]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/rmap.c
mm: remove SWAP_MLOCK in ttu
[thirdparty/kernel/stable.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
28 * anon_vma->rwsem
29 * mm->page_table_lock or pte_lock
30 * zone_lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35 * mapping->tree_lock (widely used)
36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38 * sb_lock (within inode_lock in fs/fs-writeback.c)
39 * mapping->tree_lock (widely used, in set_page_dirty,
40 * in arch-dependent flush_dcache_mmap_lock,
41 * within bdi.wb->list_lock in __sync_single_inode)
42 *
43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
44 * ->tasklist_lock
45 * pte map lock
46 */
47
48 #include <linux/mm.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/pagemap.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/slab.h>
55 #include <linux/init.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/rcupdate.h>
59 #include <linux/export.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/backing-dev.h>
65 #include <linux/page_idle.h>
66
67 #include <asm/tlbflush.h>
68
69 #include <trace/events/tlb.h>
70
71 #include "internal.h"
72
73 static struct kmem_cache *anon_vma_cachep;
74 static struct kmem_cache *anon_vma_chain_cachep;
75
76 static inline struct anon_vma *anon_vma_alloc(void)
77 {
78 struct anon_vma *anon_vma;
79
80 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
81 if (anon_vma) {
82 atomic_set(&anon_vma->refcount, 1);
83 anon_vma->degree = 1; /* Reference for first vma */
84 anon_vma->parent = anon_vma;
85 /*
86 * Initialise the anon_vma root to point to itself. If called
87 * from fork, the root will be reset to the parents anon_vma.
88 */
89 anon_vma->root = anon_vma;
90 }
91
92 return anon_vma;
93 }
94
95 static inline void anon_vma_free(struct anon_vma *anon_vma)
96 {
97 VM_BUG_ON(atomic_read(&anon_vma->refcount));
98
99 /*
100 * Synchronize against page_lock_anon_vma_read() such that
101 * we can safely hold the lock without the anon_vma getting
102 * freed.
103 *
104 * Relies on the full mb implied by the atomic_dec_and_test() from
105 * put_anon_vma() against the acquire barrier implied by
106 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
107 *
108 * page_lock_anon_vma_read() VS put_anon_vma()
109 * down_read_trylock() atomic_dec_and_test()
110 * LOCK MB
111 * atomic_read() rwsem_is_locked()
112 *
113 * LOCK should suffice since the actual taking of the lock must
114 * happen _before_ what follows.
115 */
116 might_sleep();
117 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
118 anon_vma_lock_write(anon_vma);
119 anon_vma_unlock_write(anon_vma);
120 }
121
122 kmem_cache_free(anon_vma_cachep, anon_vma);
123 }
124
125 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
126 {
127 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
128 }
129
130 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
131 {
132 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
133 }
134
135 static void anon_vma_chain_link(struct vm_area_struct *vma,
136 struct anon_vma_chain *avc,
137 struct anon_vma *anon_vma)
138 {
139 avc->vma = vma;
140 avc->anon_vma = anon_vma;
141 list_add(&avc->same_vma, &vma->anon_vma_chain);
142 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
143 }
144
145 /**
146 * __anon_vma_prepare - attach an anon_vma to a memory region
147 * @vma: the memory region in question
148 *
149 * This makes sure the memory mapping described by 'vma' has
150 * an 'anon_vma' attached to it, so that we can associate the
151 * anonymous pages mapped into it with that anon_vma.
152 *
153 * The common case will be that we already have one, which
154 * is handled inline by anon_vma_prepare(). But if
155 * not we either need to find an adjacent mapping that we
156 * can re-use the anon_vma from (very common when the only
157 * reason for splitting a vma has been mprotect()), or we
158 * allocate a new one.
159 *
160 * Anon-vma allocations are very subtle, because we may have
161 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
162 * and that may actually touch the spinlock even in the newly
163 * allocated vma (it depends on RCU to make sure that the
164 * anon_vma isn't actually destroyed).
165 *
166 * As a result, we need to do proper anon_vma locking even
167 * for the new allocation. At the same time, we do not want
168 * to do any locking for the common case of already having
169 * an anon_vma.
170 *
171 * This must be called with the mmap_sem held for reading.
172 */
173 int __anon_vma_prepare(struct vm_area_struct *vma)
174 {
175 struct mm_struct *mm = vma->vm_mm;
176 struct anon_vma *anon_vma, *allocated;
177 struct anon_vma_chain *avc;
178
179 might_sleep();
180
181 avc = anon_vma_chain_alloc(GFP_KERNEL);
182 if (!avc)
183 goto out_enomem;
184
185 anon_vma = find_mergeable_anon_vma(vma);
186 allocated = NULL;
187 if (!anon_vma) {
188 anon_vma = anon_vma_alloc();
189 if (unlikely(!anon_vma))
190 goto out_enomem_free_avc;
191 allocated = anon_vma;
192 }
193
194 anon_vma_lock_write(anon_vma);
195 /* page_table_lock to protect against threads */
196 spin_lock(&mm->page_table_lock);
197 if (likely(!vma->anon_vma)) {
198 vma->anon_vma = anon_vma;
199 anon_vma_chain_link(vma, avc, anon_vma);
200 /* vma reference or self-parent link for new root */
201 anon_vma->degree++;
202 allocated = NULL;
203 avc = NULL;
204 }
205 spin_unlock(&mm->page_table_lock);
206 anon_vma_unlock_write(anon_vma);
207
208 if (unlikely(allocated))
209 put_anon_vma(allocated);
210 if (unlikely(avc))
211 anon_vma_chain_free(avc);
212
213 return 0;
214
215 out_enomem_free_avc:
216 anon_vma_chain_free(avc);
217 out_enomem:
218 return -ENOMEM;
219 }
220
221 /*
222 * This is a useful helper function for locking the anon_vma root as
223 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
224 * have the same vma.
225 *
226 * Such anon_vma's should have the same root, so you'd expect to see
227 * just a single mutex_lock for the whole traversal.
228 */
229 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
230 {
231 struct anon_vma *new_root = anon_vma->root;
232 if (new_root != root) {
233 if (WARN_ON_ONCE(root))
234 up_write(&root->rwsem);
235 root = new_root;
236 down_write(&root->rwsem);
237 }
238 return root;
239 }
240
241 static inline void unlock_anon_vma_root(struct anon_vma *root)
242 {
243 if (root)
244 up_write(&root->rwsem);
245 }
246
247 /*
248 * Attach the anon_vmas from src to dst.
249 * Returns 0 on success, -ENOMEM on failure.
250 *
251 * If dst->anon_vma is NULL this function tries to find and reuse existing
252 * anon_vma which has no vmas and only one child anon_vma. This prevents
253 * degradation of anon_vma hierarchy to endless linear chain in case of
254 * constantly forking task. On the other hand, an anon_vma with more than one
255 * child isn't reused even if there was no alive vma, thus rmap walker has a
256 * good chance of avoiding scanning the whole hierarchy when it searches where
257 * page is mapped.
258 */
259 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
260 {
261 struct anon_vma_chain *avc, *pavc;
262 struct anon_vma *root = NULL;
263
264 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
265 struct anon_vma *anon_vma;
266
267 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
268 if (unlikely(!avc)) {
269 unlock_anon_vma_root(root);
270 root = NULL;
271 avc = anon_vma_chain_alloc(GFP_KERNEL);
272 if (!avc)
273 goto enomem_failure;
274 }
275 anon_vma = pavc->anon_vma;
276 root = lock_anon_vma_root(root, anon_vma);
277 anon_vma_chain_link(dst, avc, anon_vma);
278
279 /*
280 * Reuse existing anon_vma if its degree lower than two,
281 * that means it has no vma and only one anon_vma child.
282 *
283 * Do not chose parent anon_vma, otherwise first child
284 * will always reuse it. Root anon_vma is never reused:
285 * it has self-parent reference and at least one child.
286 */
287 if (!dst->anon_vma && anon_vma != src->anon_vma &&
288 anon_vma->degree < 2)
289 dst->anon_vma = anon_vma;
290 }
291 if (dst->anon_vma)
292 dst->anon_vma->degree++;
293 unlock_anon_vma_root(root);
294 return 0;
295
296 enomem_failure:
297 /*
298 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
299 * decremented in unlink_anon_vmas().
300 * We can safely do this because callers of anon_vma_clone() don't care
301 * about dst->anon_vma if anon_vma_clone() failed.
302 */
303 dst->anon_vma = NULL;
304 unlink_anon_vmas(dst);
305 return -ENOMEM;
306 }
307
308 /*
309 * Attach vma to its own anon_vma, as well as to the anon_vmas that
310 * the corresponding VMA in the parent process is attached to.
311 * Returns 0 on success, non-zero on failure.
312 */
313 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
314 {
315 struct anon_vma_chain *avc;
316 struct anon_vma *anon_vma;
317 int error;
318
319 /* Don't bother if the parent process has no anon_vma here. */
320 if (!pvma->anon_vma)
321 return 0;
322
323 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
324 vma->anon_vma = NULL;
325
326 /*
327 * First, attach the new VMA to the parent VMA's anon_vmas,
328 * so rmap can find non-COWed pages in child processes.
329 */
330 error = anon_vma_clone(vma, pvma);
331 if (error)
332 return error;
333
334 /* An existing anon_vma has been reused, all done then. */
335 if (vma->anon_vma)
336 return 0;
337
338 /* Then add our own anon_vma. */
339 anon_vma = anon_vma_alloc();
340 if (!anon_vma)
341 goto out_error;
342 avc = anon_vma_chain_alloc(GFP_KERNEL);
343 if (!avc)
344 goto out_error_free_anon_vma;
345
346 /*
347 * The root anon_vma's spinlock is the lock actually used when we
348 * lock any of the anon_vmas in this anon_vma tree.
349 */
350 anon_vma->root = pvma->anon_vma->root;
351 anon_vma->parent = pvma->anon_vma;
352 /*
353 * With refcounts, an anon_vma can stay around longer than the
354 * process it belongs to. The root anon_vma needs to be pinned until
355 * this anon_vma is freed, because the lock lives in the root.
356 */
357 get_anon_vma(anon_vma->root);
358 /* Mark this anon_vma as the one where our new (COWed) pages go. */
359 vma->anon_vma = anon_vma;
360 anon_vma_lock_write(anon_vma);
361 anon_vma_chain_link(vma, avc, anon_vma);
362 anon_vma->parent->degree++;
363 anon_vma_unlock_write(anon_vma);
364
365 return 0;
366
367 out_error_free_anon_vma:
368 put_anon_vma(anon_vma);
369 out_error:
370 unlink_anon_vmas(vma);
371 return -ENOMEM;
372 }
373
374 void unlink_anon_vmas(struct vm_area_struct *vma)
375 {
376 struct anon_vma_chain *avc, *next;
377 struct anon_vma *root = NULL;
378
379 /*
380 * Unlink each anon_vma chained to the VMA. This list is ordered
381 * from newest to oldest, ensuring the root anon_vma gets freed last.
382 */
383 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
384 struct anon_vma *anon_vma = avc->anon_vma;
385
386 root = lock_anon_vma_root(root, anon_vma);
387 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
388
389 /*
390 * Leave empty anon_vmas on the list - we'll need
391 * to free them outside the lock.
392 */
393 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
394 anon_vma->parent->degree--;
395 continue;
396 }
397
398 list_del(&avc->same_vma);
399 anon_vma_chain_free(avc);
400 }
401 if (vma->anon_vma)
402 vma->anon_vma->degree--;
403 unlock_anon_vma_root(root);
404
405 /*
406 * Iterate the list once more, it now only contains empty and unlinked
407 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
408 * needing to write-acquire the anon_vma->root->rwsem.
409 */
410 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
411 struct anon_vma *anon_vma = avc->anon_vma;
412
413 VM_WARN_ON(anon_vma->degree);
414 put_anon_vma(anon_vma);
415
416 list_del(&avc->same_vma);
417 anon_vma_chain_free(avc);
418 }
419 }
420
421 static void anon_vma_ctor(void *data)
422 {
423 struct anon_vma *anon_vma = data;
424
425 init_rwsem(&anon_vma->rwsem);
426 atomic_set(&anon_vma->refcount, 0);
427 anon_vma->rb_root = RB_ROOT;
428 }
429
430 void __init anon_vma_init(void)
431 {
432 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
433 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
434 anon_vma_ctor);
435 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
436 SLAB_PANIC|SLAB_ACCOUNT);
437 }
438
439 /*
440 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
441 *
442 * Since there is no serialization what so ever against page_remove_rmap()
443 * the best this function can do is return a locked anon_vma that might
444 * have been relevant to this page.
445 *
446 * The page might have been remapped to a different anon_vma or the anon_vma
447 * returned may already be freed (and even reused).
448 *
449 * In case it was remapped to a different anon_vma, the new anon_vma will be a
450 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
451 * ensure that any anon_vma obtained from the page will still be valid for as
452 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
453 *
454 * All users of this function must be very careful when walking the anon_vma
455 * chain and verify that the page in question is indeed mapped in it
456 * [ something equivalent to page_mapped_in_vma() ].
457 *
458 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
459 * that the anon_vma pointer from page->mapping is valid if there is a
460 * mapcount, we can dereference the anon_vma after observing those.
461 */
462 struct anon_vma *page_get_anon_vma(struct page *page)
463 {
464 struct anon_vma *anon_vma = NULL;
465 unsigned long anon_mapping;
466
467 rcu_read_lock();
468 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
469 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
470 goto out;
471 if (!page_mapped(page))
472 goto out;
473
474 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
475 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
476 anon_vma = NULL;
477 goto out;
478 }
479
480 /*
481 * If this page is still mapped, then its anon_vma cannot have been
482 * freed. But if it has been unmapped, we have no security against the
483 * anon_vma structure being freed and reused (for another anon_vma:
484 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
485 * above cannot corrupt).
486 */
487 if (!page_mapped(page)) {
488 rcu_read_unlock();
489 put_anon_vma(anon_vma);
490 return NULL;
491 }
492 out:
493 rcu_read_unlock();
494
495 return anon_vma;
496 }
497
498 /*
499 * Similar to page_get_anon_vma() except it locks the anon_vma.
500 *
501 * Its a little more complex as it tries to keep the fast path to a single
502 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
503 * reference like with page_get_anon_vma() and then block on the mutex.
504 */
505 struct anon_vma *page_lock_anon_vma_read(struct page *page)
506 {
507 struct anon_vma *anon_vma = NULL;
508 struct anon_vma *root_anon_vma;
509 unsigned long anon_mapping;
510
511 rcu_read_lock();
512 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
513 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
514 goto out;
515 if (!page_mapped(page))
516 goto out;
517
518 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
519 root_anon_vma = READ_ONCE(anon_vma->root);
520 if (down_read_trylock(&root_anon_vma->rwsem)) {
521 /*
522 * If the page is still mapped, then this anon_vma is still
523 * its anon_vma, and holding the mutex ensures that it will
524 * not go away, see anon_vma_free().
525 */
526 if (!page_mapped(page)) {
527 up_read(&root_anon_vma->rwsem);
528 anon_vma = NULL;
529 }
530 goto out;
531 }
532
533 /* trylock failed, we got to sleep */
534 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
535 anon_vma = NULL;
536 goto out;
537 }
538
539 if (!page_mapped(page)) {
540 rcu_read_unlock();
541 put_anon_vma(anon_vma);
542 return NULL;
543 }
544
545 /* we pinned the anon_vma, its safe to sleep */
546 rcu_read_unlock();
547 anon_vma_lock_read(anon_vma);
548
549 if (atomic_dec_and_test(&anon_vma->refcount)) {
550 /*
551 * Oops, we held the last refcount, release the lock
552 * and bail -- can't simply use put_anon_vma() because
553 * we'll deadlock on the anon_vma_lock_write() recursion.
554 */
555 anon_vma_unlock_read(anon_vma);
556 __put_anon_vma(anon_vma);
557 anon_vma = NULL;
558 }
559
560 return anon_vma;
561
562 out:
563 rcu_read_unlock();
564 return anon_vma;
565 }
566
567 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
568 {
569 anon_vma_unlock_read(anon_vma);
570 }
571
572 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
573 /*
574 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
575 * important if a PTE was dirty when it was unmapped that it's flushed
576 * before any IO is initiated on the page to prevent lost writes. Similarly,
577 * it must be flushed before freeing to prevent data leakage.
578 */
579 void try_to_unmap_flush(void)
580 {
581 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
582 int cpu;
583
584 if (!tlb_ubc->flush_required)
585 return;
586
587 cpu = get_cpu();
588
589 if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask)) {
590 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
591 local_flush_tlb();
592 trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
593 }
594
595 if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids)
596 flush_tlb_others(&tlb_ubc->cpumask, NULL, 0, TLB_FLUSH_ALL);
597 cpumask_clear(&tlb_ubc->cpumask);
598 tlb_ubc->flush_required = false;
599 tlb_ubc->writable = false;
600 put_cpu();
601 }
602
603 /* Flush iff there are potentially writable TLB entries that can race with IO */
604 void try_to_unmap_flush_dirty(void)
605 {
606 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
607
608 if (tlb_ubc->writable)
609 try_to_unmap_flush();
610 }
611
612 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
613 {
614 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
615
616 cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
617 tlb_ubc->flush_required = true;
618
619 /*
620 * If the PTE was dirty then it's best to assume it's writable. The
621 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
622 * before the page is queued for IO.
623 */
624 if (writable)
625 tlb_ubc->writable = true;
626 }
627
628 /*
629 * Returns true if the TLB flush should be deferred to the end of a batch of
630 * unmap operations to reduce IPIs.
631 */
632 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
633 {
634 bool should_defer = false;
635
636 if (!(flags & TTU_BATCH_FLUSH))
637 return false;
638
639 /* If remote CPUs need to be flushed then defer batch the flush */
640 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
641 should_defer = true;
642 put_cpu();
643
644 return should_defer;
645 }
646 #else
647 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
648 {
649 }
650
651 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
652 {
653 return false;
654 }
655 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
656
657 /*
658 * At what user virtual address is page expected in vma?
659 * Caller should check the page is actually part of the vma.
660 */
661 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
662 {
663 unsigned long address;
664 if (PageAnon(page)) {
665 struct anon_vma *page__anon_vma = page_anon_vma(page);
666 /*
667 * Note: swapoff's unuse_vma() is more efficient with this
668 * check, and needs it to match anon_vma when KSM is active.
669 */
670 if (!vma->anon_vma || !page__anon_vma ||
671 vma->anon_vma->root != page__anon_vma->root)
672 return -EFAULT;
673 } else if (page->mapping) {
674 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
675 return -EFAULT;
676 } else
677 return -EFAULT;
678 address = __vma_address(page, vma);
679 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
680 return -EFAULT;
681 return address;
682 }
683
684 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
685 {
686 pgd_t *pgd;
687 p4d_t *p4d;
688 pud_t *pud;
689 pmd_t *pmd = NULL;
690 pmd_t pmde;
691
692 pgd = pgd_offset(mm, address);
693 if (!pgd_present(*pgd))
694 goto out;
695
696 p4d = p4d_offset(pgd, address);
697 if (!p4d_present(*p4d))
698 goto out;
699
700 pud = pud_offset(p4d, address);
701 if (!pud_present(*pud))
702 goto out;
703
704 pmd = pmd_offset(pud, address);
705 /*
706 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
707 * without holding anon_vma lock for write. So when looking for a
708 * genuine pmde (in which to find pte), test present and !THP together.
709 */
710 pmde = *pmd;
711 barrier();
712 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
713 pmd = NULL;
714 out:
715 return pmd;
716 }
717
718 struct page_referenced_arg {
719 int mapcount;
720 int referenced;
721 unsigned long vm_flags;
722 struct mem_cgroup *memcg;
723 };
724 /*
725 * arg: page_referenced_arg will be passed
726 */
727 static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
728 unsigned long address, void *arg)
729 {
730 struct page_referenced_arg *pra = arg;
731 struct page_vma_mapped_walk pvmw = {
732 .page = page,
733 .vma = vma,
734 .address = address,
735 };
736 int referenced = 0;
737
738 while (page_vma_mapped_walk(&pvmw)) {
739 address = pvmw.address;
740
741 if (vma->vm_flags & VM_LOCKED) {
742 page_vma_mapped_walk_done(&pvmw);
743 pra->vm_flags |= VM_LOCKED;
744 return SWAP_FAIL; /* To break the loop */
745 }
746
747 if (pvmw.pte) {
748 if (ptep_clear_flush_young_notify(vma, address,
749 pvmw.pte)) {
750 /*
751 * Don't treat a reference through
752 * a sequentially read mapping as such.
753 * If the page has been used in another mapping,
754 * we will catch it; if this other mapping is
755 * already gone, the unmap path will have set
756 * PG_referenced or activated the page.
757 */
758 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
759 referenced++;
760 }
761 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
762 if (pmdp_clear_flush_young_notify(vma, address,
763 pvmw.pmd))
764 referenced++;
765 } else {
766 /* unexpected pmd-mapped page? */
767 WARN_ON_ONCE(1);
768 }
769
770 pra->mapcount--;
771 }
772
773 if (referenced)
774 clear_page_idle(page);
775 if (test_and_clear_page_young(page))
776 referenced++;
777
778 if (referenced) {
779 pra->referenced++;
780 pra->vm_flags |= vma->vm_flags;
781 }
782
783 if (!pra->mapcount)
784 return SWAP_SUCCESS; /* To break the loop */
785
786 return SWAP_AGAIN;
787 }
788
789 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
790 {
791 struct page_referenced_arg *pra = arg;
792 struct mem_cgroup *memcg = pra->memcg;
793
794 if (!mm_match_cgroup(vma->vm_mm, memcg))
795 return true;
796
797 return false;
798 }
799
800 /**
801 * page_referenced - test if the page was referenced
802 * @page: the page to test
803 * @is_locked: caller holds lock on the page
804 * @memcg: target memory cgroup
805 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
806 *
807 * Quick test_and_clear_referenced for all mappings to a page,
808 * returns the number of ptes which referenced the page.
809 */
810 int page_referenced(struct page *page,
811 int is_locked,
812 struct mem_cgroup *memcg,
813 unsigned long *vm_flags)
814 {
815 int we_locked = 0;
816 struct page_referenced_arg pra = {
817 .mapcount = total_mapcount(page),
818 .memcg = memcg,
819 };
820 struct rmap_walk_control rwc = {
821 .rmap_one = page_referenced_one,
822 .arg = (void *)&pra,
823 .anon_lock = page_lock_anon_vma_read,
824 };
825
826 *vm_flags = 0;
827 if (!page_mapped(page))
828 return 0;
829
830 if (!page_rmapping(page))
831 return 0;
832
833 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
834 we_locked = trylock_page(page);
835 if (!we_locked)
836 return 1;
837 }
838
839 /*
840 * If we are reclaiming on behalf of a cgroup, skip
841 * counting on behalf of references from different
842 * cgroups
843 */
844 if (memcg) {
845 rwc.invalid_vma = invalid_page_referenced_vma;
846 }
847
848 rmap_walk(page, &rwc);
849 *vm_flags = pra.vm_flags;
850
851 if (we_locked)
852 unlock_page(page);
853
854 return pra.referenced;
855 }
856
857 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
858 unsigned long address, void *arg)
859 {
860 struct page_vma_mapped_walk pvmw = {
861 .page = page,
862 .vma = vma,
863 .address = address,
864 .flags = PVMW_SYNC,
865 };
866 int *cleaned = arg;
867
868 while (page_vma_mapped_walk(&pvmw)) {
869 int ret = 0;
870 address = pvmw.address;
871 if (pvmw.pte) {
872 pte_t entry;
873 pte_t *pte = pvmw.pte;
874
875 if (!pte_dirty(*pte) && !pte_write(*pte))
876 continue;
877
878 flush_cache_page(vma, address, pte_pfn(*pte));
879 entry = ptep_clear_flush(vma, address, pte);
880 entry = pte_wrprotect(entry);
881 entry = pte_mkclean(entry);
882 set_pte_at(vma->vm_mm, address, pte, entry);
883 ret = 1;
884 } else {
885 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
886 pmd_t *pmd = pvmw.pmd;
887 pmd_t entry;
888
889 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
890 continue;
891
892 flush_cache_page(vma, address, page_to_pfn(page));
893 entry = pmdp_huge_clear_flush(vma, address, pmd);
894 entry = pmd_wrprotect(entry);
895 entry = pmd_mkclean(entry);
896 set_pmd_at(vma->vm_mm, address, pmd, entry);
897 ret = 1;
898 #else
899 /* unexpected pmd-mapped page? */
900 WARN_ON_ONCE(1);
901 #endif
902 }
903
904 if (ret) {
905 mmu_notifier_invalidate_page(vma->vm_mm, address);
906 (*cleaned)++;
907 }
908 }
909
910 return SWAP_AGAIN;
911 }
912
913 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
914 {
915 if (vma->vm_flags & VM_SHARED)
916 return false;
917
918 return true;
919 }
920
921 int page_mkclean(struct page *page)
922 {
923 int cleaned = 0;
924 struct address_space *mapping;
925 struct rmap_walk_control rwc = {
926 .arg = (void *)&cleaned,
927 .rmap_one = page_mkclean_one,
928 .invalid_vma = invalid_mkclean_vma,
929 };
930
931 BUG_ON(!PageLocked(page));
932
933 if (!page_mapped(page))
934 return 0;
935
936 mapping = page_mapping(page);
937 if (!mapping)
938 return 0;
939
940 rmap_walk(page, &rwc);
941
942 return cleaned;
943 }
944 EXPORT_SYMBOL_GPL(page_mkclean);
945
946 /**
947 * page_move_anon_rmap - move a page to our anon_vma
948 * @page: the page to move to our anon_vma
949 * @vma: the vma the page belongs to
950 *
951 * When a page belongs exclusively to one process after a COW event,
952 * that page can be moved into the anon_vma that belongs to just that
953 * process, so the rmap code will not search the parent or sibling
954 * processes.
955 */
956 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
957 {
958 struct anon_vma *anon_vma = vma->anon_vma;
959
960 page = compound_head(page);
961
962 VM_BUG_ON_PAGE(!PageLocked(page), page);
963 VM_BUG_ON_VMA(!anon_vma, vma);
964
965 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
966 /*
967 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
968 * simultaneously, so a concurrent reader (eg page_referenced()'s
969 * PageAnon()) will not see one without the other.
970 */
971 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
972 }
973
974 /**
975 * __page_set_anon_rmap - set up new anonymous rmap
976 * @page: Page to add to rmap
977 * @vma: VM area to add page to.
978 * @address: User virtual address of the mapping
979 * @exclusive: the page is exclusively owned by the current process
980 */
981 static void __page_set_anon_rmap(struct page *page,
982 struct vm_area_struct *vma, unsigned long address, int exclusive)
983 {
984 struct anon_vma *anon_vma = vma->anon_vma;
985
986 BUG_ON(!anon_vma);
987
988 if (PageAnon(page))
989 return;
990
991 /*
992 * If the page isn't exclusively mapped into this vma,
993 * we must use the _oldest_ possible anon_vma for the
994 * page mapping!
995 */
996 if (!exclusive)
997 anon_vma = anon_vma->root;
998
999 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1000 page->mapping = (struct address_space *) anon_vma;
1001 page->index = linear_page_index(vma, address);
1002 }
1003
1004 /**
1005 * __page_check_anon_rmap - sanity check anonymous rmap addition
1006 * @page: the page to add the mapping to
1007 * @vma: the vm area in which the mapping is added
1008 * @address: the user virtual address mapped
1009 */
1010 static void __page_check_anon_rmap(struct page *page,
1011 struct vm_area_struct *vma, unsigned long address)
1012 {
1013 #ifdef CONFIG_DEBUG_VM
1014 /*
1015 * The page's anon-rmap details (mapping and index) are guaranteed to
1016 * be set up correctly at this point.
1017 *
1018 * We have exclusion against page_add_anon_rmap because the caller
1019 * always holds the page locked, except if called from page_dup_rmap,
1020 * in which case the page is already known to be setup.
1021 *
1022 * We have exclusion against page_add_new_anon_rmap because those pages
1023 * are initially only visible via the pagetables, and the pte is locked
1024 * over the call to page_add_new_anon_rmap.
1025 */
1026 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1027 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1028 #endif
1029 }
1030
1031 /**
1032 * page_add_anon_rmap - add pte mapping to an anonymous page
1033 * @page: the page to add the mapping to
1034 * @vma: the vm area in which the mapping is added
1035 * @address: the user virtual address mapped
1036 * @compound: charge the page as compound or small page
1037 *
1038 * The caller needs to hold the pte lock, and the page must be locked in
1039 * the anon_vma case: to serialize mapping,index checking after setting,
1040 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1041 * (but PageKsm is never downgraded to PageAnon).
1042 */
1043 void page_add_anon_rmap(struct page *page,
1044 struct vm_area_struct *vma, unsigned long address, bool compound)
1045 {
1046 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1047 }
1048
1049 /*
1050 * Special version of the above for do_swap_page, which often runs
1051 * into pages that are exclusively owned by the current process.
1052 * Everybody else should continue to use page_add_anon_rmap above.
1053 */
1054 void do_page_add_anon_rmap(struct page *page,
1055 struct vm_area_struct *vma, unsigned long address, int flags)
1056 {
1057 bool compound = flags & RMAP_COMPOUND;
1058 bool first;
1059
1060 if (compound) {
1061 atomic_t *mapcount;
1062 VM_BUG_ON_PAGE(!PageLocked(page), page);
1063 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1064 mapcount = compound_mapcount_ptr(page);
1065 first = atomic_inc_and_test(mapcount);
1066 } else {
1067 first = atomic_inc_and_test(&page->_mapcount);
1068 }
1069
1070 if (first) {
1071 int nr = compound ? hpage_nr_pages(page) : 1;
1072 /*
1073 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1074 * these counters are not modified in interrupt context, and
1075 * pte lock(a spinlock) is held, which implies preemption
1076 * disabled.
1077 */
1078 if (compound)
1079 __inc_node_page_state(page, NR_ANON_THPS);
1080 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1081 }
1082 if (unlikely(PageKsm(page)))
1083 return;
1084
1085 VM_BUG_ON_PAGE(!PageLocked(page), page);
1086
1087 /* address might be in next vma when migration races vma_adjust */
1088 if (first)
1089 __page_set_anon_rmap(page, vma, address,
1090 flags & RMAP_EXCLUSIVE);
1091 else
1092 __page_check_anon_rmap(page, vma, address);
1093 }
1094
1095 /**
1096 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1097 * @page: the page to add the mapping to
1098 * @vma: the vm area in which the mapping is added
1099 * @address: the user virtual address mapped
1100 * @compound: charge the page as compound or small page
1101 *
1102 * Same as page_add_anon_rmap but must only be called on *new* pages.
1103 * This means the inc-and-test can be bypassed.
1104 * Page does not have to be locked.
1105 */
1106 void page_add_new_anon_rmap(struct page *page,
1107 struct vm_area_struct *vma, unsigned long address, bool compound)
1108 {
1109 int nr = compound ? hpage_nr_pages(page) : 1;
1110
1111 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1112 __SetPageSwapBacked(page);
1113 if (compound) {
1114 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1115 /* increment count (starts at -1) */
1116 atomic_set(compound_mapcount_ptr(page), 0);
1117 __inc_node_page_state(page, NR_ANON_THPS);
1118 } else {
1119 /* Anon THP always mapped first with PMD */
1120 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1121 /* increment count (starts at -1) */
1122 atomic_set(&page->_mapcount, 0);
1123 }
1124 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1125 __page_set_anon_rmap(page, vma, address, 1);
1126 }
1127
1128 /**
1129 * page_add_file_rmap - add pte mapping to a file page
1130 * @page: the page to add the mapping to
1131 *
1132 * The caller needs to hold the pte lock.
1133 */
1134 void page_add_file_rmap(struct page *page, bool compound)
1135 {
1136 int i, nr = 1;
1137
1138 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1139 lock_page_memcg(page);
1140 if (compound && PageTransHuge(page)) {
1141 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1142 if (atomic_inc_and_test(&page[i]._mapcount))
1143 nr++;
1144 }
1145 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1146 goto out;
1147 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1148 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1149 } else {
1150 if (PageTransCompound(page) && page_mapping(page)) {
1151 VM_WARN_ON_ONCE(!PageLocked(page));
1152
1153 SetPageDoubleMap(compound_head(page));
1154 if (PageMlocked(page))
1155 clear_page_mlock(compound_head(page));
1156 }
1157 if (!atomic_inc_and_test(&page->_mapcount))
1158 goto out;
1159 }
1160 __mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, nr);
1161 mem_cgroup_update_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED, nr);
1162 out:
1163 unlock_page_memcg(page);
1164 }
1165
1166 static void page_remove_file_rmap(struct page *page, bool compound)
1167 {
1168 int i, nr = 1;
1169
1170 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1171 lock_page_memcg(page);
1172
1173 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1174 if (unlikely(PageHuge(page))) {
1175 /* hugetlb pages are always mapped with pmds */
1176 atomic_dec(compound_mapcount_ptr(page));
1177 goto out;
1178 }
1179
1180 /* page still mapped by someone else? */
1181 if (compound && PageTransHuge(page)) {
1182 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1183 if (atomic_add_negative(-1, &page[i]._mapcount))
1184 nr++;
1185 }
1186 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1187 goto out;
1188 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1189 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1190 } else {
1191 if (!atomic_add_negative(-1, &page->_mapcount))
1192 goto out;
1193 }
1194
1195 /*
1196 * We use the irq-unsafe __{inc|mod}_zone_page_state because
1197 * these counters are not modified in interrupt context, and
1198 * pte lock(a spinlock) is held, which implies preemption disabled.
1199 */
1200 __mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, -nr);
1201 mem_cgroup_update_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED, -nr);
1202
1203 if (unlikely(PageMlocked(page)))
1204 clear_page_mlock(page);
1205 out:
1206 unlock_page_memcg(page);
1207 }
1208
1209 static void page_remove_anon_compound_rmap(struct page *page)
1210 {
1211 int i, nr;
1212
1213 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1214 return;
1215
1216 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1217 if (unlikely(PageHuge(page)))
1218 return;
1219
1220 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1221 return;
1222
1223 __dec_node_page_state(page, NR_ANON_THPS);
1224
1225 if (TestClearPageDoubleMap(page)) {
1226 /*
1227 * Subpages can be mapped with PTEs too. Check how many of
1228 * themi are still mapped.
1229 */
1230 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1231 if (atomic_add_negative(-1, &page[i]._mapcount))
1232 nr++;
1233 }
1234 } else {
1235 nr = HPAGE_PMD_NR;
1236 }
1237
1238 if (unlikely(PageMlocked(page)))
1239 clear_page_mlock(page);
1240
1241 if (nr) {
1242 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1243 deferred_split_huge_page(page);
1244 }
1245 }
1246
1247 /**
1248 * page_remove_rmap - take down pte mapping from a page
1249 * @page: page to remove mapping from
1250 * @compound: uncharge the page as compound or small page
1251 *
1252 * The caller needs to hold the pte lock.
1253 */
1254 void page_remove_rmap(struct page *page, bool compound)
1255 {
1256 if (!PageAnon(page))
1257 return page_remove_file_rmap(page, compound);
1258
1259 if (compound)
1260 return page_remove_anon_compound_rmap(page);
1261
1262 /* page still mapped by someone else? */
1263 if (!atomic_add_negative(-1, &page->_mapcount))
1264 return;
1265
1266 /*
1267 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1268 * these counters are not modified in interrupt context, and
1269 * pte lock(a spinlock) is held, which implies preemption disabled.
1270 */
1271 __dec_node_page_state(page, NR_ANON_MAPPED);
1272
1273 if (unlikely(PageMlocked(page)))
1274 clear_page_mlock(page);
1275
1276 if (PageTransCompound(page))
1277 deferred_split_huge_page(compound_head(page));
1278
1279 /*
1280 * It would be tidy to reset the PageAnon mapping here,
1281 * but that might overwrite a racing page_add_anon_rmap
1282 * which increments mapcount after us but sets mapping
1283 * before us: so leave the reset to free_hot_cold_page,
1284 * and remember that it's only reliable while mapped.
1285 * Leaving it set also helps swapoff to reinstate ptes
1286 * faster for those pages still in swapcache.
1287 */
1288 }
1289
1290 /*
1291 * @arg: enum ttu_flags will be passed to this argument
1292 */
1293 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1294 unsigned long address, void *arg)
1295 {
1296 struct mm_struct *mm = vma->vm_mm;
1297 struct page_vma_mapped_walk pvmw = {
1298 .page = page,
1299 .vma = vma,
1300 .address = address,
1301 };
1302 pte_t pteval;
1303 struct page *subpage;
1304 int ret = SWAP_AGAIN;
1305 enum ttu_flags flags = (enum ttu_flags)arg;
1306
1307 /* munlock has nothing to gain from examining un-locked vmas */
1308 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1309 return SWAP_AGAIN;
1310
1311 if (flags & TTU_SPLIT_HUGE_PMD) {
1312 split_huge_pmd_address(vma, address,
1313 flags & TTU_MIGRATION, page);
1314 }
1315
1316 while (page_vma_mapped_walk(&pvmw)) {
1317 /*
1318 * If the page is mlock()d, we cannot swap it out.
1319 * If it's recently referenced (perhaps page_referenced
1320 * skipped over this mm) then we should reactivate it.
1321 */
1322 if (!(flags & TTU_IGNORE_MLOCK)) {
1323 if (vma->vm_flags & VM_LOCKED) {
1324 /* PTE-mapped THP are never mlocked */
1325 if (!PageTransCompound(page)) {
1326 /*
1327 * Holding pte lock, we do *not* need
1328 * mmap_sem here
1329 */
1330 mlock_vma_page(page);
1331 }
1332 ret = SWAP_FAIL;
1333 page_vma_mapped_walk_done(&pvmw);
1334 break;
1335 }
1336 if (flags & TTU_MUNLOCK)
1337 continue;
1338 }
1339
1340 /* Unexpected PMD-mapped THP? */
1341 VM_BUG_ON_PAGE(!pvmw.pte, page);
1342
1343 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1344 address = pvmw.address;
1345
1346
1347 if (!(flags & TTU_IGNORE_ACCESS)) {
1348 if (ptep_clear_flush_young_notify(vma, address,
1349 pvmw.pte)) {
1350 ret = SWAP_FAIL;
1351 page_vma_mapped_walk_done(&pvmw);
1352 break;
1353 }
1354 }
1355
1356 /* Nuke the page table entry. */
1357 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1358 if (should_defer_flush(mm, flags)) {
1359 /*
1360 * We clear the PTE but do not flush so potentially
1361 * a remote CPU could still be writing to the page.
1362 * If the entry was previously clean then the
1363 * architecture must guarantee that a clear->dirty
1364 * transition on a cached TLB entry is written through
1365 * and traps if the PTE is unmapped.
1366 */
1367 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1368
1369 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1370 } else {
1371 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1372 }
1373
1374 /* Move the dirty bit to the page. Now the pte is gone. */
1375 if (pte_dirty(pteval))
1376 set_page_dirty(page);
1377
1378 /* Update high watermark before we lower rss */
1379 update_hiwater_rss(mm);
1380
1381 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1382 if (PageHuge(page)) {
1383 int nr = 1 << compound_order(page);
1384 hugetlb_count_sub(nr, mm);
1385 } else {
1386 dec_mm_counter(mm, mm_counter(page));
1387 }
1388
1389 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1390 set_pte_at(mm, address, pvmw.pte, pteval);
1391 } else if (pte_unused(pteval)) {
1392 /*
1393 * The guest indicated that the page content is of no
1394 * interest anymore. Simply discard the pte, vmscan
1395 * will take care of the rest.
1396 */
1397 dec_mm_counter(mm, mm_counter(page));
1398 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1399 (flags & TTU_MIGRATION)) {
1400 swp_entry_t entry;
1401 pte_t swp_pte;
1402 /*
1403 * Store the pfn of the page in a special migration
1404 * pte. do_swap_page() will wait until the migration
1405 * pte is removed and then restart fault handling.
1406 */
1407 entry = make_migration_entry(subpage,
1408 pte_write(pteval));
1409 swp_pte = swp_entry_to_pte(entry);
1410 if (pte_soft_dirty(pteval))
1411 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1412 set_pte_at(mm, address, pvmw.pte, swp_pte);
1413 } else if (PageAnon(page)) {
1414 swp_entry_t entry = { .val = page_private(subpage) };
1415 pte_t swp_pte;
1416 /*
1417 * Store the swap location in the pte.
1418 * See handle_pte_fault() ...
1419 */
1420 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1421 WARN_ON_ONCE(1);
1422 ret = SWAP_FAIL;
1423 page_vma_mapped_walk_done(&pvmw);
1424 break;
1425 }
1426
1427 /* MADV_FREE page check */
1428 if (!PageSwapBacked(page)) {
1429 if (!PageDirty(page)) {
1430 dec_mm_counter(mm, MM_ANONPAGES);
1431 goto discard;
1432 }
1433
1434 /*
1435 * If the page was redirtied, it cannot be
1436 * discarded. Remap the page to page table.
1437 */
1438 set_pte_at(mm, address, pvmw.pte, pteval);
1439 SetPageSwapBacked(page);
1440 ret = SWAP_FAIL;
1441 page_vma_mapped_walk_done(&pvmw);
1442 break;
1443 }
1444
1445 if (swap_duplicate(entry) < 0) {
1446 set_pte_at(mm, address, pvmw.pte, pteval);
1447 ret = SWAP_FAIL;
1448 page_vma_mapped_walk_done(&pvmw);
1449 break;
1450 }
1451 if (list_empty(&mm->mmlist)) {
1452 spin_lock(&mmlist_lock);
1453 if (list_empty(&mm->mmlist))
1454 list_add(&mm->mmlist, &init_mm.mmlist);
1455 spin_unlock(&mmlist_lock);
1456 }
1457 dec_mm_counter(mm, MM_ANONPAGES);
1458 inc_mm_counter(mm, MM_SWAPENTS);
1459 swp_pte = swp_entry_to_pte(entry);
1460 if (pte_soft_dirty(pteval))
1461 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1462 set_pte_at(mm, address, pvmw.pte, swp_pte);
1463 } else
1464 dec_mm_counter(mm, mm_counter_file(page));
1465 discard:
1466 page_remove_rmap(subpage, PageHuge(page));
1467 put_page(page);
1468 mmu_notifier_invalidate_page(mm, address);
1469 }
1470 return ret;
1471 }
1472
1473 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1474 {
1475 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1476
1477 if (!maybe_stack)
1478 return false;
1479
1480 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1481 VM_STACK_INCOMPLETE_SETUP)
1482 return true;
1483
1484 return false;
1485 }
1486
1487 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1488 {
1489 return is_vma_temporary_stack(vma);
1490 }
1491
1492 static int page_mapcount_is_zero(struct page *page)
1493 {
1494 return !total_mapcount(page);
1495 }
1496
1497 /**
1498 * try_to_unmap - try to remove all page table mappings to a page
1499 * @page: the page to get unmapped
1500 * @flags: action and flags
1501 *
1502 * Tries to remove all the page table entries which are mapping this
1503 * page, used in the pageout path. Caller must hold the page lock.
1504 * Return values are:
1505 *
1506 * SWAP_SUCCESS - we succeeded in removing all mappings
1507 * SWAP_AGAIN - we missed a mapping, try again later
1508 * SWAP_FAIL - the page is unswappable
1509 */
1510 int try_to_unmap(struct page *page, enum ttu_flags flags)
1511 {
1512 int ret;
1513
1514 struct rmap_walk_control rwc = {
1515 .rmap_one = try_to_unmap_one,
1516 .arg = (void *)flags,
1517 .done = page_mapcount_is_zero,
1518 .anon_lock = page_lock_anon_vma_read,
1519 };
1520
1521 /*
1522 * During exec, a temporary VMA is setup and later moved.
1523 * The VMA is moved under the anon_vma lock but not the
1524 * page tables leading to a race where migration cannot
1525 * find the migration ptes. Rather than increasing the
1526 * locking requirements of exec(), migration skips
1527 * temporary VMAs until after exec() completes.
1528 */
1529 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1530 rwc.invalid_vma = invalid_migration_vma;
1531
1532 if (flags & TTU_RMAP_LOCKED)
1533 ret = rmap_walk_locked(page, &rwc);
1534 else
1535 ret = rmap_walk(page, &rwc);
1536
1537 if (!page_mapcount(page))
1538 ret = SWAP_SUCCESS;
1539 return ret;
1540 }
1541
1542 static int page_not_mapped(struct page *page)
1543 {
1544 return !page_mapped(page);
1545 };
1546
1547 /**
1548 * try_to_munlock - try to munlock a page
1549 * @page: the page to be munlocked
1550 *
1551 * Called from munlock code. Checks all of the VMAs mapping the page
1552 * to make sure nobody else has this page mlocked. The page will be
1553 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1554 */
1555
1556 void try_to_munlock(struct page *page)
1557 {
1558 struct rmap_walk_control rwc = {
1559 .rmap_one = try_to_unmap_one,
1560 .arg = (void *)TTU_MUNLOCK,
1561 .done = page_not_mapped,
1562 .anon_lock = page_lock_anon_vma_read,
1563
1564 };
1565
1566 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1567 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1568
1569 rmap_walk(page, &rwc);
1570 }
1571
1572 void __put_anon_vma(struct anon_vma *anon_vma)
1573 {
1574 struct anon_vma *root = anon_vma->root;
1575
1576 anon_vma_free(anon_vma);
1577 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1578 anon_vma_free(root);
1579 }
1580
1581 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1582 struct rmap_walk_control *rwc)
1583 {
1584 struct anon_vma *anon_vma;
1585
1586 if (rwc->anon_lock)
1587 return rwc->anon_lock(page);
1588
1589 /*
1590 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1591 * because that depends on page_mapped(); but not all its usages
1592 * are holding mmap_sem. Users without mmap_sem are required to
1593 * take a reference count to prevent the anon_vma disappearing
1594 */
1595 anon_vma = page_anon_vma(page);
1596 if (!anon_vma)
1597 return NULL;
1598
1599 anon_vma_lock_read(anon_vma);
1600 return anon_vma;
1601 }
1602
1603 /*
1604 * rmap_walk_anon - do something to anonymous page using the object-based
1605 * rmap method
1606 * @page: the page to be handled
1607 * @rwc: control variable according to each walk type
1608 *
1609 * Find all the mappings of a page using the mapping pointer and the vma chains
1610 * contained in the anon_vma struct it points to.
1611 *
1612 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1613 * where the page was found will be held for write. So, we won't recheck
1614 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1615 * LOCKED.
1616 */
1617 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1618 bool locked)
1619 {
1620 struct anon_vma *anon_vma;
1621 pgoff_t pgoff_start, pgoff_end;
1622 struct anon_vma_chain *avc;
1623 int ret = SWAP_AGAIN;
1624
1625 if (locked) {
1626 anon_vma = page_anon_vma(page);
1627 /* anon_vma disappear under us? */
1628 VM_BUG_ON_PAGE(!anon_vma, page);
1629 } else {
1630 anon_vma = rmap_walk_anon_lock(page, rwc);
1631 }
1632 if (!anon_vma)
1633 return ret;
1634
1635 pgoff_start = page_to_pgoff(page);
1636 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1637 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1638 pgoff_start, pgoff_end) {
1639 struct vm_area_struct *vma = avc->vma;
1640 unsigned long address = vma_address(page, vma);
1641
1642 cond_resched();
1643
1644 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1645 continue;
1646
1647 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1648 if (ret != SWAP_AGAIN)
1649 break;
1650 if (rwc->done && rwc->done(page))
1651 break;
1652 }
1653
1654 if (!locked)
1655 anon_vma_unlock_read(anon_vma);
1656 return ret;
1657 }
1658
1659 /*
1660 * rmap_walk_file - do something to file page using the object-based rmap method
1661 * @page: the page to be handled
1662 * @rwc: control variable according to each walk type
1663 *
1664 * Find all the mappings of a page using the mapping pointer and the vma chains
1665 * contained in the address_space struct it points to.
1666 *
1667 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1668 * where the page was found will be held for write. So, we won't recheck
1669 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1670 * LOCKED.
1671 */
1672 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1673 bool locked)
1674 {
1675 struct address_space *mapping = page_mapping(page);
1676 pgoff_t pgoff_start, pgoff_end;
1677 struct vm_area_struct *vma;
1678 int ret = SWAP_AGAIN;
1679
1680 /*
1681 * The page lock not only makes sure that page->mapping cannot
1682 * suddenly be NULLified by truncation, it makes sure that the
1683 * structure at mapping cannot be freed and reused yet,
1684 * so we can safely take mapping->i_mmap_rwsem.
1685 */
1686 VM_BUG_ON_PAGE(!PageLocked(page), page);
1687
1688 if (!mapping)
1689 return ret;
1690
1691 pgoff_start = page_to_pgoff(page);
1692 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1693 if (!locked)
1694 i_mmap_lock_read(mapping);
1695 vma_interval_tree_foreach(vma, &mapping->i_mmap,
1696 pgoff_start, pgoff_end) {
1697 unsigned long address = vma_address(page, vma);
1698
1699 cond_resched();
1700
1701 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1702 continue;
1703
1704 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1705 if (ret != SWAP_AGAIN)
1706 goto done;
1707 if (rwc->done && rwc->done(page))
1708 goto done;
1709 }
1710
1711 done:
1712 if (!locked)
1713 i_mmap_unlock_read(mapping);
1714 return ret;
1715 }
1716
1717 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1718 {
1719 if (unlikely(PageKsm(page)))
1720 return rmap_walk_ksm(page, rwc);
1721 else if (PageAnon(page))
1722 return rmap_walk_anon(page, rwc, false);
1723 else
1724 return rmap_walk_file(page, rwc, false);
1725 }
1726
1727 /* Like rmap_walk, but caller holds relevant rmap lock */
1728 int rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1729 {
1730 /* no ksm support for now */
1731 VM_BUG_ON_PAGE(PageKsm(page), page);
1732 if (PageAnon(page))
1733 return rmap_walk_anon(page, rwc, true);
1734 else
1735 return rmap_walk_file(page, rwc, true);
1736 }
1737
1738 #ifdef CONFIG_HUGETLB_PAGE
1739 /*
1740 * The following three functions are for anonymous (private mapped) hugepages.
1741 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1742 * and no lru code, because we handle hugepages differently from common pages.
1743 */
1744 static void __hugepage_set_anon_rmap(struct page *page,
1745 struct vm_area_struct *vma, unsigned long address, int exclusive)
1746 {
1747 struct anon_vma *anon_vma = vma->anon_vma;
1748
1749 BUG_ON(!anon_vma);
1750
1751 if (PageAnon(page))
1752 return;
1753 if (!exclusive)
1754 anon_vma = anon_vma->root;
1755
1756 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1757 page->mapping = (struct address_space *) anon_vma;
1758 page->index = linear_page_index(vma, address);
1759 }
1760
1761 void hugepage_add_anon_rmap(struct page *page,
1762 struct vm_area_struct *vma, unsigned long address)
1763 {
1764 struct anon_vma *anon_vma = vma->anon_vma;
1765 int first;
1766
1767 BUG_ON(!PageLocked(page));
1768 BUG_ON(!anon_vma);
1769 /* address might be in next vma when migration races vma_adjust */
1770 first = atomic_inc_and_test(compound_mapcount_ptr(page));
1771 if (first)
1772 __hugepage_set_anon_rmap(page, vma, address, 0);
1773 }
1774
1775 void hugepage_add_new_anon_rmap(struct page *page,
1776 struct vm_area_struct *vma, unsigned long address)
1777 {
1778 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1779 atomic_set(compound_mapcount_ptr(page), 0);
1780 __hugepage_set_anon_rmap(page, vma, address, 1);
1781 }
1782 #endif /* CONFIG_HUGETLB_PAGE */