]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/shmem.c
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[thirdparty/kernel/stable.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40
41 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
42
43 static struct vfsmount *shm_mnt;
44
45 #ifdef CONFIG_SHMEM
46 /*
47 * This virtual memory filesystem is heavily based on the ramfs. It
48 * extends ramfs by the ability to use swap and honor resource limits
49 * which makes it a completely usable filesystem.
50 */
51
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/blkdev.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/userfaultfd_k.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82
83 #include <linux/uaccess.h>
84 #include <asm/pgtable.h>
85
86 #include "internal.h"
87
88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96
97 /*
98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99 * inode->i_private (with i_mutex making sure that it has only one user at
100 * a time): we would prefer not to enlarge the shmem inode just for that.
101 */
102 struct shmem_falloc {
103 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104 pgoff_t start; /* start of range currently being fallocated */
105 pgoff_t next; /* the next page offset to be fallocated */
106 pgoff_t nr_falloced; /* how many new pages have been fallocated */
107 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
108 };
109
110 #ifdef CONFIG_TMPFS
111 static unsigned long shmem_default_max_blocks(void)
112 {
113 return totalram_pages() / 2;
114 }
115
116 static unsigned long shmem_default_max_inodes(void)
117 {
118 unsigned long nr_pages = totalram_pages();
119
120 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
121 }
122 #endif
123
124 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
125 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
126 struct shmem_inode_info *info, pgoff_t index);
127 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
128 struct page **pagep, enum sgp_type sgp,
129 gfp_t gfp, struct vm_area_struct *vma,
130 vm_fault_t *fault_type);
131 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
132 struct page **pagep, enum sgp_type sgp,
133 gfp_t gfp, struct vm_area_struct *vma,
134 struct vm_fault *vmf, vm_fault_t *fault_type);
135
136 int shmem_getpage(struct inode *inode, pgoff_t index,
137 struct page **pagep, enum sgp_type sgp)
138 {
139 return shmem_getpage_gfp(inode, index, pagep, sgp,
140 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
141 }
142
143 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
144 {
145 return sb->s_fs_info;
146 }
147
148 /*
149 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
150 * for shared memory and for shared anonymous (/dev/zero) mappings
151 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
152 * consistent with the pre-accounting of private mappings ...
153 */
154 static inline int shmem_acct_size(unsigned long flags, loff_t size)
155 {
156 return (flags & VM_NORESERVE) ?
157 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
158 }
159
160 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
161 {
162 if (!(flags & VM_NORESERVE))
163 vm_unacct_memory(VM_ACCT(size));
164 }
165
166 static inline int shmem_reacct_size(unsigned long flags,
167 loff_t oldsize, loff_t newsize)
168 {
169 if (!(flags & VM_NORESERVE)) {
170 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
171 return security_vm_enough_memory_mm(current->mm,
172 VM_ACCT(newsize) - VM_ACCT(oldsize));
173 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
174 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
175 }
176 return 0;
177 }
178
179 /*
180 * ... whereas tmpfs objects are accounted incrementally as
181 * pages are allocated, in order to allow large sparse files.
182 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
183 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
184 */
185 static inline int shmem_acct_block(unsigned long flags, long pages)
186 {
187 if (!(flags & VM_NORESERVE))
188 return 0;
189
190 return security_vm_enough_memory_mm(current->mm,
191 pages * VM_ACCT(PAGE_SIZE));
192 }
193
194 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
195 {
196 if (flags & VM_NORESERVE)
197 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
198 }
199
200 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
201 {
202 struct shmem_inode_info *info = SHMEM_I(inode);
203 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
204
205 if (shmem_acct_block(info->flags, pages))
206 return false;
207
208 if (sbinfo->max_blocks) {
209 if (percpu_counter_compare(&sbinfo->used_blocks,
210 sbinfo->max_blocks - pages) > 0)
211 goto unacct;
212 percpu_counter_add(&sbinfo->used_blocks, pages);
213 }
214
215 return true;
216
217 unacct:
218 shmem_unacct_blocks(info->flags, pages);
219 return false;
220 }
221
222 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
223 {
224 struct shmem_inode_info *info = SHMEM_I(inode);
225 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
226
227 if (sbinfo->max_blocks)
228 percpu_counter_sub(&sbinfo->used_blocks, pages);
229 shmem_unacct_blocks(info->flags, pages);
230 }
231
232 static const struct super_operations shmem_ops;
233 static const struct address_space_operations shmem_aops;
234 static const struct file_operations shmem_file_operations;
235 static const struct inode_operations shmem_inode_operations;
236 static const struct inode_operations shmem_dir_inode_operations;
237 static const struct inode_operations shmem_special_inode_operations;
238 static const struct vm_operations_struct shmem_vm_ops;
239 static struct file_system_type shmem_fs_type;
240
241 bool vma_is_shmem(struct vm_area_struct *vma)
242 {
243 return vma->vm_ops == &shmem_vm_ops;
244 }
245
246 static LIST_HEAD(shmem_swaplist);
247 static DEFINE_MUTEX(shmem_swaplist_mutex);
248
249 static int shmem_reserve_inode(struct super_block *sb)
250 {
251 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
252 if (sbinfo->max_inodes) {
253 spin_lock(&sbinfo->stat_lock);
254 if (!sbinfo->free_inodes) {
255 spin_unlock(&sbinfo->stat_lock);
256 return -ENOSPC;
257 }
258 sbinfo->free_inodes--;
259 spin_unlock(&sbinfo->stat_lock);
260 }
261 return 0;
262 }
263
264 static void shmem_free_inode(struct super_block *sb)
265 {
266 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267 if (sbinfo->max_inodes) {
268 spin_lock(&sbinfo->stat_lock);
269 sbinfo->free_inodes++;
270 spin_unlock(&sbinfo->stat_lock);
271 }
272 }
273
274 /**
275 * shmem_recalc_inode - recalculate the block usage of an inode
276 * @inode: inode to recalc
277 *
278 * We have to calculate the free blocks since the mm can drop
279 * undirtied hole pages behind our back.
280 *
281 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
282 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
283 *
284 * It has to be called with the spinlock held.
285 */
286 static void shmem_recalc_inode(struct inode *inode)
287 {
288 struct shmem_inode_info *info = SHMEM_I(inode);
289 long freed;
290
291 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
292 if (freed > 0) {
293 info->alloced -= freed;
294 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
295 shmem_inode_unacct_blocks(inode, freed);
296 }
297 }
298
299 bool shmem_charge(struct inode *inode, long pages)
300 {
301 struct shmem_inode_info *info = SHMEM_I(inode);
302 unsigned long flags;
303
304 if (!shmem_inode_acct_block(inode, pages))
305 return false;
306
307 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
308 inode->i_mapping->nrpages += pages;
309
310 spin_lock_irqsave(&info->lock, flags);
311 info->alloced += pages;
312 inode->i_blocks += pages * BLOCKS_PER_PAGE;
313 shmem_recalc_inode(inode);
314 spin_unlock_irqrestore(&info->lock, flags);
315
316 return true;
317 }
318
319 void shmem_uncharge(struct inode *inode, long pages)
320 {
321 struct shmem_inode_info *info = SHMEM_I(inode);
322 unsigned long flags;
323
324 /* nrpages adjustment done by __delete_from_page_cache() or caller */
325
326 spin_lock_irqsave(&info->lock, flags);
327 info->alloced -= pages;
328 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
329 shmem_recalc_inode(inode);
330 spin_unlock_irqrestore(&info->lock, flags);
331
332 shmem_inode_unacct_blocks(inode, pages);
333 }
334
335 /*
336 * Replace item expected in xarray by a new item, while holding xa_lock.
337 */
338 static int shmem_replace_entry(struct address_space *mapping,
339 pgoff_t index, void *expected, void *replacement)
340 {
341 XA_STATE(xas, &mapping->i_pages, index);
342 void *item;
343
344 VM_BUG_ON(!expected);
345 VM_BUG_ON(!replacement);
346 item = xas_load(&xas);
347 if (item != expected)
348 return -ENOENT;
349 xas_store(&xas, replacement);
350 return 0;
351 }
352
353 /*
354 * Sometimes, before we decide whether to proceed or to fail, we must check
355 * that an entry was not already brought back from swap by a racing thread.
356 *
357 * Checking page is not enough: by the time a SwapCache page is locked, it
358 * might be reused, and again be SwapCache, using the same swap as before.
359 */
360 static bool shmem_confirm_swap(struct address_space *mapping,
361 pgoff_t index, swp_entry_t swap)
362 {
363 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
364 }
365
366 /*
367 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
368 *
369 * SHMEM_HUGE_NEVER:
370 * disables huge pages for the mount;
371 * SHMEM_HUGE_ALWAYS:
372 * enables huge pages for the mount;
373 * SHMEM_HUGE_WITHIN_SIZE:
374 * only allocate huge pages if the page will be fully within i_size,
375 * also respect fadvise()/madvise() hints;
376 * SHMEM_HUGE_ADVISE:
377 * only allocate huge pages if requested with fadvise()/madvise();
378 */
379
380 #define SHMEM_HUGE_NEVER 0
381 #define SHMEM_HUGE_ALWAYS 1
382 #define SHMEM_HUGE_WITHIN_SIZE 2
383 #define SHMEM_HUGE_ADVISE 3
384
385 /*
386 * Special values.
387 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
388 *
389 * SHMEM_HUGE_DENY:
390 * disables huge on shm_mnt and all mounts, for emergency use;
391 * SHMEM_HUGE_FORCE:
392 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
393 *
394 */
395 #define SHMEM_HUGE_DENY (-1)
396 #define SHMEM_HUGE_FORCE (-2)
397
398 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
399 /* ifdef here to avoid bloating shmem.o when not necessary */
400
401 static int shmem_huge __read_mostly;
402
403 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
404 static int shmem_parse_huge(const char *str)
405 {
406 if (!strcmp(str, "never"))
407 return SHMEM_HUGE_NEVER;
408 if (!strcmp(str, "always"))
409 return SHMEM_HUGE_ALWAYS;
410 if (!strcmp(str, "within_size"))
411 return SHMEM_HUGE_WITHIN_SIZE;
412 if (!strcmp(str, "advise"))
413 return SHMEM_HUGE_ADVISE;
414 if (!strcmp(str, "deny"))
415 return SHMEM_HUGE_DENY;
416 if (!strcmp(str, "force"))
417 return SHMEM_HUGE_FORCE;
418 return -EINVAL;
419 }
420
421 static const char *shmem_format_huge(int huge)
422 {
423 switch (huge) {
424 case SHMEM_HUGE_NEVER:
425 return "never";
426 case SHMEM_HUGE_ALWAYS:
427 return "always";
428 case SHMEM_HUGE_WITHIN_SIZE:
429 return "within_size";
430 case SHMEM_HUGE_ADVISE:
431 return "advise";
432 case SHMEM_HUGE_DENY:
433 return "deny";
434 case SHMEM_HUGE_FORCE:
435 return "force";
436 default:
437 VM_BUG_ON(1);
438 return "bad_val";
439 }
440 }
441 #endif
442
443 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
444 struct shrink_control *sc, unsigned long nr_to_split)
445 {
446 LIST_HEAD(list), *pos, *next;
447 LIST_HEAD(to_remove);
448 struct inode *inode;
449 struct shmem_inode_info *info;
450 struct page *page;
451 unsigned long batch = sc ? sc->nr_to_scan : 128;
452 int removed = 0, split = 0;
453
454 if (list_empty(&sbinfo->shrinklist))
455 return SHRINK_STOP;
456
457 spin_lock(&sbinfo->shrinklist_lock);
458 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
459 info = list_entry(pos, struct shmem_inode_info, shrinklist);
460
461 /* pin the inode */
462 inode = igrab(&info->vfs_inode);
463
464 /* inode is about to be evicted */
465 if (!inode) {
466 list_del_init(&info->shrinklist);
467 removed++;
468 goto next;
469 }
470
471 /* Check if there's anything to gain */
472 if (round_up(inode->i_size, PAGE_SIZE) ==
473 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
474 list_move(&info->shrinklist, &to_remove);
475 removed++;
476 goto next;
477 }
478
479 list_move(&info->shrinklist, &list);
480 next:
481 if (!--batch)
482 break;
483 }
484 spin_unlock(&sbinfo->shrinklist_lock);
485
486 list_for_each_safe(pos, next, &to_remove) {
487 info = list_entry(pos, struct shmem_inode_info, shrinklist);
488 inode = &info->vfs_inode;
489 list_del_init(&info->shrinklist);
490 iput(inode);
491 }
492
493 list_for_each_safe(pos, next, &list) {
494 int ret;
495
496 info = list_entry(pos, struct shmem_inode_info, shrinklist);
497 inode = &info->vfs_inode;
498
499 if (nr_to_split && split >= nr_to_split)
500 goto leave;
501
502 page = find_get_page(inode->i_mapping,
503 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
504 if (!page)
505 goto drop;
506
507 /* No huge page at the end of the file: nothing to split */
508 if (!PageTransHuge(page)) {
509 put_page(page);
510 goto drop;
511 }
512
513 /*
514 * Leave the inode on the list if we failed to lock
515 * the page at this time.
516 *
517 * Waiting for the lock may lead to deadlock in the
518 * reclaim path.
519 */
520 if (!trylock_page(page)) {
521 put_page(page);
522 goto leave;
523 }
524
525 ret = split_huge_page(page);
526 unlock_page(page);
527 put_page(page);
528
529 /* If split failed leave the inode on the list */
530 if (ret)
531 goto leave;
532
533 split++;
534 drop:
535 list_del_init(&info->shrinklist);
536 removed++;
537 leave:
538 iput(inode);
539 }
540
541 spin_lock(&sbinfo->shrinklist_lock);
542 list_splice_tail(&list, &sbinfo->shrinklist);
543 sbinfo->shrinklist_len -= removed;
544 spin_unlock(&sbinfo->shrinklist_lock);
545
546 return split;
547 }
548
549 static long shmem_unused_huge_scan(struct super_block *sb,
550 struct shrink_control *sc)
551 {
552 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
553
554 if (!READ_ONCE(sbinfo->shrinklist_len))
555 return SHRINK_STOP;
556
557 return shmem_unused_huge_shrink(sbinfo, sc, 0);
558 }
559
560 static long shmem_unused_huge_count(struct super_block *sb,
561 struct shrink_control *sc)
562 {
563 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
564 return READ_ONCE(sbinfo->shrinklist_len);
565 }
566 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
567
568 #define shmem_huge SHMEM_HUGE_DENY
569
570 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
571 struct shrink_control *sc, unsigned long nr_to_split)
572 {
573 return 0;
574 }
575 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
576
577 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
578 {
579 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
580 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
581 shmem_huge != SHMEM_HUGE_DENY)
582 return true;
583 return false;
584 }
585
586 /*
587 * Like add_to_page_cache_locked, but error if expected item has gone.
588 */
589 static int shmem_add_to_page_cache(struct page *page,
590 struct address_space *mapping,
591 pgoff_t index, void *expected, gfp_t gfp)
592 {
593 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
594 unsigned long i = 0;
595 unsigned long nr = 1UL << compound_order(page);
596
597 VM_BUG_ON_PAGE(PageTail(page), page);
598 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
599 VM_BUG_ON_PAGE(!PageLocked(page), page);
600 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
601 VM_BUG_ON(expected && PageTransHuge(page));
602
603 page_ref_add(page, nr);
604 page->mapping = mapping;
605 page->index = index;
606
607 do {
608 void *entry;
609 xas_lock_irq(&xas);
610 entry = xas_find_conflict(&xas);
611 if (entry != expected)
612 xas_set_err(&xas, -EEXIST);
613 xas_create_range(&xas);
614 if (xas_error(&xas))
615 goto unlock;
616 next:
617 xas_store(&xas, page);
618 if (++i < nr) {
619 xas_next(&xas);
620 goto next;
621 }
622 if (PageTransHuge(page)) {
623 count_vm_event(THP_FILE_ALLOC);
624 __inc_node_page_state(page, NR_SHMEM_THPS);
625 }
626 mapping->nrpages += nr;
627 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
628 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
629 unlock:
630 xas_unlock_irq(&xas);
631 } while (xas_nomem(&xas, gfp));
632
633 if (xas_error(&xas)) {
634 page->mapping = NULL;
635 page_ref_sub(page, nr);
636 return xas_error(&xas);
637 }
638
639 return 0;
640 }
641
642 /*
643 * Like delete_from_page_cache, but substitutes swap for page.
644 */
645 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
646 {
647 struct address_space *mapping = page->mapping;
648 int error;
649
650 VM_BUG_ON_PAGE(PageCompound(page), page);
651
652 xa_lock_irq(&mapping->i_pages);
653 error = shmem_replace_entry(mapping, page->index, page, radswap);
654 page->mapping = NULL;
655 mapping->nrpages--;
656 __dec_node_page_state(page, NR_FILE_PAGES);
657 __dec_node_page_state(page, NR_SHMEM);
658 xa_unlock_irq(&mapping->i_pages);
659 put_page(page);
660 BUG_ON(error);
661 }
662
663 /*
664 * Remove swap entry from page cache, free the swap and its page cache.
665 */
666 static int shmem_free_swap(struct address_space *mapping,
667 pgoff_t index, void *radswap)
668 {
669 void *old;
670
671 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
672 if (old != radswap)
673 return -ENOENT;
674 free_swap_and_cache(radix_to_swp_entry(radswap));
675 return 0;
676 }
677
678 /*
679 * Determine (in bytes) how many of the shmem object's pages mapped by the
680 * given offsets are swapped out.
681 *
682 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
683 * as long as the inode doesn't go away and racy results are not a problem.
684 */
685 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
686 pgoff_t start, pgoff_t end)
687 {
688 XA_STATE(xas, &mapping->i_pages, start);
689 struct page *page;
690 unsigned long swapped = 0;
691
692 rcu_read_lock();
693 xas_for_each(&xas, page, end - 1) {
694 if (xas_retry(&xas, page))
695 continue;
696 if (xa_is_value(page))
697 swapped++;
698
699 if (need_resched()) {
700 xas_pause(&xas);
701 cond_resched_rcu();
702 }
703 }
704
705 rcu_read_unlock();
706
707 return swapped << PAGE_SHIFT;
708 }
709
710 /*
711 * Determine (in bytes) how many of the shmem object's pages mapped by the
712 * given vma is swapped out.
713 *
714 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
715 * as long as the inode doesn't go away and racy results are not a problem.
716 */
717 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
718 {
719 struct inode *inode = file_inode(vma->vm_file);
720 struct shmem_inode_info *info = SHMEM_I(inode);
721 struct address_space *mapping = inode->i_mapping;
722 unsigned long swapped;
723
724 /* Be careful as we don't hold info->lock */
725 swapped = READ_ONCE(info->swapped);
726
727 /*
728 * The easier cases are when the shmem object has nothing in swap, or
729 * the vma maps it whole. Then we can simply use the stats that we
730 * already track.
731 */
732 if (!swapped)
733 return 0;
734
735 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
736 return swapped << PAGE_SHIFT;
737
738 /* Here comes the more involved part */
739 return shmem_partial_swap_usage(mapping,
740 linear_page_index(vma, vma->vm_start),
741 linear_page_index(vma, vma->vm_end));
742 }
743
744 /*
745 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
746 */
747 void shmem_unlock_mapping(struct address_space *mapping)
748 {
749 struct pagevec pvec;
750 pgoff_t indices[PAGEVEC_SIZE];
751 pgoff_t index = 0;
752
753 pagevec_init(&pvec);
754 /*
755 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
756 */
757 while (!mapping_unevictable(mapping)) {
758 /*
759 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
760 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
761 */
762 pvec.nr = find_get_entries(mapping, index,
763 PAGEVEC_SIZE, pvec.pages, indices);
764 if (!pvec.nr)
765 break;
766 index = indices[pvec.nr - 1] + 1;
767 pagevec_remove_exceptionals(&pvec);
768 check_move_unevictable_pages(&pvec);
769 pagevec_release(&pvec);
770 cond_resched();
771 }
772 }
773
774 /*
775 * Remove range of pages and swap entries from page cache, and free them.
776 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
777 */
778 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
779 bool unfalloc)
780 {
781 struct address_space *mapping = inode->i_mapping;
782 struct shmem_inode_info *info = SHMEM_I(inode);
783 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
784 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
785 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
786 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
787 struct pagevec pvec;
788 pgoff_t indices[PAGEVEC_SIZE];
789 long nr_swaps_freed = 0;
790 pgoff_t index;
791 int i;
792
793 if (lend == -1)
794 end = -1; /* unsigned, so actually very big */
795
796 pagevec_init(&pvec);
797 index = start;
798 while (index < end) {
799 pvec.nr = find_get_entries(mapping, index,
800 min(end - index, (pgoff_t)PAGEVEC_SIZE),
801 pvec.pages, indices);
802 if (!pvec.nr)
803 break;
804 for (i = 0; i < pagevec_count(&pvec); i++) {
805 struct page *page = pvec.pages[i];
806
807 index = indices[i];
808 if (index >= end)
809 break;
810
811 if (xa_is_value(page)) {
812 if (unfalloc)
813 continue;
814 nr_swaps_freed += !shmem_free_swap(mapping,
815 index, page);
816 continue;
817 }
818
819 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
820
821 if (!trylock_page(page))
822 continue;
823
824 if (PageTransTail(page)) {
825 /* Middle of THP: zero out the page */
826 clear_highpage(page);
827 unlock_page(page);
828 continue;
829 } else if (PageTransHuge(page)) {
830 if (index == round_down(end, HPAGE_PMD_NR)) {
831 /*
832 * Range ends in the middle of THP:
833 * zero out the page
834 */
835 clear_highpage(page);
836 unlock_page(page);
837 continue;
838 }
839 index += HPAGE_PMD_NR - 1;
840 i += HPAGE_PMD_NR - 1;
841 }
842
843 if (!unfalloc || !PageUptodate(page)) {
844 VM_BUG_ON_PAGE(PageTail(page), page);
845 if (page_mapping(page) == mapping) {
846 VM_BUG_ON_PAGE(PageWriteback(page), page);
847 truncate_inode_page(mapping, page);
848 }
849 }
850 unlock_page(page);
851 }
852 pagevec_remove_exceptionals(&pvec);
853 pagevec_release(&pvec);
854 cond_resched();
855 index++;
856 }
857
858 if (partial_start) {
859 struct page *page = NULL;
860 shmem_getpage(inode, start - 1, &page, SGP_READ);
861 if (page) {
862 unsigned int top = PAGE_SIZE;
863 if (start > end) {
864 top = partial_end;
865 partial_end = 0;
866 }
867 zero_user_segment(page, partial_start, top);
868 set_page_dirty(page);
869 unlock_page(page);
870 put_page(page);
871 }
872 }
873 if (partial_end) {
874 struct page *page = NULL;
875 shmem_getpage(inode, end, &page, SGP_READ);
876 if (page) {
877 zero_user_segment(page, 0, partial_end);
878 set_page_dirty(page);
879 unlock_page(page);
880 put_page(page);
881 }
882 }
883 if (start >= end)
884 return;
885
886 index = start;
887 while (index < end) {
888 cond_resched();
889
890 pvec.nr = find_get_entries(mapping, index,
891 min(end - index, (pgoff_t)PAGEVEC_SIZE),
892 pvec.pages, indices);
893 if (!pvec.nr) {
894 /* If all gone or hole-punch or unfalloc, we're done */
895 if (index == start || end != -1)
896 break;
897 /* But if truncating, restart to make sure all gone */
898 index = start;
899 continue;
900 }
901 for (i = 0; i < pagevec_count(&pvec); i++) {
902 struct page *page = pvec.pages[i];
903
904 index = indices[i];
905 if (index >= end)
906 break;
907
908 if (xa_is_value(page)) {
909 if (unfalloc)
910 continue;
911 if (shmem_free_swap(mapping, index, page)) {
912 /* Swap was replaced by page: retry */
913 index--;
914 break;
915 }
916 nr_swaps_freed++;
917 continue;
918 }
919
920 lock_page(page);
921
922 if (PageTransTail(page)) {
923 /* Middle of THP: zero out the page */
924 clear_highpage(page);
925 unlock_page(page);
926 /*
927 * Partial thp truncate due 'start' in middle
928 * of THP: don't need to look on these pages
929 * again on !pvec.nr restart.
930 */
931 if (index != round_down(end, HPAGE_PMD_NR))
932 start++;
933 continue;
934 } else if (PageTransHuge(page)) {
935 if (index == round_down(end, HPAGE_PMD_NR)) {
936 /*
937 * Range ends in the middle of THP:
938 * zero out the page
939 */
940 clear_highpage(page);
941 unlock_page(page);
942 continue;
943 }
944 index += HPAGE_PMD_NR - 1;
945 i += HPAGE_PMD_NR - 1;
946 }
947
948 if (!unfalloc || !PageUptodate(page)) {
949 VM_BUG_ON_PAGE(PageTail(page), page);
950 if (page_mapping(page) == mapping) {
951 VM_BUG_ON_PAGE(PageWriteback(page), page);
952 truncate_inode_page(mapping, page);
953 } else {
954 /* Page was replaced by swap: retry */
955 unlock_page(page);
956 index--;
957 break;
958 }
959 }
960 unlock_page(page);
961 }
962 pagevec_remove_exceptionals(&pvec);
963 pagevec_release(&pvec);
964 index++;
965 }
966
967 spin_lock_irq(&info->lock);
968 info->swapped -= nr_swaps_freed;
969 shmem_recalc_inode(inode);
970 spin_unlock_irq(&info->lock);
971 }
972
973 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
974 {
975 shmem_undo_range(inode, lstart, lend, false);
976 inode->i_ctime = inode->i_mtime = current_time(inode);
977 }
978 EXPORT_SYMBOL_GPL(shmem_truncate_range);
979
980 static int shmem_getattr(const struct path *path, struct kstat *stat,
981 u32 request_mask, unsigned int query_flags)
982 {
983 struct inode *inode = path->dentry->d_inode;
984 struct shmem_inode_info *info = SHMEM_I(inode);
985 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
986
987 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
988 spin_lock_irq(&info->lock);
989 shmem_recalc_inode(inode);
990 spin_unlock_irq(&info->lock);
991 }
992 generic_fillattr(inode, stat);
993
994 if (is_huge_enabled(sb_info))
995 stat->blksize = HPAGE_PMD_SIZE;
996
997 return 0;
998 }
999
1000 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1001 {
1002 struct inode *inode = d_inode(dentry);
1003 struct shmem_inode_info *info = SHMEM_I(inode);
1004 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1005 int error;
1006
1007 error = setattr_prepare(dentry, attr);
1008 if (error)
1009 return error;
1010
1011 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1012 loff_t oldsize = inode->i_size;
1013 loff_t newsize = attr->ia_size;
1014
1015 /* protected by i_mutex */
1016 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1017 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1018 return -EPERM;
1019
1020 if (newsize != oldsize) {
1021 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1022 oldsize, newsize);
1023 if (error)
1024 return error;
1025 i_size_write(inode, newsize);
1026 inode->i_ctime = inode->i_mtime = current_time(inode);
1027 }
1028 if (newsize <= oldsize) {
1029 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1030 if (oldsize > holebegin)
1031 unmap_mapping_range(inode->i_mapping,
1032 holebegin, 0, 1);
1033 if (info->alloced)
1034 shmem_truncate_range(inode,
1035 newsize, (loff_t)-1);
1036 /* unmap again to remove racily COWed private pages */
1037 if (oldsize > holebegin)
1038 unmap_mapping_range(inode->i_mapping,
1039 holebegin, 0, 1);
1040
1041 /*
1042 * Part of the huge page can be beyond i_size: subject
1043 * to shrink under memory pressure.
1044 */
1045 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1046 spin_lock(&sbinfo->shrinklist_lock);
1047 /*
1048 * _careful to defend against unlocked access to
1049 * ->shrink_list in shmem_unused_huge_shrink()
1050 */
1051 if (list_empty_careful(&info->shrinklist)) {
1052 list_add_tail(&info->shrinklist,
1053 &sbinfo->shrinklist);
1054 sbinfo->shrinklist_len++;
1055 }
1056 spin_unlock(&sbinfo->shrinklist_lock);
1057 }
1058 }
1059 }
1060
1061 setattr_copy(inode, attr);
1062 if (attr->ia_valid & ATTR_MODE)
1063 error = posix_acl_chmod(inode, inode->i_mode);
1064 return error;
1065 }
1066
1067 static void shmem_evict_inode(struct inode *inode)
1068 {
1069 struct shmem_inode_info *info = SHMEM_I(inode);
1070 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1071
1072 if (inode->i_mapping->a_ops == &shmem_aops) {
1073 shmem_unacct_size(info->flags, inode->i_size);
1074 inode->i_size = 0;
1075 shmem_truncate_range(inode, 0, (loff_t)-1);
1076 if (!list_empty(&info->shrinklist)) {
1077 spin_lock(&sbinfo->shrinklist_lock);
1078 if (!list_empty(&info->shrinklist)) {
1079 list_del_init(&info->shrinklist);
1080 sbinfo->shrinklist_len--;
1081 }
1082 spin_unlock(&sbinfo->shrinklist_lock);
1083 }
1084 while (!list_empty(&info->swaplist)) {
1085 /* Wait while shmem_unuse() is scanning this inode... */
1086 wait_var_event(&info->stop_eviction,
1087 !atomic_read(&info->stop_eviction));
1088 mutex_lock(&shmem_swaplist_mutex);
1089 /* ...but beware of the race if we peeked too early */
1090 if (!atomic_read(&info->stop_eviction))
1091 list_del_init(&info->swaplist);
1092 mutex_unlock(&shmem_swaplist_mutex);
1093 }
1094 }
1095
1096 simple_xattrs_free(&info->xattrs);
1097 WARN_ON(inode->i_blocks);
1098 shmem_free_inode(inode->i_sb);
1099 clear_inode(inode);
1100 }
1101
1102 extern struct swap_info_struct *swap_info[];
1103
1104 static int shmem_find_swap_entries(struct address_space *mapping,
1105 pgoff_t start, unsigned int nr_entries,
1106 struct page **entries, pgoff_t *indices,
1107 unsigned int type, bool frontswap)
1108 {
1109 XA_STATE(xas, &mapping->i_pages, start);
1110 struct page *page;
1111 swp_entry_t entry;
1112 unsigned int ret = 0;
1113
1114 if (!nr_entries)
1115 return 0;
1116
1117 rcu_read_lock();
1118 xas_for_each(&xas, page, ULONG_MAX) {
1119 if (xas_retry(&xas, page))
1120 continue;
1121
1122 if (!xa_is_value(page))
1123 continue;
1124
1125 entry = radix_to_swp_entry(page);
1126 if (swp_type(entry) != type)
1127 continue;
1128 if (frontswap &&
1129 !frontswap_test(swap_info[type], swp_offset(entry)))
1130 continue;
1131
1132 indices[ret] = xas.xa_index;
1133 entries[ret] = page;
1134
1135 if (need_resched()) {
1136 xas_pause(&xas);
1137 cond_resched_rcu();
1138 }
1139 if (++ret == nr_entries)
1140 break;
1141 }
1142 rcu_read_unlock();
1143
1144 return ret;
1145 }
1146
1147 /*
1148 * Move the swapped pages for an inode to page cache. Returns the count
1149 * of pages swapped in, or the error in case of failure.
1150 */
1151 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1152 pgoff_t *indices)
1153 {
1154 int i = 0;
1155 int ret = 0;
1156 int error = 0;
1157 struct address_space *mapping = inode->i_mapping;
1158
1159 for (i = 0; i < pvec.nr; i++) {
1160 struct page *page = pvec.pages[i];
1161
1162 if (!xa_is_value(page))
1163 continue;
1164 error = shmem_swapin_page(inode, indices[i],
1165 &page, SGP_CACHE,
1166 mapping_gfp_mask(mapping),
1167 NULL, NULL);
1168 if (error == 0) {
1169 unlock_page(page);
1170 put_page(page);
1171 ret++;
1172 }
1173 if (error == -ENOMEM)
1174 break;
1175 error = 0;
1176 }
1177 return error ? error : ret;
1178 }
1179
1180 /*
1181 * If swap found in inode, free it and move page from swapcache to filecache.
1182 */
1183 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1184 bool frontswap, unsigned long *fs_pages_to_unuse)
1185 {
1186 struct address_space *mapping = inode->i_mapping;
1187 pgoff_t start = 0;
1188 struct pagevec pvec;
1189 pgoff_t indices[PAGEVEC_SIZE];
1190 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1191 int ret = 0;
1192
1193 pagevec_init(&pvec);
1194 do {
1195 unsigned int nr_entries = PAGEVEC_SIZE;
1196
1197 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1198 nr_entries = *fs_pages_to_unuse;
1199
1200 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1201 pvec.pages, indices,
1202 type, frontswap);
1203 if (pvec.nr == 0) {
1204 ret = 0;
1205 break;
1206 }
1207
1208 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1209 if (ret < 0)
1210 break;
1211
1212 if (frontswap_partial) {
1213 *fs_pages_to_unuse -= ret;
1214 if (*fs_pages_to_unuse == 0) {
1215 ret = FRONTSWAP_PAGES_UNUSED;
1216 break;
1217 }
1218 }
1219
1220 start = indices[pvec.nr - 1];
1221 } while (true);
1222
1223 return ret;
1224 }
1225
1226 /*
1227 * Read all the shared memory data that resides in the swap
1228 * device 'type' back into memory, so the swap device can be
1229 * unused.
1230 */
1231 int shmem_unuse(unsigned int type, bool frontswap,
1232 unsigned long *fs_pages_to_unuse)
1233 {
1234 struct shmem_inode_info *info, *next;
1235 int error = 0;
1236
1237 if (list_empty(&shmem_swaplist))
1238 return 0;
1239
1240 mutex_lock(&shmem_swaplist_mutex);
1241 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1242 if (!info->swapped) {
1243 list_del_init(&info->swaplist);
1244 continue;
1245 }
1246 /*
1247 * Drop the swaplist mutex while searching the inode for swap;
1248 * but before doing so, make sure shmem_evict_inode() will not
1249 * remove placeholder inode from swaplist, nor let it be freed
1250 * (igrab() would protect from unlink, but not from unmount).
1251 */
1252 atomic_inc(&info->stop_eviction);
1253 mutex_unlock(&shmem_swaplist_mutex);
1254
1255 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1256 fs_pages_to_unuse);
1257 cond_resched();
1258
1259 mutex_lock(&shmem_swaplist_mutex);
1260 next = list_next_entry(info, swaplist);
1261 if (!info->swapped)
1262 list_del_init(&info->swaplist);
1263 if (atomic_dec_and_test(&info->stop_eviction))
1264 wake_up_var(&info->stop_eviction);
1265 if (error)
1266 break;
1267 }
1268 mutex_unlock(&shmem_swaplist_mutex);
1269
1270 return error;
1271 }
1272
1273 /*
1274 * Move the page from the page cache to the swap cache.
1275 */
1276 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1277 {
1278 struct shmem_inode_info *info;
1279 struct address_space *mapping;
1280 struct inode *inode;
1281 swp_entry_t swap;
1282 pgoff_t index;
1283
1284 VM_BUG_ON_PAGE(PageCompound(page), page);
1285 BUG_ON(!PageLocked(page));
1286 mapping = page->mapping;
1287 index = page->index;
1288 inode = mapping->host;
1289 info = SHMEM_I(inode);
1290 if (info->flags & VM_LOCKED)
1291 goto redirty;
1292 if (!total_swap_pages)
1293 goto redirty;
1294
1295 /*
1296 * Our capabilities prevent regular writeback or sync from ever calling
1297 * shmem_writepage; but a stacking filesystem might use ->writepage of
1298 * its underlying filesystem, in which case tmpfs should write out to
1299 * swap only in response to memory pressure, and not for the writeback
1300 * threads or sync.
1301 */
1302 if (!wbc->for_reclaim) {
1303 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1304 goto redirty;
1305 }
1306
1307 /*
1308 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1309 * value into swapfile.c, the only way we can correctly account for a
1310 * fallocated page arriving here is now to initialize it and write it.
1311 *
1312 * That's okay for a page already fallocated earlier, but if we have
1313 * not yet completed the fallocation, then (a) we want to keep track
1314 * of this page in case we have to undo it, and (b) it may not be a
1315 * good idea to continue anyway, once we're pushing into swap. So
1316 * reactivate the page, and let shmem_fallocate() quit when too many.
1317 */
1318 if (!PageUptodate(page)) {
1319 if (inode->i_private) {
1320 struct shmem_falloc *shmem_falloc;
1321 spin_lock(&inode->i_lock);
1322 shmem_falloc = inode->i_private;
1323 if (shmem_falloc &&
1324 !shmem_falloc->waitq &&
1325 index >= shmem_falloc->start &&
1326 index < shmem_falloc->next)
1327 shmem_falloc->nr_unswapped++;
1328 else
1329 shmem_falloc = NULL;
1330 spin_unlock(&inode->i_lock);
1331 if (shmem_falloc)
1332 goto redirty;
1333 }
1334 clear_highpage(page);
1335 flush_dcache_page(page);
1336 SetPageUptodate(page);
1337 }
1338
1339 swap = get_swap_page(page);
1340 if (!swap.val)
1341 goto redirty;
1342
1343 /*
1344 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1345 * if it's not already there. Do it now before the page is
1346 * moved to swap cache, when its pagelock no longer protects
1347 * the inode from eviction. But don't unlock the mutex until
1348 * we've incremented swapped, because shmem_unuse_inode() will
1349 * prune a !swapped inode from the swaplist under this mutex.
1350 */
1351 mutex_lock(&shmem_swaplist_mutex);
1352 if (list_empty(&info->swaplist))
1353 list_add(&info->swaplist, &shmem_swaplist);
1354
1355 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1356 spin_lock_irq(&info->lock);
1357 shmem_recalc_inode(inode);
1358 info->swapped++;
1359 spin_unlock_irq(&info->lock);
1360
1361 swap_shmem_alloc(swap);
1362 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1363
1364 mutex_unlock(&shmem_swaplist_mutex);
1365 BUG_ON(page_mapped(page));
1366 swap_writepage(page, wbc);
1367 return 0;
1368 }
1369
1370 mutex_unlock(&shmem_swaplist_mutex);
1371 put_swap_page(page, swap);
1372 redirty:
1373 set_page_dirty(page);
1374 if (wbc->for_reclaim)
1375 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1376 unlock_page(page);
1377 return 0;
1378 }
1379
1380 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1381 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1382 {
1383 char buffer[64];
1384
1385 if (!mpol || mpol->mode == MPOL_DEFAULT)
1386 return; /* show nothing */
1387
1388 mpol_to_str(buffer, sizeof(buffer), mpol);
1389
1390 seq_printf(seq, ",mpol=%s", buffer);
1391 }
1392
1393 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1394 {
1395 struct mempolicy *mpol = NULL;
1396 if (sbinfo->mpol) {
1397 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1398 mpol = sbinfo->mpol;
1399 mpol_get(mpol);
1400 spin_unlock(&sbinfo->stat_lock);
1401 }
1402 return mpol;
1403 }
1404 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1405 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1406 {
1407 }
1408 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1409 {
1410 return NULL;
1411 }
1412 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1413 #ifndef CONFIG_NUMA
1414 #define vm_policy vm_private_data
1415 #endif
1416
1417 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1418 struct shmem_inode_info *info, pgoff_t index)
1419 {
1420 /* Create a pseudo vma that just contains the policy */
1421 vma_init(vma, NULL);
1422 /* Bias interleave by inode number to distribute better across nodes */
1423 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1424 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1425 }
1426
1427 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1428 {
1429 /* Drop reference taken by mpol_shared_policy_lookup() */
1430 mpol_cond_put(vma->vm_policy);
1431 }
1432
1433 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1434 struct shmem_inode_info *info, pgoff_t index)
1435 {
1436 struct vm_area_struct pvma;
1437 struct page *page;
1438 struct vm_fault vmf;
1439
1440 shmem_pseudo_vma_init(&pvma, info, index);
1441 vmf.vma = &pvma;
1442 vmf.address = 0;
1443 page = swap_cluster_readahead(swap, gfp, &vmf);
1444 shmem_pseudo_vma_destroy(&pvma);
1445
1446 return page;
1447 }
1448
1449 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1450 struct shmem_inode_info *info, pgoff_t index)
1451 {
1452 struct vm_area_struct pvma;
1453 struct address_space *mapping = info->vfs_inode.i_mapping;
1454 pgoff_t hindex;
1455 struct page *page;
1456
1457 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1458 return NULL;
1459
1460 hindex = round_down(index, HPAGE_PMD_NR);
1461 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1462 XA_PRESENT))
1463 return NULL;
1464
1465 shmem_pseudo_vma_init(&pvma, info, hindex);
1466 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1467 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1468 shmem_pseudo_vma_destroy(&pvma);
1469 if (page)
1470 prep_transhuge_page(page);
1471 return page;
1472 }
1473
1474 static struct page *shmem_alloc_page(gfp_t gfp,
1475 struct shmem_inode_info *info, pgoff_t index)
1476 {
1477 struct vm_area_struct pvma;
1478 struct page *page;
1479
1480 shmem_pseudo_vma_init(&pvma, info, index);
1481 page = alloc_page_vma(gfp, &pvma, 0);
1482 shmem_pseudo_vma_destroy(&pvma);
1483
1484 return page;
1485 }
1486
1487 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1488 struct inode *inode,
1489 pgoff_t index, bool huge)
1490 {
1491 struct shmem_inode_info *info = SHMEM_I(inode);
1492 struct page *page;
1493 int nr;
1494 int err = -ENOSPC;
1495
1496 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1497 huge = false;
1498 nr = huge ? HPAGE_PMD_NR : 1;
1499
1500 if (!shmem_inode_acct_block(inode, nr))
1501 goto failed;
1502
1503 if (huge)
1504 page = shmem_alloc_hugepage(gfp, info, index);
1505 else
1506 page = shmem_alloc_page(gfp, info, index);
1507 if (page) {
1508 __SetPageLocked(page);
1509 __SetPageSwapBacked(page);
1510 return page;
1511 }
1512
1513 err = -ENOMEM;
1514 shmem_inode_unacct_blocks(inode, nr);
1515 failed:
1516 return ERR_PTR(err);
1517 }
1518
1519 /*
1520 * When a page is moved from swapcache to shmem filecache (either by the
1521 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1522 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1523 * ignorance of the mapping it belongs to. If that mapping has special
1524 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1525 * we may need to copy to a suitable page before moving to filecache.
1526 *
1527 * In a future release, this may well be extended to respect cpuset and
1528 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1529 * but for now it is a simple matter of zone.
1530 */
1531 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1532 {
1533 return page_zonenum(page) > gfp_zone(gfp);
1534 }
1535
1536 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1537 struct shmem_inode_info *info, pgoff_t index)
1538 {
1539 struct page *oldpage, *newpage;
1540 struct address_space *swap_mapping;
1541 swp_entry_t entry;
1542 pgoff_t swap_index;
1543 int error;
1544
1545 oldpage = *pagep;
1546 entry.val = page_private(oldpage);
1547 swap_index = swp_offset(entry);
1548 swap_mapping = page_mapping(oldpage);
1549
1550 /*
1551 * We have arrived here because our zones are constrained, so don't
1552 * limit chance of success by further cpuset and node constraints.
1553 */
1554 gfp &= ~GFP_CONSTRAINT_MASK;
1555 newpage = shmem_alloc_page(gfp, info, index);
1556 if (!newpage)
1557 return -ENOMEM;
1558
1559 get_page(newpage);
1560 copy_highpage(newpage, oldpage);
1561 flush_dcache_page(newpage);
1562
1563 __SetPageLocked(newpage);
1564 __SetPageSwapBacked(newpage);
1565 SetPageUptodate(newpage);
1566 set_page_private(newpage, entry.val);
1567 SetPageSwapCache(newpage);
1568
1569 /*
1570 * Our caller will very soon move newpage out of swapcache, but it's
1571 * a nice clean interface for us to replace oldpage by newpage there.
1572 */
1573 xa_lock_irq(&swap_mapping->i_pages);
1574 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1575 if (!error) {
1576 __inc_node_page_state(newpage, NR_FILE_PAGES);
1577 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1578 }
1579 xa_unlock_irq(&swap_mapping->i_pages);
1580
1581 if (unlikely(error)) {
1582 /*
1583 * Is this possible? I think not, now that our callers check
1584 * both PageSwapCache and page_private after getting page lock;
1585 * but be defensive. Reverse old to newpage for clear and free.
1586 */
1587 oldpage = newpage;
1588 } else {
1589 mem_cgroup_migrate(oldpage, newpage);
1590 lru_cache_add_anon(newpage);
1591 *pagep = newpage;
1592 }
1593
1594 ClearPageSwapCache(oldpage);
1595 set_page_private(oldpage, 0);
1596
1597 unlock_page(oldpage);
1598 put_page(oldpage);
1599 put_page(oldpage);
1600 return error;
1601 }
1602
1603 /*
1604 * Swap in the page pointed to by *pagep.
1605 * Caller has to make sure that *pagep contains a valid swapped page.
1606 * Returns 0 and the page in pagep if success. On failure, returns the
1607 * the error code and NULL in *pagep.
1608 */
1609 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1610 struct page **pagep, enum sgp_type sgp,
1611 gfp_t gfp, struct vm_area_struct *vma,
1612 vm_fault_t *fault_type)
1613 {
1614 struct address_space *mapping = inode->i_mapping;
1615 struct shmem_inode_info *info = SHMEM_I(inode);
1616 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1617 struct mem_cgroup *memcg;
1618 struct page *page;
1619 swp_entry_t swap;
1620 int error;
1621
1622 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1623 swap = radix_to_swp_entry(*pagep);
1624 *pagep = NULL;
1625
1626 /* Look it up and read it in.. */
1627 page = lookup_swap_cache(swap, NULL, 0);
1628 if (!page) {
1629 /* Or update major stats only when swapin succeeds?? */
1630 if (fault_type) {
1631 *fault_type |= VM_FAULT_MAJOR;
1632 count_vm_event(PGMAJFAULT);
1633 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1634 }
1635 /* Here we actually start the io */
1636 page = shmem_swapin(swap, gfp, info, index);
1637 if (!page) {
1638 error = -ENOMEM;
1639 goto failed;
1640 }
1641 }
1642
1643 /* We have to do this with page locked to prevent races */
1644 lock_page(page);
1645 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1646 !shmem_confirm_swap(mapping, index, swap)) {
1647 error = -EEXIST;
1648 goto unlock;
1649 }
1650 if (!PageUptodate(page)) {
1651 error = -EIO;
1652 goto failed;
1653 }
1654 wait_on_page_writeback(page);
1655
1656 if (shmem_should_replace_page(page, gfp)) {
1657 error = shmem_replace_page(&page, gfp, info, index);
1658 if (error)
1659 goto failed;
1660 }
1661
1662 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1663 false);
1664 if (!error) {
1665 error = shmem_add_to_page_cache(page, mapping, index,
1666 swp_to_radix_entry(swap), gfp);
1667 /*
1668 * We already confirmed swap under page lock, and make
1669 * no memory allocation here, so usually no possibility
1670 * of error; but free_swap_and_cache() only trylocks a
1671 * page, so it is just possible that the entry has been
1672 * truncated or holepunched since swap was confirmed.
1673 * shmem_undo_range() will have done some of the
1674 * unaccounting, now delete_from_swap_cache() will do
1675 * the rest.
1676 */
1677 if (error) {
1678 mem_cgroup_cancel_charge(page, memcg, false);
1679 delete_from_swap_cache(page);
1680 }
1681 }
1682 if (error)
1683 goto failed;
1684
1685 mem_cgroup_commit_charge(page, memcg, true, false);
1686
1687 spin_lock_irq(&info->lock);
1688 info->swapped--;
1689 shmem_recalc_inode(inode);
1690 spin_unlock_irq(&info->lock);
1691
1692 if (sgp == SGP_WRITE)
1693 mark_page_accessed(page);
1694
1695 delete_from_swap_cache(page);
1696 set_page_dirty(page);
1697 swap_free(swap);
1698
1699 *pagep = page;
1700 return 0;
1701 failed:
1702 if (!shmem_confirm_swap(mapping, index, swap))
1703 error = -EEXIST;
1704 unlock:
1705 if (page) {
1706 unlock_page(page);
1707 put_page(page);
1708 }
1709
1710 return error;
1711 }
1712
1713 /*
1714 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1715 *
1716 * If we allocate a new one we do not mark it dirty. That's up to the
1717 * vm. If we swap it in we mark it dirty since we also free the swap
1718 * entry since a page cannot live in both the swap and page cache.
1719 *
1720 * fault_mm and fault_type are only supplied by shmem_fault:
1721 * otherwise they are NULL.
1722 */
1723 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1724 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1725 struct vm_area_struct *vma, struct vm_fault *vmf,
1726 vm_fault_t *fault_type)
1727 {
1728 struct address_space *mapping = inode->i_mapping;
1729 struct shmem_inode_info *info = SHMEM_I(inode);
1730 struct shmem_sb_info *sbinfo;
1731 struct mm_struct *charge_mm;
1732 struct mem_cgroup *memcg;
1733 struct page *page;
1734 enum sgp_type sgp_huge = sgp;
1735 pgoff_t hindex = index;
1736 int error;
1737 int once = 0;
1738 int alloced = 0;
1739
1740 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1741 return -EFBIG;
1742 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1743 sgp = SGP_CACHE;
1744 repeat:
1745 if (sgp <= SGP_CACHE &&
1746 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1747 return -EINVAL;
1748 }
1749
1750 sbinfo = SHMEM_SB(inode->i_sb);
1751 charge_mm = vma ? vma->vm_mm : current->mm;
1752
1753 page = find_lock_entry(mapping, index);
1754 if (xa_is_value(page)) {
1755 error = shmem_swapin_page(inode, index, &page,
1756 sgp, gfp, vma, fault_type);
1757 if (error == -EEXIST)
1758 goto repeat;
1759
1760 *pagep = page;
1761 return error;
1762 }
1763
1764 if (page && sgp == SGP_WRITE)
1765 mark_page_accessed(page);
1766
1767 /* fallocated page? */
1768 if (page && !PageUptodate(page)) {
1769 if (sgp != SGP_READ)
1770 goto clear;
1771 unlock_page(page);
1772 put_page(page);
1773 page = NULL;
1774 }
1775 if (page || sgp == SGP_READ) {
1776 *pagep = page;
1777 return 0;
1778 }
1779
1780 /*
1781 * Fast cache lookup did not find it:
1782 * bring it back from swap or allocate.
1783 */
1784
1785 if (vma && userfaultfd_missing(vma)) {
1786 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1787 return 0;
1788 }
1789
1790 /* shmem_symlink() */
1791 if (mapping->a_ops != &shmem_aops)
1792 goto alloc_nohuge;
1793 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1794 goto alloc_nohuge;
1795 if (shmem_huge == SHMEM_HUGE_FORCE)
1796 goto alloc_huge;
1797 switch (sbinfo->huge) {
1798 loff_t i_size;
1799 pgoff_t off;
1800 case SHMEM_HUGE_NEVER:
1801 goto alloc_nohuge;
1802 case SHMEM_HUGE_WITHIN_SIZE:
1803 off = round_up(index, HPAGE_PMD_NR);
1804 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1805 if (i_size >= HPAGE_PMD_SIZE &&
1806 i_size >> PAGE_SHIFT >= off)
1807 goto alloc_huge;
1808 /* fallthrough */
1809 case SHMEM_HUGE_ADVISE:
1810 if (sgp_huge == SGP_HUGE)
1811 goto alloc_huge;
1812 /* TODO: implement fadvise() hints */
1813 goto alloc_nohuge;
1814 }
1815
1816 alloc_huge:
1817 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1818 if (IS_ERR(page)) {
1819 alloc_nohuge:
1820 page = shmem_alloc_and_acct_page(gfp, inode,
1821 index, false);
1822 }
1823 if (IS_ERR(page)) {
1824 int retry = 5;
1825
1826 error = PTR_ERR(page);
1827 page = NULL;
1828 if (error != -ENOSPC)
1829 goto unlock;
1830 /*
1831 * Try to reclaim some space by splitting a huge page
1832 * beyond i_size on the filesystem.
1833 */
1834 while (retry--) {
1835 int ret;
1836
1837 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1838 if (ret == SHRINK_STOP)
1839 break;
1840 if (ret)
1841 goto alloc_nohuge;
1842 }
1843 goto unlock;
1844 }
1845
1846 if (PageTransHuge(page))
1847 hindex = round_down(index, HPAGE_PMD_NR);
1848 else
1849 hindex = index;
1850
1851 if (sgp == SGP_WRITE)
1852 __SetPageReferenced(page);
1853
1854 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1855 PageTransHuge(page));
1856 if (error)
1857 goto unacct;
1858 error = shmem_add_to_page_cache(page, mapping, hindex,
1859 NULL, gfp & GFP_RECLAIM_MASK);
1860 if (error) {
1861 mem_cgroup_cancel_charge(page, memcg,
1862 PageTransHuge(page));
1863 goto unacct;
1864 }
1865 mem_cgroup_commit_charge(page, memcg, false,
1866 PageTransHuge(page));
1867 lru_cache_add_anon(page);
1868
1869 spin_lock_irq(&info->lock);
1870 info->alloced += 1 << compound_order(page);
1871 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1872 shmem_recalc_inode(inode);
1873 spin_unlock_irq(&info->lock);
1874 alloced = true;
1875
1876 if (PageTransHuge(page) &&
1877 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1878 hindex + HPAGE_PMD_NR - 1) {
1879 /*
1880 * Part of the huge page is beyond i_size: subject
1881 * to shrink under memory pressure.
1882 */
1883 spin_lock(&sbinfo->shrinklist_lock);
1884 /*
1885 * _careful to defend against unlocked access to
1886 * ->shrink_list in shmem_unused_huge_shrink()
1887 */
1888 if (list_empty_careful(&info->shrinklist)) {
1889 list_add_tail(&info->shrinklist,
1890 &sbinfo->shrinklist);
1891 sbinfo->shrinklist_len++;
1892 }
1893 spin_unlock(&sbinfo->shrinklist_lock);
1894 }
1895
1896 /*
1897 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1898 */
1899 if (sgp == SGP_FALLOC)
1900 sgp = SGP_WRITE;
1901 clear:
1902 /*
1903 * Let SGP_WRITE caller clear ends if write does not fill page;
1904 * but SGP_FALLOC on a page fallocated earlier must initialize
1905 * it now, lest undo on failure cancel our earlier guarantee.
1906 */
1907 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1908 struct page *head = compound_head(page);
1909 int i;
1910
1911 for (i = 0; i < (1 << compound_order(head)); i++) {
1912 clear_highpage(head + i);
1913 flush_dcache_page(head + i);
1914 }
1915 SetPageUptodate(head);
1916 }
1917
1918 /* Perhaps the file has been truncated since we checked */
1919 if (sgp <= SGP_CACHE &&
1920 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1921 if (alloced) {
1922 ClearPageDirty(page);
1923 delete_from_page_cache(page);
1924 spin_lock_irq(&info->lock);
1925 shmem_recalc_inode(inode);
1926 spin_unlock_irq(&info->lock);
1927 }
1928 error = -EINVAL;
1929 goto unlock;
1930 }
1931 *pagep = page + index - hindex;
1932 return 0;
1933
1934 /*
1935 * Error recovery.
1936 */
1937 unacct:
1938 shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1939
1940 if (PageTransHuge(page)) {
1941 unlock_page(page);
1942 put_page(page);
1943 goto alloc_nohuge;
1944 }
1945 unlock:
1946 if (page) {
1947 unlock_page(page);
1948 put_page(page);
1949 }
1950 if (error == -ENOSPC && !once++) {
1951 spin_lock_irq(&info->lock);
1952 shmem_recalc_inode(inode);
1953 spin_unlock_irq(&info->lock);
1954 goto repeat;
1955 }
1956 if (error == -EEXIST)
1957 goto repeat;
1958 return error;
1959 }
1960
1961 /*
1962 * This is like autoremove_wake_function, but it removes the wait queue
1963 * entry unconditionally - even if something else had already woken the
1964 * target.
1965 */
1966 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1967 {
1968 int ret = default_wake_function(wait, mode, sync, key);
1969 list_del_init(&wait->entry);
1970 return ret;
1971 }
1972
1973 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1974 {
1975 struct vm_area_struct *vma = vmf->vma;
1976 struct inode *inode = file_inode(vma->vm_file);
1977 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1978 enum sgp_type sgp;
1979 int err;
1980 vm_fault_t ret = VM_FAULT_LOCKED;
1981
1982 /*
1983 * Trinity finds that probing a hole which tmpfs is punching can
1984 * prevent the hole-punch from ever completing: which in turn
1985 * locks writers out with its hold on i_mutex. So refrain from
1986 * faulting pages into the hole while it's being punched. Although
1987 * shmem_undo_range() does remove the additions, it may be unable to
1988 * keep up, as each new page needs its own unmap_mapping_range() call,
1989 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1990 *
1991 * It does not matter if we sometimes reach this check just before the
1992 * hole-punch begins, so that one fault then races with the punch:
1993 * we just need to make racing faults a rare case.
1994 *
1995 * The implementation below would be much simpler if we just used a
1996 * standard mutex or completion: but we cannot take i_mutex in fault,
1997 * and bloating every shmem inode for this unlikely case would be sad.
1998 */
1999 if (unlikely(inode->i_private)) {
2000 struct shmem_falloc *shmem_falloc;
2001
2002 spin_lock(&inode->i_lock);
2003 shmem_falloc = inode->i_private;
2004 if (shmem_falloc &&
2005 shmem_falloc->waitq &&
2006 vmf->pgoff >= shmem_falloc->start &&
2007 vmf->pgoff < shmem_falloc->next) {
2008 wait_queue_head_t *shmem_falloc_waitq;
2009 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2010
2011 ret = VM_FAULT_NOPAGE;
2012 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
2013 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
2014 /* It's polite to up mmap_sem if we can */
2015 up_read(&vma->vm_mm->mmap_sem);
2016 ret = VM_FAULT_RETRY;
2017 }
2018
2019 shmem_falloc_waitq = shmem_falloc->waitq;
2020 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2021 TASK_UNINTERRUPTIBLE);
2022 spin_unlock(&inode->i_lock);
2023 schedule();
2024
2025 /*
2026 * shmem_falloc_waitq points into the shmem_fallocate()
2027 * stack of the hole-punching task: shmem_falloc_waitq
2028 * is usually invalid by the time we reach here, but
2029 * finish_wait() does not dereference it in that case;
2030 * though i_lock needed lest racing with wake_up_all().
2031 */
2032 spin_lock(&inode->i_lock);
2033 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2034 spin_unlock(&inode->i_lock);
2035 return ret;
2036 }
2037 spin_unlock(&inode->i_lock);
2038 }
2039
2040 sgp = SGP_CACHE;
2041
2042 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2043 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2044 sgp = SGP_NOHUGE;
2045 else if (vma->vm_flags & VM_HUGEPAGE)
2046 sgp = SGP_HUGE;
2047
2048 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2049 gfp, vma, vmf, &ret);
2050 if (err)
2051 return vmf_error(err);
2052 return ret;
2053 }
2054
2055 unsigned long shmem_get_unmapped_area(struct file *file,
2056 unsigned long uaddr, unsigned long len,
2057 unsigned long pgoff, unsigned long flags)
2058 {
2059 unsigned long (*get_area)(struct file *,
2060 unsigned long, unsigned long, unsigned long, unsigned long);
2061 unsigned long addr;
2062 unsigned long offset;
2063 unsigned long inflated_len;
2064 unsigned long inflated_addr;
2065 unsigned long inflated_offset;
2066
2067 if (len > TASK_SIZE)
2068 return -ENOMEM;
2069
2070 get_area = current->mm->get_unmapped_area;
2071 addr = get_area(file, uaddr, len, pgoff, flags);
2072
2073 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2074 return addr;
2075 if (IS_ERR_VALUE(addr))
2076 return addr;
2077 if (addr & ~PAGE_MASK)
2078 return addr;
2079 if (addr > TASK_SIZE - len)
2080 return addr;
2081
2082 if (shmem_huge == SHMEM_HUGE_DENY)
2083 return addr;
2084 if (len < HPAGE_PMD_SIZE)
2085 return addr;
2086 if (flags & MAP_FIXED)
2087 return addr;
2088 /*
2089 * Our priority is to support MAP_SHARED mapped hugely;
2090 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2091 * But if caller specified an address hint, respect that as before.
2092 */
2093 if (uaddr)
2094 return addr;
2095
2096 if (shmem_huge != SHMEM_HUGE_FORCE) {
2097 struct super_block *sb;
2098
2099 if (file) {
2100 VM_BUG_ON(file->f_op != &shmem_file_operations);
2101 sb = file_inode(file)->i_sb;
2102 } else {
2103 /*
2104 * Called directly from mm/mmap.c, or drivers/char/mem.c
2105 * for "/dev/zero", to create a shared anonymous object.
2106 */
2107 if (IS_ERR(shm_mnt))
2108 return addr;
2109 sb = shm_mnt->mnt_sb;
2110 }
2111 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2112 return addr;
2113 }
2114
2115 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2116 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2117 return addr;
2118 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2119 return addr;
2120
2121 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2122 if (inflated_len > TASK_SIZE)
2123 return addr;
2124 if (inflated_len < len)
2125 return addr;
2126
2127 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2128 if (IS_ERR_VALUE(inflated_addr))
2129 return addr;
2130 if (inflated_addr & ~PAGE_MASK)
2131 return addr;
2132
2133 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2134 inflated_addr += offset - inflated_offset;
2135 if (inflated_offset > offset)
2136 inflated_addr += HPAGE_PMD_SIZE;
2137
2138 if (inflated_addr > TASK_SIZE - len)
2139 return addr;
2140 return inflated_addr;
2141 }
2142
2143 #ifdef CONFIG_NUMA
2144 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2145 {
2146 struct inode *inode = file_inode(vma->vm_file);
2147 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2148 }
2149
2150 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2151 unsigned long addr)
2152 {
2153 struct inode *inode = file_inode(vma->vm_file);
2154 pgoff_t index;
2155
2156 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2157 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2158 }
2159 #endif
2160
2161 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2162 {
2163 struct inode *inode = file_inode(file);
2164 struct shmem_inode_info *info = SHMEM_I(inode);
2165 int retval = -ENOMEM;
2166
2167 spin_lock_irq(&info->lock);
2168 if (lock && !(info->flags & VM_LOCKED)) {
2169 if (!user_shm_lock(inode->i_size, user))
2170 goto out_nomem;
2171 info->flags |= VM_LOCKED;
2172 mapping_set_unevictable(file->f_mapping);
2173 }
2174 if (!lock && (info->flags & VM_LOCKED) && user) {
2175 user_shm_unlock(inode->i_size, user);
2176 info->flags &= ~VM_LOCKED;
2177 mapping_clear_unevictable(file->f_mapping);
2178 }
2179 retval = 0;
2180
2181 out_nomem:
2182 spin_unlock_irq(&info->lock);
2183 return retval;
2184 }
2185
2186 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2187 {
2188 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2189
2190 if (info->seals & F_SEAL_FUTURE_WRITE) {
2191 /*
2192 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2193 * "future write" seal active.
2194 */
2195 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2196 return -EPERM;
2197
2198 /*
2199 * Since the F_SEAL_FUTURE_WRITE seals allow for a MAP_SHARED
2200 * read-only mapping, take care to not allow mprotect to revert
2201 * protections.
2202 */
2203 vma->vm_flags &= ~(VM_MAYWRITE);
2204 }
2205
2206 file_accessed(file);
2207 vma->vm_ops = &shmem_vm_ops;
2208 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2209 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2210 (vma->vm_end & HPAGE_PMD_MASK)) {
2211 khugepaged_enter(vma, vma->vm_flags);
2212 }
2213 return 0;
2214 }
2215
2216 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2217 umode_t mode, dev_t dev, unsigned long flags)
2218 {
2219 struct inode *inode;
2220 struct shmem_inode_info *info;
2221 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2222
2223 if (shmem_reserve_inode(sb))
2224 return NULL;
2225
2226 inode = new_inode(sb);
2227 if (inode) {
2228 inode->i_ino = get_next_ino();
2229 inode_init_owner(inode, dir, mode);
2230 inode->i_blocks = 0;
2231 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2232 inode->i_generation = prandom_u32();
2233 info = SHMEM_I(inode);
2234 memset(info, 0, (char *)inode - (char *)info);
2235 spin_lock_init(&info->lock);
2236 atomic_set(&info->stop_eviction, 0);
2237 info->seals = F_SEAL_SEAL;
2238 info->flags = flags & VM_NORESERVE;
2239 INIT_LIST_HEAD(&info->shrinklist);
2240 INIT_LIST_HEAD(&info->swaplist);
2241 simple_xattrs_init(&info->xattrs);
2242 cache_no_acl(inode);
2243
2244 switch (mode & S_IFMT) {
2245 default:
2246 inode->i_op = &shmem_special_inode_operations;
2247 init_special_inode(inode, mode, dev);
2248 break;
2249 case S_IFREG:
2250 inode->i_mapping->a_ops = &shmem_aops;
2251 inode->i_op = &shmem_inode_operations;
2252 inode->i_fop = &shmem_file_operations;
2253 mpol_shared_policy_init(&info->policy,
2254 shmem_get_sbmpol(sbinfo));
2255 break;
2256 case S_IFDIR:
2257 inc_nlink(inode);
2258 /* Some things misbehave if size == 0 on a directory */
2259 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2260 inode->i_op = &shmem_dir_inode_operations;
2261 inode->i_fop = &simple_dir_operations;
2262 break;
2263 case S_IFLNK:
2264 /*
2265 * Must not load anything in the rbtree,
2266 * mpol_free_shared_policy will not be called.
2267 */
2268 mpol_shared_policy_init(&info->policy, NULL);
2269 break;
2270 }
2271
2272 lockdep_annotate_inode_mutex_key(inode);
2273 } else
2274 shmem_free_inode(sb);
2275 return inode;
2276 }
2277
2278 bool shmem_mapping(struct address_space *mapping)
2279 {
2280 return mapping->a_ops == &shmem_aops;
2281 }
2282
2283 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2284 pmd_t *dst_pmd,
2285 struct vm_area_struct *dst_vma,
2286 unsigned long dst_addr,
2287 unsigned long src_addr,
2288 bool zeropage,
2289 struct page **pagep)
2290 {
2291 struct inode *inode = file_inode(dst_vma->vm_file);
2292 struct shmem_inode_info *info = SHMEM_I(inode);
2293 struct address_space *mapping = inode->i_mapping;
2294 gfp_t gfp = mapping_gfp_mask(mapping);
2295 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2296 struct mem_cgroup *memcg;
2297 spinlock_t *ptl;
2298 void *page_kaddr;
2299 struct page *page;
2300 pte_t _dst_pte, *dst_pte;
2301 int ret;
2302 pgoff_t offset, max_off;
2303
2304 ret = -ENOMEM;
2305 if (!shmem_inode_acct_block(inode, 1))
2306 goto out;
2307
2308 if (!*pagep) {
2309 page = shmem_alloc_page(gfp, info, pgoff);
2310 if (!page)
2311 goto out_unacct_blocks;
2312
2313 if (!zeropage) { /* mcopy_atomic */
2314 page_kaddr = kmap_atomic(page);
2315 ret = copy_from_user(page_kaddr,
2316 (const void __user *)src_addr,
2317 PAGE_SIZE);
2318 kunmap_atomic(page_kaddr);
2319
2320 /* fallback to copy_from_user outside mmap_sem */
2321 if (unlikely(ret)) {
2322 *pagep = page;
2323 shmem_inode_unacct_blocks(inode, 1);
2324 /* don't free the page */
2325 return -ENOENT;
2326 }
2327 } else { /* mfill_zeropage_atomic */
2328 clear_highpage(page);
2329 }
2330 } else {
2331 page = *pagep;
2332 *pagep = NULL;
2333 }
2334
2335 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2336 __SetPageLocked(page);
2337 __SetPageSwapBacked(page);
2338 __SetPageUptodate(page);
2339
2340 ret = -EFAULT;
2341 offset = linear_page_index(dst_vma, dst_addr);
2342 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2343 if (unlikely(offset >= max_off))
2344 goto out_release;
2345
2346 ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2347 if (ret)
2348 goto out_release;
2349
2350 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2351 gfp & GFP_RECLAIM_MASK);
2352 if (ret)
2353 goto out_release_uncharge;
2354
2355 mem_cgroup_commit_charge(page, memcg, false, false);
2356
2357 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2358 if (dst_vma->vm_flags & VM_WRITE)
2359 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2360 else {
2361 /*
2362 * We don't set the pte dirty if the vma has no
2363 * VM_WRITE permission, so mark the page dirty or it
2364 * could be freed from under us. We could do it
2365 * unconditionally before unlock_page(), but doing it
2366 * only if VM_WRITE is not set is faster.
2367 */
2368 set_page_dirty(page);
2369 }
2370
2371 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2372
2373 ret = -EFAULT;
2374 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2375 if (unlikely(offset >= max_off))
2376 goto out_release_uncharge_unlock;
2377
2378 ret = -EEXIST;
2379 if (!pte_none(*dst_pte))
2380 goto out_release_uncharge_unlock;
2381
2382 lru_cache_add_anon(page);
2383
2384 spin_lock(&info->lock);
2385 info->alloced++;
2386 inode->i_blocks += BLOCKS_PER_PAGE;
2387 shmem_recalc_inode(inode);
2388 spin_unlock(&info->lock);
2389
2390 inc_mm_counter(dst_mm, mm_counter_file(page));
2391 page_add_file_rmap(page, false);
2392 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2393
2394 /* No need to invalidate - it was non-present before */
2395 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2396 pte_unmap_unlock(dst_pte, ptl);
2397 unlock_page(page);
2398 ret = 0;
2399 out:
2400 return ret;
2401 out_release_uncharge_unlock:
2402 pte_unmap_unlock(dst_pte, ptl);
2403 ClearPageDirty(page);
2404 delete_from_page_cache(page);
2405 out_release_uncharge:
2406 mem_cgroup_cancel_charge(page, memcg, false);
2407 out_release:
2408 unlock_page(page);
2409 put_page(page);
2410 out_unacct_blocks:
2411 shmem_inode_unacct_blocks(inode, 1);
2412 goto out;
2413 }
2414
2415 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2416 pmd_t *dst_pmd,
2417 struct vm_area_struct *dst_vma,
2418 unsigned long dst_addr,
2419 unsigned long src_addr,
2420 struct page **pagep)
2421 {
2422 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2423 dst_addr, src_addr, false, pagep);
2424 }
2425
2426 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2427 pmd_t *dst_pmd,
2428 struct vm_area_struct *dst_vma,
2429 unsigned long dst_addr)
2430 {
2431 struct page *page = NULL;
2432
2433 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2434 dst_addr, 0, true, &page);
2435 }
2436
2437 #ifdef CONFIG_TMPFS
2438 static const struct inode_operations shmem_symlink_inode_operations;
2439 static const struct inode_operations shmem_short_symlink_operations;
2440
2441 #ifdef CONFIG_TMPFS_XATTR
2442 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2443 #else
2444 #define shmem_initxattrs NULL
2445 #endif
2446
2447 static int
2448 shmem_write_begin(struct file *file, struct address_space *mapping,
2449 loff_t pos, unsigned len, unsigned flags,
2450 struct page **pagep, void **fsdata)
2451 {
2452 struct inode *inode = mapping->host;
2453 struct shmem_inode_info *info = SHMEM_I(inode);
2454 pgoff_t index = pos >> PAGE_SHIFT;
2455
2456 /* i_mutex is held by caller */
2457 if (unlikely(info->seals & (F_SEAL_GROW |
2458 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2459 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2460 return -EPERM;
2461 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2462 return -EPERM;
2463 }
2464
2465 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2466 }
2467
2468 static int
2469 shmem_write_end(struct file *file, struct address_space *mapping,
2470 loff_t pos, unsigned len, unsigned copied,
2471 struct page *page, void *fsdata)
2472 {
2473 struct inode *inode = mapping->host;
2474
2475 if (pos + copied > inode->i_size)
2476 i_size_write(inode, pos + copied);
2477
2478 if (!PageUptodate(page)) {
2479 struct page *head = compound_head(page);
2480 if (PageTransCompound(page)) {
2481 int i;
2482
2483 for (i = 0; i < HPAGE_PMD_NR; i++) {
2484 if (head + i == page)
2485 continue;
2486 clear_highpage(head + i);
2487 flush_dcache_page(head + i);
2488 }
2489 }
2490 if (copied < PAGE_SIZE) {
2491 unsigned from = pos & (PAGE_SIZE - 1);
2492 zero_user_segments(page, 0, from,
2493 from + copied, PAGE_SIZE);
2494 }
2495 SetPageUptodate(head);
2496 }
2497 set_page_dirty(page);
2498 unlock_page(page);
2499 put_page(page);
2500
2501 return copied;
2502 }
2503
2504 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2505 {
2506 struct file *file = iocb->ki_filp;
2507 struct inode *inode = file_inode(file);
2508 struct address_space *mapping = inode->i_mapping;
2509 pgoff_t index;
2510 unsigned long offset;
2511 enum sgp_type sgp = SGP_READ;
2512 int error = 0;
2513 ssize_t retval = 0;
2514 loff_t *ppos = &iocb->ki_pos;
2515
2516 /*
2517 * Might this read be for a stacking filesystem? Then when reading
2518 * holes of a sparse file, we actually need to allocate those pages,
2519 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2520 */
2521 if (!iter_is_iovec(to))
2522 sgp = SGP_CACHE;
2523
2524 index = *ppos >> PAGE_SHIFT;
2525 offset = *ppos & ~PAGE_MASK;
2526
2527 for (;;) {
2528 struct page *page = NULL;
2529 pgoff_t end_index;
2530 unsigned long nr, ret;
2531 loff_t i_size = i_size_read(inode);
2532
2533 end_index = i_size >> PAGE_SHIFT;
2534 if (index > end_index)
2535 break;
2536 if (index == end_index) {
2537 nr = i_size & ~PAGE_MASK;
2538 if (nr <= offset)
2539 break;
2540 }
2541
2542 error = shmem_getpage(inode, index, &page, sgp);
2543 if (error) {
2544 if (error == -EINVAL)
2545 error = 0;
2546 break;
2547 }
2548 if (page) {
2549 if (sgp == SGP_CACHE)
2550 set_page_dirty(page);
2551 unlock_page(page);
2552 }
2553
2554 /*
2555 * We must evaluate after, since reads (unlike writes)
2556 * are called without i_mutex protection against truncate
2557 */
2558 nr = PAGE_SIZE;
2559 i_size = i_size_read(inode);
2560 end_index = i_size >> PAGE_SHIFT;
2561 if (index == end_index) {
2562 nr = i_size & ~PAGE_MASK;
2563 if (nr <= offset) {
2564 if (page)
2565 put_page(page);
2566 break;
2567 }
2568 }
2569 nr -= offset;
2570
2571 if (page) {
2572 /*
2573 * If users can be writing to this page using arbitrary
2574 * virtual addresses, take care about potential aliasing
2575 * before reading the page on the kernel side.
2576 */
2577 if (mapping_writably_mapped(mapping))
2578 flush_dcache_page(page);
2579 /*
2580 * Mark the page accessed if we read the beginning.
2581 */
2582 if (!offset)
2583 mark_page_accessed(page);
2584 } else {
2585 page = ZERO_PAGE(0);
2586 get_page(page);
2587 }
2588
2589 /*
2590 * Ok, we have the page, and it's up-to-date, so
2591 * now we can copy it to user space...
2592 */
2593 ret = copy_page_to_iter(page, offset, nr, to);
2594 retval += ret;
2595 offset += ret;
2596 index += offset >> PAGE_SHIFT;
2597 offset &= ~PAGE_MASK;
2598
2599 put_page(page);
2600 if (!iov_iter_count(to))
2601 break;
2602 if (ret < nr) {
2603 error = -EFAULT;
2604 break;
2605 }
2606 cond_resched();
2607 }
2608
2609 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2610 file_accessed(file);
2611 return retval ? retval : error;
2612 }
2613
2614 /*
2615 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2616 */
2617 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2618 pgoff_t index, pgoff_t end, int whence)
2619 {
2620 struct page *page;
2621 struct pagevec pvec;
2622 pgoff_t indices[PAGEVEC_SIZE];
2623 bool done = false;
2624 int i;
2625
2626 pagevec_init(&pvec);
2627 pvec.nr = 1; /* start small: we may be there already */
2628 while (!done) {
2629 pvec.nr = find_get_entries(mapping, index,
2630 pvec.nr, pvec.pages, indices);
2631 if (!pvec.nr) {
2632 if (whence == SEEK_DATA)
2633 index = end;
2634 break;
2635 }
2636 for (i = 0; i < pvec.nr; i++, index++) {
2637 if (index < indices[i]) {
2638 if (whence == SEEK_HOLE) {
2639 done = true;
2640 break;
2641 }
2642 index = indices[i];
2643 }
2644 page = pvec.pages[i];
2645 if (page && !xa_is_value(page)) {
2646 if (!PageUptodate(page))
2647 page = NULL;
2648 }
2649 if (index >= end ||
2650 (page && whence == SEEK_DATA) ||
2651 (!page && whence == SEEK_HOLE)) {
2652 done = true;
2653 break;
2654 }
2655 }
2656 pagevec_remove_exceptionals(&pvec);
2657 pagevec_release(&pvec);
2658 pvec.nr = PAGEVEC_SIZE;
2659 cond_resched();
2660 }
2661 return index;
2662 }
2663
2664 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2665 {
2666 struct address_space *mapping = file->f_mapping;
2667 struct inode *inode = mapping->host;
2668 pgoff_t start, end;
2669 loff_t new_offset;
2670
2671 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2672 return generic_file_llseek_size(file, offset, whence,
2673 MAX_LFS_FILESIZE, i_size_read(inode));
2674 inode_lock(inode);
2675 /* We're holding i_mutex so we can access i_size directly */
2676
2677 if (offset < 0 || offset >= inode->i_size)
2678 offset = -ENXIO;
2679 else {
2680 start = offset >> PAGE_SHIFT;
2681 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2682 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2683 new_offset <<= PAGE_SHIFT;
2684 if (new_offset > offset) {
2685 if (new_offset < inode->i_size)
2686 offset = new_offset;
2687 else if (whence == SEEK_DATA)
2688 offset = -ENXIO;
2689 else
2690 offset = inode->i_size;
2691 }
2692 }
2693
2694 if (offset >= 0)
2695 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2696 inode_unlock(inode);
2697 return offset;
2698 }
2699
2700 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2701 loff_t len)
2702 {
2703 struct inode *inode = file_inode(file);
2704 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2705 struct shmem_inode_info *info = SHMEM_I(inode);
2706 struct shmem_falloc shmem_falloc;
2707 pgoff_t start, index, end;
2708 int error;
2709
2710 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2711 return -EOPNOTSUPP;
2712
2713 inode_lock(inode);
2714
2715 if (mode & FALLOC_FL_PUNCH_HOLE) {
2716 struct address_space *mapping = file->f_mapping;
2717 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2718 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2719 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2720
2721 /* protected by i_mutex */
2722 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2723 error = -EPERM;
2724 goto out;
2725 }
2726
2727 shmem_falloc.waitq = &shmem_falloc_waitq;
2728 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2729 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2730 spin_lock(&inode->i_lock);
2731 inode->i_private = &shmem_falloc;
2732 spin_unlock(&inode->i_lock);
2733
2734 if ((u64)unmap_end > (u64)unmap_start)
2735 unmap_mapping_range(mapping, unmap_start,
2736 1 + unmap_end - unmap_start, 0);
2737 shmem_truncate_range(inode, offset, offset + len - 1);
2738 /* No need to unmap again: hole-punching leaves COWed pages */
2739
2740 spin_lock(&inode->i_lock);
2741 inode->i_private = NULL;
2742 wake_up_all(&shmem_falloc_waitq);
2743 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2744 spin_unlock(&inode->i_lock);
2745 error = 0;
2746 goto out;
2747 }
2748
2749 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2750 error = inode_newsize_ok(inode, offset + len);
2751 if (error)
2752 goto out;
2753
2754 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2755 error = -EPERM;
2756 goto out;
2757 }
2758
2759 start = offset >> PAGE_SHIFT;
2760 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2761 /* Try to avoid a swapstorm if len is impossible to satisfy */
2762 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2763 error = -ENOSPC;
2764 goto out;
2765 }
2766
2767 shmem_falloc.waitq = NULL;
2768 shmem_falloc.start = start;
2769 shmem_falloc.next = start;
2770 shmem_falloc.nr_falloced = 0;
2771 shmem_falloc.nr_unswapped = 0;
2772 spin_lock(&inode->i_lock);
2773 inode->i_private = &shmem_falloc;
2774 spin_unlock(&inode->i_lock);
2775
2776 for (index = start; index < end; index++) {
2777 struct page *page;
2778
2779 /*
2780 * Good, the fallocate(2) manpage permits EINTR: we may have
2781 * been interrupted because we are using up too much memory.
2782 */
2783 if (signal_pending(current))
2784 error = -EINTR;
2785 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2786 error = -ENOMEM;
2787 else
2788 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2789 if (error) {
2790 /* Remove the !PageUptodate pages we added */
2791 if (index > start) {
2792 shmem_undo_range(inode,
2793 (loff_t)start << PAGE_SHIFT,
2794 ((loff_t)index << PAGE_SHIFT) - 1, true);
2795 }
2796 goto undone;
2797 }
2798
2799 /*
2800 * Inform shmem_writepage() how far we have reached.
2801 * No need for lock or barrier: we have the page lock.
2802 */
2803 shmem_falloc.next++;
2804 if (!PageUptodate(page))
2805 shmem_falloc.nr_falloced++;
2806
2807 /*
2808 * If !PageUptodate, leave it that way so that freeable pages
2809 * can be recognized if we need to rollback on error later.
2810 * But set_page_dirty so that memory pressure will swap rather
2811 * than free the pages we are allocating (and SGP_CACHE pages
2812 * might still be clean: we now need to mark those dirty too).
2813 */
2814 set_page_dirty(page);
2815 unlock_page(page);
2816 put_page(page);
2817 cond_resched();
2818 }
2819
2820 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2821 i_size_write(inode, offset + len);
2822 inode->i_ctime = current_time(inode);
2823 undone:
2824 spin_lock(&inode->i_lock);
2825 inode->i_private = NULL;
2826 spin_unlock(&inode->i_lock);
2827 out:
2828 inode_unlock(inode);
2829 return error;
2830 }
2831
2832 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2833 {
2834 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2835
2836 buf->f_type = TMPFS_MAGIC;
2837 buf->f_bsize = PAGE_SIZE;
2838 buf->f_namelen = NAME_MAX;
2839 if (sbinfo->max_blocks) {
2840 buf->f_blocks = sbinfo->max_blocks;
2841 buf->f_bavail =
2842 buf->f_bfree = sbinfo->max_blocks -
2843 percpu_counter_sum(&sbinfo->used_blocks);
2844 }
2845 if (sbinfo->max_inodes) {
2846 buf->f_files = sbinfo->max_inodes;
2847 buf->f_ffree = sbinfo->free_inodes;
2848 }
2849 /* else leave those fields 0 like simple_statfs */
2850 return 0;
2851 }
2852
2853 /*
2854 * File creation. Allocate an inode, and we're done..
2855 */
2856 static int
2857 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2858 {
2859 struct inode *inode;
2860 int error = -ENOSPC;
2861
2862 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2863 if (inode) {
2864 error = simple_acl_create(dir, inode);
2865 if (error)
2866 goto out_iput;
2867 error = security_inode_init_security(inode, dir,
2868 &dentry->d_name,
2869 shmem_initxattrs, NULL);
2870 if (error && error != -EOPNOTSUPP)
2871 goto out_iput;
2872
2873 error = 0;
2874 dir->i_size += BOGO_DIRENT_SIZE;
2875 dir->i_ctime = dir->i_mtime = current_time(dir);
2876 d_instantiate(dentry, inode);
2877 dget(dentry); /* Extra count - pin the dentry in core */
2878 }
2879 return error;
2880 out_iput:
2881 iput(inode);
2882 return error;
2883 }
2884
2885 static int
2886 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2887 {
2888 struct inode *inode;
2889 int error = -ENOSPC;
2890
2891 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2892 if (inode) {
2893 error = security_inode_init_security(inode, dir,
2894 NULL,
2895 shmem_initxattrs, NULL);
2896 if (error && error != -EOPNOTSUPP)
2897 goto out_iput;
2898 error = simple_acl_create(dir, inode);
2899 if (error)
2900 goto out_iput;
2901 d_tmpfile(dentry, inode);
2902 }
2903 return error;
2904 out_iput:
2905 iput(inode);
2906 return error;
2907 }
2908
2909 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2910 {
2911 int error;
2912
2913 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2914 return error;
2915 inc_nlink(dir);
2916 return 0;
2917 }
2918
2919 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2920 bool excl)
2921 {
2922 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2923 }
2924
2925 /*
2926 * Link a file..
2927 */
2928 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2929 {
2930 struct inode *inode = d_inode(old_dentry);
2931 int ret = 0;
2932
2933 /*
2934 * No ordinary (disk based) filesystem counts links as inodes;
2935 * but each new link needs a new dentry, pinning lowmem, and
2936 * tmpfs dentries cannot be pruned until they are unlinked.
2937 * But if an O_TMPFILE file is linked into the tmpfs, the
2938 * first link must skip that, to get the accounting right.
2939 */
2940 if (inode->i_nlink) {
2941 ret = shmem_reserve_inode(inode->i_sb);
2942 if (ret)
2943 goto out;
2944 }
2945
2946 dir->i_size += BOGO_DIRENT_SIZE;
2947 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2948 inc_nlink(inode);
2949 ihold(inode); /* New dentry reference */
2950 dget(dentry); /* Extra pinning count for the created dentry */
2951 d_instantiate(dentry, inode);
2952 out:
2953 return ret;
2954 }
2955
2956 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2957 {
2958 struct inode *inode = d_inode(dentry);
2959
2960 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2961 shmem_free_inode(inode->i_sb);
2962
2963 dir->i_size -= BOGO_DIRENT_SIZE;
2964 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2965 drop_nlink(inode);
2966 dput(dentry); /* Undo the count from "create" - this does all the work */
2967 return 0;
2968 }
2969
2970 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2971 {
2972 if (!simple_empty(dentry))
2973 return -ENOTEMPTY;
2974
2975 drop_nlink(d_inode(dentry));
2976 drop_nlink(dir);
2977 return shmem_unlink(dir, dentry);
2978 }
2979
2980 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2981 {
2982 bool old_is_dir = d_is_dir(old_dentry);
2983 bool new_is_dir = d_is_dir(new_dentry);
2984
2985 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2986 if (old_is_dir) {
2987 drop_nlink(old_dir);
2988 inc_nlink(new_dir);
2989 } else {
2990 drop_nlink(new_dir);
2991 inc_nlink(old_dir);
2992 }
2993 }
2994 old_dir->i_ctime = old_dir->i_mtime =
2995 new_dir->i_ctime = new_dir->i_mtime =
2996 d_inode(old_dentry)->i_ctime =
2997 d_inode(new_dentry)->i_ctime = current_time(old_dir);
2998
2999 return 0;
3000 }
3001
3002 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3003 {
3004 struct dentry *whiteout;
3005 int error;
3006
3007 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3008 if (!whiteout)
3009 return -ENOMEM;
3010
3011 error = shmem_mknod(old_dir, whiteout,
3012 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3013 dput(whiteout);
3014 if (error)
3015 return error;
3016
3017 /*
3018 * Cheat and hash the whiteout while the old dentry is still in
3019 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3020 *
3021 * d_lookup() will consistently find one of them at this point,
3022 * not sure which one, but that isn't even important.
3023 */
3024 d_rehash(whiteout);
3025 return 0;
3026 }
3027
3028 /*
3029 * The VFS layer already does all the dentry stuff for rename,
3030 * we just have to decrement the usage count for the target if
3031 * it exists so that the VFS layer correctly free's it when it
3032 * gets overwritten.
3033 */
3034 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3035 {
3036 struct inode *inode = d_inode(old_dentry);
3037 int they_are_dirs = S_ISDIR(inode->i_mode);
3038
3039 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3040 return -EINVAL;
3041
3042 if (flags & RENAME_EXCHANGE)
3043 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3044
3045 if (!simple_empty(new_dentry))
3046 return -ENOTEMPTY;
3047
3048 if (flags & RENAME_WHITEOUT) {
3049 int error;
3050
3051 error = shmem_whiteout(old_dir, old_dentry);
3052 if (error)
3053 return error;
3054 }
3055
3056 if (d_really_is_positive(new_dentry)) {
3057 (void) shmem_unlink(new_dir, new_dentry);
3058 if (they_are_dirs) {
3059 drop_nlink(d_inode(new_dentry));
3060 drop_nlink(old_dir);
3061 }
3062 } else if (they_are_dirs) {
3063 drop_nlink(old_dir);
3064 inc_nlink(new_dir);
3065 }
3066
3067 old_dir->i_size -= BOGO_DIRENT_SIZE;
3068 new_dir->i_size += BOGO_DIRENT_SIZE;
3069 old_dir->i_ctime = old_dir->i_mtime =
3070 new_dir->i_ctime = new_dir->i_mtime =
3071 inode->i_ctime = current_time(old_dir);
3072 return 0;
3073 }
3074
3075 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3076 {
3077 int error;
3078 int len;
3079 struct inode *inode;
3080 struct page *page;
3081
3082 len = strlen(symname) + 1;
3083 if (len > PAGE_SIZE)
3084 return -ENAMETOOLONG;
3085
3086 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3087 VM_NORESERVE);
3088 if (!inode)
3089 return -ENOSPC;
3090
3091 error = security_inode_init_security(inode, dir, &dentry->d_name,
3092 shmem_initxattrs, NULL);
3093 if (error) {
3094 if (error != -EOPNOTSUPP) {
3095 iput(inode);
3096 return error;
3097 }
3098 error = 0;
3099 }
3100
3101 inode->i_size = len-1;
3102 if (len <= SHORT_SYMLINK_LEN) {
3103 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3104 if (!inode->i_link) {
3105 iput(inode);
3106 return -ENOMEM;
3107 }
3108 inode->i_op = &shmem_short_symlink_operations;
3109 } else {
3110 inode_nohighmem(inode);
3111 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3112 if (error) {
3113 iput(inode);
3114 return error;
3115 }
3116 inode->i_mapping->a_ops = &shmem_aops;
3117 inode->i_op = &shmem_symlink_inode_operations;
3118 memcpy(page_address(page), symname, len);
3119 SetPageUptodate(page);
3120 set_page_dirty(page);
3121 unlock_page(page);
3122 put_page(page);
3123 }
3124 dir->i_size += BOGO_DIRENT_SIZE;
3125 dir->i_ctime = dir->i_mtime = current_time(dir);
3126 d_instantiate(dentry, inode);
3127 dget(dentry);
3128 return 0;
3129 }
3130
3131 static void shmem_put_link(void *arg)
3132 {
3133 mark_page_accessed(arg);
3134 put_page(arg);
3135 }
3136
3137 static const char *shmem_get_link(struct dentry *dentry,
3138 struct inode *inode,
3139 struct delayed_call *done)
3140 {
3141 struct page *page = NULL;
3142 int error;
3143 if (!dentry) {
3144 page = find_get_page(inode->i_mapping, 0);
3145 if (!page)
3146 return ERR_PTR(-ECHILD);
3147 if (!PageUptodate(page)) {
3148 put_page(page);
3149 return ERR_PTR(-ECHILD);
3150 }
3151 } else {
3152 error = shmem_getpage(inode, 0, &page, SGP_READ);
3153 if (error)
3154 return ERR_PTR(error);
3155 unlock_page(page);
3156 }
3157 set_delayed_call(done, shmem_put_link, page);
3158 return page_address(page);
3159 }
3160
3161 #ifdef CONFIG_TMPFS_XATTR
3162 /*
3163 * Superblocks without xattr inode operations may get some security.* xattr
3164 * support from the LSM "for free". As soon as we have any other xattrs
3165 * like ACLs, we also need to implement the security.* handlers at
3166 * filesystem level, though.
3167 */
3168
3169 /*
3170 * Callback for security_inode_init_security() for acquiring xattrs.
3171 */
3172 static int shmem_initxattrs(struct inode *inode,
3173 const struct xattr *xattr_array,
3174 void *fs_info)
3175 {
3176 struct shmem_inode_info *info = SHMEM_I(inode);
3177 const struct xattr *xattr;
3178 struct simple_xattr *new_xattr;
3179 size_t len;
3180
3181 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3182 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3183 if (!new_xattr)
3184 return -ENOMEM;
3185
3186 len = strlen(xattr->name) + 1;
3187 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3188 GFP_KERNEL);
3189 if (!new_xattr->name) {
3190 kfree(new_xattr);
3191 return -ENOMEM;
3192 }
3193
3194 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3195 XATTR_SECURITY_PREFIX_LEN);
3196 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3197 xattr->name, len);
3198
3199 simple_xattr_list_add(&info->xattrs, new_xattr);
3200 }
3201
3202 return 0;
3203 }
3204
3205 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3206 struct dentry *unused, struct inode *inode,
3207 const char *name, void *buffer, size_t size)
3208 {
3209 struct shmem_inode_info *info = SHMEM_I(inode);
3210
3211 name = xattr_full_name(handler, name);
3212 return simple_xattr_get(&info->xattrs, name, buffer, size);
3213 }
3214
3215 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3216 struct dentry *unused, struct inode *inode,
3217 const char *name, const void *value,
3218 size_t size, int flags)
3219 {
3220 struct shmem_inode_info *info = SHMEM_I(inode);
3221
3222 name = xattr_full_name(handler, name);
3223 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3224 }
3225
3226 static const struct xattr_handler shmem_security_xattr_handler = {
3227 .prefix = XATTR_SECURITY_PREFIX,
3228 .get = shmem_xattr_handler_get,
3229 .set = shmem_xattr_handler_set,
3230 };
3231
3232 static const struct xattr_handler shmem_trusted_xattr_handler = {
3233 .prefix = XATTR_TRUSTED_PREFIX,
3234 .get = shmem_xattr_handler_get,
3235 .set = shmem_xattr_handler_set,
3236 };
3237
3238 static const struct xattr_handler *shmem_xattr_handlers[] = {
3239 #ifdef CONFIG_TMPFS_POSIX_ACL
3240 &posix_acl_access_xattr_handler,
3241 &posix_acl_default_xattr_handler,
3242 #endif
3243 &shmem_security_xattr_handler,
3244 &shmem_trusted_xattr_handler,
3245 NULL
3246 };
3247
3248 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3249 {
3250 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3251 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3252 }
3253 #endif /* CONFIG_TMPFS_XATTR */
3254
3255 static const struct inode_operations shmem_short_symlink_operations = {
3256 .get_link = simple_get_link,
3257 #ifdef CONFIG_TMPFS_XATTR
3258 .listxattr = shmem_listxattr,
3259 #endif
3260 };
3261
3262 static const struct inode_operations shmem_symlink_inode_operations = {
3263 .get_link = shmem_get_link,
3264 #ifdef CONFIG_TMPFS_XATTR
3265 .listxattr = shmem_listxattr,
3266 #endif
3267 };
3268
3269 static struct dentry *shmem_get_parent(struct dentry *child)
3270 {
3271 return ERR_PTR(-ESTALE);
3272 }
3273
3274 static int shmem_match(struct inode *ino, void *vfh)
3275 {
3276 __u32 *fh = vfh;
3277 __u64 inum = fh[2];
3278 inum = (inum << 32) | fh[1];
3279 return ino->i_ino == inum && fh[0] == ino->i_generation;
3280 }
3281
3282 /* Find any alias of inode, but prefer a hashed alias */
3283 static struct dentry *shmem_find_alias(struct inode *inode)
3284 {
3285 struct dentry *alias = d_find_alias(inode);
3286
3287 return alias ?: d_find_any_alias(inode);
3288 }
3289
3290
3291 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3292 struct fid *fid, int fh_len, int fh_type)
3293 {
3294 struct inode *inode;
3295 struct dentry *dentry = NULL;
3296 u64 inum;
3297
3298 if (fh_len < 3)
3299 return NULL;
3300
3301 inum = fid->raw[2];
3302 inum = (inum << 32) | fid->raw[1];
3303
3304 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3305 shmem_match, fid->raw);
3306 if (inode) {
3307 dentry = shmem_find_alias(inode);
3308 iput(inode);
3309 }
3310
3311 return dentry;
3312 }
3313
3314 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3315 struct inode *parent)
3316 {
3317 if (*len < 3) {
3318 *len = 3;
3319 return FILEID_INVALID;
3320 }
3321
3322 if (inode_unhashed(inode)) {
3323 /* Unfortunately insert_inode_hash is not idempotent,
3324 * so as we hash inodes here rather than at creation
3325 * time, we need a lock to ensure we only try
3326 * to do it once
3327 */
3328 static DEFINE_SPINLOCK(lock);
3329 spin_lock(&lock);
3330 if (inode_unhashed(inode))
3331 __insert_inode_hash(inode,
3332 inode->i_ino + inode->i_generation);
3333 spin_unlock(&lock);
3334 }
3335
3336 fh[0] = inode->i_generation;
3337 fh[1] = inode->i_ino;
3338 fh[2] = ((__u64)inode->i_ino) >> 32;
3339
3340 *len = 3;
3341 return 1;
3342 }
3343
3344 static const struct export_operations shmem_export_ops = {
3345 .get_parent = shmem_get_parent,
3346 .encode_fh = shmem_encode_fh,
3347 .fh_to_dentry = shmem_fh_to_dentry,
3348 };
3349
3350 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3351 bool remount)
3352 {
3353 char *this_char, *value, *rest;
3354 struct mempolicy *mpol = NULL;
3355 uid_t uid;
3356 gid_t gid;
3357
3358 while (options != NULL) {
3359 this_char = options;
3360 for (;;) {
3361 /*
3362 * NUL-terminate this option: unfortunately,
3363 * mount options form a comma-separated list,
3364 * but mpol's nodelist may also contain commas.
3365 */
3366 options = strchr(options, ',');
3367 if (options == NULL)
3368 break;
3369 options++;
3370 if (!isdigit(*options)) {
3371 options[-1] = '\0';
3372 break;
3373 }
3374 }
3375 if (!*this_char)
3376 continue;
3377 if ((value = strchr(this_char,'=')) != NULL) {
3378 *value++ = 0;
3379 } else {
3380 pr_err("tmpfs: No value for mount option '%s'\n",
3381 this_char);
3382 goto error;
3383 }
3384
3385 if (!strcmp(this_char,"size")) {
3386 unsigned long long size;
3387 size = memparse(value,&rest);
3388 if (*rest == '%') {
3389 size <<= PAGE_SHIFT;
3390 size *= totalram_pages();
3391 do_div(size, 100);
3392 rest++;
3393 }
3394 if (*rest)
3395 goto bad_val;
3396 sbinfo->max_blocks =
3397 DIV_ROUND_UP(size, PAGE_SIZE);
3398 } else if (!strcmp(this_char,"nr_blocks")) {
3399 sbinfo->max_blocks = memparse(value, &rest);
3400 if (*rest)
3401 goto bad_val;
3402 } else if (!strcmp(this_char,"nr_inodes")) {
3403 sbinfo->max_inodes = memparse(value, &rest);
3404 if (*rest)
3405 goto bad_val;
3406 } else if (!strcmp(this_char,"mode")) {
3407 if (remount)
3408 continue;
3409 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3410 if (*rest)
3411 goto bad_val;
3412 } else if (!strcmp(this_char,"uid")) {
3413 if (remount)
3414 continue;
3415 uid = simple_strtoul(value, &rest, 0);
3416 if (*rest)
3417 goto bad_val;
3418 sbinfo->uid = make_kuid(current_user_ns(), uid);
3419 if (!uid_valid(sbinfo->uid))
3420 goto bad_val;
3421 } else if (!strcmp(this_char,"gid")) {
3422 if (remount)
3423 continue;
3424 gid = simple_strtoul(value, &rest, 0);
3425 if (*rest)
3426 goto bad_val;
3427 sbinfo->gid = make_kgid(current_user_ns(), gid);
3428 if (!gid_valid(sbinfo->gid))
3429 goto bad_val;
3430 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3431 } else if (!strcmp(this_char, "huge")) {
3432 int huge;
3433 huge = shmem_parse_huge(value);
3434 if (huge < 0)
3435 goto bad_val;
3436 if (!has_transparent_hugepage() &&
3437 huge != SHMEM_HUGE_NEVER)
3438 goto bad_val;
3439 sbinfo->huge = huge;
3440 #endif
3441 #ifdef CONFIG_NUMA
3442 } else if (!strcmp(this_char,"mpol")) {
3443 mpol_put(mpol);
3444 mpol = NULL;
3445 if (mpol_parse_str(value, &mpol))
3446 goto bad_val;
3447 #endif
3448 } else {
3449 pr_err("tmpfs: Bad mount option %s\n", this_char);
3450 goto error;
3451 }
3452 }
3453 sbinfo->mpol = mpol;
3454 return 0;
3455
3456 bad_val:
3457 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3458 value, this_char);
3459 error:
3460 mpol_put(mpol);
3461 return 1;
3462
3463 }
3464
3465 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3466 {
3467 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3468 struct shmem_sb_info config = *sbinfo;
3469 unsigned long inodes;
3470 int error = -EINVAL;
3471
3472 config.mpol = NULL;
3473 if (shmem_parse_options(data, &config, true))
3474 return error;
3475
3476 spin_lock(&sbinfo->stat_lock);
3477 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3478 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3479 goto out;
3480 if (config.max_inodes < inodes)
3481 goto out;
3482 /*
3483 * Those tests disallow limited->unlimited while any are in use;
3484 * but we must separately disallow unlimited->limited, because
3485 * in that case we have no record of how much is already in use.
3486 */
3487 if (config.max_blocks && !sbinfo->max_blocks)
3488 goto out;
3489 if (config.max_inodes && !sbinfo->max_inodes)
3490 goto out;
3491
3492 error = 0;
3493 sbinfo->huge = config.huge;
3494 sbinfo->max_blocks = config.max_blocks;
3495 sbinfo->max_inodes = config.max_inodes;
3496 sbinfo->free_inodes = config.max_inodes - inodes;
3497
3498 /*
3499 * Preserve previous mempolicy unless mpol remount option was specified.
3500 */
3501 if (config.mpol) {
3502 mpol_put(sbinfo->mpol);
3503 sbinfo->mpol = config.mpol; /* transfers initial ref */
3504 }
3505 out:
3506 spin_unlock(&sbinfo->stat_lock);
3507 return error;
3508 }
3509
3510 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3511 {
3512 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3513
3514 if (sbinfo->max_blocks != shmem_default_max_blocks())
3515 seq_printf(seq, ",size=%luk",
3516 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3517 if (sbinfo->max_inodes != shmem_default_max_inodes())
3518 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3519 if (sbinfo->mode != (0777 | S_ISVTX))
3520 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3521 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3522 seq_printf(seq, ",uid=%u",
3523 from_kuid_munged(&init_user_ns, sbinfo->uid));
3524 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3525 seq_printf(seq, ",gid=%u",
3526 from_kgid_munged(&init_user_ns, sbinfo->gid));
3527 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3528 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3529 if (sbinfo->huge)
3530 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3531 #endif
3532 shmem_show_mpol(seq, sbinfo->mpol);
3533 return 0;
3534 }
3535
3536 #endif /* CONFIG_TMPFS */
3537
3538 static void shmem_put_super(struct super_block *sb)
3539 {
3540 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3541
3542 percpu_counter_destroy(&sbinfo->used_blocks);
3543 mpol_put(sbinfo->mpol);
3544 kfree(sbinfo);
3545 sb->s_fs_info = NULL;
3546 }
3547
3548 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3549 {
3550 struct inode *inode;
3551 struct shmem_sb_info *sbinfo;
3552 int err = -ENOMEM;
3553
3554 /* Round up to L1_CACHE_BYTES to resist false sharing */
3555 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3556 L1_CACHE_BYTES), GFP_KERNEL);
3557 if (!sbinfo)
3558 return -ENOMEM;
3559
3560 sbinfo->mode = 0777 | S_ISVTX;
3561 sbinfo->uid = current_fsuid();
3562 sbinfo->gid = current_fsgid();
3563 sb->s_fs_info = sbinfo;
3564
3565 #ifdef CONFIG_TMPFS
3566 /*
3567 * Per default we only allow half of the physical ram per
3568 * tmpfs instance, limiting inodes to one per page of lowmem;
3569 * but the internal instance is left unlimited.
3570 */
3571 if (!(sb->s_flags & SB_KERNMOUNT)) {
3572 sbinfo->max_blocks = shmem_default_max_blocks();
3573 sbinfo->max_inodes = shmem_default_max_inodes();
3574 if (shmem_parse_options(data, sbinfo, false)) {
3575 err = -EINVAL;
3576 goto failed;
3577 }
3578 } else {
3579 sb->s_flags |= SB_NOUSER;
3580 }
3581 sb->s_export_op = &shmem_export_ops;
3582 sb->s_flags |= SB_NOSEC;
3583 #else
3584 sb->s_flags |= SB_NOUSER;
3585 #endif
3586
3587 spin_lock_init(&sbinfo->stat_lock);
3588 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3589 goto failed;
3590 sbinfo->free_inodes = sbinfo->max_inodes;
3591 spin_lock_init(&sbinfo->shrinklist_lock);
3592 INIT_LIST_HEAD(&sbinfo->shrinklist);
3593
3594 sb->s_maxbytes = MAX_LFS_FILESIZE;
3595 sb->s_blocksize = PAGE_SIZE;
3596 sb->s_blocksize_bits = PAGE_SHIFT;
3597 sb->s_magic = TMPFS_MAGIC;
3598 sb->s_op = &shmem_ops;
3599 sb->s_time_gran = 1;
3600 #ifdef CONFIG_TMPFS_XATTR
3601 sb->s_xattr = shmem_xattr_handlers;
3602 #endif
3603 #ifdef CONFIG_TMPFS_POSIX_ACL
3604 sb->s_flags |= SB_POSIXACL;
3605 #endif
3606 uuid_gen(&sb->s_uuid);
3607
3608 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3609 if (!inode)
3610 goto failed;
3611 inode->i_uid = sbinfo->uid;
3612 inode->i_gid = sbinfo->gid;
3613 sb->s_root = d_make_root(inode);
3614 if (!sb->s_root)
3615 goto failed;
3616 return 0;
3617
3618 failed:
3619 shmem_put_super(sb);
3620 return err;
3621 }
3622
3623 static struct kmem_cache *shmem_inode_cachep;
3624
3625 static struct inode *shmem_alloc_inode(struct super_block *sb)
3626 {
3627 struct shmem_inode_info *info;
3628 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3629 if (!info)
3630 return NULL;
3631 return &info->vfs_inode;
3632 }
3633
3634 static void shmem_free_in_core_inode(struct inode *inode)
3635 {
3636 if (S_ISLNK(inode->i_mode))
3637 kfree(inode->i_link);
3638 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3639 }
3640
3641 static void shmem_destroy_inode(struct inode *inode)
3642 {
3643 if (S_ISREG(inode->i_mode))
3644 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3645 }
3646
3647 static void shmem_init_inode(void *foo)
3648 {
3649 struct shmem_inode_info *info = foo;
3650 inode_init_once(&info->vfs_inode);
3651 }
3652
3653 static void shmem_init_inodecache(void)
3654 {
3655 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3656 sizeof(struct shmem_inode_info),
3657 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3658 }
3659
3660 static void shmem_destroy_inodecache(void)
3661 {
3662 kmem_cache_destroy(shmem_inode_cachep);
3663 }
3664
3665 static const struct address_space_operations shmem_aops = {
3666 .writepage = shmem_writepage,
3667 .set_page_dirty = __set_page_dirty_no_writeback,
3668 #ifdef CONFIG_TMPFS
3669 .write_begin = shmem_write_begin,
3670 .write_end = shmem_write_end,
3671 #endif
3672 #ifdef CONFIG_MIGRATION
3673 .migratepage = migrate_page,
3674 #endif
3675 .error_remove_page = generic_error_remove_page,
3676 };
3677
3678 static const struct file_operations shmem_file_operations = {
3679 .mmap = shmem_mmap,
3680 .get_unmapped_area = shmem_get_unmapped_area,
3681 #ifdef CONFIG_TMPFS
3682 .llseek = shmem_file_llseek,
3683 .read_iter = shmem_file_read_iter,
3684 .write_iter = generic_file_write_iter,
3685 .fsync = noop_fsync,
3686 .splice_read = generic_file_splice_read,
3687 .splice_write = iter_file_splice_write,
3688 .fallocate = shmem_fallocate,
3689 #endif
3690 };
3691
3692 static const struct inode_operations shmem_inode_operations = {
3693 .getattr = shmem_getattr,
3694 .setattr = shmem_setattr,
3695 #ifdef CONFIG_TMPFS_XATTR
3696 .listxattr = shmem_listxattr,
3697 .set_acl = simple_set_acl,
3698 #endif
3699 };
3700
3701 static const struct inode_operations shmem_dir_inode_operations = {
3702 #ifdef CONFIG_TMPFS
3703 .create = shmem_create,
3704 .lookup = simple_lookup,
3705 .link = shmem_link,
3706 .unlink = shmem_unlink,
3707 .symlink = shmem_symlink,
3708 .mkdir = shmem_mkdir,
3709 .rmdir = shmem_rmdir,
3710 .mknod = shmem_mknod,
3711 .rename = shmem_rename2,
3712 .tmpfile = shmem_tmpfile,
3713 #endif
3714 #ifdef CONFIG_TMPFS_XATTR
3715 .listxattr = shmem_listxattr,
3716 #endif
3717 #ifdef CONFIG_TMPFS_POSIX_ACL
3718 .setattr = shmem_setattr,
3719 .set_acl = simple_set_acl,
3720 #endif
3721 };
3722
3723 static const struct inode_operations shmem_special_inode_operations = {
3724 #ifdef CONFIG_TMPFS_XATTR
3725 .listxattr = shmem_listxattr,
3726 #endif
3727 #ifdef CONFIG_TMPFS_POSIX_ACL
3728 .setattr = shmem_setattr,
3729 .set_acl = simple_set_acl,
3730 #endif
3731 };
3732
3733 static const struct super_operations shmem_ops = {
3734 .alloc_inode = shmem_alloc_inode,
3735 .free_inode = shmem_free_in_core_inode,
3736 .destroy_inode = shmem_destroy_inode,
3737 #ifdef CONFIG_TMPFS
3738 .statfs = shmem_statfs,
3739 .remount_fs = shmem_remount_fs,
3740 .show_options = shmem_show_options,
3741 #endif
3742 .evict_inode = shmem_evict_inode,
3743 .drop_inode = generic_delete_inode,
3744 .put_super = shmem_put_super,
3745 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3746 .nr_cached_objects = shmem_unused_huge_count,
3747 .free_cached_objects = shmem_unused_huge_scan,
3748 #endif
3749 };
3750
3751 static const struct vm_operations_struct shmem_vm_ops = {
3752 .fault = shmem_fault,
3753 .map_pages = filemap_map_pages,
3754 #ifdef CONFIG_NUMA
3755 .set_policy = shmem_set_policy,
3756 .get_policy = shmem_get_policy,
3757 #endif
3758 };
3759
3760 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3761 int flags, const char *dev_name, void *data)
3762 {
3763 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3764 }
3765
3766 static struct file_system_type shmem_fs_type = {
3767 .owner = THIS_MODULE,
3768 .name = "tmpfs",
3769 .mount = shmem_mount,
3770 .kill_sb = kill_litter_super,
3771 .fs_flags = FS_USERNS_MOUNT,
3772 };
3773
3774 int __init shmem_init(void)
3775 {
3776 int error;
3777
3778 /* If rootfs called this, don't re-init */
3779 if (shmem_inode_cachep)
3780 return 0;
3781
3782 shmem_init_inodecache();
3783
3784 error = register_filesystem(&shmem_fs_type);
3785 if (error) {
3786 pr_err("Could not register tmpfs\n");
3787 goto out2;
3788 }
3789
3790 shm_mnt = kern_mount(&shmem_fs_type);
3791 if (IS_ERR(shm_mnt)) {
3792 error = PTR_ERR(shm_mnt);
3793 pr_err("Could not kern_mount tmpfs\n");
3794 goto out1;
3795 }
3796
3797 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3798 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3799 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3800 else
3801 shmem_huge = 0; /* just in case it was patched */
3802 #endif
3803 return 0;
3804
3805 out1:
3806 unregister_filesystem(&shmem_fs_type);
3807 out2:
3808 shmem_destroy_inodecache();
3809 shm_mnt = ERR_PTR(error);
3810 return error;
3811 }
3812
3813 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3814 static ssize_t shmem_enabled_show(struct kobject *kobj,
3815 struct kobj_attribute *attr, char *buf)
3816 {
3817 int values[] = {
3818 SHMEM_HUGE_ALWAYS,
3819 SHMEM_HUGE_WITHIN_SIZE,
3820 SHMEM_HUGE_ADVISE,
3821 SHMEM_HUGE_NEVER,
3822 SHMEM_HUGE_DENY,
3823 SHMEM_HUGE_FORCE,
3824 };
3825 int i, count;
3826
3827 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3828 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3829
3830 count += sprintf(buf + count, fmt,
3831 shmem_format_huge(values[i]));
3832 }
3833 buf[count - 1] = '\n';
3834 return count;
3835 }
3836
3837 static ssize_t shmem_enabled_store(struct kobject *kobj,
3838 struct kobj_attribute *attr, const char *buf, size_t count)
3839 {
3840 char tmp[16];
3841 int huge;
3842
3843 if (count + 1 > sizeof(tmp))
3844 return -EINVAL;
3845 memcpy(tmp, buf, count);
3846 tmp[count] = '\0';
3847 if (count && tmp[count - 1] == '\n')
3848 tmp[count - 1] = '\0';
3849
3850 huge = shmem_parse_huge(tmp);
3851 if (huge == -EINVAL)
3852 return -EINVAL;
3853 if (!has_transparent_hugepage() &&
3854 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3855 return -EINVAL;
3856
3857 shmem_huge = huge;
3858 if (shmem_huge > SHMEM_HUGE_DENY)
3859 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3860 return count;
3861 }
3862
3863 struct kobj_attribute shmem_enabled_attr =
3864 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3865 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3866
3867 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3868 bool shmem_huge_enabled(struct vm_area_struct *vma)
3869 {
3870 struct inode *inode = file_inode(vma->vm_file);
3871 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3872 loff_t i_size;
3873 pgoff_t off;
3874
3875 if (shmem_huge == SHMEM_HUGE_FORCE)
3876 return true;
3877 if (shmem_huge == SHMEM_HUGE_DENY)
3878 return false;
3879 switch (sbinfo->huge) {
3880 case SHMEM_HUGE_NEVER:
3881 return false;
3882 case SHMEM_HUGE_ALWAYS:
3883 return true;
3884 case SHMEM_HUGE_WITHIN_SIZE:
3885 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3886 i_size = round_up(i_size_read(inode), PAGE_SIZE);
3887 if (i_size >= HPAGE_PMD_SIZE &&
3888 i_size >> PAGE_SHIFT >= off)
3889 return true;
3890 /* fall through */
3891 case SHMEM_HUGE_ADVISE:
3892 /* TODO: implement fadvise() hints */
3893 return (vma->vm_flags & VM_HUGEPAGE);
3894 default:
3895 VM_BUG_ON(1);
3896 return false;
3897 }
3898 }
3899 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3900
3901 #else /* !CONFIG_SHMEM */
3902
3903 /*
3904 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3905 *
3906 * This is intended for small system where the benefits of the full
3907 * shmem code (swap-backed and resource-limited) are outweighed by
3908 * their complexity. On systems without swap this code should be
3909 * effectively equivalent, but much lighter weight.
3910 */
3911
3912 static struct file_system_type shmem_fs_type = {
3913 .name = "tmpfs",
3914 .mount = ramfs_mount,
3915 .kill_sb = kill_litter_super,
3916 .fs_flags = FS_USERNS_MOUNT,
3917 };
3918
3919 int __init shmem_init(void)
3920 {
3921 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3922
3923 shm_mnt = kern_mount(&shmem_fs_type);
3924 BUG_ON(IS_ERR(shm_mnt));
3925
3926 return 0;
3927 }
3928
3929 int shmem_unuse(unsigned int type, bool frontswap,
3930 unsigned long *fs_pages_to_unuse)
3931 {
3932 return 0;
3933 }
3934
3935 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3936 {
3937 return 0;
3938 }
3939
3940 void shmem_unlock_mapping(struct address_space *mapping)
3941 {
3942 }
3943
3944 #ifdef CONFIG_MMU
3945 unsigned long shmem_get_unmapped_area(struct file *file,
3946 unsigned long addr, unsigned long len,
3947 unsigned long pgoff, unsigned long flags)
3948 {
3949 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3950 }
3951 #endif
3952
3953 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3954 {
3955 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3956 }
3957 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3958
3959 #define shmem_vm_ops generic_file_vm_ops
3960 #define shmem_file_operations ramfs_file_operations
3961 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3962 #define shmem_acct_size(flags, size) 0
3963 #define shmem_unacct_size(flags, size) do {} while (0)
3964
3965 #endif /* CONFIG_SHMEM */
3966
3967 /* common code */
3968
3969 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
3970 unsigned long flags, unsigned int i_flags)
3971 {
3972 struct inode *inode;
3973 struct file *res;
3974
3975 if (IS_ERR(mnt))
3976 return ERR_CAST(mnt);
3977
3978 if (size < 0 || size > MAX_LFS_FILESIZE)
3979 return ERR_PTR(-EINVAL);
3980
3981 if (shmem_acct_size(flags, size))
3982 return ERR_PTR(-ENOMEM);
3983
3984 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
3985 flags);
3986 if (unlikely(!inode)) {
3987 shmem_unacct_size(flags, size);
3988 return ERR_PTR(-ENOSPC);
3989 }
3990 inode->i_flags |= i_flags;
3991 inode->i_size = size;
3992 clear_nlink(inode); /* It is unlinked */
3993 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3994 if (!IS_ERR(res))
3995 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
3996 &shmem_file_operations);
3997 if (IS_ERR(res))
3998 iput(inode);
3999 return res;
4000 }
4001
4002 /**
4003 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4004 * kernel internal. There will be NO LSM permission checks against the
4005 * underlying inode. So users of this interface must do LSM checks at a
4006 * higher layer. The users are the big_key and shm implementations. LSM
4007 * checks are provided at the key or shm level rather than the inode.
4008 * @name: name for dentry (to be seen in /proc/<pid>/maps
4009 * @size: size to be set for the file
4010 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4011 */
4012 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4013 {
4014 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4015 }
4016
4017 /**
4018 * shmem_file_setup - get an unlinked file living in tmpfs
4019 * @name: name for dentry (to be seen in /proc/<pid>/maps
4020 * @size: size to be set for the file
4021 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4022 */
4023 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4024 {
4025 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4026 }
4027 EXPORT_SYMBOL_GPL(shmem_file_setup);
4028
4029 /**
4030 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4031 * @mnt: the tmpfs mount where the file will be created
4032 * @name: name for dentry (to be seen in /proc/<pid>/maps
4033 * @size: size to be set for the file
4034 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4035 */
4036 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4037 loff_t size, unsigned long flags)
4038 {
4039 return __shmem_file_setup(mnt, name, size, flags, 0);
4040 }
4041 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4042
4043 /**
4044 * shmem_zero_setup - setup a shared anonymous mapping
4045 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4046 */
4047 int shmem_zero_setup(struct vm_area_struct *vma)
4048 {
4049 struct file *file;
4050 loff_t size = vma->vm_end - vma->vm_start;
4051
4052 /*
4053 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4054 * between XFS directory reading and selinux: since this file is only
4055 * accessible to the user through its mapping, use S_PRIVATE flag to
4056 * bypass file security, in the same way as shmem_kernel_file_setup().
4057 */
4058 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4059 if (IS_ERR(file))
4060 return PTR_ERR(file);
4061
4062 if (vma->vm_file)
4063 fput(vma->vm_file);
4064 vma->vm_file = file;
4065 vma->vm_ops = &shmem_vm_ops;
4066
4067 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4068 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4069 (vma->vm_end & HPAGE_PMD_MASK)) {
4070 khugepaged_enter(vma, vma->vm_flags);
4071 }
4072
4073 return 0;
4074 }
4075
4076 /**
4077 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4078 * @mapping: the page's address_space
4079 * @index: the page index
4080 * @gfp: the page allocator flags to use if allocating
4081 *
4082 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4083 * with any new page allocations done using the specified allocation flags.
4084 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4085 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4086 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4087 *
4088 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4089 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4090 */
4091 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4092 pgoff_t index, gfp_t gfp)
4093 {
4094 #ifdef CONFIG_SHMEM
4095 struct inode *inode = mapping->host;
4096 struct page *page;
4097 int error;
4098
4099 BUG_ON(mapping->a_ops != &shmem_aops);
4100 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4101 gfp, NULL, NULL, NULL);
4102 if (error)
4103 page = ERR_PTR(error);
4104 else
4105 unlock_page(page);
4106 return page;
4107 #else
4108 /*
4109 * The tiny !SHMEM case uses ramfs without swap
4110 */
4111 return read_cache_page_gfp(mapping, index, gfp);
4112 #endif
4113 }
4114 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);