]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/gup.c
Merge tag 'drm-fixes-2019-05-24-1' of git://anongit.freedesktop.org/drm/drm
[thirdparty/kernel/stable.git] / mm / gup.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
20
21 #include <asm/mmu_context.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
24
25 #include "internal.h"
26
27 struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
30 };
31
32 typedef int (*set_dirty_func_t)(struct page *page);
33
34 static void __put_user_pages_dirty(struct page **pages,
35 unsigned long npages,
36 set_dirty_func_t sdf)
37 {
38 unsigned long index;
39
40 for (index = 0; index < npages; index++) {
41 struct page *page = compound_head(pages[index]);
42
43 /*
44 * Checking PageDirty at this point may race with
45 * clear_page_dirty_for_io(), but that's OK. Two key cases:
46 *
47 * 1) This code sees the page as already dirty, so it skips
48 * the call to sdf(). That could happen because
49 * clear_page_dirty_for_io() called page_mkclean(),
50 * followed by set_page_dirty(). However, now the page is
51 * going to get written back, which meets the original
52 * intention of setting it dirty, so all is well:
53 * clear_page_dirty_for_io() goes on to call
54 * TestClearPageDirty(), and write the page back.
55 *
56 * 2) This code sees the page as clean, so it calls sdf().
57 * The page stays dirty, despite being written back, so it
58 * gets written back again in the next writeback cycle.
59 * This is harmless.
60 */
61 if (!PageDirty(page))
62 sdf(page);
63
64 put_user_page(page);
65 }
66 }
67
68 /**
69 * put_user_pages_dirty() - release and dirty an array of gup-pinned pages
70 * @pages: array of pages to be marked dirty and released.
71 * @npages: number of pages in the @pages array.
72 *
73 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
74 * variants called on that page.
75 *
76 * For each page in the @pages array, make that page (or its head page, if a
77 * compound page) dirty, if it was previously listed as clean. Then, release
78 * the page using put_user_page().
79 *
80 * Please see the put_user_page() documentation for details.
81 *
82 * set_page_dirty(), which does not lock the page, is used here.
83 * Therefore, it is the caller's responsibility to ensure that this is
84 * safe. If not, then put_user_pages_dirty_lock() should be called instead.
85 *
86 */
87 void put_user_pages_dirty(struct page **pages, unsigned long npages)
88 {
89 __put_user_pages_dirty(pages, npages, set_page_dirty);
90 }
91 EXPORT_SYMBOL(put_user_pages_dirty);
92
93 /**
94 * put_user_pages_dirty_lock() - release and dirty an array of gup-pinned pages
95 * @pages: array of pages to be marked dirty and released.
96 * @npages: number of pages in the @pages array.
97 *
98 * For each page in the @pages array, make that page (or its head page, if a
99 * compound page) dirty, if it was previously listed as clean. Then, release
100 * the page using put_user_page().
101 *
102 * Please see the put_user_page() documentation for details.
103 *
104 * This is just like put_user_pages_dirty(), except that it invokes
105 * set_page_dirty_lock(), instead of set_page_dirty().
106 *
107 */
108 void put_user_pages_dirty_lock(struct page **pages, unsigned long npages)
109 {
110 __put_user_pages_dirty(pages, npages, set_page_dirty_lock);
111 }
112 EXPORT_SYMBOL(put_user_pages_dirty_lock);
113
114 /**
115 * put_user_pages() - release an array of gup-pinned pages.
116 * @pages: array of pages to be marked dirty and released.
117 * @npages: number of pages in the @pages array.
118 *
119 * For each page in the @pages array, release the page using put_user_page().
120 *
121 * Please see the put_user_page() documentation for details.
122 */
123 void put_user_pages(struct page **pages, unsigned long npages)
124 {
125 unsigned long index;
126
127 /*
128 * TODO: this can be optimized for huge pages: if a series of pages is
129 * physically contiguous and part of the same compound page, then a
130 * single operation to the head page should suffice.
131 */
132 for (index = 0; index < npages; index++)
133 put_user_page(pages[index]);
134 }
135 EXPORT_SYMBOL(put_user_pages);
136
137 static struct page *no_page_table(struct vm_area_struct *vma,
138 unsigned int flags)
139 {
140 /*
141 * When core dumping an enormous anonymous area that nobody
142 * has touched so far, we don't want to allocate unnecessary pages or
143 * page tables. Return error instead of NULL to skip handle_mm_fault,
144 * then get_dump_page() will return NULL to leave a hole in the dump.
145 * But we can only make this optimization where a hole would surely
146 * be zero-filled if handle_mm_fault() actually did handle it.
147 */
148 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
149 return ERR_PTR(-EFAULT);
150 return NULL;
151 }
152
153 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
154 pte_t *pte, unsigned int flags)
155 {
156 /* No page to get reference */
157 if (flags & FOLL_GET)
158 return -EFAULT;
159
160 if (flags & FOLL_TOUCH) {
161 pte_t entry = *pte;
162
163 if (flags & FOLL_WRITE)
164 entry = pte_mkdirty(entry);
165 entry = pte_mkyoung(entry);
166
167 if (!pte_same(*pte, entry)) {
168 set_pte_at(vma->vm_mm, address, pte, entry);
169 update_mmu_cache(vma, address, pte);
170 }
171 }
172
173 /* Proper page table entry exists, but no corresponding struct page */
174 return -EEXIST;
175 }
176
177 /*
178 * FOLL_FORCE can write to even unwritable pte's, but only
179 * after we've gone through a COW cycle and they are dirty.
180 */
181 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
182 {
183 return pte_write(pte) ||
184 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
185 }
186
187 static struct page *follow_page_pte(struct vm_area_struct *vma,
188 unsigned long address, pmd_t *pmd, unsigned int flags,
189 struct dev_pagemap **pgmap)
190 {
191 struct mm_struct *mm = vma->vm_mm;
192 struct page *page;
193 spinlock_t *ptl;
194 pte_t *ptep, pte;
195
196 retry:
197 if (unlikely(pmd_bad(*pmd)))
198 return no_page_table(vma, flags);
199
200 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
201 pte = *ptep;
202 if (!pte_present(pte)) {
203 swp_entry_t entry;
204 /*
205 * KSM's break_ksm() relies upon recognizing a ksm page
206 * even while it is being migrated, so for that case we
207 * need migration_entry_wait().
208 */
209 if (likely(!(flags & FOLL_MIGRATION)))
210 goto no_page;
211 if (pte_none(pte))
212 goto no_page;
213 entry = pte_to_swp_entry(pte);
214 if (!is_migration_entry(entry))
215 goto no_page;
216 pte_unmap_unlock(ptep, ptl);
217 migration_entry_wait(mm, pmd, address);
218 goto retry;
219 }
220 if ((flags & FOLL_NUMA) && pte_protnone(pte))
221 goto no_page;
222 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
223 pte_unmap_unlock(ptep, ptl);
224 return NULL;
225 }
226
227 page = vm_normal_page(vma, address, pte);
228 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
229 /*
230 * Only return device mapping pages in the FOLL_GET case since
231 * they are only valid while holding the pgmap reference.
232 */
233 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
234 if (*pgmap)
235 page = pte_page(pte);
236 else
237 goto no_page;
238 } else if (unlikely(!page)) {
239 if (flags & FOLL_DUMP) {
240 /* Avoid special (like zero) pages in core dumps */
241 page = ERR_PTR(-EFAULT);
242 goto out;
243 }
244
245 if (is_zero_pfn(pte_pfn(pte))) {
246 page = pte_page(pte);
247 } else {
248 int ret;
249
250 ret = follow_pfn_pte(vma, address, ptep, flags);
251 page = ERR_PTR(ret);
252 goto out;
253 }
254 }
255
256 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
257 int ret;
258 get_page(page);
259 pte_unmap_unlock(ptep, ptl);
260 lock_page(page);
261 ret = split_huge_page(page);
262 unlock_page(page);
263 put_page(page);
264 if (ret)
265 return ERR_PTR(ret);
266 goto retry;
267 }
268
269 if (flags & FOLL_GET) {
270 if (unlikely(!try_get_page(page))) {
271 page = ERR_PTR(-ENOMEM);
272 goto out;
273 }
274 }
275 if (flags & FOLL_TOUCH) {
276 if ((flags & FOLL_WRITE) &&
277 !pte_dirty(pte) && !PageDirty(page))
278 set_page_dirty(page);
279 /*
280 * pte_mkyoung() would be more correct here, but atomic care
281 * is needed to avoid losing the dirty bit: it is easier to use
282 * mark_page_accessed().
283 */
284 mark_page_accessed(page);
285 }
286 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
287 /* Do not mlock pte-mapped THP */
288 if (PageTransCompound(page))
289 goto out;
290
291 /*
292 * The preliminary mapping check is mainly to avoid the
293 * pointless overhead of lock_page on the ZERO_PAGE
294 * which might bounce very badly if there is contention.
295 *
296 * If the page is already locked, we don't need to
297 * handle it now - vmscan will handle it later if and
298 * when it attempts to reclaim the page.
299 */
300 if (page->mapping && trylock_page(page)) {
301 lru_add_drain(); /* push cached pages to LRU */
302 /*
303 * Because we lock page here, and migration is
304 * blocked by the pte's page reference, and we
305 * know the page is still mapped, we don't even
306 * need to check for file-cache page truncation.
307 */
308 mlock_vma_page(page);
309 unlock_page(page);
310 }
311 }
312 out:
313 pte_unmap_unlock(ptep, ptl);
314 return page;
315 no_page:
316 pte_unmap_unlock(ptep, ptl);
317 if (!pte_none(pte))
318 return NULL;
319 return no_page_table(vma, flags);
320 }
321
322 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
323 unsigned long address, pud_t *pudp,
324 unsigned int flags,
325 struct follow_page_context *ctx)
326 {
327 pmd_t *pmd, pmdval;
328 spinlock_t *ptl;
329 struct page *page;
330 struct mm_struct *mm = vma->vm_mm;
331
332 pmd = pmd_offset(pudp, address);
333 /*
334 * The READ_ONCE() will stabilize the pmdval in a register or
335 * on the stack so that it will stop changing under the code.
336 */
337 pmdval = READ_ONCE(*pmd);
338 if (pmd_none(pmdval))
339 return no_page_table(vma, flags);
340 if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
341 page = follow_huge_pmd(mm, address, pmd, flags);
342 if (page)
343 return page;
344 return no_page_table(vma, flags);
345 }
346 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
347 page = follow_huge_pd(vma, address,
348 __hugepd(pmd_val(pmdval)), flags,
349 PMD_SHIFT);
350 if (page)
351 return page;
352 return no_page_table(vma, flags);
353 }
354 retry:
355 if (!pmd_present(pmdval)) {
356 if (likely(!(flags & FOLL_MIGRATION)))
357 return no_page_table(vma, flags);
358 VM_BUG_ON(thp_migration_supported() &&
359 !is_pmd_migration_entry(pmdval));
360 if (is_pmd_migration_entry(pmdval))
361 pmd_migration_entry_wait(mm, pmd);
362 pmdval = READ_ONCE(*pmd);
363 /*
364 * MADV_DONTNEED may convert the pmd to null because
365 * mmap_sem is held in read mode
366 */
367 if (pmd_none(pmdval))
368 return no_page_table(vma, flags);
369 goto retry;
370 }
371 if (pmd_devmap(pmdval)) {
372 ptl = pmd_lock(mm, pmd);
373 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
374 spin_unlock(ptl);
375 if (page)
376 return page;
377 }
378 if (likely(!pmd_trans_huge(pmdval)))
379 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
380
381 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
382 return no_page_table(vma, flags);
383
384 retry_locked:
385 ptl = pmd_lock(mm, pmd);
386 if (unlikely(pmd_none(*pmd))) {
387 spin_unlock(ptl);
388 return no_page_table(vma, flags);
389 }
390 if (unlikely(!pmd_present(*pmd))) {
391 spin_unlock(ptl);
392 if (likely(!(flags & FOLL_MIGRATION)))
393 return no_page_table(vma, flags);
394 pmd_migration_entry_wait(mm, pmd);
395 goto retry_locked;
396 }
397 if (unlikely(!pmd_trans_huge(*pmd))) {
398 spin_unlock(ptl);
399 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
400 }
401 if (flags & FOLL_SPLIT) {
402 int ret;
403 page = pmd_page(*pmd);
404 if (is_huge_zero_page(page)) {
405 spin_unlock(ptl);
406 ret = 0;
407 split_huge_pmd(vma, pmd, address);
408 if (pmd_trans_unstable(pmd))
409 ret = -EBUSY;
410 } else {
411 if (unlikely(!try_get_page(page))) {
412 spin_unlock(ptl);
413 return ERR_PTR(-ENOMEM);
414 }
415 spin_unlock(ptl);
416 lock_page(page);
417 ret = split_huge_page(page);
418 unlock_page(page);
419 put_page(page);
420 if (pmd_none(*pmd))
421 return no_page_table(vma, flags);
422 }
423
424 return ret ? ERR_PTR(ret) :
425 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
426 }
427 page = follow_trans_huge_pmd(vma, address, pmd, flags);
428 spin_unlock(ptl);
429 ctx->page_mask = HPAGE_PMD_NR - 1;
430 return page;
431 }
432
433 static struct page *follow_pud_mask(struct vm_area_struct *vma,
434 unsigned long address, p4d_t *p4dp,
435 unsigned int flags,
436 struct follow_page_context *ctx)
437 {
438 pud_t *pud;
439 spinlock_t *ptl;
440 struct page *page;
441 struct mm_struct *mm = vma->vm_mm;
442
443 pud = pud_offset(p4dp, address);
444 if (pud_none(*pud))
445 return no_page_table(vma, flags);
446 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
447 page = follow_huge_pud(mm, address, pud, flags);
448 if (page)
449 return page;
450 return no_page_table(vma, flags);
451 }
452 if (is_hugepd(__hugepd(pud_val(*pud)))) {
453 page = follow_huge_pd(vma, address,
454 __hugepd(pud_val(*pud)), flags,
455 PUD_SHIFT);
456 if (page)
457 return page;
458 return no_page_table(vma, flags);
459 }
460 if (pud_devmap(*pud)) {
461 ptl = pud_lock(mm, pud);
462 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
463 spin_unlock(ptl);
464 if (page)
465 return page;
466 }
467 if (unlikely(pud_bad(*pud)))
468 return no_page_table(vma, flags);
469
470 return follow_pmd_mask(vma, address, pud, flags, ctx);
471 }
472
473 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
474 unsigned long address, pgd_t *pgdp,
475 unsigned int flags,
476 struct follow_page_context *ctx)
477 {
478 p4d_t *p4d;
479 struct page *page;
480
481 p4d = p4d_offset(pgdp, address);
482 if (p4d_none(*p4d))
483 return no_page_table(vma, flags);
484 BUILD_BUG_ON(p4d_huge(*p4d));
485 if (unlikely(p4d_bad(*p4d)))
486 return no_page_table(vma, flags);
487
488 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
489 page = follow_huge_pd(vma, address,
490 __hugepd(p4d_val(*p4d)), flags,
491 P4D_SHIFT);
492 if (page)
493 return page;
494 return no_page_table(vma, flags);
495 }
496 return follow_pud_mask(vma, address, p4d, flags, ctx);
497 }
498
499 /**
500 * follow_page_mask - look up a page descriptor from a user-virtual address
501 * @vma: vm_area_struct mapping @address
502 * @address: virtual address to look up
503 * @flags: flags modifying lookup behaviour
504 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
505 * pointer to output page_mask
506 *
507 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
508 *
509 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
510 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
511 *
512 * On output, the @ctx->page_mask is set according to the size of the page.
513 *
514 * Return: the mapped (struct page *), %NULL if no mapping exists, or
515 * an error pointer if there is a mapping to something not represented
516 * by a page descriptor (see also vm_normal_page()).
517 */
518 struct page *follow_page_mask(struct vm_area_struct *vma,
519 unsigned long address, unsigned int flags,
520 struct follow_page_context *ctx)
521 {
522 pgd_t *pgd;
523 struct page *page;
524 struct mm_struct *mm = vma->vm_mm;
525
526 ctx->page_mask = 0;
527
528 /* make this handle hugepd */
529 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
530 if (!IS_ERR(page)) {
531 BUG_ON(flags & FOLL_GET);
532 return page;
533 }
534
535 pgd = pgd_offset(mm, address);
536
537 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
538 return no_page_table(vma, flags);
539
540 if (pgd_huge(*pgd)) {
541 page = follow_huge_pgd(mm, address, pgd, flags);
542 if (page)
543 return page;
544 return no_page_table(vma, flags);
545 }
546 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
547 page = follow_huge_pd(vma, address,
548 __hugepd(pgd_val(*pgd)), flags,
549 PGDIR_SHIFT);
550 if (page)
551 return page;
552 return no_page_table(vma, flags);
553 }
554
555 return follow_p4d_mask(vma, address, pgd, flags, ctx);
556 }
557
558 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
559 unsigned int foll_flags)
560 {
561 struct follow_page_context ctx = { NULL };
562 struct page *page;
563
564 page = follow_page_mask(vma, address, foll_flags, &ctx);
565 if (ctx.pgmap)
566 put_dev_pagemap(ctx.pgmap);
567 return page;
568 }
569
570 static int get_gate_page(struct mm_struct *mm, unsigned long address,
571 unsigned int gup_flags, struct vm_area_struct **vma,
572 struct page **page)
573 {
574 pgd_t *pgd;
575 p4d_t *p4d;
576 pud_t *pud;
577 pmd_t *pmd;
578 pte_t *pte;
579 int ret = -EFAULT;
580
581 /* user gate pages are read-only */
582 if (gup_flags & FOLL_WRITE)
583 return -EFAULT;
584 if (address > TASK_SIZE)
585 pgd = pgd_offset_k(address);
586 else
587 pgd = pgd_offset_gate(mm, address);
588 BUG_ON(pgd_none(*pgd));
589 p4d = p4d_offset(pgd, address);
590 BUG_ON(p4d_none(*p4d));
591 pud = pud_offset(p4d, address);
592 BUG_ON(pud_none(*pud));
593 pmd = pmd_offset(pud, address);
594 if (!pmd_present(*pmd))
595 return -EFAULT;
596 VM_BUG_ON(pmd_trans_huge(*pmd));
597 pte = pte_offset_map(pmd, address);
598 if (pte_none(*pte))
599 goto unmap;
600 *vma = get_gate_vma(mm);
601 if (!page)
602 goto out;
603 *page = vm_normal_page(*vma, address, *pte);
604 if (!*page) {
605 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
606 goto unmap;
607 *page = pte_page(*pte);
608
609 /*
610 * This should never happen (a device public page in the gate
611 * area).
612 */
613 if (is_device_public_page(*page))
614 goto unmap;
615 }
616 if (unlikely(!try_get_page(*page))) {
617 ret = -ENOMEM;
618 goto unmap;
619 }
620 out:
621 ret = 0;
622 unmap:
623 pte_unmap(pte);
624 return ret;
625 }
626
627 /*
628 * mmap_sem must be held on entry. If @nonblocking != NULL and
629 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
630 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
631 */
632 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
633 unsigned long address, unsigned int *flags, int *nonblocking)
634 {
635 unsigned int fault_flags = 0;
636 vm_fault_t ret;
637
638 /* mlock all present pages, but do not fault in new pages */
639 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
640 return -ENOENT;
641 if (*flags & FOLL_WRITE)
642 fault_flags |= FAULT_FLAG_WRITE;
643 if (*flags & FOLL_REMOTE)
644 fault_flags |= FAULT_FLAG_REMOTE;
645 if (nonblocking)
646 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
647 if (*flags & FOLL_NOWAIT)
648 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
649 if (*flags & FOLL_TRIED) {
650 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
651 fault_flags |= FAULT_FLAG_TRIED;
652 }
653
654 ret = handle_mm_fault(vma, address, fault_flags);
655 if (ret & VM_FAULT_ERROR) {
656 int err = vm_fault_to_errno(ret, *flags);
657
658 if (err)
659 return err;
660 BUG();
661 }
662
663 if (tsk) {
664 if (ret & VM_FAULT_MAJOR)
665 tsk->maj_flt++;
666 else
667 tsk->min_flt++;
668 }
669
670 if (ret & VM_FAULT_RETRY) {
671 if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
672 *nonblocking = 0;
673 return -EBUSY;
674 }
675
676 /*
677 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
678 * necessary, even if maybe_mkwrite decided not to set pte_write. We
679 * can thus safely do subsequent page lookups as if they were reads.
680 * But only do so when looping for pte_write is futile: in some cases
681 * userspace may also be wanting to write to the gotten user page,
682 * which a read fault here might prevent (a readonly page might get
683 * reCOWed by userspace write).
684 */
685 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
686 *flags |= FOLL_COW;
687 return 0;
688 }
689
690 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
691 {
692 vm_flags_t vm_flags = vma->vm_flags;
693 int write = (gup_flags & FOLL_WRITE);
694 int foreign = (gup_flags & FOLL_REMOTE);
695
696 if (vm_flags & (VM_IO | VM_PFNMAP))
697 return -EFAULT;
698
699 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
700 return -EFAULT;
701
702 if (write) {
703 if (!(vm_flags & VM_WRITE)) {
704 if (!(gup_flags & FOLL_FORCE))
705 return -EFAULT;
706 /*
707 * We used to let the write,force case do COW in a
708 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
709 * set a breakpoint in a read-only mapping of an
710 * executable, without corrupting the file (yet only
711 * when that file had been opened for writing!).
712 * Anon pages in shared mappings are surprising: now
713 * just reject it.
714 */
715 if (!is_cow_mapping(vm_flags))
716 return -EFAULT;
717 }
718 } else if (!(vm_flags & VM_READ)) {
719 if (!(gup_flags & FOLL_FORCE))
720 return -EFAULT;
721 /*
722 * Is there actually any vma we can reach here which does not
723 * have VM_MAYREAD set?
724 */
725 if (!(vm_flags & VM_MAYREAD))
726 return -EFAULT;
727 }
728 /*
729 * gups are always data accesses, not instruction
730 * fetches, so execute=false here
731 */
732 if (!arch_vma_access_permitted(vma, write, false, foreign))
733 return -EFAULT;
734 return 0;
735 }
736
737 /**
738 * __get_user_pages() - pin user pages in memory
739 * @tsk: task_struct of target task
740 * @mm: mm_struct of target mm
741 * @start: starting user address
742 * @nr_pages: number of pages from start to pin
743 * @gup_flags: flags modifying pin behaviour
744 * @pages: array that receives pointers to the pages pinned.
745 * Should be at least nr_pages long. Or NULL, if caller
746 * only intends to ensure the pages are faulted in.
747 * @vmas: array of pointers to vmas corresponding to each page.
748 * Or NULL if the caller does not require them.
749 * @nonblocking: whether waiting for disk IO or mmap_sem contention
750 *
751 * Returns number of pages pinned. This may be fewer than the number
752 * requested. If nr_pages is 0 or negative, returns 0. If no pages
753 * were pinned, returns -errno. Each page returned must be released
754 * with a put_page() call when it is finished with. vmas will only
755 * remain valid while mmap_sem is held.
756 *
757 * Must be called with mmap_sem held. It may be released. See below.
758 *
759 * __get_user_pages walks a process's page tables and takes a reference to
760 * each struct page that each user address corresponds to at a given
761 * instant. That is, it takes the page that would be accessed if a user
762 * thread accesses the given user virtual address at that instant.
763 *
764 * This does not guarantee that the page exists in the user mappings when
765 * __get_user_pages returns, and there may even be a completely different
766 * page there in some cases (eg. if mmapped pagecache has been invalidated
767 * and subsequently re faulted). However it does guarantee that the page
768 * won't be freed completely. And mostly callers simply care that the page
769 * contains data that was valid *at some point in time*. Typically, an IO
770 * or similar operation cannot guarantee anything stronger anyway because
771 * locks can't be held over the syscall boundary.
772 *
773 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
774 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
775 * appropriate) must be called after the page is finished with, and
776 * before put_page is called.
777 *
778 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
779 * or mmap_sem contention, and if waiting is needed to pin all pages,
780 * *@nonblocking will be set to 0. Further, if @gup_flags does not
781 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
782 * this case.
783 *
784 * A caller using such a combination of @nonblocking and @gup_flags
785 * must therefore hold the mmap_sem for reading only, and recognize
786 * when it's been released. Otherwise, it must be held for either
787 * reading or writing and will not be released.
788 *
789 * In most cases, get_user_pages or get_user_pages_fast should be used
790 * instead of __get_user_pages. __get_user_pages should be used only if
791 * you need some special @gup_flags.
792 */
793 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
794 unsigned long start, unsigned long nr_pages,
795 unsigned int gup_flags, struct page **pages,
796 struct vm_area_struct **vmas, int *nonblocking)
797 {
798 long ret = 0, i = 0;
799 struct vm_area_struct *vma = NULL;
800 struct follow_page_context ctx = { NULL };
801
802 if (!nr_pages)
803 return 0;
804
805 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
806
807 /*
808 * If FOLL_FORCE is set then do not force a full fault as the hinting
809 * fault information is unrelated to the reference behaviour of a task
810 * using the address space
811 */
812 if (!(gup_flags & FOLL_FORCE))
813 gup_flags |= FOLL_NUMA;
814
815 do {
816 struct page *page;
817 unsigned int foll_flags = gup_flags;
818 unsigned int page_increm;
819
820 /* first iteration or cross vma bound */
821 if (!vma || start >= vma->vm_end) {
822 vma = find_extend_vma(mm, start);
823 if (!vma && in_gate_area(mm, start)) {
824 ret = get_gate_page(mm, start & PAGE_MASK,
825 gup_flags, &vma,
826 pages ? &pages[i] : NULL);
827 if (ret)
828 goto out;
829 ctx.page_mask = 0;
830 goto next_page;
831 }
832
833 if (!vma || check_vma_flags(vma, gup_flags)) {
834 ret = -EFAULT;
835 goto out;
836 }
837 if (is_vm_hugetlb_page(vma)) {
838 i = follow_hugetlb_page(mm, vma, pages, vmas,
839 &start, &nr_pages, i,
840 gup_flags, nonblocking);
841 continue;
842 }
843 }
844 retry:
845 /*
846 * If we have a pending SIGKILL, don't keep faulting pages and
847 * potentially allocating memory.
848 */
849 if (fatal_signal_pending(current)) {
850 ret = -ERESTARTSYS;
851 goto out;
852 }
853 cond_resched();
854
855 page = follow_page_mask(vma, start, foll_flags, &ctx);
856 if (!page) {
857 ret = faultin_page(tsk, vma, start, &foll_flags,
858 nonblocking);
859 switch (ret) {
860 case 0:
861 goto retry;
862 case -EBUSY:
863 ret = 0;
864 /* FALLTHRU */
865 case -EFAULT:
866 case -ENOMEM:
867 case -EHWPOISON:
868 goto out;
869 case -ENOENT:
870 goto next_page;
871 }
872 BUG();
873 } else if (PTR_ERR(page) == -EEXIST) {
874 /*
875 * Proper page table entry exists, but no corresponding
876 * struct page.
877 */
878 goto next_page;
879 } else if (IS_ERR(page)) {
880 ret = PTR_ERR(page);
881 goto out;
882 }
883 if (pages) {
884 pages[i] = page;
885 flush_anon_page(vma, page, start);
886 flush_dcache_page(page);
887 ctx.page_mask = 0;
888 }
889 next_page:
890 if (vmas) {
891 vmas[i] = vma;
892 ctx.page_mask = 0;
893 }
894 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
895 if (page_increm > nr_pages)
896 page_increm = nr_pages;
897 i += page_increm;
898 start += page_increm * PAGE_SIZE;
899 nr_pages -= page_increm;
900 } while (nr_pages);
901 out:
902 if (ctx.pgmap)
903 put_dev_pagemap(ctx.pgmap);
904 return i ? i : ret;
905 }
906
907 static bool vma_permits_fault(struct vm_area_struct *vma,
908 unsigned int fault_flags)
909 {
910 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
911 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
912 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
913
914 if (!(vm_flags & vma->vm_flags))
915 return false;
916
917 /*
918 * The architecture might have a hardware protection
919 * mechanism other than read/write that can deny access.
920 *
921 * gup always represents data access, not instruction
922 * fetches, so execute=false here:
923 */
924 if (!arch_vma_access_permitted(vma, write, false, foreign))
925 return false;
926
927 return true;
928 }
929
930 /*
931 * fixup_user_fault() - manually resolve a user page fault
932 * @tsk: the task_struct to use for page fault accounting, or
933 * NULL if faults are not to be recorded.
934 * @mm: mm_struct of target mm
935 * @address: user address
936 * @fault_flags:flags to pass down to handle_mm_fault()
937 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
938 * does not allow retry
939 *
940 * This is meant to be called in the specific scenario where for locking reasons
941 * we try to access user memory in atomic context (within a pagefault_disable()
942 * section), this returns -EFAULT, and we want to resolve the user fault before
943 * trying again.
944 *
945 * Typically this is meant to be used by the futex code.
946 *
947 * The main difference with get_user_pages() is that this function will
948 * unconditionally call handle_mm_fault() which will in turn perform all the
949 * necessary SW fixup of the dirty and young bits in the PTE, while
950 * get_user_pages() only guarantees to update these in the struct page.
951 *
952 * This is important for some architectures where those bits also gate the
953 * access permission to the page because they are maintained in software. On
954 * such architectures, gup() will not be enough to make a subsequent access
955 * succeed.
956 *
957 * This function will not return with an unlocked mmap_sem. So it has not the
958 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
959 */
960 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
961 unsigned long address, unsigned int fault_flags,
962 bool *unlocked)
963 {
964 struct vm_area_struct *vma;
965 vm_fault_t ret, major = 0;
966
967 if (unlocked)
968 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
969
970 retry:
971 vma = find_extend_vma(mm, address);
972 if (!vma || address < vma->vm_start)
973 return -EFAULT;
974
975 if (!vma_permits_fault(vma, fault_flags))
976 return -EFAULT;
977
978 ret = handle_mm_fault(vma, address, fault_flags);
979 major |= ret & VM_FAULT_MAJOR;
980 if (ret & VM_FAULT_ERROR) {
981 int err = vm_fault_to_errno(ret, 0);
982
983 if (err)
984 return err;
985 BUG();
986 }
987
988 if (ret & VM_FAULT_RETRY) {
989 down_read(&mm->mmap_sem);
990 if (!(fault_flags & FAULT_FLAG_TRIED)) {
991 *unlocked = true;
992 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
993 fault_flags |= FAULT_FLAG_TRIED;
994 goto retry;
995 }
996 }
997
998 if (tsk) {
999 if (major)
1000 tsk->maj_flt++;
1001 else
1002 tsk->min_flt++;
1003 }
1004 return 0;
1005 }
1006 EXPORT_SYMBOL_GPL(fixup_user_fault);
1007
1008 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
1009 struct mm_struct *mm,
1010 unsigned long start,
1011 unsigned long nr_pages,
1012 struct page **pages,
1013 struct vm_area_struct **vmas,
1014 int *locked,
1015 unsigned int flags)
1016 {
1017 long ret, pages_done;
1018 bool lock_dropped;
1019
1020 if (locked) {
1021 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1022 BUG_ON(vmas);
1023 /* check caller initialized locked */
1024 BUG_ON(*locked != 1);
1025 }
1026
1027 if (pages)
1028 flags |= FOLL_GET;
1029
1030 pages_done = 0;
1031 lock_dropped = false;
1032 for (;;) {
1033 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1034 vmas, locked);
1035 if (!locked)
1036 /* VM_FAULT_RETRY couldn't trigger, bypass */
1037 return ret;
1038
1039 /* VM_FAULT_RETRY cannot return errors */
1040 if (!*locked) {
1041 BUG_ON(ret < 0);
1042 BUG_ON(ret >= nr_pages);
1043 }
1044
1045 if (!pages)
1046 /* If it's a prefault don't insist harder */
1047 return ret;
1048
1049 if (ret > 0) {
1050 nr_pages -= ret;
1051 pages_done += ret;
1052 if (!nr_pages)
1053 break;
1054 }
1055 if (*locked) {
1056 /*
1057 * VM_FAULT_RETRY didn't trigger or it was a
1058 * FOLL_NOWAIT.
1059 */
1060 if (!pages_done)
1061 pages_done = ret;
1062 break;
1063 }
1064 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
1065 pages += ret;
1066 start += ret << PAGE_SHIFT;
1067
1068 /*
1069 * Repeat on the address that fired VM_FAULT_RETRY
1070 * without FAULT_FLAG_ALLOW_RETRY but with
1071 * FAULT_FLAG_TRIED.
1072 */
1073 *locked = 1;
1074 lock_dropped = true;
1075 down_read(&mm->mmap_sem);
1076 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1077 pages, NULL, NULL);
1078 if (ret != 1) {
1079 BUG_ON(ret > 1);
1080 if (!pages_done)
1081 pages_done = ret;
1082 break;
1083 }
1084 nr_pages--;
1085 pages_done++;
1086 if (!nr_pages)
1087 break;
1088 pages++;
1089 start += PAGE_SIZE;
1090 }
1091 if (lock_dropped && *locked) {
1092 /*
1093 * We must let the caller know we temporarily dropped the lock
1094 * and so the critical section protected by it was lost.
1095 */
1096 up_read(&mm->mmap_sem);
1097 *locked = 0;
1098 }
1099 return pages_done;
1100 }
1101
1102 /*
1103 * We can leverage the VM_FAULT_RETRY functionality in the page fault
1104 * paths better by using either get_user_pages_locked() or
1105 * get_user_pages_unlocked().
1106 *
1107 * get_user_pages_locked() is suitable to replace the form:
1108 *
1109 * down_read(&mm->mmap_sem);
1110 * do_something()
1111 * get_user_pages(tsk, mm, ..., pages, NULL);
1112 * up_read(&mm->mmap_sem);
1113 *
1114 * to:
1115 *
1116 * int locked = 1;
1117 * down_read(&mm->mmap_sem);
1118 * do_something()
1119 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
1120 * if (locked)
1121 * up_read(&mm->mmap_sem);
1122 */
1123 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1124 unsigned int gup_flags, struct page **pages,
1125 int *locked)
1126 {
1127 /*
1128 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1129 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1130 * vmas. As there are no users of this flag in this call we simply
1131 * disallow this option for now.
1132 */
1133 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1134 return -EINVAL;
1135
1136 return __get_user_pages_locked(current, current->mm, start, nr_pages,
1137 pages, NULL, locked,
1138 gup_flags | FOLL_TOUCH);
1139 }
1140 EXPORT_SYMBOL(get_user_pages_locked);
1141
1142 /*
1143 * get_user_pages_unlocked() is suitable to replace the form:
1144 *
1145 * down_read(&mm->mmap_sem);
1146 * get_user_pages(tsk, mm, ..., pages, NULL);
1147 * up_read(&mm->mmap_sem);
1148 *
1149 * with:
1150 *
1151 * get_user_pages_unlocked(tsk, mm, ..., pages);
1152 *
1153 * It is functionally equivalent to get_user_pages_fast so
1154 * get_user_pages_fast should be used instead if specific gup_flags
1155 * (e.g. FOLL_FORCE) are not required.
1156 */
1157 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1158 struct page **pages, unsigned int gup_flags)
1159 {
1160 struct mm_struct *mm = current->mm;
1161 int locked = 1;
1162 long ret;
1163
1164 /*
1165 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1166 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1167 * vmas. As there are no users of this flag in this call we simply
1168 * disallow this option for now.
1169 */
1170 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1171 return -EINVAL;
1172
1173 down_read(&mm->mmap_sem);
1174 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
1175 &locked, gup_flags | FOLL_TOUCH);
1176 if (locked)
1177 up_read(&mm->mmap_sem);
1178 return ret;
1179 }
1180 EXPORT_SYMBOL(get_user_pages_unlocked);
1181
1182 /*
1183 * get_user_pages_remote() - pin user pages in memory
1184 * @tsk: the task_struct to use for page fault accounting, or
1185 * NULL if faults are not to be recorded.
1186 * @mm: mm_struct of target mm
1187 * @start: starting user address
1188 * @nr_pages: number of pages from start to pin
1189 * @gup_flags: flags modifying lookup behaviour
1190 * @pages: array that receives pointers to the pages pinned.
1191 * Should be at least nr_pages long. Or NULL, if caller
1192 * only intends to ensure the pages are faulted in.
1193 * @vmas: array of pointers to vmas corresponding to each page.
1194 * Or NULL if the caller does not require them.
1195 * @locked: pointer to lock flag indicating whether lock is held and
1196 * subsequently whether VM_FAULT_RETRY functionality can be
1197 * utilised. Lock must initially be held.
1198 *
1199 * Returns number of pages pinned. This may be fewer than the number
1200 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1201 * were pinned, returns -errno. Each page returned must be released
1202 * with a put_page() call when it is finished with. vmas will only
1203 * remain valid while mmap_sem is held.
1204 *
1205 * Must be called with mmap_sem held for read or write.
1206 *
1207 * get_user_pages walks a process's page tables and takes a reference to
1208 * each struct page that each user address corresponds to at a given
1209 * instant. That is, it takes the page that would be accessed if a user
1210 * thread accesses the given user virtual address at that instant.
1211 *
1212 * This does not guarantee that the page exists in the user mappings when
1213 * get_user_pages returns, and there may even be a completely different
1214 * page there in some cases (eg. if mmapped pagecache has been invalidated
1215 * and subsequently re faulted). However it does guarantee that the page
1216 * won't be freed completely. And mostly callers simply care that the page
1217 * contains data that was valid *at some point in time*. Typically, an IO
1218 * or similar operation cannot guarantee anything stronger anyway because
1219 * locks can't be held over the syscall boundary.
1220 *
1221 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1222 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1223 * be called after the page is finished with, and before put_page is called.
1224 *
1225 * get_user_pages is typically used for fewer-copy IO operations, to get a
1226 * handle on the memory by some means other than accesses via the user virtual
1227 * addresses. The pages may be submitted for DMA to devices or accessed via
1228 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1229 * use the correct cache flushing APIs.
1230 *
1231 * See also get_user_pages_fast, for performance critical applications.
1232 *
1233 * get_user_pages should be phased out in favor of
1234 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1235 * should use get_user_pages because it cannot pass
1236 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1237 */
1238 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1239 unsigned long start, unsigned long nr_pages,
1240 unsigned int gup_flags, struct page **pages,
1241 struct vm_area_struct **vmas, int *locked)
1242 {
1243 /*
1244 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1245 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1246 * vmas. As there are no users of this flag in this call we simply
1247 * disallow this option for now.
1248 */
1249 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1250 return -EINVAL;
1251
1252 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1253 locked,
1254 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1255 }
1256 EXPORT_SYMBOL(get_user_pages_remote);
1257
1258 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1259 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1260 {
1261 long i;
1262 struct vm_area_struct *vma_prev = NULL;
1263
1264 for (i = 0; i < nr_pages; i++) {
1265 struct vm_area_struct *vma = vmas[i];
1266
1267 if (vma == vma_prev)
1268 continue;
1269
1270 vma_prev = vma;
1271
1272 if (vma_is_fsdax(vma))
1273 return true;
1274 }
1275 return false;
1276 }
1277
1278 #ifdef CONFIG_CMA
1279 static struct page *new_non_cma_page(struct page *page, unsigned long private)
1280 {
1281 /*
1282 * We want to make sure we allocate the new page from the same node
1283 * as the source page.
1284 */
1285 int nid = page_to_nid(page);
1286 /*
1287 * Trying to allocate a page for migration. Ignore allocation
1288 * failure warnings. We don't force __GFP_THISNODE here because
1289 * this node here is the node where we have CMA reservation and
1290 * in some case these nodes will have really less non movable
1291 * allocation memory.
1292 */
1293 gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1294
1295 if (PageHighMem(page))
1296 gfp_mask |= __GFP_HIGHMEM;
1297
1298 #ifdef CONFIG_HUGETLB_PAGE
1299 if (PageHuge(page)) {
1300 struct hstate *h = page_hstate(page);
1301 /*
1302 * We don't want to dequeue from the pool because pool pages will
1303 * mostly be from the CMA region.
1304 */
1305 return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1306 }
1307 #endif
1308 if (PageTransHuge(page)) {
1309 struct page *thp;
1310 /*
1311 * ignore allocation failure warnings
1312 */
1313 gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1314
1315 /*
1316 * Remove the movable mask so that we don't allocate from
1317 * CMA area again.
1318 */
1319 thp_gfpmask &= ~__GFP_MOVABLE;
1320 thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1321 if (!thp)
1322 return NULL;
1323 prep_transhuge_page(thp);
1324 return thp;
1325 }
1326
1327 return __alloc_pages_node(nid, gfp_mask, 0);
1328 }
1329
1330 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1331 struct mm_struct *mm,
1332 unsigned long start,
1333 unsigned long nr_pages,
1334 struct page **pages,
1335 struct vm_area_struct **vmas,
1336 unsigned int gup_flags)
1337 {
1338 long i;
1339 bool drain_allow = true;
1340 bool migrate_allow = true;
1341 LIST_HEAD(cma_page_list);
1342
1343 check_again:
1344 for (i = 0; i < nr_pages; i++) {
1345 /*
1346 * If we get a page from the CMA zone, since we are going to
1347 * be pinning these entries, we might as well move them out
1348 * of the CMA zone if possible.
1349 */
1350 if (is_migrate_cma_page(pages[i])) {
1351
1352 struct page *head = compound_head(pages[i]);
1353
1354 if (PageHuge(head)) {
1355 isolate_huge_page(head, &cma_page_list);
1356 } else {
1357 if (!PageLRU(head) && drain_allow) {
1358 lru_add_drain_all();
1359 drain_allow = false;
1360 }
1361
1362 if (!isolate_lru_page(head)) {
1363 list_add_tail(&head->lru, &cma_page_list);
1364 mod_node_page_state(page_pgdat(head),
1365 NR_ISOLATED_ANON +
1366 page_is_file_cache(head),
1367 hpage_nr_pages(head));
1368 }
1369 }
1370 }
1371 }
1372
1373 if (!list_empty(&cma_page_list)) {
1374 /*
1375 * drop the above get_user_pages reference.
1376 */
1377 for (i = 0; i < nr_pages; i++)
1378 put_page(pages[i]);
1379
1380 if (migrate_pages(&cma_page_list, new_non_cma_page,
1381 NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1382 /*
1383 * some of the pages failed migration. Do get_user_pages
1384 * without migration.
1385 */
1386 migrate_allow = false;
1387
1388 if (!list_empty(&cma_page_list))
1389 putback_movable_pages(&cma_page_list);
1390 }
1391 /*
1392 * We did migrate all the pages, Try to get the page references
1393 * again migrating any new CMA pages which we failed to isolate
1394 * earlier.
1395 */
1396 nr_pages = __get_user_pages_locked(tsk, mm, start, nr_pages,
1397 pages, vmas, NULL,
1398 gup_flags);
1399
1400 if ((nr_pages > 0) && migrate_allow) {
1401 drain_allow = true;
1402 goto check_again;
1403 }
1404 }
1405
1406 return nr_pages;
1407 }
1408 #else
1409 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1410 struct mm_struct *mm,
1411 unsigned long start,
1412 unsigned long nr_pages,
1413 struct page **pages,
1414 struct vm_area_struct **vmas,
1415 unsigned int gup_flags)
1416 {
1417 return nr_pages;
1418 }
1419 #endif
1420
1421 /*
1422 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1423 * allows us to process the FOLL_LONGTERM flag.
1424 */
1425 static long __gup_longterm_locked(struct task_struct *tsk,
1426 struct mm_struct *mm,
1427 unsigned long start,
1428 unsigned long nr_pages,
1429 struct page **pages,
1430 struct vm_area_struct **vmas,
1431 unsigned int gup_flags)
1432 {
1433 struct vm_area_struct **vmas_tmp = vmas;
1434 unsigned long flags = 0;
1435 long rc, i;
1436
1437 if (gup_flags & FOLL_LONGTERM) {
1438 if (!pages)
1439 return -EINVAL;
1440
1441 if (!vmas_tmp) {
1442 vmas_tmp = kcalloc(nr_pages,
1443 sizeof(struct vm_area_struct *),
1444 GFP_KERNEL);
1445 if (!vmas_tmp)
1446 return -ENOMEM;
1447 }
1448 flags = memalloc_nocma_save();
1449 }
1450
1451 rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1452 vmas_tmp, NULL, gup_flags);
1453
1454 if (gup_flags & FOLL_LONGTERM) {
1455 memalloc_nocma_restore(flags);
1456 if (rc < 0)
1457 goto out;
1458
1459 if (check_dax_vmas(vmas_tmp, rc)) {
1460 for (i = 0; i < rc; i++)
1461 put_page(pages[i]);
1462 rc = -EOPNOTSUPP;
1463 goto out;
1464 }
1465
1466 rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1467 vmas_tmp, gup_flags);
1468 }
1469
1470 out:
1471 if (vmas_tmp != vmas)
1472 kfree(vmas_tmp);
1473 return rc;
1474 }
1475 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1476 static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1477 struct mm_struct *mm,
1478 unsigned long start,
1479 unsigned long nr_pages,
1480 struct page **pages,
1481 struct vm_area_struct **vmas,
1482 unsigned int flags)
1483 {
1484 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1485 NULL, flags);
1486 }
1487 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1488
1489 /*
1490 * This is the same as get_user_pages_remote(), just with a
1491 * less-flexible calling convention where we assume that the task
1492 * and mm being operated on are the current task's and don't allow
1493 * passing of a locked parameter. We also obviously don't pass
1494 * FOLL_REMOTE in here.
1495 */
1496 long get_user_pages(unsigned long start, unsigned long nr_pages,
1497 unsigned int gup_flags, struct page **pages,
1498 struct vm_area_struct **vmas)
1499 {
1500 return __gup_longterm_locked(current, current->mm, start, nr_pages,
1501 pages, vmas, gup_flags | FOLL_TOUCH);
1502 }
1503 EXPORT_SYMBOL(get_user_pages);
1504
1505 /**
1506 * populate_vma_page_range() - populate a range of pages in the vma.
1507 * @vma: target vma
1508 * @start: start address
1509 * @end: end address
1510 * @nonblocking:
1511 *
1512 * This takes care of mlocking the pages too if VM_LOCKED is set.
1513 *
1514 * return 0 on success, negative error code on error.
1515 *
1516 * vma->vm_mm->mmap_sem must be held.
1517 *
1518 * If @nonblocking is NULL, it may be held for read or write and will
1519 * be unperturbed.
1520 *
1521 * If @nonblocking is non-NULL, it must held for read only and may be
1522 * released. If it's released, *@nonblocking will be set to 0.
1523 */
1524 long populate_vma_page_range(struct vm_area_struct *vma,
1525 unsigned long start, unsigned long end, int *nonblocking)
1526 {
1527 struct mm_struct *mm = vma->vm_mm;
1528 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1529 int gup_flags;
1530
1531 VM_BUG_ON(start & ~PAGE_MASK);
1532 VM_BUG_ON(end & ~PAGE_MASK);
1533 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1534 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1535 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1536
1537 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1538 if (vma->vm_flags & VM_LOCKONFAULT)
1539 gup_flags &= ~FOLL_POPULATE;
1540 /*
1541 * We want to touch writable mappings with a write fault in order
1542 * to break COW, except for shared mappings because these don't COW
1543 * and we would not want to dirty them for nothing.
1544 */
1545 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1546 gup_flags |= FOLL_WRITE;
1547
1548 /*
1549 * We want mlock to succeed for regions that have any permissions
1550 * other than PROT_NONE.
1551 */
1552 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1553 gup_flags |= FOLL_FORCE;
1554
1555 /*
1556 * We made sure addr is within a VMA, so the following will
1557 * not result in a stack expansion that recurses back here.
1558 */
1559 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1560 NULL, NULL, nonblocking);
1561 }
1562
1563 /*
1564 * __mm_populate - populate and/or mlock pages within a range of address space.
1565 *
1566 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1567 * flags. VMAs must be already marked with the desired vm_flags, and
1568 * mmap_sem must not be held.
1569 */
1570 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1571 {
1572 struct mm_struct *mm = current->mm;
1573 unsigned long end, nstart, nend;
1574 struct vm_area_struct *vma = NULL;
1575 int locked = 0;
1576 long ret = 0;
1577
1578 end = start + len;
1579
1580 for (nstart = start; nstart < end; nstart = nend) {
1581 /*
1582 * We want to fault in pages for [nstart; end) address range.
1583 * Find first corresponding VMA.
1584 */
1585 if (!locked) {
1586 locked = 1;
1587 down_read(&mm->mmap_sem);
1588 vma = find_vma(mm, nstart);
1589 } else if (nstart >= vma->vm_end)
1590 vma = vma->vm_next;
1591 if (!vma || vma->vm_start >= end)
1592 break;
1593 /*
1594 * Set [nstart; nend) to intersection of desired address
1595 * range with the first VMA. Also, skip undesirable VMA types.
1596 */
1597 nend = min(end, vma->vm_end);
1598 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1599 continue;
1600 if (nstart < vma->vm_start)
1601 nstart = vma->vm_start;
1602 /*
1603 * Now fault in a range of pages. populate_vma_page_range()
1604 * double checks the vma flags, so that it won't mlock pages
1605 * if the vma was already munlocked.
1606 */
1607 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1608 if (ret < 0) {
1609 if (ignore_errors) {
1610 ret = 0;
1611 continue; /* continue at next VMA */
1612 }
1613 break;
1614 }
1615 nend = nstart + ret * PAGE_SIZE;
1616 ret = 0;
1617 }
1618 if (locked)
1619 up_read(&mm->mmap_sem);
1620 return ret; /* 0 or negative error code */
1621 }
1622
1623 /**
1624 * get_dump_page() - pin user page in memory while writing it to core dump
1625 * @addr: user address
1626 *
1627 * Returns struct page pointer of user page pinned for dump,
1628 * to be freed afterwards by put_page().
1629 *
1630 * Returns NULL on any kind of failure - a hole must then be inserted into
1631 * the corefile, to preserve alignment with its headers; and also returns
1632 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1633 * allowing a hole to be left in the corefile to save diskspace.
1634 *
1635 * Called without mmap_sem, but after all other threads have been killed.
1636 */
1637 #ifdef CONFIG_ELF_CORE
1638 struct page *get_dump_page(unsigned long addr)
1639 {
1640 struct vm_area_struct *vma;
1641 struct page *page;
1642
1643 if (__get_user_pages(current, current->mm, addr, 1,
1644 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1645 NULL) < 1)
1646 return NULL;
1647 flush_cache_page(vma, addr, page_to_pfn(page));
1648 return page;
1649 }
1650 #endif /* CONFIG_ELF_CORE */
1651
1652 /*
1653 * Generic Fast GUP
1654 *
1655 * get_user_pages_fast attempts to pin user pages by walking the page
1656 * tables directly and avoids taking locks. Thus the walker needs to be
1657 * protected from page table pages being freed from under it, and should
1658 * block any THP splits.
1659 *
1660 * One way to achieve this is to have the walker disable interrupts, and
1661 * rely on IPIs from the TLB flushing code blocking before the page table
1662 * pages are freed. This is unsuitable for architectures that do not need
1663 * to broadcast an IPI when invalidating TLBs.
1664 *
1665 * Another way to achieve this is to batch up page table containing pages
1666 * belonging to more than one mm_user, then rcu_sched a callback to free those
1667 * pages. Disabling interrupts will allow the fast_gup walker to both block
1668 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1669 * (which is a relatively rare event). The code below adopts this strategy.
1670 *
1671 * Before activating this code, please be aware that the following assumptions
1672 * are currently made:
1673 *
1674 * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1675 * free pages containing page tables or TLB flushing requires IPI broadcast.
1676 *
1677 * *) ptes can be read atomically by the architecture.
1678 *
1679 * *) access_ok is sufficient to validate userspace address ranges.
1680 *
1681 * The last two assumptions can be relaxed by the addition of helper functions.
1682 *
1683 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1684 */
1685 #ifdef CONFIG_HAVE_GENERIC_GUP
1686
1687 #ifndef gup_get_pte
1688 /*
1689 * We assume that the PTE can be read atomically. If this is not the case for
1690 * your architecture, please provide the helper.
1691 */
1692 static inline pte_t gup_get_pte(pte_t *ptep)
1693 {
1694 return READ_ONCE(*ptep);
1695 }
1696 #endif
1697
1698 static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
1699 {
1700 while ((*nr) - nr_start) {
1701 struct page *page = pages[--(*nr)];
1702
1703 ClearPageReferenced(page);
1704 put_page(page);
1705 }
1706 }
1707
1708 /*
1709 * Return the compund head page with ref appropriately incremented,
1710 * or NULL if that failed.
1711 */
1712 static inline struct page *try_get_compound_head(struct page *page, int refs)
1713 {
1714 struct page *head = compound_head(page);
1715 if (WARN_ON_ONCE(page_ref_count(head) < 0))
1716 return NULL;
1717 if (unlikely(!page_cache_add_speculative(head, refs)))
1718 return NULL;
1719 return head;
1720 }
1721
1722 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
1723 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1724 unsigned int flags, struct page **pages, int *nr)
1725 {
1726 struct dev_pagemap *pgmap = NULL;
1727 int nr_start = *nr, ret = 0;
1728 pte_t *ptep, *ptem;
1729
1730 ptem = ptep = pte_offset_map(&pmd, addr);
1731 do {
1732 pte_t pte = gup_get_pte(ptep);
1733 struct page *head, *page;
1734
1735 /*
1736 * Similar to the PMD case below, NUMA hinting must take slow
1737 * path using the pte_protnone check.
1738 */
1739 if (pte_protnone(pte))
1740 goto pte_unmap;
1741
1742 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
1743 goto pte_unmap;
1744
1745 if (pte_devmap(pte)) {
1746 if (unlikely(flags & FOLL_LONGTERM))
1747 goto pte_unmap;
1748
1749 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1750 if (unlikely(!pgmap)) {
1751 undo_dev_pagemap(nr, nr_start, pages);
1752 goto pte_unmap;
1753 }
1754 } else if (pte_special(pte))
1755 goto pte_unmap;
1756
1757 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1758 page = pte_page(pte);
1759
1760 head = try_get_compound_head(page, 1);
1761 if (!head)
1762 goto pte_unmap;
1763
1764 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1765 put_page(head);
1766 goto pte_unmap;
1767 }
1768
1769 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1770
1771 SetPageReferenced(page);
1772 pages[*nr] = page;
1773 (*nr)++;
1774
1775 } while (ptep++, addr += PAGE_SIZE, addr != end);
1776
1777 ret = 1;
1778
1779 pte_unmap:
1780 if (pgmap)
1781 put_dev_pagemap(pgmap);
1782 pte_unmap(ptem);
1783 return ret;
1784 }
1785 #else
1786
1787 /*
1788 * If we can't determine whether or not a pte is special, then fail immediately
1789 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1790 * to be special.
1791 *
1792 * For a futex to be placed on a THP tail page, get_futex_key requires a
1793 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1794 * useful to have gup_huge_pmd even if we can't operate on ptes.
1795 */
1796 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1797 unsigned int flags, struct page **pages, int *nr)
1798 {
1799 return 0;
1800 }
1801 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
1802
1803 #if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1804 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1805 unsigned long end, struct page **pages, int *nr)
1806 {
1807 int nr_start = *nr;
1808 struct dev_pagemap *pgmap = NULL;
1809
1810 do {
1811 struct page *page = pfn_to_page(pfn);
1812
1813 pgmap = get_dev_pagemap(pfn, pgmap);
1814 if (unlikely(!pgmap)) {
1815 undo_dev_pagemap(nr, nr_start, pages);
1816 return 0;
1817 }
1818 SetPageReferenced(page);
1819 pages[*nr] = page;
1820 get_page(page);
1821 (*nr)++;
1822 pfn++;
1823 } while (addr += PAGE_SIZE, addr != end);
1824
1825 if (pgmap)
1826 put_dev_pagemap(pgmap);
1827 return 1;
1828 }
1829
1830 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1831 unsigned long end, struct page **pages, int *nr)
1832 {
1833 unsigned long fault_pfn;
1834 int nr_start = *nr;
1835
1836 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1837 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1838 return 0;
1839
1840 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1841 undo_dev_pagemap(nr, nr_start, pages);
1842 return 0;
1843 }
1844 return 1;
1845 }
1846
1847 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1848 unsigned long end, struct page **pages, int *nr)
1849 {
1850 unsigned long fault_pfn;
1851 int nr_start = *nr;
1852
1853 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1854 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1855 return 0;
1856
1857 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1858 undo_dev_pagemap(nr, nr_start, pages);
1859 return 0;
1860 }
1861 return 1;
1862 }
1863 #else
1864 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1865 unsigned long end, struct page **pages, int *nr)
1866 {
1867 BUILD_BUG();
1868 return 0;
1869 }
1870
1871 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
1872 unsigned long end, struct page **pages, int *nr)
1873 {
1874 BUILD_BUG();
1875 return 0;
1876 }
1877 #endif
1878
1879 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1880 unsigned long end, unsigned int flags, struct page **pages, int *nr)
1881 {
1882 struct page *head, *page;
1883 int refs;
1884
1885 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
1886 return 0;
1887
1888 if (pmd_devmap(orig)) {
1889 if (unlikely(flags & FOLL_LONGTERM))
1890 return 0;
1891 return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
1892 }
1893
1894 refs = 0;
1895 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1896 do {
1897 pages[*nr] = page;
1898 (*nr)++;
1899 page++;
1900 refs++;
1901 } while (addr += PAGE_SIZE, addr != end);
1902
1903 head = try_get_compound_head(pmd_page(orig), refs);
1904 if (!head) {
1905 *nr -= refs;
1906 return 0;
1907 }
1908
1909 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1910 *nr -= refs;
1911 while (refs--)
1912 put_page(head);
1913 return 0;
1914 }
1915
1916 SetPageReferenced(head);
1917 return 1;
1918 }
1919
1920 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1921 unsigned long end, unsigned int flags, struct page **pages, int *nr)
1922 {
1923 struct page *head, *page;
1924 int refs;
1925
1926 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
1927 return 0;
1928
1929 if (pud_devmap(orig)) {
1930 if (unlikely(flags & FOLL_LONGTERM))
1931 return 0;
1932 return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
1933 }
1934
1935 refs = 0;
1936 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1937 do {
1938 pages[*nr] = page;
1939 (*nr)++;
1940 page++;
1941 refs++;
1942 } while (addr += PAGE_SIZE, addr != end);
1943
1944 head = try_get_compound_head(pud_page(orig), refs);
1945 if (!head) {
1946 *nr -= refs;
1947 return 0;
1948 }
1949
1950 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1951 *nr -= refs;
1952 while (refs--)
1953 put_page(head);
1954 return 0;
1955 }
1956
1957 SetPageReferenced(head);
1958 return 1;
1959 }
1960
1961 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1962 unsigned long end, unsigned int flags,
1963 struct page **pages, int *nr)
1964 {
1965 int refs;
1966 struct page *head, *page;
1967
1968 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
1969 return 0;
1970
1971 BUILD_BUG_ON(pgd_devmap(orig));
1972 refs = 0;
1973 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1974 do {
1975 pages[*nr] = page;
1976 (*nr)++;
1977 page++;
1978 refs++;
1979 } while (addr += PAGE_SIZE, addr != end);
1980
1981 head = try_get_compound_head(pgd_page(orig), refs);
1982 if (!head) {
1983 *nr -= refs;
1984 return 0;
1985 }
1986
1987 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1988 *nr -= refs;
1989 while (refs--)
1990 put_page(head);
1991 return 0;
1992 }
1993
1994 SetPageReferenced(head);
1995 return 1;
1996 }
1997
1998 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1999 unsigned int flags, struct page **pages, int *nr)
2000 {
2001 unsigned long next;
2002 pmd_t *pmdp;
2003
2004 pmdp = pmd_offset(&pud, addr);
2005 do {
2006 pmd_t pmd = READ_ONCE(*pmdp);
2007
2008 next = pmd_addr_end(addr, end);
2009 if (!pmd_present(pmd))
2010 return 0;
2011
2012 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2013 pmd_devmap(pmd))) {
2014 /*
2015 * NUMA hinting faults need to be handled in the GUP
2016 * slowpath for accounting purposes and so that they
2017 * can be serialised against THP migration.
2018 */
2019 if (pmd_protnone(pmd))
2020 return 0;
2021
2022 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2023 pages, nr))
2024 return 0;
2025
2026 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2027 /*
2028 * architecture have different format for hugetlbfs
2029 * pmd format and THP pmd format
2030 */
2031 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2032 PMD_SHIFT, next, flags, pages, nr))
2033 return 0;
2034 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2035 return 0;
2036 } while (pmdp++, addr = next, addr != end);
2037
2038 return 1;
2039 }
2040
2041 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2042 unsigned int flags, struct page **pages, int *nr)
2043 {
2044 unsigned long next;
2045 pud_t *pudp;
2046
2047 pudp = pud_offset(&p4d, addr);
2048 do {
2049 pud_t pud = READ_ONCE(*pudp);
2050
2051 next = pud_addr_end(addr, end);
2052 if (pud_none(pud))
2053 return 0;
2054 if (unlikely(pud_huge(pud))) {
2055 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2056 pages, nr))
2057 return 0;
2058 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2059 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2060 PUD_SHIFT, next, flags, pages, nr))
2061 return 0;
2062 } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2063 return 0;
2064 } while (pudp++, addr = next, addr != end);
2065
2066 return 1;
2067 }
2068
2069 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2070 unsigned int flags, struct page **pages, int *nr)
2071 {
2072 unsigned long next;
2073 p4d_t *p4dp;
2074
2075 p4dp = p4d_offset(&pgd, addr);
2076 do {
2077 p4d_t p4d = READ_ONCE(*p4dp);
2078
2079 next = p4d_addr_end(addr, end);
2080 if (p4d_none(p4d))
2081 return 0;
2082 BUILD_BUG_ON(p4d_huge(p4d));
2083 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2084 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2085 P4D_SHIFT, next, flags, pages, nr))
2086 return 0;
2087 } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2088 return 0;
2089 } while (p4dp++, addr = next, addr != end);
2090
2091 return 1;
2092 }
2093
2094 static void gup_pgd_range(unsigned long addr, unsigned long end,
2095 unsigned int flags, struct page **pages, int *nr)
2096 {
2097 unsigned long next;
2098 pgd_t *pgdp;
2099
2100 pgdp = pgd_offset(current->mm, addr);
2101 do {
2102 pgd_t pgd = READ_ONCE(*pgdp);
2103
2104 next = pgd_addr_end(addr, end);
2105 if (pgd_none(pgd))
2106 return;
2107 if (unlikely(pgd_huge(pgd))) {
2108 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2109 pages, nr))
2110 return;
2111 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2112 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2113 PGDIR_SHIFT, next, flags, pages, nr))
2114 return;
2115 } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2116 return;
2117 } while (pgdp++, addr = next, addr != end);
2118 }
2119
2120 #ifndef gup_fast_permitted
2121 /*
2122 * Check if it's allowed to use __get_user_pages_fast() for the range, or
2123 * we need to fall back to the slow version:
2124 */
2125 bool gup_fast_permitted(unsigned long start, int nr_pages)
2126 {
2127 unsigned long len, end;
2128
2129 len = (unsigned long) nr_pages << PAGE_SHIFT;
2130 end = start + len;
2131 return end >= start;
2132 }
2133 #endif
2134
2135 /*
2136 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2137 * the regular GUP.
2138 * Note a difference with get_user_pages_fast: this always returns the
2139 * number of pages pinned, 0 if no pages were pinned.
2140 */
2141 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
2142 struct page **pages)
2143 {
2144 unsigned long len, end;
2145 unsigned long flags;
2146 int nr = 0;
2147
2148 start &= PAGE_MASK;
2149 len = (unsigned long) nr_pages << PAGE_SHIFT;
2150 end = start + len;
2151
2152 if (unlikely(!access_ok((void __user *)start, len)))
2153 return 0;
2154
2155 /*
2156 * Disable interrupts. We use the nested form as we can already have
2157 * interrupts disabled by get_futex_key.
2158 *
2159 * With interrupts disabled, we block page table pages from being
2160 * freed from under us. See struct mmu_table_batch comments in
2161 * include/asm-generic/tlb.h for more details.
2162 *
2163 * We do not adopt an rcu_read_lock(.) here as we also want to
2164 * block IPIs that come from THPs splitting.
2165 */
2166
2167 if (gup_fast_permitted(start, nr_pages)) {
2168 local_irq_save(flags);
2169 gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr);
2170 local_irq_restore(flags);
2171 }
2172
2173 return nr;
2174 }
2175
2176 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2177 unsigned int gup_flags, struct page **pages)
2178 {
2179 int ret;
2180
2181 /*
2182 * FIXME: FOLL_LONGTERM does not work with
2183 * get_user_pages_unlocked() (see comments in that function)
2184 */
2185 if (gup_flags & FOLL_LONGTERM) {
2186 down_read(&current->mm->mmap_sem);
2187 ret = __gup_longterm_locked(current, current->mm,
2188 start, nr_pages,
2189 pages, NULL, gup_flags);
2190 up_read(&current->mm->mmap_sem);
2191 } else {
2192 ret = get_user_pages_unlocked(start, nr_pages,
2193 pages, gup_flags);
2194 }
2195
2196 return ret;
2197 }
2198
2199 /**
2200 * get_user_pages_fast() - pin user pages in memory
2201 * @start: starting user address
2202 * @nr_pages: number of pages from start to pin
2203 * @gup_flags: flags modifying pin behaviour
2204 * @pages: array that receives pointers to the pages pinned.
2205 * Should be at least nr_pages long.
2206 *
2207 * Attempt to pin user pages in memory without taking mm->mmap_sem.
2208 * If not successful, it will fall back to taking the lock and
2209 * calling get_user_pages().
2210 *
2211 * Returns number of pages pinned. This may be fewer than the number
2212 * requested. If nr_pages is 0 or negative, returns 0. If no pages
2213 * were pinned, returns -errno.
2214 */
2215 int get_user_pages_fast(unsigned long start, int nr_pages,
2216 unsigned int gup_flags, struct page **pages)
2217 {
2218 unsigned long addr, len, end;
2219 int nr = 0, ret = 0;
2220
2221 start &= PAGE_MASK;
2222 addr = start;
2223 len = (unsigned long) nr_pages << PAGE_SHIFT;
2224 end = start + len;
2225
2226 if (nr_pages <= 0)
2227 return 0;
2228
2229 if (unlikely(!access_ok((void __user *)start, len)))
2230 return -EFAULT;
2231
2232 if (gup_fast_permitted(start, nr_pages)) {
2233 local_irq_disable();
2234 gup_pgd_range(addr, end, gup_flags, pages, &nr);
2235 local_irq_enable();
2236 ret = nr;
2237 }
2238
2239 if (nr < nr_pages) {
2240 /* Try to get the remaining pages with get_user_pages */
2241 start += nr << PAGE_SHIFT;
2242 pages += nr;
2243
2244 ret = __gup_longterm_unlocked(start, nr_pages - nr,
2245 gup_flags, pages);
2246
2247 /* Have to be a bit careful with return values */
2248 if (nr > 0) {
2249 if (ret < 0)
2250 ret = nr;
2251 else
2252 ret += nr;
2253 }
2254 }
2255
2256 return ret;
2257 }
2258
2259 #endif /* CONFIG_HAVE_GENERIC_GUP */