]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/hmm.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 464
[thirdparty/kernel/stable.git] / mm / hmm.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright 2013 Red Hat Inc.
4 *
5 * Authors: Jérôme Glisse <jglisse@redhat.com>
6 */
7 /*
8 * Refer to include/linux/hmm.h for information about heterogeneous memory
9 * management or HMM for short.
10 */
11 #include <linux/mm.h>
12 #include <linux/hmm.h>
13 #include <linux/init.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/mmzone.h>
19 #include <linux/pagemap.h>
20 #include <linux/swapops.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memremap.h>
23 #include <linux/jump_label.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/mmu_notifier.h>
26 #include <linux/memory_hotplug.h>
27
28 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
29
30 #if IS_ENABLED(CONFIG_HMM_MIRROR)
31 static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
32
33 static inline struct hmm *mm_get_hmm(struct mm_struct *mm)
34 {
35 struct hmm *hmm = READ_ONCE(mm->hmm);
36
37 if (hmm && kref_get_unless_zero(&hmm->kref))
38 return hmm;
39
40 return NULL;
41 }
42
43 /**
44 * hmm_get_or_create - register HMM against an mm (HMM internal)
45 *
46 * @mm: mm struct to attach to
47 * Returns: returns an HMM object, either by referencing the existing
48 * (per-process) object, or by creating a new one.
49 *
50 * This is not intended to be used directly by device drivers. If mm already
51 * has an HMM struct then it get a reference on it and returns it. Otherwise
52 * it allocates an HMM struct, initializes it, associate it with the mm and
53 * returns it.
54 */
55 static struct hmm *hmm_get_or_create(struct mm_struct *mm)
56 {
57 struct hmm *hmm = mm_get_hmm(mm);
58 bool cleanup = false;
59
60 if (hmm)
61 return hmm;
62
63 hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
64 if (!hmm)
65 return NULL;
66 init_waitqueue_head(&hmm->wq);
67 INIT_LIST_HEAD(&hmm->mirrors);
68 init_rwsem(&hmm->mirrors_sem);
69 hmm->mmu_notifier.ops = NULL;
70 INIT_LIST_HEAD(&hmm->ranges);
71 mutex_init(&hmm->lock);
72 kref_init(&hmm->kref);
73 hmm->notifiers = 0;
74 hmm->dead = false;
75 hmm->mm = mm;
76
77 spin_lock(&mm->page_table_lock);
78 if (!mm->hmm)
79 mm->hmm = hmm;
80 else
81 cleanup = true;
82 spin_unlock(&mm->page_table_lock);
83
84 if (cleanup)
85 goto error;
86
87 /*
88 * We should only get here if hold the mmap_sem in write mode ie on
89 * registration of first mirror through hmm_mirror_register()
90 */
91 hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
92 if (__mmu_notifier_register(&hmm->mmu_notifier, mm))
93 goto error_mm;
94
95 return hmm;
96
97 error_mm:
98 spin_lock(&mm->page_table_lock);
99 if (mm->hmm == hmm)
100 mm->hmm = NULL;
101 spin_unlock(&mm->page_table_lock);
102 error:
103 kfree(hmm);
104 return NULL;
105 }
106
107 static void hmm_free(struct kref *kref)
108 {
109 struct hmm *hmm = container_of(kref, struct hmm, kref);
110 struct mm_struct *mm = hmm->mm;
111
112 mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm);
113
114 spin_lock(&mm->page_table_lock);
115 if (mm->hmm == hmm)
116 mm->hmm = NULL;
117 spin_unlock(&mm->page_table_lock);
118
119 kfree(hmm);
120 }
121
122 static inline void hmm_put(struct hmm *hmm)
123 {
124 kref_put(&hmm->kref, hmm_free);
125 }
126
127 void hmm_mm_destroy(struct mm_struct *mm)
128 {
129 struct hmm *hmm;
130
131 spin_lock(&mm->page_table_lock);
132 hmm = mm_get_hmm(mm);
133 mm->hmm = NULL;
134 if (hmm) {
135 hmm->mm = NULL;
136 hmm->dead = true;
137 spin_unlock(&mm->page_table_lock);
138 hmm_put(hmm);
139 return;
140 }
141
142 spin_unlock(&mm->page_table_lock);
143 }
144
145 static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
146 {
147 struct hmm *hmm = mm_get_hmm(mm);
148 struct hmm_mirror *mirror;
149 struct hmm_range *range;
150
151 /* Report this HMM as dying. */
152 hmm->dead = true;
153
154 /* Wake-up everyone waiting on any range. */
155 mutex_lock(&hmm->lock);
156 list_for_each_entry(range, &hmm->ranges, list) {
157 range->valid = false;
158 }
159 wake_up_all(&hmm->wq);
160 mutex_unlock(&hmm->lock);
161
162 down_write(&hmm->mirrors_sem);
163 mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
164 list);
165 while (mirror) {
166 list_del_init(&mirror->list);
167 if (mirror->ops->release) {
168 /*
169 * Drop mirrors_sem so callback can wait on any pending
170 * work that might itself trigger mmu_notifier callback
171 * and thus would deadlock with us.
172 */
173 up_write(&hmm->mirrors_sem);
174 mirror->ops->release(mirror);
175 down_write(&hmm->mirrors_sem);
176 }
177 mirror = list_first_entry_or_null(&hmm->mirrors,
178 struct hmm_mirror, list);
179 }
180 up_write(&hmm->mirrors_sem);
181
182 hmm_put(hmm);
183 }
184
185 static int hmm_invalidate_range_start(struct mmu_notifier *mn,
186 const struct mmu_notifier_range *nrange)
187 {
188 struct hmm *hmm = mm_get_hmm(nrange->mm);
189 struct hmm_mirror *mirror;
190 struct hmm_update update;
191 struct hmm_range *range;
192 int ret = 0;
193
194 VM_BUG_ON(!hmm);
195
196 update.start = nrange->start;
197 update.end = nrange->end;
198 update.event = HMM_UPDATE_INVALIDATE;
199 update.blockable = mmu_notifier_range_blockable(nrange);
200
201 if (mmu_notifier_range_blockable(nrange))
202 mutex_lock(&hmm->lock);
203 else if (!mutex_trylock(&hmm->lock)) {
204 ret = -EAGAIN;
205 goto out;
206 }
207 hmm->notifiers++;
208 list_for_each_entry(range, &hmm->ranges, list) {
209 if (update.end < range->start || update.start >= range->end)
210 continue;
211
212 range->valid = false;
213 }
214 mutex_unlock(&hmm->lock);
215
216 if (mmu_notifier_range_blockable(nrange))
217 down_read(&hmm->mirrors_sem);
218 else if (!down_read_trylock(&hmm->mirrors_sem)) {
219 ret = -EAGAIN;
220 goto out;
221 }
222 list_for_each_entry(mirror, &hmm->mirrors, list) {
223 int ret;
224
225 ret = mirror->ops->sync_cpu_device_pagetables(mirror, &update);
226 if (!update.blockable && ret == -EAGAIN) {
227 up_read(&hmm->mirrors_sem);
228 ret = -EAGAIN;
229 goto out;
230 }
231 }
232 up_read(&hmm->mirrors_sem);
233
234 out:
235 hmm_put(hmm);
236 return ret;
237 }
238
239 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
240 const struct mmu_notifier_range *nrange)
241 {
242 struct hmm *hmm = mm_get_hmm(nrange->mm);
243
244 VM_BUG_ON(!hmm);
245
246 mutex_lock(&hmm->lock);
247 hmm->notifiers--;
248 if (!hmm->notifiers) {
249 struct hmm_range *range;
250
251 list_for_each_entry(range, &hmm->ranges, list) {
252 if (range->valid)
253 continue;
254 range->valid = true;
255 }
256 wake_up_all(&hmm->wq);
257 }
258 mutex_unlock(&hmm->lock);
259
260 hmm_put(hmm);
261 }
262
263 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
264 .release = hmm_release,
265 .invalidate_range_start = hmm_invalidate_range_start,
266 .invalidate_range_end = hmm_invalidate_range_end,
267 };
268
269 /*
270 * hmm_mirror_register() - register a mirror against an mm
271 *
272 * @mirror: new mirror struct to register
273 * @mm: mm to register against
274 *
275 * To start mirroring a process address space, the device driver must register
276 * an HMM mirror struct.
277 *
278 * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
279 */
280 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
281 {
282 /* Sanity check */
283 if (!mm || !mirror || !mirror->ops)
284 return -EINVAL;
285
286 mirror->hmm = hmm_get_or_create(mm);
287 if (!mirror->hmm)
288 return -ENOMEM;
289
290 down_write(&mirror->hmm->mirrors_sem);
291 list_add(&mirror->list, &mirror->hmm->mirrors);
292 up_write(&mirror->hmm->mirrors_sem);
293
294 return 0;
295 }
296 EXPORT_SYMBOL(hmm_mirror_register);
297
298 /*
299 * hmm_mirror_unregister() - unregister a mirror
300 *
301 * @mirror: new mirror struct to register
302 *
303 * Stop mirroring a process address space, and cleanup.
304 */
305 void hmm_mirror_unregister(struct hmm_mirror *mirror)
306 {
307 struct hmm *hmm = READ_ONCE(mirror->hmm);
308
309 if (hmm == NULL)
310 return;
311
312 down_write(&hmm->mirrors_sem);
313 list_del_init(&mirror->list);
314 /* To protect us against double unregister ... */
315 mirror->hmm = NULL;
316 up_write(&hmm->mirrors_sem);
317
318 hmm_put(hmm);
319 }
320 EXPORT_SYMBOL(hmm_mirror_unregister);
321
322 struct hmm_vma_walk {
323 struct hmm_range *range;
324 struct dev_pagemap *pgmap;
325 unsigned long last;
326 bool fault;
327 bool block;
328 };
329
330 static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
331 bool write_fault, uint64_t *pfn)
332 {
333 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
334 struct hmm_vma_walk *hmm_vma_walk = walk->private;
335 struct hmm_range *range = hmm_vma_walk->range;
336 struct vm_area_struct *vma = walk->vma;
337 vm_fault_t ret;
338
339 flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
340 flags |= write_fault ? FAULT_FLAG_WRITE : 0;
341 ret = handle_mm_fault(vma, addr, flags);
342 if (ret & VM_FAULT_RETRY)
343 return -EAGAIN;
344 if (ret & VM_FAULT_ERROR) {
345 *pfn = range->values[HMM_PFN_ERROR];
346 return -EFAULT;
347 }
348
349 return -EBUSY;
350 }
351
352 static int hmm_pfns_bad(unsigned long addr,
353 unsigned long end,
354 struct mm_walk *walk)
355 {
356 struct hmm_vma_walk *hmm_vma_walk = walk->private;
357 struct hmm_range *range = hmm_vma_walk->range;
358 uint64_t *pfns = range->pfns;
359 unsigned long i;
360
361 i = (addr - range->start) >> PAGE_SHIFT;
362 for (; addr < end; addr += PAGE_SIZE, i++)
363 pfns[i] = range->values[HMM_PFN_ERROR];
364
365 return 0;
366 }
367
368 /*
369 * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
370 * @start: range virtual start address (inclusive)
371 * @end: range virtual end address (exclusive)
372 * @fault: should we fault or not ?
373 * @write_fault: write fault ?
374 * @walk: mm_walk structure
375 * Returns: 0 on success, -EBUSY after page fault, or page fault error
376 *
377 * This function will be called whenever pmd_none() or pte_none() returns true,
378 * or whenever there is no page directory covering the virtual address range.
379 */
380 static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
381 bool fault, bool write_fault,
382 struct mm_walk *walk)
383 {
384 struct hmm_vma_walk *hmm_vma_walk = walk->private;
385 struct hmm_range *range = hmm_vma_walk->range;
386 uint64_t *pfns = range->pfns;
387 unsigned long i, page_size;
388
389 hmm_vma_walk->last = addr;
390 page_size = hmm_range_page_size(range);
391 i = (addr - range->start) >> range->page_shift;
392
393 for (; addr < end; addr += page_size, i++) {
394 pfns[i] = range->values[HMM_PFN_NONE];
395 if (fault || write_fault) {
396 int ret;
397
398 ret = hmm_vma_do_fault(walk, addr, write_fault,
399 &pfns[i]);
400 if (ret != -EBUSY)
401 return ret;
402 }
403 }
404
405 return (fault || write_fault) ? -EBUSY : 0;
406 }
407
408 static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
409 uint64_t pfns, uint64_t cpu_flags,
410 bool *fault, bool *write_fault)
411 {
412 struct hmm_range *range = hmm_vma_walk->range;
413
414 if (!hmm_vma_walk->fault)
415 return;
416
417 /*
418 * So we not only consider the individual per page request we also
419 * consider the default flags requested for the range. The API can
420 * be use in 2 fashions. The first one where the HMM user coalesce
421 * multiple page fault into one request and set flags per pfns for
422 * of those faults. The second one where the HMM user want to pre-
423 * fault a range with specific flags. For the latter one it is a
424 * waste to have the user pre-fill the pfn arrays with a default
425 * flags value.
426 */
427 pfns = (pfns & range->pfn_flags_mask) | range->default_flags;
428
429 /* We aren't ask to do anything ... */
430 if (!(pfns & range->flags[HMM_PFN_VALID]))
431 return;
432 /* If this is device memory than only fault if explicitly requested */
433 if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
434 /* Do we fault on device memory ? */
435 if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
436 *write_fault = pfns & range->flags[HMM_PFN_WRITE];
437 *fault = true;
438 }
439 return;
440 }
441
442 /* If CPU page table is not valid then we need to fault */
443 *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
444 /* Need to write fault ? */
445 if ((pfns & range->flags[HMM_PFN_WRITE]) &&
446 !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
447 *write_fault = true;
448 *fault = true;
449 }
450 }
451
452 static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
453 const uint64_t *pfns, unsigned long npages,
454 uint64_t cpu_flags, bool *fault,
455 bool *write_fault)
456 {
457 unsigned long i;
458
459 if (!hmm_vma_walk->fault) {
460 *fault = *write_fault = false;
461 return;
462 }
463
464 *fault = *write_fault = false;
465 for (i = 0; i < npages; ++i) {
466 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
467 fault, write_fault);
468 if ((*write_fault))
469 return;
470 }
471 }
472
473 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
474 struct mm_walk *walk)
475 {
476 struct hmm_vma_walk *hmm_vma_walk = walk->private;
477 struct hmm_range *range = hmm_vma_walk->range;
478 bool fault, write_fault;
479 unsigned long i, npages;
480 uint64_t *pfns;
481
482 i = (addr - range->start) >> PAGE_SHIFT;
483 npages = (end - addr) >> PAGE_SHIFT;
484 pfns = &range->pfns[i];
485 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
486 0, &fault, &write_fault);
487 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
488 }
489
490 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
491 {
492 if (pmd_protnone(pmd))
493 return 0;
494 return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
495 range->flags[HMM_PFN_WRITE] :
496 range->flags[HMM_PFN_VALID];
497 }
498
499 static inline uint64_t pud_to_hmm_pfn_flags(struct hmm_range *range, pud_t pud)
500 {
501 if (!pud_present(pud))
502 return 0;
503 return pud_write(pud) ? range->flags[HMM_PFN_VALID] |
504 range->flags[HMM_PFN_WRITE] :
505 range->flags[HMM_PFN_VALID];
506 }
507
508 static int hmm_vma_handle_pmd(struct mm_walk *walk,
509 unsigned long addr,
510 unsigned long end,
511 uint64_t *pfns,
512 pmd_t pmd)
513 {
514 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
515 struct hmm_vma_walk *hmm_vma_walk = walk->private;
516 struct hmm_range *range = hmm_vma_walk->range;
517 unsigned long pfn, npages, i;
518 bool fault, write_fault;
519 uint64_t cpu_flags;
520
521 npages = (end - addr) >> PAGE_SHIFT;
522 cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
523 hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
524 &fault, &write_fault);
525
526 if (pmd_protnone(pmd) || fault || write_fault)
527 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
528
529 pfn = pmd_pfn(pmd) + pte_index(addr);
530 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) {
531 if (pmd_devmap(pmd)) {
532 hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
533 hmm_vma_walk->pgmap);
534 if (unlikely(!hmm_vma_walk->pgmap))
535 return -EBUSY;
536 }
537 pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags;
538 }
539 if (hmm_vma_walk->pgmap) {
540 put_dev_pagemap(hmm_vma_walk->pgmap);
541 hmm_vma_walk->pgmap = NULL;
542 }
543 hmm_vma_walk->last = end;
544 return 0;
545 #else
546 /* If THP is not enabled then we should never reach that code ! */
547 return -EINVAL;
548 #endif
549 }
550
551 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
552 {
553 if (pte_none(pte) || !pte_present(pte))
554 return 0;
555 return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
556 range->flags[HMM_PFN_WRITE] :
557 range->flags[HMM_PFN_VALID];
558 }
559
560 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
561 unsigned long end, pmd_t *pmdp, pte_t *ptep,
562 uint64_t *pfn)
563 {
564 struct hmm_vma_walk *hmm_vma_walk = walk->private;
565 struct hmm_range *range = hmm_vma_walk->range;
566 struct vm_area_struct *vma = walk->vma;
567 bool fault, write_fault;
568 uint64_t cpu_flags;
569 pte_t pte = *ptep;
570 uint64_t orig_pfn = *pfn;
571
572 *pfn = range->values[HMM_PFN_NONE];
573 fault = write_fault = false;
574
575 if (pte_none(pte)) {
576 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0,
577 &fault, &write_fault);
578 if (fault || write_fault)
579 goto fault;
580 return 0;
581 }
582
583 if (!pte_present(pte)) {
584 swp_entry_t entry = pte_to_swp_entry(pte);
585
586 if (!non_swap_entry(entry)) {
587 if (fault || write_fault)
588 goto fault;
589 return 0;
590 }
591
592 /*
593 * This is a special swap entry, ignore migration, use
594 * device and report anything else as error.
595 */
596 if (is_device_private_entry(entry)) {
597 cpu_flags = range->flags[HMM_PFN_VALID] |
598 range->flags[HMM_PFN_DEVICE_PRIVATE];
599 cpu_flags |= is_write_device_private_entry(entry) ?
600 range->flags[HMM_PFN_WRITE] : 0;
601 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
602 &fault, &write_fault);
603 if (fault || write_fault)
604 goto fault;
605 *pfn = hmm_device_entry_from_pfn(range,
606 swp_offset(entry));
607 *pfn |= cpu_flags;
608 return 0;
609 }
610
611 if (is_migration_entry(entry)) {
612 if (fault || write_fault) {
613 pte_unmap(ptep);
614 hmm_vma_walk->last = addr;
615 migration_entry_wait(vma->vm_mm,
616 pmdp, addr);
617 return -EBUSY;
618 }
619 return 0;
620 }
621
622 /* Report error for everything else */
623 *pfn = range->values[HMM_PFN_ERROR];
624 return -EFAULT;
625 } else {
626 cpu_flags = pte_to_hmm_pfn_flags(range, pte);
627 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
628 &fault, &write_fault);
629 }
630
631 if (fault || write_fault)
632 goto fault;
633
634 if (pte_devmap(pte)) {
635 hmm_vma_walk->pgmap = get_dev_pagemap(pte_pfn(pte),
636 hmm_vma_walk->pgmap);
637 if (unlikely(!hmm_vma_walk->pgmap))
638 return -EBUSY;
639 } else if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pte_special(pte)) {
640 *pfn = range->values[HMM_PFN_SPECIAL];
641 return -EFAULT;
642 }
643
644 *pfn = hmm_device_entry_from_pfn(range, pte_pfn(pte)) | cpu_flags;
645 return 0;
646
647 fault:
648 if (hmm_vma_walk->pgmap) {
649 put_dev_pagemap(hmm_vma_walk->pgmap);
650 hmm_vma_walk->pgmap = NULL;
651 }
652 pte_unmap(ptep);
653 /* Fault any virtual address we were asked to fault */
654 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
655 }
656
657 static int hmm_vma_walk_pmd(pmd_t *pmdp,
658 unsigned long start,
659 unsigned long end,
660 struct mm_walk *walk)
661 {
662 struct hmm_vma_walk *hmm_vma_walk = walk->private;
663 struct hmm_range *range = hmm_vma_walk->range;
664 struct vm_area_struct *vma = walk->vma;
665 uint64_t *pfns = range->pfns;
666 unsigned long addr = start, i;
667 pte_t *ptep;
668 pmd_t pmd;
669
670
671 again:
672 pmd = READ_ONCE(*pmdp);
673 if (pmd_none(pmd))
674 return hmm_vma_walk_hole(start, end, walk);
675
676 if (pmd_huge(pmd) && (range->vma->vm_flags & VM_HUGETLB))
677 return hmm_pfns_bad(start, end, walk);
678
679 if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
680 bool fault, write_fault;
681 unsigned long npages;
682 uint64_t *pfns;
683
684 i = (addr - range->start) >> PAGE_SHIFT;
685 npages = (end - addr) >> PAGE_SHIFT;
686 pfns = &range->pfns[i];
687
688 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
689 0, &fault, &write_fault);
690 if (fault || write_fault) {
691 hmm_vma_walk->last = addr;
692 pmd_migration_entry_wait(vma->vm_mm, pmdp);
693 return -EBUSY;
694 }
695 return 0;
696 } else if (!pmd_present(pmd))
697 return hmm_pfns_bad(start, end, walk);
698
699 if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
700 /*
701 * No need to take pmd_lock here, even if some other threads
702 * is splitting the huge pmd we will get that event through
703 * mmu_notifier callback.
704 *
705 * So just read pmd value and check again its a transparent
706 * huge or device mapping one and compute corresponding pfn
707 * values.
708 */
709 pmd = pmd_read_atomic(pmdp);
710 barrier();
711 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
712 goto again;
713
714 i = (addr - range->start) >> PAGE_SHIFT;
715 return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
716 }
717
718 /*
719 * We have handled all the valid case above ie either none, migration,
720 * huge or transparent huge. At this point either it is a valid pmd
721 * entry pointing to pte directory or it is a bad pmd that will not
722 * recover.
723 */
724 if (pmd_bad(pmd))
725 return hmm_pfns_bad(start, end, walk);
726
727 ptep = pte_offset_map(pmdp, addr);
728 i = (addr - range->start) >> PAGE_SHIFT;
729 for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
730 int r;
731
732 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
733 if (r) {
734 /* hmm_vma_handle_pte() did unmap pte directory */
735 hmm_vma_walk->last = addr;
736 return r;
737 }
738 }
739 if (hmm_vma_walk->pgmap) {
740 /*
741 * We do put_dev_pagemap() here and not in hmm_vma_handle_pte()
742 * so that we can leverage get_dev_pagemap() optimization which
743 * will not re-take a reference on a pgmap if we already have
744 * one.
745 */
746 put_dev_pagemap(hmm_vma_walk->pgmap);
747 hmm_vma_walk->pgmap = NULL;
748 }
749 pte_unmap(ptep - 1);
750
751 hmm_vma_walk->last = addr;
752 return 0;
753 }
754
755 static int hmm_vma_walk_pud(pud_t *pudp,
756 unsigned long start,
757 unsigned long end,
758 struct mm_walk *walk)
759 {
760 struct hmm_vma_walk *hmm_vma_walk = walk->private;
761 struct hmm_range *range = hmm_vma_walk->range;
762 unsigned long addr = start, next;
763 pmd_t *pmdp;
764 pud_t pud;
765 int ret;
766
767 again:
768 pud = READ_ONCE(*pudp);
769 if (pud_none(pud))
770 return hmm_vma_walk_hole(start, end, walk);
771
772 if (pud_huge(pud) && pud_devmap(pud)) {
773 unsigned long i, npages, pfn;
774 uint64_t *pfns, cpu_flags;
775 bool fault, write_fault;
776
777 if (!pud_present(pud))
778 return hmm_vma_walk_hole(start, end, walk);
779
780 i = (addr - range->start) >> PAGE_SHIFT;
781 npages = (end - addr) >> PAGE_SHIFT;
782 pfns = &range->pfns[i];
783
784 cpu_flags = pud_to_hmm_pfn_flags(range, pud);
785 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
786 cpu_flags, &fault, &write_fault);
787 if (fault || write_fault)
788 return hmm_vma_walk_hole_(addr, end, fault,
789 write_fault, walk);
790
791 #ifdef CONFIG_HUGETLB_PAGE
792 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
793 for (i = 0; i < npages; ++i, ++pfn) {
794 hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
795 hmm_vma_walk->pgmap);
796 if (unlikely(!hmm_vma_walk->pgmap))
797 return -EBUSY;
798 pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
799 cpu_flags;
800 }
801 if (hmm_vma_walk->pgmap) {
802 put_dev_pagemap(hmm_vma_walk->pgmap);
803 hmm_vma_walk->pgmap = NULL;
804 }
805 hmm_vma_walk->last = end;
806 return 0;
807 #else
808 return -EINVAL;
809 #endif
810 }
811
812 split_huge_pud(walk->vma, pudp, addr);
813 if (pud_none(*pudp))
814 goto again;
815
816 pmdp = pmd_offset(pudp, addr);
817 do {
818 next = pmd_addr_end(addr, end);
819 ret = hmm_vma_walk_pmd(pmdp, addr, next, walk);
820 if (ret)
821 return ret;
822 } while (pmdp++, addr = next, addr != end);
823
824 return 0;
825 }
826
827 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
828 unsigned long start, unsigned long end,
829 struct mm_walk *walk)
830 {
831 #ifdef CONFIG_HUGETLB_PAGE
832 unsigned long addr = start, i, pfn, mask, size, pfn_inc;
833 struct hmm_vma_walk *hmm_vma_walk = walk->private;
834 struct hmm_range *range = hmm_vma_walk->range;
835 struct vm_area_struct *vma = walk->vma;
836 struct hstate *h = hstate_vma(vma);
837 uint64_t orig_pfn, cpu_flags;
838 bool fault, write_fault;
839 spinlock_t *ptl;
840 pte_t entry;
841 int ret = 0;
842
843 size = 1UL << huge_page_shift(h);
844 mask = size - 1;
845 if (range->page_shift != PAGE_SHIFT) {
846 /* Make sure we are looking at full page. */
847 if (start & mask)
848 return -EINVAL;
849 if (end < (start + size))
850 return -EINVAL;
851 pfn_inc = size >> PAGE_SHIFT;
852 } else {
853 pfn_inc = 1;
854 size = PAGE_SIZE;
855 }
856
857
858 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
859 entry = huge_ptep_get(pte);
860
861 i = (start - range->start) >> range->page_shift;
862 orig_pfn = range->pfns[i];
863 range->pfns[i] = range->values[HMM_PFN_NONE];
864 cpu_flags = pte_to_hmm_pfn_flags(range, entry);
865 fault = write_fault = false;
866 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
867 &fault, &write_fault);
868 if (fault || write_fault) {
869 ret = -ENOENT;
870 goto unlock;
871 }
872
873 pfn = pte_pfn(entry) + ((start & mask) >> range->page_shift);
874 for (; addr < end; addr += size, i++, pfn += pfn_inc)
875 range->pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
876 cpu_flags;
877 hmm_vma_walk->last = end;
878
879 unlock:
880 spin_unlock(ptl);
881
882 if (ret == -ENOENT)
883 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
884
885 return ret;
886 #else /* CONFIG_HUGETLB_PAGE */
887 return -EINVAL;
888 #endif
889 }
890
891 static void hmm_pfns_clear(struct hmm_range *range,
892 uint64_t *pfns,
893 unsigned long addr,
894 unsigned long end)
895 {
896 for (; addr < end; addr += PAGE_SIZE, pfns++)
897 *pfns = range->values[HMM_PFN_NONE];
898 }
899
900 /*
901 * hmm_range_register() - start tracking change to CPU page table over a range
902 * @range: range
903 * @mm: the mm struct for the range of virtual address
904 * @start: start virtual address (inclusive)
905 * @end: end virtual address (exclusive)
906 * @page_shift: expect page shift for the range
907 * Returns 0 on success, -EFAULT if the address space is no longer valid
908 *
909 * Track updates to the CPU page table see include/linux/hmm.h
910 */
911 int hmm_range_register(struct hmm_range *range,
912 struct mm_struct *mm,
913 unsigned long start,
914 unsigned long end,
915 unsigned page_shift)
916 {
917 unsigned long mask = ((1UL << page_shift) - 1UL);
918
919 range->valid = false;
920 range->hmm = NULL;
921
922 if ((start & mask) || (end & mask))
923 return -EINVAL;
924 if (start >= end)
925 return -EINVAL;
926
927 range->page_shift = page_shift;
928 range->start = start;
929 range->end = end;
930
931 range->hmm = hmm_get_or_create(mm);
932 if (!range->hmm)
933 return -EFAULT;
934
935 /* Check if hmm_mm_destroy() was call. */
936 if (range->hmm->mm == NULL || range->hmm->dead) {
937 hmm_put(range->hmm);
938 return -EFAULT;
939 }
940
941 /* Initialize range to track CPU page table update */
942 mutex_lock(&range->hmm->lock);
943
944 list_add_rcu(&range->list, &range->hmm->ranges);
945
946 /*
947 * If there are any concurrent notifiers we have to wait for them for
948 * the range to be valid (see hmm_range_wait_until_valid()).
949 */
950 if (!range->hmm->notifiers)
951 range->valid = true;
952 mutex_unlock(&range->hmm->lock);
953
954 return 0;
955 }
956 EXPORT_SYMBOL(hmm_range_register);
957
958 /*
959 * hmm_range_unregister() - stop tracking change to CPU page table over a range
960 * @range: range
961 *
962 * Range struct is used to track updates to the CPU page table after a call to
963 * hmm_range_register(). See include/linux/hmm.h for how to use it.
964 */
965 void hmm_range_unregister(struct hmm_range *range)
966 {
967 /* Sanity check this really should not happen. */
968 if (range->hmm == NULL || range->end <= range->start)
969 return;
970
971 mutex_lock(&range->hmm->lock);
972 list_del_rcu(&range->list);
973 mutex_unlock(&range->hmm->lock);
974
975 /* Drop reference taken by hmm_range_register() */
976 range->valid = false;
977 hmm_put(range->hmm);
978 range->hmm = NULL;
979 }
980 EXPORT_SYMBOL(hmm_range_unregister);
981
982 /*
983 * hmm_range_snapshot() - snapshot CPU page table for a range
984 * @range: range
985 * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
986 * permission (for instance asking for write and range is read only),
987 * -EAGAIN if you need to retry, -EFAULT invalid (ie either no valid
988 * vma or it is illegal to access that range), number of valid pages
989 * in range->pfns[] (from range start address).
990 *
991 * This snapshots the CPU page table for a range of virtual addresses. Snapshot
992 * validity is tracked by range struct. See in include/linux/hmm.h for example
993 * on how to use.
994 */
995 long hmm_range_snapshot(struct hmm_range *range)
996 {
997 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
998 unsigned long start = range->start, end;
999 struct hmm_vma_walk hmm_vma_walk;
1000 struct hmm *hmm = range->hmm;
1001 struct vm_area_struct *vma;
1002 struct mm_walk mm_walk;
1003
1004 /* Check if hmm_mm_destroy() was call. */
1005 if (hmm->mm == NULL || hmm->dead)
1006 return -EFAULT;
1007
1008 do {
1009 /* If range is no longer valid force retry. */
1010 if (!range->valid)
1011 return -EAGAIN;
1012
1013 vma = find_vma(hmm->mm, start);
1014 if (vma == NULL || (vma->vm_flags & device_vma))
1015 return -EFAULT;
1016
1017 if (is_vm_hugetlb_page(vma)) {
1018 struct hstate *h = hstate_vma(vma);
1019
1020 if (huge_page_shift(h) != range->page_shift &&
1021 range->page_shift != PAGE_SHIFT)
1022 return -EINVAL;
1023 } else {
1024 if (range->page_shift != PAGE_SHIFT)
1025 return -EINVAL;
1026 }
1027
1028 if (!(vma->vm_flags & VM_READ)) {
1029 /*
1030 * If vma do not allow read access, then assume that it
1031 * does not allow write access, either. HMM does not
1032 * support architecture that allow write without read.
1033 */
1034 hmm_pfns_clear(range, range->pfns,
1035 range->start, range->end);
1036 return -EPERM;
1037 }
1038
1039 range->vma = vma;
1040 hmm_vma_walk.pgmap = NULL;
1041 hmm_vma_walk.last = start;
1042 hmm_vma_walk.fault = false;
1043 hmm_vma_walk.range = range;
1044 mm_walk.private = &hmm_vma_walk;
1045 end = min(range->end, vma->vm_end);
1046
1047 mm_walk.vma = vma;
1048 mm_walk.mm = vma->vm_mm;
1049 mm_walk.pte_entry = NULL;
1050 mm_walk.test_walk = NULL;
1051 mm_walk.hugetlb_entry = NULL;
1052 mm_walk.pud_entry = hmm_vma_walk_pud;
1053 mm_walk.pmd_entry = hmm_vma_walk_pmd;
1054 mm_walk.pte_hole = hmm_vma_walk_hole;
1055 mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
1056
1057 walk_page_range(start, end, &mm_walk);
1058 start = end;
1059 } while (start < range->end);
1060
1061 return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1062 }
1063 EXPORT_SYMBOL(hmm_range_snapshot);
1064
1065 /*
1066 * hmm_range_fault() - try to fault some address in a virtual address range
1067 * @range: range being faulted
1068 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
1069 * Returns: number of valid pages in range->pfns[] (from range start
1070 * address). This may be zero. If the return value is negative,
1071 * then one of the following values may be returned:
1072 *
1073 * -EINVAL invalid arguments or mm or virtual address are in an
1074 * invalid vma (for instance device file vma).
1075 * -ENOMEM: Out of memory.
1076 * -EPERM: Invalid permission (for instance asking for write and
1077 * range is read only).
1078 * -EAGAIN: If you need to retry and mmap_sem was drop. This can only
1079 * happens if block argument is false.
1080 * -EBUSY: If the the range is being invalidated and you should wait
1081 * for invalidation to finish.
1082 * -EFAULT: Invalid (ie either no valid vma or it is illegal to access
1083 * that range), number of valid pages in range->pfns[] (from
1084 * range start address).
1085 *
1086 * This is similar to a regular CPU page fault except that it will not trigger
1087 * any memory migration if the memory being faulted is not accessible by CPUs
1088 * and caller does not ask for migration.
1089 *
1090 * On error, for one virtual address in the range, the function will mark the
1091 * corresponding HMM pfn entry with an error flag.
1092 */
1093 long hmm_range_fault(struct hmm_range *range, bool block)
1094 {
1095 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
1096 unsigned long start = range->start, end;
1097 struct hmm_vma_walk hmm_vma_walk;
1098 struct hmm *hmm = range->hmm;
1099 struct vm_area_struct *vma;
1100 struct mm_walk mm_walk;
1101 int ret;
1102
1103 /* Check if hmm_mm_destroy() was call. */
1104 if (hmm->mm == NULL || hmm->dead)
1105 return -EFAULT;
1106
1107 do {
1108 /* If range is no longer valid force retry. */
1109 if (!range->valid) {
1110 up_read(&hmm->mm->mmap_sem);
1111 return -EAGAIN;
1112 }
1113
1114 vma = find_vma(hmm->mm, start);
1115 if (vma == NULL || (vma->vm_flags & device_vma))
1116 return -EFAULT;
1117
1118 if (is_vm_hugetlb_page(vma)) {
1119 if (huge_page_shift(hstate_vma(vma)) !=
1120 range->page_shift &&
1121 range->page_shift != PAGE_SHIFT)
1122 return -EINVAL;
1123 } else {
1124 if (range->page_shift != PAGE_SHIFT)
1125 return -EINVAL;
1126 }
1127
1128 if (!(vma->vm_flags & VM_READ)) {
1129 /*
1130 * If vma do not allow read access, then assume that it
1131 * does not allow write access, either. HMM does not
1132 * support architecture that allow write without read.
1133 */
1134 hmm_pfns_clear(range, range->pfns,
1135 range->start, range->end);
1136 return -EPERM;
1137 }
1138
1139 range->vma = vma;
1140 hmm_vma_walk.pgmap = NULL;
1141 hmm_vma_walk.last = start;
1142 hmm_vma_walk.fault = true;
1143 hmm_vma_walk.block = block;
1144 hmm_vma_walk.range = range;
1145 mm_walk.private = &hmm_vma_walk;
1146 end = min(range->end, vma->vm_end);
1147
1148 mm_walk.vma = vma;
1149 mm_walk.mm = vma->vm_mm;
1150 mm_walk.pte_entry = NULL;
1151 mm_walk.test_walk = NULL;
1152 mm_walk.hugetlb_entry = NULL;
1153 mm_walk.pud_entry = hmm_vma_walk_pud;
1154 mm_walk.pmd_entry = hmm_vma_walk_pmd;
1155 mm_walk.pte_hole = hmm_vma_walk_hole;
1156 mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
1157
1158 do {
1159 ret = walk_page_range(start, end, &mm_walk);
1160 start = hmm_vma_walk.last;
1161
1162 /* Keep trying while the range is valid. */
1163 } while (ret == -EBUSY && range->valid);
1164
1165 if (ret) {
1166 unsigned long i;
1167
1168 i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1169 hmm_pfns_clear(range, &range->pfns[i],
1170 hmm_vma_walk.last, range->end);
1171 return ret;
1172 }
1173 start = end;
1174
1175 } while (start < range->end);
1176
1177 return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1178 }
1179 EXPORT_SYMBOL(hmm_range_fault);
1180
1181 /**
1182 * hmm_range_dma_map() - hmm_range_fault() and dma map page all in one.
1183 * @range: range being faulted
1184 * @device: device against to dma map page to
1185 * @daddrs: dma address of mapped pages
1186 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
1187 * Returns: number of pages mapped on success, -EAGAIN if mmap_sem have been
1188 * drop and you need to try again, some other error value otherwise
1189 *
1190 * Note same usage pattern as hmm_range_fault().
1191 */
1192 long hmm_range_dma_map(struct hmm_range *range,
1193 struct device *device,
1194 dma_addr_t *daddrs,
1195 bool block)
1196 {
1197 unsigned long i, npages, mapped;
1198 long ret;
1199
1200 ret = hmm_range_fault(range, block);
1201 if (ret <= 0)
1202 return ret ? ret : -EBUSY;
1203
1204 npages = (range->end - range->start) >> PAGE_SHIFT;
1205 for (i = 0, mapped = 0; i < npages; ++i) {
1206 enum dma_data_direction dir = DMA_TO_DEVICE;
1207 struct page *page;
1208
1209 /*
1210 * FIXME need to update DMA API to provide invalid DMA address
1211 * value instead of a function to test dma address value. This
1212 * would remove lot of dumb code duplicated accross many arch.
1213 *
1214 * For now setting it to 0 here is good enough as the pfns[]
1215 * value is what is use to check what is valid and what isn't.
1216 */
1217 daddrs[i] = 0;
1218
1219 page = hmm_device_entry_to_page(range, range->pfns[i]);
1220 if (page == NULL)
1221 continue;
1222
1223 /* Check if range is being invalidated */
1224 if (!range->valid) {
1225 ret = -EBUSY;
1226 goto unmap;
1227 }
1228
1229 /* If it is read and write than map bi-directional. */
1230 if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1231 dir = DMA_BIDIRECTIONAL;
1232
1233 daddrs[i] = dma_map_page(device, page, 0, PAGE_SIZE, dir);
1234 if (dma_mapping_error(device, daddrs[i])) {
1235 ret = -EFAULT;
1236 goto unmap;
1237 }
1238
1239 mapped++;
1240 }
1241
1242 return mapped;
1243
1244 unmap:
1245 for (npages = i, i = 0; (i < npages) && mapped; ++i) {
1246 enum dma_data_direction dir = DMA_TO_DEVICE;
1247 struct page *page;
1248
1249 page = hmm_device_entry_to_page(range, range->pfns[i]);
1250 if (page == NULL)
1251 continue;
1252
1253 if (dma_mapping_error(device, daddrs[i]))
1254 continue;
1255
1256 /* If it is read and write than map bi-directional. */
1257 if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1258 dir = DMA_BIDIRECTIONAL;
1259
1260 dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1261 mapped--;
1262 }
1263
1264 return ret;
1265 }
1266 EXPORT_SYMBOL(hmm_range_dma_map);
1267
1268 /**
1269 * hmm_range_dma_unmap() - unmap range of that was map with hmm_range_dma_map()
1270 * @range: range being unmapped
1271 * @vma: the vma against which the range (optional)
1272 * @device: device against which dma map was done
1273 * @daddrs: dma address of mapped pages
1274 * @dirty: dirty page if it had the write flag set
1275 * Returns: number of page unmapped on success, -EINVAL otherwise
1276 *
1277 * Note that caller MUST abide by mmu notifier or use HMM mirror and abide
1278 * to the sync_cpu_device_pagetables() callback so that it is safe here to
1279 * call set_page_dirty(). Caller must also take appropriate locks to avoid
1280 * concurrent mmu notifier or sync_cpu_device_pagetables() to make progress.
1281 */
1282 long hmm_range_dma_unmap(struct hmm_range *range,
1283 struct vm_area_struct *vma,
1284 struct device *device,
1285 dma_addr_t *daddrs,
1286 bool dirty)
1287 {
1288 unsigned long i, npages;
1289 long cpages = 0;
1290
1291 /* Sanity check. */
1292 if (range->end <= range->start)
1293 return -EINVAL;
1294 if (!daddrs)
1295 return -EINVAL;
1296 if (!range->pfns)
1297 return -EINVAL;
1298
1299 npages = (range->end - range->start) >> PAGE_SHIFT;
1300 for (i = 0; i < npages; ++i) {
1301 enum dma_data_direction dir = DMA_TO_DEVICE;
1302 struct page *page;
1303
1304 page = hmm_device_entry_to_page(range, range->pfns[i]);
1305 if (page == NULL)
1306 continue;
1307
1308 /* If it is read and write than map bi-directional. */
1309 if (range->pfns[i] & range->flags[HMM_PFN_WRITE]) {
1310 dir = DMA_BIDIRECTIONAL;
1311
1312 /*
1313 * See comments in function description on why it is
1314 * safe here to call set_page_dirty()
1315 */
1316 if (dirty)
1317 set_page_dirty(page);
1318 }
1319
1320 /* Unmap and clear pfns/dma address */
1321 dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1322 range->pfns[i] = range->values[HMM_PFN_NONE];
1323 /* FIXME see comments in hmm_vma_dma_map() */
1324 daddrs[i] = 0;
1325 cpages++;
1326 }
1327
1328 return cpages;
1329 }
1330 EXPORT_SYMBOL(hmm_range_dma_unmap);
1331 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
1332
1333
1334 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) || IS_ENABLED(CONFIG_DEVICE_PUBLIC)
1335 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
1336 unsigned long addr)
1337 {
1338 struct page *page;
1339
1340 page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
1341 if (!page)
1342 return NULL;
1343 lock_page(page);
1344 return page;
1345 }
1346 EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
1347
1348
1349 static void hmm_devmem_ref_release(struct percpu_ref *ref)
1350 {
1351 struct hmm_devmem *devmem;
1352
1353 devmem = container_of(ref, struct hmm_devmem, ref);
1354 complete(&devmem->completion);
1355 }
1356
1357 static void hmm_devmem_ref_exit(struct percpu_ref *ref)
1358 {
1359 struct hmm_devmem *devmem;
1360
1361 devmem = container_of(ref, struct hmm_devmem, ref);
1362 wait_for_completion(&devmem->completion);
1363 percpu_ref_exit(ref);
1364 }
1365
1366 static void hmm_devmem_ref_kill(struct percpu_ref *ref)
1367 {
1368 percpu_ref_kill(ref);
1369 }
1370
1371 static vm_fault_t hmm_devmem_fault(struct vm_area_struct *vma,
1372 unsigned long addr,
1373 const struct page *page,
1374 unsigned int flags,
1375 pmd_t *pmdp)
1376 {
1377 struct hmm_devmem *devmem = page->pgmap->data;
1378
1379 return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
1380 }
1381
1382 static void hmm_devmem_free(struct page *page, void *data)
1383 {
1384 struct hmm_devmem *devmem = data;
1385
1386 page->mapping = NULL;
1387
1388 devmem->ops->free(devmem, page);
1389 }
1390
1391 /*
1392 * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
1393 *
1394 * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1395 * @device: device struct to bind the resource too
1396 * @size: size in bytes of the device memory to add
1397 * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
1398 *
1399 * This function first finds an empty range of physical address big enough to
1400 * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1401 * in turn allocates struct pages. It does not do anything beyond that; all
1402 * events affecting the memory will go through the various callbacks provided
1403 * by hmm_devmem_ops struct.
1404 *
1405 * Device driver should call this function during device initialization and
1406 * is then responsible of memory management. HMM only provides helpers.
1407 */
1408 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
1409 struct device *device,
1410 unsigned long size)
1411 {
1412 struct hmm_devmem *devmem;
1413 resource_size_t addr;
1414 void *result;
1415 int ret;
1416
1417 dev_pagemap_get_ops();
1418
1419 devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
1420 if (!devmem)
1421 return ERR_PTR(-ENOMEM);
1422
1423 init_completion(&devmem->completion);
1424 devmem->pfn_first = -1UL;
1425 devmem->pfn_last = -1UL;
1426 devmem->resource = NULL;
1427 devmem->device = device;
1428 devmem->ops = ops;
1429
1430 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1431 0, GFP_KERNEL);
1432 if (ret)
1433 return ERR_PTR(ret);
1434
1435 size = ALIGN(size, PA_SECTION_SIZE);
1436 addr = min((unsigned long)iomem_resource.end,
1437 (1UL << MAX_PHYSMEM_BITS) - 1);
1438 addr = addr - size + 1UL;
1439
1440 /*
1441 * FIXME add a new helper to quickly walk resource tree and find free
1442 * range
1443 *
1444 * FIXME what about ioport_resource resource ?
1445 */
1446 for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1447 ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1448 if (ret != REGION_DISJOINT)
1449 continue;
1450
1451 devmem->resource = devm_request_mem_region(device, addr, size,
1452 dev_name(device));
1453 if (!devmem->resource)
1454 return ERR_PTR(-ENOMEM);
1455 break;
1456 }
1457 if (!devmem->resource)
1458 return ERR_PTR(-ERANGE);
1459
1460 devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1461 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1462 devmem->pfn_last = devmem->pfn_first +
1463 (resource_size(devmem->resource) >> PAGE_SHIFT);
1464 devmem->page_fault = hmm_devmem_fault;
1465
1466 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
1467 devmem->pagemap.res = *devmem->resource;
1468 devmem->pagemap.page_free = hmm_devmem_free;
1469 devmem->pagemap.altmap_valid = false;
1470 devmem->pagemap.ref = &devmem->ref;
1471 devmem->pagemap.data = devmem;
1472 devmem->pagemap.kill = hmm_devmem_ref_kill;
1473 devmem->pagemap.cleanup = hmm_devmem_ref_exit;
1474
1475 result = devm_memremap_pages(devmem->device, &devmem->pagemap);
1476 if (IS_ERR(result))
1477 return result;
1478 return devmem;
1479 }
1480 EXPORT_SYMBOL_GPL(hmm_devmem_add);
1481
1482 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1483 struct device *device,
1484 struct resource *res)
1485 {
1486 struct hmm_devmem *devmem;
1487 void *result;
1488 int ret;
1489
1490 if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1491 return ERR_PTR(-EINVAL);
1492
1493 dev_pagemap_get_ops();
1494
1495 devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
1496 if (!devmem)
1497 return ERR_PTR(-ENOMEM);
1498
1499 init_completion(&devmem->completion);
1500 devmem->pfn_first = -1UL;
1501 devmem->pfn_last = -1UL;
1502 devmem->resource = res;
1503 devmem->device = device;
1504 devmem->ops = ops;
1505
1506 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1507 0, GFP_KERNEL);
1508 if (ret)
1509 return ERR_PTR(ret);
1510
1511 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1512 devmem->pfn_last = devmem->pfn_first +
1513 (resource_size(devmem->resource) >> PAGE_SHIFT);
1514 devmem->page_fault = hmm_devmem_fault;
1515
1516 devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
1517 devmem->pagemap.res = *devmem->resource;
1518 devmem->pagemap.page_free = hmm_devmem_free;
1519 devmem->pagemap.altmap_valid = false;
1520 devmem->pagemap.ref = &devmem->ref;
1521 devmem->pagemap.data = devmem;
1522 devmem->pagemap.kill = hmm_devmem_ref_kill;
1523 devmem->pagemap.cleanup = hmm_devmem_ref_exit;
1524
1525 result = devm_memremap_pages(devmem->device, &devmem->pagemap);
1526 if (IS_ERR(result))
1527 return result;
1528 return devmem;
1529 }
1530 EXPORT_SYMBOL_GPL(hmm_devmem_add_resource);
1531
1532 /*
1533 * A device driver that wants to handle multiple devices memory through a
1534 * single fake device can use hmm_device to do so. This is purely a helper
1535 * and it is not needed to make use of any HMM functionality.
1536 */
1537 #define HMM_DEVICE_MAX 256
1538
1539 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1540 static DEFINE_SPINLOCK(hmm_device_lock);
1541 static struct class *hmm_device_class;
1542 static dev_t hmm_device_devt;
1543
1544 static void hmm_device_release(struct device *device)
1545 {
1546 struct hmm_device *hmm_device;
1547
1548 hmm_device = container_of(device, struct hmm_device, device);
1549 spin_lock(&hmm_device_lock);
1550 clear_bit(hmm_device->minor, hmm_device_mask);
1551 spin_unlock(&hmm_device_lock);
1552
1553 kfree(hmm_device);
1554 }
1555
1556 struct hmm_device *hmm_device_new(void *drvdata)
1557 {
1558 struct hmm_device *hmm_device;
1559
1560 hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1561 if (!hmm_device)
1562 return ERR_PTR(-ENOMEM);
1563
1564 spin_lock(&hmm_device_lock);
1565 hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1566 if (hmm_device->minor >= HMM_DEVICE_MAX) {
1567 spin_unlock(&hmm_device_lock);
1568 kfree(hmm_device);
1569 return ERR_PTR(-EBUSY);
1570 }
1571 set_bit(hmm_device->minor, hmm_device_mask);
1572 spin_unlock(&hmm_device_lock);
1573
1574 dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1575 hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1576 hmm_device->minor);
1577 hmm_device->device.release = hmm_device_release;
1578 dev_set_drvdata(&hmm_device->device, drvdata);
1579 hmm_device->device.class = hmm_device_class;
1580 device_initialize(&hmm_device->device);
1581
1582 return hmm_device;
1583 }
1584 EXPORT_SYMBOL(hmm_device_new);
1585
1586 void hmm_device_put(struct hmm_device *hmm_device)
1587 {
1588 put_device(&hmm_device->device);
1589 }
1590 EXPORT_SYMBOL(hmm_device_put);
1591
1592 static int __init hmm_init(void)
1593 {
1594 int ret;
1595
1596 ret = alloc_chrdev_region(&hmm_device_devt, 0,
1597 HMM_DEVICE_MAX,
1598 "hmm_device");
1599 if (ret)
1600 return ret;
1601
1602 hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1603 if (IS_ERR(hmm_device_class)) {
1604 unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1605 return PTR_ERR(hmm_device_class);
1606 }
1607 return 0;
1608 }
1609
1610 device_initcall(hmm_init);
1611 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */