]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/oom_kill.c
Linux 4.20.17
[thirdparty/kernel/stable.git] / mm / oom_kill.c
1 /*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 * Copyright (C) 2010 Google, Inc.
8 * Rewritten by David Rientjes
9 *
10 * The routines in this file are used to kill a process when
11 * we're seriously out of memory. This gets called from __alloc_pages()
12 * in mm/page_alloc.c when we really run out of memory.
13 *
14 * Since we won't call these routines often (on a well-configured
15 * machine) this file will double as a 'coding guide' and a signpost
16 * for newbie kernel hackers. It features several pointers to major
17 * kernel subsystems and hints as to where to find out what things do.
18 */
19
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/sched/mm.h>
26 #include <linux/sched/coredump.h>
27 #include <linux/sched/task.h>
28 #include <linux/swap.h>
29 #include <linux/timex.h>
30 #include <linux/jiffies.h>
31 #include <linux/cpuset.h>
32 #include <linux/export.h>
33 #include <linux/notifier.h>
34 #include <linux/memcontrol.h>
35 #include <linux/mempolicy.h>
36 #include <linux/security.h>
37 #include <linux/ptrace.h>
38 #include <linux/freezer.h>
39 #include <linux/ftrace.h>
40 #include <linux/ratelimit.h>
41 #include <linux/kthread.h>
42 #include <linux/init.h>
43 #include <linux/mmu_notifier.h>
44
45 #include <asm/tlb.h>
46 #include "internal.h"
47 #include "slab.h"
48
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/oom.h>
51
52 int sysctl_panic_on_oom;
53 int sysctl_oom_kill_allocating_task;
54 int sysctl_oom_dump_tasks = 1;
55
56 /*
57 * Serializes oom killer invocations (out_of_memory()) from all contexts to
58 * prevent from over eager oom killing (e.g. when the oom killer is invoked
59 * from different domains).
60 *
61 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
62 * and mark_oom_victim
63 */
64 DEFINE_MUTEX(oom_lock);
65
66 #ifdef CONFIG_NUMA
67 /**
68 * has_intersects_mems_allowed() - check task eligiblity for kill
69 * @start: task struct of which task to consider
70 * @mask: nodemask passed to page allocator for mempolicy ooms
71 *
72 * Task eligibility is determined by whether or not a candidate task, @tsk,
73 * shares the same mempolicy nodes as current if it is bound by such a policy
74 * and whether or not it has the same set of allowed cpuset nodes.
75 */
76 static bool has_intersects_mems_allowed(struct task_struct *start,
77 const nodemask_t *mask)
78 {
79 struct task_struct *tsk;
80 bool ret = false;
81
82 rcu_read_lock();
83 for_each_thread(start, tsk) {
84 if (mask) {
85 /*
86 * If this is a mempolicy constrained oom, tsk's
87 * cpuset is irrelevant. Only return true if its
88 * mempolicy intersects current, otherwise it may be
89 * needlessly killed.
90 */
91 ret = mempolicy_nodemask_intersects(tsk, mask);
92 } else {
93 /*
94 * This is not a mempolicy constrained oom, so only
95 * check the mems of tsk's cpuset.
96 */
97 ret = cpuset_mems_allowed_intersects(current, tsk);
98 }
99 if (ret)
100 break;
101 }
102 rcu_read_unlock();
103
104 return ret;
105 }
106 #else
107 static bool has_intersects_mems_allowed(struct task_struct *tsk,
108 const nodemask_t *mask)
109 {
110 return true;
111 }
112 #endif /* CONFIG_NUMA */
113
114 /*
115 * The process p may have detached its own ->mm while exiting or through
116 * use_mm(), but one or more of its subthreads may still have a valid
117 * pointer. Return p, or any of its subthreads with a valid ->mm, with
118 * task_lock() held.
119 */
120 struct task_struct *find_lock_task_mm(struct task_struct *p)
121 {
122 struct task_struct *t;
123
124 rcu_read_lock();
125
126 for_each_thread(p, t) {
127 task_lock(t);
128 if (likely(t->mm))
129 goto found;
130 task_unlock(t);
131 }
132 t = NULL;
133 found:
134 rcu_read_unlock();
135
136 return t;
137 }
138
139 /*
140 * order == -1 means the oom kill is required by sysrq, otherwise only
141 * for display purposes.
142 */
143 static inline bool is_sysrq_oom(struct oom_control *oc)
144 {
145 return oc->order == -1;
146 }
147
148 static inline bool is_memcg_oom(struct oom_control *oc)
149 {
150 return oc->memcg != NULL;
151 }
152
153 /* return true if the task is not adequate as candidate victim task. */
154 static bool oom_unkillable_task(struct task_struct *p,
155 struct mem_cgroup *memcg, const nodemask_t *nodemask)
156 {
157 if (is_global_init(p))
158 return true;
159 if (p->flags & PF_KTHREAD)
160 return true;
161
162 /* When mem_cgroup_out_of_memory() and p is not member of the group */
163 if (memcg && !task_in_mem_cgroup(p, memcg))
164 return true;
165
166 /* p may not have freeable memory in nodemask */
167 if (!has_intersects_mems_allowed(p, nodemask))
168 return true;
169
170 return false;
171 }
172
173 /*
174 * Print out unreclaimble slabs info when unreclaimable slabs amount is greater
175 * than all user memory (LRU pages)
176 */
177 static bool is_dump_unreclaim_slabs(void)
178 {
179 unsigned long nr_lru;
180
181 nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
182 global_node_page_state(NR_INACTIVE_ANON) +
183 global_node_page_state(NR_ACTIVE_FILE) +
184 global_node_page_state(NR_INACTIVE_FILE) +
185 global_node_page_state(NR_ISOLATED_ANON) +
186 global_node_page_state(NR_ISOLATED_FILE) +
187 global_node_page_state(NR_UNEVICTABLE);
188
189 return (global_node_page_state(NR_SLAB_UNRECLAIMABLE) > nr_lru);
190 }
191
192 /**
193 * oom_badness - heuristic function to determine which candidate task to kill
194 * @p: task struct of which task we should calculate
195 * @totalpages: total present RAM allowed for page allocation
196 * @memcg: task's memory controller, if constrained
197 * @nodemask: nodemask passed to page allocator for mempolicy ooms
198 *
199 * The heuristic for determining which task to kill is made to be as simple and
200 * predictable as possible. The goal is to return the highest value for the
201 * task consuming the most memory to avoid subsequent oom failures.
202 */
203 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
204 const nodemask_t *nodemask, unsigned long totalpages)
205 {
206 long points;
207 long adj;
208
209 if (oom_unkillable_task(p, memcg, nodemask))
210 return 0;
211
212 p = find_lock_task_mm(p);
213 if (!p)
214 return 0;
215
216 /*
217 * Do not even consider tasks which are explicitly marked oom
218 * unkillable or have been already oom reaped or the are in
219 * the middle of vfork
220 */
221 adj = (long)p->signal->oom_score_adj;
222 if (adj == OOM_SCORE_ADJ_MIN ||
223 test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
224 in_vfork(p)) {
225 task_unlock(p);
226 return 0;
227 }
228
229 /*
230 * The baseline for the badness score is the proportion of RAM that each
231 * task's rss, pagetable and swap space use.
232 */
233 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
234 mm_pgtables_bytes(p->mm) / PAGE_SIZE;
235 task_unlock(p);
236
237 /* Normalize to oom_score_adj units */
238 adj *= totalpages / 1000;
239 points += adj;
240
241 /*
242 * Never return 0 for an eligible task regardless of the root bonus and
243 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
244 */
245 return points > 0 ? points : 1;
246 }
247
248 enum oom_constraint {
249 CONSTRAINT_NONE,
250 CONSTRAINT_CPUSET,
251 CONSTRAINT_MEMORY_POLICY,
252 CONSTRAINT_MEMCG,
253 };
254
255 /*
256 * Determine the type of allocation constraint.
257 */
258 static enum oom_constraint constrained_alloc(struct oom_control *oc)
259 {
260 struct zone *zone;
261 struct zoneref *z;
262 enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
263 bool cpuset_limited = false;
264 int nid;
265
266 if (is_memcg_oom(oc)) {
267 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
268 return CONSTRAINT_MEMCG;
269 }
270
271 /* Default to all available memory */
272 oc->totalpages = totalram_pages + total_swap_pages;
273
274 if (!IS_ENABLED(CONFIG_NUMA))
275 return CONSTRAINT_NONE;
276
277 if (!oc->zonelist)
278 return CONSTRAINT_NONE;
279 /*
280 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
281 * to kill current.We have to random task kill in this case.
282 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
283 */
284 if (oc->gfp_mask & __GFP_THISNODE)
285 return CONSTRAINT_NONE;
286
287 /*
288 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
289 * the page allocator means a mempolicy is in effect. Cpuset policy
290 * is enforced in get_page_from_freelist().
291 */
292 if (oc->nodemask &&
293 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
294 oc->totalpages = total_swap_pages;
295 for_each_node_mask(nid, *oc->nodemask)
296 oc->totalpages += node_spanned_pages(nid);
297 return CONSTRAINT_MEMORY_POLICY;
298 }
299
300 /* Check this allocation failure is caused by cpuset's wall function */
301 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
302 high_zoneidx, oc->nodemask)
303 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
304 cpuset_limited = true;
305
306 if (cpuset_limited) {
307 oc->totalpages = total_swap_pages;
308 for_each_node_mask(nid, cpuset_current_mems_allowed)
309 oc->totalpages += node_spanned_pages(nid);
310 return CONSTRAINT_CPUSET;
311 }
312 return CONSTRAINT_NONE;
313 }
314
315 static int oom_evaluate_task(struct task_struct *task, void *arg)
316 {
317 struct oom_control *oc = arg;
318 unsigned long points;
319
320 if (oom_unkillable_task(task, NULL, oc->nodemask))
321 goto next;
322
323 /*
324 * This task already has access to memory reserves and is being killed.
325 * Don't allow any other task to have access to the reserves unless
326 * the task has MMF_OOM_SKIP because chances that it would release
327 * any memory is quite low.
328 */
329 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
330 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
331 goto next;
332 goto abort;
333 }
334
335 /*
336 * If task is allocating a lot of memory and has been marked to be
337 * killed first if it triggers an oom, then select it.
338 */
339 if (oom_task_origin(task)) {
340 points = ULONG_MAX;
341 goto select;
342 }
343
344 points = oom_badness(task, NULL, oc->nodemask, oc->totalpages);
345 if (!points || points < oc->chosen_points)
346 goto next;
347
348 /* Prefer thread group leaders for display purposes */
349 if (points == oc->chosen_points && thread_group_leader(oc->chosen))
350 goto next;
351 select:
352 if (oc->chosen)
353 put_task_struct(oc->chosen);
354 get_task_struct(task);
355 oc->chosen = task;
356 oc->chosen_points = points;
357 next:
358 return 0;
359 abort:
360 if (oc->chosen)
361 put_task_struct(oc->chosen);
362 oc->chosen = (void *)-1UL;
363 return 1;
364 }
365
366 /*
367 * Simple selection loop. We choose the process with the highest number of
368 * 'points'. In case scan was aborted, oc->chosen is set to -1.
369 */
370 static void select_bad_process(struct oom_control *oc)
371 {
372 if (is_memcg_oom(oc))
373 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
374 else {
375 struct task_struct *p;
376
377 rcu_read_lock();
378 for_each_process(p)
379 if (oom_evaluate_task(p, oc))
380 break;
381 rcu_read_unlock();
382 }
383
384 oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages;
385 }
386
387 /**
388 * dump_tasks - dump current memory state of all system tasks
389 * @memcg: current's memory controller, if constrained
390 * @nodemask: nodemask passed to page allocator for mempolicy ooms
391 *
392 * Dumps the current memory state of all eligible tasks. Tasks not in the same
393 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
394 * are not shown.
395 * State information includes task's pid, uid, tgid, vm size, rss,
396 * pgtables_bytes, swapents, oom_score_adj value, and name.
397 */
398 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
399 {
400 struct task_struct *p;
401 struct task_struct *task;
402
403 pr_info("Tasks state (memory values in pages):\n");
404 pr_info("[ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name\n");
405 rcu_read_lock();
406 for_each_process(p) {
407 if (oom_unkillable_task(p, memcg, nodemask))
408 continue;
409
410 task = find_lock_task_mm(p);
411 if (!task) {
412 /*
413 * This is a kthread or all of p's threads have already
414 * detached their mm's. There's no need to report
415 * them; they can't be oom killed anyway.
416 */
417 continue;
418 }
419
420 pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu %5hd %s\n",
421 task->pid, from_kuid(&init_user_ns, task_uid(task)),
422 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
423 mm_pgtables_bytes(task->mm),
424 get_mm_counter(task->mm, MM_SWAPENTS),
425 task->signal->oom_score_adj, task->comm);
426 task_unlock(task);
427 }
428 rcu_read_unlock();
429 }
430
431 static void dump_header(struct oom_control *oc, struct task_struct *p)
432 {
433 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), nodemask=%*pbl, order=%d, oom_score_adj=%hd\n",
434 current->comm, oc->gfp_mask, &oc->gfp_mask,
435 nodemask_pr_args(oc->nodemask), oc->order,
436 current->signal->oom_score_adj);
437 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
438 pr_warn("COMPACTION is disabled!!!\n");
439
440 cpuset_print_current_mems_allowed();
441 dump_stack();
442 if (is_memcg_oom(oc))
443 mem_cgroup_print_oom_info(oc->memcg, p);
444 else {
445 show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
446 if (is_dump_unreclaim_slabs())
447 dump_unreclaimable_slab();
448 }
449 if (sysctl_oom_dump_tasks)
450 dump_tasks(oc->memcg, oc->nodemask);
451 }
452
453 /*
454 * Number of OOM victims in flight
455 */
456 static atomic_t oom_victims = ATOMIC_INIT(0);
457 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
458
459 static bool oom_killer_disabled __read_mostly;
460
461 #define K(x) ((x) << (PAGE_SHIFT-10))
462
463 /*
464 * task->mm can be NULL if the task is the exited group leader. So to
465 * determine whether the task is using a particular mm, we examine all the
466 * task's threads: if one of those is using this mm then this task was also
467 * using it.
468 */
469 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
470 {
471 struct task_struct *t;
472
473 for_each_thread(p, t) {
474 struct mm_struct *t_mm = READ_ONCE(t->mm);
475 if (t_mm)
476 return t_mm == mm;
477 }
478 return false;
479 }
480
481 #ifdef CONFIG_MMU
482 /*
483 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
484 * victim (if that is possible) to help the OOM killer to move on.
485 */
486 static struct task_struct *oom_reaper_th;
487 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
488 static struct task_struct *oom_reaper_list;
489 static DEFINE_SPINLOCK(oom_reaper_lock);
490
491 bool __oom_reap_task_mm(struct mm_struct *mm)
492 {
493 struct vm_area_struct *vma;
494 bool ret = true;
495
496 /*
497 * Tell all users of get_user/copy_from_user etc... that the content
498 * is no longer stable. No barriers really needed because unmapping
499 * should imply barriers already and the reader would hit a page fault
500 * if it stumbled over a reaped memory.
501 */
502 set_bit(MMF_UNSTABLE, &mm->flags);
503
504 for (vma = mm->mmap ; vma; vma = vma->vm_next) {
505 if (!can_madv_dontneed_vma(vma))
506 continue;
507
508 /*
509 * Only anonymous pages have a good chance to be dropped
510 * without additional steps which we cannot afford as we
511 * are OOM already.
512 *
513 * We do not even care about fs backed pages because all
514 * which are reclaimable have already been reclaimed and
515 * we do not want to block exit_mmap by keeping mm ref
516 * count elevated without a good reason.
517 */
518 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
519 const unsigned long start = vma->vm_start;
520 const unsigned long end = vma->vm_end;
521 struct mmu_gather tlb;
522
523 tlb_gather_mmu(&tlb, mm, start, end);
524 if (mmu_notifier_invalidate_range_start_nonblock(mm, start, end)) {
525 tlb_finish_mmu(&tlb, start, end);
526 ret = false;
527 continue;
528 }
529 unmap_page_range(&tlb, vma, start, end, NULL);
530 mmu_notifier_invalidate_range_end(mm, start, end);
531 tlb_finish_mmu(&tlb, start, end);
532 }
533 }
534
535 return ret;
536 }
537
538 /*
539 * Reaps the address space of the give task.
540 *
541 * Returns true on success and false if none or part of the address space
542 * has been reclaimed and the caller should retry later.
543 */
544 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
545 {
546 bool ret = true;
547
548 if (!down_read_trylock(&mm->mmap_sem)) {
549 trace_skip_task_reaping(tsk->pid);
550 return false;
551 }
552
553 /*
554 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
555 * work on the mm anymore. The check for MMF_OOM_SKIP must run
556 * under mmap_sem for reading because it serializes against the
557 * down_write();up_write() cycle in exit_mmap().
558 */
559 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
560 trace_skip_task_reaping(tsk->pid);
561 goto out_unlock;
562 }
563
564 trace_start_task_reaping(tsk->pid);
565
566 /* failed to reap part of the address space. Try again later */
567 ret = __oom_reap_task_mm(mm);
568 if (!ret)
569 goto out_finish;
570
571 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
572 task_pid_nr(tsk), tsk->comm,
573 K(get_mm_counter(mm, MM_ANONPAGES)),
574 K(get_mm_counter(mm, MM_FILEPAGES)),
575 K(get_mm_counter(mm, MM_SHMEMPAGES)));
576 out_finish:
577 trace_finish_task_reaping(tsk->pid);
578 out_unlock:
579 up_read(&mm->mmap_sem);
580
581 return ret;
582 }
583
584 #define MAX_OOM_REAP_RETRIES 10
585 static void oom_reap_task(struct task_struct *tsk)
586 {
587 int attempts = 0;
588 struct mm_struct *mm = tsk->signal->oom_mm;
589
590 /* Retry the down_read_trylock(mmap_sem) a few times */
591 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
592 schedule_timeout_idle(HZ/10);
593
594 if (attempts <= MAX_OOM_REAP_RETRIES ||
595 test_bit(MMF_OOM_SKIP, &mm->flags))
596 goto done;
597
598 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
599 task_pid_nr(tsk), tsk->comm);
600 debug_show_all_locks();
601
602 done:
603 tsk->oom_reaper_list = NULL;
604
605 /*
606 * Hide this mm from OOM killer because it has been either reaped or
607 * somebody can't call up_write(mmap_sem).
608 */
609 set_bit(MMF_OOM_SKIP, &mm->flags);
610
611 /* Drop a reference taken by wake_oom_reaper */
612 put_task_struct(tsk);
613 }
614
615 static int oom_reaper(void *unused)
616 {
617 while (true) {
618 struct task_struct *tsk = NULL;
619
620 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
621 spin_lock(&oom_reaper_lock);
622 if (oom_reaper_list != NULL) {
623 tsk = oom_reaper_list;
624 oom_reaper_list = tsk->oom_reaper_list;
625 }
626 spin_unlock(&oom_reaper_lock);
627
628 if (tsk)
629 oom_reap_task(tsk);
630 }
631
632 return 0;
633 }
634
635 static void wake_oom_reaper(struct task_struct *tsk)
636 {
637 /* mm is already queued? */
638 if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
639 return;
640
641 get_task_struct(tsk);
642
643 spin_lock(&oom_reaper_lock);
644 tsk->oom_reaper_list = oom_reaper_list;
645 oom_reaper_list = tsk;
646 spin_unlock(&oom_reaper_lock);
647 trace_wake_reaper(tsk->pid);
648 wake_up(&oom_reaper_wait);
649 }
650
651 static int __init oom_init(void)
652 {
653 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
654 return 0;
655 }
656 subsys_initcall(oom_init)
657 #else
658 static inline void wake_oom_reaper(struct task_struct *tsk)
659 {
660 }
661 #endif /* CONFIG_MMU */
662
663 /**
664 * mark_oom_victim - mark the given task as OOM victim
665 * @tsk: task to mark
666 *
667 * Has to be called with oom_lock held and never after
668 * oom has been disabled already.
669 *
670 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
671 * under task_lock or operate on the current).
672 */
673 static void mark_oom_victim(struct task_struct *tsk)
674 {
675 struct mm_struct *mm = tsk->mm;
676
677 WARN_ON(oom_killer_disabled);
678 /* OOM killer might race with memcg OOM */
679 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
680 return;
681
682 /* oom_mm is bound to the signal struct life time. */
683 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
684 mmgrab(tsk->signal->oom_mm);
685 set_bit(MMF_OOM_VICTIM, &mm->flags);
686 }
687
688 /*
689 * Make sure that the task is woken up from uninterruptible sleep
690 * if it is frozen because OOM killer wouldn't be able to free
691 * any memory and livelock. freezing_slow_path will tell the freezer
692 * that TIF_MEMDIE tasks should be ignored.
693 */
694 __thaw_task(tsk);
695 atomic_inc(&oom_victims);
696 trace_mark_victim(tsk->pid);
697 }
698
699 /**
700 * exit_oom_victim - note the exit of an OOM victim
701 */
702 void exit_oom_victim(void)
703 {
704 clear_thread_flag(TIF_MEMDIE);
705
706 if (!atomic_dec_return(&oom_victims))
707 wake_up_all(&oom_victims_wait);
708 }
709
710 /**
711 * oom_killer_enable - enable OOM killer
712 */
713 void oom_killer_enable(void)
714 {
715 oom_killer_disabled = false;
716 pr_info("OOM killer enabled.\n");
717 }
718
719 /**
720 * oom_killer_disable - disable OOM killer
721 * @timeout: maximum timeout to wait for oom victims in jiffies
722 *
723 * Forces all page allocations to fail rather than trigger OOM killer.
724 * Will block and wait until all OOM victims are killed or the given
725 * timeout expires.
726 *
727 * The function cannot be called when there are runnable user tasks because
728 * the userspace would see unexpected allocation failures as a result. Any
729 * new usage of this function should be consulted with MM people.
730 *
731 * Returns true if successful and false if the OOM killer cannot be
732 * disabled.
733 */
734 bool oom_killer_disable(signed long timeout)
735 {
736 signed long ret;
737
738 /*
739 * Make sure to not race with an ongoing OOM killer. Check that the
740 * current is not killed (possibly due to sharing the victim's memory).
741 */
742 if (mutex_lock_killable(&oom_lock))
743 return false;
744 oom_killer_disabled = true;
745 mutex_unlock(&oom_lock);
746
747 ret = wait_event_interruptible_timeout(oom_victims_wait,
748 !atomic_read(&oom_victims), timeout);
749 if (ret <= 0) {
750 oom_killer_enable();
751 return false;
752 }
753 pr_info("OOM killer disabled.\n");
754
755 return true;
756 }
757
758 static inline bool __task_will_free_mem(struct task_struct *task)
759 {
760 struct signal_struct *sig = task->signal;
761
762 /*
763 * A coredumping process may sleep for an extended period in exit_mm(),
764 * so the oom killer cannot assume that the process will promptly exit
765 * and release memory.
766 */
767 if (sig->flags & SIGNAL_GROUP_COREDUMP)
768 return false;
769
770 if (sig->flags & SIGNAL_GROUP_EXIT)
771 return true;
772
773 if (thread_group_empty(task) && (task->flags & PF_EXITING))
774 return true;
775
776 return false;
777 }
778
779 /*
780 * Checks whether the given task is dying or exiting and likely to
781 * release its address space. This means that all threads and processes
782 * sharing the same mm have to be killed or exiting.
783 * Caller has to make sure that task->mm is stable (hold task_lock or
784 * it operates on the current).
785 */
786 static bool task_will_free_mem(struct task_struct *task)
787 {
788 struct mm_struct *mm = task->mm;
789 struct task_struct *p;
790 bool ret = true;
791
792 /*
793 * Skip tasks without mm because it might have passed its exit_mm and
794 * exit_oom_victim. oom_reaper could have rescued that but do not rely
795 * on that for now. We can consider find_lock_task_mm in future.
796 */
797 if (!mm)
798 return false;
799
800 if (!__task_will_free_mem(task))
801 return false;
802
803 /*
804 * This task has already been drained by the oom reaper so there are
805 * only small chances it will free some more
806 */
807 if (test_bit(MMF_OOM_SKIP, &mm->flags))
808 return false;
809
810 if (atomic_read(&mm->mm_users) <= 1)
811 return true;
812
813 /*
814 * Make sure that all tasks which share the mm with the given tasks
815 * are dying as well to make sure that a) nobody pins its mm and
816 * b) the task is also reapable by the oom reaper.
817 */
818 rcu_read_lock();
819 for_each_process(p) {
820 if (!process_shares_mm(p, mm))
821 continue;
822 if (same_thread_group(task, p))
823 continue;
824 ret = __task_will_free_mem(p);
825 if (!ret)
826 break;
827 }
828 rcu_read_unlock();
829
830 return ret;
831 }
832
833 static void __oom_kill_process(struct task_struct *victim)
834 {
835 struct task_struct *p;
836 struct mm_struct *mm;
837 bool can_oom_reap = true;
838
839 p = find_lock_task_mm(victim);
840 if (!p) {
841 put_task_struct(victim);
842 return;
843 } else if (victim != p) {
844 get_task_struct(p);
845 put_task_struct(victim);
846 victim = p;
847 }
848
849 /* Get a reference to safely compare mm after task_unlock(victim) */
850 mm = victim->mm;
851 mmgrab(mm);
852
853 /* Raise event before sending signal: task reaper must see this */
854 count_vm_event(OOM_KILL);
855 memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
856
857 /*
858 * We should send SIGKILL before granting access to memory reserves
859 * in order to prevent the OOM victim from depleting the memory
860 * reserves from the user space under its control.
861 */
862 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
863 mark_oom_victim(victim);
864 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
865 task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
866 K(get_mm_counter(victim->mm, MM_ANONPAGES)),
867 K(get_mm_counter(victim->mm, MM_FILEPAGES)),
868 K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
869 task_unlock(victim);
870
871 /*
872 * Kill all user processes sharing victim->mm in other thread groups, if
873 * any. They don't get access to memory reserves, though, to avoid
874 * depletion of all memory. This prevents mm->mmap_sem livelock when an
875 * oom killed thread cannot exit because it requires the semaphore and
876 * its contended by another thread trying to allocate memory itself.
877 * That thread will now get access to memory reserves since it has a
878 * pending fatal signal.
879 */
880 rcu_read_lock();
881 for_each_process(p) {
882 if (!process_shares_mm(p, mm))
883 continue;
884 if (same_thread_group(p, victim))
885 continue;
886 if (is_global_init(p)) {
887 can_oom_reap = false;
888 set_bit(MMF_OOM_SKIP, &mm->flags);
889 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
890 task_pid_nr(victim), victim->comm,
891 task_pid_nr(p), p->comm);
892 continue;
893 }
894 /*
895 * No use_mm() user needs to read from the userspace so we are
896 * ok to reap it.
897 */
898 if (unlikely(p->flags & PF_KTHREAD))
899 continue;
900 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
901 }
902 rcu_read_unlock();
903
904 if (can_oom_reap)
905 wake_oom_reaper(victim);
906
907 mmdrop(mm);
908 put_task_struct(victim);
909 }
910 #undef K
911
912 /*
913 * Kill provided task unless it's secured by setting
914 * oom_score_adj to OOM_SCORE_ADJ_MIN.
915 */
916 static int oom_kill_memcg_member(struct task_struct *task, void *unused)
917 {
918 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
919 get_task_struct(task);
920 __oom_kill_process(task);
921 }
922 return 0;
923 }
924
925 static void oom_kill_process(struct oom_control *oc, const char *message)
926 {
927 struct task_struct *p = oc->chosen;
928 unsigned int points = oc->chosen_points;
929 struct task_struct *victim = p;
930 struct task_struct *child;
931 struct task_struct *t;
932 struct mem_cgroup *oom_group;
933 unsigned int victim_points = 0;
934 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
935 DEFAULT_RATELIMIT_BURST);
936
937 /*
938 * If the task is already exiting, don't alarm the sysadmin or kill
939 * its children or threads, just give it access to memory reserves
940 * so it can die quickly
941 */
942 task_lock(p);
943 if (task_will_free_mem(p)) {
944 mark_oom_victim(p);
945 wake_oom_reaper(p);
946 task_unlock(p);
947 put_task_struct(p);
948 return;
949 }
950 task_unlock(p);
951
952 if (__ratelimit(&oom_rs))
953 dump_header(oc, p);
954
955 pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
956 message, task_pid_nr(p), p->comm, points);
957
958 /*
959 * If any of p's children has a different mm and is eligible for kill,
960 * the one with the highest oom_badness() score is sacrificed for its
961 * parent. This attempts to lose the minimal amount of work done while
962 * still freeing memory.
963 */
964 read_lock(&tasklist_lock);
965
966 /*
967 * The task 'p' might have already exited before reaching here. The
968 * put_task_struct() will free task_struct 'p' while the loop still try
969 * to access the field of 'p', so, get an extra reference.
970 */
971 get_task_struct(p);
972 for_each_thread(p, t) {
973 list_for_each_entry(child, &t->children, sibling) {
974 unsigned int child_points;
975
976 if (process_shares_mm(child, p->mm))
977 continue;
978 /*
979 * oom_badness() returns 0 if the thread is unkillable
980 */
981 child_points = oom_badness(child,
982 oc->memcg, oc->nodemask, oc->totalpages);
983 if (child_points > victim_points) {
984 put_task_struct(victim);
985 victim = child;
986 victim_points = child_points;
987 get_task_struct(victim);
988 }
989 }
990 }
991 put_task_struct(p);
992 read_unlock(&tasklist_lock);
993
994 /*
995 * Do we need to kill the entire memory cgroup?
996 * Or even one of the ancestor memory cgroups?
997 * Check this out before killing the victim task.
998 */
999 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
1000
1001 __oom_kill_process(victim);
1002
1003 /*
1004 * If necessary, kill all tasks in the selected memory cgroup.
1005 */
1006 if (oom_group) {
1007 mem_cgroup_print_oom_group(oom_group);
1008 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member, NULL);
1009 mem_cgroup_put(oom_group);
1010 }
1011 }
1012
1013 /*
1014 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1015 */
1016 static void check_panic_on_oom(struct oom_control *oc,
1017 enum oom_constraint constraint)
1018 {
1019 if (likely(!sysctl_panic_on_oom))
1020 return;
1021 if (sysctl_panic_on_oom != 2) {
1022 /*
1023 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1024 * does not panic for cpuset, mempolicy, or memcg allocation
1025 * failures.
1026 */
1027 if (constraint != CONSTRAINT_NONE)
1028 return;
1029 }
1030 /* Do not panic for oom kills triggered by sysrq */
1031 if (is_sysrq_oom(oc))
1032 return;
1033 dump_header(oc, NULL);
1034 panic("Out of memory: %s panic_on_oom is enabled\n",
1035 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1036 }
1037
1038 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1039
1040 int register_oom_notifier(struct notifier_block *nb)
1041 {
1042 return blocking_notifier_chain_register(&oom_notify_list, nb);
1043 }
1044 EXPORT_SYMBOL_GPL(register_oom_notifier);
1045
1046 int unregister_oom_notifier(struct notifier_block *nb)
1047 {
1048 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1049 }
1050 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1051
1052 /**
1053 * out_of_memory - kill the "best" process when we run out of memory
1054 * @oc: pointer to struct oom_control
1055 *
1056 * If we run out of memory, we have the choice between either
1057 * killing a random task (bad), letting the system crash (worse)
1058 * OR try to be smart about which process to kill. Note that we
1059 * don't have to be perfect here, we just have to be good.
1060 */
1061 bool out_of_memory(struct oom_control *oc)
1062 {
1063 unsigned long freed = 0;
1064 enum oom_constraint constraint = CONSTRAINT_NONE;
1065
1066 if (oom_killer_disabled)
1067 return false;
1068
1069 if (!is_memcg_oom(oc)) {
1070 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1071 if (freed > 0)
1072 /* Got some memory back in the last second. */
1073 return true;
1074 }
1075
1076 /*
1077 * If current has a pending SIGKILL or is exiting, then automatically
1078 * select it. The goal is to allow it to allocate so that it may
1079 * quickly exit and free its memory.
1080 */
1081 if (task_will_free_mem(current)) {
1082 mark_oom_victim(current);
1083 wake_oom_reaper(current);
1084 return true;
1085 }
1086
1087 /*
1088 * The OOM killer does not compensate for IO-less reclaim.
1089 * pagefault_out_of_memory lost its gfp context so we have to
1090 * make sure exclude 0 mask - all other users should have at least
1091 * ___GFP_DIRECT_RECLAIM to get here.
1092 */
1093 if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS))
1094 return true;
1095
1096 /*
1097 * Check if there were limitations on the allocation (only relevant for
1098 * NUMA and memcg) that may require different handling.
1099 */
1100 constraint = constrained_alloc(oc);
1101 if (constraint != CONSTRAINT_MEMORY_POLICY)
1102 oc->nodemask = NULL;
1103 check_panic_on_oom(oc, constraint);
1104
1105 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1106 current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) &&
1107 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1108 get_task_struct(current);
1109 oc->chosen = current;
1110 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1111 return true;
1112 }
1113
1114 select_bad_process(oc);
1115 /* Found nothing?!?! */
1116 if (!oc->chosen) {
1117 dump_header(oc, NULL);
1118 pr_warn("Out of memory and no killable processes...\n");
1119 /*
1120 * If we got here due to an actual allocation at the
1121 * system level, we cannot survive this and will enter
1122 * an endless loop in the allocator. Bail out now.
1123 */
1124 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1125 panic("System is deadlocked on memory\n");
1126 }
1127 if (oc->chosen && oc->chosen != (void *)-1UL)
1128 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1129 "Memory cgroup out of memory");
1130 return !!oc->chosen;
1131 }
1132
1133 /*
1134 * The pagefault handler calls here because it is out of memory, so kill a
1135 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1136 * killing is already in progress so do nothing.
1137 */
1138 void pagefault_out_of_memory(void)
1139 {
1140 struct oom_control oc = {
1141 .zonelist = NULL,
1142 .nodemask = NULL,
1143 .memcg = NULL,
1144 .gfp_mask = 0,
1145 .order = 0,
1146 };
1147
1148 if (mem_cgroup_oom_synchronize(true))
1149 return;
1150
1151 if (!mutex_trylock(&oom_lock))
1152 return;
1153 out_of_memory(&oc);
1154 mutex_unlock(&oom_lock);
1155 }