108 if (!PageSwapBacked(page))
1109 delayacct_thrashing_end();
1110 psi_memstall_leave(&pflags);
1111 }
1112
1113 /*
1114 * A signal could leave PageWaiters set. Clearing it here if
1115 * !waitqueue_active would be possible (by open-coding finish_wait),
1116 * but still fail to catch it in the case of wait hash collision. We
1117 * already can fail to clear wait hash collision cases, so don't
1118 * bother with signals either.
1119 */
1120
1121 return ret;
1122 }
1123
1124 void wait_on_page_bit(struct page *page, int bit_nr)
1125 {
1126 wait_queue_head_t *q = page_waitqueue(page);
1127 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1128 }
1129 EXPORT_SYMBOL(wait_on_page_bit);
1130
1131 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1132 {
1133 wait_queue_head_t *q = page_waitqueue(page);
1134 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1135 }
1136 EXPORT_SYMBOL(wait_on_page_bit_killable);
1137
1138 /**
1139 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1140 * @page: Page defining the wait queue of interest
1141 * @waiter: Waiter to add to the queue
1142 *
1143 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1144 */
1145 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1146 {
1147 wait_queue_head_t *q = page_waitqueue(page);
1148 unsigned long flags;
1149
1150 spin_lock_irqsave(&q->lock, flags);
1151 __add_wait_queue_entry_tail(q, waiter);
1152 SetPageWaiters(page);
1153 spin_unlock_irqrestore(&q->lock, flags);
1154 }
1155 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1156
1157 #ifndef clear_bit_unlock_is_negative_byte
1158
1159 /*
1160 * PG_waiters is the high bit in the same byte as PG_lock.
1161 *
1162 * On x86 (and on many other architectures), we can clear PG_lock and
1163 * test the sign bit at the same time. But if the architecture does
1164 * not support that special operation, we just do this all by hand
1165 * instead.
1166 *
1167 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1168 * being cleared, but a memory barrier should be unneccssary since it is
1169 * in the same byte as PG_locked.
1170 */
1171 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1172 {
1173 clear_bit_unlock(nr, mem);
1174 /* smp_mb__after_atomic(); */
1175 return test_bit(PG_waiters, mem);
1176 }
1177
1178 #endif
1179
1180 /**
1181 * unlock_page - unlock a locked page
1182 * @page: the page
1183 *
1184 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1185 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1186 * mechanism between PageLocked pages and PageWriteback pages is shared.
1187 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1188 *
1189 * Note that this depends on PG_waiters being the sign bit in the byte
1190 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1191 * clear the PG_locked bit and test PG_waiters at the same time fairly
1192 * portably (architectures that do LL/SC can test any bit, while x86 can
1193 * test the sign bit).
1194 */
1195 void unlock_page(struct page *page)
1196 {
1197 BUILD_BUG_ON(PG_waiters != 7);
1198 page = compound_head(page);
1199 VM_BUG_ON_PAGE(!PageLocked(page), page);
1200 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1201 wake_up_page_bit(page, PG_locked);
1202 }
1203 EXPORT_SYMBOL(unlock_page);
1204
1205 /**
1206 * end_page_writeback - end writeback against a page
1207 * @page: the page
1208 */
1209 void end_page_writeback(struct page *page)
1210 {
1211 /*
1212 * TestClearPageReclaim could be used here but it is an atomic
1213 * operation and overkill in this particular case. Failing to
1214 * shuffle a page marked for immediate reclaim is too mild to
1215 * justify taking an atomic operation penalty at the end of
1216 * ever page writeback.
1217 */
1218 if (PageReclaim(page)) {
1219 ClearPageReclaim(page);
1220 rotate_reclaimable_page(page);
1221 }
1222
1223 if (!test_clear_page_writeback(page))
1224 BUG();
1225
1226 smp_mb__after_atomic();
1227 wake_up_page(page, PG_writeback);
1228 }
1229 EXPORT_SYMBOL(end_page_writeback);
1230
1231 /*
1232 * After completing I/O on a page, call this routine to update the page
1233 * flags appropriately
1234 */
1235 void page_endio(struct page *page, bool is_write, int err)
1236 {
1237 if (!is_write) {
1238 if (!err) {
1239 SetPageUptodate(page);
1240 } else {
1241 ClearPageUptodate(page);
1242 SetPageError(page);
1243 }
1244 unlock_page(page);
1245 } else {
1246 if (err) {
1247 struct address_space *mapping;
1248
1249 SetPageError(page);
1250 mapping = page_mapping(page);
1251 if (mapping)
1252 mapping_set_error(mapping, err);
1253 }
1254 end_page_writeback(page);
1255 }
1256 }
1257 EXPORT_SYMBOL_GPL(page_endio);
1258
1259 /**
1260 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1261 * @__page: the page to lock
1262 */
1263 void __lock_page(struct page *__page)
1264 {
1265 struct page *page = compound_head(__page);
1266 wait_queue_head_t *q = page_waitqueue(page);
1267 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1268 }
1269 EXPORT_SYMBOL(__lock_page);
1270
1271 int __lock_page_killable(struct page *__page)
1272 {
1273 struct page *page = compound_head(__page);
1274 wait_queue_head_t *q = page_waitqueue(page);
1275 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1276 }
1277 EXPORT_SYMBOL_GPL(__lock_page_killable);
1278
1279 /*
1280 * Return values:
1281 * 1 - page is locked; mmap_sem is still held.
1282 * 0 - page is not locked.
1283 * mmap_sem has been released (up_read()), unless flags had both
1284 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1285 * which case mmap_sem is still held.
1286 *
1287 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1288 * with the page locked and the mmap_sem unperturbed.
1289 */
1290 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1291 unsigned int flags)
1292 {
1293 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1294 /*
1295 * CAUTION! In this case, mmap_sem is not released
1296 * even though return 0.
1297 */
1298 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1299 return 0;
1300
1301 up_read(&mm->mmap_sem);
1302 if (flags & FAULT_FLAG_KILLABLE)
1303 wait_on_page_locked_killable(page);
1304 else
1305 wait_on_page_locked(page);
1306 return 0;
1307 } else {
1308 if (flags & FAULT_FLAG_KILLABLE) {
1309 int ret;
1310
1311 ret = __lock_page_killable(page);
1312 if (ret) {
1313 up_read(&mm->mmap_sem);
1314 return 0;
1315 }
1316 } else
1317 __lock_page(page);
1318 return 1;
1319 }
1320 }
1321
1322 /**
1323 * page_cache_next_miss() - Find the next gap in the page cache.
1324 * @mapping: Mapping.
1325 * @index: Index.
1326 * @max_scan: Maximum range to search.
1327 *
1328 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1329 * gap with the lowest index.
1330 *
1331 * This function may be called under the rcu_read_lock. However, this will
1332 * not atomically search a snapshot of the cache at a single point in time.
1333 * For example, if a gap is created at index 5, then subsequently a gap is
1334 * created at index 10, page_cache_next_miss covering both indices may
1335 * return 10 if called under the rcu_read_lock.
1336 *
1337 * Return: The index of the gap if found, otherwise an index outside the
1338 * range specified (in which case 'return - index >= max_scan' will be true).
1339 * In the rare case of index wrap-around, 0 will be returned.
1340 */
1341 pgoff_t page_cache_next_miss(struct address_space *mapping,
1342 pgoff_t index, unsigned long max_scan)
1343 {
1344 XA_STATE(xas, &mapping->i_pages, index);
1345
1346 while (max_scan--) {
1347 void *entry = xas_next(&xas);
1348 if (!entry || xa_is_value(entry))
1349 break;
1350 if (xas.xa_index == 0)
1351 break;
1352 }
1353
1354 return xas.xa_index;
1355 }
1356 EXPORT_SYMBOL(page_cache_next_miss);
1357
1358 /**
1359 * page_cache_prev_miss() - Find the next gap in the page cache.
1360 * @mapping: Mapping.
1361 * @index: Index.
1362 * @max_scan: Maximum range to search.
1363 *
1364 * Search the range [max(index - max_scan + 1, 0), index] for the
1365 * gap with the highest index.
1366 *
1367 * This function may be called under the rcu_read_lock. However, this will
1368 * not atomically search a snapshot of the cache at a single point in time.
1369 * For example, if a gap is created at index 10, then subsequently a gap is
1370 * created at index 5, page_cache_prev_miss() covering both indices may
1371 * return 5 if called under the rcu_read_lock.
1372 *
1373 * Return: The index of the gap if found, otherwise an index outside the
1374 * range specified (in which case 'index - return >= max_scan' will be true).
1375 * In the rare case of wrap-around, ULONG_MAX will be returned.
1376 */
1377 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1378 pgoff_t index, unsigned long max_scan)
1379 {
1380 XA_STATE(xas, &mapping->i_pages, index);
1381
1382 while (max_scan--) {
1383 void *entry = xas_prev(&xas);
1384 if (!entry || xa_is_value(entry))
1385 break;
1386 if (xas.xa_index == ULONG_MAX)
1387 break;
1388 }
1389
1390 return xas.xa_index;
1391 }
1392 EXPORT_SYMBOL(page_cache_prev_miss);
1393
1394 /**
1395 * find_get_entry - find and get a page cache entry
1396 * @mapping: the address_space to search
1397 * @offset: the page cache index
1398 *
1399 * Looks up the page cache slot at @mapping & @offset. If there is a
1400 * page cache page, it is returned with an increased refcount.
1401 *
1402 * If the slot holds a shadow entry of a previously evicted page, or a
1403 * swap entry from shmem/tmpfs, it is returned.
1404 *
1405 * Otherwise, %NULL is returned.
1406 */
1407 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1408 {
1409 XA_STATE(xas, &mapping->i_pages, offset);
1410 struct page *head, *page;
1411
1412 rcu_read_lock();
1413 repeat:
1414 xas_reset(&xas);
1415 page = xas_load(&xas);
1416 if (xas_retry(&xas, page))
1417 goto repeat;
1418 /*
1419 * A shadow entry of a recently evicted page, or a swap entry from
1420 * shmem/tmpfs. Return it without attempting to raise page count.
1421 */
1422 if (!page || xa_is_value(page))
1423 goto out;
1424
1425 head = compound_head(page);
1426 if (!page_cache_get_speculative(head))
1427 goto repeat;
1428
1429 /* The page was split under us? */
1430 if (compound_head(page) != head) {
1431 put_page(head);
1432 goto repeat;
1433 }
1434
1435 /*
1436 * Has the page moved?
1437 * This is part of the lockless pagecache protocol. See
1438 * include/linux/pagemap.h for details.
1439 */
1440 if (unlikely(page != xas_reload(&xas))) {
1441 put_page(head);
1442 goto repeat;
1443 }
1444 out:
1445 rcu_read_unlock();
1446
1447 return page;
1448 }
1449 EXPORT_SYMBOL(find_get_entry);
1450
1451 /**
1452 * find_lock_entry - locate, pin and lock a page cache entry
1453 * @mapping: the address_space to search
1454 * @offset: the page cache index
1455 *
1456 * Looks up the page cache slot at @mapping & @offset. If there is a
1457 * page cache page, it is returned locked and with an increased
1458 * refcount.
1459 *
1460 * If the slot holds a shadow entry of a previously evicted page, or a
1461 * swap entry from shmem/tmpfs, it is returned.
1462 *
1463 * Otherwise, %NULL is returned.
1464 *
1465 * find_lock_entry() may sleep.
1466 */
1467 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1468 {
1469 struct page *page;
1470
1471 repeat:
1472 page = find_get_entry(mapping, offset);
1473 if (page && !xa_is_value(page)) {
1474 lock_page(page);
1475 /* Has the page been truncated? */
1476 if (unlikely(page_mapping(page) != mapping)) {
1477 unlock_page(page);
1478 put_page(page);
1479 goto repeat;
1480 }
1481 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1482 }
1483 return page;
1484 }
1485 EXPORT_SYMBOL(find_lock_entry);
1486
1487 /**
1488 * pagecache_get_page - find and get a page reference
1489 * @mapping: the address_space to search
1490 * @offset: the page index
1491 * @fgp_flags: PCG flags
1492 * @gfp_mask: gfp mask to use for the page cache data page allocation
1493 *
1494 * Looks up the page cache slot at @mapping & @offset.
1495 *
1496 * PCG flags modify how the page is returned.
1497 *
1498 * @fgp_flags can be:
1499 *
1500 * - FGP_ACCESSED: the page will be marked accessed
1501 * - FGP_LOCK: Page is return locked
1502 * - FGP_CREAT: If page is not present then a new page is allocated using
1503 * @gfp_mask and added to the page cache and the VM's LRU
1504 * list. The page is returned locked and with an increased
1505 * refcount. Otherwise, NULL is returned.
1506 *
1507 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1508 * if the GFP flags specified for FGP_CREAT are atomic.
1509 *
1510 * If there is a page cache page, it is returned with an increased refcount.
1511 */
1512 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1513 int fgp_flags, gfp_t gfp_mask)
1514 {
1515 struct page *page;
1516
1517 repeat:
1518 page = find_get_entry(mapping, offset);
1519 if (xa_is_value(page))
1520 page = NULL;
1521 if (!page)
1522 goto no_page;
1523
1524 if (fgp_flags & FGP_LOCK) {
1525 if (fgp_flags & FGP_NOWAIT) {
1526 if (!trylock_page(page)) {
1527 put_page(page);
1528 return NULL;
1529 }
1530 } else {
1531 lock_page(page);
1532 }
1533
1534 /* Has the page been truncated? */
1535 if (unlikely(page->mapping != mapping)) {
1536 unlock_page(page);
1537 put_page(page);
1538 goto repeat;
1539 }
1540 VM_BUG_ON_PAGE(page->index != offset, page);
1541 }
1542
1543 if (page && (fgp_flags & FGP_ACCESSED))
1544 mark_page_accessed(page);
1545
1546 no_page:
1547 if (!page && (fgp_flags & FGP_CREAT)) {
1548 int err;
1549 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1550 gfp_mask |= __GFP_WRITE;
1551 if (fgp_flags & FGP_NOFS)
1552 gfp_mask &= ~__GFP_FS;
1553
1554 page = __page_cache_alloc(gfp_mask);
1555 if (!page)
1556 return NULL;
1557
1558 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1559 fgp_flags |= FGP_LOCK;
1560
1561 /* Init accessed so avoid atomic mark_page_accessed later */
1562 if (fgp_flags & FGP_ACCESSED)
1563 __SetPageReferenced(page);
1564
1565 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1566 if (unlikely(err)) {
1567 put_page(page);
1568 page = NULL;
1569 if (err == -EEXIST)
1570 goto repeat;
1571 }
1572 }
1573
1574 return page;
1575 }
1576 EXPORT_SYMBOL(pagecache_get_page);
1577
1578 /**
1579 * find_get_entries - gang pagecache lookup
1580 * @mapping: The address_space to search
1581 * @start: The starting page cache index
1582 * @nr_entries: The maximum number of entries
1583 * @entries: Where the resulting entries are placed
1584 * @indices: The cache indices corresponding to the entries in @entries
1585 *
1586 * find_get_entries() will search for and return a group of up to
1587 * @nr_entries entries in the mapping. The entries are placed at
1588 * @entries. find_get_entries() takes a reference against any actual
1589 * pages it returns.
1590 *
1591 * The search returns a group of mapping-contiguous page cache entries
1592 * with ascending indexes. There may be holes in the indices due to
1593 * not-present pages.
1594 *
1595 * Any shadow entries of evicted pages, or swap entries from
1596 * shmem/tmpfs, are included in the returned array.
1597 *
1598 * find_get_entries() returns the number of pages and shadow entries
1599 * which were found.
1600 */
1601 unsigned find_get_entries(struct address_space *mapping,
1602 pgoff_t start, unsigned int nr_entries,
1603 struct page **entries, pgoff_t *indices)
1604 {
1605 XA_STATE(xas, &mapping->i_pages, start);
1606 struct page *page;
1607 unsigned int ret = 0;
1608
1609 if (!nr_entries)
1610 return 0;
1611
1612 rcu_read_lock();
1613 xas_for_each(&xas, page, ULONG_MAX) {
1614 struct page *head;
1615 if (xas_retry(&xas, page))
1616 continue;
1617 /*
1618 * A shadow entry of a recently evicted page, a swap
1619 * entry from shmem/tmpfs or a DAX entry. Return it
1620 * without attempting to raise page count.
1621 */
1622 if (xa_is_value(page))
1623 goto export;
1624
1625 head = compound_head(page);
1626 if (!page_cache_get_speculative(head))
1627 goto retry;
1628
1629 /* The page was split under us? */
1630 if (compound_head(page) != head)
1631 goto put_page;
1632
1633 /* Has the page moved? */
1634 if (unlikely(page != xas_reload(&xas)))
1635 goto put_page;
1636
1637 export:
1638 indices[ret] = xas.xa_index;
1639 entries[ret] = page;
1640 if (++ret == nr_entries)
1641 break;
1642 continue;
1643 put_page:
1644 put_page(head);
1645 retry:
1646 xas_reset(&xas);
1647 }
1648 rcu_read_unlock();
1649 return ret;
1650 }
1651
1652 /**
1653 * find_get_pages_range - gang pagecache lookup
1654 * @mapping: The address_space to search
1655 * @start: The starting page index
1656 * @end: The final page index (inclusive)
1657 * @nr_pages: The maximum number of pages
1658 * @pages: Where the resulting pages are placed
1659 *
1660 * find_get_pages_range() will search for and return a group of up to @nr_pages
1661 * pages in the mapping starting at index @start and up to index @end
1662 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1663 * a reference against the returned pages.
1664 *
1665 * The search returns a group of mapping-contiguous pages with ascending
1666 * indexes. There may be holes in the indices due to not-present pages.
1667 * We also update @start to index the next page for the traversal.
1668 *
1669 * find_get_pages_range() returns the number of pages which were found. If this
1670 * number is smaller than @nr_pages, the end of specified range has been
1671 * reached.
1672 */
1673 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1674 pgoff_t end, unsigned int nr_pages,
1675 struct page **pages)
1676 {
1677 XA_STATE(xas, &mapping->i_pages, *start);
1678 struct page *page;
1679 unsigned ret = 0;
1680
1681 if (unlikely(!nr_pages))
1682 return 0;
1683
1684 rcu_read_lock();
1685 xas_for_each(&xas, page, end) {
1686 struct page *head;
1687 if (xas_retry(&xas, page))
1688 continue;
1689 /* Skip over shadow, swap and DAX entries */
1690 if (xa_is_value(page))
1691 continue;
1692
1693 head = compound_head(page);
1694 if (!page_cache_get_speculative(head))
1695 goto retry;
1696
1697 /* The page was split under us? */
1698 if (compound_head(page) != head)
1699 goto put_page;
1700
1701 /* Has the page moved? */
1702 if (unlikely(page != xas_reload(&xas)))
1703 goto put_page;
1704
1705 pages[ret] = page;
1706 if (++ret == nr_pages) {
1707 *start = page->index + 1;
1708 goto out;
1709 }
1710 continue;
1711 put_page:
1712 put_page(head);
1713 retry:
1714 xas_reset(&xas);
1715 }
1716
1717 /*
1718 * We come here when there is no page beyond @end. We take care to not
1719 * overflow the index @start as it confuses some of the callers. This
1720 * breaks the iteration when there is a page at index -1 but that is
1721 * already broken anyway.
1722 */
1723 if (end == (pgoff_t)-1)
1724 *start = (pgoff_t)-1;
1725 else
1726 *start = end + 1;
1727 out:
1728 rcu_read_unlock();
1729
1730 return ret;
1731 }
1732
1733 /**
1734 * find_get_pages_contig - gang contiguous pagecache lookup
1735 * @mapping: The address_space to search
1736 * @index: The starting page index
1737 * @nr_pages: The maximum number of pages
1738 * @pages: Where the resulting pages are placed
1739 *
1740 * find_get_pages_contig() works exactly like find_get_pages(), except
1741 * that the returned number of pages are guaranteed to be contiguous.
1742 *
1743 * find_get_pages_contig() returns the number of pages which were found.
1744 */
1745 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1746 unsigned int nr_pages, struct page **pages)
1747 {
1748 XA_STATE(xas, &mapping->i_pages, index);
1749 struct page *page;
1750 unsigned int ret = 0;
1751
1752 if (unlikely(!nr_pages))
1753 return 0;
1754
1755 rcu_read_lock();
1756 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1757 struct page *head;
1758 if (xas_retry(&xas, page))
1759 continue;
1760 /*
1761 * If the entry has been swapped out, we can stop looking.
1762 * No current caller is looking for DAX entries.
1763 */
1764 if (xa_is_value(page))
1765 break;
1766
1767 head = compound_head(page);
1768 if (!page_cache_get_speculative(head))
1769 goto retry;
1770
1771 /* The page was split under us? */
1772 if (compound_head(page) != head)
1773 goto put_page;
1774
1775 /* Has the page moved? */
1776 if (unlikely(page != xas_reload(&xas)))
1777 goto put_page;
1778
1779 /*
1780 * must check mapping and index after taking the ref.
1781 * otherwise we can get both false positives and false
1782 * negatives, which is just confusing to the caller.
1783 */
1784 if (!page->mapping || page_to_pgoff(page) != xas.xa_index) {
1785 put_page(page);
1786 break;
1787 }
1788
1789 pages[ret] = page;
1790 if (++ret == nr_pages)
1791 break;
1792 continue;
1793 put_page:
1794 put_page(head);
1795 retry:
1796 xas_reset(&xas);
1797 }
1798 rcu_read_unlock();
1799 return ret;
1800 }
1801 EXPORT_SYMBOL(find_get_pages_contig);
1802
1803 /**
1804 * find_get_pages_range_tag - find and return pages in given range matching @tag
1805 * @mapping: the address_space to search
1806 * @index: the starting page index
1807 * @end: The final page index (inclusive)
1808 * @tag: the tag index
1809 * @nr_pages: the maximum number of pages
1810 * @pages: where the resulting pages are placed
1811 *
1812 * Like find_get_pages, except we only return pages which are tagged with
1813 * @tag. We update @index to index the next page for the traversal.
1814 */
1815 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1816 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1817 struct page **pages)
1818 {
1819 XA_STATE(xas, &mapping->i_pages, *index);
1820 struct page *page;
1821 unsigned ret = 0;
1822
1823 if (unlikely(!nr_pages))
1824 return 0;
1825
1826 rcu_read_lock();
1827 xas_for_each_marked(&xas, page, end, tag) {
1828 struct page *head;
1829 if (xas_retry(&xas, page))
1830 continue;
1831 /*
1832 * Shadow entries should never be tagged, but this iteration
1833 * is lockless so there is a window for page reclaim to evict
1834 * a page we saw tagged. Skip over it.
1835 */
1836 if (xa_is_value(page))
1837 continue;
1838
1839 head = compound_head(page);
1840 if (!page_cache_get_speculative(head))
1841 goto retry;
1842
1843 /* The page was split under us? */
1844 if (compound_head(page) != head)
1845 goto put_page;
1846
1847 /* Has the page moved? */
1848 if (unlikely(page != xas_reload(&xas)))
1849 goto put_page;
1850
1851 pages[ret] = page;
1852 if (++ret == nr_pages) {
1853 *index = page->index + 1;
1854 goto out;
1855 }
1856 continue;
1857 put_page:
1858 put_page(head);
1859 retry:
1860 xas_reset(&xas);
1861 }
1862
1863 /*
1864 * We come here when we got to @end. We take care to not overflow the
1865 * index @index as it confuses some of the callers. This breaks the
1866 * iteration when there is a page at index -1 but that is already
1867 * broken anyway.
1868 */
1869 if (end == (pgoff_t)-1)
1870 *index = (pgoff_t)-1;
1871 else
1872 *index = end + 1;
1873 out:
1874 rcu_read_unlock();
1875
1876 return ret;
1877 }
1878 EXPORT_SYMBOL(find_get_pages_range_tag);
1879
1880 /**
1881 * find_get_entries_tag - find and return entries that match @tag
1882 * @mapping: the address_space to search
1883 * @start: the starting page cache index
1884 * @tag: the tag index
1885 * @nr_entries: the maximum number of entries
1886 * @entries: where the resulting entries are placed
1887 * @indices: the cache indices corresponding to the entries in @entries
1888 *
1889 * Like find_get_entries, except we only return entries which are tagged with
1890 * @tag.
1891 */
1892 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1893 xa_mark_t tag, unsigned int nr_entries,
1894 struct page **entries, pgoff_t *indices)
1895 {
1896 XA_STATE(xas, &mapping->i_pages, start);
1897 struct page *page;
1898 unsigned int ret = 0;
1899
1900 if (!nr_entries)
1901 return 0;
1902
1903 rcu_read_lock();
1904 xas_for_each_marked(&xas, page, ULONG_MAX, tag) {
1905 struct page *head;
1906 if (xas_retry(&xas, page))
1907 continue;
1908 /*
1909 * A shadow entry of a recently evicted page, a swap
1910 * entry from shmem/tmpfs or a DAX entry. Return it
1911 * without attempting to raise page count.
1912 */
1913 if (xa_is_value(page))
1914 goto export;
1915
1916 head = compound_head(page);
1917 if (!page_cache_get_speculative(head))
1918 goto retry;
1919
1920 /* The page was split under us? */
1921 if (compound_head(page) != head)
1922 goto put_page;
1923
1924 /* Has the page moved? */
1925 if (unlikely(page != xas_reload(&xas)))
1926 goto put_page;
1927
1928 export:
1929 indices[ret] = xas.xa_index;
1930 entries[ret] = page;
1931 if (++ret == nr_entries)
1932 break;
1933 continue;
1934 put_page:
1935 put_page(head);
1936 retry:
1937 xas_reset(&xas);
1938 }
1939 rcu_read_unlock();
1940 return ret;
1941 }
1942 EXPORT_SYMBOL(find_get_entries_tag);
1943
1944 /*
1945 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1946 * a _large_ part of the i/o request. Imagine the worst scenario:
1947 *
1948 * ---R__________________________________________B__________
1949 * ^ reading here ^ bad block(assume 4k)
1950 *
1951 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1952 * => failing the whole request => read(R) => read(R+1) =>
1953 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1954 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1955 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1956 *
1957 * It is going insane. Fix it by quickly scaling down the readahead size.
1958 */
1959 static void shrink_readahead_size_eio(struct file *filp,
1960 struct file_ra_state *ra)
1961 {
1962 ra->ra_pages /= 4;
1963 }
1964
1965 /**
1966 * generic_file_buffered_read - generic file read routine
1967 * @iocb: the iocb to read
1968 * @iter: data destination
1969 * @written: already copied
1970 *
1971 * This is a generic file read routine, and uses the
1972 * mapping->a_ops->readpage() function for the actual low-level stuff.
1973 *
1974 * This is really ugly. But the goto's actually try to clarify some
1975 * of the logic when it comes to error handling etc.
1976 */
1977 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
1978 struct iov_iter *iter, ssize_t written)
1979 {
1980 struct file *filp = iocb->ki_filp;
1981 struct address_space *mapping = filp->f_mapping;
1982 struct inode *inode = mapping->host;
1983 struct file_ra_state *ra = &filp->f_ra;
1984 loff_t *ppos = &iocb->ki_pos;
1985 pgoff_t index;
1986 pgoff_t last_index;
1987 pgoff_t prev_index;
1988 unsigned long offset; /* offset into pagecache page */
1989 unsigned int prev_offset;
1990 int error = 0;
1991
1992 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1993 return 0;
1994 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1995
1996 index = *ppos >> PAGE_SHIFT;
1997 prev_index = ra->prev_pos >> PAGE_SHIFT;
1998 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1999 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2000 offset = *ppos & ~PAGE_MASK;
2001
2002 for (;;) {
2003 struct page *page;
2004 pgoff_t end_index;
2005 loff_t isize;
2006 unsigned long nr, ret;
2007
2008 cond_resched();
2009 find_page:
2010 if (fatal_signal_pending(current)) {
2011 error = -EINTR;
2012 goto out;
2013 }
2014
2015 page = find_get_page(mapping, index);
2016 if (!page) {
2017 if (iocb->ki_flags & IOCB_NOWAIT)
2018 goto would_block;
2019 page_cache_sync_readahead(mapping,
2020 ra, filp,
2021 index, last_index - index);
2022 page = find_get_page(mapping, index);
2023 if (unlikely(page == NULL))
2024 goto no_cached_page;
2025 }
2026 if (PageReadahead(page)) {
2027 page_cache_async_readahead(mapping,
2028 ra, filp, page,
2029 index, last_index - index);
2030 }
2031 if (!PageUptodate(page)) {
2032 if (iocb->ki_flags & IOCB_NOWAIT) {
2033 put_page(page);
2034 goto would_block;
2035 }
2036
2037 /*
2038 * See comment in do_read_cache_page on why
2039 * wait_on_page_locked is used to avoid unnecessarily
2040 * serialisations and why it's safe.
2041 */
2042 error = wait_on_page_locked_killable(page);
2043 if (unlikely(error))
2044 goto readpage_error;
2045 if (PageUptodate(page))
2046 goto page_ok;
2047
2048 if (inode->i_blkbits == PAGE_SHIFT ||
2049 !mapping->a_ops->is_partially_uptodate)
2050 goto page_not_up_to_date;
2051 /* pipes can't handle partially uptodate pages */
2052 if (unlikely(iov_iter_is_pipe(iter)))
2053 goto page_not_up_to_date;
2054 if (!trylock_page(page))
2055 goto page_not_up_to_date;
2056 /* Did it get truncated before we got the lock? */
2057 if (!page->mapping)
2058 goto page_not_up_to_date_locked;
2059 if (!mapping->a_ops->is_partially_uptodate(page,
2060 offset, iter->count))
2061 goto page_not_up_to_date_locked;
2062 unlock_page(page);
2063 }
2064 page_ok:
2065 /*
2066 * i_size must be checked after we know the page is Uptodate.
2067 *
2068 * Checking i_size after the check allows us to calculate
2069 * the correct value for "nr", which means the zero-filled
2070 * part of the page is not copied back to userspace (unless
2071 * another truncate extends the file - this is desired though).
2072 */
2073
2074 isize = i_size_read(inode);
2075 end_index = (isize - 1) >> PAGE_SHIFT;
2076 if (unlikely(!isize || index > end_index)) {
2077 put_page(page);
2078 goto out;
2079 }
2080
2081 /* nr is the maximum number of bytes to copy from this page */
2082 nr = PAGE_SIZE;
2083 if (index == end_index) {
2084 nr = ((isize - 1) & ~PAGE_MASK) + 1;
2085 if (nr <= offset) {
2086 put_page(page);
2087 goto out;
2088 }
2089 }
2090 nr = nr - offset;
2091
2092 /* If users can be writing to this page using arbitrary
2093 * virtual addresses, take care about potential aliasing
2094 * before reading the page on the kernel side.
2095 */
2096 if (mapping_writably_mapped(mapping))
2097 flush_dcache_page(page);
2098
2099 /*
2100 * When a sequential read accesses a page several times,
2101 * only mark it as accessed the first time.
2102 */
2103 if (prev_index != index || offset != prev_offset)
2104 mark_page_accessed(page);
2105 prev_index = index;
2106
2107 /*
2108 * Ok, we have the page, and it's up-to-date, so
2109 * now we can copy it to user space...
2110 */
2111
2112 ret = copy_page_to_iter(page, offset, nr, iter);
2113 offset += ret;
2114 index += offset >> PAGE_SHIFT;
2115 offset &= ~PAGE_MASK;
2116 prev_offset = offset;
2117
2118 put_page(page);
2119 written += ret;
2120 if (!iov_iter_count(iter))
2121 goto out;
2122 if (ret < nr) {
2123 error = -EFAULT;
2124 goto out;
2125 }
2126 continue;
2127
2128 page_not_up_to_date:
2129 /* Get exclusive access to the page ... */
2130 error = lock_page_killable(page);
2131 if (unlikely(error))
2132 goto readpage_error;
2133
2134 page_not_up_to_date_locked:
2135 /* Did it get truncated before we got the lock? */
2136 if (!page->mapping) {
2137 unlock_page(page);
2138 put_page(page);
2139 continue;
2140 }
2141
2142 /* Did somebody else fill it already? */
2143 if (PageUptodate(page)) {
2144 unlock_page(page);
2145 goto page_ok;
2146 }
2147
2148 readpage:
2149 /*
2150 * A previous I/O error may have been due to temporary
2151 * failures, eg. multipath errors.
2152 * PG_error will be set again if readpage fails.
2153 */
2154 ClearPageError(page);
2155 /* Start the actual read. The read will unlock the page. */
2156 error = mapping->a_ops->readpage(filp, page);
2157
2158 if (unlikely(error)) {
2159 if (error == AOP_TRUNCATED_PAGE) {
2160 put_page(page);
2161 error = 0;
2162 goto find_page;
2163 }
2164 goto readpage_error;
2165 }
2166
2167 if (!PageUptodate(page)) {
2168 error = lock_page_killable(page);
2169 if (unlikely(error))
2170 goto readpage_error;
2171 if (!PageUptodate(page)) {
2172 if (page->mapping == NULL) {
2173 /*
2174 * invalidate_mapping_pages got it
2175 */
2176 unlock_page(page);
2177 put_page(page);
2178 goto find_page;
2179 }
2180 unlock_page(page);
2181 shrink_readahead_size_eio(filp, ra);
2182 error = -EIO;
2183 goto readpage_error;
2184 }
2185 unlock_page(page);
2186 }
2187
2188 goto page_ok;
2189
2190 readpage_error:
2191 /* UHHUH! A synchronous read error occurred. Report it */
2192 put_page(page);
2193 goto out;
2194
2195 no_cached_page:
2196 /*
2197 * Ok, it wasn't cached, so we need to create a new
2198 * page..
2199 */
2200 page = page_cache_alloc(mapping);
2201 if (!page) {
2202 error = -ENOMEM;
2203 goto out;
2204 }
2205 error = add_to_page_cache_lru(page, mapping, index,
2206 mapping_gfp_constraint(mapping, GFP_KERNEL));
2207 if (error) {
2208 put_page(page);
2209 if (error == -EEXIST) {
2210 error = 0;
2211 goto find_page;
2212 }
2213 goto out;
2214 }
2215 goto readpage;
2216 }
2217
2218 would_block:
2219 error = -EAGAIN;
2220 out:
2221 ra->prev_pos = prev_index;
2222 ra->prev_pos <<= PAGE_SHIFT;
2223 ra->prev_pos |= prev_offset;
2224
2225 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2226 file_accessed(filp);
2227 return written ? written : error;
2228 }
2229
2230 /**
2231 * generic_file_read_iter - generic filesystem read routine
2232 * @iocb: kernel I/O control block
2233 * @iter: destination for the data read
2234 *
2235 * This is the "read_iter()" routine for all filesystems
2236 * that can use the page cache directly.
2237 */
2238 ssize_t
2239 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2240 {
2241 size_t count = iov_iter_count(iter);
2242 ssize_t retval = 0;
2243
2244 if (!count)
2245 goto out; /* skip atime */
2246
2247 if (iocb->ki_flags & IOCB_DIRECT) {
2248 struct file *file = iocb->ki_filp;
2249 struct address_space *mapping = file->f_mapping;
2250 struct inode *inode = mapping->host;
2251 loff_t size;
2252
2253 size = i_size_read(inode);
2254 if (iocb->ki_flags & IOCB_NOWAIT) {
2255 if (filemap_range_has_page(mapping, iocb->ki_pos,
2256 iocb->ki_pos + count - 1))
2257 return -EAGAIN;
2258 } else {
2259 retval = filemap_write_and_wait_range(mapping,
2260 iocb->ki_pos,
2261 iocb->ki_pos + count - 1);
2262 if (retval < 0)
2263 goto out;
2264 }
2265
2266 file_accessed(file);
2267
2268 retval = mapping->a_ops->direct_IO(iocb, iter);
2269 if (retval >= 0) {
2270 iocb->ki_pos += retval;
2271 count -= retval;
2272 }
2273 iov_iter_revert(iter, count - iov_iter_count(iter));
2274
2275 /*
2276 * Btrfs can have a short DIO read if we encounter
2277 * compressed extents, so if there was an error, or if
2278 * we've already read everything we wanted to, or if
2279 * there was a short read because we hit EOF, go ahead
2280 * and return. Otherwise fallthrough to buffered io for
2281 * the rest of the read. Buffered reads will not work for
2282 * DAX files, so don't bother trying.
2283 */
2284 if (retval < 0 || !count || iocb->ki_pos >= size ||
2285 IS_DAX(inode))
2286 goto out;
2287 }
2288
2289 retval = generic_file_buffered_read(iocb, iter, retval);
2290 out:
2291 return retval;
2292 }
2293 EXPORT_SYMBOL(generic_file_read_iter);
2294
2295 #ifdef CONFIG_MMU
2296 /**
2297 * page_cache_read - adds requested page to the page cache if not already there
2298 * @file: file to read
2299 * @offset: page index
2300 * @gfp_mask: memory allocation flags
2301 *
2302 * This adds the requested page to the page cache if it isn't already there,
2303 * and schedules an I/O to read in its contents from disk.
2304 */
2305 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2306 {
2307 struct address_space *mapping = file->f_mapping;
2308 struct page *page;
2309 int ret;
2310
2311 do {
2312 page = __page_cache_alloc(gfp_mask);
2313 if (!page)
2314 return -ENOMEM;
2315
2316 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
2317 if (ret == 0)
2318 ret = mapping->a_ops->readpage(file, page);
2319 else if (ret == -EEXIST)
2320 ret = 0; /* losing race to add is OK */
2321
2322 put_page(page);
2323
2324 } while (ret == AOP_TRUNCATED_PAGE);
2325
2326 return ret;
2327 }
2328
2329 #define MMAP_LOTSAMISS (100)
2330
2331 /*
2332 * Synchronous readahead happens when we don't even find
2333 * a page in the page cache at all.
2334 */
2335 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2336 struct file_ra_state *ra,
2337 struct file *file,
2338 pgoff_t offset)
2339 {
2340 struct address_space *mapping = file->f_mapping;
2341
2342 /* If we don't want any read-ahead, don't bother */
2343 if (vma->vm_flags & VM_RAND_READ)
2344 return;
2345 if (!ra->ra_pages)
2346 return;
2347
2348 if (vma->vm_flags & VM_SEQ_READ) {
2349 page_cache_sync_readahead(mapping, ra, file, offset,
2350 ra->ra_pages);
2351 return;
2352 }
2353
2354 /* Avoid banging the cache line if not needed */
2355 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2356 ra->mmap_miss++;
2357
2358 /*
2359 * Do we miss much more than hit in this file? If so,
2360 * stop bothering with read-ahead. It will only hurt.
2361 */
2362 if (ra->mmap_miss > MMAP_LOTSAMISS)
2363 return;
2364
2365 /*
2366 * mmap read-around
2367 */
2368 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2369 ra->size = ra->ra_pages;
2370 ra->async_size = ra->ra_pages / 4;
2371 ra_submit(ra, mapping, file);
2372 }
2373
2374 /*
2375 * Asynchronous readahead happens when we find the page and PG_readahead,
2376 * so we want to possibly extend the readahead further..
2377 */
2378 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2379 struct file_ra_state *ra,
2380 struct file *file,
2381 struct page *page,
2382 pgoff_t offset)
2383 {
2384 struct address_space *mapping = file->f_mapping;
2385
2386 /* If we don't want any read-ahead, don't bother */
2387 if (vma->vm_flags & VM_RAND_READ)
2388 return;
2389 if (ra->mmap_miss > 0)
2390 ra->mmap_miss--;
2391 if (PageReadahead(page))
2392 page_cache_async_readahead(mapping, ra, file,
2393 page, offset, ra->ra_pages);
2394 }
2395
2396 /**
2397 * filemap_fault - read in file data for page fault handling
2398 * @vmf: struct vm_fault containing details of the fault
2399 *
2400 * filemap_fault() is invoked via the vma operations vector for a
2401 * mapped memory region to read in file data during a page fault.
2402 *
2403 * The goto's are kind of ugly, but this streamlines the normal case of having
2404 * it in the page cache, and handles the special cases reasonably without
2405 * having a lot of duplicated code.
2406 *
2407 * vma->vm_mm->mmap_sem must be held on entry.
2408 *
2409 * If our return value has VM_FAULT_RETRY set, it's because
2410 * lock_page_or_retry() returned 0.
2411 * The mmap_sem has usually been released in this case.
2412 * See __lock_page_or_retry() for the exception.
2413 *
2414 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2415 * has not been released.
2416 *
2417 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2418 */
2419 vm_fault_t filemap_fault(struct vm_fault *vmf)
2420 {
2421 int error;
2422 struct file *file = vmf->vma->vm_file;
2423 struct address_space *mapping = file->f_mapping;
2424 struct file_ra_state *ra = &file->f_ra;
2425 struct inode *inode = mapping->host;
2426 pgoff_t offset = vmf->pgoff;
2427 pgoff_t max_off;
2428 struct page *page;
2429 vm_fault_t ret = 0;
2430
2431 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2432 if (unlikely(offset >= max_off))
2433 return VM_FAULT_SIGBUS;
2434
2435 /*
2436 * Do we have something in the page cache already?
2437 */
2438 page = find_get_page(mapping, offset);
2439 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2440 /*
2441 * We found the page, so try async readahead before
2442 * waiting for the lock.
2443 */
2444 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2445 } else if (!page) {
2446 /* No page in the page cache at all */
2447 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2448 count_vm_event(PGMAJFAULT);
2449 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2450 ret = VM_FAULT_MAJOR;
2451 retry_find:
2452 page = find_get_page(mapping, offset);
2453 if (!page)
2454 goto no_cached_page;
2455 }
2456
2457 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2458 put_page(page);
2459 return ret | VM_FAULT_RETRY;
2460 }
2461
2462 /* Did it get truncated? */
2463 if (unlikely(page->mapping != mapping)) {
2464 unlock_page(page);
2465 put_page(page);
2466 goto retry_find;
2467 }
2468 VM_BUG_ON_PAGE(page->index != offset, page);
2469
2470 /*
2471 * We have a locked page in the page cache, now we need to check
2472 * that it's up-to-date. If not, it is going to be due to an error.
2473 */
2474 if (unlikely(!PageUptodate(page)))
2475 goto page_not_uptodate;
2476
2477 /*
2478 * Found the page and have a reference on it.
2479 * We must recheck i_size under page lock.
2480 */
2481 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2482 if (unlikely(offset >= max_off)) {
2483 unlock_page(page);
2484 put_page(page);
2485 return VM_FAULT_SIGBUS;
2486 }
2487
2488 vmf->page = page;
2489 return ret | VM_FAULT_LOCKED;
2490
2491 no_cached_page:
2492 /*
2493 * We're only likely to ever get here if MADV_RANDOM is in
2494 * effect.
2495 */
2496 error = page_cache_read(file, offset, vmf->gfp_mask);
2497
2498 /*
2499 * The page we want has now been added to the page cache.
2500 * In the unlikely event that someone removed it in the
2501 * meantime, we'll just come back here and read it again.
2502 */
2503 if (error >= 0)
2504 goto retry_find;
2505
2506 /*
2507 * An error return from page_cache_read can result if the
2508 * system is low on memory, or a problem occurs while trying
2509 * to schedule I/O.
2510 */
2511 return vmf_error(error);
2512
2513 page_not_uptodate:
2514 /*
2515 * Umm, take care of errors if the page isn't up-to-date.
2516 * Try to re-read it _once_. We do this synchronously,
2517 * because there really aren't any performance issues here
2518 * and we need to check for errors.
2519 */
2520 ClearPageError(page);
2521 error = mapping->a_ops->readpage(file, page);
2522 if (!error) {
2523 wait_on_page_locked(page);
2524 if (!PageUptodate(page))
2525 error = -EIO;
2526 }
2527 put_page(page);
2528
2529 if (!error || error == AOP_TRUNCATED_PAGE)
2530 goto retry_find;
2531
2532 /* Things didn't work out. Return zero to tell the mm layer so. */
2533 shrink_readahead_size_eio(file, ra);
2534 return VM_FAULT_SIGBUS;
2535 }
2536 EXPORT_SYMBOL(filemap_fault);
2537
2538 void filemap_map_pages(struct vm_fault *vmf,
2539 pgoff_t start_pgoff, pgoff_t end_pgoff)
2540 {
2541 struct file *file = vmf->vma->vm_file;
2542 struct address_space *mapping = file->f_mapping;
2543 pgoff_t last_pgoff = start_pgoff;
2544 unsigned long max_idx;
2545 XA_STATE(xas, &mapping->i_pages, start_pgoff);
2546 struct page *head, *page;
2547
2548 rcu_read_lock();
2549 xas_for_each(&xas, page, end_pgoff) {
2550 if (xas_retry(&xas, page))
2551 continue;
2552 if (xa_is_value(page))
2553 goto next;
2554
2555 head = compound_head(page);
2556 if (!page_cache_get_speculative(head))
2557 goto next;
2558
2559 /* The page was split under us? */
2560 if (compound_head(page) != head)
2561 goto skip;
2562
2563 /* Has the page moved? */
2564 if (unlikely(page != xas_reload(&xas)))
2565 goto skip;
2566
2567 if (!PageUptodate(page) ||
2568 PageReadahead(page) ||
2569 PageHWPoison(page))
2570 goto skip;
2571 if (!trylock_page(page))
2572 goto skip;
2573
2574 if (page->mapping != mapping || !PageUptodate(page))
2575 goto unlock;
2576
2577 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2578 if (page->index >= max_idx)
2579 goto unlock;
2580
2581 if (file->f_ra.mmap_miss > 0)
2582 file->f_ra.mmap_miss--;
2583
2584 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2585 if (vmf->pte)
2586 vmf->pte += xas.xa_index - last_pgoff;
2587 last_pgoff = xas.xa_index;
2588 if (alloc_set_pte(vmf, NULL, page))
2589 goto unlock;
2590 unlock_page(page);
2591 goto next;
2592 unlock:
2593 unlock_page(page);
2594 skip:
2595 put_page(page);
2596 next:
2597 /* Huge page is mapped? No need to proceed. */
2598 if (pmd_trans_huge(*vmf->pmd))
2599 break;
2600 }
2601 rcu_read_unlock();
2602 }
2603 EXPORT_SYMBOL(filemap_map_pages);
2604
2605 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2606 {
2607 struct page *page = vmf->page;
2608 struct inode *inode = file_inode(vmf->vma->vm_file);
2609 vm_fault_t ret = VM_FAULT_LOCKED;
2610
2611 sb_start_pagefault(inode->i_sb);
2612 file_update_time(vmf->vma->vm_file);
2613 lock_page(page);
2614 if (page->mapping != inode->i_mapping) {
2615 unlock_page(page);
2616 ret = VM_FAULT_NOPAGE;
2617 goto out;
2618 }
2619 /*
2620 * We mark the page dirty already here so that when freeze is in
2621 * progress, we are guaranteed that writeback during freezing will
2622 * see the dirty page and writeprotect it again.
2623 */
2624 set_page_dirty(page);
2625 wait_for_stable_page(page);
2626 out:
2627 sb_end_pagefault(inode->i_sb);
2628 return ret;
2629 }
2630
2631 const struct vm_operations_struct generic_file_vm_ops = {
2632 .fault = filemap_fault,
2633 .map_pages = filemap_map_pages,
2634 .page_mkwrite = filemap_page_mkwrite,
2635 };
2636
2637 /* This is used for a general mmap of a disk file */
2638
2639 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2640 {
2641 struct address_space *mapping = file->f_mapping;
2642
2643 if (!mapping->a_ops->readpage)
2644 return -ENOEXEC;
2645 file_accessed(file);
2646 vma->vm_ops = &generic_file_vm_ops;
2647 return 0;
2648 }
2649
2650 /*
2651 * This is for filesystems which do not implement ->writepage.
2652 */
2653 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2654 {
2655 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2656 return -EINVAL;
2657 return generic_file_mmap(file, vma);
2658 }
2659 #else
2660 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2661 {
2662 return VM_FAULT_SIGBUS;
2663 }
2664 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2665 {
2666 return -ENOSYS;
2667 }
2668 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2669 {
2670 return -ENOSYS;
2671 }
2672 #endif /* CONFIG_MMU */
2673
2674 EXPORT_SYMBOL(filemap_page_mkwrite);
2675 EXPORT_SYMBOL(generic_file_mmap);
2676 EXPORT_SYMBOL(generic_file_readonly_mmap);
2677
2678 static struct page *wait_on_page_read(struct page *page)
2679 {
2680 if (!IS_ERR(page)) {
2681 wait_on_page_locked(page);
2682 if (!PageUptodate(page)) {
2683 put_page(page);
2684 page = ERR_PTR(-EIO);
2685 }
2686 }
2687 return page;
2688 }
2689
2690 static struct page *do_read_cache_page(struct address_space *mapping,
2691 pgoff_t index,
2692 int (*filler)(void *, struct page *),
2693 void *data,
2694 gfp_t gfp)
2695 {
2696 struct page *page;
2697 int err;
2698 repeat:
2699 page = find_get_page(mapping, index);
2700 if (!page) {
2701 page = __page_cache_alloc(gfp);
2702 if (!page)
2703 return ERR_PTR(-ENOMEM);
2704 err = add_to_page_cache_lru(page, mapping, index, gfp);
2705 if (unlikely(err)) {
2706 put_page(page);
2707 if (err == -EEXIST)
2708 goto repeat;
2709 /* Presumably ENOMEM for xarray node */
2710 return ERR_PTR(err);
2711 }
2712
2713 filler:
2714 err = filler(data, page);
2715 if (err < 0) {
2716 put_page(page);
2717 return ERR_PTR(err);
2718 }
2719
2720 page = wait_on_page_read(page);
2721 if (IS_ERR(page))
2722 return page;
2723 goto out;
2724 }
2725 if (PageUptodate(page))
2726 goto out;
2727
2728 /*
2729 * Page is not up to date and may be locked due one of the following
2730 * case a: Page is being filled and the page lock is held
2731 * case b: Read/write error clearing the page uptodate status
2732 * case c: Truncation in progress (page locked)
2733 * case d: Reclaim in progress
2734 *
2735 * Case a, the page will be up to date when the page is unlocked.
2736 * There is no need to serialise on the page lock here as the page
2737 * is pinned so the lock gives no additional protection. Even if the
2738 * the page is truncated, the data is still valid if PageUptodate as
2739 * it's a race vs truncate race.
2740 * Case b, the page will not be up to date
2741 * Case c, the page may be truncated but in itself, the data may still
2742 * be valid after IO completes as it's a read vs truncate race. The
2743 * operation must restart if the page is not uptodate on unlock but
2744 * otherwise serialising on page lock to stabilise the mapping gives
2745 * no additional guarantees to the caller as the page lock is
2746 * released before return.
2747 * Case d, similar to truncation. If reclaim holds the page lock, it
2748 * will be a race with remove_mapping that determines if the mapping
2749 * is valid on unlock but otherwise the data is valid and there is
2750 * no need to serialise with page lock.
2751 *
2752 * As the page lock gives no additional guarantee, we optimistically
2753 * wait on the page to be unlocked and check if it's up to date and
2754 * use the page if it is. Otherwise, the page lock is required to
2755 * distinguish between the different cases. The motivation is that we
2756 * avoid spurious serialisations and wakeups when multiple processes
2757 * wait on the same page for IO to complete.
2758 */
2759 wait_on_page_locked(page);
2760 if (PageUptodate(page))
2761 goto out;
2762
2763 /* Distinguish between all the cases under the safety of the lock */
2764 lock_page(page);
2765
2766 /* Case c or d, restart the operation */
2767 if (!page->mapping) {
2768 unlock_page(page);
2769 put_page(page);
2770 goto repeat;
2771 }
2772
2773 /* Someone else locked and filled the page in a very small window */
2774 if (PageUptodate(page)) {
2775 unlock_page(page);
2776 goto out;
2777 }
2778 goto filler;
2779
2780 out:
2781 mark_page_accessed(page);
2782 return page;
2783 }
2784
2785 /**
2786 * read_cache_page - read into page cache, fill it if needed
2787 * @mapping: the page's address_space
2788 * @index: the page index
2789 * @filler: function to perform the read
2790 * @data: first arg to filler(data, page) function, often left as NULL
2791 *
2792 * Read into the page cache. If a page already exists, and PageUptodate() is
2793 * not set, try to fill the page and wait for it to become unlocked.
2794 *
2795 * If the page does not get brought uptodate, return -EIO.
2796 */
2797 struct page *read_cache_page(struct address_space *mapping,
2798 pgoff_t index,
2799 int (*filler)(void *, struct page *),
2800 void *data)
2801 {
2802 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2803 }
2804 EXPORT_SYMBOL(read_cache_page);
2805
2806 /**
2807 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2808 * @mapping: the page's address_space
2809 * @index: the page index
2810 * @gfp: the page allocator flags to use if allocating
2811 *
2812 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2813 * any new page allocations done using the specified allocation flags.
2814 *
2815 * If the page does not get brought uptodate, return -EIO.
2816 */
2817 struct page *read_cache_page_gfp(struct address_space *mapping,
2818 pgoff_t index,
2819 gfp_t gfp)
2820 {
2821 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2822
2823 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2824 }
2825 EXPORT_SYMBOL(read_cache_page_gfp);
2826
2827 /*
2828 * Don't operate on ranges the page cache doesn't support, and don't exceed the
2829 * LFS limits. If pos is under the limit it becomes a short access. If it
2830 * exceeds the limit we return -EFBIG.
2831 */
2832 static int generic_access_check_limits(struct file *file, loff_t pos,
2833 loff_t *count)
2834 {
2835 struct inode *inode = file->f_mapping->host;
2836 loff_t max_size = inode->i_sb->s_maxbytes;
2837
2838 if (!(file->f_flags & O_LARGEFILE))
2839 max_size = MAX_NON_LFS;
2840
2841 if (unlikely(pos >= max_size))
2842 return -EFBIG;
2843 *count = min(*count, max_size - pos);
2844 return 0;
2845 }
2846
2847 static int generic_write_check_limits(struct file *file, loff_t pos,
2848 loff_t *count)
2849 {
2850 loff_t limit = rlimit(RLIMIT_FSIZE);
2851
2852 if (limit != RLIM_INFINITY) {
2853 if (pos >= limit) {
2854 send_sig(SIGXFSZ, current, 0);
2855 return -EFBIG;
2856 }
2857 *count = min(*count, limit - pos);
2858 }
2859
2860 return generic_access_check_limits(file, pos, count);
2861 }
2862
2863 /*
2864 * Performs necessary checks before doing a write
2865 *
2866 * Can adjust writing position or amount of bytes to write.
2867 * Returns appropriate error code that caller should return or
2868 * zero in case that write should be allowed.
2869 */
2870 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2871 {
2872 struct file *file = iocb->ki_filp;
2873 struct inode *inode = file->f_mapping->host;
2874 loff_t count;
2875 int ret;
2876
2877 if (!iov_iter_count(from))
2878 return 0;
2879
2880 /* FIXME: this is for backwards compatibility with 2.4 */
2881 if (iocb->ki_flags & IOCB_APPEND)
2882 iocb->ki_pos = i_size_read(inode);
2883
2884 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2885 return -EINVAL;
2886
2887 count = iov_iter_count(from);
2888 ret = generic_write_check_limits(file, iocb->ki_pos, &count);
2889 if (ret)
2890 return ret;
2891
2892 iov_iter_truncate(from, count);
2893 return iov_iter_count(from);
2894 }
2895 EXPORT_SYMBOL(generic_write_checks);
2896
2897 /*
2898 * Performs necessary checks before doing a clone.
2899 *
2900 * Can adjust amount of bytes to clone.
2901 * Returns appropriate error code that caller should return or
2902 * zero in case the clone should be allowed.
2903 */
2904 int generic_remap_checks(struct file *file_in, loff_t pos_in,
2905 struct file *file_out, loff_t pos_out,
2906 loff_t *req_count, unsigned int remap_flags)
2907 {
2908 struct inode *inode_in = file_in->f_mapping->host;
2909 struct inode *inode_out = file_out->f_mapping->host;
2910 uint64_t count = *req_count;
2911 uint64_t bcount;
2912 loff_t size_in, size_out;
2913 loff_t bs = inode_out->i_sb->s_blocksize;
2914 int ret;
2915
2916 /* The start of both ranges must be aligned to an fs block. */
2917 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
2918 return -EINVAL;
2919
2920 /* Ensure offsets don't wrap. */
2921 if (pos_in + count < pos_in || pos_out + count < pos_out)
2922 return -EINVAL;
2923
2924 size_in = i_size_read(inode_in);
2925 size_out = i_size_read(inode_out);
2926
2927 /* Dedupe requires both ranges to be within EOF. */
2928 if ((remap_flags & REMAP_FILE_DEDUP) &&
2929 (pos_in >= size_in || pos_in + count > size_in ||
2930 pos_out >= size_out || pos_out + count > size_out))
2931 return -EINVAL;
2932
2933 /* Ensure the infile range is within the infile. */
2934 if (pos_in >= size_in)
2935 return -EINVAL;
2936 count = min(count, size_in - (uint64_t)pos_in);
2937
2938 ret = generic_access_check_limits(file_in, pos_in, &count);
2939 if (ret)
2940 return ret;
2941
2942 ret = generic_write_check_limits(file_out, pos_out, &count);
2943 if (ret)
2944 return ret;
2945
2946 /*
2947 * If the user wanted us to link to the infile's EOF, round up to the
2948 * next block boundary for this check.
2949 *
2950 * Otherwise, make sure the count is also block-aligned, having
2951 * already confirmed the starting offsets' block alignment.
2952 */
2953 if (pos_in + count == size_in) {
2954 bcount = ALIGN(size_in, bs) - pos_in;
2955 } else {
2956 if (!IS_ALIGNED(count, bs))
2957 count = ALIGN_DOWN(count, bs);
2958 bcount = count;
2959 }
2960
2961 /* Don't allow overlapped cloning within the same file. */
2962 if (inode_in == inode_out &&
2963 pos_out + bcount > pos_in &&
2964 pos_out < pos_in + bcount)
2965 return -EINVAL;
2966
2967 /*
2968 * We shortened the request but the caller can't deal with that, so
2969 * bounce the request back to userspace.
2970 */
2971 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
2972 return -EINVAL;
2973
2974 *req_count = count;
2975 return 0;
2976 }
2977
2978 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2979 loff_t pos, unsigned len, unsigned flags,
2980 struct page **pagep, void **fsdata)
2981 {
2982 const struct address_space_operations *aops = mapping->a_ops;
2983
2984 return aops->write_begin(file, mapping, pos, len, flags,
2985 pagep, fsdata);
2986 }
2987 EXPORT_SYMBOL(pagecache_write_begin);
2988
2989 int pagecache_write_end(struct file *file, struct address_space *mapping,
2990 loff_t pos, unsigned len, unsigned copied,
2991 struct page *page, void *fsdata)
2992 {
2993 const struct address_space_operations *aops = mapping->a_ops;
2994
2995 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2996 }
2997 EXPORT_SYMBOL(pagecache_write_end);
2998
2999 ssize_t
3000 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3001 {
3002 struct file *file = iocb->ki_filp;
3003 struct address_space *mapping = file->f_mapping;
3004 struct inode *inode = mapping->host;
3005 loff_t pos = iocb->ki_pos;
3006 ssize_t written;
3007 size_t write_len;
3008 pgoff_t end;
3009
3010 write_len = iov_iter_count(from);
3011 end = (pos + write_len - 1) >> PAGE_SHIFT;
3012
3013 if (iocb->ki_flags & IOCB_NOWAIT) {
3014 /* If there are pages to writeback, return */
3015 if (filemap_range_has_page(inode->i_mapping, pos,
3016 pos + write_len))
3017 return -EAGAIN;
3018 } else {
3019 written = filemap_write_and_wait_range(mapping, pos,
3020 pos + write_len - 1);
3021 if (written)
3022 goto out;
3023 }
3024
3025 /*
3026 * After a write we want buffered reads to be sure to go to disk to get
3027 * the new data. We invalidate clean cached page from the region we're
3028 * about to write. We do this *before* the write so that we can return
3029 * without clobbering -EIOCBQUEUED from ->direct_IO().
3030 */
3031 written = invalidate_inode_pages2_range(mapping,
3032 pos >> PAGE_SHIFT, end);
3033 /*
3034 * If a page can not be invalidated, return 0 to fall back
3035 * to buffered write.
3036 */
3037 if (written) {
3038 if (written == -EBUSY)
3039 return 0;
3040 goto out;
3041 }
3042
3043 written = mapping->a_ops->direct_IO(iocb, from);
3044
3045 /*
3046 * Finally, try again to invalidate clean pages which might have been
3047 * cached by non-direct readahead, or faulted in by get_user_pages()
3048 * if the source of the write was an mmap'ed region of the file
3049 * we're writing. Either one is a pretty crazy thing to do,
3050 * so we don't support it 100%. If this invalidation
3051 * fails, tough, the write still worked...
3052 *
3053 * Most of the time we do not need this since dio_complete() will do
3054 * the invalidation for us. However there are some file systems that
3055 * do not end up with dio_complete() being called, so let's not break
3056 * them by removing it completely
3057 */
3058 if (mapping->nrpages)
3059 invalidate_inode_pages2_range(mapping,
3060 pos >> PAGE_SHIFT, end);
3061
3062 if (written > 0) {
3063 pos += written;
3064 write_len -= written;
3065 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3066 i_size_write(inode, pos);
3067 mark_inode_dirty(inode);
3068 }
3069 iocb->ki_pos = pos;
3070 }
3071 iov_iter_revert(from, write_len - iov_iter_count(from));
3072 out:
3073 return written;
3074 }
3075 EXPORT_SYMBOL(generic_file_direct_write);
3076
3077 /*
3078 * Find or create a page at the given pagecache position. Return the locked
3079 * page. This function is specifically for buffered writes.
3080 */
3081 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3082 pgoff_t index, unsigned flags)
3083 {
3084 struct page *page;
3085 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3086
3087 if (flags & AOP_FLAG_NOFS)
3088 fgp_flags |= FGP_NOFS;
3089
3090 page = pagecache_get_page(mapping, index, fgp_flags,
3091 mapping_gfp_mask(mapping));
3092 if (page)
3093 wait_for_stable_page(page);
3094
3095 return page;
3096 }
3097 EXPORT_SYMBOL(grab_cache_page_write_begin);
3098
3099 ssize_t generic_perform_write(struct file *file,
3100 struct iov_iter *i, loff_t pos)
3101 {
3102 struct address_space *mapping = file->f_mapping;
3103 const struct address_space_operations *a_ops = mapping->a_ops;
3104 long status = 0;
3105 ssize_t written = 0;
3106 unsigned int flags = 0;
3107
3108 do {
3109 struct page *page;
3110 unsigned long offset; /* Offset into pagecache page */
3111 unsigned long bytes; /* Bytes to write to page */
3112 size_t copied; /* Bytes copied from user */
3113 void *fsdata;
3114
3115 offset = (pos & (PAGE_SIZE - 1));
3116 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3117 iov_iter_count(i));
3118
3119 again:
3120 /*
3121 * Bring in the user page that we will copy from _first_.
3122 * Otherwise there's a nasty deadlock on copying from the
3123 * same page as we're writing to, without it being marked
3124 * up-to-date.
3125 *
3126 * Not only is this an optimisation, but it is also required
3127 * to check that the address is actually valid, when atomic
3128 * usercopies are used, below.
3129 */
3130 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3131 status = -EFAULT;
3132 break;
3133 }
3134
3135 if (fatal_signal_pending(current)) {
3136 status = -EINTR;
3137 break;
3138 }
3139
3140 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3141 &page, &fsdata);
3142 if (unlikely(status < 0))
3143 break;
3144
3145 if (mapping_writably_mapped(mapping))
3146 flush_dcache_page(page);
3147
3148 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3149 flush_dcache_page(page);
3150
3151 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3152 page, fsdata);
3153 if (unlikely(status < 0))
3154 break;
3155 copied = status;
3156
3157 cond_resched();
3158
3159 iov_iter_advance(i, copied);
3160 if (unlikely(copied == 0)) {
3161 /*
3162 * If we were unable to copy any data at all, we must
3163 * fall back to a single segment length write.
3164 *
3165 * If we didn't fallback here, we could livelock
3166 * because not all segments in the iov can be copied at
3167 * once without a pagefault.
3168 */
3169 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3170 iov_iter_single_seg_count(i));
3171 goto again;
3172 }
3173 pos += copied;
3174 written += copied;
3175
3176 balance_dirty_pages_ratelimited(mapping);
3177 } while (iov_iter_count(i));
3178
3179 return written ? written : status;
3180 }
3181 EXPORT_SYMBOL(generic_perform_write);
3182
3183 /**
3184 * __generic_file_write_iter - write data to a file
3185 * @iocb: IO state structure (file, offset, etc.)
3186 * @from: iov_iter with data to write
3187 *
3188 * This function does all the work needed for actually writing data to a
3189 * file. It does all basic checks, removes SUID from the file, updates
3190 * modification times and calls proper subroutines depending on whether we
3191 * do direct IO or a standard buffered write.
3192 *
3193 * It expects i_mutex to be grabbed unless we work on a block device or similar
3194 * object which does not need locking at all.
3195 *
3196 * This function does *not* take care of syncing data in case of O_SYNC write.
3197 * A caller has to handle it. This is mainly due to the fact that we want to
3198 * avoid syncing under i_mutex.
3199 */
3200 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3201 {
3202 struct file *file = iocb->ki_filp;
3203 struct address_space * mapping = file->f_mapping;
3204 struct inode *inode = mapping->host;
3205 ssize_t written = 0;
3206 ssize_t err;
3207 ssize_t status;
3208
3209 /* We can write back this queue in page reclaim */
3210 current->backing_dev_info = inode_to_bdi(inode);
3211 err = file_remove_privs(file);
3212 if (err)
3213 goto out;
3214
3215 err = file_update_time(file);
3216 if (err)
3217 goto out;
3218
3219 if (iocb->ki_flags & IOCB_DIRECT) {
3220 loff_t pos, endbyte;
3221
3222 written = generic_file_direct_write(iocb, from);
3223 /*
3224 * If the write stopped short of completing, fall back to
3225 * buffered writes. Some filesystems do this for writes to
3226 * holes, for example. For DAX files, a buffered write will
3227 * not succeed (even if it did, DAX does not handle dirty
3228 * page-cache pages correctly).
3229 */
3230 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3231 goto out;
3232
3233 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3234 /*
3235 * If generic_perform_write() returned a synchronous error
3236 * then we want to return the number of bytes which were
3237 * direct-written, or the error code if that was zero. Note
3238 * that this differs from normal direct-io semantics, which
3239 * will return -EFOO even if some bytes were written.
3240 */
3241 if (unlikely(status < 0)) {
3242 err = status;
3243 goto out;
3244 }
3245 /*
3246 * We need to ensure that the page cache pages are written to
3247 * disk and invalidated to preserve the expected O_DIRECT
3248 * semantics.
3249 */
3250 endbyte = pos + status - 1;
3251 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3252 if (err == 0) {
3253 iocb->ki_pos = endbyte + 1;
3254 written += status;
3255 invalidate_mapping_pages(mapping,
3256 pos >> PAGE_SHIFT,
3257 endbyte >> PAGE_SHIFT);
3258 } else {
3259 /*
3260 * We don't know how much we wrote, so just return
3261 * the number of bytes which were direct-written
3262 */
3263 }
3264 } else {
3265 written = generic_perform_write(file, from, iocb->ki_pos);
3266 if (likely(written > 0))
3267 iocb->ki_pos += written;
3268 }
3269 out:
3270 current->backing_dev_info = NULL;
3271 return written ? written : err;
3272 }
3273 EXPORT_SYMBOL(__generic_file_write_iter);
3274
3275 /**
3276 * generic_file_write_iter - write data to a file
3277 * @iocb: IO state structure
3278 * @from: iov_iter with data to write
3279 *
3280 * This is a wrapper around __generic_file_write_iter() to be used by most
3281 * filesystems. It takes care of syncing the file in case of O_SYNC file
3282 * and acquires i_mutex as needed.
3283 */
3284 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3285 {
3286 struct file *file = iocb->ki_filp;
3287 struct inode *inode = file->f_mapping->host;
3288 ssize_t ret;
3289
3290 inode_lock(inode);
3291 ret = generic_write_checks(iocb, from);
3292 if (ret > 0)
3293 ret = __generic_file_write_iter(iocb, from);
3294 inode_unlock(inode);
3295
3296 if (ret > 0)
3297 ret = generic_write_sync(iocb, ret);
3298 return ret;
3299 }
3300 EXPORT_SYMBOL(generic_file_write_iter);
3301
3302 /**
3303 * try_to_release_page() - release old fs-specific metadata on a page
3304 *
3305 * @page: the page which the kernel is trying to free
3306 * @gfp_mask: memory allocation flags (and I/O mode)
3307 *
3308 * The address_space is to try to release any data against the page
3309 * (presumably at page->private). If the release was successful, return '1'.
3310 * Otherwise return zero.
3311 *
3312 * This may also be called if PG_fscache is set on a page, indicating that the
3313 * page is known to the local caching routines.
3314 *
3315 * The @gfp_mask argument specifies whether I/O may be performed to release
3316 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3317 *
3318 */
3319 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3320 {
3321 struct address_space * const mapping = page->mapping;
3322
3323 BUG_ON(!PageLocked(page));
3324 if (PageWriteback(page))
3325 return 0;
3326
3327 if (mapping && mapping->a_ops->releasepage)
3328 return mapping->a_ops->releasepage(page, gfp_mask);
3329 return try_to_free_buffers(page);
3330 }
3331
3332 EXPORT_SYMBOL(try_to_release_page);