]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/page_alloc.c
Linux 4.20.17
[thirdparty/kernel/stable.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/memblock.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kasan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/ratelimit.h>
33 #include <linux/oom.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/vmstat.h>
42 #include <linux/mempolicy.h>
43 #include <linux/memremap.h>
44 #include <linux/stop_machine.h>
45 #include <linux/sort.h>
46 #include <linux/pfn.h>
47 #include <linux/backing-dev.h>
48 #include <linux/fault-inject.h>
49 #include <linux/page-isolation.h>
50 #include <linux/page_ext.h>
51 #include <linux/debugobjects.h>
52 #include <linux/kmemleak.h>
53 #include <linux/compaction.h>
54 #include <trace/events/kmem.h>
55 #include <trace/events/oom.h>
56 #include <linux/prefetch.h>
57 #include <linux/mm_inline.h>
58 #include <linux/migrate.h>
59 #include <linux/hugetlb.h>
60 #include <linux/sched/rt.h>
61 #include <linux/sched/mm.h>
62 #include <linux/page_owner.h>
63 #include <linux/kthread.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/lockdep.h>
67 #include <linux/nmi.h>
68 #include <linux/psi.h>
69
70 #include <asm/sections.h>
71 #include <asm/tlbflush.h>
72 #include <asm/div64.h>
73 #include "internal.h"
74
75 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
76 static DEFINE_MUTEX(pcp_batch_high_lock);
77 #define MIN_PERCPU_PAGELIST_FRACTION (8)
78
79 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
80 DEFINE_PER_CPU(int, numa_node);
81 EXPORT_PER_CPU_SYMBOL(numa_node);
82 #endif
83
84 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
85
86 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
87 /*
88 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
89 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
90 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
91 * defined in <linux/topology.h>.
92 */
93 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
94 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
95 int _node_numa_mem_[MAX_NUMNODES];
96 #endif
97
98 /* work_structs for global per-cpu drains */
99 DEFINE_MUTEX(pcpu_drain_mutex);
100 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
101
102 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
103 volatile unsigned long latent_entropy __latent_entropy;
104 EXPORT_SYMBOL(latent_entropy);
105 #endif
106
107 /*
108 * Array of node states.
109 */
110 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
111 [N_POSSIBLE] = NODE_MASK_ALL,
112 [N_ONLINE] = { { [0] = 1UL } },
113 #ifndef CONFIG_NUMA
114 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
115 #ifdef CONFIG_HIGHMEM
116 [N_HIGH_MEMORY] = { { [0] = 1UL } },
117 #endif
118 [N_MEMORY] = { { [0] = 1UL } },
119 [N_CPU] = { { [0] = 1UL } },
120 #endif /* NUMA */
121 };
122 EXPORT_SYMBOL(node_states);
123
124 /* Protect totalram_pages and zone->managed_pages */
125 static DEFINE_SPINLOCK(managed_page_count_lock);
126
127 unsigned long totalram_pages __read_mostly;
128 unsigned long totalreserve_pages __read_mostly;
129 unsigned long totalcma_pages __read_mostly;
130
131 int percpu_pagelist_fraction;
132 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
133
134 /*
135 * A cached value of the page's pageblock's migratetype, used when the page is
136 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
137 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
138 * Also the migratetype set in the page does not necessarily match the pcplist
139 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
140 * other index - this ensures that it will be put on the correct CMA freelist.
141 */
142 static inline int get_pcppage_migratetype(struct page *page)
143 {
144 return page->index;
145 }
146
147 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
148 {
149 page->index = migratetype;
150 }
151
152 #ifdef CONFIG_PM_SLEEP
153 /*
154 * The following functions are used by the suspend/hibernate code to temporarily
155 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
156 * while devices are suspended. To avoid races with the suspend/hibernate code,
157 * they should always be called with system_transition_mutex held
158 * (gfp_allowed_mask also should only be modified with system_transition_mutex
159 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
160 * with that modification).
161 */
162
163 static gfp_t saved_gfp_mask;
164
165 void pm_restore_gfp_mask(void)
166 {
167 WARN_ON(!mutex_is_locked(&system_transition_mutex));
168 if (saved_gfp_mask) {
169 gfp_allowed_mask = saved_gfp_mask;
170 saved_gfp_mask = 0;
171 }
172 }
173
174 void pm_restrict_gfp_mask(void)
175 {
176 WARN_ON(!mutex_is_locked(&system_transition_mutex));
177 WARN_ON(saved_gfp_mask);
178 saved_gfp_mask = gfp_allowed_mask;
179 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
180 }
181
182 bool pm_suspended_storage(void)
183 {
184 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
185 return false;
186 return true;
187 }
188 #endif /* CONFIG_PM_SLEEP */
189
190 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
191 unsigned int pageblock_order __read_mostly;
192 #endif
193
194 static void __free_pages_ok(struct page *page, unsigned int order);
195
196 /*
197 * results with 256, 32 in the lowmem_reserve sysctl:
198 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
199 * 1G machine -> (16M dma, 784M normal, 224M high)
200 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
201 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
202 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
203 *
204 * TBD: should special case ZONE_DMA32 machines here - in those we normally
205 * don't need any ZONE_NORMAL reservation
206 */
207 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
208 #ifdef CONFIG_ZONE_DMA
209 [ZONE_DMA] = 256,
210 #endif
211 #ifdef CONFIG_ZONE_DMA32
212 [ZONE_DMA32] = 256,
213 #endif
214 [ZONE_NORMAL] = 32,
215 #ifdef CONFIG_HIGHMEM
216 [ZONE_HIGHMEM] = 0,
217 #endif
218 [ZONE_MOVABLE] = 0,
219 };
220
221 EXPORT_SYMBOL(totalram_pages);
222
223 static char * const zone_names[MAX_NR_ZONES] = {
224 #ifdef CONFIG_ZONE_DMA
225 "DMA",
226 #endif
227 #ifdef CONFIG_ZONE_DMA32
228 "DMA32",
229 #endif
230 "Normal",
231 #ifdef CONFIG_HIGHMEM
232 "HighMem",
233 #endif
234 "Movable",
235 #ifdef CONFIG_ZONE_DEVICE
236 "Device",
237 #endif
238 };
239
240 char * const migratetype_names[MIGRATE_TYPES] = {
241 "Unmovable",
242 "Movable",
243 "Reclaimable",
244 "HighAtomic",
245 #ifdef CONFIG_CMA
246 "CMA",
247 #endif
248 #ifdef CONFIG_MEMORY_ISOLATION
249 "Isolate",
250 #endif
251 };
252
253 compound_page_dtor * const compound_page_dtors[] = {
254 NULL,
255 free_compound_page,
256 #ifdef CONFIG_HUGETLB_PAGE
257 free_huge_page,
258 #endif
259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
260 free_transhuge_page,
261 #endif
262 };
263
264 int min_free_kbytes = 1024;
265 int user_min_free_kbytes = -1;
266 int watermark_scale_factor = 10;
267
268 static unsigned long nr_kernel_pages __meminitdata;
269 static unsigned long nr_all_pages __meminitdata;
270 static unsigned long dma_reserve __meminitdata;
271
272 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
274 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
275 static unsigned long required_kernelcore __initdata;
276 static unsigned long required_kernelcore_percent __initdata;
277 static unsigned long required_movablecore __initdata;
278 static unsigned long required_movablecore_percent __initdata;
279 static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
280 static bool mirrored_kernelcore __meminitdata;
281
282 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
283 int movable_zone;
284 EXPORT_SYMBOL(movable_zone);
285 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
286
287 #if MAX_NUMNODES > 1
288 int nr_node_ids __read_mostly = MAX_NUMNODES;
289 int nr_online_nodes __read_mostly = 1;
290 EXPORT_SYMBOL(nr_node_ids);
291 EXPORT_SYMBOL(nr_online_nodes);
292 #endif
293
294 int page_group_by_mobility_disabled __read_mostly;
295
296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
297 /*
298 * During boot we initialize deferred pages on-demand, as needed, but once
299 * page_alloc_init_late() has finished, the deferred pages are all initialized,
300 * and we can permanently disable that path.
301 */
302 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
303
304 /*
305 * Calling kasan_free_pages() only after deferred memory initialization
306 * has completed. Poisoning pages during deferred memory init will greatly
307 * lengthen the process and cause problem in large memory systems as the
308 * deferred pages initialization is done with interrupt disabled.
309 *
310 * Assuming that there will be no reference to those newly initialized
311 * pages before they are ever allocated, this should have no effect on
312 * KASAN memory tracking as the poison will be properly inserted at page
313 * allocation time. The only corner case is when pages are allocated by
314 * on-demand allocation and then freed again before the deferred pages
315 * initialization is done, but this is not likely to happen.
316 */
317 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
318 {
319 if (!static_branch_unlikely(&deferred_pages))
320 kasan_free_pages(page, order);
321 }
322
323 /* Returns true if the struct page for the pfn is uninitialised */
324 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
325 {
326 int nid = early_pfn_to_nid(pfn);
327
328 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
329 return true;
330
331 return false;
332 }
333
334 /*
335 * Returns true when the remaining initialisation should be deferred until
336 * later in the boot cycle when it can be parallelised.
337 */
338 static bool __meminit
339 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
340 {
341 static unsigned long prev_end_pfn, nr_initialised;
342
343 /*
344 * prev_end_pfn static that contains the end of previous zone
345 * No need to protect because called very early in boot before smp_init.
346 */
347 if (prev_end_pfn != end_pfn) {
348 prev_end_pfn = end_pfn;
349 nr_initialised = 0;
350 }
351
352 /* Always populate low zones for address-constrained allocations */
353 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
354 return false;
355 nr_initialised++;
356 if ((nr_initialised > NODE_DATA(nid)->static_init_pgcnt) &&
357 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
358 NODE_DATA(nid)->first_deferred_pfn = pfn;
359 return true;
360 }
361 return false;
362 }
363 #else
364 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
365
366 static inline bool early_page_uninitialised(unsigned long pfn)
367 {
368 return false;
369 }
370
371 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
372 {
373 return false;
374 }
375 #endif
376
377 /* Return a pointer to the bitmap storing bits affecting a block of pages */
378 static inline unsigned long *get_pageblock_bitmap(struct page *page,
379 unsigned long pfn)
380 {
381 #ifdef CONFIG_SPARSEMEM
382 return __pfn_to_section(pfn)->pageblock_flags;
383 #else
384 return page_zone(page)->pageblock_flags;
385 #endif /* CONFIG_SPARSEMEM */
386 }
387
388 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
389 {
390 #ifdef CONFIG_SPARSEMEM
391 pfn &= (PAGES_PER_SECTION-1);
392 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
393 #else
394 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
395 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
396 #endif /* CONFIG_SPARSEMEM */
397 }
398
399 /**
400 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
401 * @page: The page within the block of interest
402 * @pfn: The target page frame number
403 * @end_bitidx: The last bit of interest to retrieve
404 * @mask: mask of bits that the caller is interested in
405 *
406 * Return: pageblock_bits flags
407 */
408 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
409 unsigned long pfn,
410 unsigned long end_bitidx,
411 unsigned long mask)
412 {
413 unsigned long *bitmap;
414 unsigned long bitidx, word_bitidx;
415 unsigned long word;
416
417 bitmap = get_pageblock_bitmap(page, pfn);
418 bitidx = pfn_to_bitidx(page, pfn);
419 word_bitidx = bitidx / BITS_PER_LONG;
420 bitidx &= (BITS_PER_LONG-1);
421
422 word = bitmap[word_bitidx];
423 bitidx += end_bitidx;
424 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
425 }
426
427 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
428 unsigned long end_bitidx,
429 unsigned long mask)
430 {
431 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
432 }
433
434 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
435 {
436 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
437 }
438
439 /**
440 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
441 * @page: The page within the block of interest
442 * @flags: The flags to set
443 * @pfn: The target page frame number
444 * @end_bitidx: The last bit of interest
445 * @mask: mask of bits that the caller is interested in
446 */
447 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
448 unsigned long pfn,
449 unsigned long end_bitidx,
450 unsigned long mask)
451 {
452 unsigned long *bitmap;
453 unsigned long bitidx, word_bitidx;
454 unsigned long old_word, word;
455
456 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
457
458 bitmap = get_pageblock_bitmap(page, pfn);
459 bitidx = pfn_to_bitidx(page, pfn);
460 word_bitidx = bitidx / BITS_PER_LONG;
461 bitidx &= (BITS_PER_LONG-1);
462
463 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
464
465 bitidx += end_bitidx;
466 mask <<= (BITS_PER_LONG - bitidx - 1);
467 flags <<= (BITS_PER_LONG - bitidx - 1);
468
469 word = READ_ONCE(bitmap[word_bitidx]);
470 for (;;) {
471 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
472 if (word == old_word)
473 break;
474 word = old_word;
475 }
476 }
477
478 void set_pageblock_migratetype(struct page *page, int migratetype)
479 {
480 if (unlikely(page_group_by_mobility_disabled &&
481 migratetype < MIGRATE_PCPTYPES))
482 migratetype = MIGRATE_UNMOVABLE;
483
484 set_pageblock_flags_group(page, (unsigned long)migratetype,
485 PB_migrate, PB_migrate_end);
486 }
487
488 #ifdef CONFIG_DEBUG_VM
489 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
490 {
491 int ret = 0;
492 unsigned seq;
493 unsigned long pfn = page_to_pfn(page);
494 unsigned long sp, start_pfn;
495
496 do {
497 seq = zone_span_seqbegin(zone);
498 start_pfn = zone->zone_start_pfn;
499 sp = zone->spanned_pages;
500 if (!zone_spans_pfn(zone, pfn))
501 ret = 1;
502 } while (zone_span_seqretry(zone, seq));
503
504 if (ret)
505 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
506 pfn, zone_to_nid(zone), zone->name,
507 start_pfn, start_pfn + sp);
508
509 return ret;
510 }
511
512 static int page_is_consistent(struct zone *zone, struct page *page)
513 {
514 if (!pfn_valid_within(page_to_pfn(page)))
515 return 0;
516 if (zone != page_zone(page))
517 return 0;
518
519 return 1;
520 }
521 /*
522 * Temporary debugging check for pages not lying within a given zone.
523 */
524 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
525 {
526 if (page_outside_zone_boundaries(zone, page))
527 return 1;
528 if (!page_is_consistent(zone, page))
529 return 1;
530
531 return 0;
532 }
533 #else
534 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
535 {
536 return 0;
537 }
538 #endif
539
540 static void bad_page(struct page *page, const char *reason,
541 unsigned long bad_flags)
542 {
543 static unsigned long resume;
544 static unsigned long nr_shown;
545 static unsigned long nr_unshown;
546
547 /*
548 * Allow a burst of 60 reports, then keep quiet for that minute;
549 * or allow a steady drip of one report per second.
550 */
551 if (nr_shown == 60) {
552 if (time_before(jiffies, resume)) {
553 nr_unshown++;
554 goto out;
555 }
556 if (nr_unshown) {
557 pr_alert(
558 "BUG: Bad page state: %lu messages suppressed\n",
559 nr_unshown);
560 nr_unshown = 0;
561 }
562 nr_shown = 0;
563 }
564 if (nr_shown++ == 0)
565 resume = jiffies + 60 * HZ;
566
567 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
568 current->comm, page_to_pfn(page));
569 __dump_page(page, reason);
570 bad_flags &= page->flags;
571 if (bad_flags)
572 pr_alert("bad because of flags: %#lx(%pGp)\n",
573 bad_flags, &bad_flags);
574 dump_page_owner(page);
575
576 print_modules();
577 dump_stack();
578 out:
579 /* Leave bad fields for debug, except PageBuddy could make trouble */
580 page_mapcount_reset(page); /* remove PageBuddy */
581 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
582 }
583
584 /*
585 * Higher-order pages are called "compound pages". They are structured thusly:
586 *
587 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
588 *
589 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
590 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
591 *
592 * The first tail page's ->compound_dtor holds the offset in array of compound
593 * page destructors. See compound_page_dtors.
594 *
595 * The first tail page's ->compound_order holds the order of allocation.
596 * This usage means that zero-order pages may not be compound.
597 */
598
599 void free_compound_page(struct page *page)
600 {
601 __free_pages_ok(page, compound_order(page));
602 }
603
604 void prep_compound_page(struct page *page, unsigned int order)
605 {
606 int i;
607 int nr_pages = 1 << order;
608
609 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
610 set_compound_order(page, order);
611 __SetPageHead(page);
612 for (i = 1; i < nr_pages; i++) {
613 struct page *p = page + i;
614 set_page_count(p, 0);
615 p->mapping = TAIL_MAPPING;
616 set_compound_head(p, page);
617 }
618 atomic_set(compound_mapcount_ptr(page), -1);
619 }
620
621 #ifdef CONFIG_DEBUG_PAGEALLOC
622 unsigned int _debug_guardpage_minorder;
623 bool _debug_pagealloc_enabled __read_mostly
624 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
625 EXPORT_SYMBOL(_debug_pagealloc_enabled);
626 bool _debug_guardpage_enabled __read_mostly;
627
628 static int __init early_debug_pagealloc(char *buf)
629 {
630 if (!buf)
631 return -EINVAL;
632 return kstrtobool(buf, &_debug_pagealloc_enabled);
633 }
634 early_param("debug_pagealloc", early_debug_pagealloc);
635
636 static bool need_debug_guardpage(void)
637 {
638 /* If we don't use debug_pagealloc, we don't need guard page */
639 if (!debug_pagealloc_enabled())
640 return false;
641
642 if (!debug_guardpage_minorder())
643 return false;
644
645 return true;
646 }
647
648 static void init_debug_guardpage(void)
649 {
650 if (!debug_pagealloc_enabled())
651 return;
652
653 if (!debug_guardpage_minorder())
654 return;
655
656 _debug_guardpage_enabled = true;
657 }
658
659 struct page_ext_operations debug_guardpage_ops = {
660 .need = need_debug_guardpage,
661 .init = init_debug_guardpage,
662 };
663
664 static int __init debug_guardpage_minorder_setup(char *buf)
665 {
666 unsigned long res;
667
668 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
669 pr_err("Bad debug_guardpage_minorder value\n");
670 return 0;
671 }
672 _debug_guardpage_minorder = res;
673 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
674 return 0;
675 }
676 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
677
678 static inline bool set_page_guard(struct zone *zone, struct page *page,
679 unsigned int order, int migratetype)
680 {
681 struct page_ext *page_ext;
682
683 if (!debug_guardpage_enabled())
684 return false;
685
686 if (order >= debug_guardpage_minorder())
687 return false;
688
689 page_ext = lookup_page_ext(page);
690 if (unlikely(!page_ext))
691 return false;
692
693 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
694
695 INIT_LIST_HEAD(&page->lru);
696 set_page_private(page, order);
697 /* Guard pages are not available for any usage */
698 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
699
700 return true;
701 }
702
703 static inline void clear_page_guard(struct zone *zone, struct page *page,
704 unsigned int order, int migratetype)
705 {
706 struct page_ext *page_ext;
707
708 if (!debug_guardpage_enabled())
709 return;
710
711 page_ext = lookup_page_ext(page);
712 if (unlikely(!page_ext))
713 return;
714
715 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
716
717 set_page_private(page, 0);
718 if (!is_migrate_isolate(migratetype))
719 __mod_zone_freepage_state(zone, (1 << order), migratetype);
720 }
721 #else
722 struct page_ext_operations debug_guardpage_ops;
723 static inline bool set_page_guard(struct zone *zone, struct page *page,
724 unsigned int order, int migratetype) { return false; }
725 static inline void clear_page_guard(struct zone *zone, struct page *page,
726 unsigned int order, int migratetype) {}
727 #endif
728
729 static inline void set_page_order(struct page *page, unsigned int order)
730 {
731 set_page_private(page, order);
732 __SetPageBuddy(page);
733 }
734
735 static inline void rmv_page_order(struct page *page)
736 {
737 __ClearPageBuddy(page);
738 set_page_private(page, 0);
739 }
740
741 /*
742 * This function checks whether a page is free && is the buddy
743 * we can coalesce a page and its buddy if
744 * (a) the buddy is not in a hole (check before calling!) &&
745 * (b) the buddy is in the buddy system &&
746 * (c) a page and its buddy have the same order &&
747 * (d) a page and its buddy are in the same zone.
748 *
749 * For recording whether a page is in the buddy system, we set PageBuddy.
750 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
751 *
752 * For recording page's order, we use page_private(page).
753 */
754 static inline int page_is_buddy(struct page *page, struct page *buddy,
755 unsigned int order)
756 {
757 if (page_is_guard(buddy) && page_order(buddy) == order) {
758 if (page_zone_id(page) != page_zone_id(buddy))
759 return 0;
760
761 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
762
763 return 1;
764 }
765
766 if (PageBuddy(buddy) && page_order(buddy) == order) {
767 /*
768 * zone check is done late to avoid uselessly
769 * calculating zone/node ids for pages that could
770 * never merge.
771 */
772 if (page_zone_id(page) != page_zone_id(buddy))
773 return 0;
774
775 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
776
777 return 1;
778 }
779 return 0;
780 }
781
782 /*
783 * Freeing function for a buddy system allocator.
784 *
785 * The concept of a buddy system is to maintain direct-mapped table
786 * (containing bit values) for memory blocks of various "orders".
787 * The bottom level table contains the map for the smallest allocatable
788 * units of memory (here, pages), and each level above it describes
789 * pairs of units from the levels below, hence, "buddies".
790 * At a high level, all that happens here is marking the table entry
791 * at the bottom level available, and propagating the changes upward
792 * as necessary, plus some accounting needed to play nicely with other
793 * parts of the VM system.
794 * At each level, we keep a list of pages, which are heads of continuous
795 * free pages of length of (1 << order) and marked with PageBuddy.
796 * Page's order is recorded in page_private(page) field.
797 * So when we are allocating or freeing one, we can derive the state of the
798 * other. That is, if we allocate a small block, and both were
799 * free, the remainder of the region must be split into blocks.
800 * If a block is freed, and its buddy is also free, then this
801 * triggers coalescing into a block of larger size.
802 *
803 * -- nyc
804 */
805
806 static inline void __free_one_page(struct page *page,
807 unsigned long pfn,
808 struct zone *zone, unsigned int order,
809 int migratetype)
810 {
811 unsigned long combined_pfn;
812 unsigned long uninitialized_var(buddy_pfn);
813 struct page *buddy;
814 unsigned int max_order;
815
816 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
817
818 VM_BUG_ON(!zone_is_initialized(zone));
819 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
820
821 VM_BUG_ON(migratetype == -1);
822 if (likely(!is_migrate_isolate(migratetype)))
823 __mod_zone_freepage_state(zone, 1 << order, migratetype);
824
825 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
826 VM_BUG_ON_PAGE(bad_range(zone, page), page);
827
828 continue_merging:
829 while (order < max_order - 1) {
830 buddy_pfn = __find_buddy_pfn(pfn, order);
831 buddy = page + (buddy_pfn - pfn);
832
833 if (!pfn_valid_within(buddy_pfn))
834 goto done_merging;
835 if (!page_is_buddy(page, buddy, order))
836 goto done_merging;
837 /*
838 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
839 * merge with it and move up one order.
840 */
841 if (page_is_guard(buddy)) {
842 clear_page_guard(zone, buddy, order, migratetype);
843 } else {
844 list_del(&buddy->lru);
845 zone->free_area[order].nr_free--;
846 rmv_page_order(buddy);
847 }
848 combined_pfn = buddy_pfn & pfn;
849 page = page + (combined_pfn - pfn);
850 pfn = combined_pfn;
851 order++;
852 }
853 if (max_order < MAX_ORDER) {
854 /* If we are here, it means order is >= pageblock_order.
855 * We want to prevent merge between freepages on isolate
856 * pageblock and normal pageblock. Without this, pageblock
857 * isolation could cause incorrect freepage or CMA accounting.
858 *
859 * We don't want to hit this code for the more frequent
860 * low-order merging.
861 */
862 if (unlikely(has_isolate_pageblock(zone))) {
863 int buddy_mt;
864
865 buddy_pfn = __find_buddy_pfn(pfn, order);
866 buddy = page + (buddy_pfn - pfn);
867 buddy_mt = get_pageblock_migratetype(buddy);
868
869 if (migratetype != buddy_mt
870 && (is_migrate_isolate(migratetype) ||
871 is_migrate_isolate(buddy_mt)))
872 goto done_merging;
873 }
874 max_order++;
875 goto continue_merging;
876 }
877
878 done_merging:
879 set_page_order(page, order);
880
881 /*
882 * If this is not the largest possible page, check if the buddy
883 * of the next-highest order is free. If it is, it's possible
884 * that pages are being freed that will coalesce soon. In case,
885 * that is happening, add the free page to the tail of the list
886 * so it's less likely to be used soon and more likely to be merged
887 * as a higher order page
888 */
889 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
890 struct page *higher_page, *higher_buddy;
891 combined_pfn = buddy_pfn & pfn;
892 higher_page = page + (combined_pfn - pfn);
893 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
894 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
895 if (pfn_valid_within(buddy_pfn) &&
896 page_is_buddy(higher_page, higher_buddy, order + 1)) {
897 list_add_tail(&page->lru,
898 &zone->free_area[order].free_list[migratetype]);
899 goto out;
900 }
901 }
902
903 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
904 out:
905 zone->free_area[order].nr_free++;
906 }
907
908 /*
909 * A bad page could be due to a number of fields. Instead of multiple branches,
910 * try and check multiple fields with one check. The caller must do a detailed
911 * check if necessary.
912 */
913 static inline bool page_expected_state(struct page *page,
914 unsigned long check_flags)
915 {
916 if (unlikely(atomic_read(&page->_mapcount) != -1))
917 return false;
918
919 if (unlikely((unsigned long)page->mapping |
920 page_ref_count(page) |
921 #ifdef CONFIG_MEMCG
922 (unsigned long)page->mem_cgroup |
923 #endif
924 (page->flags & check_flags)))
925 return false;
926
927 return true;
928 }
929
930 static void free_pages_check_bad(struct page *page)
931 {
932 const char *bad_reason;
933 unsigned long bad_flags;
934
935 bad_reason = NULL;
936 bad_flags = 0;
937
938 if (unlikely(atomic_read(&page->_mapcount) != -1))
939 bad_reason = "nonzero mapcount";
940 if (unlikely(page->mapping != NULL))
941 bad_reason = "non-NULL mapping";
942 if (unlikely(page_ref_count(page) != 0))
943 bad_reason = "nonzero _refcount";
944 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
945 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
946 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
947 }
948 #ifdef CONFIG_MEMCG
949 if (unlikely(page->mem_cgroup))
950 bad_reason = "page still charged to cgroup";
951 #endif
952 bad_page(page, bad_reason, bad_flags);
953 }
954
955 static inline int free_pages_check(struct page *page)
956 {
957 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
958 return 0;
959
960 /* Something has gone sideways, find it */
961 free_pages_check_bad(page);
962 return 1;
963 }
964
965 static int free_tail_pages_check(struct page *head_page, struct page *page)
966 {
967 int ret = 1;
968
969 /*
970 * We rely page->lru.next never has bit 0 set, unless the page
971 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
972 */
973 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
974
975 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
976 ret = 0;
977 goto out;
978 }
979 switch (page - head_page) {
980 case 1:
981 /* the first tail page: ->mapping may be compound_mapcount() */
982 if (unlikely(compound_mapcount(page))) {
983 bad_page(page, "nonzero compound_mapcount", 0);
984 goto out;
985 }
986 break;
987 case 2:
988 /*
989 * the second tail page: ->mapping is
990 * deferred_list.next -- ignore value.
991 */
992 break;
993 default:
994 if (page->mapping != TAIL_MAPPING) {
995 bad_page(page, "corrupted mapping in tail page", 0);
996 goto out;
997 }
998 break;
999 }
1000 if (unlikely(!PageTail(page))) {
1001 bad_page(page, "PageTail not set", 0);
1002 goto out;
1003 }
1004 if (unlikely(compound_head(page) != head_page)) {
1005 bad_page(page, "compound_head not consistent", 0);
1006 goto out;
1007 }
1008 ret = 0;
1009 out:
1010 page->mapping = NULL;
1011 clear_compound_head(page);
1012 return ret;
1013 }
1014
1015 static __always_inline bool free_pages_prepare(struct page *page,
1016 unsigned int order, bool check_free)
1017 {
1018 int bad = 0;
1019
1020 VM_BUG_ON_PAGE(PageTail(page), page);
1021
1022 trace_mm_page_free(page, order);
1023
1024 /*
1025 * Check tail pages before head page information is cleared to
1026 * avoid checking PageCompound for order-0 pages.
1027 */
1028 if (unlikely(order)) {
1029 bool compound = PageCompound(page);
1030 int i;
1031
1032 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1033
1034 if (compound)
1035 ClearPageDoubleMap(page);
1036 for (i = 1; i < (1 << order); i++) {
1037 if (compound)
1038 bad += free_tail_pages_check(page, page + i);
1039 if (unlikely(free_pages_check(page + i))) {
1040 bad++;
1041 continue;
1042 }
1043 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1044 }
1045 }
1046 if (PageMappingFlags(page))
1047 page->mapping = NULL;
1048 if (memcg_kmem_enabled() && PageKmemcg(page))
1049 memcg_kmem_uncharge(page, order);
1050 if (check_free)
1051 bad += free_pages_check(page);
1052 if (bad)
1053 return false;
1054
1055 page_cpupid_reset_last(page);
1056 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1057 reset_page_owner(page, order);
1058
1059 if (!PageHighMem(page)) {
1060 debug_check_no_locks_freed(page_address(page),
1061 PAGE_SIZE << order);
1062 debug_check_no_obj_freed(page_address(page),
1063 PAGE_SIZE << order);
1064 }
1065 arch_free_page(page, order);
1066 kernel_poison_pages(page, 1 << order, 0);
1067 kernel_map_pages(page, 1 << order, 0);
1068 kasan_free_nondeferred_pages(page, order);
1069
1070 return true;
1071 }
1072
1073 #ifdef CONFIG_DEBUG_VM
1074 static inline bool free_pcp_prepare(struct page *page)
1075 {
1076 return free_pages_prepare(page, 0, true);
1077 }
1078
1079 static inline bool bulkfree_pcp_prepare(struct page *page)
1080 {
1081 return false;
1082 }
1083 #else
1084 static bool free_pcp_prepare(struct page *page)
1085 {
1086 return free_pages_prepare(page, 0, false);
1087 }
1088
1089 static bool bulkfree_pcp_prepare(struct page *page)
1090 {
1091 return free_pages_check(page);
1092 }
1093 #endif /* CONFIG_DEBUG_VM */
1094
1095 static inline void prefetch_buddy(struct page *page)
1096 {
1097 unsigned long pfn = page_to_pfn(page);
1098 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1099 struct page *buddy = page + (buddy_pfn - pfn);
1100
1101 prefetch(buddy);
1102 }
1103
1104 /*
1105 * Frees a number of pages from the PCP lists
1106 * Assumes all pages on list are in same zone, and of same order.
1107 * count is the number of pages to free.
1108 *
1109 * If the zone was previously in an "all pages pinned" state then look to
1110 * see if this freeing clears that state.
1111 *
1112 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1113 * pinned" detection logic.
1114 */
1115 static void free_pcppages_bulk(struct zone *zone, int count,
1116 struct per_cpu_pages *pcp)
1117 {
1118 int migratetype = 0;
1119 int batch_free = 0;
1120 int prefetch_nr = 0;
1121 bool isolated_pageblocks;
1122 struct page *page, *tmp;
1123 LIST_HEAD(head);
1124
1125 while (count) {
1126 struct list_head *list;
1127
1128 /*
1129 * Remove pages from lists in a round-robin fashion. A
1130 * batch_free count is maintained that is incremented when an
1131 * empty list is encountered. This is so more pages are freed
1132 * off fuller lists instead of spinning excessively around empty
1133 * lists
1134 */
1135 do {
1136 batch_free++;
1137 if (++migratetype == MIGRATE_PCPTYPES)
1138 migratetype = 0;
1139 list = &pcp->lists[migratetype];
1140 } while (list_empty(list));
1141
1142 /* This is the only non-empty list. Free them all. */
1143 if (batch_free == MIGRATE_PCPTYPES)
1144 batch_free = count;
1145
1146 do {
1147 page = list_last_entry(list, struct page, lru);
1148 /* must delete to avoid corrupting pcp list */
1149 list_del(&page->lru);
1150 pcp->count--;
1151
1152 if (bulkfree_pcp_prepare(page))
1153 continue;
1154
1155 list_add_tail(&page->lru, &head);
1156
1157 /*
1158 * We are going to put the page back to the global
1159 * pool, prefetch its buddy to speed up later access
1160 * under zone->lock. It is believed the overhead of
1161 * an additional test and calculating buddy_pfn here
1162 * can be offset by reduced memory latency later. To
1163 * avoid excessive prefetching due to large count, only
1164 * prefetch buddy for the first pcp->batch nr of pages.
1165 */
1166 if (prefetch_nr++ < pcp->batch)
1167 prefetch_buddy(page);
1168 } while (--count && --batch_free && !list_empty(list));
1169 }
1170
1171 spin_lock(&zone->lock);
1172 isolated_pageblocks = has_isolate_pageblock(zone);
1173
1174 /*
1175 * Use safe version since after __free_one_page(),
1176 * page->lru.next will not point to original list.
1177 */
1178 list_for_each_entry_safe(page, tmp, &head, lru) {
1179 int mt = get_pcppage_migratetype(page);
1180 /* MIGRATE_ISOLATE page should not go to pcplists */
1181 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1182 /* Pageblock could have been isolated meanwhile */
1183 if (unlikely(isolated_pageblocks))
1184 mt = get_pageblock_migratetype(page);
1185
1186 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1187 trace_mm_page_pcpu_drain(page, 0, mt);
1188 }
1189 spin_unlock(&zone->lock);
1190 }
1191
1192 static void free_one_page(struct zone *zone,
1193 struct page *page, unsigned long pfn,
1194 unsigned int order,
1195 int migratetype)
1196 {
1197 spin_lock(&zone->lock);
1198 if (unlikely(has_isolate_pageblock(zone) ||
1199 is_migrate_isolate(migratetype))) {
1200 migratetype = get_pfnblock_migratetype(page, pfn);
1201 }
1202 __free_one_page(page, pfn, zone, order, migratetype);
1203 spin_unlock(&zone->lock);
1204 }
1205
1206 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1207 unsigned long zone, int nid)
1208 {
1209 mm_zero_struct_page(page);
1210 set_page_links(page, zone, nid, pfn);
1211 init_page_count(page);
1212 page_mapcount_reset(page);
1213 page_cpupid_reset_last(page);
1214
1215 INIT_LIST_HEAD(&page->lru);
1216 #ifdef WANT_PAGE_VIRTUAL
1217 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1218 if (!is_highmem_idx(zone))
1219 set_page_address(page, __va(pfn << PAGE_SHIFT));
1220 #endif
1221 }
1222
1223 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1224 static void __meminit init_reserved_page(unsigned long pfn)
1225 {
1226 pg_data_t *pgdat;
1227 int nid, zid;
1228
1229 if (!early_page_uninitialised(pfn))
1230 return;
1231
1232 nid = early_pfn_to_nid(pfn);
1233 pgdat = NODE_DATA(nid);
1234
1235 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1236 struct zone *zone = &pgdat->node_zones[zid];
1237
1238 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1239 break;
1240 }
1241 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1242 }
1243 #else
1244 static inline void init_reserved_page(unsigned long pfn)
1245 {
1246 }
1247 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1248
1249 /*
1250 * Initialised pages do not have PageReserved set. This function is
1251 * called for each range allocated by the bootmem allocator and
1252 * marks the pages PageReserved. The remaining valid pages are later
1253 * sent to the buddy page allocator.
1254 */
1255 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1256 {
1257 unsigned long start_pfn = PFN_DOWN(start);
1258 unsigned long end_pfn = PFN_UP(end);
1259
1260 for (; start_pfn < end_pfn; start_pfn++) {
1261 if (pfn_valid(start_pfn)) {
1262 struct page *page = pfn_to_page(start_pfn);
1263
1264 init_reserved_page(start_pfn);
1265
1266 /* Avoid false-positive PageTail() */
1267 INIT_LIST_HEAD(&page->lru);
1268
1269 /*
1270 * no need for atomic set_bit because the struct
1271 * page is not visible yet so nobody should
1272 * access it yet.
1273 */
1274 __SetPageReserved(page);
1275 }
1276 }
1277 }
1278
1279 static void __free_pages_ok(struct page *page, unsigned int order)
1280 {
1281 unsigned long flags;
1282 int migratetype;
1283 unsigned long pfn = page_to_pfn(page);
1284
1285 if (!free_pages_prepare(page, order, true))
1286 return;
1287
1288 migratetype = get_pfnblock_migratetype(page, pfn);
1289 local_irq_save(flags);
1290 __count_vm_events(PGFREE, 1 << order);
1291 free_one_page(page_zone(page), page, pfn, order, migratetype);
1292 local_irq_restore(flags);
1293 }
1294
1295 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1296 {
1297 unsigned int nr_pages = 1 << order;
1298 struct page *p = page;
1299 unsigned int loop;
1300
1301 prefetchw(p);
1302 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1303 prefetchw(p + 1);
1304 __ClearPageReserved(p);
1305 set_page_count(p, 0);
1306 }
1307 __ClearPageReserved(p);
1308 set_page_count(p, 0);
1309
1310 page_zone(page)->managed_pages += nr_pages;
1311 set_page_refcounted(page);
1312 __free_pages(page, order);
1313 }
1314
1315 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1316 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1317
1318 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1319
1320 int __meminit early_pfn_to_nid(unsigned long pfn)
1321 {
1322 static DEFINE_SPINLOCK(early_pfn_lock);
1323 int nid;
1324
1325 spin_lock(&early_pfn_lock);
1326 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1327 if (nid < 0)
1328 nid = first_online_node;
1329 spin_unlock(&early_pfn_lock);
1330
1331 return nid;
1332 }
1333 #endif
1334
1335 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1336 static inline bool __meminit __maybe_unused
1337 meminit_pfn_in_nid(unsigned long pfn, int node,
1338 struct mminit_pfnnid_cache *state)
1339 {
1340 int nid;
1341
1342 nid = __early_pfn_to_nid(pfn, state);
1343 if (nid >= 0 && nid != node)
1344 return false;
1345 return true;
1346 }
1347
1348 /* Only safe to use early in boot when initialisation is single-threaded */
1349 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1350 {
1351 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1352 }
1353
1354 #else
1355
1356 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1357 {
1358 return true;
1359 }
1360 static inline bool __meminit __maybe_unused
1361 meminit_pfn_in_nid(unsigned long pfn, int node,
1362 struct mminit_pfnnid_cache *state)
1363 {
1364 return true;
1365 }
1366 #endif
1367
1368
1369 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1370 unsigned int order)
1371 {
1372 if (early_page_uninitialised(pfn))
1373 return;
1374 return __free_pages_boot_core(page, order);
1375 }
1376
1377 /*
1378 * Check that the whole (or subset of) a pageblock given by the interval of
1379 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1380 * with the migration of free compaction scanner. The scanners then need to
1381 * use only pfn_valid_within() check for arches that allow holes within
1382 * pageblocks.
1383 *
1384 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1385 *
1386 * It's possible on some configurations to have a setup like node0 node1 node0
1387 * i.e. it's possible that all pages within a zones range of pages do not
1388 * belong to a single zone. We assume that a border between node0 and node1
1389 * can occur within a single pageblock, but not a node0 node1 node0
1390 * interleaving within a single pageblock. It is therefore sufficient to check
1391 * the first and last page of a pageblock and avoid checking each individual
1392 * page in a pageblock.
1393 */
1394 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1395 unsigned long end_pfn, struct zone *zone)
1396 {
1397 struct page *start_page;
1398 struct page *end_page;
1399
1400 /* end_pfn is one past the range we are checking */
1401 end_pfn--;
1402
1403 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1404 return NULL;
1405
1406 start_page = pfn_to_online_page(start_pfn);
1407 if (!start_page)
1408 return NULL;
1409
1410 if (page_zone(start_page) != zone)
1411 return NULL;
1412
1413 end_page = pfn_to_page(end_pfn);
1414
1415 /* This gives a shorter code than deriving page_zone(end_page) */
1416 if (page_zone_id(start_page) != page_zone_id(end_page))
1417 return NULL;
1418
1419 return start_page;
1420 }
1421
1422 void set_zone_contiguous(struct zone *zone)
1423 {
1424 unsigned long block_start_pfn = zone->zone_start_pfn;
1425 unsigned long block_end_pfn;
1426
1427 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1428 for (; block_start_pfn < zone_end_pfn(zone);
1429 block_start_pfn = block_end_pfn,
1430 block_end_pfn += pageblock_nr_pages) {
1431
1432 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1433
1434 if (!__pageblock_pfn_to_page(block_start_pfn,
1435 block_end_pfn, zone))
1436 return;
1437 }
1438
1439 /* We confirm that there is no hole */
1440 zone->contiguous = true;
1441 }
1442
1443 void clear_zone_contiguous(struct zone *zone)
1444 {
1445 zone->contiguous = false;
1446 }
1447
1448 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1449 static void __init deferred_free_range(unsigned long pfn,
1450 unsigned long nr_pages)
1451 {
1452 struct page *page;
1453 unsigned long i;
1454
1455 if (!nr_pages)
1456 return;
1457
1458 page = pfn_to_page(pfn);
1459
1460 /* Free a large naturally-aligned chunk if possible */
1461 if (nr_pages == pageblock_nr_pages &&
1462 (pfn & (pageblock_nr_pages - 1)) == 0) {
1463 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1464 __free_pages_boot_core(page, pageblock_order);
1465 return;
1466 }
1467
1468 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1469 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1470 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1471 __free_pages_boot_core(page, 0);
1472 }
1473 }
1474
1475 /* Completion tracking for deferred_init_memmap() threads */
1476 static atomic_t pgdat_init_n_undone __initdata;
1477 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1478
1479 static inline void __init pgdat_init_report_one_done(void)
1480 {
1481 if (atomic_dec_and_test(&pgdat_init_n_undone))
1482 complete(&pgdat_init_all_done_comp);
1483 }
1484
1485 /*
1486 * Returns true if page needs to be initialized or freed to buddy allocator.
1487 *
1488 * First we check if pfn is valid on architectures where it is possible to have
1489 * holes within pageblock_nr_pages. On systems where it is not possible, this
1490 * function is optimized out.
1491 *
1492 * Then, we check if a current large page is valid by only checking the validity
1493 * of the head pfn.
1494 *
1495 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1496 * within a node: a pfn is between start and end of a node, but does not belong
1497 * to this memory node.
1498 */
1499 static inline bool __init
1500 deferred_pfn_valid(int nid, unsigned long pfn,
1501 struct mminit_pfnnid_cache *nid_init_state)
1502 {
1503 if (!pfn_valid_within(pfn))
1504 return false;
1505 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1506 return false;
1507 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1508 return false;
1509 return true;
1510 }
1511
1512 /*
1513 * Free pages to buddy allocator. Try to free aligned pages in
1514 * pageblock_nr_pages sizes.
1515 */
1516 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1517 unsigned long end_pfn)
1518 {
1519 struct mminit_pfnnid_cache nid_init_state = { };
1520 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1521 unsigned long nr_free = 0;
1522
1523 for (; pfn < end_pfn; pfn++) {
1524 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1525 deferred_free_range(pfn - nr_free, nr_free);
1526 nr_free = 0;
1527 } else if (!(pfn & nr_pgmask)) {
1528 deferred_free_range(pfn - nr_free, nr_free);
1529 nr_free = 1;
1530 touch_nmi_watchdog();
1531 } else {
1532 nr_free++;
1533 }
1534 }
1535 /* Free the last block of pages to allocator */
1536 deferred_free_range(pfn - nr_free, nr_free);
1537 }
1538
1539 /*
1540 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1541 * by performing it only once every pageblock_nr_pages.
1542 * Return number of pages initialized.
1543 */
1544 static unsigned long __init deferred_init_pages(int nid, int zid,
1545 unsigned long pfn,
1546 unsigned long end_pfn)
1547 {
1548 struct mminit_pfnnid_cache nid_init_state = { };
1549 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1550 unsigned long nr_pages = 0;
1551 struct page *page = NULL;
1552
1553 for (; pfn < end_pfn; pfn++) {
1554 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1555 page = NULL;
1556 continue;
1557 } else if (!page || !(pfn & nr_pgmask)) {
1558 page = pfn_to_page(pfn);
1559 touch_nmi_watchdog();
1560 } else {
1561 page++;
1562 }
1563 __init_single_page(page, pfn, zid, nid);
1564 nr_pages++;
1565 }
1566 return (nr_pages);
1567 }
1568
1569 /* Initialise remaining memory on a node */
1570 static int __init deferred_init_memmap(void *data)
1571 {
1572 pg_data_t *pgdat = data;
1573 int nid = pgdat->node_id;
1574 unsigned long start = jiffies;
1575 unsigned long nr_pages = 0;
1576 unsigned long spfn, epfn, first_init_pfn, flags;
1577 phys_addr_t spa, epa;
1578 int zid;
1579 struct zone *zone;
1580 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1581 u64 i;
1582
1583 /* Bind memory initialisation thread to a local node if possible */
1584 if (!cpumask_empty(cpumask))
1585 set_cpus_allowed_ptr(current, cpumask);
1586
1587 pgdat_resize_lock(pgdat, &flags);
1588 first_init_pfn = pgdat->first_deferred_pfn;
1589 if (first_init_pfn == ULONG_MAX) {
1590 pgdat_resize_unlock(pgdat, &flags);
1591 pgdat_init_report_one_done();
1592 return 0;
1593 }
1594
1595 /* Sanity check boundaries */
1596 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1597 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1598 pgdat->first_deferred_pfn = ULONG_MAX;
1599
1600 /* Only the highest zone is deferred so find it */
1601 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1602 zone = pgdat->node_zones + zid;
1603 if (first_init_pfn < zone_end_pfn(zone))
1604 break;
1605 }
1606 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1607
1608 /*
1609 * Initialize and free pages. We do it in two loops: first we initialize
1610 * struct page, than free to buddy allocator, because while we are
1611 * freeing pages we can access pages that are ahead (computing buddy
1612 * page in __free_one_page()).
1613 */
1614 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1615 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1616 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1617 nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1618 }
1619 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1620 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1621 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1622 deferred_free_pages(nid, zid, spfn, epfn);
1623 }
1624 pgdat_resize_unlock(pgdat, &flags);
1625
1626 /* Sanity check that the next zone really is unpopulated */
1627 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1628
1629 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1630 jiffies_to_msecs(jiffies - start));
1631
1632 pgdat_init_report_one_done();
1633 return 0;
1634 }
1635
1636 /*
1637 * If this zone has deferred pages, try to grow it by initializing enough
1638 * deferred pages to satisfy the allocation specified by order, rounded up to
1639 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1640 * of SECTION_SIZE bytes by initializing struct pages in increments of
1641 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1642 *
1643 * Return true when zone was grown, otherwise return false. We return true even
1644 * when we grow less than requested, to let the caller decide if there are
1645 * enough pages to satisfy the allocation.
1646 *
1647 * Note: We use noinline because this function is needed only during boot, and
1648 * it is called from a __ref function _deferred_grow_zone. This way we are
1649 * making sure that it is not inlined into permanent text section.
1650 */
1651 static noinline bool __init
1652 deferred_grow_zone(struct zone *zone, unsigned int order)
1653 {
1654 int zid = zone_idx(zone);
1655 int nid = zone_to_nid(zone);
1656 pg_data_t *pgdat = NODE_DATA(nid);
1657 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1658 unsigned long nr_pages = 0;
1659 unsigned long first_init_pfn, spfn, epfn, t, flags;
1660 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1661 phys_addr_t spa, epa;
1662 u64 i;
1663
1664 /* Only the last zone may have deferred pages */
1665 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1666 return false;
1667
1668 pgdat_resize_lock(pgdat, &flags);
1669
1670 /*
1671 * If deferred pages have been initialized while we were waiting for
1672 * the lock, return true, as the zone was grown. The caller will retry
1673 * this zone. We won't return to this function since the caller also
1674 * has this static branch.
1675 */
1676 if (!static_branch_unlikely(&deferred_pages)) {
1677 pgdat_resize_unlock(pgdat, &flags);
1678 return true;
1679 }
1680
1681 /*
1682 * If someone grew this zone while we were waiting for spinlock, return
1683 * true, as there might be enough pages already.
1684 */
1685 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1686 pgdat_resize_unlock(pgdat, &flags);
1687 return true;
1688 }
1689
1690 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1691
1692 if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1693 pgdat_resize_unlock(pgdat, &flags);
1694 return false;
1695 }
1696
1697 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1698 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1699 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1700
1701 while (spfn < epfn && nr_pages < nr_pages_needed) {
1702 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1703 first_deferred_pfn = min(t, epfn);
1704 nr_pages += deferred_init_pages(nid, zid, spfn,
1705 first_deferred_pfn);
1706 spfn = first_deferred_pfn;
1707 }
1708
1709 if (nr_pages >= nr_pages_needed)
1710 break;
1711 }
1712
1713 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1714 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1715 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1716 deferred_free_pages(nid, zid, spfn, epfn);
1717
1718 if (first_deferred_pfn == epfn)
1719 break;
1720 }
1721 pgdat->first_deferred_pfn = first_deferred_pfn;
1722 pgdat_resize_unlock(pgdat, &flags);
1723
1724 return nr_pages > 0;
1725 }
1726
1727 /*
1728 * deferred_grow_zone() is __init, but it is called from
1729 * get_page_from_freelist() during early boot until deferred_pages permanently
1730 * disables this call. This is why we have refdata wrapper to avoid warning,
1731 * and to ensure that the function body gets unloaded.
1732 */
1733 static bool __ref
1734 _deferred_grow_zone(struct zone *zone, unsigned int order)
1735 {
1736 return deferred_grow_zone(zone, order);
1737 }
1738
1739 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1740
1741 void __init page_alloc_init_late(void)
1742 {
1743 struct zone *zone;
1744
1745 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1746 int nid;
1747
1748 /* There will be num_node_state(N_MEMORY) threads */
1749 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1750 for_each_node_state(nid, N_MEMORY) {
1751 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1752 }
1753
1754 /* Block until all are initialised */
1755 wait_for_completion(&pgdat_init_all_done_comp);
1756
1757 /*
1758 * We initialized the rest of the deferred pages. Permanently disable
1759 * on-demand struct page initialization.
1760 */
1761 static_branch_disable(&deferred_pages);
1762
1763 /* Reinit limits that are based on free pages after the kernel is up */
1764 files_maxfiles_init();
1765 #endif
1766 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1767 /* Discard memblock private memory */
1768 memblock_discard();
1769 #endif
1770
1771 for_each_populated_zone(zone)
1772 set_zone_contiguous(zone);
1773 }
1774
1775 #ifdef CONFIG_CMA
1776 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1777 void __init init_cma_reserved_pageblock(struct page *page)
1778 {
1779 unsigned i = pageblock_nr_pages;
1780 struct page *p = page;
1781
1782 do {
1783 __ClearPageReserved(p);
1784 set_page_count(p, 0);
1785 } while (++p, --i);
1786
1787 set_pageblock_migratetype(page, MIGRATE_CMA);
1788
1789 if (pageblock_order >= MAX_ORDER) {
1790 i = pageblock_nr_pages;
1791 p = page;
1792 do {
1793 set_page_refcounted(p);
1794 __free_pages(p, MAX_ORDER - 1);
1795 p += MAX_ORDER_NR_PAGES;
1796 } while (i -= MAX_ORDER_NR_PAGES);
1797 } else {
1798 set_page_refcounted(page);
1799 __free_pages(page, pageblock_order);
1800 }
1801
1802 adjust_managed_page_count(page, pageblock_nr_pages);
1803 }
1804 #endif
1805
1806 /*
1807 * The order of subdivision here is critical for the IO subsystem.
1808 * Please do not alter this order without good reasons and regression
1809 * testing. Specifically, as large blocks of memory are subdivided,
1810 * the order in which smaller blocks are delivered depends on the order
1811 * they're subdivided in this function. This is the primary factor
1812 * influencing the order in which pages are delivered to the IO
1813 * subsystem according to empirical testing, and this is also justified
1814 * by considering the behavior of a buddy system containing a single
1815 * large block of memory acted on by a series of small allocations.
1816 * This behavior is a critical factor in sglist merging's success.
1817 *
1818 * -- nyc
1819 */
1820 static inline void expand(struct zone *zone, struct page *page,
1821 int low, int high, struct free_area *area,
1822 int migratetype)
1823 {
1824 unsigned long size = 1 << high;
1825
1826 while (high > low) {
1827 area--;
1828 high--;
1829 size >>= 1;
1830 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1831
1832 /*
1833 * Mark as guard pages (or page), that will allow to
1834 * merge back to allocator when buddy will be freed.
1835 * Corresponding page table entries will not be touched,
1836 * pages will stay not present in virtual address space
1837 */
1838 if (set_page_guard(zone, &page[size], high, migratetype))
1839 continue;
1840
1841 list_add(&page[size].lru, &area->free_list[migratetype]);
1842 area->nr_free++;
1843 set_page_order(&page[size], high);
1844 }
1845 }
1846
1847 static void check_new_page_bad(struct page *page)
1848 {
1849 const char *bad_reason = NULL;
1850 unsigned long bad_flags = 0;
1851
1852 if (unlikely(atomic_read(&page->_mapcount) != -1))
1853 bad_reason = "nonzero mapcount";
1854 if (unlikely(page->mapping != NULL))
1855 bad_reason = "non-NULL mapping";
1856 if (unlikely(page_ref_count(page) != 0))
1857 bad_reason = "nonzero _count";
1858 if (unlikely(page->flags & __PG_HWPOISON)) {
1859 bad_reason = "HWPoisoned (hardware-corrupted)";
1860 bad_flags = __PG_HWPOISON;
1861 /* Don't complain about hwpoisoned pages */
1862 page_mapcount_reset(page); /* remove PageBuddy */
1863 return;
1864 }
1865 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1866 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1867 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1868 }
1869 #ifdef CONFIG_MEMCG
1870 if (unlikely(page->mem_cgroup))
1871 bad_reason = "page still charged to cgroup";
1872 #endif
1873 bad_page(page, bad_reason, bad_flags);
1874 }
1875
1876 /*
1877 * This page is about to be returned from the page allocator
1878 */
1879 static inline int check_new_page(struct page *page)
1880 {
1881 if (likely(page_expected_state(page,
1882 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1883 return 0;
1884
1885 check_new_page_bad(page);
1886 return 1;
1887 }
1888
1889 static inline bool free_pages_prezeroed(void)
1890 {
1891 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1892 page_poisoning_enabled();
1893 }
1894
1895 #ifdef CONFIG_DEBUG_VM
1896 static bool check_pcp_refill(struct page *page)
1897 {
1898 return false;
1899 }
1900
1901 static bool check_new_pcp(struct page *page)
1902 {
1903 return check_new_page(page);
1904 }
1905 #else
1906 static bool check_pcp_refill(struct page *page)
1907 {
1908 return check_new_page(page);
1909 }
1910 static bool check_new_pcp(struct page *page)
1911 {
1912 return false;
1913 }
1914 #endif /* CONFIG_DEBUG_VM */
1915
1916 static bool check_new_pages(struct page *page, unsigned int order)
1917 {
1918 int i;
1919 for (i = 0; i < (1 << order); i++) {
1920 struct page *p = page + i;
1921
1922 if (unlikely(check_new_page(p)))
1923 return true;
1924 }
1925
1926 return false;
1927 }
1928
1929 inline void post_alloc_hook(struct page *page, unsigned int order,
1930 gfp_t gfp_flags)
1931 {
1932 set_page_private(page, 0);
1933 set_page_refcounted(page);
1934
1935 arch_alloc_page(page, order);
1936 kernel_map_pages(page, 1 << order, 1);
1937 kernel_poison_pages(page, 1 << order, 1);
1938 kasan_alloc_pages(page, order);
1939 set_page_owner(page, order, gfp_flags);
1940 }
1941
1942 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1943 unsigned int alloc_flags)
1944 {
1945 int i;
1946
1947 post_alloc_hook(page, order, gfp_flags);
1948
1949 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1950 for (i = 0; i < (1 << order); i++)
1951 clear_highpage(page + i);
1952
1953 if (order && (gfp_flags & __GFP_COMP))
1954 prep_compound_page(page, order);
1955
1956 /*
1957 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1958 * allocate the page. The expectation is that the caller is taking
1959 * steps that will free more memory. The caller should avoid the page
1960 * being used for !PFMEMALLOC purposes.
1961 */
1962 if (alloc_flags & ALLOC_NO_WATERMARKS)
1963 set_page_pfmemalloc(page);
1964 else
1965 clear_page_pfmemalloc(page);
1966 }
1967
1968 /*
1969 * Go through the free lists for the given migratetype and remove
1970 * the smallest available page from the freelists
1971 */
1972 static __always_inline
1973 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1974 int migratetype)
1975 {
1976 unsigned int current_order;
1977 struct free_area *area;
1978 struct page *page;
1979
1980 /* Find a page of the appropriate size in the preferred list */
1981 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1982 area = &(zone->free_area[current_order]);
1983 page = list_first_entry_or_null(&area->free_list[migratetype],
1984 struct page, lru);
1985 if (!page)
1986 continue;
1987 list_del(&page->lru);
1988 rmv_page_order(page);
1989 area->nr_free--;
1990 expand(zone, page, order, current_order, area, migratetype);
1991 set_pcppage_migratetype(page, migratetype);
1992 return page;
1993 }
1994
1995 return NULL;
1996 }
1997
1998
1999 /*
2000 * This array describes the order lists are fallen back to when
2001 * the free lists for the desirable migrate type are depleted
2002 */
2003 static int fallbacks[MIGRATE_TYPES][4] = {
2004 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2005 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2006 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2007 #ifdef CONFIG_CMA
2008 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2009 #endif
2010 #ifdef CONFIG_MEMORY_ISOLATION
2011 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2012 #endif
2013 };
2014
2015 #ifdef CONFIG_CMA
2016 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2017 unsigned int order)
2018 {
2019 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2020 }
2021 #else
2022 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2023 unsigned int order) { return NULL; }
2024 #endif
2025
2026 /*
2027 * Move the free pages in a range to the free lists of the requested type.
2028 * Note that start_page and end_pages are not aligned on a pageblock
2029 * boundary. If alignment is required, use move_freepages_block()
2030 */
2031 static int move_freepages(struct zone *zone,
2032 struct page *start_page, struct page *end_page,
2033 int migratetype, int *num_movable)
2034 {
2035 struct page *page;
2036 unsigned int order;
2037 int pages_moved = 0;
2038
2039 #ifndef CONFIG_HOLES_IN_ZONE
2040 /*
2041 * page_zone is not safe to call in this context when
2042 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2043 * anyway as we check zone boundaries in move_freepages_block().
2044 * Remove at a later date when no bug reports exist related to
2045 * grouping pages by mobility
2046 */
2047 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2048 pfn_valid(page_to_pfn(end_page)) &&
2049 page_zone(start_page) != page_zone(end_page));
2050 #endif
2051 for (page = start_page; page <= end_page;) {
2052 if (!pfn_valid_within(page_to_pfn(page))) {
2053 page++;
2054 continue;
2055 }
2056
2057 /* Make sure we are not inadvertently changing nodes */
2058 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2059
2060 if (!PageBuddy(page)) {
2061 /*
2062 * We assume that pages that could be isolated for
2063 * migration are movable. But we don't actually try
2064 * isolating, as that would be expensive.
2065 */
2066 if (num_movable &&
2067 (PageLRU(page) || __PageMovable(page)))
2068 (*num_movable)++;
2069
2070 page++;
2071 continue;
2072 }
2073
2074 order = page_order(page);
2075 list_move(&page->lru,
2076 &zone->free_area[order].free_list[migratetype]);
2077 page += 1 << order;
2078 pages_moved += 1 << order;
2079 }
2080
2081 return pages_moved;
2082 }
2083
2084 int move_freepages_block(struct zone *zone, struct page *page,
2085 int migratetype, int *num_movable)
2086 {
2087 unsigned long start_pfn, end_pfn;
2088 struct page *start_page, *end_page;
2089
2090 if (num_movable)
2091 *num_movable = 0;
2092
2093 start_pfn = page_to_pfn(page);
2094 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2095 start_page = pfn_to_page(start_pfn);
2096 end_page = start_page + pageblock_nr_pages - 1;
2097 end_pfn = start_pfn + pageblock_nr_pages - 1;
2098
2099 /* Do not cross zone boundaries */
2100 if (!zone_spans_pfn(zone, start_pfn))
2101 start_page = page;
2102 if (!zone_spans_pfn(zone, end_pfn))
2103 return 0;
2104
2105 return move_freepages(zone, start_page, end_page, migratetype,
2106 num_movable);
2107 }
2108
2109 static void change_pageblock_range(struct page *pageblock_page,
2110 int start_order, int migratetype)
2111 {
2112 int nr_pageblocks = 1 << (start_order - pageblock_order);
2113
2114 while (nr_pageblocks--) {
2115 set_pageblock_migratetype(pageblock_page, migratetype);
2116 pageblock_page += pageblock_nr_pages;
2117 }
2118 }
2119
2120 /*
2121 * When we are falling back to another migratetype during allocation, try to
2122 * steal extra free pages from the same pageblocks to satisfy further
2123 * allocations, instead of polluting multiple pageblocks.
2124 *
2125 * If we are stealing a relatively large buddy page, it is likely there will
2126 * be more free pages in the pageblock, so try to steal them all. For
2127 * reclaimable and unmovable allocations, we steal regardless of page size,
2128 * as fragmentation caused by those allocations polluting movable pageblocks
2129 * is worse than movable allocations stealing from unmovable and reclaimable
2130 * pageblocks.
2131 */
2132 static bool can_steal_fallback(unsigned int order, int start_mt)
2133 {
2134 /*
2135 * Leaving this order check is intended, although there is
2136 * relaxed order check in next check. The reason is that
2137 * we can actually steal whole pageblock if this condition met,
2138 * but, below check doesn't guarantee it and that is just heuristic
2139 * so could be changed anytime.
2140 */
2141 if (order >= pageblock_order)
2142 return true;
2143
2144 if (order >= pageblock_order / 2 ||
2145 start_mt == MIGRATE_RECLAIMABLE ||
2146 start_mt == MIGRATE_UNMOVABLE ||
2147 page_group_by_mobility_disabled)
2148 return true;
2149
2150 return false;
2151 }
2152
2153 /*
2154 * This function implements actual steal behaviour. If order is large enough,
2155 * we can steal whole pageblock. If not, we first move freepages in this
2156 * pageblock to our migratetype and determine how many already-allocated pages
2157 * are there in the pageblock with a compatible migratetype. If at least half
2158 * of pages are free or compatible, we can change migratetype of the pageblock
2159 * itself, so pages freed in the future will be put on the correct free list.
2160 */
2161 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2162 int start_type, bool whole_block)
2163 {
2164 unsigned int current_order = page_order(page);
2165 struct free_area *area;
2166 int free_pages, movable_pages, alike_pages;
2167 int old_block_type;
2168
2169 old_block_type = get_pageblock_migratetype(page);
2170
2171 /*
2172 * This can happen due to races and we want to prevent broken
2173 * highatomic accounting.
2174 */
2175 if (is_migrate_highatomic(old_block_type))
2176 goto single_page;
2177
2178 /* Take ownership for orders >= pageblock_order */
2179 if (current_order >= pageblock_order) {
2180 change_pageblock_range(page, current_order, start_type);
2181 goto single_page;
2182 }
2183
2184 /* We are not allowed to try stealing from the whole block */
2185 if (!whole_block)
2186 goto single_page;
2187
2188 free_pages = move_freepages_block(zone, page, start_type,
2189 &movable_pages);
2190 /*
2191 * Determine how many pages are compatible with our allocation.
2192 * For movable allocation, it's the number of movable pages which
2193 * we just obtained. For other types it's a bit more tricky.
2194 */
2195 if (start_type == MIGRATE_MOVABLE) {
2196 alike_pages = movable_pages;
2197 } else {
2198 /*
2199 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2200 * to MOVABLE pageblock, consider all non-movable pages as
2201 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2202 * vice versa, be conservative since we can't distinguish the
2203 * exact migratetype of non-movable pages.
2204 */
2205 if (old_block_type == MIGRATE_MOVABLE)
2206 alike_pages = pageblock_nr_pages
2207 - (free_pages + movable_pages);
2208 else
2209 alike_pages = 0;
2210 }
2211
2212 /* moving whole block can fail due to zone boundary conditions */
2213 if (!free_pages)
2214 goto single_page;
2215
2216 /*
2217 * If a sufficient number of pages in the block are either free or of
2218 * comparable migratability as our allocation, claim the whole block.
2219 */
2220 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2221 page_group_by_mobility_disabled)
2222 set_pageblock_migratetype(page, start_type);
2223
2224 return;
2225
2226 single_page:
2227 area = &zone->free_area[current_order];
2228 list_move(&page->lru, &area->free_list[start_type]);
2229 }
2230
2231 /*
2232 * Check whether there is a suitable fallback freepage with requested order.
2233 * If only_stealable is true, this function returns fallback_mt only if
2234 * we can steal other freepages all together. This would help to reduce
2235 * fragmentation due to mixed migratetype pages in one pageblock.
2236 */
2237 int find_suitable_fallback(struct free_area *area, unsigned int order,
2238 int migratetype, bool only_stealable, bool *can_steal)
2239 {
2240 int i;
2241 int fallback_mt;
2242
2243 if (area->nr_free == 0)
2244 return -1;
2245
2246 *can_steal = false;
2247 for (i = 0;; i++) {
2248 fallback_mt = fallbacks[migratetype][i];
2249 if (fallback_mt == MIGRATE_TYPES)
2250 break;
2251
2252 if (list_empty(&area->free_list[fallback_mt]))
2253 continue;
2254
2255 if (can_steal_fallback(order, migratetype))
2256 *can_steal = true;
2257
2258 if (!only_stealable)
2259 return fallback_mt;
2260
2261 if (*can_steal)
2262 return fallback_mt;
2263 }
2264
2265 return -1;
2266 }
2267
2268 /*
2269 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2270 * there are no empty page blocks that contain a page with a suitable order
2271 */
2272 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2273 unsigned int alloc_order)
2274 {
2275 int mt;
2276 unsigned long max_managed, flags;
2277
2278 /*
2279 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2280 * Check is race-prone but harmless.
2281 */
2282 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2283 if (zone->nr_reserved_highatomic >= max_managed)
2284 return;
2285
2286 spin_lock_irqsave(&zone->lock, flags);
2287
2288 /* Recheck the nr_reserved_highatomic limit under the lock */
2289 if (zone->nr_reserved_highatomic >= max_managed)
2290 goto out_unlock;
2291
2292 /* Yoink! */
2293 mt = get_pageblock_migratetype(page);
2294 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2295 && !is_migrate_cma(mt)) {
2296 zone->nr_reserved_highatomic += pageblock_nr_pages;
2297 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2298 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2299 }
2300
2301 out_unlock:
2302 spin_unlock_irqrestore(&zone->lock, flags);
2303 }
2304
2305 /*
2306 * Used when an allocation is about to fail under memory pressure. This
2307 * potentially hurts the reliability of high-order allocations when under
2308 * intense memory pressure but failed atomic allocations should be easier
2309 * to recover from than an OOM.
2310 *
2311 * If @force is true, try to unreserve a pageblock even though highatomic
2312 * pageblock is exhausted.
2313 */
2314 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2315 bool force)
2316 {
2317 struct zonelist *zonelist = ac->zonelist;
2318 unsigned long flags;
2319 struct zoneref *z;
2320 struct zone *zone;
2321 struct page *page;
2322 int order;
2323 bool ret;
2324
2325 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2326 ac->nodemask) {
2327 /*
2328 * Preserve at least one pageblock unless memory pressure
2329 * is really high.
2330 */
2331 if (!force && zone->nr_reserved_highatomic <=
2332 pageblock_nr_pages)
2333 continue;
2334
2335 spin_lock_irqsave(&zone->lock, flags);
2336 for (order = 0; order < MAX_ORDER; order++) {
2337 struct free_area *area = &(zone->free_area[order]);
2338
2339 page = list_first_entry_or_null(
2340 &area->free_list[MIGRATE_HIGHATOMIC],
2341 struct page, lru);
2342 if (!page)
2343 continue;
2344
2345 /*
2346 * In page freeing path, migratetype change is racy so
2347 * we can counter several free pages in a pageblock
2348 * in this loop althoug we changed the pageblock type
2349 * from highatomic to ac->migratetype. So we should
2350 * adjust the count once.
2351 */
2352 if (is_migrate_highatomic_page(page)) {
2353 /*
2354 * It should never happen but changes to
2355 * locking could inadvertently allow a per-cpu
2356 * drain to add pages to MIGRATE_HIGHATOMIC
2357 * while unreserving so be safe and watch for
2358 * underflows.
2359 */
2360 zone->nr_reserved_highatomic -= min(
2361 pageblock_nr_pages,
2362 zone->nr_reserved_highatomic);
2363 }
2364
2365 /*
2366 * Convert to ac->migratetype and avoid the normal
2367 * pageblock stealing heuristics. Minimally, the caller
2368 * is doing the work and needs the pages. More
2369 * importantly, if the block was always converted to
2370 * MIGRATE_UNMOVABLE or another type then the number
2371 * of pageblocks that cannot be completely freed
2372 * may increase.
2373 */
2374 set_pageblock_migratetype(page, ac->migratetype);
2375 ret = move_freepages_block(zone, page, ac->migratetype,
2376 NULL);
2377 if (ret) {
2378 spin_unlock_irqrestore(&zone->lock, flags);
2379 return ret;
2380 }
2381 }
2382 spin_unlock_irqrestore(&zone->lock, flags);
2383 }
2384
2385 return false;
2386 }
2387
2388 /*
2389 * Try finding a free buddy page on the fallback list and put it on the free
2390 * list of requested migratetype, possibly along with other pages from the same
2391 * block, depending on fragmentation avoidance heuristics. Returns true if
2392 * fallback was found so that __rmqueue_smallest() can grab it.
2393 *
2394 * The use of signed ints for order and current_order is a deliberate
2395 * deviation from the rest of this file, to make the for loop
2396 * condition simpler.
2397 */
2398 static __always_inline bool
2399 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2400 {
2401 struct free_area *area;
2402 int current_order;
2403 struct page *page;
2404 int fallback_mt;
2405 bool can_steal;
2406
2407 /*
2408 * Find the largest available free page in the other list. This roughly
2409 * approximates finding the pageblock with the most free pages, which
2410 * would be too costly to do exactly.
2411 */
2412 for (current_order = MAX_ORDER - 1; current_order >= order;
2413 --current_order) {
2414 area = &(zone->free_area[current_order]);
2415 fallback_mt = find_suitable_fallback(area, current_order,
2416 start_migratetype, false, &can_steal);
2417 if (fallback_mt == -1)
2418 continue;
2419
2420 /*
2421 * We cannot steal all free pages from the pageblock and the
2422 * requested migratetype is movable. In that case it's better to
2423 * steal and split the smallest available page instead of the
2424 * largest available page, because even if the next movable
2425 * allocation falls back into a different pageblock than this
2426 * one, it won't cause permanent fragmentation.
2427 */
2428 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2429 && current_order > order)
2430 goto find_smallest;
2431
2432 goto do_steal;
2433 }
2434
2435 return false;
2436
2437 find_smallest:
2438 for (current_order = order; current_order < MAX_ORDER;
2439 current_order++) {
2440 area = &(zone->free_area[current_order]);
2441 fallback_mt = find_suitable_fallback(area, current_order,
2442 start_migratetype, false, &can_steal);
2443 if (fallback_mt != -1)
2444 break;
2445 }
2446
2447 /*
2448 * This should not happen - we already found a suitable fallback
2449 * when looking for the largest page.
2450 */
2451 VM_BUG_ON(current_order == MAX_ORDER);
2452
2453 do_steal:
2454 page = list_first_entry(&area->free_list[fallback_mt],
2455 struct page, lru);
2456
2457 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2458
2459 trace_mm_page_alloc_extfrag(page, order, current_order,
2460 start_migratetype, fallback_mt);
2461
2462 return true;
2463
2464 }
2465
2466 /*
2467 * Do the hard work of removing an element from the buddy allocator.
2468 * Call me with the zone->lock already held.
2469 */
2470 static __always_inline struct page *
2471 __rmqueue(struct zone *zone, unsigned int order, int migratetype)
2472 {
2473 struct page *page;
2474
2475 retry:
2476 page = __rmqueue_smallest(zone, order, migratetype);
2477 if (unlikely(!page)) {
2478 if (migratetype == MIGRATE_MOVABLE)
2479 page = __rmqueue_cma_fallback(zone, order);
2480
2481 if (!page && __rmqueue_fallback(zone, order, migratetype))
2482 goto retry;
2483 }
2484
2485 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2486 return page;
2487 }
2488
2489 /*
2490 * Obtain a specified number of elements from the buddy allocator, all under
2491 * a single hold of the lock, for efficiency. Add them to the supplied list.
2492 * Returns the number of new pages which were placed at *list.
2493 */
2494 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2495 unsigned long count, struct list_head *list,
2496 int migratetype)
2497 {
2498 int i, alloced = 0;
2499
2500 spin_lock(&zone->lock);
2501 for (i = 0; i < count; ++i) {
2502 struct page *page = __rmqueue(zone, order, migratetype);
2503 if (unlikely(page == NULL))
2504 break;
2505
2506 if (unlikely(check_pcp_refill(page)))
2507 continue;
2508
2509 /*
2510 * Split buddy pages returned by expand() are received here in
2511 * physical page order. The page is added to the tail of
2512 * caller's list. From the callers perspective, the linked list
2513 * is ordered by page number under some conditions. This is
2514 * useful for IO devices that can forward direction from the
2515 * head, thus also in the physical page order. This is useful
2516 * for IO devices that can merge IO requests if the physical
2517 * pages are ordered properly.
2518 */
2519 list_add_tail(&page->lru, list);
2520 alloced++;
2521 if (is_migrate_cma(get_pcppage_migratetype(page)))
2522 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2523 -(1 << order));
2524 }
2525
2526 /*
2527 * i pages were removed from the buddy list even if some leak due
2528 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2529 * on i. Do not confuse with 'alloced' which is the number of
2530 * pages added to the pcp list.
2531 */
2532 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2533 spin_unlock(&zone->lock);
2534 return alloced;
2535 }
2536
2537 #ifdef CONFIG_NUMA
2538 /*
2539 * Called from the vmstat counter updater to drain pagesets of this
2540 * currently executing processor on remote nodes after they have
2541 * expired.
2542 *
2543 * Note that this function must be called with the thread pinned to
2544 * a single processor.
2545 */
2546 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2547 {
2548 unsigned long flags;
2549 int to_drain, batch;
2550
2551 local_irq_save(flags);
2552 batch = READ_ONCE(pcp->batch);
2553 to_drain = min(pcp->count, batch);
2554 if (to_drain > 0)
2555 free_pcppages_bulk(zone, to_drain, pcp);
2556 local_irq_restore(flags);
2557 }
2558 #endif
2559
2560 /*
2561 * Drain pcplists of the indicated processor and zone.
2562 *
2563 * The processor must either be the current processor and the
2564 * thread pinned to the current processor or a processor that
2565 * is not online.
2566 */
2567 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2568 {
2569 unsigned long flags;
2570 struct per_cpu_pageset *pset;
2571 struct per_cpu_pages *pcp;
2572
2573 local_irq_save(flags);
2574 pset = per_cpu_ptr(zone->pageset, cpu);
2575
2576 pcp = &pset->pcp;
2577 if (pcp->count)
2578 free_pcppages_bulk(zone, pcp->count, pcp);
2579 local_irq_restore(flags);
2580 }
2581
2582 /*
2583 * Drain pcplists of all zones on the indicated processor.
2584 *
2585 * The processor must either be the current processor and the
2586 * thread pinned to the current processor or a processor that
2587 * is not online.
2588 */
2589 static void drain_pages(unsigned int cpu)
2590 {
2591 struct zone *zone;
2592
2593 for_each_populated_zone(zone) {
2594 drain_pages_zone(cpu, zone);
2595 }
2596 }
2597
2598 /*
2599 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2600 *
2601 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2602 * the single zone's pages.
2603 */
2604 void drain_local_pages(struct zone *zone)
2605 {
2606 int cpu = smp_processor_id();
2607
2608 if (zone)
2609 drain_pages_zone(cpu, zone);
2610 else
2611 drain_pages(cpu);
2612 }
2613
2614 static void drain_local_pages_wq(struct work_struct *work)
2615 {
2616 /*
2617 * drain_all_pages doesn't use proper cpu hotplug protection so
2618 * we can race with cpu offline when the WQ can move this from
2619 * a cpu pinned worker to an unbound one. We can operate on a different
2620 * cpu which is allright but we also have to make sure to not move to
2621 * a different one.
2622 */
2623 preempt_disable();
2624 drain_local_pages(NULL);
2625 preempt_enable();
2626 }
2627
2628 /*
2629 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2630 *
2631 * When zone parameter is non-NULL, spill just the single zone's pages.
2632 *
2633 * Note that this can be extremely slow as the draining happens in a workqueue.
2634 */
2635 void drain_all_pages(struct zone *zone)
2636 {
2637 int cpu;
2638
2639 /*
2640 * Allocate in the BSS so we wont require allocation in
2641 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2642 */
2643 static cpumask_t cpus_with_pcps;
2644
2645 /*
2646 * Make sure nobody triggers this path before mm_percpu_wq is fully
2647 * initialized.
2648 */
2649 if (WARN_ON_ONCE(!mm_percpu_wq))
2650 return;
2651
2652 /*
2653 * Do not drain if one is already in progress unless it's specific to
2654 * a zone. Such callers are primarily CMA and memory hotplug and need
2655 * the drain to be complete when the call returns.
2656 */
2657 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2658 if (!zone)
2659 return;
2660 mutex_lock(&pcpu_drain_mutex);
2661 }
2662
2663 /*
2664 * We don't care about racing with CPU hotplug event
2665 * as offline notification will cause the notified
2666 * cpu to drain that CPU pcps and on_each_cpu_mask
2667 * disables preemption as part of its processing
2668 */
2669 for_each_online_cpu(cpu) {
2670 struct per_cpu_pageset *pcp;
2671 struct zone *z;
2672 bool has_pcps = false;
2673
2674 if (zone) {
2675 pcp = per_cpu_ptr(zone->pageset, cpu);
2676 if (pcp->pcp.count)
2677 has_pcps = true;
2678 } else {
2679 for_each_populated_zone(z) {
2680 pcp = per_cpu_ptr(z->pageset, cpu);
2681 if (pcp->pcp.count) {
2682 has_pcps = true;
2683 break;
2684 }
2685 }
2686 }
2687
2688 if (has_pcps)
2689 cpumask_set_cpu(cpu, &cpus_with_pcps);
2690 else
2691 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2692 }
2693
2694 for_each_cpu(cpu, &cpus_with_pcps) {
2695 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2696 INIT_WORK(work, drain_local_pages_wq);
2697 queue_work_on(cpu, mm_percpu_wq, work);
2698 }
2699 for_each_cpu(cpu, &cpus_with_pcps)
2700 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2701
2702 mutex_unlock(&pcpu_drain_mutex);
2703 }
2704
2705 #ifdef CONFIG_HIBERNATION
2706
2707 /*
2708 * Touch the watchdog for every WD_PAGE_COUNT pages.
2709 */
2710 #define WD_PAGE_COUNT (128*1024)
2711
2712 void mark_free_pages(struct zone *zone)
2713 {
2714 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2715 unsigned long flags;
2716 unsigned int order, t;
2717 struct page *page;
2718
2719 if (zone_is_empty(zone))
2720 return;
2721
2722 spin_lock_irqsave(&zone->lock, flags);
2723
2724 max_zone_pfn = zone_end_pfn(zone);
2725 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2726 if (pfn_valid(pfn)) {
2727 page = pfn_to_page(pfn);
2728
2729 if (!--page_count) {
2730 touch_nmi_watchdog();
2731 page_count = WD_PAGE_COUNT;
2732 }
2733
2734 if (page_zone(page) != zone)
2735 continue;
2736
2737 if (!swsusp_page_is_forbidden(page))
2738 swsusp_unset_page_free(page);
2739 }
2740
2741 for_each_migratetype_order(order, t) {
2742 list_for_each_entry(page,
2743 &zone->free_area[order].free_list[t], lru) {
2744 unsigned long i;
2745
2746 pfn = page_to_pfn(page);
2747 for (i = 0; i < (1UL << order); i++) {
2748 if (!--page_count) {
2749 touch_nmi_watchdog();
2750 page_count = WD_PAGE_COUNT;
2751 }
2752 swsusp_set_page_free(pfn_to_page(pfn + i));
2753 }
2754 }
2755 }
2756 spin_unlock_irqrestore(&zone->lock, flags);
2757 }
2758 #endif /* CONFIG_PM */
2759
2760 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2761 {
2762 int migratetype;
2763
2764 if (!free_pcp_prepare(page))
2765 return false;
2766
2767 migratetype = get_pfnblock_migratetype(page, pfn);
2768 set_pcppage_migratetype(page, migratetype);
2769 return true;
2770 }
2771
2772 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2773 {
2774 struct zone *zone = page_zone(page);
2775 struct per_cpu_pages *pcp;
2776 int migratetype;
2777
2778 migratetype = get_pcppage_migratetype(page);
2779 __count_vm_event(PGFREE);
2780
2781 /*
2782 * We only track unmovable, reclaimable and movable on pcp lists.
2783 * Free ISOLATE pages back to the allocator because they are being
2784 * offlined but treat HIGHATOMIC as movable pages so we can get those
2785 * areas back if necessary. Otherwise, we may have to free
2786 * excessively into the page allocator
2787 */
2788 if (migratetype >= MIGRATE_PCPTYPES) {
2789 if (unlikely(is_migrate_isolate(migratetype))) {
2790 free_one_page(zone, page, pfn, 0, migratetype);
2791 return;
2792 }
2793 migratetype = MIGRATE_MOVABLE;
2794 }
2795
2796 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2797 list_add(&page->lru, &pcp->lists[migratetype]);
2798 pcp->count++;
2799 if (pcp->count >= pcp->high) {
2800 unsigned long batch = READ_ONCE(pcp->batch);
2801 free_pcppages_bulk(zone, batch, pcp);
2802 }
2803 }
2804
2805 /*
2806 * Free a 0-order page
2807 */
2808 void free_unref_page(struct page *page)
2809 {
2810 unsigned long flags;
2811 unsigned long pfn = page_to_pfn(page);
2812
2813 if (!free_unref_page_prepare(page, pfn))
2814 return;
2815
2816 local_irq_save(flags);
2817 free_unref_page_commit(page, pfn);
2818 local_irq_restore(flags);
2819 }
2820
2821 /*
2822 * Free a list of 0-order pages
2823 */
2824 void free_unref_page_list(struct list_head *list)
2825 {
2826 struct page *page, *next;
2827 unsigned long flags, pfn;
2828 int batch_count = 0;
2829
2830 /* Prepare pages for freeing */
2831 list_for_each_entry_safe(page, next, list, lru) {
2832 pfn = page_to_pfn(page);
2833 if (!free_unref_page_prepare(page, pfn))
2834 list_del(&page->lru);
2835 set_page_private(page, pfn);
2836 }
2837
2838 local_irq_save(flags);
2839 list_for_each_entry_safe(page, next, list, lru) {
2840 unsigned long pfn = page_private(page);
2841
2842 set_page_private(page, 0);
2843 trace_mm_page_free_batched(page);
2844 free_unref_page_commit(page, pfn);
2845
2846 /*
2847 * Guard against excessive IRQ disabled times when we get
2848 * a large list of pages to free.
2849 */
2850 if (++batch_count == SWAP_CLUSTER_MAX) {
2851 local_irq_restore(flags);
2852 batch_count = 0;
2853 local_irq_save(flags);
2854 }
2855 }
2856 local_irq_restore(flags);
2857 }
2858
2859 /*
2860 * split_page takes a non-compound higher-order page, and splits it into
2861 * n (1<<order) sub-pages: page[0..n]
2862 * Each sub-page must be freed individually.
2863 *
2864 * Note: this is probably too low level an operation for use in drivers.
2865 * Please consult with lkml before using this in your driver.
2866 */
2867 void split_page(struct page *page, unsigned int order)
2868 {
2869 int i;
2870
2871 VM_BUG_ON_PAGE(PageCompound(page), page);
2872 VM_BUG_ON_PAGE(!page_count(page), page);
2873
2874 for (i = 1; i < (1 << order); i++)
2875 set_page_refcounted(page + i);
2876 split_page_owner(page, order);
2877 }
2878 EXPORT_SYMBOL_GPL(split_page);
2879
2880 int __isolate_free_page(struct page *page, unsigned int order)
2881 {
2882 unsigned long watermark;
2883 struct zone *zone;
2884 int mt;
2885
2886 BUG_ON(!PageBuddy(page));
2887
2888 zone = page_zone(page);
2889 mt = get_pageblock_migratetype(page);
2890
2891 if (!is_migrate_isolate(mt)) {
2892 /*
2893 * Obey watermarks as if the page was being allocated. We can
2894 * emulate a high-order watermark check with a raised order-0
2895 * watermark, because we already know our high-order page
2896 * exists.
2897 */
2898 watermark = min_wmark_pages(zone) + (1UL << order);
2899 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2900 return 0;
2901
2902 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2903 }
2904
2905 /* Remove page from free list */
2906 list_del(&page->lru);
2907 zone->free_area[order].nr_free--;
2908 rmv_page_order(page);
2909
2910 /*
2911 * Set the pageblock if the isolated page is at least half of a
2912 * pageblock
2913 */
2914 if (order >= pageblock_order - 1) {
2915 struct page *endpage = page + (1 << order) - 1;
2916 for (; page < endpage; page += pageblock_nr_pages) {
2917 int mt = get_pageblock_migratetype(page);
2918 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2919 && !is_migrate_highatomic(mt))
2920 set_pageblock_migratetype(page,
2921 MIGRATE_MOVABLE);
2922 }
2923 }
2924
2925
2926 return 1UL << order;
2927 }
2928
2929 /*
2930 * Update NUMA hit/miss statistics
2931 *
2932 * Must be called with interrupts disabled.
2933 */
2934 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2935 {
2936 #ifdef CONFIG_NUMA
2937 enum numa_stat_item local_stat = NUMA_LOCAL;
2938
2939 /* skip numa counters update if numa stats is disabled */
2940 if (!static_branch_likely(&vm_numa_stat_key))
2941 return;
2942
2943 if (zone_to_nid(z) != numa_node_id())
2944 local_stat = NUMA_OTHER;
2945
2946 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2947 __inc_numa_state(z, NUMA_HIT);
2948 else {
2949 __inc_numa_state(z, NUMA_MISS);
2950 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
2951 }
2952 __inc_numa_state(z, local_stat);
2953 #endif
2954 }
2955
2956 /* Remove page from the per-cpu list, caller must protect the list */
2957 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2958 struct per_cpu_pages *pcp,
2959 struct list_head *list)
2960 {
2961 struct page *page;
2962
2963 do {
2964 if (list_empty(list)) {
2965 pcp->count += rmqueue_bulk(zone, 0,
2966 pcp->batch, list,
2967 migratetype);
2968 if (unlikely(list_empty(list)))
2969 return NULL;
2970 }
2971
2972 page = list_first_entry(list, struct page, lru);
2973 list_del(&page->lru);
2974 pcp->count--;
2975 } while (check_new_pcp(page));
2976
2977 return page;
2978 }
2979
2980 /* Lock and remove page from the per-cpu list */
2981 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2982 struct zone *zone, unsigned int order,
2983 gfp_t gfp_flags, int migratetype)
2984 {
2985 struct per_cpu_pages *pcp;
2986 struct list_head *list;
2987 struct page *page;
2988 unsigned long flags;
2989
2990 local_irq_save(flags);
2991 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2992 list = &pcp->lists[migratetype];
2993 page = __rmqueue_pcplist(zone, migratetype, pcp, list);
2994 if (page) {
2995 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2996 zone_statistics(preferred_zone, zone);
2997 }
2998 local_irq_restore(flags);
2999 return page;
3000 }
3001
3002 /*
3003 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3004 */
3005 static inline
3006 struct page *rmqueue(struct zone *preferred_zone,
3007 struct zone *zone, unsigned int order,
3008 gfp_t gfp_flags, unsigned int alloc_flags,
3009 int migratetype)
3010 {
3011 unsigned long flags;
3012 struct page *page;
3013
3014 if (likely(order == 0)) {
3015 page = rmqueue_pcplist(preferred_zone, zone, order,
3016 gfp_flags, migratetype);
3017 goto out;
3018 }
3019
3020 /*
3021 * We most definitely don't want callers attempting to
3022 * allocate greater than order-1 page units with __GFP_NOFAIL.
3023 */
3024 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3025 spin_lock_irqsave(&zone->lock, flags);
3026
3027 do {
3028 page = NULL;
3029 if (alloc_flags & ALLOC_HARDER) {
3030 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3031 if (page)
3032 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3033 }
3034 if (!page)
3035 page = __rmqueue(zone, order, migratetype);
3036 } while (page && check_new_pages(page, order));
3037 spin_unlock(&zone->lock);
3038 if (!page)
3039 goto failed;
3040 __mod_zone_freepage_state(zone, -(1 << order),
3041 get_pcppage_migratetype(page));
3042
3043 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3044 zone_statistics(preferred_zone, zone);
3045 local_irq_restore(flags);
3046
3047 out:
3048 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3049 return page;
3050
3051 failed:
3052 local_irq_restore(flags);
3053 return NULL;
3054 }
3055
3056 #ifdef CONFIG_FAIL_PAGE_ALLOC
3057
3058 static struct {
3059 struct fault_attr attr;
3060
3061 bool ignore_gfp_highmem;
3062 bool ignore_gfp_reclaim;
3063 u32 min_order;
3064 } fail_page_alloc = {
3065 .attr = FAULT_ATTR_INITIALIZER,
3066 .ignore_gfp_reclaim = true,
3067 .ignore_gfp_highmem = true,
3068 .min_order = 1,
3069 };
3070
3071 static int __init setup_fail_page_alloc(char *str)
3072 {
3073 return setup_fault_attr(&fail_page_alloc.attr, str);
3074 }
3075 __setup("fail_page_alloc=", setup_fail_page_alloc);
3076
3077 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3078 {
3079 if (order < fail_page_alloc.min_order)
3080 return false;
3081 if (gfp_mask & __GFP_NOFAIL)
3082 return false;
3083 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3084 return false;
3085 if (fail_page_alloc.ignore_gfp_reclaim &&
3086 (gfp_mask & __GFP_DIRECT_RECLAIM))
3087 return false;
3088
3089 return should_fail(&fail_page_alloc.attr, 1 << order);
3090 }
3091
3092 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3093
3094 static int __init fail_page_alloc_debugfs(void)
3095 {
3096 umode_t mode = S_IFREG | 0600;
3097 struct dentry *dir;
3098
3099 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3100 &fail_page_alloc.attr);
3101 if (IS_ERR(dir))
3102 return PTR_ERR(dir);
3103
3104 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3105 &fail_page_alloc.ignore_gfp_reclaim))
3106 goto fail;
3107 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3108 &fail_page_alloc.ignore_gfp_highmem))
3109 goto fail;
3110 if (!debugfs_create_u32("min-order", mode, dir,
3111 &fail_page_alloc.min_order))
3112 goto fail;
3113
3114 return 0;
3115 fail:
3116 debugfs_remove_recursive(dir);
3117
3118 return -ENOMEM;
3119 }
3120
3121 late_initcall(fail_page_alloc_debugfs);
3122
3123 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3124
3125 #else /* CONFIG_FAIL_PAGE_ALLOC */
3126
3127 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3128 {
3129 return false;
3130 }
3131
3132 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3133
3134 /*
3135 * Return true if free base pages are above 'mark'. For high-order checks it
3136 * will return true of the order-0 watermark is reached and there is at least
3137 * one free page of a suitable size. Checking now avoids taking the zone lock
3138 * to check in the allocation paths if no pages are free.
3139 */
3140 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3141 int classzone_idx, unsigned int alloc_flags,
3142 long free_pages)
3143 {
3144 long min = mark;
3145 int o;
3146 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3147
3148 /* free_pages may go negative - that's OK */
3149 free_pages -= (1 << order) - 1;
3150
3151 if (alloc_flags & ALLOC_HIGH)
3152 min -= min / 2;
3153
3154 /*
3155 * If the caller does not have rights to ALLOC_HARDER then subtract
3156 * the high-atomic reserves. This will over-estimate the size of the
3157 * atomic reserve but it avoids a search.
3158 */
3159 if (likely(!alloc_harder)) {
3160 free_pages -= z->nr_reserved_highatomic;
3161 } else {
3162 /*
3163 * OOM victims can try even harder than normal ALLOC_HARDER
3164 * users on the grounds that it's definitely going to be in
3165 * the exit path shortly and free memory. Any allocation it
3166 * makes during the free path will be small and short-lived.
3167 */
3168 if (alloc_flags & ALLOC_OOM)
3169 min -= min / 2;
3170 else
3171 min -= min / 4;
3172 }
3173
3174
3175 #ifdef CONFIG_CMA
3176 /* If allocation can't use CMA areas don't use free CMA pages */
3177 if (!(alloc_flags & ALLOC_CMA))
3178 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3179 #endif
3180
3181 /*
3182 * Check watermarks for an order-0 allocation request. If these
3183 * are not met, then a high-order request also cannot go ahead
3184 * even if a suitable page happened to be free.
3185 */
3186 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3187 return false;
3188
3189 /* If this is an order-0 request then the watermark is fine */
3190 if (!order)
3191 return true;
3192
3193 /* For a high-order request, check at least one suitable page is free */
3194 for (o = order; o < MAX_ORDER; o++) {
3195 struct free_area *area = &z->free_area[o];
3196 int mt;
3197
3198 if (!area->nr_free)
3199 continue;
3200
3201 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3202 if (!list_empty(&area->free_list[mt]))
3203 return true;
3204 }
3205
3206 #ifdef CONFIG_CMA
3207 if ((alloc_flags & ALLOC_CMA) &&
3208 !list_empty(&area->free_list[MIGRATE_CMA])) {
3209 return true;
3210 }
3211 #endif
3212 if (alloc_harder &&
3213 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3214 return true;
3215 }
3216 return false;
3217 }
3218
3219 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3220 int classzone_idx, unsigned int alloc_flags)
3221 {
3222 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3223 zone_page_state(z, NR_FREE_PAGES));
3224 }
3225
3226 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3227 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3228 {
3229 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3230 long cma_pages = 0;
3231
3232 #ifdef CONFIG_CMA
3233 /* If allocation can't use CMA areas don't use free CMA pages */
3234 if (!(alloc_flags & ALLOC_CMA))
3235 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3236 #endif
3237
3238 /*
3239 * Fast check for order-0 only. If this fails then the reserves
3240 * need to be calculated. There is a corner case where the check
3241 * passes but only the high-order atomic reserve are free. If
3242 * the caller is !atomic then it'll uselessly search the free
3243 * list. That corner case is then slower but it is harmless.
3244 */
3245 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3246 return true;
3247
3248 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3249 free_pages);
3250 }
3251
3252 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3253 unsigned long mark, int classzone_idx)
3254 {
3255 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3256
3257 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3258 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3259
3260 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3261 free_pages);
3262 }
3263
3264 #ifdef CONFIG_NUMA
3265 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3266 {
3267 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3268 RECLAIM_DISTANCE;
3269 }
3270 #else /* CONFIG_NUMA */
3271 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3272 {
3273 return true;
3274 }
3275 #endif /* CONFIG_NUMA */
3276
3277 /*
3278 * get_page_from_freelist goes through the zonelist trying to allocate
3279 * a page.
3280 */
3281 static struct page *
3282 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3283 const struct alloc_context *ac)
3284 {
3285 struct zoneref *z = ac->preferred_zoneref;
3286 struct zone *zone;
3287 struct pglist_data *last_pgdat_dirty_limit = NULL;
3288
3289 /*
3290 * Scan zonelist, looking for a zone with enough free.
3291 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3292 */
3293 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3294 ac->nodemask) {
3295 struct page *page;
3296 unsigned long mark;
3297
3298 if (cpusets_enabled() &&
3299 (alloc_flags & ALLOC_CPUSET) &&
3300 !__cpuset_zone_allowed(zone, gfp_mask))
3301 continue;
3302 /*
3303 * When allocating a page cache page for writing, we
3304 * want to get it from a node that is within its dirty
3305 * limit, such that no single node holds more than its
3306 * proportional share of globally allowed dirty pages.
3307 * The dirty limits take into account the node's
3308 * lowmem reserves and high watermark so that kswapd
3309 * should be able to balance it without having to
3310 * write pages from its LRU list.
3311 *
3312 * XXX: For now, allow allocations to potentially
3313 * exceed the per-node dirty limit in the slowpath
3314 * (spread_dirty_pages unset) before going into reclaim,
3315 * which is important when on a NUMA setup the allowed
3316 * nodes are together not big enough to reach the
3317 * global limit. The proper fix for these situations
3318 * will require awareness of nodes in the
3319 * dirty-throttling and the flusher threads.
3320 */
3321 if (ac->spread_dirty_pages) {
3322 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3323 continue;
3324
3325 if (!node_dirty_ok(zone->zone_pgdat)) {
3326 last_pgdat_dirty_limit = zone->zone_pgdat;
3327 continue;
3328 }
3329 }
3330
3331 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3332 if (!zone_watermark_fast(zone, order, mark,
3333 ac_classzone_idx(ac), alloc_flags)) {
3334 int ret;
3335
3336 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3337 /*
3338 * Watermark failed for this zone, but see if we can
3339 * grow this zone if it contains deferred pages.
3340 */
3341 if (static_branch_unlikely(&deferred_pages)) {
3342 if (_deferred_grow_zone(zone, order))
3343 goto try_this_zone;
3344 }
3345 #endif
3346 /* Checked here to keep the fast path fast */
3347 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3348 if (alloc_flags & ALLOC_NO_WATERMARKS)
3349 goto try_this_zone;
3350
3351 if (node_reclaim_mode == 0 ||
3352 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3353 continue;
3354
3355 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3356 switch (ret) {
3357 case NODE_RECLAIM_NOSCAN:
3358 /* did not scan */
3359 continue;
3360 case NODE_RECLAIM_FULL:
3361 /* scanned but unreclaimable */
3362 continue;
3363 default:
3364 /* did we reclaim enough */
3365 if (zone_watermark_ok(zone, order, mark,
3366 ac_classzone_idx(ac), alloc_flags))
3367 goto try_this_zone;
3368
3369 continue;
3370 }
3371 }
3372
3373 try_this_zone:
3374 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3375 gfp_mask, alloc_flags, ac->migratetype);
3376 if (page) {
3377 prep_new_page(page, order, gfp_mask, alloc_flags);
3378
3379 /*
3380 * If this is a high-order atomic allocation then check
3381 * if the pageblock should be reserved for the future
3382 */
3383 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3384 reserve_highatomic_pageblock(page, zone, order);
3385
3386 return page;
3387 } else {
3388 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3389 /* Try again if zone has deferred pages */
3390 if (static_branch_unlikely(&deferred_pages)) {
3391 if (_deferred_grow_zone(zone, order))
3392 goto try_this_zone;
3393 }
3394 #endif
3395 }
3396 }
3397
3398 return NULL;
3399 }
3400
3401 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3402 {
3403 unsigned int filter = SHOW_MEM_FILTER_NODES;
3404 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3405
3406 if (!__ratelimit(&show_mem_rs))
3407 return;
3408
3409 /*
3410 * This documents exceptions given to allocations in certain
3411 * contexts that are allowed to allocate outside current's set
3412 * of allowed nodes.
3413 */
3414 if (!(gfp_mask & __GFP_NOMEMALLOC))
3415 if (tsk_is_oom_victim(current) ||
3416 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3417 filter &= ~SHOW_MEM_FILTER_NODES;
3418 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3419 filter &= ~SHOW_MEM_FILTER_NODES;
3420
3421 show_mem(filter, nodemask);
3422 }
3423
3424 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3425 {
3426 struct va_format vaf;
3427 va_list args;
3428 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3429 DEFAULT_RATELIMIT_BURST);
3430
3431 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3432 return;
3433
3434 va_start(args, fmt);
3435 vaf.fmt = fmt;
3436 vaf.va = &args;
3437 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3438 current->comm, &vaf, gfp_mask, &gfp_mask,
3439 nodemask_pr_args(nodemask));
3440 va_end(args);
3441
3442 cpuset_print_current_mems_allowed();
3443
3444 dump_stack();
3445 warn_alloc_show_mem(gfp_mask, nodemask);
3446 }
3447
3448 static inline struct page *
3449 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3450 unsigned int alloc_flags,
3451 const struct alloc_context *ac)
3452 {
3453 struct page *page;
3454
3455 page = get_page_from_freelist(gfp_mask, order,
3456 alloc_flags|ALLOC_CPUSET, ac);
3457 /*
3458 * fallback to ignore cpuset restriction if our nodes
3459 * are depleted
3460 */
3461 if (!page)
3462 page = get_page_from_freelist(gfp_mask, order,
3463 alloc_flags, ac);
3464
3465 return page;
3466 }
3467
3468 static inline struct page *
3469 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3470 const struct alloc_context *ac, unsigned long *did_some_progress)
3471 {
3472 struct oom_control oc = {
3473 .zonelist = ac->zonelist,
3474 .nodemask = ac->nodemask,
3475 .memcg = NULL,
3476 .gfp_mask = gfp_mask,
3477 .order = order,
3478 };
3479 struct page *page;
3480
3481 *did_some_progress = 0;
3482
3483 /*
3484 * Acquire the oom lock. If that fails, somebody else is
3485 * making progress for us.
3486 */
3487 if (!mutex_trylock(&oom_lock)) {
3488 *did_some_progress = 1;
3489 schedule_timeout_uninterruptible(1);
3490 return NULL;
3491 }
3492
3493 /*
3494 * Go through the zonelist yet one more time, keep very high watermark
3495 * here, this is only to catch a parallel oom killing, we must fail if
3496 * we're still under heavy pressure. But make sure that this reclaim
3497 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3498 * allocation which will never fail due to oom_lock already held.
3499 */
3500 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3501 ~__GFP_DIRECT_RECLAIM, order,
3502 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3503 if (page)
3504 goto out;
3505
3506 /* Coredumps can quickly deplete all memory reserves */
3507 if (current->flags & PF_DUMPCORE)
3508 goto out;
3509 /* The OOM killer will not help higher order allocs */
3510 if (order > PAGE_ALLOC_COSTLY_ORDER)
3511 goto out;
3512 /*
3513 * We have already exhausted all our reclaim opportunities without any
3514 * success so it is time to admit defeat. We will skip the OOM killer
3515 * because it is very likely that the caller has a more reasonable
3516 * fallback than shooting a random task.
3517 */
3518 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3519 goto out;
3520 /* The OOM killer does not needlessly kill tasks for lowmem */
3521 if (ac->high_zoneidx < ZONE_NORMAL)
3522 goto out;
3523 if (pm_suspended_storage())
3524 goto out;
3525 /*
3526 * XXX: GFP_NOFS allocations should rather fail than rely on
3527 * other request to make a forward progress.
3528 * We are in an unfortunate situation where out_of_memory cannot
3529 * do much for this context but let's try it to at least get
3530 * access to memory reserved if the current task is killed (see
3531 * out_of_memory). Once filesystems are ready to handle allocation
3532 * failures more gracefully we should just bail out here.
3533 */
3534
3535 /* The OOM killer may not free memory on a specific node */
3536 if (gfp_mask & __GFP_THISNODE)
3537 goto out;
3538
3539 /* Exhausted what can be done so it's blame time */
3540 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3541 *did_some_progress = 1;
3542
3543 /*
3544 * Help non-failing allocations by giving them access to memory
3545 * reserves
3546 */
3547 if (gfp_mask & __GFP_NOFAIL)
3548 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3549 ALLOC_NO_WATERMARKS, ac);
3550 }
3551 out:
3552 mutex_unlock(&oom_lock);
3553 return page;
3554 }
3555
3556 /*
3557 * Maximum number of compaction retries wit a progress before OOM
3558 * killer is consider as the only way to move forward.
3559 */
3560 #define MAX_COMPACT_RETRIES 16
3561
3562 #ifdef CONFIG_COMPACTION
3563 /* Try memory compaction for high-order allocations before reclaim */
3564 static struct page *
3565 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3566 unsigned int alloc_flags, const struct alloc_context *ac,
3567 enum compact_priority prio, enum compact_result *compact_result)
3568 {
3569 struct page *page;
3570 unsigned long pflags;
3571 unsigned int noreclaim_flag;
3572
3573 if (!order)
3574 return NULL;
3575
3576 psi_memstall_enter(&pflags);
3577 noreclaim_flag = memalloc_noreclaim_save();
3578
3579 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3580 prio);
3581
3582 memalloc_noreclaim_restore(noreclaim_flag);
3583 psi_memstall_leave(&pflags);
3584
3585 if (*compact_result <= COMPACT_INACTIVE)
3586 return NULL;
3587
3588 /*
3589 * At least in one zone compaction wasn't deferred or skipped, so let's
3590 * count a compaction stall
3591 */
3592 count_vm_event(COMPACTSTALL);
3593
3594 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3595
3596 if (page) {
3597 struct zone *zone = page_zone(page);
3598
3599 zone->compact_blockskip_flush = false;
3600 compaction_defer_reset(zone, order, true);
3601 count_vm_event(COMPACTSUCCESS);
3602 return page;
3603 }
3604
3605 /*
3606 * It's bad if compaction run occurs and fails. The most likely reason
3607 * is that pages exist, but not enough to satisfy watermarks.
3608 */
3609 count_vm_event(COMPACTFAIL);
3610
3611 cond_resched();
3612
3613 return NULL;
3614 }
3615
3616 static inline bool
3617 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3618 enum compact_result compact_result,
3619 enum compact_priority *compact_priority,
3620 int *compaction_retries)
3621 {
3622 int max_retries = MAX_COMPACT_RETRIES;
3623 int min_priority;
3624 bool ret = false;
3625 int retries = *compaction_retries;
3626 enum compact_priority priority = *compact_priority;
3627
3628 if (!order)
3629 return false;
3630
3631 if (compaction_made_progress(compact_result))
3632 (*compaction_retries)++;
3633
3634 /*
3635 * compaction considers all the zone as desperately out of memory
3636 * so it doesn't really make much sense to retry except when the
3637 * failure could be caused by insufficient priority
3638 */
3639 if (compaction_failed(compact_result))
3640 goto check_priority;
3641
3642 /*
3643 * make sure the compaction wasn't deferred or didn't bail out early
3644 * due to locks contention before we declare that we should give up.
3645 * But do not retry if the given zonelist is not suitable for
3646 * compaction.
3647 */
3648 if (compaction_withdrawn(compact_result)) {
3649 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3650 goto out;
3651 }
3652
3653 /*
3654 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3655 * costly ones because they are de facto nofail and invoke OOM
3656 * killer to move on while costly can fail and users are ready
3657 * to cope with that. 1/4 retries is rather arbitrary but we
3658 * would need much more detailed feedback from compaction to
3659 * make a better decision.
3660 */
3661 if (order > PAGE_ALLOC_COSTLY_ORDER)
3662 max_retries /= 4;
3663 if (*compaction_retries <= max_retries) {
3664 ret = true;
3665 goto out;
3666 }
3667
3668 /*
3669 * Make sure there are attempts at the highest priority if we exhausted
3670 * all retries or failed at the lower priorities.
3671 */
3672 check_priority:
3673 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3674 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3675
3676 if (*compact_priority > min_priority) {
3677 (*compact_priority)--;
3678 *compaction_retries = 0;
3679 ret = true;
3680 }
3681 out:
3682 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3683 return ret;
3684 }
3685 #else
3686 static inline struct page *
3687 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3688 unsigned int alloc_flags, const struct alloc_context *ac,
3689 enum compact_priority prio, enum compact_result *compact_result)
3690 {
3691 *compact_result = COMPACT_SKIPPED;
3692 return NULL;
3693 }
3694
3695 static inline bool
3696 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3697 enum compact_result compact_result,
3698 enum compact_priority *compact_priority,
3699 int *compaction_retries)
3700 {
3701 struct zone *zone;
3702 struct zoneref *z;
3703
3704 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3705 return false;
3706
3707 /*
3708 * There are setups with compaction disabled which would prefer to loop
3709 * inside the allocator rather than hit the oom killer prematurely.
3710 * Let's give them a good hope and keep retrying while the order-0
3711 * watermarks are OK.
3712 */
3713 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3714 ac->nodemask) {
3715 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3716 ac_classzone_idx(ac), alloc_flags))
3717 return true;
3718 }
3719 return false;
3720 }
3721 #endif /* CONFIG_COMPACTION */
3722
3723 #ifdef CONFIG_LOCKDEP
3724 static struct lockdep_map __fs_reclaim_map =
3725 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3726
3727 static bool __need_fs_reclaim(gfp_t gfp_mask)
3728 {
3729 gfp_mask = current_gfp_context(gfp_mask);
3730
3731 /* no reclaim without waiting on it */
3732 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3733 return false;
3734
3735 /* this guy won't enter reclaim */
3736 if (current->flags & PF_MEMALLOC)
3737 return false;
3738
3739 /* We're only interested __GFP_FS allocations for now */
3740 if (!(gfp_mask & __GFP_FS))
3741 return false;
3742
3743 if (gfp_mask & __GFP_NOLOCKDEP)
3744 return false;
3745
3746 return true;
3747 }
3748
3749 void __fs_reclaim_acquire(void)
3750 {
3751 lock_map_acquire(&__fs_reclaim_map);
3752 }
3753
3754 void __fs_reclaim_release(void)
3755 {
3756 lock_map_release(&__fs_reclaim_map);
3757 }
3758
3759 void fs_reclaim_acquire(gfp_t gfp_mask)
3760 {
3761 if (__need_fs_reclaim(gfp_mask))
3762 __fs_reclaim_acquire();
3763 }
3764 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3765
3766 void fs_reclaim_release(gfp_t gfp_mask)
3767 {
3768 if (__need_fs_reclaim(gfp_mask))
3769 __fs_reclaim_release();
3770 }
3771 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3772 #endif
3773
3774 /* Perform direct synchronous page reclaim */
3775 static int
3776 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3777 const struct alloc_context *ac)
3778 {
3779 struct reclaim_state reclaim_state;
3780 int progress;
3781 unsigned int noreclaim_flag;
3782 unsigned long pflags;
3783
3784 cond_resched();
3785
3786 /* We now go into synchronous reclaim */
3787 cpuset_memory_pressure_bump();
3788 psi_memstall_enter(&pflags);
3789 fs_reclaim_acquire(gfp_mask);
3790 noreclaim_flag = memalloc_noreclaim_save();
3791 reclaim_state.reclaimed_slab = 0;
3792 current->reclaim_state = &reclaim_state;
3793
3794 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3795 ac->nodemask);
3796
3797 current->reclaim_state = NULL;
3798 memalloc_noreclaim_restore(noreclaim_flag);
3799 fs_reclaim_release(gfp_mask);
3800 psi_memstall_leave(&pflags);
3801
3802 cond_resched();
3803
3804 return progress;
3805 }
3806
3807 /* The really slow allocator path where we enter direct reclaim */
3808 static inline struct page *
3809 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3810 unsigned int alloc_flags, const struct alloc_context *ac,
3811 unsigned long *did_some_progress)
3812 {
3813 struct page *page = NULL;
3814 bool drained = false;
3815
3816 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3817 if (unlikely(!(*did_some_progress)))
3818 return NULL;
3819
3820 retry:
3821 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3822
3823 /*
3824 * If an allocation failed after direct reclaim, it could be because
3825 * pages are pinned on the per-cpu lists or in high alloc reserves.
3826 * Shrink them them and try again
3827 */
3828 if (!page && !drained) {
3829 unreserve_highatomic_pageblock(ac, false);
3830 drain_all_pages(NULL);
3831 drained = true;
3832 goto retry;
3833 }
3834
3835 return page;
3836 }
3837
3838 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3839 const struct alloc_context *ac)
3840 {
3841 struct zoneref *z;
3842 struct zone *zone;
3843 pg_data_t *last_pgdat = NULL;
3844 enum zone_type high_zoneidx = ac->high_zoneidx;
3845
3846 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3847 ac->nodemask) {
3848 if (last_pgdat != zone->zone_pgdat)
3849 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3850 last_pgdat = zone->zone_pgdat;
3851 }
3852 }
3853
3854 static inline unsigned int
3855 gfp_to_alloc_flags(gfp_t gfp_mask)
3856 {
3857 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3858
3859 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3860 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3861
3862 /*
3863 * The caller may dip into page reserves a bit more if the caller
3864 * cannot run direct reclaim, or if the caller has realtime scheduling
3865 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3866 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3867 */
3868 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3869
3870 if (gfp_mask & __GFP_ATOMIC) {
3871 /*
3872 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3873 * if it can't schedule.
3874 */
3875 if (!(gfp_mask & __GFP_NOMEMALLOC))
3876 alloc_flags |= ALLOC_HARDER;
3877 /*
3878 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3879 * comment for __cpuset_node_allowed().
3880 */
3881 alloc_flags &= ~ALLOC_CPUSET;
3882 } else if (unlikely(rt_task(current)) && !in_interrupt())
3883 alloc_flags |= ALLOC_HARDER;
3884
3885 #ifdef CONFIG_CMA
3886 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3887 alloc_flags |= ALLOC_CMA;
3888 #endif
3889 return alloc_flags;
3890 }
3891
3892 static bool oom_reserves_allowed(struct task_struct *tsk)
3893 {
3894 if (!tsk_is_oom_victim(tsk))
3895 return false;
3896
3897 /*
3898 * !MMU doesn't have oom reaper so give access to memory reserves
3899 * only to the thread with TIF_MEMDIE set
3900 */
3901 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3902 return false;
3903
3904 return true;
3905 }
3906
3907 /*
3908 * Distinguish requests which really need access to full memory
3909 * reserves from oom victims which can live with a portion of it
3910 */
3911 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3912 {
3913 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3914 return 0;
3915 if (gfp_mask & __GFP_MEMALLOC)
3916 return ALLOC_NO_WATERMARKS;
3917 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3918 return ALLOC_NO_WATERMARKS;
3919 if (!in_interrupt()) {
3920 if (current->flags & PF_MEMALLOC)
3921 return ALLOC_NO_WATERMARKS;
3922 else if (oom_reserves_allowed(current))
3923 return ALLOC_OOM;
3924 }
3925
3926 return 0;
3927 }
3928
3929 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3930 {
3931 return !!__gfp_pfmemalloc_flags(gfp_mask);
3932 }
3933
3934 /*
3935 * Checks whether it makes sense to retry the reclaim to make a forward progress
3936 * for the given allocation request.
3937 *
3938 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3939 * without success, or when we couldn't even meet the watermark if we
3940 * reclaimed all remaining pages on the LRU lists.
3941 *
3942 * Returns true if a retry is viable or false to enter the oom path.
3943 */
3944 static inline bool
3945 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3946 struct alloc_context *ac, int alloc_flags,
3947 bool did_some_progress, int *no_progress_loops)
3948 {
3949 struct zone *zone;
3950 struct zoneref *z;
3951 bool ret = false;
3952
3953 /*
3954 * Costly allocations might have made a progress but this doesn't mean
3955 * their order will become available due to high fragmentation so
3956 * always increment the no progress counter for them
3957 */
3958 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3959 *no_progress_loops = 0;
3960 else
3961 (*no_progress_loops)++;
3962
3963 /*
3964 * Make sure we converge to OOM if we cannot make any progress
3965 * several times in the row.
3966 */
3967 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3968 /* Before OOM, exhaust highatomic_reserve */
3969 return unreserve_highatomic_pageblock(ac, true);
3970 }
3971
3972 /*
3973 * Keep reclaiming pages while there is a chance this will lead
3974 * somewhere. If none of the target zones can satisfy our allocation
3975 * request even if all reclaimable pages are considered then we are
3976 * screwed and have to go OOM.
3977 */
3978 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3979 ac->nodemask) {
3980 unsigned long available;
3981 unsigned long reclaimable;
3982 unsigned long min_wmark = min_wmark_pages(zone);
3983 bool wmark;
3984
3985 available = reclaimable = zone_reclaimable_pages(zone);
3986 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3987
3988 /*
3989 * Would the allocation succeed if we reclaimed all
3990 * reclaimable pages?
3991 */
3992 wmark = __zone_watermark_ok(zone, order, min_wmark,
3993 ac_classzone_idx(ac), alloc_flags, available);
3994 trace_reclaim_retry_zone(z, order, reclaimable,
3995 available, min_wmark, *no_progress_loops, wmark);
3996 if (wmark) {
3997 /*
3998 * If we didn't make any progress and have a lot of
3999 * dirty + writeback pages then we should wait for
4000 * an IO to complete to slow down the reclaim and
4001 * prevent from pre mature OOM
4002 */
4003 if (!did_some_progress) {
4004 unsigned long write_pending;
4005
4006 write_pending = zone_page_state_snapshot(zone,
4007 NR_ZONE_WRITE_PENDING);
4008
4009 if (2 * write_pending > reclaimable) {
4010 congestion_wait(BLK_RW_ASYNC, HZ/10);
4011 return true;
4012 }
4013 }
4014
4015 ret = true;
4016 goto out;
4017 }
4018 }
4019
4020 out:
4021 /*
4022 * Memory allocation/reclaim might be called from a WQ context and the
4023 * current implementation of the WQ concurrency control doesn't
4024 * recognize that a particular WQ is congested if the worker thread is
4025 * looping without ever sleeping. Therefore we have to do a short sleep
4026 * here rather than calling cond_resched().
4027 */
4028 if (current->flags & PF_WQ_WORKER)
4029 schedule_timeout_uninterruptible(1);
4030 else
4031 cond_resched();
4032 return ret;
4033 }
4034
4035 static inline bool
4036 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4037 {
4038 /*
4039 * It's possible that cpuset's mems_allowed and the nodemask from
4040 * mempolicy don't intersect. This should be normally dealt with by
4041 * policy_nodemask(), but it's possible to race with cpuset update in
4042 * such a way the check therein was true, and then it became false
4043 * before we got our cpuset_mems_cookie here.
4044 * This assumes that for all allocations, ac->nodemask can come only
4045 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4046 * when it does not intersect with the cpuset restrictions) or the
4047 * caller can deal with a violated nodemask.
4048 */
4049 if (cpusets_enabled() && ac->nodemask &&
4050 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4051 ac->nodemask = NULL;
4052 return true;
4053 }
4054
4055 /*
4056 * When updating a task's mems_allowed or mempolicy nodemask, it is
4057 * possible to race with parallel threads in such a way that our
4058 * allocation can fail while the mask is being updated. If we are about
4059 * to fail, check if the cpuset changed during allocation and if so,
4060 * retry.
4061 */
4062 if (read_mems_allowed_retry(cpuset_mems_cookie))
4063 return true;
4064
4065 return false;
4066 }
4067
4068 static inline struct page *
4069 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4070 struct alloc_context *ac)
4071 {
4072 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4073 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4074 struct page *page = NULL;
4075 unsigned int alloc_flags;
4076 unsigned long did_some_progress;
4077 enum compact_priority compact_priority;
4078 enum compact_result compact_result;
4079 int compaction_retries;
4080 int no_progress_loops;
4081 unsigned int cpuset_mems_cookie;
4082 int reserve_flags;
4083
4084 /*
4085 * We also sanity check to catch abuse of atomic reserves being used by
4086 * callers that are not in atomic context.
4087 */
4088 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4089 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4090 gfp_mask &= ~__GFP_ATOMIC;
4091
4092 retry_cpuset:
4093 compaction_retries = 0;
4094 no_progress_loops = 0;
4095 compact_priority = DEF_COMPACT_PRIORITY;
4096 cpuset_mems_cookie = read_mems_allowed_begin();
4097
4098 /*
4099 * The fast path uses conservative alloc_flags to succeed only until
4100 * kswapd needs to be woken up, and to avoid the cost of setting up
4101 * alloc_flags precisely. So we do that now.
4102 */
4103 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4104
4105 /*
4106 * We need to recalculate the starting point for the zonelist iterator
4107 * because we might have used different nodemask in the fast path, or
4108 * there was a cpuset modification and we are retrying - otherwise we
4109 * could end up iterating over non-eligible zones endlessly.
4110 */
4111 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4112 ac->high_zoneidx, ac->nodemask);
4113 if (!ac->preferred_zoneref->zone)
4114 goto nopage;
4115
4116 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4117 wake_all_kswapds(order, gfp_mask, ac);
4118
4119 /*
4120 * The adjusted alloc_flags might result in immediate success, so try
4121 * that first
4122 */
4123 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4124 if (page)
4125 goto got_pg;
4126
4127 /*
4128 * For costly allocations, try direct compaction first, as it's likely
4129 * that we have enough base pages and don't need to reclaim. For non-
4130 * movable high-order allocations, do that as well, as compaction will
4131 * try prevent permanent fragmentation by migrating from blocks of the
4132 * same migratetype.
4133 * Don't try this for allocations that are allowed to ignore
4134 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4135 */
4136 if (can_direct_reclaim &&
4137 (costly_order ||
4138 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4139 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4140 page = __alloc_pages_direct_compact(gfp_mask, order,
4141 alloc_flags, ac,
4142 INIT_COMPACT_PRIORITY,
4143 &compact_result);
4144 if (page)
4145 goto got_pg;
4146
4147 /*
4148 * Checks for costly allocations with __GFP_NORETRY, which
4149 * includes THP page fault allocations
4150 */
4151 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4152 /*
4153 * If compaction is deferred for high-order allocations,
4154 * it is because sync compaction recently failed. If
4155 * this is the case and the caller requested a THP
4156 * allocation, we do not want to heavily disrupt the
4157 * system, so we fail the allocation instead of entering
4158 * direct reclaim.
4159 */
4160 if (compact_result == COMPACT_DEFERRED)
4161 goto nopage;
4162
4163 /*
4164 * Looks like reclaim/compaction is worth trying, but
4165 * sync compaction could be very expensive, so keep
4166 * using async compaction.
4167 */
4168 compact_priority = INIT_COMPACT_PRIORITY;
4169 }
4170 }
4171
4172 retry:
4173 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4174 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4175 wake_all_kswapds(order, gfp_mask, ac);
4176
4177 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4178 if (reserve_flags)
4179 alloc_flags = reserve_flags;
4180
4181 /*
4182 * Reset the nodemask and zonelist iterators if memory policies can be
4183 * ignored. These allocations are high priority and system rather than
4184 * user oriented.
4185 */
4186 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4187 ac->nodemask = NULL;
4188 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4189 ac->high_zoneidx, ac->nodemask);
4190 }
4191
4192 /* Attempt with potentially adjusted zonelist and alloc_flags */
4193 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4194 if (page)
4195 goto got_pg;
4196
4197 /* Caller is not willing to reclaim, we can't balance anything */
4198 if (!can_direct_reclaim)
4199 goto nopage;
4200
4201 /* Avoid recursion of direct reclaim */
4202 if (current->flags & PF_MEMALLOC)
4203 goto nopage;
4204
4205 /* Try direct reclaim and then allocating */
4206 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4207 &did_some_progress);
4208 if (page)
4209 goto got_pg;
4210
4211 /* Try direct compaction and then allocating */
4212 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4213 compact_priority, &compact_result);
4214 if (page)
4215 goto got_pg;
4216
4217 /* Do not loop if specifically requested */
4218 if (gfp_mask & __GFP_NORETRY)
4219 goto nopage;
4220
4221 /*
4222 * Do not retry costly high order allocations unless they are
4223 * __GFP_RETRY_MAYFAIL
4224 */
4225 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4226 goto nopage;
4227
4228 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4229 did_some_progress > 0, &no_progress_loops))
4230 goto retry;
4231
4232 /*
4233 * It doesn't make any sense to retry for the compaction if the order-0
4234 * reclaim is not able to make any progress because the current
4235 * implementation of the compaction depends on the sufficient amount
4236 * of free memory (see __compaction_suitable)
4237 */
4238 if (did_some_progress > 0 &&
4239 should_compact_retry(ac, order, alloc_flags,
4240 compact_result, &compact_priority,
4241 &compaction_retries))
4242 goto retry;
4243
4244
4245 /* Deal with possible cpuset update races before we start OOM killing */
4246 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4247 goto retry_cpuset;
4248
4249 /* Reclaim has failed us, start killing things */
4250 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4251 if (page)
4252 goto got_pg;
4253
4254 /* Avoid allocations with no watermarks from looping endlessly */
4255 if (tsk_is_oom_victim(current) &&
4256 (alloc_flags == ALLOC_OOM ||
4257 (gfp_mask & __GFP_NOMEMALLOC)))
4258 goto nopage;
4259
4260 /* Retry as long as the OOM killer is making progress */
4261 if (did_some_progress) {
4262 no_progress_loops = 0;
4263 goto retry;
4264 }
4265
4266 nopage:
4267 /* Deal with possible cpuset update races before we fail */
4268 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4269 goto retry_cpuset;
4270
4271 /*
4272 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4273 * we always retry
4274 */
4275 if (gfp_mask & __GFP_NOFAIL) {
4276 /*
4277 * All existing users of the __GFP_NOFAIL are blockable, so warn
4278 * of any new users that actually require GFP_NOWAIT
4279 */
4280 if (WARN_ON_ONCE(!can_direct_reclaim))
4281 goto fail;
4282
4283 /*
4284 * PF_MEMALLOC request from this context is rather bizarre
4285 * because we cannot reclaim anything and only can loop waiting
4286 * for somebody to do a work for us
4287 */
4288 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4289
4290 /*
4291 * non failing costly orders are a hard requirement which we
4292 * are not prepared for much so let's warn about these users
4293 * so that we can identify them and convert them to something
4294 * else.
4295 */
4296 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4297
4298 /*
4299 * Help non-failing allocations by giving them access to memory
4300 * reserves but do not use ALLOC_NO_WATERMARKS because this
4301 * could deplete whole memory reserves which would just make
4302 * the situation worse
4303 */
4304 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4305 if (page)
4306 goto got_pg;
4307
4308 cond_resched();
4309 goto retry;
4310 }
4311 fail:
4312 warn_alloc(gfp_mask, ac->nodemask,
4313 "page allocation failure: order:%u", order);
4314 got_pg:
4315 return page;
4316 }
4317
4318 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4319 int preferred_nid, nodemask_t *nodemask,
4320 struct alloc_context *ac, gfp_t *alloc_mask,
4321 unsigned int *alloc_flags)
4322 {
4323 ac->high_zoneidx = gfp_zone(gfp_mask);
4324 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4325 ac->nodemask = nodemask;
4326 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4327
4328 if (cpusets_enabled()) {
4329 *alloc_mask |= __GFP_HARDWALL;
4330 if (!ac->nodemask)
4331 ac->nodemask = &cpuset_current_mems_allowed;
4332 else
4333 *alloc_flags |= ALLOC_CPUSET;
4334 }
4335
4336 fs_reclaim_acquire(gfp_mask);
4337 fs_reclaim_release(gfp_mask);
4338
4339 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4340
4341 if (should_fail_alloc_page(gfp_mask, order))
4342 return false;
4343
4344 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4345 *alloc_flags |= ALLOC_CMA;
4346
4347 return true;
4348 }
4349
4350 /* Determine whether to spread dirty pages and what the first usable zone */
4351 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4352 {
4353 /* Dirty zone balancing only done in the fast path */
4354 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4355
4356 /*
4357 * The preferred zone is used for statistics but crucially it is
4358 * also used as the starting point for the zonelist iterator. It
4359 * may get reset for allocations that ignore memory policies.
4360 */
4361 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4362 ac->high_zoneidx, ac->nodemask);
4363 }
4364
4365 /*
4366 * This is the 'heart' of the zoned buddy allocator.
4367 */
4368 struct page *
4369 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4370 nodemask_t *nodemask)
4371 {
4372 struct page *page;
4373 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4374 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4375 struct alloc_context ac = { };
4376
4377 /*
4378 * There are several places where we assume that the order value is sane
4379 * so bail out early if the request is out of bound.
4380 */
4381 if (unlikely(order >= MAX_ORDER)) {
4382 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4383 return NULL;
4384 }
4385
4386 gfp_mask &= gfp_allowed_mask;
4387 alloc_mask = gfp_mask;
4388 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4389 return NULL;
4390
4391 finalise_ac(gfp_mask, &ac);
4392
4393 /* First allocation attempt */
4394 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4395 if (likely(page))
4396 goto out;
4397
4398 /*
4399 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4400 * resp. GFP_NOIO which has to be inherited for all allocation requests
4401 * from a particular context which has been marked by
4402 * memalloc_no{fs,io}_{save,restore}.
4403 */
4404 alloc_mask = current_gfp_context(gfp_mask);
4405 ac.spread_dirty_pages = false;
4406
4407 /*
4408 * Restore the original nodemask if it was potentially replaced with
4409 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4410 */
4411 if (unlikely(ac.nodemask != nodemask))
4412 ac.nodemask = nodemask;
4413
4414 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4415
4416 out:
4417 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4418 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4419 __free_pages(page, order);
4420 page = NULL;
4421 }
4422
4423 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4424
4425 return page;
4426 }
4427 EXPORT_SYMBOL(__alloc_pages_nodemask);
4428
4429 /*
4430 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4431 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4432 * you need to access high mem.
4433 */
4434 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4435 {
4436 struct page *page;
4437
4438 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4439 if (!page)
4440 return 0;
4441 return (unsigned long) page_address(page);
4442 }
4443 EXPORT_SYMBOL(__get_free_pages);
4444
4445 unsigned long get_zeroed_page(gfp_t gfp_mask)
4446 {
4447 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4448 }
4449 EXPORT_SYMBOL(get_zeroed_page);
4450
4451 void __free_pages(struct page *page, unsigned int order)
4452 {
4453 if (put_page_testzero(page)) {
4454 if (order == 0)
4455 free_unref_page(page);
4456 else
4457 __free_pages_ok(page, order);
4458 }
4459 }
4460
4461 EXPORT_SYMBOL(__free_pages);
4462
4463 void free_pages(unsigned long addr, unsigned int order)
4464 {
4465 if (addr != 0) {
4466 VM_BUG_ON(!virt_addr_valid((void *)addr));
4467 __free_pages(virt_to_page((void *)addr), order);
4468 }
4469 }
4470
4471 EXPORT_SYMBOL(free_pages);
4472
4473 /*
4474 * Page Fragment:
4475 * An arbitrary-length arbitrary-offset area of memory which resides
4476 * within a 0 or higher order page. Multiple fragments within that page
4477 * are individually refcounted, in the page's reference counter.
4478 *
4479 * The page_frag functions below provide a simple allocation framework for
4480 * page fragments. This is used by the network stack and network device
4481 * drivers to provide a backing region of memory for use as either an
4482 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4483 */
4484 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4485 gfp_t gfp_mask)
4486 {
4487 struct page *page = NULL;
4488 gfp_t gfp = gfp_mask;
4489
4490 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4491 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4492 __GFP_NOMEMALLOC;
4493 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4494 PAGE_FRAG_CACHE_MAX_ORDER);
4495 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4496 #endif
4497 if (unlikely(!page))
4498 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4499
4500 nc->va = page ? page_address(page) : NULL;
4501
4502 return page;
4503 }
4504
4505 void __page_frag_cache_drain(struct page *page, unsigned int count)
4506 {
4507 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4508
4509 if (page_ref_sub_and_test(page, count)) {
4510 unsigned int order = compound_order(page);
4511
4512 if (order == 0)
4513 free_unref_page(page);
4514 else
4515 __free_pages_ok(page, order);
4516 }
4517 }
4518 EXPORT_SYMBOL(__page_frag_cache_drain);
4519
4520 void *page_frag_alloc(struct page_frag_cache *nc,
4521 unsigned int fragsz, gfp_t gfp_mask)
4522 {
4523 unsigned int size = PAGE_SIZE;
4524 struct page *page;
4525 int offset;
4526
4527 if (unlikely(!nc->va)) {
4528 refill:
4529 page = __page_frag_cache_refill(nc, gfp_mask);
4530 if (!page)
4531 return NULL;
4532
4533 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4534 /* if size can vary use size else just use PAGE_SIZE */
4535 size = nc->size;
4536 #endif
4537 /* Even if we own the page, we do not use atomic_set().
4538 * This would break get_page_unless_zero() users.
4539 */
4540 page_ref_add(page, size - 1);
4541
4542 /* reset page count bias and offset to start of new frag */
4543 nc->pfmemalloc = page_is_pfmemalloc(page);
4544 nc->pagecnt_bias = size;
4545 nc->offset = size;
4546 }
4547
4548 offset = nc->offset - fragsz;
4549 if (unlikely(offset < 0)) {
4550 page = virt_to_page(nc->va);
4551
4552 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4553 goto refill;
4554
4555 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4556 /* if size can vary use size else just use PAGE_SIZE */
4557 size = nc->size;
4558 #endif
4559 /* OK, page count is 0, we can safely set it */
4560 set_page_count(page, size);
4561
4562 /* reset page count bias and offset to start of new frag */
4563 nc->pagecnt_bias = size;
4564 offset = size - fragsz;
4565 }
4566
4567 nc->pagecnt_bias--;
4568 nc->offset = offset;
4569
4570 return nc->va + offset;
4571 }
4572 EXPORT_SYMBOL(page_frag_alloc);
4573
4574 /*
4575 * Frees a page fragment allocated out of either a compound or order 0 page.
4576 */
4577 void page_frag_free(void *addr)
4578 {
4579 struct page *page = virt_to_head_page(addr);
4580
4581 if (unlikely(put_page_testzero(page)))
4582 __free_pages_ok(page, compound_order(page));
4583 }
4584 EXPORT_SYMBOL(page_frag_free);
4585
4586 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4587 size_t size)
4588 {
4589 if (addr) {
4590 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4591 unsigned long used = addr + PAGE_ALIGN(size);
4592
4593 split_page(virt_to_page((void *)addr), order);
4594 while (used < alloc_end) {
4595 free_page(used);
4596 used += PAGE_SIZE;
4597 }
4598 }
4599 return (void *)addr;
4600 }
4601
4602 /**
4603 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4604 * @size: the number of bytes to allocate
4605 * @gfp_mask: GFP flags for the allocation
4606 *
4607 * This function is similar to alloc_pages(), except that it allocates the
4608 * minimum number of pages to satisfy the request. alloc_pages() can only
4609 * allocate memory in power-of-two pages.
4610 *
4611 * This function is also limited by MAX_ORDER.
4612 *
4613 * Memory allocated by this function must be released by free_pages_exact().
4614 */
4615 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4616 {
4617 unsigned int order = get_order(size);
4618 unsigned long addr;
4619
4620 addr = __get_free_pages(gfp_mask, order);
4621 return make_alloc_exact(addr, order, size);
4622 }
4623 EXPORT_SYMBOL(alloc_pages_exact);
4624
4625 /**
4626 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4627 * pages on a node.
4628 * @nid: the preferred node ID where memory should be allocated
4629 * @size: the number of bytes to allocate
4630 * @gfp_mask: GFP flags for the allocation
4631 *
4632 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4633 * back.
4634 */
4635 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4636 {
4637 unsigned int order = get_order(size);
4638 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4639 if (!p)
4640 return NULL;
4641 return make_alloc_exact((unsigned long)page_address(p), order, size);
4642 }
4643
4644 /**
4645 * free_pages_exact - release memory allocated via alloc_pages_exact()
4646 * @virt: the value returned by alloc_pages_exact.
4647 * @size: size of allocation, same value as passed to alloc_pages_exact().
4648 *
4649 * Release the memory allocated by a previous call to alloc_pages_exact.
4650 */
4651 void free_pages_exact(void *virt, size_t size)
4652 {
4653 unsigned long addr = (unsigned long)virt;
4654 unsigned long end = addr + PAGE_ALIGN(size);
4655
4656 while (addr < end) {
4657 free_page(addr);
4658 addr += PAGE_SIZE;
4659 }
4660 }
4661 EXPORT_SYMBOL(free_pages_exact);
4662
4663 /**
4664 * nr_free_zone_pages - count number of pages beyond high watermark
4665 * @offset: The zone index of the highest zone
4666 *
4667 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4668 * high watermark within all zones at or below a given zone index. For each
4669 * zone, the number of pages is calculated as:
4670 *
4671 * nr_free_zone_pages = managed_pages - high_pages
4672 */
4673 static unsigned long nr_free_zone_pages(int offset)
4674 {
4675 struct zoneref *z;
4676 struct zone *zone;
4677
4678 /* Just pick one node, since fallback list is circular */
4679 unsigned long sum = 0;
4680
4681 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4682
4683 for_each_zone_zonelist(zone, z, zonelist, offset) {
4684 unsigned long size = zone->managed_pages;
4685 unsigned long high = high_wmark_pages(zone);
4686 if (size > high)
4687 sum += size - high;
4688 }
4689
4690 return sum;
4691 }
4692
4693 /**
4694 * nr_free_buffer_pages - count number of pages beyond high watermark
4695 *
4696 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4697 * watermark within ZONE_DMA and ZONE_NORMAL.
4698 */
4699 unsigned long nr_free_buffer_pages(void)
4700 {
4701 return nr_free_zone_pages(gfp_zone(GFP_USER));
4702 }
4703 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4704
4705 /**
4706 * nr_free_pagecache_pages - count number of pages beyond high watermark
4707 *
4708 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4709 * high watermark within all zones.
4710 */
4711 unsigned long nr_free_pagecache_pages(void)
4712 {
4713 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4714 }
4715
4716 static inline void show_node(struct zone *zone)
4717 {
4718 if (IS_ENABLED(CONFIG_NUMA))
4719 printk("Node %d ", zone_to_nid(zone));
4720 }
4721
4722 long si_mem_available(void)
4723 {
4724 long available;
4725 unsigned long pagecache;
4726 unsigned long wmark_low = 0;
4727 unsigned long pages[NR_LRU_LISTS];
4728 unsigned long reclaimable;
4729 struct zone *zone;
4730 int lru;
4731
4732 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4733 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4734
4735 for_each_zone(zone)
4736 wmark_low += zone->watermark[WMARK_LOW];
4737
4738 /*
4739 * Estimate the amount of memory available for userspace allocations,
4740 * without causing swapping.
4741 */
4742 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4743
4744 /*
4745 * Not all the page cache can be freed, otherwise the system will
4746 * start swapping. Assume at least half of the page cache, or the
4747 * low watermark worth of cache, needs to stay.
4748 */
4749 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4750 pagecache -= min(pagecache / 2, wmark_low);
4751 available += pagecache;
4752
4753 /*
4754 * Part of the reclaimable slab and other kernel memory consists of
4755 * items that are in use, and cannot be freed. Cap this estimate at the
4756 * low watermark.
4757 */
4758 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
4759 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
4760 available += reclaimable - min(reclaimable / 2, wmark_low);
4761
4762 if (available < 0)
4763 available = 0;
4764 return available;
4765 }
4766 EXPORT_SYMBOL_GPL(si_mem_available);
4767
4768 void si_meminfo(struct sysinfo *val)
4769 {
4770 val->totalram = totalram_pages;
4771 val->sharedram = global_node_page_state(NR_SHMEM);
4772 val->freeram = global_zone_page_state(NR_FREE_PAGES);
4773 val->bufferram = nr_blockdev_pages();
4774 val->totalhigh = totalhigh_pages;
4775 val->freehigh = nr_free_highpages();
4776 val->mem_unit = PAGE_SIZE;
4777 }
4778
4779 EXPORT_SYMBOL(si_meminfo);
4780
4781 #ifdef CONFIG_NUMA
4782 void si_meminfo_node(struct sysinfo *val, int nid)
4783 {
4784 int zone_type; /* needs to be signed */
4785 unsigned long managed_pages = 0;
4786 unsigned long managed_highpages = 0;
4787 unsigned long free_highpages = 0;
4788 pg_data_t *pgdat = NODE_DATA(nid);
4789
4790 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4791 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4792 val->totalram = managed_pages;
4793 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4794 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4795 #ifdef CONFIG_HIGHMEM
4796 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4797 struct zone *zone = &pgdat->node_zones[zone_type];
4798
4799 if (is_highmem(zone)) {
4800 managed_highpages += zone->managed_pages;
4801 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4802 }
4803 }
4804 val->totalhigh = managed_highpages;
4805 val->freehigh = free_highpages;
4806 #else
4807 val->totalhigh = managed_highpages;
4808 val->freehigh = free_highpages;
4809 #endif
4810 val->mem_unit = PAGE_SIZE;
4811 }
4812 #endif
4813
4814 /*
4815 * Determine whether the node should be displayed or not, depending on whether
4816 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4817 */
4818 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4819 {
4820 if (!(flags & SHOW_MEM_FILTER_NODES))
4821 return false;
4822
4823 /*
4824 * no node mask - aka implicit memory numa policy. Do not bother with
4825 * the synchronization - read_mems_allowed_begin - because we do not
4826 * have to be precise here.
4827 */
4828 if (!nodemask)
4829 nodemask = &cpuset_current_mems_allowed;
4830
4831 return !node_isset(nid, *nodemask);
4832 }
4833
4834 #define K(x) ((x) << (PAGE_SHIFT-10))
4835
4836 static void show_migration_types(unsigned char type)
4837 {
4838 static const char types[MIGRATE_TYPES] = {
4839 [MIGRATE_UNMOVABLE] = 'U',
4840 [MIGRATE_MOVABLE] = 'M',
4841 [MIGRATE_RECLAIMABLE] = 'E',
4842 [MIGRATE_HIGHATOMIC] = 'H',
4843 #ifdef CONFIG_CMA
4844 [MIGRATE_CMA] = 'C',
4845 #endif
4846 #ifdef CONFIG_MEMORY_ISOLATION
4847 [MIGRATE_ISOLATE] = 'I',
4848 #endif
4849 };
4850 char tmp[MIGRATE_TYPES + 1];
4851 char *p = tmp;
4852 int i;
4853
4854 for (i = 0; i < MIGRATE_TYPES; i++) {
4855 if (type & (1 << i))
4856 *p++ = types[i];
4857 }
4858
4859 *p = '\0';
4860 printk(KERN_CONT "(%s) ", tmp);
4861 }
4862
4863 /*
4864 * Show free area list (used inside shift_scroll-lock stuff)
4865 * We also calculate the percentage fragmentation. We do this by counting the
4866 * memory on each free list with the exception of the first item on the list.
4867 *
4868 * Bits in @filter:
4869 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4870 * cpuset.
4871 */
4872 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4873 {
4874 unsigned long free_pcp = 0;
4875 int cpu;
4876 struct zone *zone;
4877 pg_data_t *pgdat;
4878
4879 for_each_populated_zone(zone) {
4880 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4881 continue;
4882
4883 for_each_online_cpu(cpu)
4884 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4885 }
4886
4887 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4888 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4889 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4890 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4891 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4892 " free:%lu free_pcp:%lu free_cma:%lu\n",
4893 global_node_page_state(NR_ACTIVE_ANON),
4894 global_node_page_state(NR_INACTIVE_ANON),
4895 global_node_page_state(NR_ISOLATED_ANON),
4896 global_node_page_state(NR_ACTIVE_FILE),
4897 global_node_page_state(NR_INACTIVE_FILE),
4898 global_node_page_state(NR_ISOLATED_FILE),
4899 global_node_page_state(NR_UNEVICTABLE),
4900 global_node_page_state(NR_FILE_DIRTY),
4901 global_node_page_state(NR_WRITEBACK),
4902 global_node_page_state(NR_UNSTABLE_NFS),
4903 global_node_page_state(NR_SLAB_RECLAIMABLE),
4904 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4905 global_node_page_state(NR_FILE_MAPPED),
4906 global_node_page_state(NR_SHMEM),
4907 global_zone_page_state(NR_PAGETABLE),
4908 global_zone_page_state(NR_BOUNCE),
4909 global_zone_page_state(NR_FREE_PAGES),
4910 free_pcp,
4911 global_zone_page_state(NR_FREE_CMA_PAGES));
4912
4913 for_each_online_pgdat(pgdat) {
4914 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4915 continue;
4916
4917 printk("Node %d"
4918 " active_anon:%lukB"
4919 " inactive_anon:%lukB"
4920 " active_file:%lukB"
4921 " inactive_file:%lukB"
4922 " unevictable:%lukB"
4923 " isolated(anon):%lukB"
4924 " isolated(file):%lukB"
4925 " mapped:%lukB"
4926 " dirty:%lukB"
4927 " writeback:%lukB"
4928 " shmem:%lukB"
4929 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4930 " shmem_thp: %lukB"
4931 " shmem_pmdmapped: %lukB"
4932 " anon_thp: %lukB"
4933 #endif
4934 " writeback_tmp:%lukB"
4935 " unstable:%lukB"
4936 " all_unreclaimable? %s"
4937 "\n",
4938 pgdat->node_id,
4939 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4940 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4941 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4942 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4943 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4944 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4945 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4946 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4947 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4948 K(node_page_state(pgdat, NR_WRITEBACK)),
4949 K(node_page_state(pgdat, NR_SHMEM)),
4950 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4951 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4952 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4953 * HPAGE_PMD_NR),
4954 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4955 #endif
4956 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4957 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4958 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4959 "yes" : "no");
4960 }
4961
4962 for_each_populated_zone(zone) {
4963 int i;
4964
4965 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4966 continue;
4967
4968 free_pcp = 0;
4969 for_each_online_cpu(cpu)
4970 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4971
4972 show_node(zone);
4973 printk(KERN_CONT
4974 "%s"
4975 " free:%lukB"
4976 " min:%lukB"
4977 " low:%lukB"
4978 " high:%lukB"
4979 " active_anon:%lukB"
4980 " inactive_anon:%lukB"
4981 " active_file:%lukB"
4982 " inactive_file:%lukB"
4983 " unevictable:%lukB"
4984 " writepending:%lukB"
4985 " present:%lukB"
4986 " managed:%lukB"
4987 " mlocked:%lukB"
4988 " kernel_stack:%lukB"
4989 " pagetables:%lukB"
4990 " bounce:%lukB"
4991 " free_pcp:%lukB"
4992 " local_pcp:%ukB"
4993 " free_cma:%lukB"
4994 "\n",
4995 zone->name,
4996 K(zone_page_state(zone, NR_FREE_PAGES)),
4997 K(min_wmark_pages(zone)),
4998 K(low_wmark_pages(zone)),
4999 K(high_wmark_pages(zone)),
5000 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5001 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5002 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5003 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5004 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5005 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5006 K(zone->present_pages),
5007 K(zone->managed_pages),
5008 K(zone_page_state(zone, NR_MLOCK)),
5009 zone_page_state(zone, NR_KERNEL_STACK_KB),
5010 K(zone_page_state(zone, NR_PAGETABLE)),
5011 K(zone_page_state(zone, NR_BOUNCE)),
5012 K(free_pcp),
5013 K(this_cpu_read(zone->pageset->pcp.count)),
5014 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5015 printk("lowmem_reserve[]:");
5016 for (i = 0; i < MAX_NR_ZONES; i++)
5017 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5018 printk(KERN_CONT "\n");
5019 }
5020
5021 for_each_populated_zone(zone) {
5022 unsigned int order;
5023 unsigned long nr[MAX_ORDER], flags, total = 0;
5024 unsigned char types[MAX_ORDER];
5025
5026 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5027 continue;
5028 show_node(zone);
5029 printk(KERN_CONT "%s: ", zone->name);
5030
5031 spin_lock_irqsave(&zone->lock, flags);
5032 for (order = 0; order < MAX_ORDER; order++) {
5033 struct free_area *area = &zone->free_area[order];
5034 int type;
5035
5036 nr[order] = area->nr_free;
5037 total += nr[order] << order;
5038
5039 types[order] = 0;
5040 for (type = 0; type < MIGRATE_TYPES; type++) {
5041 if (!list_empty(&area->free_list[type]))
5042 types[order] |= 1 << type;
5043 }
5044 }
5045 spin_unlock_irqrestore(&zone->lock, flags);
5046 for (order = 0; order < MAX_ORDER; order++) {
5047 printk(KERN_CONT "%lu*%lukB ",
5048 nr[order], K(1UL) << order);
5049 if (nr[order])
5050 show_migration_types(types[order]);
5051 }
5052 printk(KERN_CONT "= %lukB\n", K(total));
5053 }
5054
5055 hugetlb_show_meminfo();
5056
5057 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5058
5059 show_swap_cache_info();
5060 }
5061
5062 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5063 {
5064 zoneref->zone = zone;
5065 zoneref->zone_idx = zone_idx(zone);
5066 }
5067
5068 /*
5069 * Builds allocation fallback zone lists.
5070 *
5071 * Add all populated zones of a node to the zonelist.
5072 */
5073 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5074 {
5075 struct zone *zone;
5076 enum zone_type zone_type = MAX_NR_ZONES;
5077 int nr_zones = 0;
5078
5079 do {
5080 zone_type--;
5081 zone = pgdat->node_zones + zone_type;
5082 if (managed_zone(zone)) {
5083 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5084 check_highest_zone(zone_type);
5085 }
5086 } while (zone_type);
5087
5088 return nr_zones;
5089 }
5090
5091 #ifdef CONFIG_NUMA
5092
5093 static int __parse_numa_zonelist_order(char *s)
5094 {
5095 /*
5096 * We used to support different zonlists modes but they turned
5097 * out to be just not useful. Let's keep the warning in place
5098 * if somebody still use the cmd line parameter so that we do
5099 * not fail it silently
5100 */
5101 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5102 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5103 return -EINVAL;
5104 }
5105 return 0;
5106 }
5107
5108 static __init int setup_numa_zonelist_order(char *s)
5109 {
5110 if (!s)
5111 return 0;
5112
5113 return __parse_numa_zonelist_order(s);
5114 }
5115 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5116
5117 char numa_zonelist_order[] = "Node";
5118
5119 /*
5120 * sysctl handler for numa_zonelist_order
5121 */
5122 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5123 void __user *buffer, size_t *length,
5124 loff_t *ppos)
5125 {
5126 char *str;
5127 int ret;
5128
5129 if (!write)
5130 return proc_dostring(table, write, buffer, length, ppos);
5131 str = memdup_user_nul(buffer, 16);
5132 if (IS_ERR(str))
5133 return PTR_ERR(str);
5134
5135 ret = __parse_numa_zonelist_order(str);
5136 kfree(str);
5137 return ret;
5138 }
5139
5140
5141 #define MAX_NODE_LOAD (nr_online_nodes)
5142 static int node_load[MAX_NUMNODES];
5143
5144 /**
5145 * find_next_best_node - find the next node that should appear in a given node's fallback list
5146 * @node: node whose fallback list we're appending
5147 * @used_node_mask: nodemask_t of already used nodes
5148 *
5149 * We use a number of factors to determine which is the next node that should
5150 * appear on a given node's fallback list. The node should not have appeared
5151 * already in @node's fallback list, and it should be the next closest node
5152 * according to the distance array (which contains arbitrary distance values
5153 * from each node to each node in the system), and should also prefer nodes
5154 * with no CPUs, since presumably they'll have very little allocation pressure
5155 * on them otherwise.
5156 * It returns -1 if no node is found.
5157 */
5158 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5159 {
5160 int n, val;
5161 int min_val = INT_MAX;
5162 int best_node = NUMA_NO_NODE;
5163 const struct cpumask *tmp = cpumask_of_node(0);
5164
5165 /* Use the local node if we haven't already */
5166 if (!node_isset(node, *used_node_mask)) {
5167 node_set(node, *used_node_mask);
5168 return node;
5169 }
5170
5171 for_each_node_state(n, N_MEMORY) {
5172
5173 /* Don't want a node to appear more than once */
5174 if (node_isset(n, *used_node_mask))
5175 continue;
5176
5177 /* Use the distance array to find the distance */
5178 val = node_distance(node, n);
5179
5180 /* Penalize nodes under us ("prefer the next node") */
5181 val += (n < node);
5182
5183 /* Give preference to headless and unused nodes */
5184 tmp = cpumask_of_node(n);
5185 if (!cpumask_empty(tmp))
5186 val += PENALTY_FOR_NODE_WITH_CPUS;
5187
5188 /* Slight preference for less loaded node */
5189 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5190 val += node_load[n];
5191
5192 if (val < min_val) {
5193 min_val = val;
5194 best_node = n;
5195 }
5196 }
5197
5198 if (best_node >= 0)
5199 node_set(best_node, *used_node_mask);
5200
5201 return best_node;
5202 }
5203
5204
5205 /*
5206 * Build zonelists ordered by node and zones within node.
5207 * This results in maximum locality--normal zone overflows into local
5208 * DMA zone, if any--but risks exhausting DMA zone.
5209 */
5210 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5211 unsigned nr_nodes)
5212 {
5213 struct zoneref *zonerefs;
5214 int i;
5215
5216 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5217
5218 for (i = 0; i < nr_nodes; i++) {
5219 int nr_zones;
5220
5221 pg_data_t *node = NODE_DATA(node_order[i]);
5222
5223 nr_zones = build_zonerefs_node(node, zonerefs);
5224 zonerefs += nr_zones;
5225 }
5226 zonerefs->zone = NULL;
5227 zonerefs->zone_idx = 0;
5228 }
5229
5230 /*
5231 * Build gfp_thisnode zonelists
5232 */
5233 static void build_thisnode_zonelists(pg_data_t *pgdat)
5234 {
5235 struct zoneref *zonerefs;
5236 int nr_zones;
5237
5238 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5239 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5240 zonerefs += nr_zones;
5241 zonerefs->zone = NULL;
5242 zonerefs->zone_idx = 0;
5243 }
5244
5245 /*
5246 * Build zonelists ordered by zone and nodes within zones.
5247 * This results in conserving DMA zone[s] until all Normal memory is
5248 * exhausted, but results in overflowing to remote node while memory
5249 * may still exist in local DMA zone.
5250 */
5251
5252 static void build_zonelists(pg_data_t *pgdat)
5253 {
5254 static int node_order[MAX_NUMNODES];
5255 int node, load, nr_nodes = 0;
5256 nodemask_t used_mask;
5257 int local_node, prev_node;
5258
5259 /* NUMA-aware ordering of nodes */
5260 local_node = pgdat->node_id;
5261 load = nr_online_nodes;
5262 prev_node = local_node;
5263 nodes_clear(used_mask);
5264
5265 memset(node_order, 0, sizeof(node_order));
5266 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5267 /*
5268 * We don't want to pressure a particular node.
5269 * So adding penalty to the first node in same
5270 * distance group to make it round-robin.
5271 */
5272 if (node_distance(local_node, node) !=
5273 node_distance(local_node, prev_node))
5274 node_load[node] = load;
5275
5276 node_order[nr_nodes++] = node;
5277 prev_node = node;
5278 load--;
5279 }
5280
5281 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5282 build_thisnode_zonelists(pgdat);
5283 }
5284
5285 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5286 /*
5287 * Return node id of node used for "local" allocations.
5288 * I.e., first node id of first zone in arg node's generic zonelist.
5289 * Used for initializing percpu 'numa_mem', which is used primarily
5290 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5291 */
5292 int local_memory_node(int node)
5293 {
5294 struct zoneref *z;
5295
5296 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5297 gfp_zone(GFP_KERNEL),
5298 NULL);
5299 return zone_to_nid(z->zone);
5300 }
5301 #endif
5302
5303 static void setup_min_unmapped_ratio(void);
5304 static void setup_min_slab_ratio(void);
5305 #else /* CONFIG_NUMA */
5306
5307 static void build_zonelists(pg_data_t *pgdat)
5308 {
5309 int node, local_node;
5310 struct zoneref *zonerefs;
5311 int nr_zones;
5312
5313 local_node = pgdat->node_id;
5314
5315 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5316 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5317 zonerefs += nr_zones;
5318
5319 /*
5320 * Now we build the zonelist so that it contains the zones
5321 * of all the other nodes.
5322 * We don't want to pressure a particular node, so when
5323 * building the zones for node N, we make sure that the
5324 * zones coming right after the local ones are those from
5325 * node N+1 (modulo N)
5326 */
5327 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5328 if (!node_online(node))
5329 continue;
5330 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5331 zonerefs += nr_zones;
5332 }
5333 for (node = 0; node < local_node; node++) {
5334 if (!node_online(node))
5335 continue;
5336 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5337 zonerefs += nr_zones;
5338 }
5339
5340 zonerefs->zone = NULL;
5341 zonerefs->zone_idx = 0;
5342 }
5343
5344 #endif /* CONFIG_NUMA */
5345
5346 /*
5347 * Boot pageset table. One per cpu which is going to be used for all
5348 * zones and all nodes. The parameters will be set in such a way
5349 * that an item put on a list will immediately be handed over to
5350 * the buddy list. This is safe since pageset manipulation is done
5351 * with interrupts disabled.
5352 *
5353 * The boot_pagesets must be kept even after bootup is complete for
5354 * unused processors and/or zones. They do play a role for bootstrapping
5355 * hotplugged processors.
5356 *
5357 * zoneinfo_show() and maybe other functions do
5358 * not check if the processor is online before following the pageset pointer.
5359 * Other parts of the kernel may not check if the zone is available.
5360 */
5361 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5362 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5363 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5364
5365 static void __build_all_zonelists(void *data)
5366 {
5367 int nid;
5368 int __maybe_unused cpu;
5369 pg_data_t *self = data;
5370 static DEFINE_SPINLOCK(lock);
5371
5372 spin_lock(&lock);
5373
5374 #ifdef CONFIG_NUMA
5375 memset(node_load, 0, sizeof(node_load));
5376 #endif
5377
5378 /*
5379 * This node is hotadded and no memory is yet present. So just
5380 * building zonelists is fine - no need to touch other nodes.
5381 */
5382 if (self && !node_online(self->node_id)) {
5383 build_zonelists(self);
5384 } else {
5385 for_each_online_node(nid) {
5386 pg_data_t *pgdat = NODE_DATA(nid);
5387
5388 build_zonelists(pgdat);
5389 }
5390
5391 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5392 /*
5393 * We now know the "local memory node" for each node--
5394 * i.e., the node of the first zone in the generic zonelist.
5395 * Set up numa_mem percpu variable for on-line cpus. During
5396 * boot, only the boot cpu should be on-line; we'll init the
5397 * secondary cpus' numa_mem as they come on-line. During
5398 * node/memory hotplug, we'll fixup all on-line cpus.
5399 */
5400 for_each_online_cpu(cpu)
5401 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5402 #endif
5403 }
5404
5405 spin_unlock(&lock);
5406 }
5407
5408 static noinline void __init
5409 build_all_zonelists_init(void)
5410 {
5411 int cpu;
5412
5413 __build_all_zonelists(NULL);
5414
5415 /*
5416 * Initialize the boot_pagesets that are going to be used
5417 * for bootstrapping processors. The real pagesets for
5418 * each zone will be allocated later when the per cpu
5419 * allocator is available.
5420 *
5421 * boot_pagesets are used also for bootstrapping offline
5422 * cpus if the system is already booted because the pagesets
5423 * are needed to initialize allocators on a specific cpu too.
5424 * F.e. the percpu allocator needs the page allocator which
5425 * needs the percpu allocator in order to allocate its pagesets
5426 * (a chicken-egg dilemma).
5427 */
5428 for_each_possible_cpu(cpu)
5429 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5430
5431 mminit_verify_zonelist();
5432 cpuset_init_current_mems_allowed();
5433 }
5434
5435 /*
5436 * unless system_state == SYSTEM_BOOTING.
5437 *
5438 * __ref due to call of __init annotated helper build_all_zonelists_init
5439 * [protected by SYSTEM_BOOTING].
5440 */
5441 void __ref build_all_zonelists(pg_data_t *pgdat)
5442 {
5443 if (system_state == SYSTEM_BOOTING) {
5444 build_all_zonelists_init();
5445 } else {
5446 __build_all_zonelists(pgdat);
5447 /* cpuset refresh routine should be here */
5448 }
5449 vm_total_pages = nr_free_pagecache_pages();
5450 /*
5451 * Disable grouping by mobility if the number of pages in the
5452 * system is too low to allow the mechanism to work. It would be
5453 * more accurate, but expensive to check per-zone. This check is
5454 * made on memory-hotadd so a system can start with mobility
5455 * disabled and enable it later
5456 */
5457 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5458 page_group_by_mobility_disabled = 1;
5459 else
5460 page_group_by_mobility_disabled = 0;
5461
5462 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5463 nr_online_nodes,
5464 page_group_by_mobility_disabled ? "off" : "on",
5465 vm_total_pages);
5466 #ifdef CONFIG_NUMA
5467 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5468 #endif
5469 }
5470
5471 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5472 static bool __meminit
5473 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5474 {
5475 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5476 static struct memblock_region *r;
5477
5478 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5479 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5480 for_each_memblock(memory, r) {
5481 if (*pfn < memblock_region_memory_end_pfn(r))
5482 break;
5483 }
5484 }
5485 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5486 memblock_is_mirror(r)) {
5487 *pfn = memblock_region_memory_end_pfn(r);
5488 return true;
5489 }
5490 }
5491 #endif
5492 return false;
5493 }
5494
5495 /*
5496 * Initially all pages are reserved - free ones are freed
5497 * up by memblock_free_all() once the early boot process is
5498 * done. Non-atomic initialization, single-pass.
5499 */
5500 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5501 unsigned long start_pfn, enum memmap_context context,
5502 struct vmem_altmap *altmap)
5503 {
5504 unsigned long pfn, end_pfn = start_pfn + size;
5505 struct page *page;
5506
5507 if (highest_memmap_pfn < end_pfn - 1)
5508 highest_memmap_pfn = end_pfn - 1;
5509
5510 #ifdef CONFIG_ZONE_DEVICE
5511 /*
5512 * Honor reservation requested by the driver for this ZONE_DEVICE
5513 * memory. We limit the total number of pages to initialize to just
5514 * those that might contain the memory mapping. We will defer the
5515 * ZONE_DEVICE page initialization until after we have released
5516 * the hotplug lock.
5517 */
5518 if (zone == ZONE_DEVICE) {
5519 if (!altmap)
5520 return;
5521
5522 if (start_pfn == altmap->base_pfn)
5523 start_pfn += altmap->reserve;
5524 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5525 }
5526 #endif
5527
5528 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5529 /*
5530 * There can be holes in boot-time mem_map[]s handed to this
5531 * function. They do not exist on hotplugged memory.
5532 */
5533 if (context == MEMMAP_EARLY) {
5534 if (!early_pfn_valid(pfn))
5535 continue;
5536 if (!early_pfn_in_nid(pfn, nid))
5537 continue;
5538 if (overlap_memmap_init(zone, &pfn))
5539 continue;
5540 if (defer_init(nid, pfn, end_pfn))
5541 break;
5542 }
5543
5544 page = pfn_to_page(pfn);
5545 __init_single_page(page, pfn, zone, nid);
5546 if (context == MEMMAP_HOTPLUG)
5547 __SetPageReserved(page);
5548
5549 /*
5550 * Mark the block movable so that blocks are reserved for
5551 * movable at startup. This will force kernel allocations
5552 * to reserve their blocks rather than leaking throughout
5553 * the address space during boot when many long-lived
5554 * kernel allocations are made.
5555 *
5556 * bitmap is created for zone's valid pfn range. but memmap
5557 * can be created for invalid pages (for alignment)
5558 * check here not to call set_pageblock_migratetype() against
5559 * pfn out of zone.
5560 */
5561 if (!(pfn & (pageblock_nr_pages - 1))) {
5562 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5563 cond_resched();
5564 }
5565 }
5566 }
5567
5568 #ifdef CONFIG_ZONE_DEVICE
5569 void __ref memmap_init_zone_device(struct zone *zone,
5570 unsigned long start_pfn,
5571 unsigned long size,
5572 struct dev_pagemap *pgmap)
5573 {
5574 unsigned long pfn, end_pfn = start_pfn + size;
5575 struct pglist_data *pgdat = zone->zone_pgdat;
5576 unsigned long zone_idx = zone_idx(zone);
5577 unsigned long start = jiffies;
5578 int nid = pgdat->node_id;
5579
5580 if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5581 return;
5582
5583 /*
5584 * The call to memmap_init_zone should have already taken care
5585 * of the pages reserved for the memmap, so we can just jump to
5586 * the end of that region and start processing the device pages.
5587 */
5588 if (pgmap->altmap_valid) {
5589 struct vmem_altmap *altmap = &pgmap->altmap;
5590
5591 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5592 size = end_pfn - start_pfn;
5593 }
5594
5595 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5596 struct page *page = pfn_to_page(pfn);
5597
5598 __init_single_page(page, pfn, zone_idx, nid);
5599
5600 /*
5601 * Mark page reserved as it will need to wait for onlining
5602 * phase for it to be fully associated with a zone.
5603 *
5604 * We can use the non-atomic __set_bit operation for setting
5605 * the flag as we are still initializing the pages.
5606 */
5607 __SetPageReserved(page);
5608
5609 /*
5610 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5611 * pointer and hmm_data. It is a bug if a ZONE_DEVICE
5612 * page is ever freed or placed on a driver-private list.
5613 */
5614 page->pgmap = pgmap;
5615 page->hmm_data = 0;
5616
5617 /*
5618 * Mark the block movable so that blocks are reserved for
5619 * movable at startup. This will force kernel allocations
5620 * to reserve their blocks rather than leaking throughout
5621 * the address space during boot when many long-lived
5622 * kernel allocations are made.
5623 *
5624 * bitmap is created for zone's valid pfn range. but memmap
5625 * can be created for invalid pages (for alignment)
5626 * check here not to call set_pageblock_migratetype() against
5627 * pfn out of zone.
5628 *
5629 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5630 * because this is done early in sparse_add_one_section
5631 */
5632 if (!(pfn & (pageblock_nr_pages - 1))) {
5633 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5634 cond_resched();
5635 }
5636 }
5637
5638 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5639 size, jiffies_to_msecs(jiffies - start));
5640 }
5641
5642 #endif
5643 static void __meminit zone_init_free_lists(struct zone *zone)
5644 {
5645 unsigned int order, t;
5646 for_each_migratetype_order(order, t) {
5647 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5648 zone->free_area[order].nr_free = 0;
5649 }
5650 }
5651
5652 void __meminit __weak memmap_init(unsigned long size, int nid,
5653 unsigned long zone, unsigned long start_pfn)
5654 {
5655 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
5656 }
5657
5658 static int zone_batchsize(struct zone *zone)
5659 {
5660 #ifdef CONFIG_MMU
5661 int batch;
5662
5663 /*
5664 * The per-cpu-pages pools are set to around 1000th of the
5665 * size of the zone.
5666 */
5667 batch = zone->managed_pages / 1024;
5668 /* But no more than a meg. */
5669 if (batch * PAGE_SIZE > 1024 * 1024)
5670 batch = (1024 * 1024) / PAGE_SIZE;
5671 batch /= 4; /* We effectively *= 4 below */
5672 if (batch < 1)
5673 batch = 1;
5674
5675 /*
5676 * Clamp the batch to a 2^n - 1 value. Having a power
5677 * of 2 value was found to be more likely to have
5678 * suboptimal cache aliasing properties in some cases.
5679 *
5680 * For example if 2 tasks are alternately allocating
5681 * batches of pages, one task can end up with a lot
5682 * of pages of one half of the possible page colors
5683 * and the other with pages of the other colors.
5684 */
5685 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5686
5687 return batch;
5688
5689 #else
5690 /* The deferral and batching of frees should be suppressed under NOMMU
5691 * conditions.
5692 *
5693 * The problem is that NOMMU needs to be able to allocate large chunks
5694 * of contiguous memory as there's no hardware page translation to
5695 * assemble apparent contiguous memory from discontiguous pages.
5696 *
5697 * Queueing large contiguous runs of pages for batching, however,
5698 * causes the pages to actually be freed in smaller chunks. As there
5699 * can be a significant delay between the individual batches being
5700 * recycled, this leads to the once large chunks of space being
5701 * fragmented and becoming unavailable for high-order allocations.
5702 */
5703 return 0;
5704 #endif
5705 }
5706
5707 /*
5708 * pcp->high and pcp->batch values are related and dependent on one another:
5709 * ->batch must never be higher then ->high.
5710 * The following function updates them in a safe manner without read side
5711 * locking.
5712 *
5713 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5714 * those fields changing asynchronously (acording the the above rule).
5715 *
5716 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5717 * outside of boot time (or some other assurance that no concurrent updaters
5718 * exist).
5719 */
5720 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5721 unsigned long batch)
5722 {
5723 /* start with a fail safe value for batch */
5724 pcp->batch = 1;
5725 smp_wmb();
5726
5727 /* Update high, then batch, in order */
5728 pcp->high = high;
5729 smp_wmb();
5730
5731 pcp->batch = batch;
5732 }
5733
5734 /* a companion to pageset_set_high() */
5735 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5736 {
5737 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5738 }
5739
5740 static void pageset_init(struct per_cpu_pageset *p)
5741 {
5742 struct per_cpu_pages *pcp;
5743 int migratetype;
5744
5745 memset(p, 0, sizeof(*p));
5746
5747 pcp = &p->pcp;
5748 pcp->count = 0;
5749 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5750 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5751 }
5752
5753 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5754 {
5755 pageset_init(p);
5756 pageset_set_batch(p, batch);
5757 }
5758
5759 /*
5760 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5761 * to the value high for the pageset p.
5762 */
5763 static void pageset_set_high(struct per_cpu_pageset *p,
5764 unsigned long high)
5765 {
5766 unsigned long batch = max(1UL, high / 4);
5767 if ((high / 4) > (PAGE_SHIFT * 8))
5768 batch = PAGE_SHIFT * 8;
5769
5770 pageset_update(&p->pcp, high, batch);
5771 }
5772
5773 static void pageset_set_high_and_batch(struct zone *zone,
5774 struct per_cpu_pageset *pcp)
5775 {
5776 if (percpu_pagelist_fraction)
5777 pageset_set_high(pcp,
5778 (zone->managed_pages /
5779 percpu_pagelist_fraction));
5780 else
5781 pageset_set_batch(pcp, zone_batchsize(zone));
5782 }
5783
5784 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5785 {
5786 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5787
5788 pageset_init(pcp);
5789 pageset_set_high_and_batch(zone, pcp);
5790 }
5791
5792 void __meminit setup_zone_pageset(struct zone *zone)
5793 {
5794 int cpu;
5795 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5796 for_each_possible_cpu(cpu)
5797 zone_pageset_init(zone, cpu);
5798 }
5799
5800 /*
5801 * Allocate per cpu pagesets and initialize them.
5802 * Before this call only boot pagesets were available.
5803 */
5804 void __init setup_per_cpu_pageset(void)
5805 {
5806 struct pglist_data *pgdat;
5807 struct zone *zone;
5808
5809 for_each_populated_zone(zone)
5810 setup_zone_pageset(zone);
5811
5812 for_each_online_pgdat(pgdat)
5813 pgdat->per_cpu_nodestats =
5814 alloc_percpu(struct per_cpu_nodestat);
5815 }
5816
5817 static __meminit void zone_pcp_init(struct zone *zone)
5818 {
5819 /*
5820 * per cpu subsystem is not up at this point. The following code
5821 * relies on the ability of the linker to provide the
5822 * offset of a (static) per cpu variable into the per cpu area.
5823 */
5824 zone->pageset = &boot_pageset;
5825
5826 if (populated_zone(zone))
5827 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5828 zone->name, zone->present_pages,
5829 zone_batchsize(zone));
5830 }
5831
5832 void __meminit init_currently_empty_zone(struct zone *zone,
5833 unsigned long zone_start_pfn,
5834 unsigned long size)
5835 {
5836 struct pglist_data *pgdat = zone->zone_pgdat;
5837 int zone_idx = zone_idx(zone) + 1;
5838
5839 if (zone_idx > pgdat->nr_zones)
5840 pgdat->nr_zones = zone_idx;
5841
5842 zone->zone_start_pfn = zone_start_pfn;
5843
5844 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5845 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5846 pgdat->node_id,
5847 (unsigned long)zone_idx(zone),
5848 zone_start_pfn, (zone_start_pfn + size));
5849
5850 zone_init_free_lists(zone);
5851 zone->initialized = 1;
5852 }
5853
5854 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5855 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5856
5857 /*
5858 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5859 */
5860 int __meminit __early_pfn_to_nid(unsigned long pfn,
5861 struct mminit_pfnnid_cache *state)
5862 {
5863 unsigned long start_pfn, end_pfn;
5864 int nid;
5865
5866 if (state->last_start <= pfn && pfn < state->last_end)
5867 return state->last_nid;
5868
5869 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5870 if (nid != -1) {
5871 state->last_start = start_pfn;
5872 state->last_end = end_pfn;
5873 state->last_nid = nid;
5874 }
5875
5876 return nid;
5877 }
5878 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5879
5880 /**
5881 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5882 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5883 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5884 *
5885 * If an architecture guarantees that all ranges registered contain no holes
5886 * and may be freed, this this function may be used instead of calling
5887 * memblock_free_early_nid() manually.
5888 */
5889 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5890 {
5891 unsigned long start_pfn, end_pfn;
5892 int i, this_nid;
5893
5894 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5895 start_pfn = min(start_pfn, max_low_pfn);
5896 end_pfn = min(end_pfn, max_low_pfn);
5897
5898 if (start_pfn < end_pfn)
5899 memblock_free_early_nid(PFN_PHYS(start_pfn),
5900 (end_pfn - start_pfn) << PAGE_SHIFT,
5901 this_nid);
5902 }
5903 }
5904
5905 /**
5906 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5907 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5908 *
5909 * If an architecture guarantees that all ranges registered contain no holes and may
5910 * be freed, this function may be used instead of calling memory_present() manually.
5911 */
5912 void __init sparse_memory_present_with_active_regions(int nid)
5913 {
5914 unsigned long start_pfn, end_pfn;
5915 int i, this_nid;
5916
5917 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5918 memory_present(this_nid, start_pfn, end_pfn);
5919 }
5920
5921 /**
5922 * get_pfn_range_for_nid - Return the start and end page frames for a node
5923 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5924 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5925 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5926 *
5927 * It returns the start and end page frame of a node based on information
5928 * provided by memblock_set_node(). If called for a node
5929 * with no available memory, a warning is printed and the start and end
5930 * PFNs will be 0.
5931 */
5932 void __meminit get_pfn_range_for_nid(unsigned int nid,
5933 unsigned long *start_pfn, unsigned long *end_pfn)
5934 {
5935 unsigned long this_start_pfn, this_end_pfn;
5936 int i;
5937
5938 *start_pfn = -1UL;
5939 *end_pfn = 0;
5940
5941 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5942 *start_pfn = min(*start_pfn, this_start_pfn);
5943 *end_pfn = max(*end_pfn, this_end_pfn);
5944 }
5945
5946 if (*start_pfn == -1UL)
5947 *start_pfn = 0;
5948 }
5949
5950 /*
5951 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5952 * assumption is made that zones within a node are ordered in monotonic
5953 * increasing memory addresses so that the "highest" populated zone is used
5954 */
5955 static void __init find_usable_zone_for_movable(void)
5956 {
5957 int zone_index;
5958 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5959 if (zone_index == ZONE_MOVABLE)
5960 continue;
5961
5962 if (arch_zone_highest_possible_pfn[zone_index] >
5963 arch_zone_lowest_possible_pfn[zone_index])
5964 break;
5965 }
5966
5967 VM_BUG_ON(zone_index == -1);
5968 movable_zone = zone_index;
5969 }
5970
5971 /*
5972 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5973 * because it is sized independent of architecture. Unlike the other zones,
5974 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5975 * in each node depending on the size of each node and how evenly kernelcore
5976 * is distributed. This helper function adjusts the zone ranges
5977 * provided by the architecture for a given node by using the end of the
5978 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5979 * zones within a node are in order of monotonic increases memory addresses
5980 */
5981 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5982 unsigned long zone_type,
5983 unsigned long node_start_pfn,
5984 unsigned long node_end_pfn,
5985 unsigned long *zone_start_pfn,
5986 unsigned long *zone_end_pfn)
5987 {
5988 /* Only adjust if ZONE_MOVABLE is on this node */
5989 if (zone_movable_pfn[nid]) {
5990 /* Size ZONE_MOVABLE */
5991 if (zone_type == ZONE_MOVABLE) {
5992 *zone_start_pfn = zone_movable_pfn[nid];
5993 *zone_end_pfn = min(node_end_pfn,
5994 arch_zone_highest_possible_pfn[movable_zone]);
5995
5996 /* Adjust for ZONE_MOVABLE starting within this range */
5997 } else if (!mirrored_kernelcore &&
5998 *zone_start_pfn < zone_movable_pfn[nid] &&
5999 *zone_end_pfn > zone_movable_pfn[nid]) {
6000 *zone_end_pfn = zone_movable_pfn[nid];
6001
6002 /* Check if this whole range is within ZONE_MOVABLE */
6003 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6004 *zone_start_pfn = *zone_end_pfn;
6005 }
6006 }
6007
6008 /*
6009 * Return the number of pages a zone spans in a node, including holes
6010 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6011 */
6012 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
6013 unsigned long zone_type,
6014 unsigned long node_start_pfn,
6015 unsigned long node_end_pfn,
6016 unsigned long *zone_start_pfn,
6017 unsigned long *zone_end_pfn,
6018 unsigned long *ignored)
6019 {
6020 /* When hotadd a new node from cpu_up(), the node should be empty */
6021 if (!node_start_pfn && !node_end_pfn)
6022 return 0;
6023
6024 /* Get the start and end of the zone */
6025 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
6026 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
6027 adjust_zone_range_for_zone_movable(nid, zone_type,
6028 node_start_pfn, node_end_pfn,
6029 zone_start_pfn, zone_end_pfn);
6030
6031 /* Check that this node has pages within the zone's required range */
6032 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6033 return 0;
6034
6035 /* Move the zone boundaries inside the node if necessary */
6036 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6037 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6038
6039 /* Return the spanned pages */
6040 return *zone_end_pfn - *zone_start_pfn;
6041 }
6042
6043 /*
6044 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6045 * then all holes in the requested range will be accounted for.
6046 */
6047 unsigned long __meminit __absent_pages_in_range(int nid,
6048 unsigned long range_start_pfn,
6049 unsigned long range_end_pfn)
6050 {
6051 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6052 unsigned long start_pfn, end_pfn;
6053 int i;
6054
6055 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6056 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6057 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6058 nr_absent -= end_pfn - start_pfn;
6059 }
6060 return nr_absent;
6061 }
6062
6063 /**
6064 * absent_pages_in_range - Return number of page frames in holes within a range
6065 * @start_pfn: The start PFN to start searching for holes
6066 * @end_pfn: The end PFN to stop searching for holes
6067 *
6068 * It returns the number of pages frames in memory holes within a range.
6069 */
6070 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6071 unsigned long end_pfn)
6072 {
6073 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6074 }
6075
6076 /* Return the number of page frames in holes in a zone on a node */
6077 static unsigned long __meminit zone_absent_pages_in_node(int nid,
6078 unsigned long zone_type,
6079 unsigned long node_start_pfn,
6080 unsigned long node_end_pfn,
6081 unsigned long *ignored)
6082 {
6083 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6084 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6085 unsigned long zone_start_pfn, zone_end_pfn;
6086 unsigned long nr_absent;
6087
6088 /* When hotadd a new node from cpu_up(), the node should be empty */
6089 if (!node_start_pfn && !node_end_pfn)
6090 return 0;
6091
6092 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6093 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6094
6095 adjust_zone_range_for_zone_movable(nid, zone_type,
6096 node_start_pfn, node_end_pfn,
6097 &zone_start_pfn, &zone_end_pfn);
6098 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6099
6100 /*
6101 * ZONE_MOVABLE handling.
6102 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6103 * and vice versa.
6104 */
6105 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6106 unsigned long start_pfn, end_pfn;
6107 struct memblock_region *r;
6108
6109 for_each_memblock(memory, r) {
6110 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6111 zone_start_pfn, zone_end_pfn);
6112 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6113 zone_start_pfn, zone_end_pfn);
6114
6115 if (zone_type == ZONE_MOVABLE &&
6116 memblock_is_mirror(r))
6117 nr_absent += end_pfn - start_pfn;
6118
6119 if (zone_type == ZONE_NORMAL &&
6120 !memblock_is_mirror(r))
6121 nr_absent += end_pfn - start_pfn;
6122 }
6123 }
6124
6125 return nr_absent;
6126 }
6127
6128 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6129 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6130 unsigned long zone_type,
6131 unsigned long node_start_pfn,
6132 unsigned long node_end_pfn,
6133 unsigned long *zone_start_pfn,
6134 unsigned long *zone_end_pfn,
6135 unsigned long *zones_size)
6136 {
6137 unsigned int zone;
6138
6139 *zone_start_pfn = node_start_pfn;
6140 for (zone = 0; zone < zone_type; zone++)
6141 *zone_start_pfn += zones_size[zone];
6142
6143 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6144
6145 return zones_size[zone_type];
6146 }
6147
6148 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6149 unsigned long zone_type,
6150 unsigned long node_start_pfn,
6151 unsigned long node_end_pfn,
6152 unsigned long *zholes_size)
6153 {
6154 if (!zholes_size)
6155 return 0;
6156
6157 return zholes_size[zone_type];
6158 }
6159
6160 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6161
6162 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6163 unsigned long node_start_pfn,
6164 unsigned long node_end_pfn,
6165 unsigned long *zones_size,
6166 unsigned long *zholes_size)
6167 {
6168 unsigned long realtotalpages = 0, totalpages = 0;
6169 enum zone_type i;
6170
6171 for (i = 0; i < MAX_NR_ZONES; i++) {
6172 struct zone *zone = pgdat->node_zones + i;
6173 unsigned long zone_start_pfn, zone_end_pfn;
6174 unsigned long size, real_size;
6175
6176 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6177 node_start_pfn,
6178 node_end_pfn,
6179 &zone_start_pfn,
6180 &zone_end_pfn,
6181 zones_size);
6182 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6183 node_start_pfn, node_end_pfn,
6184 zholes_size);
6185 if (size)
6186 zone->zone_start_pfn = zone_start_pfn;
6187 else
6188 zone->zone_start_pfn = 0;
6189 zone->spanned_pages = size;
6190 zone->present_pages = real_size;
6191
6192 totalpages += size;
6193 realtotalpages += real_size;
6194 }
6195
6196 pgdat->node_spanned_pages = totalpages;
6197 pgdat->node_present_pages = realtotalpages;
6198 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6199 realtotalpages);
6200 }
6201
6202 #ifndef CONFIG_SPARSEMEM
6203 /*
6204 * Calculate the size of the zone->blockflags rounded to an unsigned long
6205 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6206 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6207 * round what is now in bits to nearest long in bits, then return it in
6208 * bytes.
6209 */
6210 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6211 {
6212 unsigned long usemapsize;
6213
6214 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6215 usemapsize = roundup(zonesize, pageblock_nr_pages);
6216 usemapsize = usemapsize >> pageblock_order;
6217 usemapsize *= NR_PAGEBLOCK_BITS;
6218 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6219
6220 return usemapsize / 8;
6221 }
6222
6223 static void __ref setup_usemap(struct pglist_data *pgdat,
6224 struct zone *zone,
6225 unsigned long zone_start_pfn,
6226 unsigned long zonesize)
6227 {
6228 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6229 zone->pageblock_flags = NULL;
6230 if (usemapsize)
6231 zone->pageblock_flags =
6232 memblock_alloc_node_nopanic(usemapsize,
6233 pgdat->node_id);
6234 }
6235 #else
6236 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6237 unsigned long zone_start_pfn, unsigned long zonesize) {}
6238 #endif /* CONFIG_SPARSEMEM */
6239
6240 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6241
6242 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6243 void __init set_pageblock_order(void)
6244 {
6245 unsigned int order;
6246
6247 /* Check that pageblock_nr_pages has not already been setup */
6248 if (pageblock_order)
6249 return;
6250
6251 if (HPAGE_SHIFT > PAGE_SHIFT)
6252 order = HUGETLB_PAGE_ORDER;
6253 else
6254 order = MAX_ORDER - 1;
6255
6256 /*
6257 * Assume the largest contiguous order of interest is a huge page.
6258 * This value may be variable depending on boot parameters on IA64 and
6259 * powerpc.
6260 */
6261 pageblock_order = order;
6262 }
6263 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6264
6265 /*
6266 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6267 * is unused as pageblock_order is set at compile-time. See
6268 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6269 * the kernel config
6270 */
6271 void __init set_pageblock_order(void)
6272 {
6273 }
6274
6275 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6276
6277 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6278 unsigned long present_pages)
6279 {
6280 unsigned long pages = spanned_pages;
6281
6282 /*
6283 * Provide a more accurate estimation if there are holes within
6284 * the zone and SPARSEMEM is in use. If there are holes within the
6285 * zone, each populated memory region may cost us one or two extra
6286 * memmap pages due to alignment because memmap pages for each
6287 * populated regions may not be naturally aligned on page boundary.
6288 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6289 */
6290 if (spanned_pages > present_pages + (present_pages >> 4) &&
6291 IS_ENABLED(CONFIG_SPARSEMEM))
6292 pages = present_pages;
6293
6294 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6295 }
6296
6297 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6298 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6299 {
6300 spin_lock_init(&pgdat->split_queue_lock);
6301 INIT_LIST_HEAD(&pgdat->split_queue);
6302 pgdat->split_queue_len = 0;
6303 }
6304 #else
6305 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6306 #endif
6307
6308 #ifdef CONFIG_COMPACTION
6309 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6310 {
6311 init_waitqueue_head(&pgdat->kcompactd_wait);
6312 }
6313 #else
6314 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6315 #endif
6316
6317 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6318 {
6319 pgdat_resize_init(pgdat);
6320
6321 pgdat_init_split_queue(pgdat);
6322 pgdat_init_kcompactd(pgdat);
6323
6324 init_waitqueue_head(&pgdat->kswapd_wait);
6325 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6326
6327 pgdat_page_ext_init(pgdat);
6328 spin_lock_init(&pgdat->lru_lock);
6329 lruvec_init(node_lruvec(pgdat));
6330 }
6331
6332 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6333 unsigned long remaining_pages)
6334 {
6335 zone->managed_pages = remaining_pages;
6336 zone_set_nid(zone, nid);
6337 zone->name = zone_names[idx];
6338 zone->zone_pgdat = NODE_DATA(nid);
6339 spin_lock_init(&zone->lock);
6340 zone_seqlock_init(zone);
6341 zone_pcp_init(zone);
6342 }
6343
6344 /*
6345 * Set up the zone data structures
6346 * - init pgdat internals
6347 * - init all zones belonging to this node
6348 *
6349 * NOTE: this function is only called during memory hotplug
6350 */
6351 #ifdef CONFIG_MEMORY_HOTPLUG
6352 void __ref free_area_init_core_hotplug(int nid)
6353 {
6354 enum zone_type z;
6355 pg_data_t *pgdat = NODE_DATA(nid);
6356
6357 pgdat_init_internals(pgdat);
6358 for (z = 0; z < MAX_NR_ZONES; z++)
6359 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6360 }
6361 #endif
6362
6363 /*
6364 * Set up the zone data structures:
6365 * - mark all pages reserved
6366 * - mark all memory queues empty
6367 * - clear the memory bitmaps
6368 *
6369 * NOTE: pgdat should get zeroed by caller.
6370 * NOTE: this function is only called during early init.
6371 */
6372 static void __init free_area_init_core(struct pglist_data *pgdat)
6373 {
6374 enum zone_type j;
6375 int nid = pgdat->node_id;
6376
6377 pgdat_init_internals(pgdat);
6378 pgdat->per_cpu_nodestats = &boot_nodestats;
6379
6380 for (j = 0; j < MAX_NR_ZONES; j++) {
6381 struct zone *zone = pgdat->node_zones + j;
6382 unsigned long size, freesize, memmap_pages;
6383 unsigned long zone_start_pfn = zone->zone_start_pfn;
6384
6385 size = zone->spanned_pages;
6386 freesize = zone->present_pages;
6387
6388 /*
6389 * Adjust freesize so that it accounts for how much memory
6390 * is used by this zone for memmap. This affects the watermark
6391 * and per-cpu initialisations
6392 */
6393 memmap_pages = calc_memmap_size(size, freesize);
6394 if (!is_highmem_idx(j)) {
6395 if (freesize >= memmap_pages) {
6396 freesize -= memmap_pages;
6397 if (memmap_pages)
6398 printk(KERN_DEBUG
6399 " %s zone: %lu pages used for memmap\n",
6400 zone_names[j], memmap_pages);
6401 } else
6402 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6403 zone_names[j], memmap_pages, freesize);
6404 }
6405
6406 /* Account for reserved pages */
6407 if (j == 0 && freesize > dma_reserve) {
6408 freesize -= dma_reserve;
6409 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6410 zone_names[0], dma_reserve);
6411 }
6412
6413 if (!is_highmem_idx(j))
6414 nr_kernel_pages += freesize;
6415 /* Charge for highmem memmap if there are enough kernel pages */
6416 else if (nr_kernel_pages > memmap_pages * 2)
6417 nr_kernel_pages -= memmap_pages;
6418 nr_all_pages += freesize;
6419
6420 /*
6421 * Set an approximate value for lowmem here, it will be adjusted
6422 * when the bootmem allocator frees pages into the buddy system.
6423 * And all highmem pages will be managed by the buddy system.
6424 */
6425 zone_init_internals(zone, j, nid, freesize);
6426
6427 if (!size)
6428 continue;
6429
6430 set_pageblock_order();
6431 setup_usemap(pgdat, zone, zone_start_pfn, size);
6432 init_currently_empty_zone(zone, zone_start_pfn, size);
6433 memmap_init(size, nid, j, zone_start_pfn);
6434 }
6435 }
6436
6437 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6438 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6439 {
6440 unsigned long __maybe_unused start = 0;
6441 unsigned long __maybe_unused offset = 0;
6442
6443 /* Skip empty nodes */
6444 if (!pgdat->node_spanned_pages)
6445 return;
6446
6447 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6448 offset = pgdat->node_start_pfn - start;
6449 /* ia64 gets its own node_mem_map, before this, without bootmem */
6450 if (!pgdat->node_mem_map) {
6451 unsigned long size, end;
6452 struct page *map;
6453
6454 /*
6455 * The zone's endpoints aren't required to be MAX_ORDER
6456 * aligned but the node_mem_map endpoints must be in order
6457 * for the buddy allocator to function correctly.
6458 */
6459 end = pgdat_end_pfn(pgdat);
6460 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6461 size = (end - start) * sizeof(struct page);
6462 map = memblock_alloc_node_nopanic(size, pgdat->node_id);
6463 pgdat->node_mem_map = map + offset;
6464 }
6465 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6466 __func__, pgdat->node_id, (unsigned long)pgdat,
6467 (unsigned long)pgdat->node_mem_map);
6468 #ifndef CONFIG_NEED_MULTIPLE_NODES
6469 /*
6470 * With no DISCONTIG, the global mem_map is just set as node 0's
6471 */
6472 if (pgdat == NODE_DATA(0)) {
6473 mem_map = NODE_DATA(0)->node_mem_map;
6474 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6475 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6476 mem_map -= offset;
6477 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6478 }
6479 #endif
6480 }
6481 #else
6482 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6483 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6484
6485 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6486 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6487 {
6488 /*
6489 * We start only with one section of pages, more pages are added as
6490 * needed until the rest of deferred pages are initialized.
6491 */
6492 pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
6493 pgdat->node_spanned_pages);
6494 pgdat->first_deferred_pfn = ULONG_MAX;
6495 }
6496 #else
6497 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6498 #endif
6499
6500 void __init free_area_init_node(int nid, unsigned long *zones_size,
6501 unsigned long node_start_pfn,
6502 unsigned long *zholes_size)
6503 {
6504 pg_data_t *pgdat = NODE_DATA(nid);
6505 unsigned long start_pfn = 0;
6506 unsigned long end_pfn = 0;
6507
6508 /* pg_data_t should be reset to zero when it's allocated */
6509 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6510
6511 pgdat->node_id = nid;
6512 pgdat->node_start_pfn = node_start_pfn;
6513 pgdat->per_cpu_nodestats = NULL;
6514 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6515 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6516 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6517 (u64)start_pfn << PAGE_SHIFT,
6518 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6519 #else
6520 start_pfn = node_start_pfn;
6521 #endif
6522 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6523 zones_size, zholes_size);
6524
6525 alloc_node_mem_map(pgdat);
6526 pgdat_set_deferred_range(pgdat);
6527
6528 free_area_init_core(pgdat);
6529 }
6530
6531 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6532 /*
6533 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6534 * pages zeroed
6535 */
6536 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6537 {
6538 unsigned long pfn;
6539 u64 pgcnt = 0;
6540
6541 for (pfn = spfn; pfn < epfn; pfn++) {
6542 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6543 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6544 + pageblock_nr_pages - 1;
6545 continue;
6546 }
6547 mm_zero_struct_page(pfn_to_page(pfn));
6548 pgcnt++;
6549 }
6550
6551 return pgcnt;
6552 }
6553
6554 /*
6555 * Only struct pages that are backed by physical memory are zeroed and
6556 * initialized by going through __init_single_page(). But, there are some
6557 * struct pages which are reserved in memblock allocator and their fields
6558 * may be accessed (for example page_to_pfn() on some configuration accesses
6559 * flags). We must explicitly zero those struct pages.
6560 *
6561 * This function also addresses a similar issue where struct pages are left
6562 * uninitialized because the physical address range is not covered by
6563 * memblock.memory or memblock.reserved. That could happen when memblock
6564 * layout is manually configured via memmap=.
6565 */
6566 void __init zero_resv_unavail(void)
6567 {
6568 phys_addr_t start, end;
6569 u64 i, pgcnt;
6570 phys_addr_t next = 0;
6571
6572 /*
6573 * Loop through unavailable ranges not covered by memblock.memory.
6574 */
6575 pgcnt = 0;
6576 for_each_mem_range(i, &memblock.memory, NULL,
6577 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6578 if (next < start)
6579 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6580 next = end;
6581 }
6582 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6583
6584 /*
6585 * Struct pages that do not have backing memory. This could be because
6586 * firmware is using some of this memory, or for some other reasons.
6587 */
6588 if (pgcnt)
6589 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6590 }
6591 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6592
6593 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6594
6595 #if MAX_NUMNODES > 1
6596 /*
6597 * Figure out the number of possible node ids.
6598 */
6599 void __init setup_nr_node_ids(void)
6600 {
6601 unsigned int highest;
6602
6603 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6604 nr_node_ids = highest + 1;
6605 }
6606 #endif
6607
6608 /**
6609 * node_map_pfn_alignment - determine the maximum internode alignment
6610 *
6611 * This function should be called after node map is populated and sorted.
6612 * It calculates the maximum power of two alignment which can distinguish
6613 * all the nodes.
6614 *
6615 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6616 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6617 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6618 * shifted, 1GiB is enough and this function will indicate so.
6619 *
6620 * This is used to test whether pfn -> nid mapping of the chosen memory
6621 * model has fine enough granularity to avoid incorrect mapping for the
6622 * populated node map.
6623 *
6624 * Returns the determined alignment in pfn's. 0 if there is no alignment
6625 * requirement (single node).
6626 */
6627 unsigned long __init node_map_pfn_alignment(void)
6628 {
6629 unsigned long accl_mask = 0, last_end = 0;
6630 unsigned long start, end, mask;
6631 int last_nid = -1;
6632 int i, nid;
6633
6634 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6635 if (!start || last_nid < 0 || last_nid == nid) {
6636 last_nid = nid;
6637 last_end = end;
6638 continue;
6639 }
6640
6641 /*
6642 * Start with a mask granular enough to pin-point to the
6643 * start pfn and tick off bits one-by-one until it becomes
6644 * too coarse to separate the current node from the last.
6645 */
6646 mask = ~((1 << __ffs(start)) - 1);
6647 while (mask && last_end <= (start & (mask << 1)))
6648 mask <<= 1;
6649
6650 /* accumulate all internode masks */
6651 accl_mask |= mask;
6652 }
6653
6654 /* convert mask to number of pages */
6655 return ~accl_mask + 1;
6656 }
6657
6658 /* Find the lowest pfn for a node */
6659 static unsigned long __init find_min_pfn_for_node(int nid)
6660 {
6661 unsigned long min_pfn = ULONG_MAX;
6662 unsigned long start_pfn;
6663 int i;
6664
6665 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6666 min_pfn = min(min_pfn, start_pfn);
6667
6668 if (min_pfn == ULONG_MAX) {
6669 pr_warn("Could not find start_pfn for node %d\n", nid);
6670 return 0;
6671 }
6672
6673 return min_pfn;
6674 }
6675
6676 /**
6677 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6678 *
6679 * It returns the minimum PFN based on information provided via
6680 * memblock_set_node().
6681 */
6682 unsigned long __init find_min_pfn_with_active_regions(void)
6683 {
6684 return find_min_pfn_for_node(MAX_NUMNODES);
6685 }
6686
6687 /*
6688 * early_calculate_totalpages()
6689 * Sum pages in active regions for movable zone.
6690 * Populate N_MEMORY for calculating usable_nodes.
6691 */
6692 static unsigned long __init early_calculate_totalpages(void)
6693 {
6694 unsigned long totalpages = 0;
6695 unsigned long start_pfn, end_pfn;
6696 int i, nid;
6697
6698 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6699 unsigned long pages = end_pfn - start_pfn;
6700
6701 totalpages += pages;
6702 if (pages)
6703 node_set_state(nid, N_MEMORY);
6704 }
6705 return totalpages;
6706 }
6707
6708 /*
6709 * Find the PFN the Movable zone begins in each node. Kernel memory
6710 * is spread evenly between nodes as long as the nodes have enough
6711 * memory. When they don't, some nodes will have more kernelcore than
6712 * others
6713 */
6714 static void __init find_zone_movable_pfns_for_nodes(void)
6715 {
6716 int i, nid;
6717 unsigned long usable_startpfn;
6718 unsigned long kernelcore_node, kernelcore_remaining;
6719 /* save the state before borrow the nodemask */
6720 nodemask_t saved_node_state = node_states[N_MEMORY];
6721 unsigned long totalpages = early_calculate_totalpages();
6722 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6723 struct memblock_region *r;
6724
6725 /* Need to find movable_zone earlier when movable_node is specified. */
6726 find_usable_zone_for_movable();
6727
6728 /*
6729 * If movable_node is specified, ignore kernelcore and movablecore
6730 * options.
6731 */
6732 if (movable_node_is_enabled()) {
6733 for_each_memblock(memory, r) {
6734 if (!memblock_is_hotpluggable(r))
6735 continue;
6736
6737 nid = r->nid;
6738
6739 usable_startpfn = PFN_DOWN(r->base);
6740 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6741 min(usable_startpfn, zone_movable_pfn[nid]) :
6742 usable_startpfn;
6743 }
6744
6745 goto out2;
6746 }
6747
6748 /*
6749 * If kernelcore=mirror is specified, ignore movablecore option
6750 */
6751 if (mirrored_kernelcore) {
6752 bool mem_below_4gb_not_mirrored = false;
6753
6754 for_each_memblock(memory, r) {
6755 if (memblock_is_mirror(r))
6756 continue;
6757
6758 nid = r->nid;
6759
6760 usable_startpfn = memblock_region_memory_base_pfn(r);
6761
6762 if (usable_startpfn < 0x100000) {
6763 mem_below_4gb_not_mirrored = true;
6764 continue;
6765 }
6766
6767 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6768 min(usable_startpfn, zone_movable_pfn[nid]) :
6769 usable_startpfn;
6770 }
6771
6772 if (mem_below_4gb_not_mirrored)
6773 pr_warn("This configuration results in unmirrored kernel memory.");
6774
6775 goto out2;
6776 }
6777
6778 /*
6779 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6780 * amount of necessary memory.
6781 */
6782 if (required_kernelcore_percent)
6783 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6784 10000UL;
6785 if (required_movablecore_percent)
6786 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6787 10000UL;
6788
6789 /*
6790 * If movablecore= was specified, calculate what size of
6791 * kernelcore that corresponds so that memory usable for
6792 * any allocation type is evenly spread. If both kernelcore
6793 * and movablecore are specified, then the value of kernelcore
6794 * will be used for required_kernelcore if it's greater than
6795 * what movablecore would have allowed.
6796 */
6797 if (required_movablecore) {
6798 unsigned long corepages;
6799
6800 /*
6801 * Round-up so that ZONE_MOVABLE is at least as large as what
6802 * was requested by the user
6803 */
6804 required_movablecore =
6805 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6806 required_movablecore = min(totalpages, required_movablecore);
6807 corepages = totalpages - required_movablecore;
6808
6809 required_kernelcore = max(required_kernelcore, corepages);
6810 }
6811
6812 /*
6813 * If kernelcore was not specified or kernelcore size is larger
6814 * than totalpages, there is no ZONE_MOVABLE.
6815 */
6816 if (!required_kernelcore || required_kernelcore >= totalpages)
6817 goto out;
6818
6819 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6820 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6821
6822 restart:
6823 /* Spread kernelcore memory as evenly as possible throughout nodes */
6824 kernelcore_node = required_kernelcore / usable_nodes;
6825 for_each_node_state(nid, N_MEMORY) {
6826 unsigned long start_pfn, end_pfn;
6827
6828 /*
6829 * Recalculate kernelcore_node if the division per node
6830 * now exceeds what is necessary to satisfy the requested
6831 * amount of memory for the kernel
6832 */
6833 if (required_kernelcore < kernelcore_node)
6834 kernelcore_node = required_kernelcore / usable_nodes;
6835
6836 /*
6837 * As the map is walked, we track how much memory is usable
6838 * by the kernel using kernelcore_remaining. When it is
6839 * 0, the rest of the node is usable by ZONE_MOVABLE
6840 */
6841 kernelcore_remaining = kernelcore_node;
6842
6843 /* Go through each range of PFNs within this node */
6844 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6845 unsigned long size_pages;
6846
6847 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6848 if (start_pfn >= end_pfn)
6849 continue;
6850
6851 /* Account for what is only usable for kernelcore */
6852 if (start_pfn < usable_startpfn) {
6853 unsigned long kernel_pages;
6854 kernel_pages = min(end_pfn, usable_startpfn)
6855 - start_pfn;
6856
6857 kernelcore_remaining -= min(kernel_pages,
6858 kernelcore_remaining);
6859 required_kernelcore -= min(kernel_pages,
6860 required_kernelcore);
6861
6862 /* Continue if range is now fully accounted */
6863 if (end_pfn <= usable_startpfn) {
6864
6865 /*
6866 * Push zone_movable_pfn to the end so
6867 * that if we have to rebalance
6868 * kernelcore across nodes, we will
6869 * not double account here
6870 */
6871 zone_movable_pfn[nid] = end_pfn;
6872 continue;
6873 }
6874 start_pfn = usable_startpfn;
6875 }
6876
6877 /*
6878 * The usable PFN range for ZONE_MOVABLE is from
6879 * start_pfn->end_pfn. Calculate size_pages as the
6880 * number of pages used as kernelcore
6881 */
6882 size_pages = end_pfn - start_pfn;
6883 if (size_pages > kernelcore_remaining)
6884 size_pages = kernelcore_remaining;
6885 zone_movable_pfn[nid] = start_pfn + size_pages;
6886
6887 /*
6888 * Some kernelcore has been met, update counts and
6889 * break if the kernelcore for this node has been
6890 * satisfied
6891 */
6892 required_kernelcore -= min(required_kernelcore,
6893 size_pages);
6894 kernelcore_remaining -= size_pages;
6895 if (!kernelcore_remaining)
6896 break;
6897 }
6898 }
6899
6900 /*
6901 * If there is still required_kernelcore, we do another pass with one
6902 * less node in the count. This will push zone_movable_pfn[nid] further
6903 * along on the nodes that still have memory until kernelcore is
6904 * satisfied
6905 */
6906 usable_nodes--;
6907 if (usable_nodes && required_kernelcore > usable_nodes)
6908 goto restart;
6909
6910 out2:
6911 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6912 for (nid = 0; nid < MAX_NUMNODES; nid++)
6913 zone_movable_pfn[nid] =
6914 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6915
6916 out:
6917 /* restore the node_state */
6918 node_states[N_MEMORY] = saved_node_state;
6919 }
6920
6921 /* Any regular or high memory on that node ? */
6922 static void check_for_memory(pg_data_t *pgdat, int nid)
6923 {
6924 enum zone_type zone_type;
6925
6926 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6927 struct zone *zone = &pgdat->node_zones[zone_type];
6928 if (populated_zone(zone)) {
6929 if (IS_ENABLED(CONFIG_HIGHMEM))
6930 node_set_state(nid, N_HIGH_MEMORY);
6931 if (zone_type <= ZONE_NORMAL)
6932 node_set_state(nid, N_NORMAL_MEMORY);
6933 break;
6934 }
6935 }
6936 }
6937
6938 /**
6939 * free_area_init_nodes - Initialise all pg_data_t and zone data
6940 * @max_zone_pfn: an array of max PFNs for each zone
6941 *
6942 * This will call free_area_init_node() for each active node in the system.
6943 * Using the page ranges provided by memblock_set_node(), the size of each
6944 * zone in each node and their holes is calculated. If the maximum PFN
6945 * between two adjacent zones match, it is assumed that the zone is empty.
6946 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6947 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6948 * starts where the previous one ended. For example, ZONE_DMA32 starts
6949 * at arch_max_dma_pfn.
6950 */
6951 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6952 {
6953 unsigned long start_pfn, end_pfn;
6954 int i, nid;
6955
6956 /* Record where the zone boundaries are */
6957 memset(arch_zone_lowest_possible_pfn, 0,
6958 sizeof(arch_zone_lowest_possible_pfn));
6959 memset(arch_zone_highest_possible_pfn, 0,
6960 sizeof(arch_zone_highest_possible_pfn));
6961
6962 start_pfn = find_min_pfn_with_active_regions();
6963
6964 for (i = 0; i < MAX_NR_ZONES; i++) {
6965 if (i == ZONE_MOVABLE)
6966 continue;
6967
6968 end_pfn = max(max_zone_pfn[i], start_pfn);
6969 arch_zone_lowest_possible_pfn[i] = start_pfn;
6970 arch_zone_highest_possible_pfn[i] = end_pfn;
6971
6972 start_pfn = end_pfn;
6973 }
6974
6975 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6976 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6977 find_zone_movable_pfns_for_nodes();
6978
6979 /* Print out the zone ranges */
6980 pr_info("Zone ranges:\n");
6981 for (i = 0; i < MAX_NR_ZONES; i++) {
6982 if (i == ZONE_MOVABLE)
6983 continue;
6984 pr_info(" %-8s ", zone_names[i]);
6985 if (arch_zone_lowest_possible_pfn[i] ==
6986 arch_zone_highest_possible_pfn[i])
6987 pr_cont("empty\n");
6988 else
6989 pr_cont("[mem %#018Lx-%#018Lx]\n",
6990 (u64)arch_zone_lowest_possible_pfn[i]
6991 << PAGE_SHIFT,
6992 ((u64)arch_zone_highest_possible_pfn[i]
6993 << PAGE_SHIFT) - 1);
6994 }
6995
6996 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6997 pr_info("Movable zone start for each node\n");
6998 for (i = 0; i < MAX_NUMNODES; i++) {
6999 if (zone_movable_pfn[i])
7000 pr_info(" Node %d: %#018Lx\n", i,
7001 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7002 }
7003
7004 /* Print out the early node map */
7005 pr_info("Early memory node ranges\n");
7006 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7007 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7008 (u64)start_pfn << PAGE_SHIFT,
7009 ((u64)end_pfn << PAGE_SHIFT) - 1);
7010
7011 /* Initialise every node */
7012 mminit_verify_pageflags_layout();
7013 setup_nr_node_ids();
7014 zero_resv_unavail();
7015 for_each_online_node(nid) {
7016 pg_data_t *pgdat = NODE_DATA(nid);
7017 free_area_init_node(nid, NULL,
7018 find_min_pfn_for_node(nid), NULL);
7019
7020 /* Any memory on that node */
7021 if (pgdat->node_present_pages)
7022 node_set_state(nid, N_MEMORY);
7023 check_for_memory(pgdat, nid);
7024 }
7025 }
7026
7027 static int __init cmdline_parse_core(char *p, unsigned long *core,
7028 unsigned long *percent)
7029 {
7030 unsigned long long coremem;
7031 char *endptr;
7032
7033 if (!p)
7034 return -EINVAL;
7035
7036 /* Value may be a percentage of total memory, otherwise bytes */
7037 coremem = simple_strtoull(p, &endptr, 0);
7038 if (*endptr == '%') {
7039 /* Paranoid check for percent values greater than 100 */
7040 WARN_ON(coremem > 100);
7041
7042 *percent = coremem;
7043 } else {
7044 coremem = memparse(p, &p);
7045 /* Paranoid check that UL is enough for the coremem value */
7046 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7047
7048 *core = coremem >> PAGE_SHIFT;
7049 *percent = 0UL;
7050 }
7051 return 0;
7052 }
7053
7054 /*
7055 * kernelcore=size sets the amount of memory for use for allocations that
7056 * cannot be reclaimed or migrated.
7057 */
7058 static int __init cmdline_parse_kernelcore(char *p)
7059 {
7060 /* parse kernelcore=mirror */
7061 if (parse_option_str(p, "mirror")) {
7062 mirrored_kernelcore = true;
7063 return 0;
7064 }
7065
7066 return cmdline_parse_core(p, &required_kernelcore,
7067 &required_kernelcore_percent);
7068 }
7069
7070 /*
7071 * movablecore=size sets the amount of memory for use for allocations that
7072 * can be reclaimed or migrated.
7073 */
7074 static int __init cmdline_parse_movablecore(char *p)
7075 {
7076 return cmdline_parse_core(p, &required_movablecore,
7077 &required_movablecore_percent);
7078 }
7079
7080 early_param("kernelcore", cmdline_parse_kernelcore);
7081 early_param("movablecore", cmdline_parse_movablecore);
7082
7083 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7084
7085 void adjust_managed_page_count(struct page *page, long count)
7086 {
7087 spin_lock(&managed_page_count_lock);
7088 page_zone(page)->managed_pages += count;
7089 totalram_pages += count;
7090 #ifdef CONFIG_HIGHMEM
7091 if (PageHighMem(page))
7092 totalhigh_pages += count;
7093 #endif
7094 spin_unlock(&managed_page_count_lock);
7095 }
7096 EXPORT_SYMBOL(adjust_managed_page_count);
7097
7098 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
7099 {
7100 void *pos;
7101 unsigned long pages = 0;
7102
7103 start = (void *)PAGE_ALIGN((unsigned long)start);
7104 end = (void *)((unsigned long)end & PAGE_MASK);
7105 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7106 struct page *page = virt_to_page(pos);
7107 void *direct_map_addr;
7108
7109 /*
7110 * 'direct_map_addr' might be different from 'pos'
7111 * because some architectures' virt_to_page()
7112 * work with aliases. Getting the direct map
7113 * address ensures that we get a _writeable_
7114 * alias for the memset().
7115 */
7116 direct_map_addr = page_address(page);
7117 if ((unsigned int)poison <= 0xFF)
7118 memset(direct_map_addr, poison, PAGE_SIZE);
7119
7120 free_reserved_page(page);
7121 }
7122
7123 if (pages && s)
7124 pr_info("Freeing %s memory: %ldK\n",
7125 s, pages << (PAGE_SHIFT - 10));
7126
7127 return pages;
7128 }
7129 EXPORT_SYMBOL(free_reserved_area);
7130
7131 #ifdef CONFIG_HIGHMEM
7132 void free_highmem_page(struct page *page)
7133 {
7134 __free_reserved_page(page);
7135 totalram_pages++;
7136 page_zone(page)->managed_pages++;
7137 totalhigh_pages++;
7138 }
7139 #endif
7140
7141
7142 void __init mem_init_print_info(const char *str)
7143 {
7144 unsigned long physpages, codesize, datasize, rosize, bss_size;
7145 unsigned long init_code_size, init_data_size;
7146
7147 physpages = get_num_physpages();
7148 codesize = _etext - _stext;
7149 datasize = _edata - _sdata;
7150 rosize = __end_rodata - __start_rodata;
7151 bss_size = __bss_stop - __bss_start;
7152 init_data_size = __init_end - __init_begin;
7153 init_code_size = _einittext - _sinittext;
7154
7155 /*
7156 * Detect special cases and adjust section sizes accordingly:
7157 * 1) .init.* may be embedded into .data sections
7158 * 2) .init.text.* may be out of [__init_begin, __init_end],
7159 * please refer to arch/tile/kernel/vmlinux.lds.S.
7160 * 3) .rodata.* may be embedded into .text or .data sections.
7161 */
7162 #define adj_init_size(start, end, size, pos, adj) \
7163 do { \
7164 if (start <= pos && pos < end && size > adj) \
7165 size -= adj; \
7166 } while (0)
7167
7168 adj_init_size(__init_begin, __init_end, init_data_size,
7169 _sinittext, init_code_size);
7170 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7171 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7172 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7173 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7174
7175 #undef adj_init_size
7176
7177 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7178 #ifdef CONFIG_HIGHMEM
7179 ", %luK highmem"
7180 #endif
7181 "%s%s)\n",
7182 nr_free_pages() << (PAGE_SHIFT - 10),
7183 physpages << (PAGE_SHIFT - 10),
7184 codesize >> 10, datasize >> 10, rosize >> 10,
7185 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7186 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
7187 totalcma_pages << (PAGE_SHIFT - 10),
7188 #ifdef CONFIG_HIGHMEM
7189 totalhigh_pages << (PAGE_SHIFT - 10),
7190 #endif
7191 str ? ", " : "", str ? str : "");
7192 }
7193
7194 /**
7195 * set_dma_reserve - set the specified number of pages reserved in the first zone
7196 * @new_dma_reserve: The number of pages to mark reserved
7197 *
7198 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7199 * In the DMA zone, a significant percentage may be consumed by kernel image
7200 * and other unfreeable allocations which can skew the watermarks badly. This
7201 * function may optionally be used to account for unfreeable pages in the
7202 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7203 * smaller per-cpu batchsize.
7204 */
7205 void __init set_dma_reserve(unsigned long new_dma_reserve)
7206 {
7207 dma_reserve = new_dma_reserve;
7208 }
7209
7210 void __init free_area_init(unsigned long *zones_size)
7211 {
7212 zero_resv_unavail();
7213 free_area_init_node(0, zones_size,
7214 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7215 }
7216
7217 static int page_alloc_cpu_dead(unsigned int cpu)
7218 {
7219
7220 lru_add_drain_cpu(cpu);
7221 drain_pages(cpu);
7222
7223 /*
7224 * Spill the event counters of the dead processor
7225 * into the current processors event counters.
7226 * This artificially elevates the count of the current
7227 * processor.
7228 */
7229 vm_events_fold_cpu(cpu);
7230
7231 /*
7232 * Zero the differential counters of the dead processor
7233 * so that the vm statistics are consistent.
7234 *
7235 * This is only okay since the processor is dead and cannot
7236 * race with what we are doing.
7237 */
7238 cpu_vm_stats_fold(cpu);
7239 return 0;
7240 }
7241
7242 void __init page_alloc_init(void)
7243 {
7244 int ret;
7245
7246 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7247 "mm/page_alloc:dead", NULL,
7248 page_alloc_cpu_dead);
7249 WARN_ON(ret < 0);
7250 }
7251
7252 /*
7253 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7254 * or min_free_kbytes changes.
7255 */
7256 static void calculate_totalreserve_pages(void)
7257 {
7258 struct pglist_data *pgdat;
7259 unsigned long reserve_pages = 0;
7260 enum zone_type i, j;
7261
7262 for_each_online_pgdat(pgdat) {
7263
7264 pgdat->totalreserve_pages = 0;
7265
7266 for (i = 0; i < MAX_NR_ZONES; i++) {
7267 struct zone *zone = pgdat->node_zones + i;
7268 long max = 0;
7269
7270 /* Find valid and maximum lowmem_reserve in the zone */
7271 for (j = i; j < MAX_NR_ZONES; j++) {
7272 if (zone->lowmem_reserve[j] > max)
7273 max = zone->lowmem_reserve[j];
7274 }
7275
7276 /* we treat the high watermark as reserved pages. */
7277 max += high_wmark_pages(zone);
7278
7279 if (max > zone->managed_pages)
7280 max = zone->managed_pages;
7281
7282 pgdat->totalreserve_pages += max;
7283
7284 reserve_pages += max;
7285 }
7286 }
7287 totalreserve_pages = reserve_pages;
7288 }
7289
7290 /*
7291 * setup_per_zone_lowmem_reserve - called whenever
7292 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7293 * has a correct pages reserved value, so an adequate number of
7294 * pages are left in the zone after a successful __alloc_pages().
7295 */
7296 static void setup_per_zone_lowmem_reserve(void)
7297 {
7298 struct pglist_data *pgdat;
7299 enum zone_type j, idx;
7300
7301 for_each_online_pgdat(pgdat) {
7302 for (j = 0; j < MAX_NR_ZONES; j++) {
7303 struct zone *zone = pgdat->node_zones + j;
7304 unsigned long managed_pages = zone->managed_pages;
7305
7306 zone->lowmem_reserve[j] = 0;
7307
7308 idx = j;
7309 while (idx) {
7310 struct zone *lower_zone;
7311
7312 idx--;
7313 lower_zone = pgdat->node_zones + idx;
7314
7315 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7316 sysctl_lowmem_reserve_ratio[idx] = 0;
7317 lower_zone->lowmem_reserve[j] = 0;
7318 } else {
7319 lower_zone->lowmem_reserve[j] =
7320 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7321 }
7322 managed_pages += lower_zone->managed_pages;
7323 }
7324 }
7325 }
7326
7327 /* update totalreserve_pages */
7328 calculate_totalreserve_pages();
7329 }
7330
7331 static void __setup_per_zone_wmarks(void)
7332 {
7333 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7334 unsigned long lowmem_pages = 0;
7335 struct zone *zone;
7336 unsigned long flags;
7337
7338 /* Calculate total number of !ZONE_HIGHMEM pages */
7339 for_each_zone(zone) {
7340 if (!is_highmem(zone))
7341 lowmem_pages += zone->managed_pages;
7342 }
7343
7344 for_each_zone(zone) {
7345 u64 tmp;
7346
7347 spin_lock_irqsave(&zone->lock, flags);
7348 tmp = (u64)pages_min * zone->managed_pages;
7349 do_div(tmp, lowmem_pages);
7350 if (is_highmem(zone)) {
7351 /*
7352 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7353 * need highmem pages, so cap pages_min to a small
7354 * value here.
7355 *
7356 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7357 * deltas control asynch page reclaim, and so should
7358 * not be capped for highmem.
7359 */
7360 unsigned long min_pages;
7361
7362 min_pages = zone->managed_pages / 1024;
7363 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7364 zone->watermark[WMARK_MIN] = min_pages;
7365 } else {
7366 /*
7367 * If it's a lowmem zone, reserve a number of pages
7368 * proportionate to the zone's size.
7369 */
7370 zone->watermark[WMARK_MIN] = tmp;
7371 }
7372
7373 /*
7374 * Set the kswapd watermarks distance according to the
7375 * scale factor in proportion to available memory, but
7376 * ensure a minimum size on small systems.
7377 */
7378 tmp = max_t(u64, tmp >> 2,
7379 mult_frac(zone->managed_pages,
7380 watermark_scale_factor, 10000));
7381
7382 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7383 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7384
7385 spin_unlock_irqrestore(&zone->lock, flags);
7386 }
7387
7388 /* update totalreserve_pages */
7389 calculate_totalreserve_pages();
7390 }
7391
7392 /**
7393 * setup_per_zone_wmarks - called when min_free_kbytes changes
7394 * or when memory is hot-{added|removed}
7395 *
7396 * Ensures that the watermark[min,low,high] values for each zone are set
7397 * correctly with respect to min_free_kbytes.
7398 */
7399 void setup_per_zone_wmarks(void)
7400 {
7401 static DEFINE_SPINLOCK(lock);
7402
7403 spin_lock(&lock);
7404 __setup_per_zone_wmarks();
7405 spin_unlock(&lock);
7406 }
7407
7408 /*
7409 * Initialise min_free_kbytes.
7410 *
7411 * For small machines we want it small (128k min). For large machines
7412 * we want it large (64MB max). But it is not linear, because network
7413 * bandwidth does not increase linearly with machine size. We use
7414 *
7415 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7416 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7417 *
7418 * which yields
7419 *
7420 * 16MB: 512k
7421 * 32MB: 724k
7422 * 64MB: 1024k
7423 * 128MB: 1448k
7424 * 256MB: 2048k
7425 * 512MB: 2896k
7426 * 1024MB: 4096k
7427 * 2048MB: 5792k
7428 * 4096MB: 8192k
7429 * 8192MB: 11584k
7430 * 16384MB: 16384k
7431 */
7432 int __meminit init_per_zone_wmark_min(void)
7433 {
7434 unsigned long lowmem_kbytes;
7435 int new_min_free_kbytes;
7436
7437 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7438 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7439
7440 if (new_min_free_kbytes > user_min_free_kbytes) {
7441 min_free_kbytes = new_min_free_kbytes;
7442 if (min_free_kbytes < 128)
7443 min_free_kbytes = 128;
7444 if (min_free_kbytes > 65536)
7445 min_free_kbytes = 65536;
7446 } else {
7447 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7448 new_min_free_kbytes, user_min_free_kbytes);
7449 }
7450 setup_per_zone_wmarks();
7451 refresh_zone_stat_thresholds();
7452 setup_per_zone_lowmem_reserve();
7453
7454 #ifdef CONFIG_NUMA
7455 setup_min_unmapped_ratio();
7456 setup_min_slab_ratio();
7457 #endif
7458
7459 return 0;
7460 }
7461 core_initcall(init_per_zone_wmark_min)
7462
7463 /*
7464 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7465 * that we can call two helper functions whenever min_free_kbytes
7466 * changes.
7467 */
7468 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7469 void __user *buffer, size_t *length, loff_t *ppos)
7470 {
7471 int rc;
7472
7473 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7474 if (rc)
7475 return rc;
7476
7477 if (write) {
7478 user_min_free_kbytes = min_free_kbytes;
7479 setup_per_zone_wmarks();
7480 }
7481 return 0;
7482 }
7483
7484 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7485 void __user *buffer, size_t *length, loff_t *ppos)
7486 {
7487 int rc;
7488
7489 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7490 if (rc)
7491 return rc;
7492
7493 if (write)
7494 setup_per_zone_wmarks();
7495
7496 return 0;
7497 }
7498
7499 #ifdef CONFIG_NUMA
7500 static void setup_min_unmapped_ratio(void)
7501 {
7502 pg_data_t *pgdat;
7503 struct zone *zone;
7504
7505 for_each_online_pgdat(pgdat)
7506 pgdat->min_unmapped_pages = 0;
7507
7508 for_each_zone(zone)
7509 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7510 sysctl_min_unmapped_ratio) / 100;
7511 }
7512
7513
7514 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7515 void __user *buffer, size_t *length, loff_t *ppos)
7516 {
7517 int rc;
7518
7519 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7520 if (rc)
7521 return rc;
7522
7523 setup_min_unmapped_ratio();
7524
7525 return 0;
7526 }
7527
7528 static void setup_min_slab_ratio(void)
7529 {
7530 pg_data_t *pgdat;
7531 struct zone *zone;
7532
7533 for_each_online_pgdat(pgdat)
7534 pgdat->min_slab_pages = 0;
7535
7536 for_each_zone(zone)
7537 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7538 sysctl_min_slab_ratio) / 100;
7539 }
7540
7541 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7542 void __user *buffer, size_t *length, loff_t *ppos)
7543 {
7544 int rc;
7545
7546 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7547 if (rc)
7548 return rc;
7549
7550 setup_min_slab_ratio();
7551
7552 return 0;
7553 }
7554 #endif
7555
7556 /*
7557 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7558 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7559 * whenever sysctl_lowmem_reserve_ratio changes.
7560 *
7561 * The reserve ratio obviously has absolutely no relation with the
7562 * minimum watermarks. The lowmem reserve ratio can only make sense
7563 * if in function of the boot time zone sizes.
7564 */
7565 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7566 void __user *buffer, size_t *length, loff_t *ppos)
7567 {
7568 proc_dointvec_minmax(table, write, buffer, length, ppos);
7569 setup_per_zone_lowmem_reserve();
7570 return 0;
7571 }
7572
7573 /*
7574 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7575 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7576 * pagelist can have before it gets flushed back to buddy allocator.
7577 */
7578 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7579 void __user *buffer, size_t *length, loff_t *ppos)
7580 {
7581 struct zone *zone;
7582 int old_percpu_pagelist_fraction;
7583 int ret;
7584
7585 mutex_lock(&pcp_batch_high_lock);
7586 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7587
7588 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7589 if (!write || ret < 0)
7590 goto out;
7591
7592 /* Sanity checking to avoid pcp imbalance */
7593 if (percpu_pagelist_fraction &&
7594 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7595 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7596 ret = -EINVAL;
7597 goto out;
7598 }
7599
7600 /* No change? */
7601 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7602 goto out;
7603
7604 for_each_populated_zone(zone) {
7605 unsigned int cpu;
7606
7607 for_each_possible_cpu(cpu)
7608 pageset_set_high_and_batch(zone,
7609 per_cpu_ptr(zone->pageset, cpu));
7610 }
7611 out:
7612 mutex_unlock(&pcp_batch_high_lock);
7613 return ret;
7614 }
7615
7616 #ifdef CONFIG_NUMA
7617 int hashdist = HASHDIST_DEFAULT;
7618
7619 static int __init set_hashdist(char *str)
7620 {
7621 if (!str)
7622 return 0;
7623 hashdist = simple_strtoul(str, &str, 0);
7624 return 1;
7625 }
7626 __setup("hashdist=", set_hashdist);
7627 #endif
7628
7629 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7630 /*
7631 * Returns the number of pages that arch has reserved but
7632 * is not known to alloc_large_system_hash().
7633 */
7634 static unsigned long __init arch_reserved_kernel_pages(void)
7635 {
7636 return 0;
7637 }
7638 #endif
7639
7640 /*
7641 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7642 * machines. As memory size is increased the scale is also increased but at
7643 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7644 * quadruples the scale is increased by one, which means the size of hash table
7645 * only doubles, instead of quadrupling as well.
7646 * Because 32-bit systems cannot have large physical memory, where this scaling
7647 * makes sense, it is disabled on such platforms.
7648 */
7649 #if __BITS_PER_LONG > 32
7650 #define ADAPT_SCALE_BASE (64ul << 30)
7651 #define ADAPT_SCALE_SHIFT 2
7652 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7653 #endif
7654
7655 /*
7656 * allocate a large system hash table from bootmem
7657 * - it is assumed that the hash table must contain an exact power-of-2
7658 * quantity of entries
7659 * - limit is the number of hash buckets, not the total allocation size
7660 */
7661 void *__init alloc_large_system_hash(const char *tablename,
7662 unsigned long bucketsize,
7663 unsigned long numentries,
7664 int scale,
7665 int flags,
7666 unsigned int *_hash_shift,
7667 unsigned int *_hash_mask,
7668 unsigned long low_limit,
7669 unsigned long high_limit)
7670 {
7671 unsigned long long max = high_limit;
7672 unsigned long log2qty, size;
7673 void *table = NULL;
7674 gfp_t gfp_flags;
7675
7676 /* allow the kernel cmdline to have a say */
7677 if (!numentries) {
7678 /* round applicable memory size up to nearest megabyte */
7679 numentries = nr_kernel_pages;
7680 numentries -= arch_reserved_kernel_pages();
7681
7682 /* It isn't necessary when PAGE_SIZE >= 1MB */
7683 if (PAGE_SHIFT < 20)
7684 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7685
7686 #if __BITS_PER_LONG > 32
7687 if (!high_limit) {
7688 unsigned long adapt;
7689
7690 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7691 adapt <<= ADAPT_SCALE_SHIFT)
7692 scale++;
7693 }
7694 #endif
7695
7696 /* limit to 1 bucket per 2^scale bytes of low memory */
7697 if (scale > PAGE_SHIFT)
7698 numentries >>= (scale - PAGE_SHIFT);
7699 else
7700 numentries <<= (PAGE_SHIFT - scale);
7701
7702 /* Make sure we've got at least a 0-order allocation.. */
7703 if (unlikely(flags & HASH_SMALL)) {
7704 /* Makes no sense without HASH_EARLY */
7705 WARN_ON(!(flags & HASH_EARLY));
7706 if (!(numentries >> *_hash_shift)) {
7707 numentries = 1UL << *_hash_shift;
7708 BUG_ON(!numentries);
7709 }
7710 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7711 numentries = PAGE_SIZE / bucketsize;
7712 }
7713 numentries = roundup_pow_of_two(numentries);
7714
7715 /* limit allocation size to 1/16 total memory by default */
7716 if (max == 0) {
7717 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7718 do_div(max, bucketsize);
7719 }
7720 max = min(max, 0x80000000ULL);
7721
7722 if (numentries < low_limit)
7723 numentries = low_limit;
7724 if (numentries > max)
7725 numentries = max;
7726
7727 log2qty = ilog2(numentries);
7728
7729 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7730 do {
7731 size = bucketsize << log2qty;
7732 if (flags & HASH_EARLY) {
7733 if (flags & HASH_ZERO)
7734 table = memblock_alloc_nopanic(size,
7735 SMP_CACHE_BYTES);
7736 else
7737 table = memblock_alloc_raw(size,
7738 SMP_CACHE_BYTES);
7739 } else if (hashdist) {
7740 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7741 } else {
7742 /*
7743 * If bucketsize is not a power-of-two, we may free
7744 * some pages at the end of hash table which
7745 * alloc_pages_exact() automatically does
7746 */
7747 if (get_order(size) < MAX_ORDER) {
7748 table = alloc_pages_exact(size, gfp_flags);
7749 kmemleak_alloc(table, size, 1, gfp_flags);
7750 }
7751 }
7752 } while (!table && size > PAGE_SIZE && --log2qty);
7753
7754 if (!table)
7755 panic("Failed to allocate %s hash table\n", tablename);
7756
7757 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7758 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7759
7760 if (_hash_shift)
7761 *_hash_shift = log2qty;
7762 if (_hash_mask)
7763 *_hash_mask = (1 << log2qty) - 1;
7764
7765 return table;
7766 }
7767
7768 /*
7769 * This function checks whether pageblock includes unmovable pages or not.
7770 * If @count is not zero, it is okay to include less @count unmovable pages
7771 *
7772 * PageLRU check without isolation or lru_lock could race so that
7773 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7774 * check without lock_page also may miss some movable non-lru pages at
7775 * race condition. So you can't expect this function should be exact.
7776 */
7777 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7778 int migratetype,
7779 bool skip_hwpoisoned_pages)
7780 {
7781 unsigned long pfn, iter, found;
7782
7783 /*
7784 * TODO we could make this much more efficient by not checking every
7785 * page in the range if we know all of them are in MOVABLE_ZONE and
7786 * that the movable zone guarantees that pages are migratable but
7787 * the later is not the case right now unfortunatelly. E.g. movablecore
7788 * can still lead to having bootmem allocations in zone_movable.
7789 */
7790
7791 /*
7792 * CMA allocations (alloc_contig_range) really need to mark isolate
7793 * CMA pageblocks even when they are not movable in fact so consider
7794 * them movable here.
7795 */
7796 if (is_migrate_cma(migratetype) &&
7797 is_migrate_cma(get_pageblock_migratetype(page)))
7798 return false;
7799
7800 pfn = page_to_pfn(page);
7801 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7802 unsigned long check = pfn + iter;
7803
7804 if (!pfn_valid_within(check))
7805 continue;
7806
7807 page = pfn_to_page(check);
7808
7809 if (PageReserved(page))
7810 goto unmovable;
7811
7812 /*
7813 * If the zone is movable and we have ruled out all reserved
7814 * pages then it should be reasonably safe to assume the rest
7815 * is movable.
7816 */
7817 if (zone_idx(zone) == ZONE_MOVABLE)
7818 continue;
7819
7820 /*
7821 * Hugepages are not in LRU lists, but they're movable.
7822 * We need not scan over tail pages bacause we don't
7823 * handle each tail page individually in migration.
7824 */
7825 if (PageHuge(page)) {
7826 struct page *head = compound_head(page);
7827 unsigned int skip_pages;
7828
7829 if (!hugepage_migration_supported(page_hstate(head)))
7830 goto unmovable;
7831
7832 skip_pages = (1 << compound_order(head)) - (page - head);
7833 iter += skip_pages - 1;
7834 continue;
7835 }
7836
7837 /*
7838 * We can't use page_count without pin a page
7839 * because another CPU can free compound page.
7840 * This check already skips compound tails of THP
7841 * because their page->_refcount is zero at all time.
7842 */
7843 if (!page_ref_count(page)) {
7844 if (PageBuddy(page))
7845 iter += (1 << page_order(page)) - 1;
7846 continue;
7847 }
7848
7849 /*
7850 * The HWPoisoned page may be not in buddy system, and
7851 * page_count() is not 0.
7852 */
7853 if (skip_hwpoisoned_pages && PageHWPoison(page))
7854 continue;
7855
7856 if (__PageMovable(page))
7857 continue;
7858
7859 if (!PageLRU(page))
7860 found++;
7861 /*
7862 * If there are RECLAIMABLE pages, we need to check
7863 * it. But now, memory offline itself doesn't call
7864 * shrink_node_slabs() and it still to be fixed.
7865 */
7866 /*
7867 * If the page is not RAM, page_count()should be 0.
7868 * we don't need more check. This is an _used_ not-movable page.
7869 *
7870 * The problematic thing here is PG_reserved pages. PG_reserved
7871 * is set to both of a memory hole page and a _used_ kernel
7872 * page at boot.
7873 */
7874 if (found > count)
7875 goto unmovable;
7876 }
7877 return false;
7878 unmovable:
7879 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
7880 return true;
7881 }
7882
7883 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7884
7885 static unsigned long pfn_max_align_down(unsigned long pfn)
7886 {
7887 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7888 pageblock_nr_pages) - 1);
7889 }
7890
7891 static unsigned long pfn_max_align_up(unsigned long pfn)
7892 {
7893 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7894 pageblock_nr_pages));
7895 }
7896
7897 /* [start, end) must belong to a single zone. */
7898 static int __alloc_contig_migrate_range(struct compact_control *cc,
7899 unsigned long start, unsigned long end)
7900 {
7901 /* This function is based on compact_zone() from compaction.c. */
7902 unsigned long nr_reclaimed;
7903 unsigned long pfn = start;
7904 unsigned int tries = 0;
7905 int ret = 0;
7906
7907 migrate_prep();
7908
7909 while (pfn < end || !list_empty(&cc->migratepages)) {
7910 if (fatal_signal_pending(current)) {
7911 ret = -EINTR;
7912 break;
7913 }
7914
7915 if (list_empty(&cc->migratepages)) {
7916 cc->nr_migratepages = 0;
7917 pfn = isolate_migratepages_range(cc, pfn, end);
7918 if (!pfn) {
7919 ret = -EINTR;
7920 break;
7921 }
7922 tries = 0;
7923 } else if (++tries == 5) {
7924 ret = ret < 0 ? ret : -EBUSY;
7925 break;
7926 }
7927
7928 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7929 &cc->migratepages);
7930 cc->nr_migratepages -= nr_reclaimed;
7931
7932 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7933 NULL, 0, cc->mode, MR_CONTIG_RANGE);
7934 }
7935 if (ret < 0) {
7936 putback_movable_pages(&cc->migratepages);
7937 return ret;
7938 }
7939 return 0;
7940 }
7941
7942 /**
7943 * alloc_contig_range() -- tries to allocate given range of pages
7944 * @start: start PFN to allocate
7945 * @end: one-past-the-last PFN to allocate
7946 * @migratetype: migratetype of the underlaying pageblocks (either
7947 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7948 * in range must have the same migratetype and it must
7949 * be either of the two.
7950 * @gfp_mask: GFP mask to use during compaction
7951 *
7952 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7953 * aligned. The PFN range must belong to a single zone.
7954 *
7955 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7956 * pageblocks in the range. Once isolated, the pageblocks should not
7957 * be modified by others.
7958 *
7959 * Returns zero on success or negative error code. On success all
7960 * pages which PFN is in [start, end) are allocated for the caller and
7961 * need to be freed with free_contig_range().
7962 */
7963 int alloc_contig_range(unsigned long start, unsigned long end,
7964 unsigned migratetype, gfp_t gfp_mask)
7965 {
7966 unsigned long outer_start, outer_end;
7967 unsigned int order;
7968 int ret = 0;
7969
7970 struct compact_control cc = {
7971 .nr_migratepages = 0,
7972 .order = -1,
7973 .zone = page_zone(pfn_to_page(start)),
7974 .mode = MIGRATE_SYNC,
7975 .ignore_skip_hint = true,
7976 .no_set_skip_hint = true,
7977 .gfp_mask = current_gfp_context(gfp_mask),
7978 };
7979 INIT_LIST_HEAD(&cc.migratepages);
7980
7981 /*
7982 * What we do here is we mark all pageblocks in range as
7983 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7984 * have different sizes, and due to the way page allocator
7985 * work, we align the range to biggest of the two pages so
7986 * that page allocator won't try to merge buddies from
7987 * different pageblocks and change MIGRATE_ISOLATE to some
7988 * other migration type.
7989 *
7990 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7991 * migrate the pages from an unaligned range (ie. pages that
7992 * we are interested in). This will put all the pages in
7993 * range back to page allocator as MIGRATE_ISOLATE.
7994 *
7995 * When this is done, we take the pages in range from page
7996 * allocator removing them from the buddy system. This way
7997 * page allocator will never consider using them.
7998 *
7999 * This lets us mark the pageblocks back as
8000 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8001 * aligned range but not in the unaligned, original range are
8002 * put back to page allocator so that buddy can use them.
8003 */
8004
8005 ret = start_isolate_page_range(pfn_max_align_down(start),
8006 pfn_max_align_up(end), migratetype,
8007 false);
8008 if (ret)
8009 return ret;
8010
8011 /*
8012 * In case of -EBUSY, we'd like to know which page causes problem.
8013 * So, just fall through. test_pages_isolated() has a tracepoint
8014 * which will report the busy page.
8015 *
8016 * It is possible that busy pages could become available before
8017 * the call to test_pages_isolated, and the range will actually be
8018 * allocated. So, if we fall through be sure to clear ret so that
8019 * -EBUSY is not accidentally used or returned to caller.
8020 */
8021 ret = __alloc_contig_migrate_range(&cc, start, end);
8022 if (ret && ret != -EBUSY)
8023 goto done;
8024 ret =0;
8025
8026 /*
8027 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8028 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8029 * more, all pages in [start, end) are free in page allocator.
8030 * What we are going to do is to allocate all pages from
8031 * [start, end) (that is remove them from page allocator).
8032 *
8033 * The only problem is that pages at the beginning and at the
8034 * end of interesting range may be not aligned with pages that
8035 * page allocator holds, ie. they can be part of higher order
8036 * pages. Because of this, we reserve the bigger range and
8037 * once this is done free the pages we are not interested in.
8038 *
8039 * We don't have to hold zone->lock here because the pages are
8040 * isolated thus they won't get removed from buddy.
8041 */
8042
8043 lru_add_drain_all();
8044 drain_all_pages(cc.zone);
8045
8046 order = 0;
8047 outer_start = start;
8048 while (!PageBuddy(pfn_to_page(outer_start))) {
8049 if (++order >= MAX_ORDER) {
8050 outer_start = start;
8051 break;
8052 }
8053 outer_start &= ~0UL << order;
8054 }
8055
8056 if (outer_start != start) {
8057 order = page_order(pfn_to_page(outer_start));
8058
8059 /*
8060 * outer_start page could be small order buddy page and
8061 * it doesn't include start page. Adjust outer_start
8062 * in this case to report failed page properly
8063 * on tracepoint in test_pages_isolated()
8064 */
8065 if (outer_start + (1UL << order) <= start)
8066 outer_start = start;
8067 }
8068
8069 /* Make sure the range is really isolated. */
8070 if (test_pages_isolated(outer_start, end, false)) {
8071 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8072 __func__, outer_start, end);
8073 ret = -EBUSY;
8074 goto done;
8075 }
8076
8077 /* Grab isolated pages from freelists. */
8078 outer_end = isolate_freepages_range(&cc, outer_start, end);
8079 if (!outer_end) {
8080 ret = -EBUSY;
8081 goto done;
8082 }
8083
8084 /* Free head and tail (if any) */
8085 if (start != outer_start)
8086 free_contig_range(outer_start, start - outer_start);
8087 if (end != outer_end)
8088 free_contig_range(end, outer_end - end);
8089
8090 done:
8091 undo_isolate_page_range(pfn_max_align_down(start),
8092 pfn_max_align_up(end), migratetype);
8093 return ret;
8094 }
8095
8096 void free_contig_range(unsigned long pfn, unsigned nr_pages)
8097 {
8098 unsigned int count = 0;
8099
8100 for (; nr_pages--; pfn++) {
8101 struct page *page = pfn_to_page(pfn);
8102
8103 count += page_count(page) != 1;
8104 __free_page(page);
8105 }
8106 WARN(count != 0, "%d pages are still in use!\n", count);
8107 }
8108 #endif
8109
8110 #ifdef CONFIG_MEMORY_HOTPLUG
8111 /*
8112 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8113 * page high values need to be recalulated.
8114 */
8115 void __meminit zone_pcp_update(struct zone *zone)
8116 {
8117 unsigned cpu;
8118 mutex_lock(&pcp_batch_high_lock);
8119 for_each_possible_cpu(cpu)
8120 pageset_set_high_and_batch(zone,
8121 per_cpu_ptr(zone->pageset, cpu));
8122 mutex_unlock(&pcp_batch_high_lock);
8123 }
8124 #endif
8125
8126 void zone_pcp_reset(struct zone *zone)
8127 {
8128 unsigned long flags;
8129 int cpu;
8130 struct per_cpu_pageset *pset;
8131
8132 /* avoid races with drain_pages() */
8133 local_irq_save(flags);
8134 if (zone->pageset != &boot_pageset) {
8135 for_each_online_cpu(cpu) {
8136 pset = per_cpu_ptr(zone->pageset, cpu);
8137 drain_zonestat(zone, pset);
8138 }
8139 free_percpu(zone->pageset);
8140 zone->pageset = &boot_pageset;
8141 }
8142 local_irq_restore(flags);
8143 }
8144
8145 #ifdef CONFIG_MEMORY_HOTREMOVE
8146 /*
8147 * All pages in the range must be in a single zone and isolated
8148 * before calling this.
8149 */
8150 void
8151 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8152 {
8153 struct page *page;
8154 struct zone *zone;
8155 unsigned int order, i;
8156 unsigned long pfn;
8157 unsigned long flags;
8158 /* find the first valid pfn */
8159 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8160 if (pfn_valid(pfn))
8161 break;
8162 if (pfn == end_pfn)
8163 return;
8164 offline_mem_sections(pfn, end_pfn);
8165 zone = page_zone(pfn_to_page(pfn));
8166 spin_lock_irqsave(&zone->lock, flags);
8167 pfn = start_pfn;
8168 while (pfn < end_pfn) {
8169 if (!pfn_valid(pfn)) {
8170 pfn++;
8171 continue;
8172 }
8173 page = pfn_to_page(pfn);
8174 /*
8175 * The HWPoisoned page may be not in buddy system, and
8176 * page_count() is not 0.
8177 */
8178 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8179 pfn++;
8180 SetPageReserved(page);
8181 continue;
8182 }
8183
8184 BUG_ON(page_count(page));
8185 BUG_ON(!PageBuddy(page));
8186 order = page_order(page);
8187 #ifdef CONFIG_DEBUG_VM
8188 pr_info("remove from free list %lx %d %lx\n",
8189 pfn, 1 << order, end_pfn);
8190 #endif
8191 list_del(&page->lru);
8192 rmv_page_order(page);
8193 zone->free_area[order].nr_free--;
8194 for (i = 0; i < (1 << order); i++)
8195 SetPageReserved((page+i));
8196 pfn += (1 << order);
8197 }
8198 spin_unlock_irqrestore(&zone->lock, flags);
8199 }
8200 #endif
8201
8202 bool is_free_buddy_page(struct page *page)
8203 {
8204 struct zone *zone = page_zone(page);
8205 unsigned long pfn = page_to_pfn(page);
8206 unsigned long flags;
8207 unsigned int order;
8208
8209 spin_lock_irqsave(&zone->lock, flags);
8210 for (order = 0; order < MAX_ORDER; order++) {
8211 struct page *page_head = page - (pfn & ((1 << order) - 1));
8212
8213 if (PageBuddy(page_head) && page_order(page_head) >= order)
8214 break;
8215 }
8216 spin_unlock_irqrestore(&zone->lock, flags);
8217
8218 return order < MAX_ORDER;
8219 }
8220
8221 #ifdef CONFIG_MEMORY_FAILURE
8222 /*
8223 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8224 * test is performed under the zone lock to prevent a race against page
8225 * allocation.
8226 */
8227 bool set_hwpoison_free_buddy_page(struct page *page)
8228 {
8229 struct zone *zone = page_zone(page);
8230 unsigned long pfn = page_to_pfn(page);
8231 unsigned long flags;
8232 unsigned int order;
8233 bool hwpoisoned = false;
8234
8235 spin_lock_irqsave(&zone->lock, flags);
8236 for (order = 0; order < MAX_ORDER; order++) {
8237 struct page *page_head = page - (pfn & ((1 << order) - 1));
8238
8239 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8240 if (!TestSetPageHWPoison(page))
8241 hwpoisoned = true;
8242 break;
8243 }
8244 }
8245 spin_unlock_irqrestore(&zone->lock, flags);
8246
8247 return hwpoisoned;
8248 }
8249 #endif