]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/vmscan.c
mm: remove SWAP_MLOCK in ttu
[thirdparty/kernel/stable.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/mm.h>
17 #include <linux/sched/mm.h>
18 #include <linux/module.h>
19 #include <linux/gfp.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/swap.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/highmem.h>
25 #include <linux/vmpressure.h>
26 #include <linux/vmstat.h>
27 #include <linux/file.h>
28 #include <linux/writeback.h>
29 #include <linux/blkdev.h>
30 #include <linux/buffer_head.h> /* for try_to_release_page(),
31 buffer_heads_over_limit */
32 #include <linux/mm_inline.h>
33 #include <linux/backing-dev.h>
34 #include <linux/rmap.h>
35 #include <linux/topology.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/compaction.h>
39 #include <linux/notifier.h>
40 #include <linux/rwsem.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/freezer.h>
44 #include <linux/memcontrol.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51
52 #include <asm/tlbflush.h>
53 #include <asm/div64.h>
54
55 #include <linux/swapops.h>
56 #include <linux/balloon_compaction.h>
57
58 #include "internal.h"
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/vmscan.h>
62
63 struct scan_control {
64 /* How many pages shrink_list() should reclaim */
65 unsigned long nr_to_reclaim;
66
67 /* This context's GFP mask */
68 gfp_t gfp_mask;
69
70 /* Allocation order */
71 int order;
72
73 /*
74 * Nodemask of nodes allowed by the caller. If NULL, all nodes
75 * are scanned.
76 */
77 nodemask_t *nodemask;
78
79 /*
80 * The memory cgroup that hit its limit and as a result is the
81 * primary target of this reclaim invocation.
82 */
83 struct mem_cgroup *target_mem_cgroup;
84
85 /* Scan (total_size >> priority) pages at once */
86 int priority;
87
88 /* The highest zone to isolate pages for reclaim from */
89 enum zone_type reclaim_idx;
90
91 /* Writepage batching in laptop mode; RECLAIM_WRITE */
92 unsigned int may_writepage:1;
93
94 /* Can mapped pages be reclaimed? */
95 unsigned int may_unmap:1;
96
97 /* Can pages be swapped as part of reclaim? */
98 unsigned int may_swap:1;
99
100 /*
101 * Cgroups are not reclaimed below their configured memory.low,
102 * unless we threaten to OOM. If any cgroups are skipped due to
103 * memory.low and nothing was reclaimed, go back for memory.low.
104 */
105 unsigned int memcg_low_reclaim:1;
106 unsigned int memcg_low_skipped:1;
107
108 unsigned int hibernation_mode:1;
109
110 /* One of the zones is ready for compaction */
111 unsigned int compaction_ready:1;
112
113 /* Incremented by the number of inactive pages that were scanned */
114 unsigned long nr_scanned;
115
116 /* Number of pages freed so far during a call to shrink_zones() */
117 unsigned long nr_reclaimed;
118 };
119
120 #ifdef ARCH_HAS_PREFETCH
121 #define prefetch_prev_lru_page(_page, _base, _field) \
122 do { \
123 if ((_page)->lru.prev != _base) { \
124 struct page *prev; \
125 \
126 prev = lru_to_page(&(_page->lru)); \
127 prefetch(&prev->_field); \
128 } \
129 } while (0)
130 #else
131 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
132 #endif
133
134 #ifdef ARCH_HAS_PREFETCHW
135 #define prefetchw_prev_lru_page(_page, _base, _field) \
136 do { \
137 if ((_page)->lru.prev != _base) { \
138 struct page *prev; \
139 \
140 prev = lru_to_page(&(_page->lru)); \
141 prefetchw(&prev->_field); \
142 } \
143 } while (0)
144 #else
145 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
146 #endif
147
148 /*
149 * From 0 .. 100. Higher means more swappy.
150 */
151 int vm_swappiness = 60;
152 /*
153 * The total number of pages which are beyond the high watermark within all
154 * zones.
155 */
156 unsigned long vm_total_pages;
157
158 static LIST_HEAD(shrinker_list);
159 static DECLARE_RWSEM(shrinker_rwsem);
160
161 #ifdef CONFIG_MEMCG
162 static bool global_reclaim(struct scan_control *sc)
163 {
164 return !sc->target_mem_cgroup;
165 }
166
167 /**
168 * sane_reclaim - is the usual dirty throttling mechanism operational?
169 * @sc: scan_control in question
170 *
171 * The normal page dirty throttling mechanism in balance_dirty_pages() is
172 * completely broken with the legacy memcg and direct stalling in
173 * shrink_page_list() is used for throttling instead, which lacks all the
174 * niceties such as fairness, adaptive pausing, bandwidth proportional
175 * allocation and configurability.
176 *
177 * This function tests whether the vmscan currently in progress can assume
178 * that the normal dirty throttling mechanism is operational.
179 */
180 static bool sane_reclaim(struct scan_control *sc)
181 {
182 struct mem_cgroup *memcg = sc->target_mem_cgroup;
183
184 if (!memcg)
185 return true;
186 #ifdef CONFIG_CGROUP_WRITEBACK
187 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
188 return true;
189 #endif
190 return false;
191 }
192 #else
193 static bool global_reclaim(struct scan_control *sc)
194 {
195 return true;
196 }
197
198 static bool sane_reclaim(struct scan_control *sc)
199 {
200 return true;
201 }
202 #endif
203
204 /*
205 * This misses isolated pages which are not accounted for to save counters.
206 * As the data only determines if reclaim or compaction continues, it is
207 * not expected that isolated pages will be a dominating factor.
208 */
209 unsigned long zone_reclaimable_pages(struct zone *zone)
210 {
211 unsigned long nr;
212
213 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
214 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
215 if (get_nr_swap_pages() > 0)
216 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
217 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
218
219 return nr;
220 }
221
222 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
223 {
224 unsigned long nr;
225
226 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
227 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
228 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
229
230 if (get_nr_swap_pages() > 0)
231 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
232 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
233 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
234
235 return nr;
236 }
237
238 /**
239 * lruvec_lru_size - Returns the number of pages on the given LRU list.
240 * @lruvec: lru vector
241 * @lru: lru to use
242 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
243 */
244 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
245 {
246 unsigned long lru_size;
247 int zid;
248
249 if (!mem_cgroup_disabled())
250 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
251 else
252 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
253
254 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
255 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
256 unsigned long size;
257
258 if (!managed_zone(zone))
259 continue;
260
261 if (!mem_cgroup_disabled())
262 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
263 else
264 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
265 NR_ZONE_LRU_BASE + lru);
266 lru_size -= min(size, lru_size);
267 }
268
269 return lru_size;
270
271 }
272
273 /*
274 * Add a shrinker callback to be called from the vm.
275 */
276 int register_shrinker(struct shrinker *shrinker)
277 {
278 size_t size = sizeof(*shrinker->nr_deferred);
279
280 if (shrinker->flags & SHRINKER_NUMA_AWARE)
281 size *= nr_node_ids;
282
283 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
284 if (!shrinker->nr_deferred)
285 return -ENOMEM;
286
287 down_write(&shrinker_rwsem);
288 list_add_tail(&shrinker->list, &shrinker_list);
289 up_write(&shrinker_rwsem);
290 return 0;
291 }
292 EXPORT_SYMBOL(register_shrinker);
293
294 /*
295 * Remove one
296 */
297 void unregister_shrinker(struct shrinker *shrinker)
298 {
299 down_write(&shrinker_rwsem);
300 list_del(&shrinker->list);
301 up_write(&shrinker_rwsem);
302 kfree(shrinker->nr_deferred);
303 }
304 EXPORT_SYMBOL(unregister_shrinker);
305
306 #define SHRINK_BATCH 128
307
308 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
309 struct shrinker *shrinker,
310 unsigned long nr_scanned,
311 unsigned long nr_eligible)
312 {
313 unsigned long freed = 0;
314 unsigned long long delta;
315 long total_scan;
316 long freeable;
317 long nr;
318 long new_nr;
319 int nid = shrinkctl->nid;
320 long batch_size = shrinker->batch ? shrinker->batch
321 : SHRINK_BATCH;
322 long scanned = 0, next_deferred;
323
324 freeable = shrinker->count_objects(shrinker, shrinkctl);
325 if (freeable == 0)
326 return 0;
327
328 /*
329 * copy the current shrinker scan count into a local variable
330 * and zero it so that other concurrent shrinker invocations
331 * don't also do this scanning work.
332 */
333 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
334
335 total_scan = nr;
336 delta = (4 * nr_scanned) / shrinker->seeks;
337 delta *= freeable;
338 do_div(delta, nr_eligible + 1);
339 total_scan += delta;
340 if (total_scan < 0) {
341 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
342 shrinker->scan_objects, total_scan);
343 total_scan = freeable;
344 next_deferred = nr;
345 } else
346 next_deferred = total_scan;
347
348 /*
349 * We need to avoid excessive windup on filesystem shrinkers
350 * due to large numbers of GFP_NOFS allocations causing the
351 * shrinkers to return -1 all the time. This results in a large
352 * nr being built up so when a shrink that can do some work
353 * comes along it empties the entire cache due to nr >>>
354 * freeable. This is bad for sustaining a working set in
355 * memory.
356 *
357 * Hence only allow the shrinker to scan the entire cache when
358 * a large delta change is calculated directly.
359 */
360 if (delta < freeable / 4)
361 total_scan = min(total_scan, freeable / 2);
362
363 /*
364 * Avoid risking looping forever due to too large nr value:
365 * never try to free more than twice the estimate number of
366 * freeable entries.
367 */
368 if (total_scan > freeable * 2)
369 total_scan = freeable * 2;
370
371 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
372 nr_scanned, nr_eligible,
373 freeable, delta, total_scan);
374
375 /*
376 * Normally, we should not scan less than batch_size objects in one
377 * pass to avoid too frequent shrinker calls, but if the slab has less
378 * than batch_size objects in total and we are really tight on memory,
379 * we will try to reclaim all available objects, otherwise we can end
380 * up failing allocations although there are plenty of reclaimable
381 * objects spread over several slabs with usage less than the
382 * batch_size.
383 *
384 * We detect the "tight on memory" situations by looking at the total
385 * number of objects we want to scan (total_scan). If it is greater
386 * than the total number of objects on slab (freeable), we must be
387 * scanning at high prio and therefore should try to reclaim as much as
388 * possible.
389 */
390 while (total_scan >= batch_size ||
391 total_scan >= freeable) {
392 unsigned long ret;
393 unsigned long nr_to_scan = min(batch_size, total_scan);
394
395 shrinkctl->nr_to_scan = nr_to_scan;
396 ret = shrinker->scan_objects(shrinker, shrinkctl);
397 if (ret == SHRINK_STOP)
398 break;
399 freed += ret;
400
401 count_vm_events(SLABS_SCANNED, nr_to_scan);
402 total_scan -= nr_to_scan;
403 scanned += nr_to_scan;
404
405 cond_resched();
406 }
407
408 if (next_deferred >= scanned)
409 next_deferred -= scanned;
410 else
411 next_deferred = 0;
412 /*
413 * move the unused scan count back into the shrinker in a
414 * manner that handles concurrent updates. If we exhausted the
415 * scan, there is no need to do an update.
416 */
417 if (next_deferred > 0)
418 new_nr = atomic_long_add_return(next_deferred,
419 &shrinker->nr_deferred[nid]);
420 else
421 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
422
423 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
424 return freed;
425 }
426
427 /**
428 * shrink_slab - shrink slab caches
429 * @gfp_mask: allocation context
430 * @nid: node whose slab caches to target
431 * @memcg: memory cgroup whose slab caches to target
432 * @nr_scanned: pressure numerator
433 * @nr_eligible: pressure denominator
434 *
435 * Call the shrink functions to age shrinkable caches.
436 *
437 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
438 * unaware shrinkers will receive a node id of 0 instead.
439 *
440 * @memcg specifies the memory cgroup to target. If it is not NULL,
441 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
442 * objects from the memory cgroup specified. Otherwise, only unaware
443 * shrinkers are called.
444 *
445 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
446 * the available objects should be scanned. Page reclaim for example
447 * passes the number of pages scanned and the number of pages on the
448 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
449 * when it encountered mapped pages. The ratio is further biased by
450 * the ->seeks setting of the shrink function, which indicates the
451 * cost to recreate an object relative to that of an LRU page.
452 *
453 * Returns the number of reclaimed slab objects.
454 */
455 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
456 struct mem_cgroup *memcg,
457 unsigned long nr_scanned,
458 unsigned long nr_eligible)
459 {
460 struct shrinker *shrinker;
461 unsigned long freed = 0;
462
463 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
464 return 0;
465
466 if (nr_scanned == 0)
467 nr_scanned = SWAP_CLUSTER_MAX;
468
469 if (!down_read_trylock(&shrinker_rwsem)) {
470 /*
471 * If we would return 0, our callers would understand that we
472 * have nothing else to shrink and give up trying. By returning
473 * 1 we keep it going and assume we'll be able to shrink next
474 * time.
475 */
476 freed = 1;
477 goto out;
478 }
479
480 list_for_each_entry(shrinker, &shrinker_list, list) {
481 struct shrink_control sc = {
482 .gfp_mask = gfp_mask,
483 .nid = nid,
484 .memcg = memcg,
485 };
486
487 /*
488 * If kernel memory accounting is disabled, we ignore
489 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
490 * passing NULL for memcg.
491 */
492 if (memcg_kmem_enabled() &&
493 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
494 continue;
495
496 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
497 sc.nid = 0;
498
499 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
500 }
501
502 up_read(&shrinker_rwsem);
503 out:
504 cond_resched();
505 return freed;
506 }
507
508 void drop_slab_node(int nid)
509 {
510 unsigned long freed;
511
512 do {
513 struct mem_cgroup *memcg = NULL;
514
515 freed = 0;
516 do {
517 freed += shrink_slab(GFP_KERNEL, nid, memcg,
518 1000, 1000);
519 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
520 } while (freed > 10);
521 }
522
523 void drop_slab(void)
524 {
525 int nid;
526
527 for_each_online_node(nid)
528 drop_slab_node(nid);
529 }
530
531 static inline int is_page_cache_freeable(struct page *page)
532 {
533 /*
534 * A freeable page cache page is referenced only by the caller
535 * that isolated the page, the page cache radix tree and
536 * optional buffer heads at page->private.
537 */
538 return page_count(page) - page_has_private(page) == 2;
539 }
540
541 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
542 {
543 if (current->flags & PF_SWAPWRITE)
544 return 1;
545 if (!inode_write_congested(inode))
546 return 1;
547 if (inode_to_bdi(inode) == current->backing_dev_info)
548 return 1;
549 return 0;
550 }
551
552 /*
553 * We detected a synchronous write error writing a page out. Probably
554 * -ENOSPC. We need to propagate that into the address_space for a subsequent
555 * fsync(), msync() or close().
556 *
557 * The tricky part is that after writepage we cannot touch the mapping: nothing
558 * prevents it from being freed up. But we have a ref on the page and once
559 * that page is locked, the mapping is pinned.
560 *
561 * We're allowed to run sleeping lock_page() here because we know the caller has
562 * __GFP_FS.
563 */
564 static void handle_write_error(struct address_space *mapping,
565 struct page *page, int error)
566 {
567 lock_page(page);
568 if (page_mapping(page) == mapping)
569 mapping_set_error(mapping, error);
570 unlock_page(page);
571 }
572
573 /* possible outcome of pageout() */
574 typedef enum {
575 /* failed to write page out, page is locked */
576 PAGE_KEEP,
577 /* move page to the active list, page is locked */
578 PAGE_ACTIVATE,
579 /* page has been sent to the disk successfully, page is unlocked */
580 PAGE_SUCCESS,
581 /* page is clean and locked */
582 PAGE_CLEAN,
583 } pageout_t;
584
585 /*
586 * pageout is called by shrink_page_list() for each dirty page.
587 * Calls ->writepage().
588 */
589 static pageout_t pageout(struct page *page, struct address_space *mapping,
590 struct scan_control *sc)
591 {
592 /*
593 * If the page is dirty, only perform writeback if that write
594 * will be non-blocking. To prevent this allocation from being
595 * stalled by pagecache activity. But note that there may be
596 * stalls if we need to run get_block(). We could test
597 * PagePrivate for that.
598 *
599 * If this process is currently in __generic_file_write_iter() against
600 * this page's queue, we can perform writeback even if that
601 * will block.
602 *
603 * If the page is swapcache, write it back even if that would
604 * block, for some throttling. This happens by accident, because
605 * swap_backing_dev_info is bust: it doesn't reflect the
606 * congestion state of the swapdevs. Easy to fix, if needed.
607 */
608 if (!is_page_cache_freeable(page))
609 return PAGE_KEEP;
610 if (!mapping) {
611 /*
612 * Some data journaling orphaned pages can have
613 * page->mapping == NULL while being dirty with clean buffers.
614 */
615 if (page_has_private(page)) {
616 if (try_to_free_buffers(page)) {
617 ClearPageDirty(page);
618 pr_info("%s: orphaned page\n", __func__);
619 return PAGE_CLEAN;
620 }
621 }
622 return PAGE_KEEP;
623 }
624 if (mapping->a_ops->writepage == NULL)
625 return PAGE_ACTIVATE;
626 if (!may_write_to_inode(mapping->host, sc))
627 return PAGE_KEEP;
628
629 if (clear_page_dirty_for_io(page)) {
630 int res;
631 struct writeback_control wbc = {
632 .sync_mode = WB_SYNC_NONE,
633 .nr_to_write = SWAP_CLUSTER_MAX,
634 .range_start = 0,
635 .range_end = LLONG_MAX,
636 .for_reclaim = 1,
637 };
638
639 SetPageReclaim(page);
640 res = mapping->a_ops->writepage(page, &wbc);
641 if (res < 0)
642 handle_write_error(mapping, page, res);
643 if (res == AOP_WRITEPAGE_ACTIVATE) {
644 ClearPageReclaim(page);
645 return PAGE_ACTIVATE;
646 }
647
648 if (!PageWriteback(page)) {
649 /* synchronous write or broken a_ops? */
650 ClearPageReclaim(page);
651 }
652 trace_mm_vmscan_writepage(page);
653 inc_node_page_state(page, NR_VMSCAN_WRITE);
654 return PAGE_SUCCESS;
655 }
656
657 return PAGE_CLEAN;
658 }
659
660 /*
661 * Same as remove_mapping, but if the page is removed from the mapping, it
662 * gets returned with a refcount of 0.
663 */
664 static int __remove_mapping(struct address_space *mapping, struct page *page,
665 bool reclaimed)
666 {
667 unsigned long flags;
668
669 BUG_ON(!PageLocked(page));
670 BUG_ON(mapping != page_mapping(page));
671
672 spin_lock_irqsave(&mapping->tree_lock, flags);
673 /*
674 * The non racy check for a busy page.
675 *
676 * Must be careful with the order of the tests. When someone has
677 * a ref to the page, it may be possible that they dirty it then
678 * drop the reference. So if PageDirty is tested before page_count
679 * here, then the following race may occur:
680 *
681 * get_user_pages(&page);
682 * [user mapping goes away]
683 * write_to(page);
684 * !PageDirty(page) [good]
685 * SetPageDirty(page);
686 * put_page(page);
687 * !page_count(page) [good, discard it]
688 *
689 * [oops, our write_to data is lost]
690 *
691 * Reversing the order of the tests ensures such a situation cannot
692 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
693 * load is not satisfied before that of page->_refcount.
694 *
695 * Note that if SetPageDirty is always performed via set_page_dirty,
696 * and thus under tree_lock, then this ordering is not required.
697 */
698 if (!page_ref_freeze(page, 2))
699 goto cannot_free;
700 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
701 if (unlikely(PageDirty(page))) {
702 page_ref_unfreeze(page, 2);
703 goto cannot_free;
704 }
705
706 if (PageSwapCache(page)) {
707 swp_entry_t swap = { .val = page_private(page) };
708 mem_cgroup_swapout(page, swap);
709 __delete_from_swap_cache(page);
710 spin_unlock_irqrestore(&mapping->tree_lock, flags);
711 swapcache_free(swap);
712 } else {
713 void (*freepage)(struct page *);
714 void *shadow = NULL;
715
716 freepage = mapping->a_ops->freepage;
717 /*
718 * Remember a shadow entry for reclaimed file cache in
719 * order to detect refaults, thus thrashing, later on.
720 *
721 * But don't store shadows in an address space that is
722 * already exiting. This is not just an optizimation,
723 * inode reclaim needs to empty out the radix tree or
724 * the nodes are lost. Don't plant shadows behind its
725 * back.
726 *
727 * We also don't store shadows for DAX mappings because the
728 * only page cache pages found in these are zero pages
729 * covering holes, and because we don't want to mix DAX
730 * exceptional entries and shadow exceptional entries in the
731 * same page_tree.
732 */
733 if (reclaimed && page_is_file_cache(page) &&
734 !mapping_exiting(mapping) && !dax_mapping(mapping))
735 shadow = workingset_eviction(mapping, page);
736 __delete_from_page_cache(page, shadow);
737 spin_unlock_irqrestore(&mapping->tree_lock, flags);
738
739 if (freepage != NULL)
740 freepage(page);
741 }
742
743 return 1;
744
745 cannot_free:
746 spin_unlock_irqrestore(&mapping->tree_lock, flags);
747 return 0;
748 }
749
750 /*
751 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
752 * someone else has a ref on the page, abort and return 0. If it was
753 * successfully detached, return 1. Assumes the caller has a single ref on
754 * this page.
755 */
756 int remove_mapping(struct address_space *mapping, struct page *page)
757 {
758 if (__remove_mapping(mapping, page, false)) {
759 /*
760 * Unfreezing the refcount with 1 rather than 2 effectively
761 * drops the pagecache ref for us without requiring another
762 * atomic operation.
763 */
764 page_ref_unfreeze(page, 1);
765 return 1;
766 }
767 return 0;
768 }
769
770 /**
771 * putback_lru_page - put previously isolated page onto appropriate LRU list
772 * @page: page to be put back to appropriate lru list
773 *
774 * Add previously isolated @page to appropriate LRU list.
775 * Page may still be unevictable for other reasons.
776 *
777 * lru_lock must not be held, interrupts must be enabled.
778 */
779 void putback_lru_page(struct page *page)
780 {
781 bool is_unevictable;
782 int was_unevictable = PageUnevictable(page);
783
784 VM_BUG_ON_PAGE(PageLRU(page), page);
785
786 redo:
787 ClearPageUnevictable(page);
788
789 if (page_evictable(page)) {
790 /*
791 * For evictable pages, we can use the cache.
792 * In event of a race, worst case is we end up with an
793 * unevictable page on [in]active list.
794 * We know how to handle that.
795 */
796 is_unevictable = false;
797 lru_cache_add(page);
798 } else {
799 /*
800 * Put unevictable pages directly on zone's unevictable
801 * list.
802 */
803 is_unevictable = true;
804 add_page_to_unevictable_list(page);
805 /*
806 * When racing with an mlock or AS_UNEVICTABLE clearing
807 * (page is unlocked) make sure that if the other thread
808 * does not observe our setting of PG_lru and fails
809 * isolation/check_move_unevictable_pages,
810 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
811 * the page back to the evictable list.
812 *
813 * The other side is TestClearPageMlocked() or shmem_lock().
814 */
815 smp_mb();
816 }
817
818 /*
819 * page's status can change while we move it among lru. If an evictable
820 * page is on unevictable list, it never be freed. To avoid that,
821 * check after we added it to the list, again.
822 */
823 if (is_unevictable && page_evictable(page)) {
824 if (!isolate_lru_page(page)) {
825 put_page(page);
826 goto redo;
827 }
828 /* This means someone else dropped this page from LRU
829 * So, it will be freed or putback to LRU again. There is
830 * nothing to do here.
831 */
832 }
833
834 if (was_unevictable && !is_unevictable)
835 count_vm_event(UNEVICTABLE_PGRESCUED);
836 else if (!was_unevictable && is_unevictable)
837 count_vm_event(UNEVICTABLE_PGCULLED);
838
839 put_page(page); /* drop ref from isolate */
840 }
841
842 enum page_references {
843 PAGEREF_RECLAIM,
844 PAGEREF_RECLAIM_CLEAN,
845 PAGEREF_KEEP,
846 PAGEREF_ACTIVATE,
847 };
848
849 static enum page_references page_check_references(struct page *page,
850 struct scan_control *sc)
851 {
852 int referenced_ptes, referenced_page;
853 unsigned long vm_flags;
854
855 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
856 &vm_flags);
857 referenced_page = TestClearPageReferenced(page);
858
859 /*
860 * Mlock lost the isolation race with us. Let try_to_unmap()
861 * move the page to the unevictable list.
862 */
863 if (vm_flags & VM_LOCKED)
864 return PAGEREF_RECLAIM;
865
866 if (referenced_ptes) {
867 if (PageSwapBacked(page))
868 return PAGEREF_ACTIVATE;
869 /*
870 * All mapped pages start out with page table
871 * references from the instantiating fault, so we need
872 * to look twice if a mapped file page is used more
873 * than once.
874 *
875 * Mark it and spare it for another trip around the
876 * inactive list. Another page table reference will
877 * lead to its activation.
878 *
879 * Note: the mark is set for activated pages as well
880 * so that recently deactivated but used pages are
881 * quickly recovered.
882 */
883 SetPageReferenced(page);
884
885 if (referenced_page || referenced_ptes > 1)
886 return PAGEREF_ACTIVATE;
887
888 /*
889 * Activate file-backed executable pages after first usage.
890 */
891 if (vm_flags & VM_EXEC)
892 return PAGEREF_ACTIVATE;
893
894 return PAGEREF_KEEP;
895 }
896
897 /* Reclaim if clean, defer dirty pages to writeback */
898 if (referenced_page && !PageSwapBacked(page))
899 return PAGEREF_RECLAIM_CLEAN;
900
901 return PAGEREF_RECLAIM;
902 }
903
904 /* Check if a page is dirty or under writeback */
905 static void page_check_dirty_writeback(struct page *page,
906 bool *dirty, bool *writeback)
907 {
908 struct address_space *mapping;
909
910 /*
911 * Anonymous pages are not handled by flushers and must be written
912 * from reclaim context. Do not stall reclaim based on them
913 */
914 if (!page_is_file_cache(page) ||
915 (PageAnon(page) && !PageSwapBacked(page))) {
916 *dirty = false;
917 *writeback = false;
918 return;
919 }
920
921 /* By default assume that the page flags are accurate */
922 *dirty = PageDirty(page);
923 *writeback = PageWriteback(page);
924
925 /* Verify dirty/writeback state if the filesystem supports it */
926 if (!page_has_private(page))
927 return;
928
929 mapping = page_mapping(page);
930 if (mapping && mapping->a_ops->is_dirty_writeback)
931 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
932 }
933
934 struct reclaim_stat {
935 unsigned nr_dirty;
936 unsigned nr_unqueued_dirty;
937 unsigned nr_congested;
938 unsigned nr_writeback;
939 unsigned nr_immediate;
940 unsigned nr_activate;
941 unsigned nr_ref_keep;
942 unsigned nr_unmap_fail;
943 };
944
945 /*
946 * shrink_page_list() returns the number of reclaimed pages
947 */
948 static unsigned long shrink_page_list(struct list_head *page_list,
949 struct pglist_data *pgdat,
950 struct scan_control *sc,
951 enum ttu_flags ttu_flags,
952 struct reclaim_stat *stat,
953 bool force_reclaim)
954 {
955 LIST_HEAD(ret_pages);
956 LIST_HEAD(free_pages);
957 int pgactivate = 0;
958 unsigned nr_unqueued_dirty = 0;
959 unsigned nr_dirty = 0;
960 unsigned nr_congested = 0;
961 unsigned nr_reclaimed = 0;
962 unsigned nr_writeback = 0;
963 unsigned nr_immediate = 0;
964 unsigned nr_ref_keep = 0;
965 unsigned nr_unmap_fail = 0;
966
967 cond_resched();
968
969 while (!list_empty(page_list)) {
970 struct address_space *mapping;
971 struct page *page;
972 int may_enter_fs;
973 enum page_references references = PAGEREF_RECLAIM_CLEAN;
974 bool dirty, writeback;
975 int ret = SWAP_SUCCESS;
976
977 cond_resched();
978
979 page = lru_to_page(page_list);
980 list_del(&page->lru);
981
982 if (!trylock_page(page))
983 goto keep;
984
985 VM_BUG_ON_PAGE(PageActive(page), page);
986
987 sc->nr_scanned++;
988
989 if (unlikely(!page_evictable(page)))
990 goto activate_locked;
991
992 if (!sc->may_unmap && page_mapped(page))
993 goto keep_locked;
994
995 /* Double the slab pressure for mapped and swapcache pages */
996 if ((page_mapped(page) || PageSwapCache(page)) &&
997 !(PageAnon(page) && !PageSwapBacked(page)))
998 sc->nr_scanned++;
999
1000 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1001 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1002
1003 /*
1004 * The number of dirty pages determines if a zone is marked
1005 * reclaim_congested which affects wait_iff_congested. kswapd
1006 * will stall and start writing pages if the tail of the LRU
1007 * is all dirty unqueued pages.
1008 */
1009 page_check_dirty_writeback(page, &dirty, &writeback);
1010 if (dirty || writeback)
1011 nr_dirty++;
1012
1013 if (dirty && !writeback)
1014 nr_unqueued_dirty++;
1015
1016 /*
1017 * Treat this page as congested if the underlying BDI is or if
1018 * pages are cycling through the LRU so quickly that the
1019 * pages marked for immediate reclaim are making it to the
1020 * end of the LRU a second time.
1021 */
1022 mapping = page_mapping(page);
1023 if (((dirty || writeback) && mapping &&
1024 inode_write_congested(mapping->host)) ||
1025 (writeback && PageReclaim(page)))
1026 nr_congested++;
1027
1028 /*
1029 * If a page at the tail of the LRU is under writeback, there
1030 * are three cases to consider.
1031 *
1032 * 1) If reclaim is encountering an excessive number of pages
1033 * under writeback and this page is both under writeback and
1034 * PageReclaim then it indicates that pages are being queued
1035 * for IO but are being recycled through the LRU before the
1036 * IO can complete. Waiting on the page itself risks an
1037 * indefinite stall if it is impossible to writeback the
1038 * page due to IO error or disconnected storage so instead
1039 * note that the LRU is being scanned too quickly and the
1040 * caller can stall after page list has been processed.
1041 *
1042 * 2) Global or new memcg reclaim encounters a page that is
1043 * not marked for immediate reclaim, or the caller does not
1044 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1045 * not to fs). In this case mark the page for immediate
1046 * reclaim and continue scanning.
1047 *
1048 * Require may_enter_fs because we would wait on fs, which
1049 * may not have submitted IO yet. And the loop driver might
1050 * enter reclaim, and deadlock if it waits on a page for
1051 * which it is needed to do the write (loop masks off
1052 * __GFP_IO|__GFP_FS for this reason); but more thought
1053 * would probably show more reasons.
1054 *
1055 * 3) Legacy memcg encounters a page that is already marked
1056 * PageReclaim. memcg does not have any dirty pages
1057 * throttling so we could easily OOM just because too many
1058 * pages are in writeback and there is nothing else to
1059 * reclaim. Wait for the writeback to complete.
1060 *
1061 * In cases 1) and 2) we activate the pages to get them out of
1062 * the way while we continue scanning for clean pages on the
1063 * inactive list and refilling from the active list. The
1064 * observation here is that waiting for disk writes is more
1065 * expensive than potentially causing reloads down the line.
1066 * Since they're marked for immediate reclaim, they won't put
1067 * memory pressure on the cache working set any longer than it
1068 * takes to write them to disk.
1069 */
1070 if (PageWriteback(page)) {
1071 /* Case 1 above */
1072 if (current_is_kswapd() &&
1073 PageReclaim(page) &&
1074 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1075 nr_immediate++;
1076 goto activate_locked;
1077
1078 /* Case 2 above */
1079 } else if (sane_reclaim(sc) ||
1080 !PageReclaim(page) || !may_enter_fs) {
1081 /*
1082 * This is slightly racy - end_page_writeback()
1083 * might have just cleared PageReclaim, then
1084 * setting PageReclaim here end up interpreted
1085 * as PageReadahead - but that does not matter
1086 * enough to care. What we do want is for this
1087 * page to have PageReclaim set next time memcg
1088 * reclaim reaches the tests above, so it will
1089 * then wait_on_page_writeback() to avoid OOM;
1090 * and it's also appropriate in global reclaim.
1091 */
1092 SetPageReclaim(page);
1093 nr_writeback++;
1094 goto activate_locked;
1095
1096 /* Case 3 above */
1097 } else {
1098 unlock_page(page);
1099 wait_on_page_writeback(page);
1100 /* then go back and try same page again */
1101 list_add_tail(&page->lru, page_list);
1102 continue;
1103 }
1104 }
1105
1106 if (!force_reclaim)
1107 references = page_check_references(page, sc);
1108
1109 switch (references) {
1110 case PAGEREF_ACTIVATE:
1111 goto activate_locked;
1112 case PAGEREF_KEEP:
1113 nr_ref_keep++;
1114 goto keep_locked;
1115 case PAGEREF_RECLAIM:
1116 case PAGEREF_RECLAIM_CLEAN:
1117 ; /* try to reclaim the page below */
1118 }
1119
1120 /*
1121 * Anonymous process memory has backing store?
1122 * Try to allocate it some swap space here.
1123 * Lazyfree page could be freed directly
1124 */
1125 if (PageAnon(page) && PageSwapBacked(page) &&
1126 !PageSwapCache(page)) {
1127 if (!(sc->gfp_mask & __GFP_IO))
1128 goto keep_locked;
1129 if (!add_to_swap(page, page_list))
1130 goto activate_locked;
1131 may_enter_fs = 1;
1132
1133 /* Adding to swap updated mapping */
1134 mapping = page_mapping(page);
1135 } else if (unlikely(PageTransHuge(page))) {
1136 /* Split file THP */
1137 if (split_huge_page_to_list(page, page_list))
1138 goto keep_locked;
1139 }
1140
1141 VM_BUG_ON_PAGE(PageTransHuge(page), page);
1142
1143 /*
1144 * The page is mapped into the page tables of one or more
1145 * processes. Try to unmap it here.
1146 */
1147 if (page_mapped(page)) {
1148 switch (ret = try_to_unmap(page,
1149 ttu_flags | TTU_BATCH_FLUSH)) {
1150 case SWAP_FAIL:
1151 nr_unmap_fail++;
1152 goto activate_locked;
1153 case SWAP_AGAIN:
1154 goto keep_locked;
1155 case SWAP_SUCCESS:
1156 ; /* try to free the page below */
1157 }
1158 }
1159
1160 if (PageDirty(page)) {
1161 /*
1162 * Only kswapd can writeback filesystem pages
1163 * to avoid risk of stack overflow. But avoid
1164 * injecting inefficient single-page IO into
1165 * flusher writeback as much as possible: only
1166 * write pages when we've encountered many
1167 * dirty pages, and when we've already scanned
1168 * the rest of the LRU for clean pages and see
1169 * the same dirty pages again (PageReclaim).
1170 */
1171 if (page_is_file_cache(page) &&
1172 (!current_is_kswapd() || !PageReclaim(page) ||
1173 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1174 /*
1175 * Immediately reclaim when written back.
1176 * Similar in principal to deactivate_page()
1177 * except we already have the page isolated
1178 * and know it's dirty
1179 */
1180 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1181 SetPageReclaim(page);
1182
1183 goto activate_locked;
1184 }
1185
1186 if (references == PAGEREF_RECLAIM_CLEAN)
1187 goto keep_locked;
1188 if (!may_enter_fs)
1189 goto keep_locked;
1190 if (!sc->may_writepage)
1191 goto keep_locked;
1192
1193 /*
1194 * Page is dirty. Flush the TLB if a writable entry
1195 * potentially exists to avoid CPU writes after IO
1196 * starts and then write it out here.
1197 */
1198 try_to_unmap_flush_dirty();
1199 switch (pageout(page, mapping, sc)) {
1200 case PAGE_KEEP:
1201 goto keep_locked;
1202 case PAGE_ACTIVATE:
1203 goto activate_locked;
1204 case PAGE_SUCCESS:
1205 if (PageWriteback(page))
1206 goto keep;
1207 if (PageDirty(page))
1208 goto keep;
1209
1210 /*
1211 * A synchronous write - probably a ramdisk. Go
1212 * ahead and try to reclaim the page.
1213 */
1214 if (!trylock_page(page))
1215 goto keep;
1216 if (PageDirty(page) || PageWriteback(page))
1217 goto keep_locked;
1218 mapping = page_mapping(page);
1219 case PAGE_CLEAN:
1220 ; /* try to free the page below */
1221 }
1222 }
1223
1224 /*
1225 * If the page has buffers, try to free the buffer mappings
1226 * associated with this page. If we succeed we try to free
1227 * the page as well.
1228 *
1229 * We do this even if the page is PageDirty().
1230 * try_to_release_page() does not perform I/O, but it is
1231 * possible for a page to have PageDirty set, but it is actually
1232 * clean (all its buffers are clean). This happens if the
1233 * buffers were written out directly, with submit_bh(). ext3
1234 * will do this, as well as the blockdev mapping.
1235 * try_to_release_page() will discover that cleanness and will
1236 * drop the buffers and mark the page clean - it can be freed.
1237 *
1238 * Rarely, pages can have buffers and no ->mapping. These are
1239 * the pages which were not successfully invalidated in
1240 * truncate_complete_page(). We try to drop those buffers here
1241 * and if that worked, and the page is no longer mapped into
1242 * process address space (page_count == 1) it can be freed.
1243 * Otherwise, leave the page on the LRU so it is swappable.
1244 */
1245 if (page_has_private(page)) {
1246 if (!try_to_release_page(page, sc->gfp_mask))
1247 goto activate_locked;
1248 if (!mapping && page_count(page) == 1) {
1249 unlock_page(page);
1250 if (put_page_testzero(page))
1251 goto free_it;
1252 else {
1253 /*
1254 * rare race with speculative reference.
1255 * the speculative reference will free
1256 * this page shortly, so we may
1257 * increment nr_reclaimed here (and
1258 * leave it off the LRU).
1259 */
1260 nr_reclaimed++;
1261 continue;
1262 }
1263 }
1264 }
1265
1266 if (PageAnon(page) && !PageSwapBacked(page)) {
1267 /* follow __remove_mapping for reference */
1268 if (!page_ref_freeze(page, 1))
1269 goto keep_locked;
1270 if (PageDirty(page)) {
1271 page_ref_unfreeze(page, 1);
1272 goto keep_locked;
1273 }
1274
1275 count_vm_event(PGLAZYFREED);
1276 } else if (!mapping || !__remove_mapping(mapping, page, true))
1277 goto keep_locked;
1278 /*
1279 * At this point, we have no other references and there is
1280 * no way to pick any more up (removed from LRU, removed
1281 * from pagecache). Can use non-atomic bitops now (and
1282 * we obviously don't have to worry about waking up a process
1283 * waiting on the page lock, because there are no references.
1284 */
1285 __ClearPageLocked(page);
1286 free_it:
1287 nr_reclaimed++;
1288
1289 /*
1290 * Is there need to periodically free_page_list? It would
1291 * appear not as the counts should be low
1292 */
1293 list_add(&page->lru, &free_pages);
1294 continue;
1295
1296 activate_locked:
1297 /* Not a candidate for swapping, so reclaim swap space. */
1298 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1299 PageMlocked(page)))
1300 try_to_free_swap(page);
1301 VM_BUG_ON_PAGE(PageActive(page), page);
1302 if (!PageMlocked(page)) {
1303 SetPageActive(page);
1304 pgactivate++;
1305 }
1306 keep_locked:
1307 unlock_page(page);
1308 keep:
1309 list_add(&page->lru, &ret_pages);
1310 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1311 }
1312
1313 mem_cgroup_uncharge_list(&free_pages);
1314 try_to_unmap_flush();
1315 free_hot_cold_page_list(&free_pages, true);
1316
1317 list_splice(&ret_pages, page_list);
1318 count_vm_events(PGACTIVATE, pgactivate);
1319
1320 if (stat) {
1321 stat->nr_dirty = nr_dirty;
1322 stat->nr_congested = nr_congested;
1323 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1324 stat->nr_writeback = nr_writeback;
1325 stat->nr_immediate = nr_immediate;
1326 stat->nr_activate = pgactivate;
1327 stat->nr_ref_keep = nr_ref_keep;
1328 stat->nr_unmap_fail = nr_unmap_fail;
1329 }
1330 return nr_reclaimed;
1331 }
1332
1333 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1334 struct list_head *page_list)
1335 {
1336 struct scan_control sc = {
1337 .gfp_mask = GFP_KERNEL,
1338 .priority = DEF_PRIORITY,
1339 .may_unmap = 1,
1340 };
1341 unsigned long ret;
1342 struct page *page, *next;
1343 LIST_HEAD(clean_pages);
1344
1345 list_for_each_entry_safe(page, next, page_list, lru) {
1346 if (page_is_file_cache(page) && !PageDirty(page) &&
1347 !__PageMovable(page)) {
1348 ClearPageActive(page);
1349 list_move(&page->lru, &clean_pages);
1350 }
1351 }
1352
1353 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1354 TTU_IGNORE_ACCESS, NULL, true);
1355 list_splice(&clean_pages, page_list);
1356 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1357 return ret;
1358 }
1359
1360 /*
1361 * Attempt to remove the specified page from its LRU. Only take this page
1362 * if it is of the appropriate PageActive status. Pages which are being
1363 * freed elsewhere are also ignored.
1364 *
1365 * page: page to consider
1366 * mode: one of the LRU isolation modes defined above
1367 *
1368 * returns 0 on success, -ve errno on failure.
1369 */
1370 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1371 {
1372 int ret = -EINVAL;
1373
1374 /* Only take pages on the LRU. */
1375 if (!PageLRU(page))
1376 return ret;
1377
1378 /* Compaction should not handle unevictable pages but CMA can do so */
1379 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1380 return ret;
1381
1382 ret = -EBUSY;
1383
1384 /*
1385 * To minimise LRU disruption, the caller can indicate that it only
1386 * wants to isolate pages it will be able to operate on without
1387 * blocking - clean pages for the most part.
1388 *
1389 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1390 * that it is possible to migrate without blocking
1391 */
1392 if (mode & ISOLATE_ASYNC_MIGRATE) {
1393 /* All the caller can do on PageWriteback is block */
1394 if (PageWriteback(page))
1395 return ret;
1396
1397 if (PageDirty(page)) {
1398 struct address_space *mapping;
1399
1400 /*
1401 * Only pages without mappings or that have a
1402 * ->migratepage callback are possible to migrate
1403 * without blocking
1404 */
1405 mapping = page_mapping(page);
1406 if (mapping && !mapping->a_ops->migratepage)
1407 return ret;
1408 }
1409 }
1410
1411 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1412 return ret;
1413
1414 if (likely(get_page_unless_zero(page))) {
1415 /*
1416 * Be careful not to clear PageLRU until after we're
1417 * sure the page is not being freed elsewhere -- the
1418 * page release code relies on it.
1419 */
1420 ClearPageLRU(page);
1421 ret = 0;
1422 }
1423
1424 return ret;
1425 }
1426
1427
1428 /*
1429 * Update LRU sizes after isolating pages. The LRU size updates must
1430 * be complete before mem_cgroup_update_lru_size due to a santity check.
1431 */
1432 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1433 enum lru_list lru, unsigned long *nr_zone_taken)
1434 {
1435 int zid;
1436
1437 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1438 if (!nr_zone_taken[zid])
1439 continue;
1440
1441 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1442 #ifdef CONFIG_MEMCG
1443 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1444 #endif
1445 }
1446
1447 }
1448
1449 /*
1450 * zone_lru_lock is heavily contended. Some of the functions that
1451 * shrink the lists perform better by taking out a batch of pages
1452 * and working on them outside the LRU lock.
1453 *
1454 * For pagecache intensive workloads, this function is the hottest
1455 * spot in the kernel (apart from copy_*_user functions).
1456 *
1457 * Appropriate locks must be held before calling this function.
1458 *
1459 * @nr_to_scan: The number of pages to look through on the list.
1460 * @lruvec: The LRU vector to pull pages from.
1461 * @dst: The temp list to put pages on to.
1462 * @nr_scanned: The number of pages that were scanned.
1463 * @sc: The scan_control struct for this reclaim session
1464 * @mode: One of the LRU isolation modes
1465 * @lru: LRU list id for isolating
1466 *
1467 * returns how many pages were moved onto *@dst.
1468 */
1469 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1470 struct lruvec *lruvec, struct list_head *dst,
1471 unsigned long *nr_scanned, struct scan_control *sc,
1472 isolate_mode_t mode, enum lru_list lru)
1473 {
1474 struct list_head *src = &lruvec->lists[lru];
1475 unsigned long nr_taken = 0;
1476 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1477 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1478 unsigned long skipped = 0;
1479 unsigned long scan, nr_pages;
1480 LIST_HEAD(pages_skipped);
1481
1482 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1483 !list_empty(src); scan++) {
1484 struct page *page;
1485
1486 page = lru_to_page(src);
1487 prefetchw_prev_lru_page(page, src, flags);
1488
1489 VM_BUG_ON_PAGE(!PageLRU(page), page);
1490
1491 if (page_zonenum(page) > sc->reclaim_idx) {
1492 list_move(&page->lru, &pages_skipped);
1493 nr_skipped[page_zonenum(page)]++;
1494 continue;
1495 }
1496
1497 switch (__isolate_lru_page(page, mode)) {
1498 case 0:
1499 nr_pages = hpage_nr_pages(page);
1500 nr_taken += nr_pages;
1501 nr_zone_taken[page_zonenum(page)] += nr_pages;
1502 list_move(&page->lru, dst);
1503 break;
1504
1505 case -EBUSY:
1506 /* else it is being freed elsewhere */
1507 list_move(&page->lru, src);
1508 continue;
1509
1510 default:
1511 BUG();
1512 }
1513 }
1514
1515 /*
1516 * Splice any skipped pages to the start of the LRU list. Note that
1517 * this disrupts the LRU order when reclaiming for lower zones but
1518 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1519 * scanning would soon rescan the same pages to skip and put the
1520 * system at risk of premature OOM.
1521 */
1522 if (!list_empty(&pages_skipped)) {
1523 int zid;
1524
1525 list_splice(&pages_skipped, src);
1526 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1527 if (!nr_skipped[zid])
1528 continue;
1529
1530 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1531 skipped += nr_skipped[zid];
1532 }
1533 }
1534 *nr_scanned = scan;
1535 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1536 scan, skipped, nr_taken, mode, lru);
1537 update_lru_sizes(lruvec, lru, nr_zone_taken);
1538 return nr_taken;
1539 }
1540
1541 /**
1542 * isolate_lru_page - tries to isolate a page from its LRU list
1543 * @page: page to isolate from its LRU list
1544 *
1545 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1546 * vmstat statistic corresponding to whatever LRU list the page was on.
1547 *
1548 * Returns 0 if the page was removed from an LRU list.
1549 * Returns -EBUSY if the page was not on an LRU list.
1550 *
1551 * The returned page will have PageLRU() cleared. If it was found on
1552 * the active list, it will have PageActive set. If it was found on
1553 * the unevictable list, it will have the PageUnevictable bit set. That flag
1554 * may need to be cleared by the caller before letting the page go.
1555 *
1556 * The vmstat statistic corresponding to the list on which the page was
1557 * found will be decremented.
1558 *
1559 * Restrictions:
1560 * (1) Must be called with an elevated refcount on the page. This is a
1561 * fundamentnal difference from isolate_lru_pages (which is called
1562 * without a stable reference).
1563 * (2) the lru_lock must not be held.
1564 * (3) interrupts must be enabled.
1565 */
1566 int isolate_lru_page(struct page *page)
1567 {
1568 int ret = -EBUSY;
1569
1570 VM_BUG_ON_PAGE(!page_count(page), page);
1571 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1572
1573 if (PageLRU(page)) {
1574 struct zone *zone = page_zone(page);
1575 struct lruvec *lruvec;
1576
1577 spin_lock_irq(zone_lru_lock(zone));
1578 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1579 if (PageLRU(page)) {
1580 int lru = page_lru(page);
1581 get_page(page);
1582 ClearPageLRU(page);
1583 del_page_from_lru_list(page, lruvec, lru);
1584 ret = 0;
1585 }
1586 spin_unlock_irq(zone_lru_lock(zone));
1587 }
1588 return ret;
1589 }
1590
1591 /*
1592 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1593 * then get resheduled. When there are massive number of tasks doing page
1594 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1595 * the LRU list will go small and be scanned faster than necessary, leading to
1596 * unnecessary swapping, thrashing and OOM.
1597 */
1598 static int too_many_isolated(struct pglist_data *pgdat, int file,
1599 struct scan_control *sc)
1600 {
1601 unsigned long inactive, isolated;
1602
1603 if (current_is_kswapd())
1604 return 0;
1605
1606 if (!sane_reclaim(sc))
1607 return 0;
1608
1609 if (file) {
1610 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1611 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1612 } else {
1613 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1614 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1615 }
1616
1617 /*
1618 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1619 * won't get blocked by normal direct-reclaimers, forming a circular
1620 * deadlock.
1621 */
1622 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1623 inactive >>= 3;
1624
1625 return isolated > inactive;
1626 }
1627
1628 static noinline_for_stack void
1629 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1630 {
1631 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1632 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1633 LIST_HEAD(pages_to_free);
1634
1635 /*
1636 * Put back any unfreeable pages.
1637 */
1638 while (!list_empty(page_list)) {
1639 struct page *page = lru_to_page(page_list);
1640 int lru;
1641
1642 VM_BUG_ON_PAGE(PageLRU(page), page);
1643 list_del(&page->lru);
1644 if (unlikely(!page_evictable(page))) {
1645 spin_unlock_irq(&pgdat->lru_lock);
1646 putback_lru_page(page);
1647 spin_lock_irq(&pgdat->lru_lock);
1648 continue;
1649 }
1650
1651 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1652
1653 SetPageLRU(page);
1654 lru = page_lru(page);
1655 add_page_to_lru_list(page, lruvec, lru);
1656
1657 if (is_active_lru(lru)) {
1658 int file = is_file_lru(lru);
1659 int numpages = hpage_nr_pages(page);
1660 reclaim_stat->recent_rotated[file] += numpages;
1661 }
1662 if (put_page_testzero(page)) {
1663 __ClearPageLRU(page);
1664 __ClearPageActive(page);
1665 del_page_from_lru_list(page, lruvec, lru);
1666
1667 if (unlikely(PageCompound(page))) {
1668 spin_unlock_irq(&pgdat->lru_lock);
1669 mem_cgroup_uncharge(page);
1670 (*get_compound_page_dtor(page))(page);
1671 spin_lock_irq(&pgdat->lru_lock);
1672 } else
1673 list_add(&page->lru, &pages_to_free);
1674 }
1675 }
1676
1677 /*
1678 * To save our caller's stack, now use input list for pages to free.
1679 */
1680 list_splice(&pages_to_free, page_list);
1681 }
1682
1683 /*
1684 * If a kernel thread (such as nfsd for loop-back mounts) services
1685 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1686 * In that case we should only throttle if the backing device it is
1687 * writing to is congested. In other cases it is safe to throttle.
1688 */
1689 static int current_may_throttle(void)
1690 {
1691 return !(current->flags & PF_LESS_THROTTLE) ||
1692 current->backing_dev_info == NULL ||
1693 bdi_write_congested(current->backing_dev_info);
1694 }
1695
1696 /*
1697 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1698 * of reclaimed pages
1699 */
1700 static noinline_for_stack unsigned long
1701 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1702 struct scan_control *sc, enum lru_list lru)
1703 {
1704 LIST_HEAD(page_list);
1705 unsigned long nr_scanned;
1706 unsigned long nr_reclaimed = 0;
1707 unsigned long nr_taken;
1708 struct reclaim_stat stat = {};
1709 isolate_mode_t isolate_mode = 0;
1710 int file = is_file_lru(lru);
1711 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1712 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1713
1714 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1715 congestion_wait(BLK_RW_ASYNC, HZ/10);
1716
1717 /* We are about to die and free our memory. Return now. */
1718 if (fatal_signal_pending(current))
1719 return SWAP_CLUSTER_MAX;
1720 }
1721
1722 lru_add_drain();
1723
1724 if (!sc->may_unmap)
1725 isolate_mode |= ISOLATE_UNMAPPED;
1726
1727 spin_lock_irq(&pgdat->lru_lock);
1728
1729 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1730 &nr_scanned, sc, isolate_mode, lru);
1731
1732 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1733 reclaim_stat->recent_scanned[file] += nr_taken;
1734
1735 if (global_reclaim(sc)) {
1736 if (current_is_kswapd())
1737 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1738 else
1739 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1740 }
1741 spin_unlock_irq(&pgdat->lru_lock);
1742
1743 if (nr_taken == 0)
1744 return 0;
1745
1746 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1747 &stat, false);
1748
1749 spin_lock_irq(&pgdat->lru_lock);
1750
1751 if (global_reclaim(sc)) {
1752 if (current_is_kswapd())
1753 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1754 else
1755 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1756 }
1757
1758 putback_inactive_pages(lruvec, &page_list);
1759
1760 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1761
1762 spin_unlock_irq(&pgdat->lru_lock);
1763
1764 mem_cgroup_uncharge_list(&page_list);
1765 free_hot_cold_page_list(&page_list, true);
1766
1767 /*
1768 * If reclaim is isolating dirty pages under writeback, it implies
1769 * that the long-lived page allocation rate is exceeding the page
1770 * laundering rate. Either the global limits are not being effective
1771 * at throttling processes due to the page distribution throughout
1772 * zones or there is heavy usage of a slow backing device. The
1773 * only option is to throttle from reclaim context which is not ideal
1774 * as there is no guarantee the dirtying process is throttled in the
1775 * same way balance_dirty_pages() manages.
1776 *
1777 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1778 * of pages under pages flagged for immediate reclaim and stall if any
1779 * are encountered in the nr_immediate check below.
1780 */
1781 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1782 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1783
1784 /*
1785 * Legacy memcg will stall in page writeback so avoid forcibly
1786 * stalling here.
1787 */
1788 if (sane_reclaim(sc)) {
1789 /*
1790 * Tag a zone as congested if all the dirty pages scanned were
1791 * backed by a congested BDI and wait_iff_congested will stall.
1792 */
1793 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1794 set_bit(PGDAT_CONGESTED, &pgdat->flags);
1795
1796 /*
1797 * If dirty pages are scanned that are not queued for IO, it
1798 * implies that flushers are not doing their job. This can
1799 * happen when memory pressure pushes dirty pages to the end of
1800 * the LRU before the dirty limits are breached and the dirty
1801 * data has expired. It can also happen when the proportion of
1802 * dirty pages grows not through writes but through memory
1803 * pressure reclaiming all the clean cache. And in some cases,
1804 * the flushers simply cannot keep up with the allocation
1805 * rate. Nudge the flusher threads in case they are asleep, but
1806 * also allow kswapd to start writing pages during reclaim.
1807 */
1808 if (stat.nr_unqueued_dirty == nr_taken) {
1809 wakeup_flusher_threads(0, WB_REASON_VMSCAN);
1810 set_bit(PGDAT_DIRTY, &pgdat->flags);
1811 }
1812
1813 /*
1814 * If kswapd scans pages marked marked for immediate
1815 * reclaim and under writeback (nr_immediate), it implies
1816 * that pages are cycling through the LRU faster than
1817 * they are written so also forcibly stall.
1818 */
1819 if (stat.nr_immediate && current_may_throttle())
1820 congestion_wait(BLK_RW_ASYNC, HZ/10);
1821 }
1822
1823 /*
1824 * Stall direct reclaim for IO completions if underlying BDIs or zone
1825 * is congested. Allow kswapd to continue until it starts encountering
1826 * unqueued dirty pages or cycling through the LRU too quickly.
1827 */
1828 if (!sc->hibernation_mode && !current_is_kswapd() &&
1829 current_may_throttle())
1830 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1831
1832 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1833 nr_scanned, nr_reclaimed,
1834 stat.nr_dirty, stat.nr_writeback,
1835 stat.nr_congested, stat.nr_immediate,
1836 stat.nr_activate, stat.nr_ref_keep,
1837 stat.nr_unmap_fail,
1838 sc->priority, file);
1839 return nr_reclaimed;
1840 }
1841
1842 /*
1843 * This moves pages from the active list to the inactive list.
1844 *
1845 * We move them the other way if the page is referenced by one or more
1846 * processes, from rmap.
1847 *
1848 * If the pages are mostly unmapped, the processing is fast and it is
1849 * appropriate to hold zone_lru_lock across the whole operation. But if
1850 * the pages are mapped, the processing is slow (page_referenced()) so we
1851 * should drop zone_lru_lock around each page. It's impossible to balance
1852 * this, so instead we remove the pages from the LRU while processing them.
1853 * It is safe to rely on PG_active against the non-LRU pages in here because
1854 * nobody will play with that bit on a non-LRU page.
1855 *
1856 * The downside is that we have to touch page->_refcount against each page.
1857 * But we had to alter page->flags anyway.
1858 *
1859 * Returns the number of pages moved to the given lru.
1860 */
1861
1862 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1863 struct list_head *list,
1864 struct list_head *pages_to_free,
1865 enum lru_list lru)
1866 {
1867 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1868 struct page *page;
1869 int nr_pages;
1870 int nr_moved = 0;
1871
1872 while (!list_empty(list)) {
1873 page = lru_to_page(list);
1874 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1875
1876 VM_BUG_ON_PAGE(PageLRU(page), page);
1877 SetPageLRU(page);
1878
1879 nr_pages = hpage_nr_pages(page);
1880 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1881 list_move(&page->lru, &lruvec->lists[lru]);
1882
1883 if (put_page_testzero(page)) {
1884 __ClearPageLRU(page);
1885 __ClearPageActive(page);
1886 del_page_from_lru_list(page, lruvec, lru);
1887
1888 if (unlikely(PageCompound(page))) {
1889 spin_unlock_irq(&pgdat->lru_lock);
1890 mem_cgroup_uncharge(page);
1891 (*get_compound_page_dtor(page))(page);
1892 spin_lock_irq(&pgdat->lru_lock);
1893 } else
1894 list_add(&page->lru, pages_to_free);
1895 } else {
1896 nr_moved += nr_pages;
1897 }
1898 }
1899
1900 if (!is_active_lru(lru))
1901 __count_vm_events(PGDEACTIVATE, nr_moved);
1902
1903 return nr_moved;
1904 }
1905
1906 static void shrink_active_list(unsigned long nr_to_scan,
1907 struct lruvec *lruvec,
1908 struct scan_control *sc,
1909 enum lru_list lru)
1910 {
1911 unsigned long nr_taken;
1912 unsigned long nr_scanned;
1913 unsigned long vm_flags;
1914 LIST_HEAD(l_hold); /* The pages which were snipped off */
1915 LIST_HEAD(l_active);
1916 LIST_HEAD(l_inactive);
1917 struct page *page;
1918 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1919 unsigned nr_deactivate, nr_activate;
1920 unsigned nr_rotated = 0;
1921 isolate_mode_t isolate_mode = 0;
1922 int file = is_file_lru(lru);
1923 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1924
1925 lru_add_drain();
1926
1927 if (!sc->may_unmap)
1928 isolate_mode |= ISOLATE_UNMAPPED;
1929
1930 spin_lock_irq(&pgdat->lru_lock);
1931
1932 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1933 &nr_scanned, sc, isolate_mode, lru);
1934
1935 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1936 reclaim_stat->recent_scanned[file] += nr_taken;
1937
1938 __count_vm_events(PGREFILL, nr_scanned);
1939
1940 spin_unlock_irq(&pgdat->lru_lock);
1941
1942 while (!list_empty(&l_hold)) {
1943 cond_resched();
1944 page = lru_to_page(&l_hold);
1945 list_del(&page->lru);
1946
1947 if (unlikely(!page_evictable(page))) {
1948 putback_lru_page(page);
1949 continue;
1950 }
1951
1952 if (unlikely(buffer_heads_over_limit)) {
1953 if (page_has_private(page) && trylock_page(page)) {
1954 if (page_has_private(page))
1955 try_to_release_page(page, 0);
1956 unlock_page(page);
1957 }
1958 }
1959
1960 if (page_referenced(page, 0, sc->target_mem_cgroup,
1961 &vm_flags)) {
1962 nr_rotated += hpage_nr_pages(page);
1963 /*
1964 * Identify referenced, file-backed active pages and
1965 * give them one more trip around the active list. So
1966 * that executable code get better chances to stay in
1967 * memory under moderate memory pressure. Anon pages
1968 * are not likely to be evicted by use-once streaming
1969 * IO, plus JVM can create lots of anon VM_EXEC pages,
1970 * so we ignore them here.
1971 */
1972 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1973 list_add(&page->lru, &l_active);
1974 continue;
1975 }
1976 }
1977
1978 ClearPageActive(page); /* we are de-activating */
1979 list_add(&page->lru, &l_inactive);
1980 }
1981
1982 /*
1983 * Move pages back to the lru list.
1984 */
1985 spin_lock_irq(&pgdat->lru_lock);
1986 /*
1987 * Count referenced pages from currently used mappings as rotated,
1988 * even though only some of them are actually re-activated. This
1989 * helps balance scan pressure between file and anonymous pages in
1990 * get_scan_count.
1991 */
1992 reclaim_stat->recent_rotated[file] += nr_rotated;
1993
1994 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1995 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1996 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1997 spin_unlock_irq(&pgdat->lru_lock);
1998
1999 mem_cgroup_uncharge_list(&l_hold);
2000 free_hot_cold_page_list(&l_hold, true);
2001 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2002 nr_deactivate, nr_rotated, sc->priority, file);
2003 }
2004
2005 /*
2006 * The inactive anon list should be small enough that the VM never has
2007 * to do too much work.
2008 *
2009 * The inactive file list should be small enough to leave most memory
2010 * to the established workingset on the scan-resistant active list,
2011 * but large enough to avoid thrashing the aggregate readahead window.
2012 *
2013 * Both inactive lists should also be large enough that each inactive
2014 * page has a chance to be referenced again before it is reclaimed.
2015 *
2016 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2017 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2018 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2019 *
2020 * total target max
2021 * memory ratio inactive
2022 * -------------------------------------
2023 * 10MB 1 5MB
2024 * 100MB 1 50MB
2025 * 1GB 3 250MB
2026 * 10GB 10 0.9GB
2027 * 100GB 31 3GB
2028 * 1TB 101 10GB
2029 * 10TB 320 32GB
2030 */
2031 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2032 struct scan_control *sc, bool trace)
2033 {
2034 unsigned long inactive_ratio;
2035 unsigned long inactive, active;
2036 enum lru_list inactive_lru = file * LRU_FILE;
2037 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2038 unsigned long gb;
2039
2040 /*
2041 * If we don't have swap space, anonymous page deactivation
2042 * is pointless.
2043 */
2044 if (!file && !total_swap_pages)
2045 return false;
2046
2047 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2048 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2049
2050 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2051 if (gb)
2052 inactive_ratio = int_sqrt(10 * gb);
2053 else
2054 inactive_ratio = 1;
2055
2056 if (trace)
2057 trace_mm_vmscan_inactive_list_is_low(lruvec_pgdat(lruvec)->node_id,
2058 sc->reclaim_idx,
2059 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2060 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2061 inactive_ratio, file);
2062
2063 return inactive * inactive_ratio < active;
2064 }
2065
2066 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2067 struct lruvec *lruvec, struct scan_control *sc)
2068 {
2069 if (is_active_lru(lru)) {
2070 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2071 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2072 return 0;
2073 }
2074
2075 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2076 }
2077
2078 enum scan_balance {
2079 SCAN_EQUAL,
2080 SCAN_FRACT,
2081 SCAN_ANON,
2082 SCAN_FILE,
2083 };
2084
2085 /*
2086 * Determine how aggressively the anon and file LRU lists should be
2087 * scanned. The relative value of each set of LRU lists is determined
2088 * by looking at the fraction of the pages scanned we did rotate back
2089 * onto the active list instead of evict.
2090 *
2091 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2092 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2093 */
2094 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2095 struct scan_control *sc, unsigned long *nr,
2096 unsigned long *lru_pages)
2097 {
2098 int swappiness = mem_cgroup_swappiness(memcg);
2099 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2100 u64 fraction[2];
2101 u64 denominator = 0; /* gcc */
2102 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2103 unsigned long anon_prio, file_prio;
2104 enum scan_balance scan_balance;
2105 unsigned long anon, file;
2106 unsigned long ap, fp;
2107 enum lru_list lru;
2108
2109 /* If we have no swap space, do not bother scanning anon pages. */
2110 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2111 scan_balance = SCAN_FILE;
2112 goto out;
2113 }
2114
2115 /*
2116 * Global reclaim will swap to prevent OOM even with no
2117 * swappiness, but memcg users want to use this knob to
2118 * disable swapping for individual groups completely when
2119 * using the memory controller's swap limit feature would be
2120 * too expensive.
2121 */
2122 if (!global_reclaim(sc) && !swappiness) {
2123 scan_balance = SCAN_FILE;
2124 goto out;
2125 }
2126
2127 /*
2128 * Do not apply any pressure balancing cleverness when the
2129 * system is close to OOM, scan both anon and file equally
2130 * (unless the swappiness setting disagrees with swapping).
2131 */
2132 if (!sc->priority && swappiness) {
2133 scan_balance = SCAN_EQUAL;
2134 goto out;
2135 }
2136
2137 /*
2138 * Prevent the reclaimer from falling into the cache trap: as
2139 * cache pages start out inactive, every cache fault will tip
2140 * the scan balance towards the file LRU. And as the file LRU
2141 * shrinks, so does the window for rotation from references.
2142 * This means we have a runaway feedback loop where a tiny
2143 * thrashing file LRU becomes infinitely more attractive than
2144 * anon pages. Try to detect this based on file LRU size.
2145 */
2146 if (global_reclaim(sc)) {
2147 unsigned long pgdatfile;
2148 unsigned long pgdatfree;
2149 int z;
2150 unsigned long total_high_wmark = 0;
2151
2152 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2153 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2154 node_page_state(pgdat, NR_INACTIVE_FILE);
2155
2156 for (z = 0; z < MAX_NR_ZONES; z++) {
2157 struct zone *zone = &pgdat->node_zones[z];
2158 if (!managed_zone(zone))
2159 continue;
2160
2161 total_high_wmark += high_wmark_pages(zone);
2162 }
2163
2164 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2165 scan_balance = SCAN_ANON;
2166 goto out;
2167 }
2168 }
2169
2170 /*
2171 * If there is enough inactive page cache, i.e. if the size of the
2172 * inactive list is greater than that of the active list *and* the
2173 * inactive list actually has some pages to scan on this priority, we
2174 * do not reclaim anything from the anonymous working set right now.
2175 * Without the second condition we could end up never scanning an
2176 * lruvec even if it has plenty of old anonymous pages unless the
2177 * system is under heavy pressure.
2178 */
2179 if (!inactive_list_is_low(lruvec, true, sc, false) &&
2180 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2181 scan_balance = SCAN_FILE;
2182 goto out;
2183 }
2184
2185 scan_balance = SCAN_FRACT;
2186
2187 /*
2188 * With swappiness at 100, anonymous and file have the same priority.
2189 * This scanning priority is essentially the inverse of IO cost.
2190 */
2191 anon_prio = swappiness;
2192 file_prio = 200 - anon_prio;
2193
2194 /*
2195 * OK, so we have swap space and a fair amount of page cache
2196 * pages. We use the recently rotated / recently scanned
2197 * ratios to determine how valuable each cache is.
2198 *
2199 * Because workloads change over time (and to avoid overflow)
2200 * we keep these statistics as a floating average, which ends
2201 * up weighing recent references more than old ones.
2202 *
2203 * anon in [0], file in [1]
2204 */
2205
2206 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2207 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2208 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2209 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2210
2211 spin_lock_irq(&pgdat->lru_lock);
2212 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2213 reclaim_stat->recent_scanned[0] /= 2;
2214 reclaim_stat->recent_rotated[0] /= 2;
2215 }
2216
2217 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2218 reclaim_stat->recent_scanned[1] /= 2;
2219 reclaim_stat->recent_rotated[1] /= 2;
2220 }
2221
2222 /*
2223 * The amount of pressure on anon vs file pages is inversely
2224 * proportional to the fraction of recently scanned pages on
2225 * each list that were recently referenced and in active use.
2226 */
2227 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2228 ap /= reclaim_stat->recent_rotated[0] + 1;
2229
2230 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2231 fp /= reclaim_stat->recent_rotated[1] + 1;
2232 spin_unlock_irq(&pgdat->lru_lock);
2233
2234 fraction[0] = ap;
2235 fraction[1] = fp;
2236 denominator = ap + fp + 1;
2237 out:
2238 *lru_pages = 0;
2239 for_each_evictable_lru(lru) {
2240 int file = is_file_lru(lru);
2241 unsigned long size;
2242 unsigned long scan;
2243
2244 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2245 scan = size >> sc->priority;
2246 /*
2247 * If the cgroup's already been deleted, make sure to
2248 * scrape out the remaining cache.
2249 */
2250 if (!scan && !mem_cgroup_online(memcg))
2251 scan = min(size, SWAP_CLUSTER_MAX);
2252
2253 switch (scan_balance) {
2254 case SCAN_EQUAL:
2255 /* Scan lists relative to size */
2256 break;
2257 case SCAN_FRACT:
2258 /*
2259 * Scan types proportional to swappiness and
2260 * their relative recent reclaim efficiency.
2261 */
2262 scan = div64_u64(scan * fraction[file],
2263 denominator);
2264 break;
2265 case SCAN_FILE:
2266 case SCAN_ANON:
2267 /* Scan one type exclusively */
2268 if ((scan_balance == SCAN_FILE) != file) {
2269 size = 0;
2270 scan = 0;
2271 }
2272 break;
2273 default:
2274 /* Look ma, no brain */
2275 BUG();
2276 }
2277
2278 *lru_pages += size;
2279 nr[lru] = scan;
2280 }
2281 }
2282
2283 /*
2284 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2285 */
2286 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2287 struct scan_control *sc, unsigned long *lru_pages)
2288 {
2289 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2290 unsigned long nr[NR_LRU_LISTS];
2291 unsigned long targets[NR_LRU_LISTS];
2292 unsigned long nr_to_scan;
2293 enum lru_list lru;
2294 unsigned long nr_reclaimed = 0;
2295 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2296 struct blk_plug plug;
2297 bool scan_adjusted;
2298
2299 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2300
2301 /* Record the original scan target for proportional adjustments later */
2302 memcpy(targets, nr, sizeof(nr));
2303
2304 /*
2305 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2306 * event that can occur when there is little memory pressure e.g.
2307 * multiple streaming readers/writers. Hence, we do not abort scanning
2308 * when the requested number of pages are reclaimed when scanning at
2309 * DEF_PRIORITY on the assumption that the fact we are direct
2310 * reclaiming implies that kswapd is not keeping up and it is best to
2311 * do a batch of work at once. For memcg reclaim one check is made to
2312 * abort proportional reclaim if either the file or anon lru has already
2313 * dropped to zero at the first pass.
2314 */
2315 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2316 sc->priority == DEF_PRIORITY);
2317
2318 blk_start_plug(&plug);
2319 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2320 nr[LRU_INACTIVE_FILE]) {
2321 unsigned long nr_anon, nr_file, percentage;
2322 unsigned long nr_scanned;
2323
2324 for_each_evictable_lru(lru) {
2325 if (nr[lru]) {
2326 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2327 nr[lru] -= nr_to_scan;
2328
2329 nr_reclaimed += shrink_list(lru, nr_to_scan,
2330 lruvec, sc);
2331 }
2332 }
2333
2334 cond_resched();
2335
2336 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2337 continue;
2338
2339 /*
2340 * For kswapd and memcg, reclaim at least the number of pages
2341 * requested. Ensure that the anon and file LRUs are scanned
2342 * proportionally what was requested by get_scan_count(). We
2343 * stop reclaiming one LRU and reduce the amount scanning
2344 * proportional to the original scan target.
2345 */
2346 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2347 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2348
2349 /*
2350 * It's just vindictive to attack the larger once the smaller
2351 * has gone to zero. And given the way we stop scanning the
2352 * smaller below, this makes sure that we only make one nudge
2353 * towards proportionality once we've got nr_to_reclaim.
2354 */
2355 if (!nr_file || !nr_anon)
2356 break;
2357
2358 if (nr_file > nr_anon) {
2359 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2360 targets[LRU_ACTIVE_ANON] + 1;
2361 lru = LRU_BASE;
2362 percentage = nr_anon * 100 / scan_target;
2363 } else {
2364 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2365 targets[LRU_ACTIVE_FILE] + 1;
2366 lru = LRU_FILE;
2367 percentage = nr_file * 100 / scan_target;
2368 }
2369
2370 /* Stop scanning the smaller of the LRU */
2371 nr[lru] = 0;
2372 nr[lru + LRU_ACTIVE] = 0;
2373
2374 /*
2375 * Recalculate the other LRU scan count based on its original
2376 * scan target and the percentage scanning already complete
2377 */
2378 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2379 nr_scanned = targets[lru] - nr[lru];
2380 nr[lru] = targets[lru] * (100 - percentage) / 100;
2381 nr[lru] -= min(nr[lru], nr_scanned);
2382
2383 lru += LRU_ACTIVE;
2384 nr_scanned = targets[lru] - nr[lru];
2385 nr[lru] = targets[lru] * (100 - percentage) / 100;
2386 nr[lru] -= min(nr[lru], nr_scanned);
2387
2388 scan_adjusted = true;
2389 }
2390 blk_finish_plug(&plug);
2391 sc->nr_reclaimed += nr_reclaimed;
2392
2393 /*
2394 * Even if we did not try to evict anon pages at all, we want to
2395 * rebalance the anon lru active/inactive ratio.
2396 */
2397 if (inactive_list_is_low(lruvec, false, sc, true))
2398 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2399 sc, LRU_ACTIVE_ANON);
2400 }
2401
2402 /* Use reclaim/compaction for costly allocs or under memory pressure */
2403 static bool in_reclaim_compaction(struct scan_control *sc)
2404 {
2405 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2406 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2407 sc->priority < DEF_PRIORITY - 2))
2408 return true;
2409
2410 return false;
2411 }
2412
2413 /*
2414 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2415 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2416 * true if more pages should be reclaimed such that when the page allocator
2417 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2418 * It will give up earlier than that if there is difficulty reclaiming pages.
2419 */
2420 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2421 unsigned long nr_reclaimed,
2422 unsigned long nr_scanned,
2423 struct scan_control *sc)
2424 {
2425 unsigned long pages_for_compaction;
2426 unsigned long inactive_lru_pages;
2427 int z;
2428
2429 /* If not in reclaim/compaction mode, stop */
2430 if (!in_reclaim_compaction(sc))
2431 return false;
2432
2433 /* Consider stopping depending on scan and reclaim activity */
2434 if (sc->gfp_mask & __GFP_REPEAT) {
2435 /*
2436 * For __GFP_REPEAT allocations, stop reclaiming if the
2437 * full LRU list has been scanned and we are still failing
2438 * to reclaim pages. This full LRU scan is potentially
2439 * expensive but a __GFP_REPEAT caller really wants to succeed
2440 */
2441 if (!nr_reclaimed && !nr_scanned)
2442 return false;
2443 } else {
2444 /*
2445 * For non-__GFP_REPEAT allocations which can presumably
2446 * fail without consequence, stop if we failed to reclaim
2447 * any pages from the last SWAP_CLUSTER_MAX number of
2448 * pages that were scanned. This will return to the
2449 * caller faster at the risk reclaim/compaction and
2450 * the resulting allocation attempt fails
2451 */
2452 if (!nr_reclaimed)
2453 return false;
2454 }
2455
2456 /*
2457 * If we have not reclaimed enough pages for compaction and the
2458 * inactive lists are large enough, continue reclaiming
2459 */
2460 pages_for_compaction = compact_gap(sc->order);
2461 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2462 if (get_nr_swap_pages() > 0)
2463 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2464 if (sc->nr_reclaimed < pages_for_compaction &&
2465 inactive_lru_pages > pages_for_compaction)
2466 return true;
2467
2468 /* If compaction would go ahead or the allocation would succeed, stop */
2469 for (z = 0; z <= sc->reclaim_idx; z++) {
2470 struct zone *zone = &pgdat->node_zones[z];
2471 if (!managed_zone(zone))
2472 continue;
2473
2474 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2475 case COMPACT_SUCCESS:
2476 case COMPACT_CONTINUE:
2477 return false;
2478 default:
2479 /* check next zone */
2480 ;
2481 }
2482 }
2483 return true;
2484 }
2485
2486 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2487 {
2488 struct reclaim_state *reclaim_state = current->reclaim_state;
2489 unsigned long nr_reclaimed, nr_scanned;
2490 bool reclaimable = false;
2491
2492 do {
2493 struct mem_cgroup *root = sc->target_mem_cgroup;
2494 struct mem_cgroup_reclaim_cookie reclaim = {
2495 .pgdat = pgdat,
2496 .priority = sc->priority,
2497 };
2498 unsigned long node_lru_pages = 0;
2499 struct mem_cgroup *memcg;
2500
2501 nr_reclaimed = sc->nr_reclaimed;
2502 nr_scanned = sc->nr_scanned;
2503
2504 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2505 do {
2506 unsigned long lru_pages;
2507 unsigned long reclaimed;
2508 unsigned long scanned;
2509
2510 if (mem_cgroup_low(root, memcg)) {
2511 if (!sc->memcg_low_reclaim) {
2512 sc->memcg_low_skipped = 1;
2513 continue;
2514 }
2515 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2516 }
2517
2518 reclaimed = sc->nr_reclaimed;
2519 scanned = sc->nr_scanned;
2520
2521 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2522 node_lru_pages += lru_pages;
2523
2524 if (memcg)
2525 shrink_slab(sc->gfp_mask, pgdat->node_id,
2526 memcg, sc->nr_scanned - scanned,
2527 lru_pages);
2528
2529 /* Record the group's reclaim efficiency */
2530 vmpressure(sc->gfp_mask, memcg, false,
2531 sc->nr_scanned - scanned,
2532 sc->nr_reclaimed - reclaimed);
2533
2534 /*
2535 * Direct reclaim and kswapd have to scan all memory
2536 * cgroups to fulfill the overall scan target for the
2537 * node.
2538 *
2539 * Limit reclaim, on the other hand, only cares about
2540 * nr_to_reclaim pages to be reclaimed and it will
2541 * retry with decreasing priority if one round over the
2542 * whole hierarchy is not sufficient.
2543 */
2544 if (!global_reclaim(sc) &&
2545 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2546 mem_cgroup_iter_break(root, memcg);
2547 break;
2548 }
2549 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2550
2551 /*
2552 * Shrink the slab caches in the same proportion that
2553 * the eligible LRU pages were scanned.
2554 */
2555 if (global_reclaim(sc))
2556 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2557 sc->nr_scanned - nr_scanned,
2558 node_lru_pages);
2559
2560 if (reclaim_state) {
2561 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2562 reclaim_state->reclaimed_slab = 0;
2563 }
2564
2565 /* Record the subtree's reclaim efficiency */
2566 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2567 sc->nr_scanned - nr_scanned,
2568 sc->nr_reclaimed - nr_reclaimed);
2569
2570 if (sc->nr_reclaimed - nr_reclaimed)
2571 reclaimable = true;
2572
2573 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2574 sc->nr_scanned - nr_scanned, sc));
2575
2576 /*
2577 * Kswapd gives up on balancing particular nodes after too
2578 * many failures to reclaim anything from them and goes to
2579 * sleep. On reclaim progress, reset the failure counter. A
2580 * successful direct reclaim run will revive a dormant kswapd.
2581 */
2582 if (reclaimable)
2583 pgdat->kswapd_failures = 0;
2584
2585 return reclaimable;
2586 }
2587
2588 /*
2589 * Returns true if compaction should go ahead for a costly-order request, or
2590 * the allocation would already succeed without compaction. Return false if we
2591 * should reclaim first.
2592 */
2593 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2594 {
2595 unsigned long watermark;
2596 enum compact_result suitable;
2597
2598 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2599 if (suitable == COMPACT_SUCCESS)
2600 /* Allocation should succeed already. Don't reclaim. */
2601 return true;
2602 if (suitable == COMPACT_SKIPPED)
2603 /* Compaction cannot yet proceed. Do reclaim. */
2604 return false;
2605
2606 /*
2607 * Compaction is already possible, but it takes time to run and there
2608 * are potentially other callers using the pages just freed. So proceed
2609 * with reclaim to make a buffer of free pages available to give
2610 * compaction a reasonable chance of completing and allocating the page.
2611 * Note that we won't actually reclaim the whole buffer in one attempt
2612 * as the target watermark in should_continue_reclaim() is lower. But if
2613 * we are already above the high+gap watermark, don't reclaim at all.
2614 */
2615 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2616
2617 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2618 }
2619
2620 /*
2621 * This is the direct reclaim path, for page-allocating processes. We only
2622 * try to reclaim pages from zones which will satisfy the caller's allocation
2623 * request.
2624 *
2625 * If a zone is deemed to be full of pinned pages then just give it a light
2626 * scan then give up on it.
2627 */
2628 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2629 {
2630 struct zoneref *z;
2631 struct zone *zone;
2632 unsigned long nr_soft_reclaimed;
2633 unsigned long nr_soft_scanned;
2634 gfp_t orig_mask;
2635 pg_data_t *last_pgdat = NULL;
2636
2637 /*
2638 * If the number of buffer_heads in the machine exceeds the maximum
2639 * allowed level, force direct reclaim to scan the highmem zone as
2640 * highmem pages could be pinning lowmem pages storing buffer_heads
2641 */
2642 orig_mask = sc->gfp_mask;
2643 if (buffer_heads_over_limit) {
2644 sc->gfp_mask |= __GFP_HIGHMEM;
2645 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2646 }
2647
2648 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2649 sc->reclaim_idx, sc->nodemask) {
2650 /*
2651 * Take care memory controller reclaiming has small influence
2652 * to global LRU.
2653 */
2654 if (global_reclaim(sc)) {
2655 if (!cpuset_zone_allowed(zone,
2656 GFP_KERNEL | __GFP_HARDWALL))
2657 continue;
2658
2659 /*
2660 * If we already have plenty of memory free for
2661 * compaction in this zone, don't free any more.
2662 * Even though compaction is invoked for any
2663 * non-zero order, only frequent costly order
2664 * reclamation is disruptive enough to become a
2665 * noticeable problem, like transparent huge
2666 * page allocations.
2667 */
2668 if (IS_ENABLED(CONFIG_COMPACTION) &&
2669 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2670 compaction_ready(zone, sc)) {
2671 sc->compaction_ready = true;
2672 continue;
2673 }
2674
2675 /*
2676 * Shrink each node in the zonelist once. If the
2677 * zonelist is ordered by zone (not the default) then a
2678 * node may be shrunk multiple times but in that case
2679 * the user prefers lower zones being preserved.
2680 */
2681 if (zone->zone_pgdat == last_pgdat)
2682 continue;
2683
2684 /*
2685 * This steals pages from memory cgroups over softlimit
2686 * and returns the number of reclaimed pages and
2687 * scanned pages. This works for global memory pressure
2688 * and balancing, not for a memcg's limit.
2689 */
2690 nr_soft_scanned = 0;
2691 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2692 sc->order, sc->gfp_mask,
2693 &nr_soft_scanned);
2694 sc->nr_reclaimed += nr_soft_reclaimed;
2695 sc->nr_scanned += nr_soft_scanned;
2696 /* need some check for avoid more shrink_zone() */
2697 }
2698
2699 /* See comment about same check for global reclaim above */
2700 if (zone->zone_pgdat == last_pgdat)
2701 continue;
2702 last_pgdat = zone->zone_pgdat;
2703 shrink_node(zone->zone_pgdat, sc);
2704 }
2705
2706 /*
2707 * Restore to original mask to avoid the impact on the caller if we
2708 * promoted it to __GFP_HIGHMEM.
2709 */
2710 sc->gfp_mask = orig_mask;
2711 }
2712
2713 /*
2714 * This is the main entry point to direct page reclaim.
2715 *
2716 * If a full scan of the inactive list fails to free enough memory then we
2717 * are "out of memory" and something needs to be killed.
2718 *
2719 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2720 * high - the zone may be full of dirty or under-writeback pages, which this
2721 * caller can't do much about. We kick the writeback threads and take explicit
2722 * naps in the hope that some of these pages can be written. But if the
2723 * allocating task holds filesystem locks which prevent writeout this might not
2724 * work, and the allocation attempt will fail.
2725 *
2726 * returns: 0, if no pages reclaimed
2727 * else, the number of pages reclaimed
2728 */
2729 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2730 struct scan_control *sc)
2731 {
2732 int initial_priority = sc->priority;
2733 retry:
2734 delayacct_freepages_start();
2735
2736 if (global_reclaim(sc))
2737 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2738
2739 do {
2740 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2741 sc->priority);
2742 sc->nr_scanned = 0;
2743 shrink_zones(zonelist, sc);
2744
2745 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2746 break;
2747
2748 if (sc->compaction_ready)
2749 break;
2750
2751 /*
2752 * If we're getting trouble reclaiming, start doing
2753 * writepage even in laptop mode.
2754 */
2755 if (sc->priority < DEF_PRIORITY - 2)
2756 sc->may_writepage = 1;
2757 } while (--sc->priority >= 0);
2758
2759 delayacct_freepages_end();
2760
2761 if (sc->nr_reclaimed)
2762 return sc->nr_reclaimed;
2763
2764 /* Aborted reclaim to try compaction? don't OOM, then */
2765 if (sc->compaction_ready)
2766 return 1;
2767
2768 /* Untapped cgroup reserves? Don't OOM, retry. */
2769 if (sc->memcg_low_skipped) {
2770 sc->priority = initial_priority;
2771 sc->memcg_low_reclaim = 1;
2772 sc->memcg_low_skipped = 0;
2773 goto retry;
2774 }
2775
2776 return 0;
2777 }
2778
2779 static bool allow_direct_reclaim(pg_data_t *pgdat)
2780 {
2781 struct zone *zone;
2782 unsigned long pfmemalloc_reserve = 0;
2783 unsigned long free_pages = 0;
2784 int i;
2785 bool wmark_ok;
2786
2787 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2788 return true;
2789
2790 for (i = 0; i <= ZONE_NORMAL; i++) {
2791 zone = &pgdat->node_zones[i];
2792 if (!managed_zone(zone))
2793 continue;
2794
2795 if (!zone_reclaimable_pages(zone))
2796 continue;
2797
2798 pfmemalloc_reserve += min_wmark_pages(zone);
2799 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2800 }
2801
2802 /* If there are no reserves (unexpected config) then do not throttle */
2803 if (!pfmemalloc_reserve)
2804 return true;
2805
2806 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2807
2808 /* kswapd must be awake if processes are being throttled */
2809 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2810 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2811 (enum zone_type)ZONE_NORMAL);
2812 wake_up_interruptible(&pgdat->kswapd_wait);
2813 }
2814
2815 return wmark_ok;
2816 }
2817
2818 /*
2819 * Throttle direct reclaimers if backing storage is backed by the network
2820 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2821 * depleted. kswapd will continue to make progress and wake the processes
2822 * when the low watermark is reached.
2823 *
2824 * Returns true if a fatal signal was delivered during throttling. If this
2825 * happens, the page allocator should not consider triggering the OOM killer.
2826 */
2827 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2828 nodemask_t *nodemask)
2829 {
2830 struct zoneref *z;
2831 struct zone *zone;
2832 pg_data_t *pgdat = NULL;
2833
2834 /*
2835 * Kernel threads should not be throttled as they may be indirectly
2836 * responsible for cleaning pages necessary for reclaim to make forward
2837 * progress. kjournald for example may enter direct reclaim while
2838 * committing a transaction where throttling it could forcing other
2839 * processes to block on log_wait_commit().
2840 */
2841 if (current->flags & PF_KTHREAD)
2842 goto out;
2843
2844 /*
2845 * If a fatal signal is pending, this process should not throttle.
2846 * It should return quickly so it can exit and free its memory
2847 */
2848 if (fatal_signal_pending(current))
2849 goto out;
2850
2851 /*
2852 * Check if the pfmemalloc reserves are ok by finding the first node
2853 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2854 * GFP_KERNEL will be required for allocating network buffers when
2855 * swapping over the network so ZONE_HIGHMEM is unusable.
2856 *
2857 * Throttling is based on the first usable node and throttled processes
2858 * wait on a queue until kswapd makes progress and wakes them. There
2859 * is an affinity then between processes waking up and where reclaim
2860 * progress has been made assuming the process wakes on the same node.
2861 * More importantly, processes running on remote nodes will not compete
2862 * for remote pfmemalloc reserves and processes on different nodes
2863 * should make reasonable progress.
2864 */
2865 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2866 gfp_zone(gfp_mask), nodemask) {
2867 if (zone_idx(zone) > ZONE_NORMAL)
2868 continue;
2869
2870 /* Throttle based on the first usable node */
2871 pgdat = zone->zone_pgdat;
2872 if (allow_direct_reclaim(pgdat))
2873 goto out;
2874 break;
2875 }
2876
2877 /* If no zone was usable by the allocation flags then do not throttle */
2878 if (!pgdat)
2879 goto out;
2880
2881 /* Account for the throttling */
2882 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2883
2884 /*
2885 * If the caller cannot enter the filesystem, it's possible that it
2886 * is due to the caller holding an FS lock or performing a journal
2887 * transaction in the case of a filesystem like ext[3|4]. In this case,
2888 * it is not safe to block on pfmemalloc_wait as kswapd could be
2889 * blocked waiting on the same lock. Instead, throttle for up to a
2890 * second before continuing.
2891 */
2892 if (!(gfp_mask & __GFP_FS)) {
2893 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2894 allow_direct_reclaim(pgdat), HZ);
2895
2896 goto check_pending;
2897 }
2898
2899 /* Throttle until kswapd wakes the process */
2900 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2901 allow_direct_reclaim(pgdat));
2902
2903 check_pending:
2904 if (fatal_signal_pending(current))
2905 return true;
2906
2907 out:
2908 return false;
2909 }
2910
2911 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2912 gfp_t gfp_mask, nodemask_t *nodemask)
2913 {
2914 unsigned long nr_reclaimed;
2915 struct scan_control sc = {
2916 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2917 .gfp_mask = (gfp_mask = current_gfp_context(gfp_mask)),
2918 .reclaim_idx = gfp_zone(gfp_mask),
2919 .order = order,
2920 .nodemask = nodemask,
2921 .priority = DEF_PRIORITY,
2922 .may_writepage = !laptop_mode,
2923 .may_unmap = 1,
2924 .may_swap = 1,
2925 };
2926
2927 /*
2928 * Do not enter reclaim if fatal signal was delivered while throttled.
2929 * 1 is returned so that the page allocator does not OOM kill at this
2930 * point.
2931 */
2932 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2933 return 1;
2934
2935 trace_mm_vmscan_direct_reclaim_begin(order,
2936 sc.may_writepage,
2937 gfp_mask,
2938 sc.reclaim_idx);
2939
2940 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2941
2942 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2943
2944 return nr_reclaimed;
2945 }
2946
2947 #ifdef CONFIG_MEMCG
2948
2949 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
2950 gfp_t gfp_mask, bool noswap,
2951 pg_data_t *pgdat,
2952 unsigned long *nr_scanned)
2953 {
2954 struct scan_control sc = {
2955 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2956 .target_mem_cgroup = memcg,
2957 .may_writepage = !laptop_mode,
2958 .may_unmap = 1,
2959 .reclaim_idx = MAX_NR_ZONES - 1,
2960 .may_swap = !noswap,
2961 };
2962 unsigned long lru_pages;
2963
2964 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2965 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2966
2967 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2968 sc.may_writepage,
2969 sc.gfp_mask,
2970 sc.reclaim_idx);
2971
2972 /*
2973 * NOTE: Although we can get the priority field, using it
2974 * here is not a good idea, since it limits the pages we can scan.
2975 * if we don't reclaim here, the shrink_node from balance_pgdat
2976 * will pick up pages from other mem cgroup's as well. We hack
2977 * the priority and make it zero.
2978 */
2979 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
2980
2981 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2982
2983 *nr_scanned = sc.nr_scanned;
2984 return sc.nr_reclaimed;
2985 }
2986
2987 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2988 unsigned long nr_pages,
2989 gfp_t gfp_mask,
2990 bool may_swap)
2991 {
2992 struct zonelist *zonelist;
2993 unsigned long nr_reclaimed;
2994 int nid;
2995 struct scan_control sc = {
2996 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2997 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
2998 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2999 .reclaim_idx = MAX_NR_ZONES - 1,
3000 .target_mem_cgroup = memcg,
3001 .priority = DEF_PRIORITY,
3002 .may_writepage = !laptop_mode,
3003 .may_unmap = 1,
3004 .may_swap = may_swap,
3005 };
3006
3007 /*
3008 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3009 * take care of from where we get pages. So the node where we start the
3010 * scan does not need to be the current node.
3011 */
3012 nid = mem_cgroup_select_victim_node(memcg);
3013
3014 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3015
3016 trace_mm_vmscan_memcg_reclaim_begin(0,
3017 sc.may_writepage,
3018 sc.gfp_mask,
3019 sc.reclaim_idx);
3020
3021 current->flags |= PF_MEMALLOC;
3022 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3023 current->flags &= ~PF_MEMALLOC;
3024
3025 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3026
3027 return nr_reclaimed;
3028 }
3029 #endif
3030
3031 static void age_active_anon(struct pglist_data *pgdat,
3032 struct scan_control *sc)
3033 {
3034 struct mem_cgroup *memcg;
3035
3036 if (!total_swap_pages)
3037 return;
3038
3039 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3040 do {
3041 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3042
3043 if (inactive_list_is_low(lruvec, false, sc, true))
3044 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3045 sc, LRU_ACTIVE_ANON);
3046
3047 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3048 } while (memcg);
3049 }
3050
3051 /*
3052 * Returns true if there is an eligible zone balanced for the request order
3053 * and classzone_idx
3054 */
3055 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3056 {
3057 int i;
3058 unsigned long mark = -1;
3059 struct zone *zone;
3060
3061 for (i = 0; i <= classzone_idx; i++) {
3062 zone = pgdat->node_zones + i;
3063
3064 if (!managed_zone(zone))
3065 continue;
3066
3067 mark = high_wmark_pages(zone);
3068 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3069 return true;
3070 }
3071
3072 /*
3073 * If a node has no populated zone within classzone_idx, it does not
3074 * need balancing by definition. This can happen if a zone-restricted
3075 * allocation tries to wake a remote kswapd.
3076 */
3077 if (mark == -1)
3078 return true;
3079
3080 return false;
3081 }
3082
3083 /* Clear pgdat state for congested, dirty or under writeback. */
3084 static void clear_pgdat_congested(pg_data_t *pgdat)
3085 {
3086 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3087 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3088 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3089 }
3090
3091 /*
3092 * Prepare kswapd for sleeping. This verifies that there are no processes
3093 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3094 *
3095 * Returns true if kswapd is ready to sleep
3096 */
3097 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3098 {
3099 /*
3100 * The throttled processes are normally woken up in balance_pgdat() as
3101 * soon as allow_direct_reclaim() is true. But there is a potential
3102 * race between when kswapd checks the watermarks and a process gets
3103 * throttled. There is also a potential race if processes get
3104 * throttled, kswapd wakes, a large process exits thereby balancing the
3105 * zones, which causes kswapd to exit balance_pgdat() before reaching
3106 * the wake up checks. If kswapd is going to sleep, no process should
3107 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3108 * the wake up is premature, processes will wake kswapd and get
3109 * throttled again. The difference from wake ups in balance_pgdat() is
3110 * that here we are under prepare_to_wait().
3111 */
3112 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3113 wake_up_all(&pgdat->pfmemalloc_wait);
3114
3115 /* Hopeless node, leave it to direct reclaim */
3116 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3117 return true;
3118
3119 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3120 clear_pgdat_congested(pgdat);
3121 return true;
3122 }
3123
3124 return false;
3125 }
3126
3127 /*
3128 * kswapd shrinks a node of pages that are at or below the highest usable
3129 * zone that is currently unbalanced.
3130 *
3131 * Returns true if kswapd scanned at least the requested number of pages to
3132 * reclaim or if the lack of progress was due to pages under writeback.
3133 * This is used to determine if the scanning priority needs to be raised.
3134 */
3135 static bool kswapd_shrink_node(pg_data_t *pgdat,
3136 struct scan_control *sc)
3137 {
3138 struct zone *zone;
3139 int z;
3140
3141 /* Reclaim a number of pages proportional to the number of zones */
3142 sc->nr_to_reclaim = 0;
3143 for (z = 0; z <= sc->reclaim_idx; z++) {
3144 zone = pgdat->node_zones + z;
3145 if (!managed_zone(zone))
3146 continue;
3147
3148 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3149 }
3150
3151 /*
3152 * Historically care was taken to put equal pressure on all zones but
3153 * now pressure is applied based on node LRU order.
3154 */
3155 shrink_node(pgdat, sc);
3156
3157 /*
3158 * Fragmentation may mean that the system cannot be rebalanced for
3159 * high-order allocations. If twice the allocation size has been
3160 * reclaimed then recheck watermarks only at order-0 to prevent
3161 * excessive reclaim. Assume that a process requested a high-order
3162 * can direct reclaim/compact.
3163 */
3164 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3165 sc->order = 0;
3166
3167 return sc->nr_scanned >= sc->nr_to_reclaim;
3168 }
3169
3170 /*
3171 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3172 * that are eligible for use by the caller until at least one zone is
3173 * balanced.
3174 *
3175 * Returns the order kswapd finished reclaiming at.
3176 *
3177 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3178 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3179 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3180 * or lower is eligible for reclaim until at least one usable zone is
3181 * balanced.
3182 */
3183 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3184 {
3185 int i;
3186 unsigned long nr_soft_reclaimed;
3187 unsigned long nr_soft_scanned;
3188 struct zone *zone;
3189 struct scan_control sc = {
3190 .gfp_mask = GFP_KERNEL,
3191 .order = order,
3192 .priority = DEF_PRIORITY,
3193 .may_writepage = !laptop_mode,
3194 .may_unmap = 1,
3195 .may_swap = 1,
3196 };
3197 count_vm_event(PAGEOUTRUN);
3198
3199 do {
3200 unsigned long nr_reclaimed = sc.nr_reclaimed;
3201 bool raise_priority = true;
3202
3203 sc.reclaim_idx = classzone_idx;
3204
3205 /*
3206 * If the number of buffer_heads exceeds the maximum allowed
3207 * then consider reclaiming from all zones. This has a dual
3208 * purpose -- on 64-bit systems it is expected that
3209 * buffer_heads are stripped during active rotation. On 32-bit
3210 * systems, highmem pages can pin lowmem memory and shrinking
3211 * buffers can relieve lowmem pressure. Reclaim may still not
3212 * go ahead if all eligible zones for the original allocation
3213 * request are balanced to avoid excessive reclaim from kswapd.
3214 */
3215 if (buffer_heads_over_limit) {
3216 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3217 zone = pgdat->node_zones + i;
3218 if (!managed_zone(zone))
3219 continue;
3220
3221 sc.reclaim_idx = i;
3222 break;
3223 }
3224 }
3225
3226 /*
3227 * Only reclaim if there are no eligible zones. Note that
3228 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3229 * have adjusted it.
3230 */
3231 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3232 goto out;
3233
3234 /*
3235 * Do some background aging of the anon list, to give
3236 * pages a chance to be referenced before reclaiming. All
3237 * pages are rotated regardless of classzone as this is
3238 * about consistent aging.
3239 */
3240 age_active_anon(pgdat, &sc);
3241
3242 /*
3243 * If we're getting trouble reclaiming, start doing writepage
3244 * even in laptop mode.
3245 */
3246 if (sc.priority < DEF_PRIORITY - 2)
3247 sc.may_writepage = 1;
3248
3249 /* Call soft limit reclaim before calling shrink_node. */
3250 sc.nr_scanned = 0;
3251 nr_soft_scanned = 0;
3252 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3253 sc.gfp_mask, &nr_soft_scanned);
3254 sc.nr_reclaimed += nr_soft_reclaimed;
3255
3256 /*
3257 * There should be no need to raise the scanning priority if
3258 * enough pages are already being scanned that that high
3259 * watermark would be met at 100% efficiency.
3260 */
3261 if (kswapd_shrink_node(pgdat, &sc))
3262 raise_priority = false;
3263
3264 /*
3265 * If the low watermark is met there is no need for processes
3266 * to be throttled on pfmemalloc_wait as they should not be
3267 * able to safely make forward progress. Wake them
3268 */
3269 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3270 allow_direct_reclaim(pgdat))
3271 wake_up_all(&pgdat->pfmemalloc_wait);
3272
3273 /* Check if kswapd should be suspending */
3274 if (try_to_freeze() || kthread_should_stop())
3275 break;
3276
3277 /*
3278 * Raise priority if scanning rate is too low or there was no
3279 * progress in reclaiming pages
3280 */
3281 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3282 if (raise_priority || !nr_reclaimed)
3283 sc.priority--;
3284 } while (sc.priority >= 1);
3285
3286 if (!sc.nr_reclaimed)
3287 pgdat->kswapd_failures++;
3288
3289 out:
3290 /*
3291 * Return the order kswapd stopped reclaiming at as
3292 * prepare_kswapd_sleep() takes it into account. If another caller
3293 * entered the allocator slow path while kswapd was awake, order will
3294 * remain at the higher level.
3295 */
3296 return sc.order;
3297 }
3298
3299 /*
3300 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3301 * allocation request woke kswapd for. When kswapd has not woken recently,
3302 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3303 * given classzone and returns it or the highest classzone index kswapd
3304 * was recently woke for.
3305 */
3306 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3307 enum zone_type classzone_idx)
3308 {
3309 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3310 return classzone_idx;
3311
3312 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3313 }
3314
3315 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3316 unsigned int classzone_idx)
3317 {
3318 long remaining = 0;
3319 DEFINE_WAIT(wait);
3320
3321 if (freezing(current) || kthread_should_stop())
3322 return;
3323
3324 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3325
3326 /*
3327 * Try to sleep for a short interval. Note that kcompactd will only be
3328 * woken if it is possible to sleep for a short interval. This is
3329 * deliberate on the assumption that if reclaim cannot keep an
3330 * eligible zone balanced that it's also unlikely that compaction will
3331 * succeed.
3332 */
3333 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3334 /*
3335 * Compaction records what page blocks it recently failed to
3336 * isolate pages from and skips them in the future scanning.
3337 * When kswapd is going to sleep, it is reasonable to assume
3338 * that pages and compaction may succeed so reset the cache.
3339 */
3340 reset_isolation_suitable(pgdat);
3341
3342 /*
3343 * We have freed the memory, now we should compact it to make
3344 * allocation of the requested order possible.
3345 */
3346 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3347
3348 remaining = schedule_timeout(HZ/10);
3349
3350 /*
3351 * If woken prematurely then reset kswapd_classzone_idx and
3352 * order. The values will either be from a wakeup request or
3353 * the previous request that slept prematurely.
3354 */
3355 if (remaining) {
3356 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3357 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3358 }
3359
3360 finish_wait(&pgdat->kswapd_wait, &wait);
3361 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3362 }
3363
3364 /*
3365 * After a short sleep, check if it was a premature sleep. If not, then
3366 * go fully to sleep until explicitly woken up.
3367 */
3368 if (!remaining &&
3369 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3370 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3371
3372 /*
3373 * vmstat counters are not perfectly accurate and the estimated
3374 * value for counters such as NR_FREE_PAGES can deviate from the
3375 * true value by nr_online_cpus * threshold. To avoid the zone
3376 * watermarks being breached while under pressure, we reduce the
3377 * per-cpu vmstat threshold while kswapd is awake and restore
3378 * them before going back to sleep.
3379 */
3380 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3381
3382 if (!kthread_should_stop())
3383 schedule();
3384
3385 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3386 } else {
3387 if (remaining)
3388 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3389 else
3390 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3391 }
3392 finish_wait(&pgdat->kswapd_wait, &wait);
3393 }
3394
3395 /*
3396 * The background pageout daemon, started as a kernel thread
3397 * from the init process.
3398 *
3399 * This basically trickles out pages so that we have _some_
3400 * free memory available even if there is no other activity
3401 * that frees anything up. This is needed for things like routing
3402 * etc, where we otherwise might have all activity going on in
3403 * asynchronous contexts that cannot page things out.
3404 *
3405 * If there are applications that are active memory-allocators
3406 * (most normal use), this basically shouldn't matter.
3407 */
3408 static int kswapd(void *p)
3409 {
3410 unsigned int alloc_order, reclaim_order;
3411 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3412 pg_data_t *pgdat = (pg_data_t*)p;
3413 struct task_struct *tsk = current;
3414
3415 struct reclaim_state reclaim_state = {
3416 .reclaimed_slab = 0,
3417 };
3418 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3419
3420 lockdep_set_current_reclaim_state(GFP_KERNEL);
3421
3422 if (!cpumask_empty(cpumask))
3423 set_cpus_allowed_ptr(tsk, cpumask);
3424 current->reclaim_state = &reclaim_state;
3425
3426 /*
3427 * Tell the memory management that we're a "memory allocator",
3428 * and that if we need more memory we should get access to it
3429 * regardless (see "__alloc_pages()"). "kswapd" should
3430 * never get caught in the normal page freeing logic.
3431 *
3432 * (Kswapd normally doesn't need memory anyway, but sometimes
3433 * you need a small amount of memory in order to be able to
3434 * page out something else, and this flag essentially protects
3435 * us from recursively trying to free more memory as we're
3436 * trying to free the first piece of memory in the first place).
3437 */
3438 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3439 set_freezable();
3440
3441 pgdat->kswapd_order = 0;
3442 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3443 for ( ; ; ) {
3444 bool ret;
3445
3446 alloc_order = reclaim_order = pgdat->kswapd_order;
3447 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3448
3449 kswapd_try_sleep:
3450 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3451 classzone_idx);
3452
3453 /* Read the new order and classzone_idx */
3454 alloc_order = reclaim_order = pgdat->kswapd_order;
3455 classzone_idx = kswapd_classzone_idx(pgdat, 0);
3456 pgdat->kswapd_order = 0;
3457 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3458
3459 ret = try_to_freeze();
3460 if (kthread_should_stop())
3461 break;
3462
3463 /*
3464 * We can speed up thawing tasks if we don't call balance_pgdat
3465 * after returning from the refrigerator
3466 */
3467 if (ret)
3468 continue;
3469
3470 /*
3471 * Reclaim begins at the requested order but if a high-order
3472 * reclaim fails then kswapd falls back to reclaiming for
3473 * order-0. If that happens, kswapd will consider sleeping
3474 * for the order it finished reclaiming at (reclaim_order)
3475 * but kcompactd is woken to compact for the original
3476 * request (alloc_order).
3477 */
3478 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3479 alloc_order);
3480 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3481 if (reclaim_order < alloc_order)
3482 goto kswapd_try_sleep;
3483 }
3484
3485 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3486 current->reclaim_state = NULL;
3487 lockdep_clear_current_reclaim_state();
3488
3489 return 0;
3490 }
3491
3492 /*
3493 * A zone is low on free memory, so wake its kswapd task to service it.
3494 */
3495 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3496 {
3497 pg_data_t *pgdat;
3498
3499 if (!managed_zone(zone))
3500 return;
3501
3502 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3503 return;
3504 pgdat = zone->zone_pgdat;
3505 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3506 classzone_idx);
3507 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3508 if (!waitqueue_active(&pgdat->kswapd_wait))
3509 return;
3510
3511 /* Hopeless node, leave it to direct reclaim */
3512 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3513 return;
3514
3515 if (pgdat_balanced(pgdat, order, classzone_idx))
3516 return;
3517
3518 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
3519 wake_up_interruptible(&pgdat->kswapd_wait);
3520 }
3521
3522 #ifdef CONFIG_HIBERNATION
3523 /*
3524 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3525 * freed pages.
3526 *
3527 * Rather than trying to age LRUs the aim is to preserve the overall
3528 * LRU order by reclaiming preferentially
3529 * inactive > active > active referenced > active mapped
3530 */
3531 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3532 {
3533 struct reclaim_state reclaim_state;
3534 struct scan_control sc = {
3535 .nr_to_reclaim = nr_to_reclaim,
3536 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3537 .reclaim_idx = MAX_NR_ZONES - 1,
3538 .priority = DEF_PRIORITY,
3539 .may_writepage = 1,
3540 .may_unmap = 1,
3541 .may_swap = 1,
3542 .hibernation_mode = 1,
3543 };
3544 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3545 struct task_struct *p = current;
3546 unsigned long nr_reclaimed;
3547
3548 p->flags |= PF_MEMALLOC;
3549 lockdep_set_current_reclaim_state(sc.gfp_mask);
3550 reclaim_state.reclaimed_slab = 0;
3551 p->reclaim_state = &reclaim_state;
3552
3553 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3554
3555 p->reclaim_state = NULL;
3556 lockdep_clear_current_reclaim_state();
3557 p->flags &= ~PF_MEMALLOC;
3558
3559 return nr_reclaimed;
3560 }
3561 #endif /* CONFIG_HIBERNATION */
3562
3563 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3564 not required for correctness. So if the last cpu in a node goes
3565 away, we get changed to run anywhere: as the first one comes back,
3566 restore their cpu bindings. */
3567 static int kswapd_cpu_online(unsigned int cpu)
3568 {
3569 int nid;
3570
3571 for_each_node_state(nid, N_MEMORY) {
3572 pg_data_t *pgdat = NODE_DATA(nid);
3573 const struct cpumask *mask;
3574
3575 mask = cpumask_of_node(pgdat->node_id);
3576
3577 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3578 /* One of our CPUs online: restore mask */
3579 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3580 }
3581 return 0;
3582 }
3583
3584 /*
3585 * This kswapd start function will be called by init and node-hot-add.
3586 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3587 */
3588 int kswapd_run(int nid)
3589 {
3590 pg_data_t *pgdat = NODE_DATA(nid);
3591 int ret = 0;
3592
3593 if (pgdat->kswapd)
3594 return 0;
3595
3596 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3597 if (IS_ERR(pgdat->kswapd)) {
3598 /* failure at boot is fatal */
3599 BUG_ON(system_state == SYSTEM_BOOTING);
3600 pr_err("Failed to start kswapd on node %d\n", nid);
3601 ret = PTR_ERR(pgdat->kswapd);
3602 pgdat->kswapd = NULL;
3603 }
3604 return ret;
3605 }
3606
3607 /*
3608 * Called by memory hotplug when all memory in a node is offlined. Caller must
3609 * hold mem_hotplug_begin/end().
3610 */
3611 void kswapd_stop(int nid)
3612 {
3613 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3614
3615 if (kswapd) {
3616 kthread_stop(kswapd);
3617 NODE_DATA(nid)->kswapd = NULL;
3618 }
3619 }
3620
3621 static int __init kswapd_init(void)
3622 {
3623 int nid, ret;
3624
3625 swap_setup();
3626 for_each_node_state(nid, N_MEMORY)
3627 kswapd_run(nid);
3628 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3629 "mm/vmscan:online", kswapd_cpu_online,
3630 NULL);
3631 WARN_ON(ret < 0);
3632 return 0;
3633 }
3634
3635 module_init(kswapd_init)
3636
3637 #ifdef CONFIG_NUMA
3638 /*
3639 * Node reclaim mode
3640 *
3641 * If non-zero call node_reclaim when the number of free pages falls below
3642 * the watermarks.
3643 */
3644 int node_reclaim_mode __read_mostly;
3645
3646 #define RECLAIM_OFF 0
3647 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3648 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3649 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3650
3651 /*
3652 * Priority for NODE_RECLAIM. This determines the fraction of pages
3653 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3654 * a zone.
3655 */
3656 #define NODE_RECLAIM_PRIORITY 4
3657
3658 /*
3659 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3660 * occur.
3661 */
3662 int sysctl_min_unmapped_ratio = 1;
3663
3664 /*
3665 * If the number of slab pages in a zone grows beyond this percentage then
3666 * slab reclaim needs to occur.
3667 */
3668 int sysctl_min_slab_ratio = 5;
3669
3670 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3671 {
3672 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3673 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3674 node_page_state(pgdat, NR_ACTIVE_FILE);
3675
3676 /*
3677 * It's possible for there to be more file mapped pages than
3678 * accounted for by the pages on the file LRU lists because
3679 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3680 */
3681 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3682 }
3683
3684 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3685 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3686 {
3687 unsigned long nr_pagecache_reclaimable;
3688 unsigned long delta = 0;
3689
3690 /*
3691 * If RECLAIM_UNMAP is set, then all file pages are considered
3692 * potentially reclaimable. Otherwise, we have to worry about
3693 * pages like swapcache and node_unmapped_file_pages() provides
3694 * a better estimate
3695 */
3696 if (node_reclaim_mode & RECLAIM_UNMAP)
3697 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3698 else
3699 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3700
3701 /* If we can't clean pages, remove dirty pages from consideration */
3702 if (!(node_reclaim_mode & RECLAIM_WRITE))
3703 delta += node_page_state(pgdat, NR_FILE_DIRTY);
3704
3705 /* Watch for any possible underflows due to delta */
3706 if (unlikely(delta > nr_pagecache_reclaimable))
3707 delta = nr_pagecache_reclaimable;
3708
3709 return nr_pagecache_reclaimable - delta;
3710 }
3711
3712 /*
3713 * Try to free up some pages from this node through reclaim.
3714 */
3715 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3716 {
3717 /* Minimum pages needed in order to stay on node */
3718 const unsigned long nr_pages = 1 << order;
3719 struct task_struct *p = current;
3720 struct reclaim_state reclaim_state;
3721 int classzone_idx = gfp_zone(gfp_mask);
3722 struct scan_control sc = {
3723 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3724 .gfp_mask = (gfp_mask = current_gfp_context(gfp_mask)),
3725 .order = order,
3726 .priority = NODE_RECLAIM_PRIORITY,
3727 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3728 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3729 .may_swap = 1,
3730 .reclaim_idx = classzone_idx,
3731 };
3732
3733 cond_resched();
3734 /*
3735 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3736 * and we also need to be able to write out pages for RECLAIM_WRITE
3737 * and RECLAIM_UNMAP.
3738 */
3739 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3740 lockdep_set_current_reclaim_state(gfp_mask);
3741 reclaim_state.reclaimed_slab = 0;
3742 p->reclaim_state = &reclaim_state;
3743
3744 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3745 /*
3746 * Free memory by calling shrink zone with increasing
3747 * priorities until we have enough memory freed.
3748 */
3749 do {
3750 shrink_node(pgdat, &sc);
3751 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3752 }
3753
3754 p->reclaim_state = NULL;
3755 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3756 lockdep_clear_current_reclaim_state();
3757 return sc.nr_reclaimed >= nr_pages;
3758 }
3759
3760 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3761 {
3762 int ret;
3763
3764 /*
3765 * Node reclaim reclaims unmapped file backed pages and
3766 * slab pages if we are over the defined limits.
3767 *
3768 * A small portion of unmapped file backed pages is needed for
3769 * file I/O otherwise pages read by file I/O will be immediately
3770 * thrown out if the node is overallocated. So we do not reclaim
3771 * if less than a specified percentage of the node is used by
3772 * unmapped file backed pages.
3773 */
3774 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3775 sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3776 return NODE_RECLAIM_FULL;
3777
3778 /*
3779 * Do not scan if the allocation should not be delayed.
3780 */
3781 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3782 return NODE_RECLAIM_NOSCAN;
3783
3784 /*
3785 * Only run node reclaim on the local node or on nodes that do not
3786 * have associated processors. This will favor the local processor
3787 * over remote processors and spread off node memory allocations
3788 * as wide as possible.
3789 */
3790 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3791 return NODE_RECLAIM_NOSCAN;
3792
3793 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3794 return NODE_RECLAIM_NOSCAN;
3795
3796 ret = __node_reclaim(pgdat, gfp_mask, order);
3797 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3798
3799 if (!ret)
3800 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3801
3802 return ret;
3803 }
3804 #endif
3805
3806 /*
3807 * page_evictable - test whether a page is evictable
3808 * @page: the page to test
3809 *
3810 * Test whether page is evictable--i.e., should be placed on active/inactive
3811 * lists vs unevictable list.
3812 *
3813 * Reasons page might not be evictable:
3814 * (1) page's mapping marked unevictable
3815 * (2) page is part of an mlocked VMA
3816 *
3817 */
3818 int page_evictable(struct page *page)
3819 {
3820 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3821 }
3822
3823 #ifdef CONFIG_SHMEM
3824 /**
3825 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3826 * @pages: array of pages to check
3827 * @nr_pages: number of pages to check
3828 *
3829 * Checks pages for evictability and moves them to the appropriate lru list.
3830 *
3831 * This function is only used for SysV IPC SHM_UNLOCK.
3832 */
3833 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3834 {
3835 struct lruvec *lruvec;
3836 struct pglist_data *pgdat = NULL;
3837 int pgscanned = 0;
3838 int pgrescued = 0;
3839 int i;
3840
3841 for (i = 0; i < nr_pages; i++) {
3842 struct page *page = pages[i];
3843 struct pglist_data *pagepgdat = page_pgdat(page);
3844
3845 pgscanned++;
3846 if (pagepgdat != pgdat) {
3847 if (pgdat)
3848 spin_unlock_irq(&pgdat->lru_lock);
3849 pgdat = pagepgdat;
3850 spin_lock_irq(&pgdat->lru_lock);
3851 }
3852 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3853
3854 if (!PageLRU(page) || !PageUnevictable(page))
3855 continue;
3856
3857 if (page_evictable(page)) {
3858 enum lru_list lru = page_lru_base_type(page);
3859
3860 VM_BUG_ON_PAGE(PageActive(page), page);
3861 ClearPageUnevictable(page);
3862 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3863 add_page_to_lru_list(page, lruvec, lru);
3864 pgrescued++;
3865 }
3866 }
3867
3868 if (pgdat) {
3869 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3870 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3871 spin_unlock_irq(&pgdat->lru_lock);
3872 }
3873 }
3874 #endif /* CONFIG_SHMEM */