]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/gup.c
Merge tag 'media/v5.2-2' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[thirdparty/kernel/stable.git] / mm / gup.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
20
21 #include <asm/mmu_context.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
24
25 #include "internal.h"
26
27 struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
30 };
31
32 typedef int (*set_dirty_func_t)(struct page *page);
33
34 static void __put_user_pages_dirty(struct page **pages,
35 unsigned long npages,
36 set_dirty_func_t sdf)
37 {
38 unsigned long index;
39
40 for (index = 0; index < npages; index++) {
41 struct page *page = compound_head(pages[index]);
42
43 /*
44 * Checking PageDirty at this point may race with
45 * clear_page_dirty_for_io(), but that's OK. Two key cases:
46 *
47 * 1) This code sees the page as already dirty, so it skips
48 * the call to sdf(). That could happen because
49 * clear_page_dirty_for_io() called page_mkclean(),
50 * followed by set_page_dirty(). However, now the page is
51 * going to get written back, which meets the original
52 * intention of setting it dirty, so all is well:
53 * clear_page_dirty_for_io() goes on to call
54 * TestClearPageDirty(), and write the page back.
55 *
56 * 2) This code sees the page as clean, so it calls sdf().
57 * The page stays dirty, despite being written back, so it
58 * gets written back again in the next writeback cycle.
59 * This is harmless.
60 */
61 if (!PageDirty(page))
62 sdf(page);
63
64 put_user_page(page);
65 }
66 }
67
68 /**
69 * put_user_pages_dirty() - release and dirty an array of gup-pinned pages
70 * @pages: array of pages to be marked dirty and released.
71 * @npages: number of pages in the @pages array.
72 *
73 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
74 * variants called on that page.
75 *
76 * For each page in the @pages array, make that page (or its head page, if a
77 * compound page) dirty, if it was previously listed as clean. Then, release
78 * the page using put_user_page().
79 *
80 * Please see the put_user_page() documentation for details.
81 *
82 * set_page_dirty(), which does not lock the page, is used here.
83 * Therefore, it is the caller's responsibility to ensure that this is
84 * safe. If not, then put_user_pages_dirty_lock() should be called instead.
85 *
86 */
87 void put_user_pages_dirty(struct page **pages, unsigned long npages)
88 {
89 __put_user_pages_dirty(pages, npages, set_page_dirty);
90 }
91 EXPORT_SYMBOL(put_user_pages_dirty);
92
93 /**
94 * put_user_pages_dirty_lock() - release and dirty an array of gup-pinned pages
95 * @pages: array of pages to be marked dirty and released.
96 * @npages: number of pages in the @pages array.
97 *
98 * For each page in the @pages array, make that page (or its head page, if a
99 * compound page) dirty, if it was previously listed as clean. Then, release
100 * the page using put_user_page().
101 *
102 * Please see the put_user_page() documentation for details.
103 *
104 * This is just like put_user_pages_dirty(), except that it invokes
105 * set_page_dirty_lock(), instead of set_page_dirty().
106 *
107 */
108 void put_user_pages_dirty_lock(struct page **pages, unsigned long npages)
109 {
110 __put_user_pages_dirty(pages, npages, set_page_dirty_lock);
111 }
112 EXPORT_SYMBOL(put_user_pages_dirty_lock);
113
114 /**
115 * put_user_pages() - release an array of gup-pinned pages.
116 * @pages: array of pages to be marked dirty and released.
117 * @npages: number of pages in the @pages array.
118 *
119 * For each page in the @pages array, release the page using put_user_page().
120 *
121 * Please see the put_user_page() documentation for details.
122 */
123 void put_user_pages(struct page **pages, unsigned long npages)
124 {
125 unsigned long index;
126
127 /*
128 * TODO: this can be optimized for huge pages: if a series of pages is
129 * physically contiguous and part of the same compound page, then a
130 * single operation to the head page should suffice.
131 */
132 for (index = 0; index < npages; index++)
133 put_user_page(pages[index]);
134 }
135 EXPORT_SYMBOL(put_user_pages);
136
137 static struct page *no_page_table(struct vm_area_struct *vma,
138 unsigned int flags)
139 {
140 /*
141 * When core dumping an enormous anonymous area that nobody
142 * has touched so far, we don't want to allocate unnecessary pages or
143 * page tables. Return error instead of NULL to skip handle_mm_fault,
144 * then get_dump_page() will return NULL to leave a hole in the dump.
145 * But we can only make this optimization where a hole would surely
146 * be zero-filled if handle_mm_fault() actually did handle it.
147 */
148 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
149 return ERR_PTR(-EFAULT);
150 return NULL;
151 }
152
153 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
154 pte_t *pte, unsigned int flags)
155 {
156 /* No page to get reference */
157 if (flags & FOLL_GET)
158 return -EFAULT;
159
160 if (flags & FOLL_TOUCH) {
161 pte_t entry = *pte;
162
163 if (flags & FOLL_WRITE)
164 entry = pte_mkdirty(entry);
165 entry = pte_mkyoung(entry);
166
167 if (!pte_same(*pte, entry)) {
168 set_pte_at(vma->vm_mm, address, pte, entry);
169 update_mmu_cache(vma, address, pte);
170 }
171 }
172
173 /* Proper page table entry exists, but no corresponding struct page */
174 return -EEXIST;
175 }
176
177 /*
178 * FOLL_FORCE can write to even unwritable pte's, but only
179 * after we've gone through a COW cycle and they are dirty.
180 */
181 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
182 {
183 return pte_write(pte) ||
184 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
185 }
186
187 static struct page *follow_page_pte(struct vm_area_struct *vma,
188 unsigned long address, pmd_t *pmd, unsigned int flags,
189 struct dev_pagemap **pgmap)
190 {
191 struct mm_struct *mm = vma->vm_mm;
192 struct page *page;
193 spinlock_t *ptl;
194 pte_t *ptep, pte;
195
196 retry:
197 if (unlikely(pmd_bad(*pmd)))
198 return no_page_table(vma, flags);
199
200 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
201 pte = *ptep;
202 if (!pte_present(pte)) {
203 swp_entry_t entry;
204 /*
205 * KSM's break_ksm() relies upon recognizing a ksm page
206 * even while it is being migrated, so for that case we
207 * need migration_entry_wait().
208 */
209 if (likely(!(flags & FOLL_MIGRATION)))
210 goto no_page;
211 if (pte_none(pte))
212 goto no_page;
213 entry = pte_to_swp_entry(pte);
214 if (!is_migration_entry(entry))
215 goto no_page;
216 pte_unmap_unlock(ptep, ptl);
217 migration_entry_wait(mm, pmd, address);
218 goto retry;
219 }
220 if ((flags & FOLL_NUMA) && pte_protnone(pte))
221 goto no_page;
222 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
223 pte_unmap_unlock(ptep, ptl);
224 return NULL;
225 }
226
227 page = vm_normal_page(vma, address, pte);
228 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
229 /*
230 * Only return device mapping pages in the FOLL_GET case since
231 * they are only valid while holding the pgmap reference.
232 */
233 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
234 if (*pgmap)
235 page = pte_page(pte);
236 else
237 goto no_page;
238 } else if (unlikely(!page)) {
239 if (flags & FOLL_DUMP) {
240 /* Avoid special (like zero) pages in core dumps */
241 page = ERR_PTR(-EFAULT);
242 goto out;
243 }
244
245 if (is_zero_pfn(pte_pfn(pte))) {
246 page = pte_page(pte);
247 } else {
248 int ret;
249
250 ret = follow_pfn_pte(vma, address, ptep, flags);
251 page = ERR_PTR(ret);
252 goto out;
253 }
254 }
255
256 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
257 int ret;
258 get_page(page);
259 pte_unmap_unlock(ptep, ptl);
260 lock_page(page);
261 ret = split_huge_page(page);
262 unlock_page(page);
263 put_page(page);
264 if (ret)
265 return ERR_PTR(ret);
266 goto retry;
267 }
268
269 if (flags & FOLL_GET) {
270 if (unlikely(!try_get_page(page))) {
271 page = ERR_PTR(-ENOMEM);
272 goto out;
273 }
274 }
275 if (flags & FOLL_TOUCH) {
276 if ((flags & FOLL_WRITE) &&
277 !pte_dirty(pte) && !PageDirty(page))
278 set_page_dirty(page);
279 /*
280 * pte_mkyoung() would be more correct here, but atomic care
281 * is needed to avoid losing the dirty bit: it is easier to use
282 * mark_page_accessed().
283 */
284 mark_page_accessed(page);
285 }
286 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
287 /* Do not mlock pte-mapped THP */
288 if (PageTransCompound(page))
289 goto out;
290
291 /*
292 * The preliminary mapping check is mainly to avoid the
293 * pointless overhead of lock_page on the ZERO_PAGE
294 * which might bounce very badly if there is contention.
295 *
296 * If the page is already locked, we don't need to
297 * handle it now - vmscan will handle it later if and
298 * when it attempts to reclaim the page.
299 */
300 if (page->mapping && trylock_page(page)) {
301 lru_add_drain(); /* push cached pages to LRU */
302 /*
303 * Because we lock page here, and migration is
304 * blocked by the pte's page reference, and we
305 * know the page is still mapped, we don't even
306 * need to check for file-cache page truncation.
307 */
308 mlock_vma_page(page);
309 unlock_page(page);
310 }
311 }
312 out:
313 pte_unmap_unlock(ptep, ptl);
314 return page;
315 no_page:
316 pte_unmap_unlock(ptep, ptl);
317 if (!pte_none(pte))
318 return NULL;
319 return no_page_table(vma, flags);
320 }
321
322 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
323 unsigned long address, pud_t *pudp,
324 unsigned int flags,
325 struct follow_page_context *ctx)
326 {
327 pmd_t *pmd, pmdval;
328 spinlock_t *ptl;
329 struct page *page;
330 struct mm_struct *mm = vma->vm_mm;
331
332 pmd = pmd_offset(pudp, address);
333 /*
334 * The READ_ONCE() will stabilize the pmdval in a register or
335 * on the stack so that it will stop changing under the code.
336 */
337 pmdval = READ_ONCE(*pmd);
338 if (pmd_none(pmdval))
339 return no_page_table(vma, flags);
340 if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
341 page = follow_huge_pmd(mm, address, pmd, flags);
342 if (page)
343 return page;
344 return no_page_table(vma, flags);
345 }
346 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
347 page = follow_huge_pd(vma, address,
348 __hugepd(pmd_val(pmdval)), flags,
349 PMD_SHIFT);
350 if (page)
351 return page;
352 return no_page_table(vma, flags);
353 }
354 retry:
355 if (!pmd_present(pmdval)) {
356 if (likely(!(flags & FOLL_MIGRATION)))
357 return no_page_table(vma, flags);
358 VM_BUG_ON(thp_migration_supported() &&
359 !is_pmd_migration_entry(pmdval));
360 if (is_pmd_migration_entry(pmdval))
361 pmd_migration_entry_wait(mm, pmd);
362 pmdval = READ_ONCE(*pmd);
363 /*
364 * MADV_DONTNEED may convert the pmd to null because
365 * mmap_sem is held in read mode
366 */
367 if (pmd_none(pmdval))
368 return no_page_table(vma, flags);
369 goto retry;
370 }
371 if (pmd_devmap(pmdval)) {
372 ptl = pmd_lock(mm, pmd);
373 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
374 spin_unlock(ptl);
375 if (page)
376 return page;
377 }
378 if (likely(!pmd_trans_huge(pmdval)))
379 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
380
381 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
382 return no_page_table(vma, flags);
383
384 retry_locked:
385 ptl = pmd_lock(mm, pmd);
386 if (unlikely(pmd_none(*pmd))) {
387 spin_unlock(ptl);
388 return no_page_table(vma, flags);
389 }
390 if (unlikely(!pmd_present(*pmd))) {
391 spin_unlock(ptl);
392 if (likely(!(flags & FOLL_MIGRATION)))
393 return no_page_table(vma, flags);
394 pmd_migration_entry_wait(mm, pmd);
395 goto retry_locked;
396 }
397 if (unlikely(!pmd_trans_huge(*pmd))) {
398 spin_unlock(ptl);
399 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
400 }
401 if (flags & FOLL_SPLIT) {
402 int ret;
403 page = pmd_page(*pmd);
404 if (is_huge_zero_page(page)) {
405 spin_unlock(ptl);
406 ret = 0;
407 split_huge_pmd(vma, pmd, address);
408 if (pmd_trans_unstable(pmd))
409 ret = -EBUSY;
410 } else {
411 if (unlikely(!try_get_page(page))) {
412 spin_unlock(ptl);
413 return ERR_PTR(-ENOMEM);
414 }
415 spin_unlock(ptl);
416 lock_page(page);
417 ret = split_huge_page(page);
418 unlock_page(page);
419 put_page(page);
420 if (pmd_none(*pmd))
421 return no_page_table(vma, flags);
422 }
423
424 return ret ? ERR_PTR(ret) :
425 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
426 }
427 page = follow_trans_huge_pmd(vma, address, pmd, flags);
428 spin_unlock(ptl);
429 ctx->page_mask = HPAGE_PMD_NR - 1;
430 return page;
431 }
432
433 static struct page *follow_pud_mask(struct vm_area_struct *vma,
434 unsigned long address, p4d_t *p4dp,
435 unsigned int flags,
436 struct follow_page_context *ctx)
437 {
438 pud_t *pud;
439 spinlock_t *ptl;
440 struct page *page;
441 struct mm_struct *mm = vma->vm_mm;
442
443 pud = pud_offset(p4dp, address);
444 if (pud_none(*pud))
445 return no_page_table(vma, flags);
446 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
447 page = follow_huge_pud(mm, address, pud, flags);
448 if (page)
449 return page;
450 return no_page_table(vma, flags);
451 }
452 if (is_hugepd(__hugepd(pud_val(*pud)))) {
453 page = follow_huge_pd(vma, address,
454 __hugepd(pud_val(*pud)), flags,
455 PUD_SHIFT);
456 if (page)
457 return page;
458 return no_page_table(vma, flags);
459 }
460 if (pud_devmap(*pud)) {
461 ptl = pud_lock(mm, pud);
462 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
463 spin_unlock(ptl);
464 if (page)
465 return page;
466 }
467 if (unlikely(pud_bad(*pud)))
468 return no_page_table(vma, flags);
469
470 return follow_pmd_mask(vma, address, pud, flags, ctx);
471 }
472
473 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
474 unsigned long address, pgd_t *pgdp,
475 unsigned int flags,
476 struct follow_page_context *ctx)
477 {
478 p4d_t *p4d;
479 struct page *page;
480
481 p4d = p4d_offset(pgdp, address);
482 if (p4d_none(*p4d))
483 return no_page_table(vma, flags);
484 BUILD_BUG_ON(p4d_huge(*p4d));
485 if (unlikely(p4d_bad(*p4d)))
486 return no_page_table(vma, flags);
487
488 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
489 page = follow_huge_pd(vma, address,
490 __hugepd(p4d_val(*p4d)), flags,
491 P4D_SHIFT);
492 if (page)
493 return page;
494 return no_page_table(vma, flags);
495 }
496 return follow_pud_mask(vma, address, p4d, flags, ctx);
497 }
498
499 /**
500 * follow_page_mask - look up a page descriptor from a user-virtual address
501 * @vma: vm_area_struct mapping @address
502 * @address: virtual address to look up
503 * @flags: flags modifying lookup behaviour
504 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
505 * pointer to output page_mask
506 *
507 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
508 *
509 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
510 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
511 *
512 * On output, the @ctx->page_mask is set according to the size of the page.
513 *
514 * Return: the mapped (struct page *), %NULL if no mapping exists, or
515 * an error pointer if there is a mapping to something not represented
516 * by a page descriptor (see also vm_normal_page()).
517 */
518 struct page *follow_page_mask(struct vm_area_struct *vma,
519 unsigned long address, unsigned int flags,
520 struct follow_page_context *ctx)
521 {
522 pgd_t *pgd;
523 struct page *page;
524 struct mm_struct *mm = vma->vm_mm;
525
526 ctx->page_mask = 0;
527
528 /* make this handle hugepd */
529 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
530 if (!IS_ERR(page)) {
531 BUG_ON(flags & FOLL_GET);
532 return page;
533 }
534
535 pgd = pgd_offset(mm, address);
536
537 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
538 return no_page_table(vma, flags);
539
540 if (pgd_huge(*pgd)) {
541 page = follow_huge_pgd(mm, address, pgd, flags);
542 if (page)
543 return page;
544 return no_page_table(vma, flags);
545 }
546 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
547 page = follow_huge_pd(vma, address,
548 __hugepd(pgd_val(*pgd)), flags,
549 PGDIR_SHIFT);
550 if (page)
551 return page;
552 return no_page_table(vma, flags);
553 }
554
555 return follow_p4d_mask(vma, address, pgd, flags, ctx);
556 }
557
558 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
559 unsigned int foll_flags)
560 {
561 struct follow_page_context ctx = { NULL };
562 struct page *page;
563
564 page = follow_page_mask(vma, address, foll_flags, &ctx);
565 if (ctx.pgmap)
566 put_dev_pagemap(ctx.pgmap);
567 return page;
568 }
569
570 static int get_gate_page(struct mm_struct *mm, unsigned long address,
571 unsigned int gup_flags, struct vm_area_struct **vma,
572 struct page **page)
573 {
574 pgd_t *pgd;
575 p4d_t *p4d;
576 pud_t *pud;
577 pmd_t *pmd;
578 pte_t *pte;
579 int ret = -EFAULT;
580
581 /* user gate pages are read-only */
582 if (gup_flags & FOLL_WRITE)
583 return -EFAULT;
584 if (address > TASK_SIZE)
585 pgd = pgd_offset_k(address);
586 else
587 pgd = pgd_offset_gate(mm, address);
588 BUG_ON(pgd_none(*pgd));
589 p4d = p4d_offset(pgd, address);
590 BUG_ON(p4d_none(*p4d));
591 pud = pud_offset(p4d, address);
592 BUG_ON(pud_none(*pud));
593 pmd = pmd_offset(pud, address);
594 if (!pmd_present(*pmd))
595 return -EFAULT;
596 VM_BUG_ON(pmd_trans_huge(*pmd));
597 pte = pte_offset_map(pmd, address);
598 if (pte_none(*pte))
599 goto unmap;
600 *vma = get_gate_vma(mm);
601 if (!page)
602 goto out;
603 *page = vm_normal_page(*vma, address, *pte);
604 if (!*page) {
605 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
606 goto unmap;
607 *page = pte_page(*pte);
608
609 /*
610 * This should never happen (a device public page in the gate
611 * area).
612 */
613 if (is_device_public_page(*page))
614 goto unmap;
615 }
616 if (unlikely(!try_get_page(*page))) {
617 ret = -ENOMEM;
618 goto unmap;
619 }
620 out:
621 ret = 0;
622 unmap:
623 pte_unmap(pte);
624 return ret;
625 }
626
627 /*
628 * mmap_sem must be held on entry. If @nonblocking != NULL and
629 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
630 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
631 */
632 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
633 unsigned long address, unsigned int *flags, int *nonblocking)
634 {
635 unsigned int fault_flags = 0;
636 vm_fault_t ret;
637
638 /* mlock all present pages, but do not fault in new pages */
639 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
640 return -ENOENT;
641 if (*flags & FOLL_WRITE)
642 fault_flags |= FAULT_FLAG_WRITE;
643 if (*flags & FOLL_REMOTE)
644 fault_flags |= FAULT_FLAG_REMOTE;
645 if (nonblocking)
646 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
647 if (*flags & FOLL_NOWAIT)
648 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
649 if (*flags & FOLL_TRIED) {
650 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
651 fault_flags |= FAULT_FLAG_TRIED;
652 }
653
654 ret = handle_mm_fault(vma, address, fault_flags);
655 if (ret & VM_FAULT_ERROR) {
656 int err = vm_fault_to_errno(ret, *flags);
657
658 if (err)
659 return err;
660 BUG();
661 }
662
663 if (tsk) {
664 if (ret & VM_FAULT_MAJOR)
665 tsk->maj_flt++;
666 else
667 tsk->min_flt++;
668 }
669
670 if (ret & VM_FAULT_RETRY) {
671 if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
672 *nonblocking = 0;
673 return -EBUSY;
674 }
675
676 /*
677 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
678 * necessary, even if maybe_mkwrite decided not to set pte_write. We
679 * can thus safely do subsequent page lookups as if they were reads.
680 * But only do so when looping for pte_write is futile: in some cases
681 * userspace may also be wanting to write to the gotten user page,
682 * which a read fault here might prevent (a readonly page might get
683 * reCOWed by userspace write).
684 */
685 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
686 *flags |= FOLL_COW;
687 return 0;
688 }
689
690 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
691 {
692 vm_flags_t vm_flags = vma->vm_flags;
693 int write = (gup_flags & FOLL_WRITE);
694 int foreign = (gup_flags & FOLL_REMOTE);
695
696 if (vm_flags & (VM_IO | VM_PFNMAP))
697 return -EFAULT;
698
699 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
700 return -EFAULT;
701
702 if (write) {
703 if (!(vm_flags & VM_WRITE)) {
704 if (!(gup_flags & FOLL_FORCE))
705 return -EFAULT;
706 /*
707 * We used to let the write,force case do COW in a
708 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
709 * set a breakpoint in a read-only mapping of an
710 * executable, without corrupting the file (yet only
711 * when that file had been opened for writing!).
712 * Anon pages in shared mappings are surprising: now
713 * just reject it.
714 */
715 if (!is_cow_mapping(vm_flags))
716 return -EFAULT;
717 }
718 } else if (!(vm_flags & VM_READ)) {
719 if (!(gup_flags & FOLL_FORCE))
720 return -EFAULT;
721 /*
722 * Is there actually any vma we can reach here which does not
723 * have VM_MAYREAD set?
724 */
725 if (!(vm_flags & VM_MAYREAD))
726 return -EFAULT;
727 }
728 /*
729 * gups are always data accesses, not instruction
730 * fetches, so execute=false here
731 */
732 if (!arch_vma_access_permitted(vma, write, false, foreign))
733 return -EFAULT;
734 return 0;
735 }
736
737 /**
738 * __get_user_pages() - pin user pages in memory
739 * @tsk: task_struct of target task
740 * @mm: mm_struct of target mm
741 * @start: starting user address
742 * @nr_pages: number of pages from start to pin
743 * @gup_flags: flags modifying pin behaviour
744 * @pages: array that receives pointers to the pages pinned.
745 * Should be at least nr_pages long. Or NULL, if caller
746 * only intends to ensure the pages are faulted in.
747 * @vmas: array of pointers to vmas corresponding to each page.
748 * Or NULL if the caller does not require them.
749 * @nonblocking: whether waiting for disk IO or mmap_sem contention
750 *
751 * Returns number of pages pinned. This may be fewer than the number
752 * requested. If nr_pages is 0 or negative, returns 0. If no pages
753 * were pinned, returns -errno. Each page returned must be released
754 * with a put_page() call when it is finished with. vmas will only
755 * remain valid while mmap_sem is held.
756 *
757 * Must be called with mmap_sem held. It may be released. See below.
758 *
759 * __get_user_pages walks a process's page tables and takes a reference to
760 * each struct page that each user address corresponds to at a given
761 * instant. That is, it takes the page that would be accessed if a user
762 * thread accesses the given user virtual address at that instant.
763 *
764 * This does not guarantee that the page exists in the user mappings when
765 * __get_user_pages returns, and there may even be a completely different
766 * page there in some cases (eg. if mmapped pagecache has been invalidated
767 * and subsequently re faulted). However it does guarantee that the page
768 * won't be freed completely. And mostly callers simply care that the page
769 * contains data that was valid *at some point in time*. Typically, an IO
770 * or similar operation cannot guarantee anything stronger anyway because
771 * locks can't be held over the syscall boundary.
772 *
773 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
774 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
775 * appropriate) must be called after the page is finished with, and
776 * before put_page is called.
777 *
778 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
779 * or mmap_sem contention, and if waiting is needed to pin all pages,
780 * *@nonblocking will be set to 0. Further, if @gup_flags does not
781 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
782 * this case.
783 *
784 * A caller using such a combination of @nonblocking and @gup_flags
785 * must therefore hold the mmap_sem for reading only, and recognize
786 * when it's been released. Otherwise, it must be held for either
787 * reading or writing and will not be released.
788 *
789 * In most cases, get_user_pages or get_user_pages_fast should be used
790 * instead of __get_user_pages. __get_user_pages should be used only if
791 * you need some special @gup_flags.
792 */
793 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
794 unsigned long start, unsigned long nr_pages,
795 unsigned int gup_flags, struct page **pages,
796 struct vm_area_struct **vmas, int *nonblocking)
797 {
798 long ret = 0, i = 0;
799 struct vm_area_struct *vma = NULL;
800 struct follow_page_context ctx = { NULL };
801
802 if (!nr_pages)
803 return 0;
804
805 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
806
807 /*
808 * If FOLL_FORCE is set then do not force a full fault as the hinting
809 * fault information is unrelated to the reference behaviour of a task
810 * using the address space
811 */
812 if (!(gup_flags & FOLL_FORCE))
813 gup_flags |= FOLL_NUMA;
814
815 do {
816 struct page *page;
817 unsigned int foll_flags = gup_flags;
818 unsigned int page_increm;
819
820 /* first iteration or cross vma bound */
821 if (!vma || start >= vma->vm_end) {
822 vma = find_extend_vma(mm, start);
823 if (!vma && in_gate_area(mm, start)) {
824 ret = get_gate_page(mm, start & PAGE_MASK,
825 gup_flags, &vma,
826 pages ? &pages[i] : NULL);
827 if (ret)
828 goto out;
829 ctx.page_mask = 0;
830 goto next_page;
831 }
832
833 if (!vma || check_vma_flags(vma, gup_flags)) {
834 ret = -EFAULT;
835 goto out;
836 }
837 if (is_vm_hugetlb_page(vma)) {
838 i = follow_hugetlb_page(mm, vma, pages, vmas,
839 &start, &nr_pages, i,
840 gup_flags, nonblocking);
841 continue;
842 }
843 }
844 retry:
845 /*
846 * If we have a pending SIGKILL, don't keep faulting pages and
847 * potentially allocating memory.
848 */
849 if (fatal_signal_pending(current)) {
850 ret = -ERESTARTSYS;
851 goto out;
852 }
853 cond_resched();
854
855 page = follow_page_mask(vma, start, foll_flags, &ctx);
856 if (!page) {
857 ret = faultin_page(tsk, vma, start, &foll_flags,
858 nonblocking);
859 switch (ret) {
860 case 0:
861 goto retry;
862 case -EBUSY:
863 ret = 0;
864 /* FALLTHRU */
865 case -EFAULT:
866 case -ENOMEM:
867 case -EHWPOISON:
868 goto out;
869 case -ENOENT:
870 goto next_page;
871 }
872 BUG();
873 } else if (PTR_ERR(page) == -EEXIST) {
874 /*
875 * Proper page table entry exists, but no corresponding
876 * struct page.
877 */
878 goto next_page;
879 } else if (IS_ERR(page)) {
880 ret = PTR_ERR(page);
881 goto out;
882 }
883 if (pages) {
884 pages[i] = page;
885 flush_anon_page(vma, page, start);
886 flush_dcache_page(page);
887 ctx.page_mask = 0;
888 }
889 next_page:
890 if (vmas) {
891 vmas[i] = vma;
892 ctx.page_mask = 0;
893 }
894 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
895 if (page_increm > nr_pages)
896 page_increm = nr_pages;
897 i += page_increm;
898 start += page_increm * PAGE_SIZE;
899 nr_pages -= page_increm;
900 } while (nr_pages);
901 out:
902 if (ctx.pgmap)
903 put_dev_pagemap(ctx.pgmap);
904 return i ? i : ret;
905 }
906
907 static bool vma_permits_fault(struct vm_area_struct *vma,
908 unsigned int fault_flags)
909 {
910 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
911 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
912 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
913
914 if (!(vm_flags & vma->vm_flags))
915 return false;
916
917 /*
918 * The architecture might have a hardware protection
919 * mechanism other than read/write that can deny access.
920 *
921 * gup always represents data access, not instruction
922 * fetches, so execute=false here:
923 */
924 if (!arch_vma_access_permitted(vma, write, false, foreign))
925 return false;
926
927 return true;
928 }
929
930 /*
931 * fixup_user_fault() - manually resolve a user page fault
932 * @tsk: the task_struct to use for page fault accounting, or
933 * NULL if faults are not to be recorded.
934 * @mm: mm_struct of target mm
935 * @address: user address
936 * @fault_flags:flags to pass down to handle_mm_fault()
937 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
938 * does not allow retry
939 *
940 * This is meant to be called in the specific scenario where for locking reasons
941 * we try to access user memory in atomic context (within a pagefault_disable()
942 * section), this returns -EFAULT, and we want to resolve the user fault before
943 * trying again.
944 *
945 * Typically this is meant to be used by the futex code.
946 *
947 * The main difference with get_user_pages() is that this function will
948 * unconditionally call handle_mm_fault() which will in turn perform all the
949 * necessary SW fixup of the dirty and young bits in the PTE, while
950 * get_user_pages() only guarantees to update these in the struct page.
951 *
952 * This is important for some architectures where those bits also gate the
953 * access permission to the page because they are maintained in software. On
954 * such architectures, gup() will not be enough to make a subsequent access
955 * succeed.
956 *
957 * This function will not return with an unlocked mmap_sem. So it has not the
958 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
959 */
960 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
961 unsigned long address, unsigned int fault_flags,
962 bool *unlocked)
963 {
964 struct vm_area_struct *vma;
965 vm_fault_t ret, major = 0;
966
967 if (unlocked)
968 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
969
970 retry:
971 vma = find_extend_vma(mm, address);
972 if (!vma || address < vma->vm_start)
973 return -EFAULT;
974
975 if (!vma_permits_fault(vma, fault_flags))
976 return -EFAULT;
977
978 ret = handle_mm_fault(vma, address, fault_flags);
979 major |= ret & VM_FAULT_MAJOR;
980 if (ret & VM_FAULT_ERROR) {
981 int err = vm_fault_to_errno(ret, 0);
982
983 if (err)
984 return err;
985 BUG();
986 }
987
988 if (ret & VM_FAULT_RETRY) {
989 down_read(&mm->mmap_sem);
990 if (!(fault_flags & FAULT_FLAG_TRIED)) {
991 *unlocked = true;
992 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
993 fault_flags |= FAULT_FLAG_TRIED;
994 goto retry;
995 }
996 }
997
998 if (tsk) {
999 if (major)
1000 tsk->maj_flt++;
1001 else
1002 tsk->min_flt++;
1003 }
1004 return 0;
1005 }
1006 EXPORT_SYMBOL_GPL(fixup_user_fault);
1007
1008 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
1009 struct mm_struct *mm,
1010 unsigned long start,
1011 unsigned long nr_pages,
1012 struct page **pages,
1013 struct vm_area_struct **vmas,
1014 int *locked,
1015 unsigned int flags)
1016 {
1017 long ret, pages_done;
1018 bool lock_dropped;
1019
1020 if (locked) {
1021 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1022 BUG_ON(vmas);
1023 /* check caller initialized locked */
1024 BUG_ON(*locked != 1);
1025 }
1026
1027 if (pages)
1028 flags |= FOLL_GET;
1029
1030 pages_done = 0;
1031 lock_dropped = false;
1032 for (;;) {
1033 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1034 vmas, locked);
1035 if (!locked)
1036 /* VM_FAULT_RETRY couldn't trigger, bypass */
1037 return ret;
1038
1039 /* VM_FAULT_RETRY cannot return errors */
1040 if (!*locked) {
1041 BUG_ON(ret < 0);
1042 BUG_ON(ret >= nr_pages);
1043 }
1044
1045 if (ret > 0) {
1046 nr_pages -= ret;
1047 pages_done += ret;
1048 if (!nr_pages)
1049 break;
1050 }
1051 if (*locked) {
1052 /*
1053 * VM_FAULT_RETRY didn't trigger or it was a
1054 * FOLL_NOWAIT.
1055 */
1056 if (!pages_done)
1057 pages_done = ret;
1058 break;
1059 }
1060 /*
1061 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1062 * For the prefault case (!pages) we only update counts.
1063 */
1064 if (likely(pages))
1065 pages += ret;
1066 start += ret << PAGE_SHIFT;
1067
1068 /*
1069 * Repeat on the address that fired VM_FAULT_RETRY
1070 * without FAULT_FLAG_ALLOW_RETRY but with
1071 * FAULT_FLAG_TRIED.
1072 */
1073 *locked = 1;
1074 lock_dropped = true;
1075 down_read(&mm->mmap_sem);
1076 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1077 pages, NULL, NULL);
1078 if (ret != 1) {
1079 BUG_ON(ret > 1);
1080 if (!pages_done)
1081 pages_done = ret;
1082 break;
1083 }
1084 nr_pages--;
1085 pages_done++;
1086 if (!nr_pages)
1087 break;
1088 if (likely(pages))
1089 pages++;
1090 start += PAGE_SIZE;
1091 }
1092 if (lock_dropped && *locked) {
1093 /*
1094 * We must let the caller know we temporarily dropped the lock
1095 * and so the critical section protected by it was lost.
1096 */
1097 up_read(&mm->mmap_sem);
1098 *locked = 0;
1099 }
1100 return pages_done;
1101 }
1102
1103 /*
1104 * We can leverage the VM_FAULT_RETRY functionality in the page fault
1105 * paths better by using either get_user_pages_locked() or
1106 * get_user_pages_unlocked().
1107 *
1108 * get_user_pages_locked() is suitable to replace the form:
1109 *
1110 * down_read(&mm->mmap_sem);
1111 * do_something()
1112 * get_user_pages(tsk, mm, ..., pages, NULL);
1113 * up_read(&mm->mmap_sem);
1114 *
1115 * to:
1116 *
1117 * int locked = 1;
1118 * down_read(&mm->mmap_sem);
1119 * do_something()
1120 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
1121 * if (locked)
1122 * up_read(&mm->mmap_sem);
1123 */
1124 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1125 unsigned int gup_flags, struct page **pages,
1126 int *locked)
1127 {
1128 /*
1129 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1130 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1131 * vmas. As there are no users of this flag in this call we simply
1132 * disallow this option for now.
1133 */
1134 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1135 return -EINVAL;
1136
1137 return __get_user_pages_locked(current, current->mm, start, nr_pages,
1138 pages, NULL, locked,
1139 gup_flags | FOLL_TOUCH);
1140 }
1141 EXPORT_SYMBOL(get_user_pages_locked);
1142
1143 /*
1144 * get_user_pages_unlocked() is suitable to replace the form:
1145 *
1146 * down_read(&mm->mmap_sem);
1147 * get_user_pages(tsk, mm, ..., pages, NULL);
1148 * up_read(&mm->mmap_sem);
1149 *
1150 * with:
1151 *
1152 * get_user_pages_unlocked(tsk, mm, ..., pages);
1153 *
1154 * It is functionally equivalent to get_user_pages_fast so
1155 * get_user_pages_fast should be used instead if specific gup_flags
1156 * (e.g. FOLL_FORCE) are not required.
1157 */
1158 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1159 struct page **pages, unsigned int gup_flags)
1160 {
1161 struct mm_struct *mm = current->mm;
1162 int locked = 1;
1163 long ret;
1164
1165 /*
1166 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1167 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1168 * vmas. As there are no users of this flag in this call we simply
1169 * disallow this option for now.
1170 */
1171 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1172 return -EINVAL;
1173
1174 down_read(&mm->mmap_sem);
1175 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
1176 &locked, gup_flags | FOLL_TOUCH);
1177 if (locked)
1178 up_read(&mm->mmap_sem);
1179 return ret;
1180 }
1181 EXPORT_SYMBOL(get_user_pages_unlocked);
1182
1183 /*
1184 * get_user_pages_remote() - pin user pages in memory
1185 * @tsk: the task_struct to use for page fault accounting, or
1186 * NULL if faults are not to be recorded.
1187 * @mm: mm_struct of target mm
1188 * @start: starting user address
1189 * @nr_pages: number of pages from start to pin
1190 * @gup_flags: flags modifying lookup behaviour
1191 * @pages: array that receives pointers to the pages pinned.
1192 * Should be at least nr_pages long. Or NULL, if caller
1193 * only intends to ensure the pages are faulted in.
1194 * @vmas: array of pointers to vmas corresponding to each page.
1195 * Or NULL if the caller does not require them.
1196 * @locked: pointer to lock flag indicating whether lock is held and
1197 * subsequently whether VM_FAULT_RETRY functionality can be
1198 * utilised. Lock must initially be held.
1199 *
1200 * Returns number of pages pinned. This may be fewer than the number
1201 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1202 * were pinned, returns -errno. Each page returned must be released
1203 * with a put_page() call when it is finished with. vmas will only
1204 * remain valid while mmap_sem is held.
1205 *
1206 * Must be called with mmap_sem held for read or write.
1207 *
1208 * get_user_pages walks a process's page tables and takes a reference to
1209 * each struct page that each user address corresponds to at a given
1210 * instant. That is, it takes the page that would be accessed if a user
1211 * thread accesses the given user virtual address at that instant.
1212 *
1213 * This does not guarantee that the page exists in the user mappings when
1214 * get_user_pages returns, and there may even be a completely different
1215 * page there in some cases (eg. if mmapped pagecache has been invalidated
1216 * and subsequently re faulted). However it does guarantee that the page
1217 * won't be freed completely. And mostly callers simply care that the page
1218 * contains data that was valid *at some point in time*. Typically, an IO
1219 * or similar operation cannot guarantee anything stronger anyway because
1220 * locks can't be held over the syscall boundary.
1221 *
1222 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1223 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1224 * be called after the page is finished with, and before put_page is called.
1225 *
1226 * get_user_pages is typically used for fewer-copy IO operations, to get a
1227 * handle on the memory by some means other than accesses via the user virtual
1228 * addresses. The pages may be submitted for DMA to devices or accessed via
1229 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1230 * use the correct cache flushing APIs.
1231 *
1232 * See also get_user_pages_fast, for performance critical applications.
1233 *
1234 * get_user_pages should be phased out in favor of
1235 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1236 * should use get_user_pages because it cannot pass
1237 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1238 */
1239 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1240 unsigned long start, unsigned long nr_pages,
1241 unsigned int gup_flags, struct page **pages,
1242 struct vm_area_struct **vmas, int *locked)
1243 {
1244 /*
1245 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1246 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1247 * vmas. As there are no users of this flag in this call we simply
1248 * disallow this option for now.
1249 */
1250 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1251 return -EINVAL;
1252
1253 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1254 locked,
1255 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1256 }
1257 EXPORT_SYMBOL(get_user_pages_remote);
1258
1259 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1260 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1261 {
1262 long i;
1263 struct vm_area_struct *vma_prev = NULL;
1264
1265 for (i = 0; i < nr_pages; i++) {
1266 struct vm_area_struct *vma = vmas[i];
1267
1268 if (vma == vma_prev)
1269 continue;
1270
1271 vma_prev = vma;
1272
1273 if (vma_is_fsdax(vma))
1274 return true;
1275 }
1276 return false;
1277 }
1278
1279 #ifdef CONFIG_CMA
1280 static struct page *new_non_cma_page(struct page *page, unsigned long private)
1281 {
1282 /*
1283 * We want to make sure we allocate the new page from the same node
1284 * as the source page.
1285 */
1286 int nid = page_to_nid(page);
1287 /*
1288 * Trying to allocate a page for migration. Ignore allocation
1289 * failure warnings. We don't force __GFP_THISNODE here because
1290 * this node here is the node where we have CMA reservation and
1291 * in some case these nodes will have really less non movable
1292 * allocation memory.
1293 */
1294 gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1295
1296 if (PageHighMem(page))
1297 gfp_mask |= __GFP_HIGHMEM;
1298
1299 #ifdef CONFIG_HUGETLB_PAGE
1300 if (PageHuge(page)) {
1301 struct hstate *h = page_hstate(page);
1302 /*
1303 * We don't want to dequeue from the pool because pool pages will
1304 * mostly be from the CMA region.
1305 */
1306 return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1307 }
1308 #endif
1309 if (PageTransHuge(page)) {
1310 struct page *thp;
1311 /*
1312 * ignore allocation failure warnings
1313 */
1314 gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1315
1316 /*
1317 * Remove the movable mask so that we don't allocate from
1318 * CMA area again.
1319 */
1320 thp_gfpmask &= ~__GFP_MOVABLE;
1321 thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1322 if (!thp)
1323 return NULL;
1324 prep_transhuge_page(thp);
1325 return thp;
1326 }
1327
1328 return __alloc_pages_node(nid, gfp_mask, 0);
1329 }
1330
1331 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1332 struct mm_struct *mm,
1333 unsigned long start,
1334 unsigned long nr_pages,
1335 struct page **pages,
1336 struct vm_area_struct **vmas,
1337 unsigned int gup_flags)
1338 {
1339 long i;
1340 bool drain_allow = true;
1341 bool migrate_allow = true;
1342 LIST_HEAD(cma_page_list);
1343
1344 check_again:
1345 for (i = 0; i < nr_pages; i++) {
1346 /*
1347 * If we get a page from the CMA zone, since we are going to
1348 * be pinning these entries, we might as well move them out
1349 * of the CMA zone if possible.
1350 */
1351 if (is_migrate_cma_page(pages[i])) {
1352
1353 struct page *head = compound_head(pages[i]);
1354
1355 if (PageHuge(head)) {
1356 isolate_huge_page(head, &cma_page_list);
1357 } else {
1358 if (!PageLRU(head) && drain_allow) {
1359 lru_add_drain_all();
1360 drain_allow = false;
1361 }
1362
1363 if (!isolate_lru_page(head)) {
1364 list_add_tail(&head->lru, &cma_page_list);
1365 mod_node_page_state(page_pgdat(head),
1366 NR_ISOLATED_ANON +
1367 page_is_file_cache(head),
1368 hpage_nr_pages(head));
1369 }
1370 }
1371 }
1372 }
1373
1374 if (!list_empty(&cma_page_list)) {
1375 /*
1376 * drop the above get_user_pages reference.
1377 */
1378 for (i = 0; i < nr_pages; i++)
1379 put_page(pages[i]);
1380
1381 if (migrate_pages(&cma_page_list, new_non_cma_page,
1382 NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1383 /*
1384 * some of the pages failed migration. Do get_user_pages
1385 * without migration.
1386 */
1387 migrate_allow = false;
1388
1389 if (!list_empty(&cma_page_list))
1390 putback_movable_pages(&cma_page_list);
1391 }
1392 /*
1393 * We did migrate all the pages, Try to get the page references
1394 * again migrating any new CMA pages which we failed to isolate
1395 * earlier.
1396 */
1397 nr_pages = __get_user_pages_locked(tsk, mm, start, nr_pages,
1398 pages, vmas, NULL,
1399 gup_flags);
1400
1401 if ((nr_pages > 0) && migrate_allow) {
1402 drain_allow = true;
1403 goto check_again;
1404 }
1405 }
1406
1407 return nr_pages;
1408 }
1409 #else
1410 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1411 struct mm_struct *mm,
1412 unsigned long start,
1413 unsigned long nr_pages,
1414 struct page **pages,
1415 struct vm_area_struct **vmas,
1416 unsigned int gup_flags)
1417 {
1418 return nr_pages;
1419 }
1420 #endif
1421
1422 /*
1423 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1424 * allows us to process the FOLL_LONGTERM flag.
1425 */
1426 static long __gup_longterm_locked(struct task_struct *tsk,
1427 struct mm_struct *mm,
1428 unsigned long start,
1429 unsigned long nr_pages,
1430 struct page **pages,
1431 struct vm_area_struct **vmas,
1432 unsigned int gup_flags)
1433 {
1434 struct vm_area_struct **vmas_tmp = vmas;
1435 unsigned long flags = 0;
1436 long rc, i;
1437
1438 if (gup_flags & FOLL_LONGTERM) {
1439 if (!pages)
1440 return -EINVAL;
1441
1442 if (!vmas_tmp) {
1443 vmas_tmp = kcalloc(nr_pages,
1444 sizeof(struct vm_area_struct *),
1445 GFP_KERNEL);
1446 if (!vmas_tmp)
1447 return -ENOMEM;
1448 }
1449 flags = memalloc_nocma_save();
1450 }
1451
1452 rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1453 vmas_tmp, NULL, gup_flags);
1454
1455 if (gup_flags & FOLL_LONGTERM) {
1456 memalloc_nocma_restore(flags);
1457 if (rc < 0)
1458 goto out;
1459
1460 if (check_dax_vmas(vmas_tmp, rc)) {
1461 for (i = 0; i < rc; i++)
1462 put_page(pages[i]);
1463 rc = -EOPNOTSUPP;
1464 goto out;
1465 }
1466
1467 rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1468 vmas_tmp, gup_flags);
1469 }
1470
1471 out:
1472 if (vmas_tmp != vmas)
1473 kfree(vmas_tmp);
1474 return rc;
1475 }
1476 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1477 static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1478 struct mm_struct *mm,
1479 unsigned long start,
1480 unsigned long nr_pages,
1481 struct page **pages,
1482 struct vm_area_struct **vmas,
1483 unsigned int flags)
1484 {
1485 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1486 NULL, flags);
1487 }
1488 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1489
1490 /*
1491 * This is the same as get_user_pages_remote(), just with a
1492 * less-flexible calling convention where we assume that the task
1493 * and mm being operated on are the current task's and don't allow
1494 * passing of a locked parameter. We also obviously don't pass
1495 * FOLL_REMOTE in here.
1496 */
1497 long get_user_pages(unsigned long start, unsigned long nr_pages,
1498 unsigned int gup_flags, struct page **pages,
1499 struct vm_area_struct **vmas)
1500 {
1501 return __gup_longterm_locked(current, current->mm, start, nr_pages,
1502 pages, vmas, gup_flags | FOLL_TOUCH);
1503 }
1504 EXPORT_SYMBOL(get_user_pages);
1505
1506 /**
1507 * populate_vma_page_range() - populate a range of pages in the vma.
1508 * @vma: target vma
1509 * @start: start address
1510 * @end: end address
1511 * @nonblocking:
1512 *
1513 * This takes care of mlocking the pages too if VM_LOCKED is set.
1514 *
1515 * return 0 on success, negative error code on error.
1516 *
1517 * vma->vm_mm->mmap_sem must be held.
1518 *
1519 * If @nonblocking is NULL, it may be held for read or write and will
1520 * be unperturbed.
1521 *
1522 * If @nonblocking is non-NULL, it must held for read only and may be
1523 * released. If it's released, *@nonblocking will be set to 0.
1524 */
1525 long populate_vma_page_range(struct vm_area_struct *vma,
1526 unsigned long start, unsigned long end, int *nonblocking)
1527 {
1528 struct mm_struct *mm = vma->vm_mm;
1529 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1530 int gup_flags;
1531
1532 VM_BUG_ON(start & ~PAGE_MASK);
1533 VM_BUG_ON(end & ~PAGE_MASK);
1534 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1535 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1536 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1537
1538 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1539 if (vma->vm_flags & VM_LOCKONFAULT)
1540 gup_flags &= ~FOLL_POPULATE;
1541 /*
1542 * We want to touch writable mappings with a write fault in order
1543 * to break COW, except for shared mappings because these don't COW
1544 * and we would not want to dirty them for nothing.
1545 */
1546 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1547 gup_flags |= FOLL_WRITE;
1548
1549 /*
1550 * We want mlock to succeed for regions that have any permissions
1551 * other than PROT_NONE.
1552 */
1553 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1554 gup_flags |= FOLL_FORCE;
1555
1556 /*
1557 * We made sure addr is within a VMA, so the following will
1558 * not result in a stack expansion that recurses back here.
1559 */
1560 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1561 NULL, NULL, nonblocking);
1562 }
1563
1564 /*
1565 * __mm_populate - populate and/or mlock pages within a range of address space.
1566 *
1567 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1568 * flags. VMAs must be already marked with the desired vm_flags, and
1569 * mmap_sem must not be held.
1570 */
1571 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1572 {
1573 struct mm_struct *mm = current->mm;
1574 unsigned long end, nstart, nend;
1575 struct vm_area_struct *vma = NULL;
1576 int locked = 0;
1577 long ret = 0;
1578
1579 end = start + len;
1580
1581 for (nstart = start; nstart < end; nstart = nend) {
1582 /*
1583 * We want to fault in pages for [nstart; end) address range.
1584 * Find first corresponding VMA.
1585 */
1586 if (!locked) {
1587 locked = 1;
1588 down_read(&mm->mmap_sem);
1589 vma = find_vma(mm, nstart);
1590 } else if (nstart >= vma->vm_end)
1591 vma = vma->vm_next;
1592 if (!vma || vma->vm_start >= end)
1593 break;
1594 /*
1595 * Set [nstart; nend) to intersection of desired address
1596 * range with the first VMA. Also, skip undesirable VMA types.
1597 */
1598 nend = min(end, vma->vm_end);
1599 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1600 continue;
1601 if (nstart < vma->vm_start)
1602 nstart = vma->vm_start;
1603 /*
1604 * Now fault in a range of pages. populate_vma_page_range()
1605 * double checks the vma flags, so that it won't mlock pages
1606 * if the vma was already munlocked.
1607 */
1608 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1609 if (ret < 0) {
1610 if (ignore_errors) {
1611 ret = 0;
1612 continue; /* continue at next VMA */
1613 }
1614 break;
1615 }
1616 nend = nstart + ret * PAGE_SIZE;
1617 ret = 0;
1618 }
1619 if (locked)
1620 up_read(&mm->mmap_sem);
1621 return ret; /* 0 or negative error code */
1622 }
1623
1624 /**
1625 * get_dump_page() - pin user page in memory while writing it to core dump
1626 * @addr: user address
1627 *
1628 * Returns struct page pointer of user page pinned for dump,
1629 * to be freed afterwards by put_page().
1630 *
1631 * Returns NULL on any kind of failure - a hole must then be inserted into
1632 * the corefile, to preserve alignment with its headers; and also returns
1633 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1634 * allowing a hole to be left in the corefile to save diskspace.
1635 *
1636 * Called without mmap_sem, but after all other threads have been killed.
1637 */
1638 #ifdef CONFIG_ELF_CORE
1639 struct page *get_dump_page(unsigned long addr)
1640 {
1641 struct vm_area_struct *vma;
1642 struct page *page;
1643
1644 if (__get_user_pages(current, current->mm, addr, 1,
1645 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1646 NULL) < 1)
1647 return NULL;
1648 flush_cache_page(vma, addr, page_to_pfn(page));
1649 return page;
1650 }
1651 #endif /* CONFIG_ELF_CORE */
1652
1653 /*
1654 * Generic Fast GUP
1655 *
1656 * get_user_pages_fast attempts to pin user pages by walking the page
1657 * tables directly and avoids taking locks. Thus the walker needs to be
1658 * protected from page table pages being freed from under it, and should
1659 * block any THP splits.
1660 *
1661 * One way to achieve this is to have the walker disable interrupts, and
1662 * rely on IPIs from the TLB flushing code blocking before the page table
1663 * pages are freed. This is unsuitable for architectures that do not need
1664 * to broadcast an IPI when invalidating TLBs.
1665 *
1666 * Another way to achieve this is to batch up page table containing pages
1667 * belonging to more than one mm_user, then rcu_sched a callback to free those
1668 * pages. Disabling interrupts will allow the fast_gup walker to both block
1669 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1670 * (which is a relatively rare event). The code below adopts this strategy.
1671 *
1672 * Before activating this code, please be aware that the following assumptions
1673 * are currently made:
1674 *
1675 * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1676 * free pages containing page tables or TLB flushing requires IPI broadcast.
1677 *
1678 * *) ptes can be read atomically by the architecture.
1679 *
1680 * *) access_ok is sufficient to validate userspace address ranges.
1681 *
1682 * The last two assumptions can be relaxed by the addition of helper functions.
1683 *
1684 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1685 */
1686 #ifdef CONFIG_HAVE_GENERIC_GUP
1687
1688 #ifndef gup_get_pte
1689 /*
1690 * We assume that the PTE can be read atomically. If this is not the case for
1691 * your architecture, please provide the helper.
1692 */
1693 static inline pte_t gup_get_pte(pte_t *ptep)
1694 {
1695 return READ_ONCE(*ptep);
1696 }
1697 #endif
1698
1699 static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
1700 {
1701 while ((*nr) - nr_start) {
1702 struct page *page = pages[--(*nr)];
1703
1704 ClearPageReferenced(page);
1705 put_page(page);
1706 }
1707 }
1708
1709 /*
1710 * Return the compund head page with ref appropriately incremented,
1711 * or NULL if that failed.
1712 */
1713 static inline struct page *try_get_compound_head(struct page *page, int refs)
1714 {
1715 struct page *head = compound_head(page);
1716 if (WARN_ON_ONCE(page_ref_count(head) < 0))
1717 return NULL;
1718 if (unlikely(!page_cache_add_speculative(head, refs)))
1719 return NULL;
1720 return head;
1721 }
1722
1723 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
1724 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1725 unsigned int flags, struct page **pages, int *nr)
1726 {
1727 struct dev_pagemap *pgmap = NULL;
1728 int nr_start = *nr, ret = 0;
1729 pte_t *ptep, *ptem;
1730
1731 ptem = ptep = pte_offset_map(&pmd, addr);
1732 do {
1733 pte_t pte = gup_get_pte(ptep);
1734 struct page *head, *page;
1735
1736 /*
1737 * Similar to the PMD case below, NUMA hinting must take slow
1738 * path using the pte_protnone check.
1739 */
1740 if (pte_protnone(pte))
1741 goto pte_unmap;
1742
1743 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
1744 goto pte_unmap;
1745
1746 if (pte_devmap(pte)) {
1747 if (unlikely(flags & FOLL_LONGTERM))
1748 goto pte_unmap;
1749
1750 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1751 if (unlikely(!pgmap)) {
1752 undo_dev_pagemap(nr, nr_start, pages);
1753 goto pte_unmap;
1754 }
1755 } else if (pte_special(pte))
1756 goto pte_unmap;
1757
1758 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1759 page = pte_page(pte);
1760
1761 head = try_get_compound_head(page, 1);
1762 if (!head)
1763 goto pte_unmap;
1764
1765 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1766 put_page(head);
1767 goto pte_unmap;
1768 }
1769
1770 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1771
1772 SetPageReferenced(page);
1773 pages[*nr] = page;
1774 (*nr)++;
1775
1776 } while (ptep++, addr += PAGE_SIZE, addr != end);
1777
1778 ret = 1;
1779
1780 pte_unmap:
1781 if (pgmap)
1782 put_dev_pagemap(pgmap);
1783 pte_unmap(ptem);
1784 return ret;
1785 }
1786 #else
1787
1788 /*
1789 * If we can't determine whether or not a pte is special, then fail immediately
1790 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1791 * to be special.
1792 *
1793 * For a futex to be placed on a THP tail page, get_futex_key requires a
1794 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1795 * useful to have gup_huge_pmd even if we can't operate on ptes.
1796 */
1797 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1798 unsigned int flags, struct page **pages, int *nr)
1799 {
1800 return 0;
1801 }
1802 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
1803
1804 #if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1805 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1806 unsigned long end, struct page **pages, int *nr)
1807 {
1808 int nr_start = *nr;
1809 struct dev_pagemap *pgmap = NULL;
1810
1811 do {
1812 struct page *page = pfn_to_page(pfn);
1813
1814 pgmap = get_dev_pagemap(pfn, pgmap);
1815 if (unlikely(!pgmap)) {
1816 undo_dev_pagemap(nr, nr_start, pages);
1817 return 0;
1818 }
1819 SetPageReferenced(page);
1820 pages[*nr] = page;
1821 get_page(page);
1822 (*nr)++;
1823 pfn++;
1824 } while (addr += PAGE_SIZE, addr != end);
1825
1826 if (pgmap)
1827 put_dev_pagemap(pgmap);
1828 return 1;
1829 }
1830
1831 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1832 unsigned long end, struct page **pages, int *nr)
1833 {
1834 unsigned long fault_pfn;
1835 int nr_start = *nr;
1836
1837 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1838 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1839 return 0;
1840
1841 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1842 undo_dev_pagemap(nr, nr_start, pages);
1843 return 0;
1844 }
1845 return 1;
1846 }
1847
1848 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1849 unsigned long end, struct page **pages, int *nr)
1850 {
1851 unsigned long fault_pfn;
1852 int nr_start = *nr;
1853
1854 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1855 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1856 return 0;
1857
1858 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1859 undo_dev_pagemap(nr, nr_start, pages);
1860 return 0;
1861 }
1862 return 1;
1863 }
1864 #else
1865 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1866 unsigned long end, struct page **pages, int *nr)
1867 {
1868 BUILD_BUG();
1869 return 0;
1870 }
1871
1872 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
1873 unsigned long end, struct page **pages, int *nr)
1874 {
1875 BUILD_BUG();
1876 return 0;
1877 }
1878 #endif
1879
1880 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1881 unsigned long end, unsigned int flags, struct page **pages, int *nr)
1882 {
1883 struct page *head, *page;
1884 int refs;
1885
1886 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
1887 return 0;
1888
1889 if (pmd_devmap(orig)) {
1890 if (unlikely(flags & FOLL_LONGTERM))
1891 return 0;
1892 return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
1893 }
1894
1895 refs = 0;
1896 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1897 do {
1898 pages[*nr] = page;
1899 (*nr)++;
1900 page++;
1901 refs++;
1902 } while (addr += PAGE_SIZE, addr != end);
1903
1904 head = try_get_compound_head(pmd_page(orig), refs);
1905 if (!head) {
1906 *nr -= refs;
1907 return 0;
1908 }
1909
1910 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1911 *nr -= refs;
1912 while (refs--)
1913 put_page(head);
1914 return 0;
1915 }
1916
1917 SetPageReferenced(head);
1918 return 1;
1919 }
1920
1921 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1922 unsigned long end, unsigned int flags, struct page **pages, int *nr)
1923 {
1924 struct page *head, *page;
1925 int refs;
1926
1927 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
1928 return 0;
1929
1930 if (pud_devmap(orig)) {
1931 if (unlikely(flags & FOLL_LONGTERM))
1932 return 0;
1933 return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
1934 }
1935
1936 refs = 0;
1937 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1938 do {
1939 pages[*nr] = page;
1940 (*nr)++;
1941 page++;
1942 refs++;
1943 } while (addr += PAGE_SIZE, addr != end);
1944
1945 head = try_get_compound_head(pud_page(orig), refs);
1946 if (!head) {
1947 *nr -= refs;
1948 return 0;
1949 }
1950
1951 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1952 *nr -= refs;
1953 while (refs--)
1954 put_page(head);
1955 return 0;
1956 }
1957
1958 SetPageReferenced(head);
1959 return 1;
1960 }
1961
1962 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1963 unsigned long end, unsigned int flags,
1964 struct page **pages, int *nr)
1965 {
1966 int refs;
1967 struct page *head, *page;
1968
1969 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
1970 return 0;
1971
1972 BUILD_BUG_ON(pgd_devmap(orig));
1973 refs = 0;
1974 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1975 do {
1976 pages[*nr] = page;
1977 (*nr)++;
1978 page++;
1979 refs++;
1980 } while (addr += PAGE_SIZE, addr != end);
1981
1982 head = try_get_compound_head(pgd_page(orig), refs);
1983 if (!head) {
1984 *nr -= refs;
1985 return 0;
1986 }
1987
1988 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1989 *nr -= refs;
1990 while (refs--)
1991 put_page(head);
1992 return 0;
1993 }
1994
1995 SetPageReferenced(head);
1996 return 1;
1997 }
1998
1999 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2000 unsigned int flags, struct page **pages, int *nr)
2001 {
2002 unsigned long next;
2003 pmd_t *pmdp;
2004
2005 pmdp = pmd_offset(&pud, addr);
2006 do {
2007 pmd_t pmd = READ_ONCE(*pmdp);
2008
2009 next = pmd_addr_end(addr, end);
2010 if (!pmd_present(pmd))
2011 return 0;
2012
2013 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2014 pmd_devmap(pmd))) {
2015 /*
2016 * NUMA hinting faults need to be handled in the GUP
2017 * slowpath for accounting purposes and so that they
2018 * can be serialised against THP migration.
2019 */
2020 if (pmd_protnone(pmd))
2021 return 0;
2022
2023 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2024 pages, nr))
2025 return 0;
2026
2027 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2028 /*
2029 * architecture have different format for hugetlbfs
2030 * pmd format and THP pmd format
2031 */
2032 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2033 PMD_SHIFT, next, flags, pages, nr))
2034 return 0;
2035 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2036 return 0;
2037 } while (pmdp++, addr = next, addr != end);
2038
2039 return 1;
2040 }
2041
2042 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2043 unsigned int flags, struct page **pages, int *nr)
2044 {
2045 unsigned long next;
2046 pud_t *pudp;
2047
2048 pudp = pud_offset(&p4d, addr);
2049 do {
2050 pud_t pud = READ_ONCE(*pudp);
2051
2052 next = pud_addr_end(addr, end);
2053 if (pud_none(pud))
2054 return 0;
2055 if (unlikely(pud_huge(pud))) {
2056 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2057 pages, nr))
2058 return 0;
2059 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2060 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2061 PUD_SHIFT, next, flags, pages, nr))
2062 return 0;
2063 } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2064 return 0;
2065 } while (pudp++, addr = next, addr != end);
2066
2067 return 1;
2068 }
2069
2070 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2071 unsigned int flags, struct page **pages, int *nr)
2072 {
2073 unsigned long next;
2074 p4d_t *p4dp;
2075
2076 p4dp = p4d_offset(&pgd, addr);
2077 do {
2078 p4d_t p4d = READ_ONCE(*p4dp);
2079
2080 next = p4d_addr_end(addr, end);
2081 if (p4d_none(p4d))
2082 return 0;
2083 BUILD_BUG_ON(p4d_huge(p4d));
2084 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2085 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2086 P4D_SHIFT, next, flags, pages, nr))
2087 return 0;
2088 } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2089 return 0;
2090 } while (p4dp++, addr = next, addr != end);
2091
2092 return 1;
2093 }
2094
2095 static void gup_pgd_range(unsigned long addr, unsigned long end,
2096 unsigned int flags, struct page **pages, int *nr)
2097 {
2098 unsigned long next;
2099 pgd_t *pgdp;
2100
2101 pgdp = pgd_offset(current->mm, addr);
2102 do {
2103 pgd_t pgd = READ_ONCE(*pgdp);
2104
2105 next = pgd_addr_end(addr, end);
2106 if (pgd_none(pgd))
2107 return;
2108 if (unlikely(pgd_huge(pgd))) {
2109 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2110 pages, nr))
2111 return;
2112 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2113 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2114 PGDIR_SHIFT, next, flags, pages, nr))
2115 return;
2116 } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2117 return;
2118 } while (pgdp++, addr = next, addr != end);
2119 }
2120
2121 #ifndef gup_fast_permitted
2122 /*
2123 * Check if it's allowed to use __get_user_pages_fast() for the range, or
2124 * we need to fall back to the slow version:
2125 */
2126 bool gup_fast_permitted(unsigned long start, int nr_pages)
2127 {
2128 unsigned long len, end;
2129
2130 len = (unsigned long) nr_pages << PAGE_SHIFT;
2131 end = start + len;
2132 return end >= start;
2133 }
2134 #endif
2135
2136 /*
2137 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2138 * the regular GUP.
2139 * Note a difference with get_user_pages_fast: this always returns the
2140 * number of pages pinned, 0 if no pages were pinned.
2141 */
2142 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
2143 struct page **pages)
2144 {
2145 unsigned long len, end;
2146 unsigned long flags;
2147 int nr = 0;
2148
2149 start &= PAGE_MASK;
2150 len = (unsigned long) nr_pages << PAGE_SHIFT;
2151 end = start + len;
2152
2153 if (unlikely(!access_ok((void __user *)start, len)))
2154 return 0;
2155
2156 /*
2157 * Disable interrupts. We use the nested form as we can already have
2158 * interrupts disabled by get_futex_key.
2159 *
2160 * With interrupts disabled, we block page table pages from being
2161 * freed from under us. See struct mmu_table_batch comments in
2162 * include/asm-generic/tlb.h for more details.
2163 *
2164 * We do not adopt an rcu_read_lock(.) here as we also want to
2165 * block IPIs that come from THPs splitting.
2166 */
2167
2168 if (gup_fast_permitted(start, nr_pages)) {
2169 local_irq_save(flags);
2170 gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr);
2171 local_irq_restore(flags);
2172 }
2173
2174 return nr;
2175 }
2176
2177 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2178 unsigned int gup_flags, struct page **pages)
2179 {
2180 int ret;
2181
2182 /*
2183 * FIXME: FOLL_LONGTERM does not work with
2184 * get_user_pages_unlocked() (see comments in that function)
2185 */
2186 if (gup_flags & FOLL_LONGTERM) {
2187 down_read(&current->mm->mmap_sem);
2188 ret = __gup_longterm_locked(current, current->mm,
2189 start, nr_pages,
2190 pages, NULL, gup_flags);
2191 up_read(&current->mm->mmap_sem);
2192 } else {
2193 ret = get_user_pages_unlocked(start, nr_pages,
2194 pages, gup_flags);
2195 }
2196
2197 return ret;
2198 }
2199
2200 /**
2201 * get_user_pages_fast() - pin user pages in memory
2202 * @start: starting user address
2203 * @nr_pages: number of pages from start to pin
2204 * @gup_flags: flags modifying pin behaviour
2205 * @pages: array that receives pointers to the pages pinned.
2206 * Should be at least nr_pages long.
2207 *
2208 * Attempt to pin user pages in memory without taking mm->mmap_sem.
2209 * If not successful, it will fall back to taking the lock and
2210 * calling get_user_pages().
2211 *
2212 * Returns number of pages pinned. This may be fewer than the number
2213 * requested. If nr_pages is 0 or negative, returns 0. If no pages
2214 * were pinned, returns -errno.
2215 */
2216 int get_user_pages_fast(unsigned long start, int nr_pages,
2217 unsigned int gup_flags, struct page **pages)
2218 {
2219 unsigned long addr, len, end;
2220 int nr = 0, ret = 0;
2221
2222 start &= PAGE_MASK;
2223 addr = start;
2224 len = (unsigned long) nr_pages << PAGE_SHIFT;
2225 end = start + len;
2226
2227 if (nr_pages <= 0)
2228 return 0;
2229
2230 if (unlikely(!access_ok((void __user *)start, len)))
2231 return -EFAULT;
2232
2233 if (gup_fast_permitted(start, nr_pages)) {
2234 local_irq_disable();
2235 gup_pgd_range(addr, end, gup_flags, pages, &nr);
2236 local_irq_enable();
2237 ret = nr;
2238 }
2239
2240 if (nr < nr_pages) {
2241 /* Try to get the remaining pages with get_user_pages */
2242 start += nr << PAGE_SHIFT;
2243 pages += nr;
2244
2245 ret = __gup_longterm_unlocked(start, nr_pages - nr,
2246 gup_flags, pages);
2247
2248 /* Have to be a bit careful with return values */
2249 if (nr > 0) {
2250 if (ret < 0)
2251 ret = nr;
2252 else
2253 ret += nr;
2254 }
2255 }
2256
2257 return ret;
2258 }
2259
2260 #endif /* CONFIG_HAVE_GENERIC_GUP */