]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/hmm.c
Linux 4.20.17
[thirdparty/kernel/stable.git] / mm / hmm.c
1 /*
2 * Copyright 2013 Red Hat Inc.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * Authors: Jérôme Glisse <jglisse@redhat.com>
15 */
16 /*
17 * Refer to include/linux/hmm.h for information about heterogeneous memory
18 * management or HMM for short.
19 */
20 #include <linux/mm.h>
21 #include <linux/hmm.h>
22 #include <linux/init.h>
23 #include <linux/rmap.h>
24 #include <linux/swap.h>
25 #include <linux/slab.h>
26 #include <linux/sched.h>
27 #include <linux/mmzone.h>
28 #include <linux/pagemap.h>
29 #include <linux/swapops.h>
30 #include <linux/hugetlb.h>
31 #include <linux/memremap.h>
32 #include <linux/jump_label.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/memory_hotplug.h>
35
36 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
37
38 #if IS_ENABLED(CONFIG_HMM_MIRROR)
39 static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
40
41 /*
42 * struct hmm - HMM per mm struct
43 *
44 * @mm: mm struct this HMM struct is bound to
45 * @lock: lock protecting ranges list
46 * @ranges: list of range being snapshotted
47 * @mirrors: list of mirrors for this mm
48 * @mmu_notifier: mmu notifier to track updates to CPU page table
49 * @mirrors_sem: read/write semaphore protecting the mirrors list
50 */
51 struct hmm {
52 struct mm_struct *mm;
53 spinlock_t lock;
54 struct list_head ranges;
55 struct list_head mirrors;
56 struct mmu_notifier mmu_notifier;
57 struct rw_semaphore mirrors_sem;
58 };
59
60 /*
61 * hmm_register - register HMM against an mm (HMM internal)
62 *
63 * @mm: mm struct to attach to
64 *
65 * This is not intended to be used directly by device drivers. It allocates an
66 * HMM struct if mm does not have one, and initializes it.
67 */
68 static struct hmm *hmm_register(struct mm_struct *mm)
69 {
70 struct hmm *hmm = READ_ONCE(mm->hmm);
71 bool cleanup = false;
72
73 /*
74 * The hmm struct can only be freed once the mm_struct goes away,
75 * hence we should always have pre-allocated an new hmm struct
76 * above.
77 */
78 if (hmm)
79 return hmm;
80
81 hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
82 if (!hmm)
83 return NULL;
84 INIT_LIST_HEAD(&hmm->mirrors);
85 init_rwsem(&hmm->mirrors_sem);
86 hmm->mmu_notifier.ops = NULL;
87 INIT_LIST_HEAD(&hmm->ranges);
88 spin_lock_init(&hmm->lock);
89 hmm->mm = mm;
90
91 spin_lock(&mm->page_table_lock);
92 if (!mm->hmm)
93 mm->hmm = hmm;
94 else
95 cleanup = true;
96 spin_unlock(&mm->page_table_lock);
97
98 if (cleanup)
99 goto error;
100
101 /*
102 * We should only get here if hold the mmap_sem in write mode ie on
103 * registration of first mirror through hmm_mirror_register()
104 */
105 hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
106 if (__mmu_notifier_register(&hmm->mmu_notifier, mm))
107 goto error_mm;
108
109 return mm->hmm;
110
111 error_mm:
112 spin_lock(&mm->page_table_lock);
113 if (mm->hmm == hmm)
114 mm->hmm = NULL;
115 spin_unlock(&mm->page_table_lock);
116 error:
117 kfree(hmm);
118 return NULL;
119 }
120
121 void hmm_mm_destroy(struct mm_struct *mm)
122 {
123 kfree(mm->hmm);
124 }
125
126 static int hmm_invalidate_range(struct hmm *hmm, bool device,
127 const struct hmm_update *update)
128 {
129 struct hmm_mirror *mirror;
130 struct hmm_range *range;
131
132 spin_lock(&hmm->lock);
133 list_for_each_entry(range, &hmm->ranges, list) {
134 unsigned long addr, idx, npages;
135
136 if (update->end < range->start || update->start >= range->end)
137 continue;
138
139 range->valid = false;
140 addr = max(update->start, range->start);
141 idx = (addr - range->start) >> PAGE_SHIFT;
142 npages = (min(range->end, update->end) - addr) >> PAGE_SHIFT;
143 memset(&range->pfns[idx], 0, sizeof(*range->pfns) * npages);
144 }
145 spin_unlock(&hmm->lock);
146
147 if (!device)
148 return 0;
149
150 down_read(&hmm->mirrors_sem);
151 list_for_each_entry(mirror, &hmm->mirrors, list) {
152 int ret;
153
154 ret = mirror->ops->sync_cpu_device_pagetables(mirror, update);
155 if (!update->blockable && ret == -EAGAIN) {
156 up_read(&hmm->mirrors_sem);
157 return -EAGAIN;
158 }
159 }
160 up_read(&hmm->mirrors_sem);
161
162 return 0;
163 }
164
165 static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
166 {
167 struct hmm_mirror *mirror;
168 struct hmm *hmm = mm->hmm;
169
170 down_write(&hmm->mirrors_sem);
171 mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
172 list);
173 while (mirror) {
174 list_del_init(&mirror->list);
175 if (mirror->ops->release) {
176 /*
177 * Drop mirrors_sem so callback can wait on any pending
178 * work that might itself trigger mmu_notifier callback
179 * and thus would deadlock with us.
180 */
181 up_write(&hmm->mirrors_sem);
182 mirror->ops->release(mirror);
183 down_write(&hmm->mirrors_sem);
184 }
185 mirror = list_first_entry_or_null(&hmm->mirrors,
186 struct hmm_mirror, list);
187 }
188 up_write(&hmm->mirrors_sem);
189 }
190
191 static int hmm_invalidate_range_start(struct mmu_notifier *mn,
192 struct mm_struct *mm,
193 unsigned long start,
194 unsigned long end,
195 bool blockable)
196 {
197 struct hmm_update update;
198 struct hmm *hmm = mm->hmm;
199
200 VM_BUG_ON(!hmm);
201
202 update.start = start;
203 update.end = end;
204 update.event = HMM_UPDATE_INVALIDATE;
205 update.blockable = blockable;
206 return hmm_invalidate_range(hmm, true, &update);
207 }
208
209 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
210 struct mm_struct *mm,
211 unsigned long start,
212 unsigned long end)
213 {
214 struct hmm_update update;
215 struct hmm *hmm = mm->hmm;
216
217 VM_BUG_ON(!hmm);
218
219 update.start = start;
220 update.end = end;
221 update.event = HMM_UPDATE_INVALIDATE;
222 update.blockable = true;
223 hmm_invalidate_range(hmm, false, &update);
224 }
225
226 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
227 .release = hmm_release,
228 .invalidate_range_start = hmm_invalidate_range_start,
229 .invalidate_range_end = hmm_invalidate_range_end,
230 };
231
232 /*
233 * hmm_mirror_register() - register a mirror against an mm
234 *
235 * @mirror: new mirror struct to register
236 * @mm: mm to register against
237 *
238 * To start mirroring a process address space, the device driver must register
239 * an HMM mirror struct.
240 *
241 * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
242 */
243 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
244 {
245 /* Sanity check */
246 if (!mm || !mirror || !mirror->ops)
247 return -EINVAL;
248
249 again:
250 mirror->hmm = hmm_register(mm);
251 if (!mirror->hmm)
252 return -ENOMEM;
253
254 down_write(&mirror->hmm->mirrors_sem);
255 if (mirror->hmm->mm == NULL) {
256 /*
257 * A racing hmm_mirror_unregister() is about to destroy the hmm
258 * struct. Try again to allocate a new one.
259 */
260 up_write(&mirror->hmm->mirrors_sem);
261 mirror->hmm = NULL;
262 goto again;
263 } else {
264 list_add(&mirror->list, &mirror->hmm->mirrors);
265 up_write(&mirror->hmm->mirrors_sem);
266 }
267
268 return 0;
269 }
270 EXPORT_SYMBOL(hmm_mirror_register);
271
272 /*
273 * hmm_mirror_unregister() - unregister a mirror
274 *
275 * @mirror: new mirror struct to register
276 *
277 * Stop mirroring a process address space, and cleanup.
278 */
279 void hmm_mirror_unregister(struct hmm_mirror *mirror)
280 {
281 bool should_unregister = false;
282 struct mm_struct *mm;
283 struct hmm *hmm;
284
285 if (mirror->hmm == NULL)
286 return;
287
288 hmm = mirror->hmm;
289 down_write(&hmm->mirrors_sem);
290 list_del_init(&mirror->list);
291 should_unregister = list_empty(&hmm->mirrors);
292 mirror->hmm = NULL;
293 mm = hmm->mm;
294 hmm->mm = NULL;
295 up_write(&hmm->mirrors_sem);
296
297 if (!should_unregister || mm == NULL)
298 return;
299
300 mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm);
301
302 spin_lock(&mm->page_table_lock);
303 if (mm->hmm == hmm)
304 mm->hmm = NULL;
305 spin_unlock(&mm->page_table_lock);
306
307 kfree(hmm);
308 }
309 EXPORT_SYMBOL(hmm_mirror_unregister);
310
311 struct hmm_vma_walk {
312 struct hmm_range *range;
313 unsigned long last;
314 bool fault;
315 bool block;
316 };
317
318 static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
319 bool write_fault, uint64_t *pfn)
320 {
321 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
322 struct hmm_vma_walk *hmm_vma_walk = walk->private;
323 struct hmm_range *range = hmm_vma_walk->range;
324 struct vm_area_struct *vma = walk->vma;
325 vm_fault_t ret;
326
327 flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
328 flags |= write_fault ? FAULT_FLAG_WRITE : 0;
329 ret = handle_mm_fault(vma, addr, flags);
330 if (ret & VM_FAULT_RETRY)
331 return -EBUSY;
332 if (ret & VM_FAULT_ERROR) {
333 *pfn = range->values[HMM_PFN_ERROR];
334 return -EFAULT;
335 }
336
337 return -EAGAIN;
338 }
339
340 static int hmm_pfns_bad(unsigned long addr,
341 unsigned long end,
342 struct mm_walk *walk)
343 {
344 struct hmm_vma_walk *hmm_vma_walk = walk->private;
345 struct hmm_range *range = hmm_vma_walk->range;
346 uint64_t *pfns = range->pfns;
347 unsigned long i;
348
349 i = (addr - range->start) >> PAGE_SHIFT;
350 for (; addr < end; addr += PAGE_SIZE, i++)
351 pfns[i] = range->values[HMM_PFN_ERROR];
352
353 return 0;
354 }
355
356 /*
357 * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
358 * @start: range virtual start address (inclusive)
359 * @end: range virtual end address (exclusive)
360 * @fault: should we fault or not ?
361 * @write_fault: write fault ?
362 * @walk: mm_walk structure
363 * Returns: 0 on success, -EAGAIN after page fault, or page fault error
364 *
365 * This function will be called whenever pmd_none() or pte_none() returns true,
366 * or whenever there is no page directory covering the virtual address range.
367 */
368 static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
369 bool fault, bool write_fault,
370 struct mm_walk *walk)
371 {
372 struct hmm_vma_walk *hmm_vma_walk = walk->private;
373 struct hmm_range *range = hmm_vma_walk->range;
374 uint64_t *pfns = range->pfns;
375 unsigned long i;
376
377 hmm_vma_walk->last = addr;
378 i = (addr - range->start) >> PAGE_SHIFT;
379 for (; addr < end; addr += PAGE_SIZE, i++) {
380 pfns[i] = range->values[HMM_PFN_NONE];
381 if (fault || write_fault) {
382 int ret;
383
384 ret = hmm_vma_do_fault(walk, addr, write_fault,
385 &pfns[i]);
386 if (ret != -EAGAIN)
387 return ret;
388 }
389 }
390
391 return (fault || write_fault) ? -EAGAIN : 0;
392 }
393
394 static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
395 uint64_t pfns, uint64_t cpu_flags,
396 bool *fault, bool *write_fault)
397 {
398 struct hmm_range *range = hmm_vma_walk->range;
399
400 *fault = *write_fault = false;
401 if (!hmm_vma_walk->fault)
402 return;
403
404 /* We aren't ask to do anything ... */
405 if (!(pfns & range->flags[HMM_PFN_VALID]))
406 return;
407 /* If this is device memory than only fault if explicitly requested */
408 if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
409 /* Do we fault on device memory ? */
410 if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
411 *write_fault = pfns & range->flags[HMM_PFN_WRITE];
412 *fault = true;
413 }
414 return;
415 }
416
417 /* If CPU page table is not valid then we need to fault */
418 *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
419 /* Need to write fault ? */
420 if ((pfns & range->flags[HMM_PFN_WRITE]) &&
421 !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
422 *write_fault = true;
423 *fault = true;
424 }
425 }
426
427 static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
428 const uint64_t *pfns, unsigned long npages,
429 uint64_t cpu_flags, bool *fault,
430 bool *write_fault)
431 {
432 unsigned long i;
433
434 if (!hmm_vma_walk->fault) {
435 *fault = *write_fault = false;
436 return;
437 }
438
439 for (i = 0; i < npages; ++i) {
440 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
441 fault, write_fault);
442 if ((*fault) || (*write_fault))
443 return;
444 }
445 }
446
447 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
448 struct mm_walk *walk)
449 {
450 struct hmm_vma_walk *hmm_vma_walk = walk->private;
451 struct hmm_range *range = hmm_vma_walk->range;
452 bool fault, write_fault;
453 unsigned long i, npages;
454 uint64_t *pfns;
455
456 i = (addr - range->start) >> PAGE_SHIFT;
457 npages = (end - addr) >> PAGE_SHIFT;
458 pfns = &range->pfns[i];
459 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
460 0, &fault, &write_fault);
461 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
462 }
463
464 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
465 {
466 if (pmd_protnone(pmd))
467 return 0;
468 return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
469 range->flags[HMM_PFN_WRITE] :
470 range->flags[HMM_PFN_VALID];
471 }
472
473 static int hmm_vma_handle_pmd(struct mm_walk *walk,
474 unsigned long addr,
475 unsigned long end,
476 uint64_t *pfns,
477 pmd_t pmd)
478 {
479 struct hmm_vma_walk *hmm_vma_walk = walk->private;
480 struct hmm_range *range = hmm_vma_walk->range;
481 unsigned long pfn, npages, i;
482 bool fault, write_fault;
483 uint64_t cpu_flags;
484
485 npages = (end - addr) >> PAGE_SHIFT;
486 cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
487 hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
488 &fault, &write_fault);
489
490 if (pmd_protnone(pmd) || fault || write_fault)
491 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
492
493 pfn = pmd_pfn(pmd) + pte_index(addr);
494 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
495 pfns[i] = hmm_pfn_from_pfn(range, pfn) | cpu_flags;
496 hmm_vma_walk->last = end;
497 return 0;
498 }
499
500 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
501 {
502 if (pte_none(pte) || !pte_present(pte))
503 return 0;
504 return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
505 range->flags[HMM_PFN_WRITE] :
506 range->flags[HMM_PFN_VALID];
507 }
508
509 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
510 unsigned long end, pmd_t *pmdp, pte_t *ptep,
511 uint64_t *pfn)
512 {
513 struct hmm_vma_walk *hmm_vma_walk = walk->private;
514 struct hmm_range *range = hmm_vma_walk->range;
515 struct vm_area_struct *vma = walk->vma;
516 bool fault, write_fault;
517 uint64_t cpu_flags;
518 pte_t pte = *ptep;
519 uint64_t orig_pfn = *pfn;
520
521 *pfn = range->values[HMM_PFN_NONE];
522 cpu_flags = pte_to_hmm_pfn_flags(range, pte);
523 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
524 &fault, &write_fault);
525
526 if (pte_none(pte)) {
527 if (fault || write_fault)
528 goto fault;
529 return 0;
530 }
531
532 if (!pte_present(pte)) {
533 swp_entry_t entry = pte_to_swp_entry(pte);
534
535 if (!non_swap_entry(entry)) {
536 if (fault || write_fault)
537 goto fault;
538 return 0;
539 }
540
541 /*
542 * This is a special swap entry, ignore migration, use
543 * device and report anything else as error.
544 */
545 if (is_device_private_entry(entry)) {
546 cpu_flags = range->flags[HMM_PFN_VALID] |
547 range->flags[HMM_PFN_DEVICE_PRIVATE];
548 cpu_flags |= is_write_device_private_entry(entry) ?
549 range->flags[HMM_PFN_WRITE] : 0;
550 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
551 &fault, &write_fault);
552 if (fault || write_fault)
553 goto fault;
554 *pfn = hmm_pfn_from_pfn(range, swp_offset(entry));
555 *pfn |= cpu_flags;
556 return 0;
557 }
558
559 if (is_migration_entry(entry)) {
560 if (fault || write_fault) {
561 pte_unmap(ptep);
562 hmm_vma_walk->last = addr;
563 migration_entry_wait(vma->vm_mm,
564 pmdp, addr);
565 return -EAGAIN;
566 }
567 return 0;
568 }
569
570 /* Report error for everything else */
571 *pfn = range->values[HMM_PFN_ERROR];
572 return -EFAULT;
573 }
574
575 if (fault || write_fault)
576 goto fault;
577
578 *pfn = hmm_pfn_from_pfn(range, pte_pfn(pte)) | cpu_flags;
579 return 0;
580
581 fault:
582 pte_unmap(ptep);
583 /* Fault any virtual address we were asked to fault */
584 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
585 }
586
587 static int hmm_vma_walk_pmd(pmd_t *pmdp,
588 unsigned long start,
589 unsigned long end,
590 struct mm_walk *walk)
591 {
592 struct hmm_vma_walk *hmm_vma_walk = walk->private;
593 struct hmm_range *range = hmm_vma_walk->range;
594 struct vm_area_struct *vma = walk->vma;
595 uint64_t *pfns = range->pfns;
596 unsigned long addr = start, i;
597 pte_t *ptep;
598 pmd_t pmd;
599
600
601 again:
602 pmd = READ_ONCE(*pmdp);
603 if (pmd_none(pmd))
604 return hmm_vma_walk_hole(start, end, walk);
605
606 if (pmd_huge(pmd) && (range->vma->vm_flags & VM_HUGETLB))
607 return hmm_pfns_bad(start, end, walk);
608
609 if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
610 bool fault, write_fault;
611 unsigned long npages;
612 uint64_t *pfns;
613
614 i = (addr - range->start) >> PAGE_SHIFT;
615 npages = (end - addr) >> PAGE_SHIFT;
616 pfns = &range->pfns[i];
617
618 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
619 0, &fault, &write_fault);
620 if (fault || write_fault) {
621 hmm_vma_walk->last = addr;
622 pmd_migration_entry_wait(vma->vm_mm, pmdp);
623 return -EAGAIN;
624 }
625 return 0;
626 } else if (!pmd_present(pmd))
627 return hmm_pfns_bad(start, end, walk);
628
629 if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
630 /*
631 * No need to take pmd_lock here, even if some other threads
632 * is splitting the huge pmd we will get that event through
633 * mmu_notifier callback.
634 *
635 * So just read pmd value and check again its a transparent
636 * huge or device mapping one and compute corresponding pfn
637 * values.
638 */
639 pmd = pmd_read_atomic(pmdp);
640 barrier();
641 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
642 goto again;
643
644 i = (addr - range->start) >> PAGE_SHIFT;
645 return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
646 }
647
648 /*
649 * We have handled all the valid case above ie either none, migration,
650 * huge or transparent huge. At this point either it is a valid pmd
651 * entry pointing to pte directory or it is a bad pmd that will not
652 * recover.
653 */
654 if (pmd_bad(pmd))
655 return hmm_pfns_bad(start, end, walk);
656
657 ptep = pte_offset_map(pmdp, addr);
658 i = (addr - range->start) >> PAGE_SHIFT;
659 for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
660 int r;
661
662 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
663 if (r) {
664 /* hmm_vma_handle_pte() did unmap pte directory */
665 hmm_vma_walk->last = addr;
666 return r;
667 }
668 }
669 pte_unmap(ptep - 1);
670
671 hmm_vma_walk->last = addr;
672 return 0;
673 }
674
675 static void hmm_pfns_clear(struct hmm_range *range,
676 uint64_t *pfns,
677 unsigned long addr,
678 unsigned long end)
679 {
680 for (; addr < end; addr += PAGE_SIZE, pfns++)
681 *pfns = range->values[HMM_PFN_NONE];
682 }
683
684 static void hmm_pfns_special(struct hmm_range *range)
685 {
686 unsigned long addr = range->start, i = 0;
687
688 for (; addr < range->end; addr += PAGE_SIZE, i++)
689 range->pfns[i] = range->values[HMM_PFN_SPECIAL];
690 }
691
692 /*
693 * hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses
694 * @range: range being snapshotted
695 * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
696 * vma permission, 0 success
697 *
698 * This snapshots the CPU page table for a range of virtual addresses. Snapshot
699 * validity is tracked by range struct. See hmm_vma_range_done() for further
700 * information.
701 *
702 * The range struct is initialized here. It tracks the CPU page table, but only
703 * if the function returns success (0), in which case the caller must then call
704 * hmm_vma_range_done() to stop CPU page table update tracking on this range.
705 *
706 * NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS
707 * MEMORY CORRUPTION ! YOU HAVE BEEN WARNED !
708 */
709 int hmm_vma_get_pfns(struct hmm_range *range)
710 {
711 struct vm_area_struct *vma = range->vma;
712 struct hmm_vma_walk hmm_vma_walk;
713 struct mm_walk mm_walk;
714 struct hmm *hmm;
715
716 /* Sanity check, this really should not happen ! */
717 if (range->start < vma->vm_start || range->start >= vma->vm_end)
718 return -EINVAL;
719 if (range->end < vma->vm_start || range->end > vma->vm_end)
720 return -EINVAL;
721
722 hmm = hmm_register(vma->vm_mm);
723 if (!hmm)
724 return -ENOMEM;
725 /* Caller must have registered a mirror, via hmm_mirror_register() ! */
726 if (!hmm->mmu_notifier.ops)
727 return -EINVAL;
728
729 /* FIXME support hugetlb fs */
730 if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
731 vma_is_dax(vma)) {
732 hmm_pfns_special(range);
733 return -EINVAL;
734 }
735
736 if (!(vma->vm_flags & VM_READ)) {
737 /*
738 * If vma do not allow read access, then assume that it does
739 * not allow write access, either. Architecture that allow
740 * write without read access are not supported by HMM, because
741 * operations such has atomic access would not work.
742 */
743 hmm_pfns_clear(range, range->pfns, range->start, range->end);
744 return -EPERM;
745 }
746
747 /* Initialize range to track CPU page table update */
748 spin_lock(&hmm->lock);
749 range->valid = true;
750 list_add_rcu(&range->list, &hmm->ranges);
751 spin_unlock(&hmm->lock);
752
753 hmm_vma_walk.fault = false;
754 hmm_vma_walk.range = range;
755 mm_walk.private = &hmm_vma_walk;
756
757 mm_walk.vma = vma;
758 mm_walk.mm = vma->vm_mm;
759 mm_walk.pte_entry = NULL;
760 mm_walk.test_walk = NULL;
761 mm_walk.hugetlb_entry = NULL;
762 mm_walk.pmd_entry = hmm_vma_walk_pmd;
763 mm_walk.pte_hole = hmm_vma_walk_hole;
764
765 walk_page_range(range->start, range->end, &mm_walk);
766 return 0;
767 }
768 EXPORT_SYMBOL(hmm_vma_get_pfns);
769
770 /*
771 * hmm_vma_range_done() - stop tracking change to CPU page table over a range
772 * @range: range being tracked
773 * Returns: false if range data has been invalidated, true otherwise
774 *
775 * Range struct is used to track updates to the CPU page table after a call to
776 * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done
777 * using the data, or wants to lock updates to the data it got from those
778 * functions, it must call the hmm_vma_range_done() function, which will then
779 * stop tracking CPU page table updates.
780 *
781 * Note that device driver must still implement general CPU page table update
782 * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using
783 * the mmu_notifier API directly.
784 *
785 * CPU page table update tracking done through hmm_range is only temporary and
786 * to be used while trying to duplicate CPU page table contents for a range of
787 * virtual addresses.
788 *
789 * There are two ways to use this :
790 * again:
791 * hmm_vma_get_pfns(range); or hmm_vma_fault(...);
792 * trans = device_build_page_table_update_transaction(pfns);
793 * device_page_table_lock();
794 * if (!hmm_vma_range_done(range)) {
795 * device_page_table_unlock();
796 * goto again;
797 * }
798 * device_commit_transaction(trans);
799 * device_page_table_unlock();
800 *
801 * Or:
802 * hmm_vma_get_pfns(range); or hmm_vma_fault(...);
803 * device_page_table_lock();
804 * hmm_vma_range_done(range);
805 * device_update_page_table(range->pfns);
806 * device_page_table_unlock();
807 */
808 bool hmm_vma_range_done(struct hmm_range *range)
809 {
810 unsigned long npages = (range->end - range->start) >> PAGE_SHIFT;
811 struct hmm *hmm;
812
813 if (range->end <= range->start) {
814 BUG();
815 return false;
816 }
817
818 hmm = hmm_register(range->vma->vm_mm);
819 if (!hmm) {
820 memset(range->pfns, 0, sizeof(*range->pfns) * npages);
821 return false;
822 }
823
824 spin_lock(&hmm->lock);
825 list_del_rcu(&range->list);
826 spin_unlock(&hmm->lock);
827
828 return range->valid;
829 }
830 EXPORT_SYMBOL(hmm_vma_range_done);
831
832 /*
833 * hmm_vma_fault() - try to fault some address in a virtual address range
834 * @range: range being faulted
835 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
836 * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop)
837 *
838 * This is similar to a regular CPU page fault except that it will not trigger
839 * any memory migration if the memory being faulted is not accessible by CPUs.
840 *
841 * On error, for one virtual address in the range, the function will mark the
842 * corresponding HMM pfn entry with an error flag.
843 *
844 * Expected use pattern:
845 * retry:
846 * down_read(&mm->mmap_sem);
847 * // Find vma and address device wants to fault, initialize hmm_pfn_t
848 * // array accordingly
849 * ret = hmm_vma_fault(range, write, block);
850 * switch (ret) {
851 * case -EAGAIN:
852 * hmm_vma_range_done(range);
853 * // You might want to rate limit or yield to play nicely, you may
854 * // also commit any valid pfn in the array assuming that you are
855 * // getting true from hmm_vma_range_monitor_end()
856 * goto retry;
857 * case 0:
858 * break;
859 * case -ENOMEM:
860 * case -EINVAL:
861 * case -EPERM:
862 * default:
863 * // Handle error !
864 * up_read(&mm->mmap_sem)
865 * return;
866 * }
867 * // Take device driver lock that serialize device page table update
868 * driver_lock_device_page_table_update();
869 * hmm_vma_range_done(range);
870 * // Commit pfns we got from hmm_vma_fault()
871 * driver_unlock_device_page_table_update();
872 * up_read(&mm->mmap_sem)
873 *
874 * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0)
875 * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION !
876 *
877 * YOU HAVE BEEN WARNED !
878 */
879 int hmm_vma_fault(struct hmm_range *range, bool block)
880 {
881 struct vm_area_struct *vma = range->vma;
882 unsigned long start = range->start;
883 struct hmm_vma_walk hmm_vma_walk;
884 struct mm_walk mm_walk;
885 struct hmm *hmm;
886 int ret;
887
888 /* Sanity check, this really should not happen ! */
889 if (range->start < vma->vm_start || range->start >= vma->vm_end)
890 return -EINVAL;
891 if (range->end < vma->vm_start || range->end > vma->vm_end)
892 return -EINVAL;
893
894 hmm = hmm_register(vma->vm_mm);
895 if (!hmm) {
896 hmm_pfns_clear(range, range->pfns, range->start, range->end);
897 return -ENOMEM;
898 }
899 /* Caller must have registered a mirror using hmm_mirror_register() */
900 if (!hmm->mmu_notifier.ops)
901 return -EINVAL;
902
903 /* FIXME support hugetlb fs */
904 if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
905 vma_is_dax(vma)) {
906 hmm_pfns_special(range);
907 return -EINVAL;
908 }
909
910 if (!(vma->vm_flags & VM_READ)) {
911 /*
912 * If vma do not allow read access, then assume that it does
913 * not allow write access, either. Architecture that allow
914 * write without read access are not supported by HMM, because
915 * operations such has atomic access would not work.
916 */
917 hmm_pfns_clear(range, range->pfns, range->start, range->end);
918 return -EPERM;
919 }
920
921 /* Initialize range to track CPU page table update */
922 spin_lock(&hmm->lock);
923 range->valid = true;
924 list_add_rcu(&range->list, &hmm->ranges);
925 spin_unlock(&hmm->lock);
926
927 hmm_vma_walk.fault = true;
928 hmm_vma_walk.block = block;
929 hmm_vma_walk.range = range;
930 mm_walk.private = &hmm_vma_walk;
931 hmm_vma_walk.last = range->start;
932
933 mm_walk.vma = vma;
934 mm_walk.mm = vma->vm_mm;
935 mm_walk.pte_entry = NULL;
936 mm_walk.test_walk = NULL;
937 mm_walk.hugetlb_entry = NULL;
938 mm_walk.pmd_entry = hmm_vma_walk_pmd;
939 mm_walk.pte_hole = hmm_vma_walk_hole;
940
941 do {
942 ret = walk_page_range(start, range->end, &mm_walk);
943 start = hmm_vma_walk.last;
944 } while (ret == -EAGAIN);
945
946 if (ret) {
947 unsigned long i;
948
949 i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
950 hmm_pfns_clear(range, &range->pfns[i], hmm_vma_walk.last,
951 range->end);
952 hmm_vma_range_done(range);
953 }
954 return ret;
955 }
956 EXPORT_SYMBOL(hmm_vma_fault);
957 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
958
959
960 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) || IS_ENABLED(CONFIG_DEVICE_PUBLIC)
961 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
962 unsigned long addr)
963 {
964 struct page *page;
965
966 page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
967 if (!page)
968 return NULL;
969 lock_page(page);
970 return page;
971 }
972 EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
973
974
975 static void hmm_devmem_ref_release(struct percpu_ref *ref)
976 {
977 struct hmm_devmem *devmem;
978
979 devmem = container_of(ref, struct hmm_devmem, ref);
980 complete(&devmem->completion);
981 }
982
983 static void hmm_devmem_ref_exit(void *data)
984 {
985 struct percpu_ref *ref = data;
986 struct hmm_devmem *devmem;
987
988 devmem = container_of(ref, struct hmm_devmem, ref);
989 wait_for_completion(&devmem->completion);
990 percpu_ref_exit(ref);
991 }
992
993 static void hmm_devmem_ref_kill(struct percpu_ref *ref)
994 {
995 struct hmm_devmem *devmem;
996
997 devmem = container_of(ref, struct hmm_devmem, ref);
998 percpu_ref_kill(ref);
999 }
1000
1001 static int hmm_devmem_fault(struct vm_area_struct *vma,
1002 unsigned long addr,
1003 const struct page *page,
1004 unsigned int flags,
1005 pmd_t *pmdp)
1006 {
1007 struct hmm_devmem *devmem = page->pgmap->data;
1008
1009 return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
1010 }
1011
1012 static void hmm_devmem_free(struct page *page, void *data)
1013 {
1014 struct hmm_devmem *devmem = data;
1015
1016 page->mapping = NULL;
1017
1018 devmem->ops->free(devmem, page);
1019 }
1020
1021 /*
1022 * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
1023 *
1024 * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1025 * @device: device struct to bind the resource too
1026 * @size: size in bytes of the device memory to add
1027 * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
1028 *
1029 * This function first finds an empty range of physical address big enough to
1030 * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1031 * in turn allocates struct pages. It does not do anything beyond that; all
1032 * events affecting the memory will go through the various callbacks provided
1033 * by hmm_devmem_ops struct.
1034 *
1035 * Device driver should call this function during device initialization and
1036 * is then responsible of memory management. HMM only provides helpers.
1037 */
1038 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
1039 struct device *device,
1040 unsigned long size)
1041 {
1042 struct hmm_devmem *devmem;
1043 resource_size_t addr;
1044 void *result;
1045 int ret;
1046
1047 dev_pagemap_get_ops();
1048
1049 devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
1050 if (!devmem)
1051 return ERR_PTR(-ENOMEM);
1052
1053 init_completion(&devmem->completion);
1054 devmem->pfn_first = -1UL;
1055 devmem->pfn_last = -1UL;
1056 devmem->resource = NULL;
1057 devmem->device = device;
1058 devmem->ops = ops;
1059
1060 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1061 0, GFP_KERNEL);
1062 if (ret)
1063 return ERR_PTR(ret);
1064
1065 ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit, &devmem->ref);
1066 if (ret)
1067 return ERR_PTR(ret);
1068
1069 size = ALIGN(size, PA_SECTION_SIZE);
1070 addr = min((unsigned long)iomem_resource.end,
1071 (1UL << MAX_PHYSMEM_BITS) - 1);
1072 addr = addr - size + 1UL;
1073
1074 /*
1075 * FIXME add a new helper to quickly walk resource tree and find free
1076 * range
1077 *
1078 * FIXME what about ioport_resource resource ?
1079 */
1080 for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1081 ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1082 if (ret != REGION_DISJOINT)
1083 continue;
1084
1085 devmem->resource = devm_request_mem_region(device, addr, size,
1086 dev_name(device));
1087 if (!devmem->resource)
1088 return ERR_PTR(-ENOMEM);
1089 break;
1090 }
1091 if (!devmem->resource)
1092 return ERR_PTR(-ERANGE);
1093
1094 devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1095 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1096 devmem->pfn_last = devmem->pfn_first +
1097 (resource_size(devmem->resource) >> PAGE_SHIFT);
1098
1099 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
1100 devmem->pagemap.res = *devmem->resource;
1101 devmem->pagemap.page_fault = hmm_devmem_fault;
1102 devmem->pagemap.page_free = hmm_devmem_free;
1103 devmem->pagemap.altmap_valid = false;
1104 devmem->pagemap.ref = &devmem->ref;
1105 devmem->pagemap.data = devmem;
1106 devmem->pagemap.kill = hmm_devmem_ref_kill;
1107
1108 result = devm_memremap_pages(devmem->device, &devmem->pagemap);
1109 if (IS_ERR(result))
1110 return result;
1111 return devmem;
1112 }
1113 EXPORT_SYMBOL_GPL(hmm_devmem_add);
1114
1115 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1116 struct device *device,
1117 struct resource *res)
1118 {
1119 struct hmm_devmem *devmem;
1120 void *result;
1121 int ret;
1122
1123 if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1124 return ERR_PTR(-EINVAL);
1125
1126 dev_pagemap_get_ops();
1127
1128 devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
1129 if (!devmem)
1130 return ERR_PTR(-ENOMEM);
1131
1132 init_completion(&devmem->completion);
1133 devmem->pfn_first = -1UL;
1134 devmem->pfn_last = -1UL;
1135 devmem->resource = res;
1136 devmem->device = device;
1137 devmem->ops = ops;
1138
1139 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1140 0, GFP_KERNEL);
1141 if (ret)
1142 return ERR_PTR(ret);
1143
1144 ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit,
1145 &devmem->ref);
1146 if (ret)
1147 return ERR_PTR(ret);
1148
1149 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1150 devmem->pfn_last = devmem->pfn_first +
1151 (resource_size(devmem->resource) >> PAGE_SHIFT);
1152
1153 devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
1154 devmem->pagemap.res = *devmem->resource;
1155 devmem->pagemap.page_fault = hmm_devmem_fault;
1156 devmem->pagemap.page_free = hmm_devmem_free;
1157 devmem->pagemap.altmap_valid = false;
1158 devmem->pagemap.ref = &devmem->ref;
1159 devmem->pagemap.data = devmem;
1160 devmem->pagemap.kill = hmm_devmem_ref_kill;
1161
1162 result = devm_memremap_pages(devmem->device, &devmem->pagemap);
1163 if (IS_ERR(result))
1164 return result;
1165 return devmem;
1166 }
1167 EXPORT_SYMBOL_GPL(hmm_devmem_add_resource);
1168
1169 /*
1170 * A device driver that wants to handle multiple devices memory through a
1171 * single fake device can use hmm_device to do so. This is purely a helper
1172 * and it is not needed to make use of any HMM functionality.
1173 */
1174 #define HMM_DEVICE_MAX 256
1175
1176 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1177 static DEFINE_SPINLOCK(hmm_device_lock);
1178 static struct class *hmm_device_class;
1179 static dev_t hmm_device_devt;
1180
1181 static void hmm_device_release(struct device *device)
1182 {
1183 struct hmm_device *hmm_device;
1184
1185 hmm_device = container_of(device, struct hmm_device, device);
1186 spin_lock(&hmm_device_lock);
1187 clear_bit(hmm_device->minor, hmm_device_mask);
1188 spin_unlock(&hmm_device_lock);
1189
1190 kfree(hmm_device);
1191 }
1192
1193 struct hmm_device *hmm_device_new(void *drvdata)
1194 {
1195 struct hmm_device *hmm_device;
1196
1197 hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1198 if (!hmm_device)
1199 return ERR_PTR(-ENOMEM);
1200
1201 spin_lock(&hmm_device_lock);
1202 hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1203 if (hmm_device->minor >= HMM_DEVICE_MAX) {
1204 spin_unlock(&hmm_device_lock);
1205 kfree(hmm_device);
1206 return ERR_PTR(-EBUSY);
1207 }
1208 set_bit(hmm_device->minor, hmm_device_mask);
1209 spin_unlock(&hmm_device_lock);
1210
1211 dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1212 hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1213 hmm_device->minor);
1214 hmm_device->device.release = hmm_device_release;
1215 dev_set_drvdata(&hmm_device->device, drvdata);
1216 hmm_device->device.class = hmm_device_class;
1217 device_initialize(&hmm_device->device);
1218
1219 return hmm_device;
1220 }
1221 EXPORT_SYMBOL(hmm_device_new);
1222
1223 void hmm_device_put(struct hmm_device *hmm_device)
1224 {
1225 put_device(&hmm_device->device);
1226 }
1227 EXPORT_SYMBOL(hmm_device_put);
1228
1229 static int __init hmm_init(void)
1230 {
1231 int ret;
1232
1233 ret = alloc_chrdev_region(&hmm_device_devt, 0,
1234 HMM_DEVICE_MAX,
1235 "hmm_device");
1236 if (ret)
1237 return ret;
1238
1239 hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1240 if (IS_ERR(hmm_device_class)) {
1241 unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1242 return PTR_ERR(hmm_device_class);
1243 }
1244 return 0;
1245 }
1246
1247 device_initcall(hmm_init);
1248 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */