]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/vmscan.c
ffa82b1d39a2d47dc74f0504a0d9b1082c5a8d5c
[thirdparty/kernel/stable.git] / mm / vmscan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
54
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
60
61 #include "internal.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65
66 struct scan_control {
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim;
69
70 /*
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 * are scanned.
73 */
74 nodemask_t *nodemask;
75
76 /*
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
79 */
80 struct mem_cgroup *target_mem_cgroup;
81
82 /* Writepage batching in laptop mode; RECLAIM_WRITE */
83 unsigned int may_writepage:1;
84
85 /* Can mapped pages be reclaimed? */
86 unsigned int may_unmap:1;
87
88 /* Can pages be swapped as part of reclaim? */
89 unsigned int may_swap:1;
90
91 /* e.g. boosted watermark reclaim leaves slabs alone */
92 unsigned int may_shrinkslab:1;
93
94 /*
95 * Cgroups are not reclaimed below their configured memory.low,
96 * unless we threaten to OOM. If any cgroups are skipped due to
97 * memory.low and nothing was reclaimed, go back for memory.low.
98 */
99 unsigned int memcg_low_reclaim:1;
100 unsigned int memcg_low_skipped:1;
101
102 unsigned int hibernation_mode:1;
103
104 /* One of the zones is ready for compaction */
105 unsigned int compaction_ready:1;
106
107 /* Allocation order */
108 s8 order;
109
110 /* Scan (total_size >> priority) pages at once */
111 s8 priority;
112
113 /* The highest zone to isolate pages for reclaim from */
114 s8 reclaim_idx;
115
116 /* This context's GFP mask */
117 gfp_t gfp_mask;
118
119 /* Incremented by the number of inactive pages that were scanned */
120 unsigned long nr_scanned;
121
122 /* Number of pages freed so far during a call to shrink_zones() */
123 unsigned long nr_reclaimed;
124
125 struct {
126 unsigned int dirty;
127 unsigned int unqueued_dirty;
128 unsigned int congested;
129 unsigned int writeback;
130 unsigned int immediate;
131 unsigned int file_taken;
132 unsigned int taken;
133 } nr;
134 };
135
136 #ifdef ARCH_HAS_PREFETCH
137 #define prefetch_prev_lru_page(_page, _base, _field) \
138 do { \
139 if ((_page)->lru.prev != _base) { \
140 struct page *prev; \
141 \
142 prev = lru_to_page(&(_page->lru)); \
143 prefetch(&prev->_field); \
144 } \
145 } while (0)
146 #else
147 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
148 #endif
149
150 #ifdef ARCH_HAS_PREFETCHW
151 #define prefetchw_prev_lru_page(_page, _base, _field) \
152 do { \
153 if ((_page)->lru.prev != _base) { \
154 struct page *prev; \
155 \
156 prev = lru_to_page(&(_page->lru)); \
157 prefetchw(&prev->_field); \
158 } \
159 } while (0)
160 #else
161 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
162 #endif
163
164 /*
165 * From 0 .. 100. Higher means more swappy.
166 */
167 int vm_swappiness = 60;
168 /*
169 * The total number of pages which are beyond the high watermark within all
170 * zones.
171 */
172 unsigned long vm_total_pages;
173
174 static LIST_HEAD(shrinker_list);
175 static DECLARE_RWSEM(shrinker_rwsem);
176
177 #ifdef CONFIG_MEMCG_KMEM
178
179 /*
180 * We allow subsystems to populate their shrinker-related
181 * LRU lists before register_shrinker_prepared() is called
182 * for the shrinker, since we don't want to impose
183 * restrictions on their internal registration order.
184 * In this case shrink_slab_memcg() may find corresponding
185 * bit is set in the shrinkers map.
186 *
187 * This value is used by the function to detect registering
188 * shrinkers and to skip do_shrink_slab() calls for them.
189 */
190 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
191
192 static DEFINE_IDR(shrinker_idr);
193 static int shrinker_nr_max;
194
195 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
196 {
197 int id, ret = -ENOMEM;
198
199 down_write(&shrinker_rwsem);
200 /* This may call shrinker, so it must use down_read_trylock() */
201 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
202 if (id < 0)
203 goto unlock;
204
205 if (id >= shrinker_nr_max) {
206 if (memcg_expand_shrinker_maps(id)) {
207 idr_remove(&shrinker_idr, id);
208 goto unlock;
209 }
210
211 shrinker_nr_max = id + 1;
212 }
213 shrinker->id = id;
214 ret = 0;
215 unlock:
216 up_write(&shrinker_rwsem);
217 return ret;
218 }
219
220 static void unregister_memcg_shrinker(struct shrinker *shrinker)
221 {
222 int id = shrinker->id;
223
224 BUG_ON(id < 0);
225
226 down_write(&shrinker_rwsem);
227 idr_remove(&shrinker_idr, id);
228 up_write(&shrinker_rwsem);
229 }
230 #else /* CONFIG_MEMCG_KMEM */
231 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
232 {
233 return 0;
234 }
235
236 static void unregister_memcg_shrinker(struct shrinker *shrinker)
237 {
238 }
239 #endif /* CONFIG_MEMCG_KMEM */
240
241 #ifdef CONFIG_MEMCG
242 static bool global_reclaim(struct scan_control *sc)
243 {
244 return !sc->target_mem_cgroup;
245 }
246
247 /**
248 * sane_reclaim - is the usual dirty throttling mechanism operational?
249 * @sc: scan_control in question
250 *
251 * The normal page dirty throttling mechanism in balance_dirty_pages() is
252 * completely broken with the legacy memcg and direct stalling in
253 * shrink_page_list() is used for throttling instead, which lacks all the
254 * niceties such as fairness, adaptive pausing, bandwidth proportional
255 * allocation and configurability.
256 *
257 * This function tests whether the vmscan currently in progress can assume
258 * that the normal dirty throttling mechanism is operational.
259 */
260 static bool sane_reclaim(struct scan_control *sc)
261 {
262 struct mem_cgroup *memcg = sc->target_mem_cgroup;
263
264 if (!memcg)
265 return true;
266 #ifdef CONFIG_CGROUP_WRITEBACK
267 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
268 return true;
269 #endif
270 return false;
271 }
272
273 static void set_memcg_congestion(pg_data_t *pgdat,
274 struct mem_cgroup *memcg,
275 bool congested)
276 {
277 struct mem_cgroup_per_node *mn;
278
279 if (!memcg)
280 return;
281
282 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
283 WRITE_ONCE(mn->congested, congested);
284 }
285
286 static bool memcg_congested(pg_data_t *pgdat,
287 struct mem_cgroup *memcg)
288 {
289 struct mem_cgroup_per_node *mn;
290
291 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
292 return READ_ONCE(mn->congested);
293
294 }
295 #else
296 static bool global_reclaim(struct scan_control *sc)
297 {
298 return true;
299 }
300
301 static bool sane_reclaim(struct scan_control *sc)
302 {
303 return true;
304 }
305
306 static inline void set_memcg_congestion(struct pglist_data *pgdat,
307 struct mem_cgroup *memcg, bool congested)
308 {
309 }
310
311 static inline bool memcg_congested(struct pglist_data *pgdat,
312 struct mem_cgroup *memcg)
313 {
314 return false;
315
316 }
317 #endif
318
319 /*
320 * This misses isolated pages which are not accounted for to save counters.
321 * As the data only determines if reclaim or compaction continues, it is
322 * not expected that isolated pages will be a dominating factor.
323 */
324 unsigned long zone_reclaimable_pages(struct zone *zone)
325 {
326 unsigned long nr;
327
328 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
329 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
330 if (get_nr_swap_pages() > 0)
331 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
332 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
333
334 return nr;
335 }
336
337 /**
338 * lruvec_lru_size - Returns the number of pages on the given LRU list.
339 * @lruvec: lru vector
340 * @lru: lru to use
341 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
342 */
343 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
344 {
345 unsigned long lru_size;
346 int zid;
347
348 if (!mem_cgroup_disabled())
349 lru_size = lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
350 else
351 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
352
353 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
354 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
355 unsigned long size;
356
357 if (!managed_zone(zone))
358 continue;
359
360 if (!mem_cgroup_disabled())
361 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
362 else
363 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
364 NR_ZONE_LRU_BASE + lru);
365 lru_size -= min(size, lru_size);
366 }
367
368 return lru_size;
369
370 }
371
372 /*
373 * Add a shrinker callback to be called from the vm.
374 */
375 int prealloc_shrinker(struct shrinker *shrinker)
376 {
377 unsigned int size = sizeof(*shrinker->nr_deferred);
378
379 if (shrinker->flags & SHRINKER_NUMA_AWARE)
380 size *= nr_node_ids;
381
382 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
383 if (!shrinker->nr_deferred)
384 return -ENOMEM;
385
386 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
387 if (prealloc_memcg_shrinker(shrinker))
388 goto free_deferred;
389 }
390
391 return 0;
392
393 free_deferred:
394 kfree(shrinker->nr_deferred);
395 shrinker->nr_deferred = NULL;
396 return -ENOMEM;
397 }
398
399 void free_prealloced_shrinker(struct shrinker *shrinker)
400 {
401 if (!shrinker->nr_deferred)
402 return;
403
404 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
405 unregister_memcg_shrinker(shrinker);
406
407 kfree(shrinker->nr_deferred);
408 shrinker->nr_deferred = NULL;
409 }
410
411 void register_shrinker_prepared(struct shrinker *shrinker)
412 {
413 down_write(&shrinker_rwsem);
414 list_add_tail(&shrinker->list, &shrinker_list);
415 #ifdef CONFIG_MEMCG_KMEM
416 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
417 idr_replace(&shrinker_idr, shrinker, shrinker->id);
418 #endif
419 up_write(&shrinker_rwsem);
420 }
421
422 int register_shrinker(struct shrinker *shrinker)
423 {
424 int err = prealloc_shrinker(shrinker);
425
426 if (err)
427 return err;
428 register_shrinker_prepared(shrinker);
429 return 0;
430 }
431 EXPORT_SYMBOL(register_shrinker);
432
433 /*
434 * Remove one
435 */
436 void unregister_shrinker(struct shrinker *shrinker)
437 {
438 if (!shrinker->nr_deferred)
439 return;
440 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
441 unregister_memcg_shrinker(shrinker);
442 down_write(&shrinker_rwsem);
443 list_del(&shrinker->list);
444 up_write(&shrinker_rwsem);
445 kfree(shrinker->nr_deferred);
446 shrinker->nr_deferred = NULL;
447 }
448 EXPORT_SYMBOL(unregister_shrinker);
449
450 #define SHRINK_BATCH 128
451
452 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
453 struct shrinker *shrinker, int priority)
454 {
455 unsigned long freed = 0;
456 unsigned long long delta;
457 long total_scan;
458 long freeable;
459 long nr;
460 long new_nr;
461 int nid = shrinkctl->nid;
462 long batch_size = shrinker->batch ? shrinker->batch
463 : SHRINK_BATCH;
464 long scanned = 0, next_deferred;
465
466 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
467 nid = 0;
468
469 freeable = shrinker->count_objects(shrinker, shrinkctl);
470 if (freeable == 0 || freeable == SHRINK_EMPTY)
471 return freeable;
472
473 /*
474 * copy the current shrinker scan count into a local variable
475 * and zero it so that other concurrent shrinker invocations
476 * don't also do this scanning work.
477 */
478 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
479
480 total_scan = nr;
481 if (shrinker->seeks) {
482 delta = freeable >> priority;
483 delta *= 4;
484 do_div(delta, shrinker->seeks);
485 } else {
486 /*
487 * These objects don't require any IO to create. Trim
488 * them aggressively under memory pressure to keep
489 * them from causing refetches in the IO caches.
490 */
491 delta = freeable / 2;
492 }
493
494 total_scan += delta;
495 if (total_scan < 0) {
496 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
497 shrinker->scan_objects, total_scan);
498 total_scan = freeable;
499 next_deferred = nr;
500 } else
501 next_deferred = total_scan;
502
503 /*
504 * We need to avoid excessive windup on filesystem shrinkers
505 * due to large numbers of GFP_NOFS allocations causing the
506 * shrinkers to return -1 all the time. This results in a large
507 * nr being built up so when a shrink that can do some work
508 * comes along it empties the entire cache due to nr >>>
509 * freeable. This is bad for sustaining a working set in
510 * memory.
511 *
512 * Hence only allow the shrinker to scan the entire cache when
513 * a large delta change is calculated directly.
514 */
515 if (delta < freeable / 4)
516 total_scan = min(total_scan, freeable / 2);
517
518 /*
519 * Avoid risking looping forever due to too large nr value:
520 * never try to free more than twice the estimate number of
521 * freeable entries.
522 */
523 if (total_scan > freeable * 2)
524 total_scan = freeable * 2;
525
526 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
527 freeable, delta, total_scan, priority);
528
529 /*
530 * Normally, we should not scan less than batch_size objects in one
531 * pass to avoid too frequent shrinker calls, but if the slab has less
532 * than batch_size objects in total and we are really tight on memory,
533 * we will try to reclaim all available objects, otherwise we can end
534 * up failing allocations although there are plenty of reclaimable
535 * objects spread over several slabs with usage less than the
536 * batch_size.
537 *
538 * We detect the "tight on memory" situations by looking at the total
539 * number of objects we want to scan (total_scan). If it is greater
540 * than the total number of objects on slab (freeable), we must be
541 * scanning at high prio and therefore should try to reclaim as much as
542 * possible.
543 */
544 while (total_scan >= batch_size ||
545 total_scan >= freeable) {
546 unsigned long ret;
547 unsigned long nr_to_scan = min(batch_size, total_scan);
548
549 shrinkctl->nr_to_scan = nr_to_scan;
550 shrinkctl->nr_scanned = nr_to_scan;
551 ret = shrinker->scan_objects(shrinker, shrinkctl);
552 if (ret == SHRINK_STOP)
553 break;
554 freed += ret;
555
556 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
557 total_scan -= shrinkctl->nr_scanned;
558 scanned += shrinkctl->nr_scanned;
559
560 cond_resched();
561 }
562
563 if (next_deferred >= scanned)
564 next_deferred -= scanned;
565 else
566 next_deferred = 0;
567 /*
568 * move the unused scan count back into the shrinker in a
569 * manner that handles concurrent updates. If we exhausted the
570 * scan, there is no need to do an update.
571 */
572 if (next_deferred > 0)
573 new_nr = atomic_long_add_return(next_deferred,
574 &shrinker->nr_deferred[nid]);
575 else
576 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
577
578 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
579 return freed;
580 }
581
582 #ifdef CONFIG_MEMCG_KMEM
583 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
584 struct mem_cgroup *memcg, int priority)
585 {
586 struct memcg_shrinker_map *map;
587 unsigned long ret, freed = 0;
588 int i;
589
590 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
591 return 0;
592
593 if (!down_read_trylock(&shrinker_rwsem))
594 return 0;
595
596 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
597 true);
598 if (unlikely(!map))
599 goto unlock;
600
601 for_each_set_bit(i, map->map, shrinker_nr_max) {
602 struct shrink_control sc = {
603 .gfp_mask = gfp_mask,
604 .nid = nid,
605 .memcg = memcg,
606 };
607 struct shrinker *shrinker;
608
609 shrinker = idr_find(&shrinker_idr, i);
610 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
611 if (!shrinker)
612 clear_bit(i, map->map);
613 continue;
614 }
615
616 ret = do_shrink_slab(&sc, shrinker, priority);
617 if (ret == SHRINK_EMPTY) {
618 clear_bit(i, map->map);
619 /*
620 * After the shrinker reported that it had no objects to
621 * free, but before we cleared the corresponding bit in
622 * the memcg shrinker map, a new object might have been
623 * added. To make sure, we have the bit set in this
624 * case, we invoke the shrinker one more time and reset
625 * the bit if it reports that it is not empty anymore.
626 * The memory barrier here pairs with the barrier in
627 * memcg_set_shrinker_bit():
628 *
629 * list_lru_add() shrink_slab_memcg()
630 * list_add_tail() clear_bit()
631 * <MB> <MB>
632 * set_bit() do_shrink_slab()
633 */
634 smp_mb__after_atomic();
635 ret = do_shrink_slab(&sc, shrinker, priority);
636 if (ret == SHRINK_EMPTY)
637 ret = 0;
638 else
639 memcg_set_shrinker_bit(memcg, nid, i);
640 }
641 freed += ret;
642
643 if (rwsem_is_contended(&shrinker_rwsem)) {
644 freed = freed ? : 1;
645 break;
646 }
647 }
648 unlock:
649 up_read(&shrinker_rwsem);
650 return freed;
651 }
652 #else /* CONFIG_MEMCG_KMEM */
653 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
654 struct mem_cgroup *memcg, int priority)
655 {
656 return 0;
657 }
658 #endif /* CONFIG_MEMCG_KMEM */
659
660 /**
661 * shrink_slab - shrink slab caches
662 * @gfp_mask: allocation context
663 * @nid: node whose slab caches to target
664 * @memcg: memory cgroup whose slab caches to target
665 * @priority: the reclaim priority
666 *
667 * Call the shrink functions to age shrinkable caches.
668 *
669 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
670 * unaware shrinkers will receive a node id of 0 instead.
671 *
672 * @memcg specifies the memory cgroup to target. Unaware shrinkers
673 * are called only if it is the root cgroup.
674 *
675 * @priority is sc->priority, we take the number of objects and >> by priority
676 * in order to get the scan target.
677 *
678 * Returns the number of reclaimed slab objects.
679 */
680 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
681 struct mem_cgroup *memcg,
682 int priority)
683 {
684 unsigned long ret, freed = 0;
685 struct shrinker *shrinker;
686
687 if (!mem_cgroup_is_root(memcg))
688 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
689
690 if (!down_read_trylock(&shrinker_rwsem))
691 goto out;
692
693 list_for_each_entry(shrinker, &shrinker_list, list) {
694 struct shrink_control sc = {
695 .gfp_mask = gfp_mask,
696 .nid = nid,
697 .memcg = memcg,
698 };
699
700 ret = do_shrink_slab(&sc, shrinker, priority);
701 if (ret == SHRINK_EMPTY)
702 ret = 0;
703 freed += ret;
704 /*
705 * Bail out if someone want to register a new shrinker to
706 * prevent the regsitration from being stalled for long periods
707 * by parallel ongoing shrinking.
708 */
709 if (rwsem_is_contended(&shrinker_rwsem)) {
710 freed = freed ? : 1;
711 break;
712 }
713 }
714
715 up_read(&shrinker_rwsem);
716 out:
717 cond_resched();
718 return freed;
719 }
720
721 void drop_slab_node(int nid)
722 {
723 unsigned long freed;
724
725 do {
726 struct mem_cgroup *memcg = NULL;
727
728 freed = 0;
729 memcg = mem_cgroup_iter(NULL, NULL, NULL);
730 do {
731 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
732 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
733 } while (freed > 10);
734 }
735
736 void drop_slab(void)
737 {
738 int nid;
739
740 for_each_online_node(nid)
741 drop_slab_node(nid);
742 }
743
744 static inline int is_page_cache_freeable(struct page *page)
745 {
746 /*
747 * A freeable page cache page is referenced only by the caller
748 * that isolated the page, the page cache and optional buffer
749 * heads at page->private.
750 */
751 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
752 HPAGE_PMD_NR : 1;
753 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
754 }
755
756 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
757 {
758 if (current->flags & PF_SWAPWRITE)
759 return 1;
760 if (!inode_write_congested(inode))
761 return 1;
762 if (inode_to_bdi(inode) == current->backing_dev_info)
763 return 1;
764 return 0;
765 }
766
767 /*
768 * We detected a synchronous write error writing a page out. Probably
769 * -ENOSPC. We need to propagate that into the address_space for a subsequent
770 * fsync(), msync() or close().
771 *
772 * The tricky part is that after writepage we cannot touch the mapping: nothing
773 * prevents it from being freed up. But we have a ref on the page and once
774 * that page is locked, the mapping is pinned.
775 *
776 * We're allowed to run sleeping lock_page() here because we know the caller has
777 * __GFP_FS.
778 */
779 static void handle_write_error(struct address_space *mapping,
780 struct page *page, int error)
781 {
782 lock_page(page);
783 if (page_mapping(page) == mapping)
784 mapping_set_error(mapping, error);
785 unlock_page(page);
786 }
787
788 /* possible outcome of pageout() */
789 typedef enum {
790 /* failed to write page out, page is locked */
791 PAGE_KEEP,
792 /* move page to the active list, page is locked */
793 PAGE_ACTIVATE,
794 /* page has been sent to the disk successfully, page is unlocked */
795 PAGE_SUCCESS,
796 /* page is clean and locked */
797 PAGE_CLEAN,
798 } pageout_t;
799
800 /*
801 * pageout is called by shrink_page_list() for each dirty page.
802 * Calls ->writepage().
803 */
804 static pageout_t pageout(struct page *page, struct address_space *mapping,
805 struct scan_control *sc)
806 {
807 /*
808 * If the page is dirty, only perform writeback if that write
809 * will be non-blocking. To prevent this allocation from being
810 * stalled by pagecache activity. But note that there may be
811 * stalls if we need to run get_block(). We could test
812 * PagePrivate for that.
813 *
814 * If this process is currently in __generic_file_write_iter() against
815 * this page's queue, we can perform writeback even if that
816 * will block.
817 *
818 * If the page is swapcache, write it back even if that would
819 * block, for some throttling. This happens by accident, because
820 * swap_backing_dev_info is bust: it doesn't reflect the
821 * congestion state of the swapdevs. Easy to fix, if needed.
822 */
823 if (!is_page_cache_freeable(page))
824 return PAGE_KEEP;
825 if (!mapping) {
826 /*
827 * Some data journaling orphaned pages can have
828 * page->mapping == NULL while being dirty with clean buffers.
829 */
830 if (page_has_private(page)) {
831 if (try_to_free_buffers(page)) {
832 ClearPageDirty(page);
833 pr_info("%s: orphaned page\n", __func__);
834 return PAGE_CLEAN;
835 }
836 }
837 return PAGE_KEEP;
838 }
839 if (mapping->a_ops->writepage == NULL)
840 return PAGE_ACTIVATE;
841 if (!may_write_to_inode(mapping->host, sc))
842 return PAGE_KEEP;
843
844 if (clear_page_dirty_for_io(page)) {
845 int res;
846 struct writeback_control wbc = {
847 .sync_mode = WB_SYNC_NONE,
848 .nr_to_write = SWAP_CLUSTER_MAX,
849 .range_start = 0,
850 .range_end = LLONG_MAX,
851 .for_reclaim = 1,
852 };
853
854 SetPageReclaim(page);
855 res = mapping->a_ops->writepage(page, &wbc);
856 if (res < 0)
857 handle_write_error(mapping, page, res);
858 if (res == AOP_WRITEPAGE_ACTIVATE) {
859 ClearPageReclaim(page);
860 return PAGE_ACTIVATE;
861 }
862
863 if (!PageWriteback(page)) {
864 /* synchronous write or broken a_ops? */
865 ClearPageReclaim(page);
866 }
867 trace_mm_vmscan_writepage(page);
868 inc_node_page_state(page, NR_VMSCAN_WRITE);
869 return PAGE_SUCCESS;
870 }
871
872 return PAGE_CLEAN;
873 }
874
875 /*
876 * Same as remove_mapping, but if the page is removed from the mapping, it
877 * gets returned with a refcount of 0.
878 */
879 static int __remove_mapping(struct address_space *mapping, struct page *page,
880 bool reclaimed)
881 {
882 unsigned long flags;
883 int refcount;
884
885 BUG_ON(!PageLocked(page));
886 BUG_ON(mapping != page_mapping(page));
887
888 xa_lock_irqsave(&mapping->i_pages, flags);
889 /*
890 * The non racy check for a busy page.
891 *
892 * Must be careful with the order of the tests. When someone has
893 * a ref to the page, it may be possible that they dirty it then
894 * drop the reference. So if PageDirty is tested before page_count
895 * here, then the following race may occur:
896 *
897 * get_user_pages(&page);
898 * [user mapping goes away]
899 * write_to(page);
900 * !PageDirty(page) [good]
901 * SetPageDirty(page);
902 * put_page(page);
903 * !page_count(page) [good, discard it]
904 *
905 * [oops, our write_to data is lost]
906 *
907 * Reversing the order of the tests ensures such a situation cannot
908 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
909 * load is not satisfied before that of page->_refcount.
910 *
911 * Note that if SetPageDirty is always performed via set_page_dirty,
912 * and thus under the i_pages lock, then this ordering is not required.
913 */
914 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
915 refcount = 1 + HPAGE_PMD_NR;
916 else
917 refcount = 2;
918 if (!page_ref_freeze(page, refcount))
919 goto cannot_free;
920 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
921 if (unlikely(PageDirty(page))) {
922 page_ref_unfreeze(page, refcount);
923 goto cannot_free;
924 }
925
926 if (PageSwapCache(page)) {
927 swp_entry_t swap = { .val = page_private(page) };
928 mem_cgroup_swapout(page, swap);
929 __delete_from_swap_cache(page, swap);
930 xa_unlock_irqrestore(&mapping->i_pages, flags);
931 put_swap_page(page, swap);
932 } else {
933 void (*freepage)(struct page *);
934 void *shadow = NULL;
935
936 freepage = mapping->a_ops->freepage;
937 /*
938 * Remember a shadow entry for reclaimed file cache in
939 * order to detect refaults, thus thrashing, later on.
940 *
941 * But don't store shadows in an address space that is
942 * already exiting. This is not just an optizimation,
943 * inode reclaim needs to empty out the radix tree or
944 * the nodes are lost. Don't plant shadows behind its
945 * back.
946 *
947 * We also don't store shadows for DAX mappings because the
948 * only page cache pages found in these are zero pages
949 * covering holes, and because we don't want to mix DAX
950 * exceptional entries and shadow exceptional entries in the
951 * same address_space.
952 */
953 if (reclaimed && page_is_file_cache(page) &&
954 !mapping_exiting(mapping) && !dax_mapping(mapping))
955 shadow = workingset_eviction(page);
956 __delete_from_page_cache(page, shadow);
957 xa_unlock_irqrestore(&mapping->i_pages, flags);
958
959 if (freepage != NULL)
960 freepage(page);
961 }
962
963 return 1;
964
965 cannot_free:
966 xa_unlock_irqrestore(&mapping->i_pages, flags);
967 return 0;
968 }
969
970 /*
971 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
972 * someone else has a ref on the page, abort and return 0. If it was
973 * successfully detached, return 1. Assumes the caller has a single ref on
974 * this page.
975 */
976 int remove_mapping(struct address_space *mapping, struct page *page)
977 {
978 if (__remove_mapping(mapping, page, false)) {
979 /*
980 * Unfreezing the refcount with 1 rather than 2 effectively
981 * drops the pagecache ref for us without requiring another
982 * atomic operation.
983 */
984 page_ref_unfreeze(page, 1);
985 return 1;
986 }
987 return 0;
988 }
989
990 /**
991 * putback_lru_page - put previously isolated page onto appropriate LRU list
992 * @page: page to be put back to appropriate lru list
993 *
994 * Add previously isolated @page to appropriate LRU list.
995 * Page may still be unevictable for other reasons.
996 *
997 * lru_lock must not be held, interrupts must be enabled.
998 */
999 void putback_lru_page(struct page *page)
1000 {
1001 lru_cache_add(page);
1002 put_page(page); /* drop ref from isolate */
1003 }
1004
1005 enum page_references {
1006 PAGEREF_RECLAIM,
1007 PAGEREF_RECLAIM_CLEAN,
1008 PAGEREF_KEEP,
1009 PAGEREF_ACTIVATE,
1010 };
1011
1012 static enum page_references page_check_references(struct page *page,
1013 struct scan_control *sc)
1014 {
1015 int referenced_ptes, referenced_page;
1016 unsigned long vm_flags;
1017
1018 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1019 &vm_flags);
1020 referenced_page = TestClearPageReferenced(page);
1021
1022 /*
1023 * Mlock lost the isolation race with us. Let try_to_unmap()
1024 * move the page to the unevictable list.
1025 */
1026 if (vm_flags & VM_LOCKED)
1027 return PAGEREF_RECLAIM;
1028
1029 if (referenced_ptes) {
1030 if (PageSwapBacked(page))
1031 return PAGEREF_ACTIVATE;
1032 /*
1033 * All mapped pages start out with page table
1034 * references from the instantiating fault, so we need
1035 * to look twice if a mapped file page is used more
1036 * than once.
1037 *
1038 * Mark it and spare it for another trip around the
1039 * inactive list. Another page table reference will
1040 * lead to its activation.
1041 *
1042 * Note: the mark is set for activated pages as well
1043 * so that recently deactivated but used pages are
1044 * quickly recovered.
1045 */
1046 SetPageReferenced(page);
1047
1048 if (referenced_page || referenced_ptes > 1)
1049 return PAGEREF_ACTIVATE;
1050
1051 /*
1052 * Activate file-backed executable pages after first usage.
1053 */
1054 if (vm_flags & VM_EXEC)
1055 return PAGEREF_ACTIVATE;
1056
1057 return PAGEREF_KEEP;
1058 }
1059
1060 /* Reclaim if clean, defer dirty pages to writeback */
1061 if (referenced_page && !PageSwapBacked(page))
1062 return PAGEREF_RECLAIM_CLEAN;
1063
1064 return PAGEREF_RECLAIM;
1065 }
1066
1067 /* Check if a page is dirty or under writeback */
1068 static void page_check_dirty_writeback(struct page *page,
1069 bool *dirty, bool *writeback)
1070 {
1071 struct address_space *mapping;
1072
1073 /*
1074 * Anonymous pages are not handled by flushers and must be written
1075 * from reclaim context. Do not stall reclaim based on them
1076 */
1077 if (!page_is_file_cache(page) ||
1078 (PageAnon(page) && !PageSwapBacked(page))) {
1079 *dirty = false;
1080 *writeback = false;
1081 return;
1082 }
1083
1084 /* By default assume that the page flags are accurate */
1085 *dirty = PageDirty(page);
1086 *writeback = PageWriteback(page);
1087
1088 /* Verify dirty/writeback state if the filesystem supports it */
1089 if (!page_has_private(page))
1090 return;
1091
1092 mapping = page_mapping(page);
1093 if (mapping && mapping->a_ops->is_dirty_writeback)
1094 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1095 }
1096
1097 /*
1098 * shrink_page_list() returns the number of reclaimed pages
1099 */
1100 static unsigned long shrink_page_list(struct list_head *page_list,
1101 struct pglist_data *pgdat,
1102 struct scan_control *sc,
1103 enum ttu_flags ttu_flags,
1104 struct reclaim_stat *stat,
1105 bool force_reclaim)
1106 {
1107 LIST_HEAD(ret_pages);
1108 LIST_HEAD(free_pages);
1109 unsigned nr_reclaimed = 0;
1110 unsigned pgactivate = 0;
1111
1112 memset(stat, 0, sizeof(*stat));
1113 cond_resched();
1114
1115 while (!list_empty(page_list)) {
1116 struct address_space *mapping;
1117 struct page *page;
1118 int may_enter_fs;
1119 enum page_references references = PAGEREF_RECLAIM_CLEAN;
1120 bool dirty, writeback;
1121
1122 cond_resched();
1123
1124 page = lru_to_page(page_list);
1125 list_del(&page->lru);
1126
1127 if (!trylock_page(page))
1128 goto keep;
1129
1130 VM_BUG_ON_PAGE(PageActive(page), page);
1131
1132 sc->nr_scanned++;
1133
1134 if (unlikely(!page_evictable(page)))
1135 goto activate_locked;
1136
1137 if (!sc->may_unmap && page_mapped(page))
1138 goto keep_locked;
1139
1140 /* Double the slab pressure for mapped and swapcache pages */
1141 if ((page_mapped(page) || PageSwapCache(page)) &&
1142 !(PageAnon(page) && !PageSwapBacked(page)))
1143 sc->nr_scanned++;
1144
1145 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1146 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1147
1148 /*
1149 * The number of dirty pages determines if a node is marked
1150 * reclaim_congested which affects wait_iff_congested. kswapd
1151 * will stall and start writing pages if the tail of the LRU
1152 * is all dirty unqueued pages.
1153 */
1154 page_check_dirty_writeback(page, &dirty, &writeback);
1155 if (dirty || writeback)
1156 stat->nr_dirty++;
1157
1158 if (dirty && !writeback)
1159 stat->nr_unqueued_dirty++;
1160
1161 /*
1162 * Treat this page as congested if the underlying BDI is or if
1163 * pages are cycling through the LRU so quickly that the
1164 * pages marked for immediate reclaim are making it to the
1165 * end of the LRU a second time.
1166 */
1167 mapping = page_mapping(page);
1168 if (((dirty || writeback) && mapping &&
1169 inode_write_congested(mapping->host)) ||
1170 (writeback && PageReclaim(page)))
1171 stat->nr_congested++;
1172
1173 /*
1174 * If a page at the tail of the LRU is under writeback, there
1175 * are three cases to consider.
1176 *
1177 * 1) If reclaim is encountering an excessive number of pages
1178 * under writeback and this page is both under writeback and
1179 * PageReclaim then it indicates that pages are being queued
1180 * for IO but are being recycled through the LRU before the
1181 * IO can complete. Waiting on the page itself risks an
1182 * indefinite stall if it is impossible to writeback the
1183 * page due to IO error or disconnected storage so instead
1184 * note that the LRU is being scanned too quickly and the
1185 * caller can stall after page list has been processed.
1186 *
1187 * 2) Global or new memcg reclaim encounters a page that is
1188 * not marked for immediate reclaim, or the caller does not
1189 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1190 * not to fs). In this case mark the page for immediate
1191 * reclaim and continue scanning.
1192 *
1193 * Require may_enter_fs because we would wait on fs, which
1194 * may not have submitted IO yet. And the loop driver might
1195 * enter reclaim, and deadlock if it waits on a page for
1196 * which it is needed to do the write (loop masks off
1197 * __GFP_IO|__GFP_FS for this reason); but more thought
1198 * would probably show more reasons.
1199 *
1200 * 3) Legacy memcg encounters a page that is already marked
1201 * PageReclaim. memcg does not have any dirty pages
1202 * throttling so we could easily OOM just because too many
1203 * pages are in writeback and there is nothing else to
1204 * reclaim. Wait for the writeback to complete.
1205 *
1206 * In cases 1) and 2) we activate the pages to get them out of
1207 * the way while we continue scanning for clean pages on the
1208 * inactive list and refilling from the active list. The
1209 * observation here is that waiting for disk writes is more
1210 * expensive than potentially causing reloads down the line.
1211 * Since they're marked for immediate reclaim, they won't put
1212 * memory pressure on the cache working set any longer than it
1213 * takes to write them to disk.
1214 */
1215 if (PageWriteback(page)) {
1216 /* Case 1 above */
1217 if (current_is_kswapd() &&
1218 PageReclaim(page) &&
1219 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1220 stat->nr_immediate++;
1221 goto activate_locked;
1222
1223 /* Case 2 above */
1224 } else if (sane_reclaim(sc) ||
1225 !PageReclaim(page) || !may_enter_fs) {
1226 /*
1227 * This is slightly racy - end_page_writeback()
1228 * might have just cleared PageReclaim, then
1229 * setting PageReclaim here end up interpreted
1230 * as PageReadahead - but that does not matter
1231 * enough to care. What we do want is for this
1232 * page to have PageReclaim set next time memcg
1233 * reclaim reaches the tests above, so it will
1234 * then wait_on_page_writeback() to avoid OOM;
1235 * and it's also appropriate in global reclaim.
1236 */
1237 SetPageReclaim(page);
1238 stat->nr_writeback++;
1239 goto activate_locked;
1240
1241 /* Case 3 above */
1242 } else {
1243 unlock_page(page);
1244 wait_on_page_writeback(page);
1245 /* then go back and try same page again */
1246 list_add_tail(&page->lru, page_list);
1247 continue;
1248 }
1249 }
1250
1251 if (!force_reclaim)
1252 references = page_check_references(page, sc);
1253
1254 switch (references) {
1255 case PAGEREF_ACTIVATE:
1256 goto activate_locked;
1257 case PAGEREF_KEEP:
1258 stat->nr_ref_keep++;
1259 goto keep_locked;
1260 case PAGEREF_RECLAIM:
1261 case PAGEREF_RECLAIM_CLEAN:
1262 ; /* try to reclaim the page below */
1263 }
1264
1265 /*
1266 * Anonymous process memory has backing store?
1267 * Try to allocate it some swap space here.
1268 * Lazyfree page could be freed directly
1269 */
1270 if (PageAnon(page) && PageSwapBacked(page)) {
1271 if (!PageSwapCache(page)) {
1272 if (!(sc->gfp_mask & __GFP_IO))
1273 goto keep_locked;
1274 if (PageTransHuge(page)) {
1275 /* cannot split THP, skip it */
1276 if (!can_split_huge_page(page, NULL))
1277 goto activate_locked;
1278 /*
1279 * Split pages without a PMD map right
1280 * away. Chances are some or all of the
1281 * tail pages can be freed without IO.
1282 */
1283 if (!compound_mapcount(page) &&
1284 split_huge_page_to_list(page,
1285 page_list))
1286 goto activate_locked;
1287 }
1288 if (!add_to_swap(page)) {
1289 if (!PageTransHuge(page))
1290 goto activate_locked;
1291 /* Fallback to swap normal pages */
1292 if (split_huge_page_to_list(page,
1293 page_list))
1294 goto activate_locked;
1295 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1296 count_vm_event(THP_SWPOUT_FALLBACK);
1297 #endif
1298 if (!add_to_swap(page))
1299 goto activate_locked;
1300 }
1301
1302 may_enter_fs = 1;
1303
1304 /* Adding to swap updated mapping */
1305 mapping = page_mapping(page);
1306 }
1307 } else if (unlikely(PageTransHuge(page))) {
1308 /* Split file THP */
1309 if (split_huge_page_to_list(page, page_list))
1310 goto keep_locked;
1311 }
1312
1313 /*
1314 * The page is mapped into the page tables of one or more
1315 * processes. Try to unmap it here.
1316 */
1317 if (page_mapped(page)) {
1318 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1319
1320 if (unlikely(PageTransHuge(page)))
1321 flags |= TTU_SPLIT_HUGE_PMD;
1322 if (!try_to_unmap(page, flags)) {
1323 stat->nr_unmap_fail++;
1324 goto activate_locked;
1325 }
1326 }
1327
1328 if (PageDirty(page)) {
1329 /*
1330 * Only kswapd can writeback filesystem pages
1331 * to avoid risk of stack overflow. But avoid
1332 * injecting inefficient single-page IO into
1333 * flusher writeback as much as possible: only
1334 * write pages when we've encountered many
1335 * dirty pages, and when we've already scanned
1336 * the rest of the LRU for clean pages and see
1337 * the same dirty pages again (PageReclaim).
1338 */
1339 if (page_is_file_cache(page) &&
1340 (!current_is_kswapd() || !PageReclaim(page) ||
1341 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1342 /*
1343 * Immediately reclaim when written back.
1344 * Similar in principal to deactivate_page()
1345 * except we already have the page isolated
1346 * and know it's dirty
1347 */
1348 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1349 SetPageReclaim(page);
1350
1351 goto activate_locked;
1352 }
1353
1354 if (references == PAGEREF_RECLAIM_CLEAN)
1355 goto keep_locked;
1356 if (!may_enter_fs)
1357 goto keep_locked;
1358 if (!sc->may_writepage)
1359 goto keep_locked;
1360
1361 /*
1362 * Page is dirty. Flush the TLB if a writable entry
1363 * potentially exists to avoid CPU writes after IO
1364 * starts and then write it out here.
1365 */
1366 try_to_unmap_flush_dirty();
1367 switch (pageout(page, mapping, sc)) {
1368 case PAGE_KEEP:
1369 goto keep_locked;
1370 case PAGE_ACTIVATE:
1371 goto activate_locked;
1372 case PAGE_SUCCESS:
1373 if (PageWriteback(page))
1374 goto keep;
1375 if (PageDirty(page))
1376 goto keep;
1377
1378 /*
1379 * A synchronous write - probably a ramdisk. Go
1380 * ahead and try to reclaim the page.
1381 */
1382 if (!trylock_page(page))
1383 goto keep;
1384 if (PageDirty(page) || PageWriteback(page))
1385 goto keep_locked;
1386 mapping = page_mapping(page);
1387 case PAGE_CLEAN:
1388 ; /* try to free the page below */
1389 }
1390 }
1391
1392 /*
1393 * If the page has buffers, try to free the buffer mappings
1394 * associated with this page. If we succeed we try to free
1395 * the page as well.
1396 *
1397 * We do this even if the page is PageDirty().
1398 * try_to_release_page() does not perform I/O, but it is
1399 * possible for a page to have PageDirty set, but it is actually
1400 * clean (all its buffers are clean). This happens if the
1401 * buffers were written out directly, with submit_bh(). ext3
1402 * will do this, as well as the blockdev mapping.
1403 * try_to_release_page() will discover that cleanness and will
1404 * drop the buffers and mark the page clean - it can be freed.
1405 *
1406 * Rarely, pages can have buffers and no ->mapping. These are
1407 * the pages which were not successfully invalidated in
1408 * truncate_complete_page(). We try to drop those buffers here
1409 * and if that worked, and the page is no longer mapped into
1410 * process address space (page_count == 1) it can be freed.
1411 * Otherwise, leave the page on the LRU so it is swappable.
1412 */
1413 if (page_has_private(page)) {
1414 if (!try_to_release_page(page, sc->gfp_mask))
1415 goto activate_locked;
1416 if (!mapping && page_count(page) == 1) {
1417 unlock_page(page);
1418 if (put_page_testzero(page))
1419 goto free_it;
1420 else {
1421 /*
1422 * rare race with speculative reference.
1423 * the speculative reference will free
1424 * this page shortly, so we may
1425 * increment nr_reclaimed here (and
1426 * leave it off the LRU).
1427 */
1428 nr_reclaimed++;
1429 continue;
1430 }
1431 }
1432 }
1433
1434 if (PageAnon(page) && !PageSwapBacked(page)) {
1435 /* follow __remove_mapping for reference */
1436 if (!page_ref_freeze(page, 1))
1437 goto keep_locked;
1438 if (PageDirty(page)) {
1439 page_ref_unfreeze(page, 1);
1440 goto keep_locked;
1441 }
1442
1443 count_vm_event(PGLAZYFREED);
1444 count_memcg_page_event(page, PGLAZYFREED);
1445 } else if (!mapping || !__remove_mapping(mapping, page, true))
1446 goto keep_locked;
1447
1448 unlock_page(page);
1449 free_it:
1450 nr_reclaimed++;
1451
1452 /*
1453 * Is there need to periodically free_page_list? It would
1454 * appear not as the counts should be low
1455 */
1456 if (unlikely(PageTransHuge(page))) {
1457 mem_cgroup_uncharge(page);
1458 (*get_compound_page_dtor(page))(page);
1459 } else
1460 list_add(&page->lru, &free_pages);
1461 continue;
1462
1463 activate_locked:
1464 /* Not a candidate for swapping, so reclaim swap space. */
1465 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1466 PageMlocked(page)))
1467 try_to_free_swap(page);
1468 VM_BUG_ON_PAGE(PageActive(page), page);
1469 if (!PageMlocked(page)) {
1470 int type = page_is_file_cache(page);
1471 SetPageActive(page);
1472 pgactivate++;
1473 stat->nr_activate[type] += hpage_nr_pages(page);
1474 count_memcg_page_event(page, PGACTIVATE);
1475 }
1476 keep_locked:
1477 unlock_page(page);
1478 keep:
1479 list_add(&page->lru, &ret_pages);
1480 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1481 }
1482
1483 mem_cgroup_uncharge_list(&free_pages);
1484 try_to_unmap_flush();
1485 free_unref_page_list(&free_pages);
1486
1487 list_splice(&ret_pages, page_list);
1488 count_vm_events(PGACTIVATE, pgactivate);
1489
1490 return nr_reclaimed;
1491 }
1492
1493 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1494 struct list_head *page_list)
1495 {
1496 struct scan_control sc = {
1497 .gfp_mask = GFP_KERNEL,
1498 .priority = DEF_PRIORITY,
1499 .may_unmap = 1,
1500 };
1501 struct reclaim_stat dummy_stat;
1502 unsigned long ret;
1503 struct page *page, *next;
1504 LIST_HEAD(clean_pages);
1505
1506 list_for_each_entry_safe(page, next, page_list, lru) {
1507 if (page_is_file_cache(page) && !PageDirty(page) &&
1508 !__PageMovable(page)) {
1509 ClearPageActive(page);
1510 list_move(&page->lru, &clean_pages);
1511 }
1512 }
1513
1514 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1515 TTU_IGNORE_ACCESS, &dummy_stat, true);
1516 list_splice(&clean_pages, page_list);
1517 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1518 return ret;
1519 }
1520
1521 /*
1522 * Attempt to remove the specified page from its LRU. Only take this page
1523 * if it is of the appropriate PageActive status. Pages which are being
1524 * freed elsewhere are also ignored.
1525 *
1526 * page: page to consider
1527 * mode: one of the LRU isolation modes defined above
1528 *
1529 * returns 0 on success, -ve errno on failure.
1530 */
1531 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1532 {
1533 int ret = -EINVAL;
1534
1535 /* Only take pages on the LRU. */
1536 if (!PageLRU(page))
1537 return ret;
1538
1539 /* Compaction should not handle unevictable pages but CMA can do so */
1540 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1541 return ret;
1542
1543 ret = -EBUSY;
1544
1545 /*
1546 * To minimise LRU disruption, the caller can indicate that it only
1547 * wants to isolate pages it will be able to operate on without
1548 * blocking - clean pages for the most part.
1549 *
1550 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1551 * that it is possible to migrate without blocking
1552 */
1553 if (mode & ISOLATE_ASYNC_MIGRATE) {
1554 /* All the caller can do on PageWriteback is block */
1555 if (PageWriteback(page))
1556 return ret;
1557
1558 if (PageDirty(page)) {
1559 struct address_space *mapping;
1560 bool migrate_dirty;
1561
1562 /*
1563 * Only pages without mappings or that have a
1564 * ->migratepage callback are possible to migrate
1565 * without blocking. However, we can be racing with
1566 * truncation so it's necessary to lock the page
1567 * to stabilise the mapping as truncation holds
1568 * the page lock until after the page is removed
1569 * from the page cache.
1570 */
1571 if (!trylock_page(page))
1572 return ret;
1573
1574 mapping = page_mapping(page);
1575 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1576 unlock_page(page);
1577 if (!migrate_dirty)
1578 return ret;
1579 }
1580 }
1581
1582 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1583 return ret;
1584
1585 if (likely(get_page_unless_zero(page))) {
1586 /*
1587 * Be careful not to clear PageLRU until after we're
1588 * sure the page is not being freed elsewhere -- the
1589 * page release code relies on it.
1590 */
1591 ClearPageLRU(page);
1592 ret = 0;
1593 }
1594
1595 return ret;
1596 }
1597
1598
1599 /*
1600 * Update LRU sizes after isolating pages. The LRU size updates must
1601 * be complete before mem_cgroup_update_lru_size due to a santity check.
1602 */
1603 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1604 enum lru_list lru, unsigned long *nr_zone_taken)
1605 {
1606 int zid;
1607
1608 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1609 if (!nr_zone_taken[zid])
1610 continue;
1611
1612 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1613 #ifdef CONFIG_MEMCG
1614 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1615 #endif
1616 }
1617
1618 }
1619
1620 /**
1621 * pgdat->lru_lock is heavily contended. Some of the functions that
1622 * shrink the lists perform better by taking out a batch of pages
1623 * and working on them outside the LRU lock.
1624 *
1625 * For pagecache intensive workloads, this function is the hottest
1626 * spot in the kernel (apart from copy_*_user functions).
1627 *
1628 * Appropriate locks must be held before calling this function.
1629 *
1630 * @nr_to_scan: The number of eligible pages to look through on the list.
1631 * @lruvec: The LRU vector to pull pages from.
1632 * @dst: The temp list to put pages on to.
1633 * @nr_scanned: The number of pages that were scanned.
1634 * @sc: The scan_control struct for this reclaim session
1635 * @mode: One of the LRU isolation modes
1636 * @lru: LRU list id for isolating
1637 *
1638 * returns how many pages were moved onto *@dst.
1639 */
1640 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1641 struct lruvec *lruvec, struct list_head *dst,
1642 unsigned long *nr_scanned, struct scan_control *sc,
1643 enum lru_list lru)
1644 {
1645 struct list_head *src = &lruvec->lists[lru];
1646 unsigned long nr_taken = 0;
1647 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1648 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1649 unsigned long skipped = 0;
1650 unsigned long scan, total_scan, nr_pages;
1651 LIST_HEAD(pages_skipped);
1652 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1653
1654 scan = 0;
1655 for (total_scan = 0;
1656 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1657 total_scan++) {
1658 struct page *page;
1659
1660 page = lru_to_page(src);
1661 prefetchw_prev_lru_page(page, src, flags);
1662
1663 VM_BUG_ON_PAGE(!PageLRU(page), page);
1664
1665 if (page_zonenum(page) > sc->reclaim_idx) {
1666 list_move(&page->lru, &pages_skipped);
1667 nr_skipped[page_zonenum(page)]++;
1668 continue;
1669 }
1670
1671 /*
1672 * Do not count skipped pages because that makes the function
1673 * return with no isolated pages if the LRU mostly contains
1674 * ineligible pages. This causes the VM to not reclaim any
1675 * pages, triggering a premature OOM.
1676 */
1677 scan++;
1678 switch (__isolate_lru_page(page, mode)) {
1679 case 0:
1680 nr_pages = hpage_nr_pages(page);
1681 nr_taken += nr_pages;
1682 nr_zone_taken[page_zonenum(page)] += nr_pages;
1683 list_move(&page->lru, dst);
1684 break;
1685
1686 case -EBUSY:
1687 /* else it is being freed elsewhere */
1688 list_move(&page->lru, src);
1689 continue;
1690
1691 default:
1692 BUG();
1693 }
1694 }
1695
1696 /*
1697 * Splice any skipped pages to the start of the LRU list. Note that
1698 * this disrupts the LRU order when reclaiming for lower zones but
1699 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1700 * scanning would soon rescan the same pages to skip and put the
1701 * system at risk of premature OOM.
1702 */
1703 if (!list_empty(&pages_skipped)) {
1704 int zid;
1705
1706 list_splice(&pages_skipped, src);
1707 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1708 if (!nr_skipped[zid])
1709 continue;
1710
1711 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1712 skipped += nr_skipped[zid];
1713 }
1714 }
1715 *nr_scanned = total_scan;
1716 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1717 total_scan, skipped, nr_taken, mode, lru);
1718 update_lru_sizes(lruvec, lru, nr_zone_taken);
1719 return nr_taken;
1720 }
1721
1722 /**
1723 * isolate_lru_page - tries to isolate a page from its LRU list
1724 * @page: page to isolate from its LRU list
1725 *
1726 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1727 * vmstat statistic corresponding to whatever LRU list the page was on.
1728 *
1729 * Returns 0 if the page was removed from an LRU list.
1730 * Returns -EBUSY if the page was not on an LRU list.
1731 *
1732 * The returned page will have PageLRU() cleared. If it was found on
1733 * the active list, it will have PageActive set. If it was found on
1734 * the unevictable list, it will have the PageUnevictable bit set. That flag
1735 * may need to be cleared by the caller before letting the page go.
1736 *
1737 * The vmstat statistic corresponding to the list on which the page was
1738 * found will be decremented.
1739 *
1740 * Restrictions:
1741 *
1742 * (1) Must be called with an elevated refcount on the page. This is a
1743 * fundamentnal difference from isolate_lru_pages (which is called
1744 * without a stable reference).
1745 * (2) the lru_lock must not be held.
1746 * (3) interrupts must be enabled.
1747 */
1748 int isolate_lru_page(struct page *page)
1749 {
1750 int ret = -EBUSY;
1751
1752 VM_BUG_ON_PAGE(!page_count(page), page);
1753 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1754
1755 if (PageLRU(page)) {
1756 pg_data_t *pgdat = page_pgdat(page);
1757 struct lruvec *lruvec;
1758
1759 spin_lock_irq(&pgdat->lru_lock);
1760 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1761 if (PageLRU(page)) {
1762 int lru = page_lru(page);
1763 get_page(page);
1764 ClearPageLRU(page);
1765 del_page_from_lru_list(page, lruvec, lru);
1766 ret = 0;
1767 }
1768 spin_unlock_irq(&pgdat->lru_lock);
1769 }
1770 return ret;
1771 }
1772
1773 /*
1774 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1775 * then get resheduled. When there are massive number of tasks doing page
1776 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1777 * the LRU list will go small and be scanned faster than necessary, leading to
1778 * unnecessary swapping, thrashing and OOM.
1779 */
1780 static int too_many_isolated(struct pglist_data *pgdat, int file,
1781 struct scan_control *sc)
1782 {
1783 unsigned long inactive, isolated;
1784
1785 if (current_is_kswapd())
1786 return 0;
1787
1788 if (!sane_reclaim(sc))
1789 return 0;
1790
1791 if (file) {
1792 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1793 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1794 } else {
1795 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1796 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1797 }
1798
1799 /*
1800 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1801 * won't get blocked by normal direct-reclaimers, forming a circular
1802 * deadlock.
1803 */
1804 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1805 inactive >>= 3;
1806
1807 return isolated > inactive;
1808 }
1809
1810 /*
1811 * This moves pages from @list to corresponding LRU list.
1812 *
1813 * We move them the other way if the page is referenced by one or more
1814 * processes, from rmap.
1815 *
1816 * If the pages are mostly unmapped, the processing is fast and it is
1817 * appropriate to hold zone_lru_lock across the whole operation. But if
1818 * the pages are mapped, the processing is slow (page_referenced()) so we
1819 * should drop zone_lru_lock around each page. It's impossible to balance
1820 * this, so instead we remove the pages from the LRU while processing them.
1821 * It is safe to rely on PG_active against the non-LRU pages in here because
1822 * nobody will play with that bit on a non-LRU page.
1823 *
1824 * The downside is that we have to touch page->_refcount against each page.
1825 * But we had to alter page->flags anyway.
1826 *
1827 * Returns the number of pages moved to the given lruvec.
1828 */
1829
1830 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1831 struct list_head *list)
1832 {
1833 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1834 int nr_pages, nr_moved = 0;
1835 LIST_HEAD(pages_to_free);
1836 struct page *page;
1837 enum lru_list lru;
1838
1839 while (!list_empty(list)) {
1840 page = lru_to_page(list);
1841 VM_BUG_ON_PAGE(PageLRU(page), page);
1842 if (unlikely(!page_evictable(page))) {
1843 list_del(&page->lru);
1844 spin_unlock_irq(&pgdat->lru_lock);
1845 putback_lru_page(page);
1846 spin_lock_irq(&pgdat->lru_lock);
1847 continue;
1848 }
1849 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1850
1851 SetPageLRU(page);
1852 lru = page_lru(page);
1853
1854 nr_pages = hpage_nr_pages(page);
1855 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1856 list_move(&page->lru, &lruvec->lists[lru]);
1857
1858 if (put_page_testzero(page)) {
1859 __ClearPageLRU(page);
1860 __ClearPageActive(page);
1861 del_page_from_lru_list(page, lruvec, lru);
1862
1863 if (unlikely(PageCompound(page))) {
1864 spin_unlock_irq(&pgdat->lru_lock);
1865 mem_cgroup_uncharge(page);
1866 (*get_compound_page_dtor(page))(page);
1867 spin_lock_irq(&pgdat->lru_lock);
1868 } else
1869 list_add(&page->lru, &pages_to_free);
1870 } else {
1871 nr_moved += nr_pages;
1872 }
1873 }
1874
1875 /*
1876 * To save our caller's stack, now use input list for pages to free.
1877 */
1878 list_splice(&pages_to_free, list);
1879
1880 return nr_moved;
1881 }
1882
1883 /*
1884 * If a kernel thread (such as nfsd for loop-back mounts) services
1885 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1886 * In that case we should only throttle if the backing device it is
1887 * writing to is congested. In other cases it is safe to throttle.
1888 */
1889 static int current_may_throttle(void)
1890 {
1891 return !(current->flags & PF_LESS_THROTTLE) ||
1892 current->backing_dev_info == NULL ||
1893 bdi_write_congested(current->backing_dev_info);
1894 }
1895
1896 /*
1897 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1898 * of reclaimed pages
1899 */
1900 static noinline_for_stack unsigned long
1901 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1902 struct scan_control *sc, enum lru_list lru)
1903 {
1904 LIST_HEAD(page_list);
1905 unsigned long nr_scanned;
1906 unsigned long nr_reclaimed = 0;
1907 unsigned long nr_taken;
1908 struct reclaim_stat stat;
1909 int file = is_file_lru(lru);
1910 enum vm_event_item item;
1911 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1912 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1913 bool stalled = false;
1914
1915 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1916 if (stalled)
1917 return 0;
1918
1919 /* wait a bit for the reclaimer. */
1920 msleep(100);
1921 stalled = true;
1922
1923 /* We are about to die and free our memory. Return now. */
1924 if (fatal_signal_pending(current))
1925 return SWAP_CLUSTER_MAX;
1926 }
1927
1928 lru_add_drain();
1929
1930 spin_lock_irq(&pgdat->lru_lock);
1931
1932 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1933 &nr_scanned, sc, lru);
1934
1935 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1936 reclaim_stat->recent_scanned[file] += nr_taken;
1937
1938 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1939 if (global_reclaim(sc))
1940 __count_vm_events(item, nr_scanned);
1941 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1942 spin_unlock_irq(&pgdat->lru_lock);
1943
1944 if (nr_taken == 0)
1945 return 0;
1946
1947 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1948 &stat, false);
1949
1950 spin_lock_irq(&pgdat->lru_lock);
1951
1952 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1953 if (global_reclaim(sc))
1954 __count_vm_events(item, nr_reclaimed);
1955 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1956 reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
1957 reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
1958
1959 move_pages_to_lru(lruvec, &page_list);
1960
1961 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1962
1963 spin_unlock_irq(&pgdat->lru_lock);
1964
1965 mem_cgroup_uncharge_list(&page_list);
1966 free_unref_page_list(&page_list);
1967
1968 /*
1969 * If dirty pages are scanned that are not queued for IO, it
1970 * implies that flushers are not doing their job. This can
1971 * happen when memory pressure pushes dirty pages to the end of
1972 * the LRU before the dirty limits are breached and the dirty
1973 * data has expired. It can also happen when the proportion of
1974 * dirty pages grows not through writes but through memory
1975 * pressure reclaiming all the clean cache. And in some cases,
1976 * the flushers simply cannot keep up with the allocation
1977 * rate. Nudge the flusher threads in case they are asleep.
1978 */
1979 if (stat.nr_unqueued_dirty == nr_taken)
1980 wakeup_flusher_threads(WB_REASON_VMSCAN);
1981
1982 sc->nr.dirty += stat.nr_dirty;
1983 sc->nr.congested += stat.nr_congested;
1984 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1985 sc->nr.writeback += stat.nr_writeback;
1986 sc->nr.immediate += stat.nr_immediate;
1987 sc->nr.taken += nr_taken;
1988 if (file)
1989 sc->nr.file_taken += nr_taken;
1990
1991 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1992 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1993 return nr_reclaimed;
1994 }
1995
1996 static void shrink_active_list(unsigned long nr_to_scan,
1997 struct lruvec *lruvec,
1998 struct scan_control *sc,
1999 enum lru_list lru)
2000 {
2001 unsigned long nr_taken;
2002 unsigned long nr_scanned;
2003 unsigned long vm_flags;
2004 LIST_HEAD(l_hold); /* The pages which were snipped off */
2005 LIST_HEAD(l_active);
2006 LIST_HEAD(l_inactive);
2007 struct page *page;
2008 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2009 unsigned nr_deactivate, nr_activate;
2010 unsigned nr_rotated = 0;
2011 int file = is_file_lru(lru);
2012 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2013
2014 lru_add_drain();
2015
2016 spin_lock_irq(&pgdat->lru_lock);
2017
2018 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2019 &nr_scanned, sc, lru);
2020
2021 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2022 reclaim_stat->recent_scanned[file] += nr_taken;
2023
2024 __count_vm_events(PGREFILL, nr_scanned);
2025 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2026
2027 spin_unlock_irq(&pgdat->lru_lock);
2028
2029 while (!list_empty(&l_hold)) {
2030 cond_resched();
2031 page = lru_to_page(&l_hold);
2032 list_del(&page->lru);
2033
2034 if (unlikely(!page_evictable(page))) {
2035 putback_lru_page(page);
2036 continue;
2037 }
2038
2039 if (unlikely(buffer_heads_over_limit)) {
2040 if (page_has_private(page) && trylock_page(page)) {
2041 if (page_has_private(page))
2042 try_to_release_page(page, 0);
2043 unlock_page(page);
2044 }
2045 }
2046
2047 if (page_referenced(page, 0, sc->target_mem_cgroup,
2048 &vm_flags)) {
2049 nr_rotated += hpage_nr_pages(page);
2050 /*
2051 * Identify referenced, file-backed active pages and
2052 * give them one more trip around the active list. So
2053 * that executable code get better chances to stay in
2054 * memory under moderate memory pressure. Anon pages
2055 * are not likely to be evicted by use-once streaming
2056 * IO, plus JVM can create lots of anon VM_EXEC pages,
2057 * so we ignore them here.
2058 */
2059 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2060 list_add(&page->lru, &l_active);
2061 continue;
2062 }
2063 }
2064
2065 ClearPageActive(page); /* we are de-activating */
2066 SetPageWorkingset(page);
2067 list_add(&page->lru, &l_inactive);
2068 }
2069
2070 /*
2071 * Move pages back to the lru list.
2072 */
2073 spin_lock_irq(&pgdat->lru_lock);
2074 /*
2075 * Count referenced pages from currently used mappings as rotated,
2076 * even though only some of them are actually re-activated. This
2077 * helps balance scan pressure between file and anonymous pages in
2078 * get_scan_count.
2079 */
2080 reclaim_stat->recent_rotated[file] += nr_rotated;
2081
2082 nr_activate = move_pages_to_lru(lruvec, &l_active);
2083 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2084 /* Keep all free pages in l_active list */
2085 list_splice(&l_inactive, &l_active);
2086
2087 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2088 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2089
2090 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2091 spin_unlock_irq(&pgdat->lru_lock);
2092
2093 mem_cgroup_uncharge_list(&l_active);
2094 free_unref_page_list(&l_active);
2095 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2096 nr_deactivate, nr_rotated, sc->priority, file);
2097 }
2098
2099 /*
2100 * The inactive anon list should be small enough that the VM never has
2101 * to do too much work.
2102 *
2103 * The inactive file list should be small enough to leave most memory
2104 * to the established workingset on the scan-resistant active list,
2105 * but large enough to avoid thrashing the aggregate readahead window.
2106 *
2107 * Both inactive lists should also be large enough that each inactive
2108 * page has a chance to be referenced again before it is reclaimed.
2109 *
2110 * If that fails and refaulting is observed, the inactive list grows.
2111 *
2112 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2113 * on this LRU, maintained by the pageout code. An inactive_ratio
2114 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2115 *
2116 * total target max
2117 * memory ratio inactive
2118 * -------------------------------------
2119 * 10MB 1 5MB
2120 * 100MB 1 50MB
2121 * 1GB 3 250MB
2122 * 10GB 10 0.9GB
2123 * 100GB 31 3GB
2124 * 1TB 101 10GB
2125 * 10TB 320 32GB
2126 */
2127 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2128 struct scan_control *sc, bool actual_reclaim)
2129 {
2130 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2131 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2132 enum lru_list inactive_lru = file * LRU_FILE;
2133 unsigned long inactive, active;
2134 unsigned long inactive_ratio;
2135 unsigned long refaults;
2136 unsigned long gb;
2137
2138 /*
2139 * If we don't have swap space, anonymous page deactivation
2140 * is pointless.
2141 */
2142 if (!file && !total_swap_pages)
2143 return false;
2144
2145 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2146 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2147
2148 /*
2149 * When refaults are being observed, it means a new workingset
2150 * is being established. Disable active list protection to get
2151 * rid of the stale workingset quickly.
2152 */
2153 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2154 if (file && actual_reclaim && lruvec->refaults != refaults) {
2155 inactive_ratio = 0;
2156 } else {
2157 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2158 if (gb)
2159 inactive_ratio = int_sqrt(10 * gb);
2160 else
2161 inactive_ratio = 1;
2162 }
2163
2164 if (actual_reclaim)
2165 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2166 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2167 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2168 inactive_ratio, file);
2169
2170 return inactive * inactive_ratio < active;
2171 }
2172
2173 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2174 struct lruvec *lruvec, struct scan_control *sc)
2175 {
2176 if (is_active_lru(lru)) {
2177 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2178 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2179 return 0;
2180 }
2181
2182 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2183 }
2184
2185 enum scan_balance {
2186 SCAN_EQUAL,
2187 SCAN_FRACT,
2188 SCAN_ANON,
2189 SCAN_FILE,
2190 };
2191
2192 /*
2193 * Determine how aggressively the anon and file LRU lists should be
2194 * scanned. The relative value of each set of LRU lists is determined
2195 * by looking at the fraction of the pages scanned we did rotate back
2196 * onto the active list instead of evict.
2197 *
2198 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2199 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2200 */
2201 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2202 struct scan_control *sc, unsigned long *nr,
2203 unsigned long *lru_pages)
2204 {
2205 int swappiness = mem_cgroup_swappiness(memcg);
2206 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2207 u64 fraction[2];
2208 u64 denominator = 0; /* gcc */
2209 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2210 unsigned long anon_prio, file_prio;
2211 enum scan_balance scan_balance;
2212 unsigned long anon, file;
2213 unsigned long ap, fp;
2214 enum lru_list lru;
2215
2216 /* If we have no swap space, do not bother scanning anon pages. */
2217 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2218 scan_balance = SCAN_FILE;
2219 goto out;
2220 }
2221
2222 /*
2223 * Global reclaim will swap to prevent OOM even with no
2224 * swappiness, but memcg users want to use this knob to
2225 * disable swapping for individual groups completely when
2226 * using the memory controller's swap limit feature would be
2227 * too expensive.
2228 */
2229 if (!global_reclaim(sc) && !swappiness) {
2230 scan_balance = SCAN_FILE;
2231 goto out;
2232 }
2233
2234 /*
2235 * Do not apply any pressure balancing cleverness when the
2236 * system is close to OOM, scan both anon and file equally
2237 * (unless the swappiness setting disagrees with swapping).
2238 */
2239 if (!sc->priority && swappiness) {
2240 scan_balance = SCAN_EQUAL;
2241 goto out;
2242 }
2243
2244 /*
2245 * Prevent the reclaimer from falling into the cache trap: as
2246 * cache pages start out inactive, every cache fault will tip
2247 * the scan balance towards the file LRU. And as the file LRU
2248 * shrinks, so does the window for rotation from references.
2249 * This means we have a runaway feedback loop where a tiny
2250 * thrashing file LRU becomes infinitely more attractive than
2251 * anon pages. Try to detect this based on file LRU size.
2252 */
2253 if (global_reclaim(sc)) {
2254 unsigned long pgdatfile;
2255 unsigned long pgdatfree;
2256 int z;
2257 unsigned long total_high_wmark = 0;
2258
2259 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2260 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2261 node_page_state(pgdat, NR_INACTIVE_FILE);
2262
2263 for (z = 0; z < MAX_NR_ZONES; z++) {
2264 struct zone *zone = &pgdat->node_zones[z];
2265 if (!managed_zone(zone))
2266 continue;
2267
2268 total_high_wmark += high_wmark_pages(zone);
2269 }
2270
2271 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2272 /*
2273 * Force SCAN_ANON if there are enough inactive
2274 * anonymous pages on the LRU in eligible zones.
2275 * Otherwise, the small LRU gets thrashed.
2276 */
2277 if (!inactive_list_is_low(lruvec, false, sc, false) &&
2278 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2279 >> sc->priority) {
2280 scan_balance = SCAN_ANON;
2281 goto out;
2282 }
2283 }
2284 }
2285
2286 /*
2287 * If there is enough inactive page cache, i.e. if the size of the
2288 * inactive list is greater than that of the active list *and* the
2289 * inactive list actually has some pages to scan on this priority, we
2290 * do not reclaim anything from the anonymous working set right now.
2291 * Without the second condition we could end up never scanning an
2292 * lruvec even if it has plenty of old anonymous pages unless the
2293 * system is under heavy pressure.
2294 */
2295 if (!inactive_list_is_low(lruvec, true, sc, false) &&
2296 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2297 scan_balance = SCAN_FILE;
2298 goto out;
2299 }
2300
2301 scan_balance = SCAN_FRACT;
2302
2303 /*
2304 * With swappiness at 100, anonymous and file have the same priority.
2305 * This scanning priority is essentially the inverse of IO cost.
2306 */
2307 anon_prio = swappiness;
2308 file_prio = 200 - anon_prio;
2309
2310 /*
2311 * OK, so we have swap space and a fair amount of page cache
2312 * pages. We use the recently rotated / recently scanned
2313 * ratios to determine how valuable each cache is.
2314 *
2315 * Because workloads change over time (and to avoid overflow)
2316 * we keep these statistics as a floating average, which ends
2317 * up weighing recent references more than old ones.
2318 *
2319 * anon in [0], file in [1]
2320 */
2321
2322 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2323 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2324 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2325 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2326
2327 spin_lock_irq(&pgdat->lru_lock);
2328 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2329 reclaim_stat->recent_scanned[0] /= 2;
2330 reclaim_stat->recent_rotated[0] /= 2;
2331 }
2332
2333 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2334 reclaim_stat->recent_scanned[1] /= 2;
2335 reclaim_stat->recent_rotated[1] /= 2;
2336 }
2337
2338 /*
2339 * The amount of pressure on anon vs file pages is inversely
2340 * proportional to the fraction of recently scanned pages on
2341 * each list that were recently referenced and in active use.
2342 */
2343 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2344 ap /= reclaim_stat->recent_rotated[0] + 1;
2345
2346 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2347 fp /= reclaim_stat->recent_rotated[1] + 1;
2348 spin_unlock_irq(&pgdat->lru_lock);
2349
2350 fraction[0] = ap;
2351 fraction[1] = fp;
2352 denominator = ap + fp + 1;
2353 out:
2354 *lru_pages = 0;
2355 for_each_evictable_lru(lru) {
2356 int file = is_file_lru(lru);
2357 unsigned long size;
2358 unsigned long scan;
2359
2360 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2361 scan = size >> sc->priority;
2362 /*
2363 * If the cgroup's already been deleted, make sure to
2364 * scrape out the remaining cache.
2365 */
2366 if (!scan && !mem_cgroup_online(memcg))
2367 scan = min(size, SWAP_CLUSTER_MAX);
2368
2369 switch (scan_balance) {
2370 case SCAN_EQUAL:
2371 /* Scan lists relative to size */
2372 break;
2373 case SCAN_FRACT:
2374 /*
2375 * Scan types proportional to swappiness and
2376 * their relative recent reclaim efficiency.
2377 * Make sure we don't miss the last page
2378 * because of a round-off error.
2379 */
2380 scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2381 denominator);
2382 break;
2383 case SCAN_FILE:
2384 case SCAN_ANON:
2385 /* Scan one type exclusively */
2386 if ((scan_balance == SCAN_FILE) != file) {
2387 size = 0;
2388 scan = 0;
2389 }
2390 break;
2391 default:
2392 /* Look ma, no brain */
2393 BUG();
2394 }
2395
2396 *lru_pages += size;
2397 nr[lru] = scan;
2398 }
2399 }
2400
2401 /*
2402 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2403 */
2404 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2405 struct scan_control *sc, unsigned long *lru_pages)
2406 {
2407 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2408 unsigned long nr[NR_LRU_LISTS];
2409 unsigned long targets[NR_LRU_LISTS];
2410 unsigned long nr_to_scan;
2411 enum lru_list lru;
2412 unsigned long nr_reclaimed = 0;
2413 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2414 struct blk_plug plug;
2415 bool scan_adjusted;
2416
2417 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2418
2419 /* Record the original scan target for proportional adjustments later */
2420 memcpy(targets, nr, sizeof(nr));
2421
2422 /*
2423 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2424 * event that can occur when there is little memory pressure e.g.
2425 * multiple streaming readers/writers. Hence, we do not abort scanning
2426 * when the requested number of pages are reclaimed when scanning at
2427 * DEF_PRIORITY on the assumption that the fact we are direct
2428 * reclaiming implies that kswapd is not keeping up and it is best to
2429 * do a batch of work at once. For memcg reclaim one check is made to
2430 * abort proportional reclaim if either the file or anon lru has already
2431 * dropped to zero at the first pass.
2432 */
2433 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2434 sc->priority == DEF_PRIORITY);
2435
2436 blk_start_plug(&plug);
2437 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2438 nr[LRU_INACTIVE_FILE]) {
2439 unsigned long nr_anon, nr_file, percentage;
2440 unsigned long nr_scanned;
2441
2442 for_each_evictable_lru(lru) {
2443 if (nr[lru]) {
2444 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2445 nr[lru] -= nr_to_scan;
2446
2447 nr_reclaimed += shrink_list(lru, nr_to_scan,
2448 lruvec, sc);
2449 }
2450 }
2451
2452 cond_resched();
2453
2454 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2455 continue;
2456
2457 /*
2458 * For kswapd and memcg, reclaim at least the number of pages
2459 * requested. Ensure that the anon and file LRUs are scanned
2460 * proportionally what was requested by get_scan_count(). We
2461 * stop reclaiming one LRU and reduce the amount scanning
2462 * proportional to the original scan target.
2463 */
2464 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2465 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2466
2467 /*
2468 * It's just vindictive to attack the larger once the smaller
2469 * has gone to zero. And given the way we stop scanning the
2470 * smaller below, this makes sure that we only make one nudge
2471 * towards proportionality once we've got nr_to_reclaim.
2472 */
2473 if (!nr_file || !nr_anon)
2474 break;
2475
2476 if (nr_file > nr_anon) {
2477 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2478 targets[LRU_ACTIVE_ANON] + 1;
2479 lru = LRU_BASE;
2480 percentage = nr_anon * 100 / scan_target;
2481 } else {
2482 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2483 targets[LRU_ACTIVE_FILE] + 1;
2484 lru = LRU_FILE;
2485 percentage = nr_file * 100 / scan_target;
2486 }
2487
2488 /* Stop scanning the smaller of the LRU */
2489 nr[lru] = 0;
2490 nr[lru + LRU_ACTIVE] = 0;
2491
2492 /*
2493 * Recalculate the other LRU scan count based on its original
2494 * scan target and the percentage scanning already complete
2495 */
2496 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2497 nr_scanned = targets[lru] - nr[lru];
2498 nr[lru] = targets[lru] * (100 - percentage) / 100;
2499 nr[lru] -= min(nr[lru], nr_scanned);
2500
2501 lru += LRU_ACTIVE;
2502 nr_scanned = targets[lru] - nr[lru];
2503 nr[lru] = targets[lru] * (100 - percentage) / 100;
2504 nr[lru] -= min(nr[lru], nr_scanned);
2505
2506 scan_adjusted = true;
2507 }
2508 blk_finish_plug(&plug);
2509 sc->nr_reclaimed += nr_reclaimed;
2510
2511 /*
2512 * Even if we did not try to evict anon pages at all, we want to
2513 * rebalance the anon lru active/inactive ratio.
2514 */
2515 if (inactive_list_is_low(lruvec, false, sc, true))
2516 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2517 sc, LRU_ACTIVE_ANON);
2518 }
2519
2520 /* Use reclaim/compaction for costly allocs or under memory pressure */
2521 static bool in_reclaim_compaction(struct scan_control *sc)
2522 {
2523 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2524 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2525 sc->priority < DEF_PRIORITY - 2))
2526 return true;
2527
2528 return false;
2529 }
2530
2531 /*
2532 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2533 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2534 * true if more pages should be reclaimed such that when the page allocator
2535 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2536 * It will give up earlier than that if there is difficulty reclaiming pages.
2537 */
2538 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2539 unsigned long nr_reclaimed,
2540 unsigned long nr_scanned,
2541 struct scan_control *sc)
2542 {
2543 unsigned long pages_for_compaction;
2544 unsigned long inactive_lru_pages;
2545 int z;
2546
2547 /* If not in reclaim/compaction mode, stop */
2548 if (!in_reclaim_compaction(sc))
2549 return false;
2550
2551 /* Consider stopping depending on scan and reclaim activity */
2552 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2553 /*
2554 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2555 * full LRU list has been scanned and we are still failing
2556 * to reclaim pages. This full LRU scan is potentially
2557 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2558 */
2559 if (!nr_reclaimed && !nr_scanned)
2560 return false;
2561 } else {
2562 /*
2563 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2564 * fail without consequence, stop if we failed to reclaim
2565 * any pages from the last SWAP_CLUSTER_MAX number of
2566 * pages that were scanned. This will return to the
2567 * caller faster at the risk reclaim/compaction and
2568 * the resulting allocation attempt fails
2569 */
2570 if (!nr_reclaimed)
2571 return false;
2572 }
2573
2574 /*
2575 * If we have not reclaimed enough pages for compaction and the
2576 * inactive lists are large enough, continue reclaiming
2577 */
2578 pages_for_compaction = compact_gap(sc->order);
2579 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2580 if (get_nr_swap_pages() > 0)
2581 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2582 if (sc->nr_reclaimed < pages_for_compaction &&
2583 inactive_lru_pages > pages_for_compaction)
2584 return true;
2585
2586 /* If compaction would go ahead or the allocation would succeed, stop */
2587 for (z = 0; z <= sc->reclaim_idx; z++) {
2588 struct zone *zone = &pgdat->node_zones[z];
2589 if (!managed_zone(zone))
2590 continue;
2591
2592 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2593 case COMPACT_SUCCESS:
2594 case COMPACT_CONTINUE:
2595 return false;
2596 default:
2597 /* check next zone */
2598 ;
2599 }
2600 }
2601 return true;
2602 }
2603
2604 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2605 {
2606 return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2607 (memcg && memcg_congested(pgdat, memcg));
2608 }
2609
2610 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2611 {
2612 struct reclaim_state *reclaim_state = current->reclaim_state;
2613 unsigned long nr_reclaimed, nr_scanned;
2614 bool reclaimable = false;
2615
2616 do {
2617 struct mem_cgroup *root = sc->target_mem_cgroup;
2618 struct mem_cgroup_reclaim_cookie reclaim = {
2619 .pgdat = pgdat,
2620 .priority = sc->priority,
2621 };
2622 unsigned long node_lru_pages = 0;
2623 struct mem_cgroup *memcg;
2624
2625 memset(&sc->nr, 0, sizeof(sc->nr));
2626
2627 nr_reclaimed = sc->nr_reclaimed;
2628 nr_scanned = sc->nr_scanned;
2629
2630 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2631 do {
2632 unsigned long lru_pages;
2633 unsigned long reclaimed;
2634 unsigned long scanned;
2635
2636 switch (mem_cgroup_protected(root, memcg)) {
2637 case MEMCG_PROT_MIN:
2638 /*
2639 * Hard protection.
2640 * If there is no reclaimable memory, OOM.
2641 */
2642 continue;
2643 case MEMCG_PROT_LOW:
2644 /*
2645 * Soft protection.
2646 * Respect the protection only as long as
2647 * there is an unprotected supply
2648 * of reclaimable memory from other cgroups.
2649 */
2650 if (!sc->memcg_low_reclaim) {
2651 sc->memcg_low_skipped = 1;
2652 continue;
2653 }
2654 memcg_memory_event(memcg, MEMCG_LOW);
2655 break;
2656 case MEMCG_PROT_NONE:
2657 break;
2658 }
2659
2660 reclaimed = sc->nr_reclaimed;
2661 scanned = sc->nr_scanned;
2662 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2663 node_lru_pages += lru_pages;
2664
2665 if (sc->may_shrinkslab) {
2666 shrink_slab(sc->gfp_mask, pgdat->node_id,
2667 memcg, sc->priority);
2668 }
2669
2670 /* Record the group's reclaim efficiency */
2671 vmpressure(sc->gfp_mask, memcg, false,
2672 sc->nr_scanned - scanned,
2673 sc->nr_reclaimed - reclaimed);
2674
2675 /*
2676 * Kswapd have to scan all memory cgroups to fulfill
2677 * the overall scan target for the node.
2678 *
2679 * Limit reclaim, on the other hand, only cares about
2680 * nr_to_reclaim pages to be reclaimed and it will
2681 * retry with decreasing priority if one round over the
2682 * whole hierarchy is not sufficient.
2683 */
2684 if (!current_is_kswapd() &&
2685 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2686 mem_cgroup_iter_break(root, memcg);
2687 break;
2688 }
2689 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2690
2691 if (reclaim_state) {
2692 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2693 reclaim_state->reclaimed_slab = 0;
2694 }
2695
2696 /* Record the subtree's reclaim efficiency */
2697 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2698 sc->nr_scanned - nr_scanned,
2699 sc->nr_reclaimed - nr_reclaimed);
2700
2701 if (sc->nr_reclaimed - nr_reclaimed)
2702 reclaimable = true;
2703
2704 if (current_is_kswapd()) {
2705 /*
2706 * If reclaim is isolating dirty pages under writeback,
2707 * it implies that the long-lived page allocation rate
2708 * is exceeding the page laundering rate. Either the
2709 * global limits are not being effective at throttling
2710 * processes due to the page distribution throughout
2711 * zones or there is heavy usage of a slow backing
2712 * device. The only option is to throttle from reclaim
2713 * context which is not ideal as there is no guarantee
2714 * the dirtying process is throttled in the same way
2715 * balance_dirty_pages() manages.
2716 *
2717 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2718 * count the number of pages under pages flagged for
2719 * immediate reclaim and stall if any are encountered
2720 * in the nr_immediate check below.
2721 */
2722 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2723 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2724
2725 /*
2726 * Tag a node as congested if all the dirty pages
2727 * scanned were backed by a congested BDI and
2728 * wait_iff_congested will stall.
2729 */
2730 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2731 set_bit(PGDAT_CONGESTED, &pgdat->flags);
2732
2733 /* Allow kswapd to start writing pages during reclaim.*/
2734 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2735 set_bit(PGDAT_DIRTY, &pgdat->flags);
2736
2737 /*
2738 * If kswapd scans pages marked marked for immediate
2739 * reclaim and under writeback (nr_immediate), it
2740 * implies that pages are cycling through the LRU
2741 * faster than they are written so also forcibly stall.
2742 */
2743 if (sc->nr.immediate)
2744 congestion_wait(BLK_RW_ASYNC, HZ/10);
2745 }
2746
2747 /*
2748 * Legacy memcg will stall in page writeback so avoid forcibly
2749 * stalling in wait_iff_congested().
2750 */
2751 if (!global_reclaim(sc) && sane_reclaim(sc) &&
2752 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2753 set_memcg_congestion(pgdat, root, true);
2754
2755 /*
2756 * Stall direct reclaim for IO completions if underlying BDIs
2757 * and node is congested. Allow kswapd to continue until it
2758 * starts encountering unqueued dirty pages or cycling through
2759 * the LRU too quickly.
2760 */
2761 if (!sc->hibernation_mode && !current_is_kswapd() &&
2762 current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2763 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2764
2765 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2766 sc->nr_scanned - nr_scanned, sc));
2767
2768 /*
2769 * Kswapd gives up on balancing particular nodes after too
2770 * many failures to reclaim anything from them and goes to
2771 * sleep. On reclaim progress, reset the failure counter. A
2772 * successful direct reclaim run will revive a dormant kswapd.
2773 */
2774 if (reclaimable)
2775 pgdat->kswapd_failures = 0;
2776
2777 return reclaimable;
2778 }
2779
2780 /*
2781 * Returns true if compaction should go ahead for a costly-order request, or
2782 * the allocation would already succeed without compaction. Return false if we
2783 * should reclaim first.
2784 */
2785 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2786 {
2787 unsigned long watermark;
2788 enum compact_result suitable;
2789
2790 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2791 if (suitable == COMPACT_SUCCESS)
2792 /* Allocation should succeed already. Don't reclaim. */
2793 return true;
2794 if (suitable == COMPACT_SKIPPED)
2795 /* Compaction cannot yet proceed. Do reclaim. */
2796 return false;
2797
2798 /*
2799 * Compaction is already possible, but it takes time to run and there
2800 * are potentially other callers using the pages just freed. So proceed
2801 * with reclaim to make a buffer of free pages available to give
2802 * compaction a reasonable chance of completing and allocating the page.
2803 * Note that we won't actually reclaim the whole buffer in one attempt
2804 * as the target watermark in should_continue_reclaim() is lower. But if
2805 * we are already above the high+gap watermark, don't reclaim at all.
2806 */
2807 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2808
2809 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2810 }
2811
2812 /*
2813 * This is the direct reclaim path, for page-allocating processes. We only
2814 * try to reclaim pages from zones which will satisfy the caller's allocation
2815 * request.
2816 *
2817 * If a zone is deemed to be full of pinned pages then just give it a light
2818 * scan then give up on it.
2819 */
2820 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2821 {
2822 struct zoneref *z;
2823 struct zone *zone;
2824 unsigned long nr_soft_reclaimed;
2825 unsigned long nr_soft_scanned;
2826 gfp_t orig_mask;
2827 pg_data_t *last_pgdat = NULL;
2828
2829 /*
2830 * If the number of buffer_heads in the machine exceeds the maximum
2831 * allowed level, force direct reclaim to scan the highmem zone as
2832 * highmem pages could be pinning lowmem pages storing buffer_heads
2833 */
2834 orig_mask = sc->gfp_mask;
2835 if (buffer_heads_over_limit) {
2836 sc->gfp_mask |= __GFP_HIGHMEM;
2837 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2838 }
2839
2840 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2841 sc->reclaim_idx, sc->nodemask) {
2842 /*
2843 * Take care memory controller reclaiming has small influence
2844 * to global LRU.
2845 */
2846 if (global_reclaim(sc)) {
2847 if (!cpuset_zone_allowed(zone,
2848 GFP_KERNEL | __GFP_HARDWALL))
2849 continue;
2850
2851 /*
2852 * If we already have plenty of memory free for
2853 * compaction in this zone, don't free any more.
2854 * Even though compaction is invoked for any
2855 * non-zero order, only frequent costly order
2856 * reclamation is disruptive enough to become a
2857 * noticeable problem, like transparent huge
2858 * page allocations.
2859 */
2860 if (IS_ENABLED(CONFIG_COMPACTION) &&
2861 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2862 compaction_ready(zone, sc)) {
2863 sc->compaction_ready = true;
2864 continue;
2865 }
2866
2867 /*
2868 * Shrink each node in the zonelist once. If the
2869 * zonelist is ordered by zone (not the default) then a
2870 * node may be shrunk multiple times but in that case
2871 * the user prefers lower zones being preserved.
2872 */
2873 if (zone->zone_pgdat == last_pgdat)
2874 continue;
2875
2876 /*
2877 * This steals pages from memory cgroups over softlimit
2878 * and returns the number of reclaimed pages and
2879 * scanned pages. This works for global memory pressure
2880 * and balancing, not for a memcg's limit.
2881 */
2882 nr_soft_scanned = 0;
2883 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2884 sc->order, sc->gfp_mask,
2885 &nr_soft_scanned);
2886 sc->nr_reclaimed += nr_soft_reclaimed;
2887 sc->nr_scanned += nr_soft_scanned;
2888 /* need some check for avoid more shrink_zone() */
2889 }
2890
2891 /* See comment about same check for global reclaim above */
2892 if (zone->zone_pgdat == last_pgdat)
2893 continue;
2894 last_pgdat = zone->zone_pgdat;
2895 shrink_node(zone->zone_pgdat, sc);
2896 }
2897
2898 /*
2899 * Restore to original mask to avoid the impact on the caller if we
2900 * promoted it to __GFP_HIGHMEM.
2901 */
2902 sc->gfp_mask = orig_mask;
2903 }
2904
2905 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2906 {
2907 struct mem_cgroup *memcg;
2908
2909 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2910 do {
2911 unsigned long refaults;
2912 struct lruvec *lruvec;
2913
2914 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2915 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2916 lruvec->refaults = refaults;
2917 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2918 }
2919
2920 /*
2921 * This is the main entry point to direct page reclaim.
2922 *
2923 * If a full scan of the inactive list fails to free enough memory then we
2924 * are "out of memory" and something needs to be killed.
2925 *
2926 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2927 * high - the zone may be full of dirty or under-writeback pages, which this
2928 * caller can't do much about. We kick the writeback threads and take explicit
2929 * naps in the hope that some of these pages can be written. But if the
2930 * allocating task holds filesystem locks which prevent writeout this might not
2931 * work, and the allocation attempt will fail.
2932 *
2933 * returns: 0, if no pages reclaimed
2934 * else, the number of pages reclaimed
2935 */
2936 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2937 struct scan_control *sc)
2938 {
2939 int initial_priority = sc->priority;
2940 pg_data_t *last_pgdat;
2941 struct zoneref *z;
2942 struct zone *zone;
2943 retry:
2944 delayacct_freepages_start();
2945
2946 if (global_reclaim(sc))
2947 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2948
2949 do {
2950 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2951 sc->priority);
2952 sc->nr_scanned = 0;
2953 shrink_zones(zonelist, sc);
2954
2955 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2956 break;
2957
2958 if (sc->compaction_ready)
2959 break;
2960
2961 /*
2962 * If we're getting trouble reclaiming, start doing
2963 * writepage even in laptop mode.
2964 */
2965 if (sc->priority < DEF_PRIORITY - 2)
2966 sc->may_writepage = 1;
2967 } while (--sc->priority >= 0);
2968
2969 last_pgdat = NULL;
2970 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2971 sc->nodemask) {
2972 if (zone->zone_pgdat == last_pgdat)
2973 continue;
2974 last_pgdat = zone->zone_pgdat;
2975 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2976 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
2977 }
2978
2979 delayacct_freepages_end();
2980
2981 if (sc->nr_reclaimed)
2982 return sc->nr_reclaimed;
2983
2984 /* Aborted reclaim to try compaction? don't OOM, then */
2985 if (sc->compaction_ready)
2986 return 1;
2987
2988 /* Untapped cgroup reserves? Don't OOM, retry. */
2989 if (sc->memcg_low_skipped) {
2990 sc->priority = initial_priority;
2991 sc->memcg_low_reclaim = 1;
2992 sc->memcg_low_skipped = 0;
2993 goto retry;
2994 }
2995
2996 return 0;
2997 }
2998
2999 static bool allow_direct_reclaim(pg_data_t *pgdat)
3000 {
3001 struct zone *zone;
3002 unsigned long pfmemalloc_reserve = 0;
3003 unsigned long free_pages = 0;
3004 int i;
3005 bool wmark_ok;
3006
3007 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3008 return true;
3009
3010 for (i = 0; i <= ZONE_NORMAL; i++) {
3011 zone = &pgdat->node_zones[i];
3012 if (!managed_zone(zone))
3013 continue;
3014
3015 if (!zone_reclaimable_pages(zone))
3016 continue;
3017
3018 pfmemalloc_reserve += min_wmark_pages(zone);
3019 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3020 }
3021
3022 /* If there are no reserves (unexpected config) then do not throttle */
3023 if (!pfmemalloc_reserve)
3024 return true;
3025
3026 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3027
3028 /* kswapd must be awake if processes are being throttled */
3029 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3030 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3031 (enum zone_type)ZONE_NORMAL);
3032 wake_up_interruptible(&pgdat->kswapd_wait);
3033 }
3034
3035 return wmark_ok;
3036 }
3037
3038 /*
3039 * Throttle direct reclaimers if backing storage is backed by the network
3040 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3041 * depleted. kswapd will continue to make progress and wake the processes
3042 * when the low watermark is reached.
3043 *
3044 * Returns true if a fatal signal was delivered during throttling. If this
3045 * happens, the page allocator should not consider triggering the OOM killer.
3046 */
3047 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3048 nodemask_t *nodemask)
3049 {
3050 struct zoneref *z;
3051 struct zone *zone;
3052 pg_data_t *pgdat = NULL;
3053
3054 /*
3055 * Kernel threads should not be throttled as they may be indirectly
3056 * responsible for cleaning pages necessary for reclaim to make forward
3057 * progress. kjournald for example may enter direct reclaim while
3058 * committing a transaction where throttling it could forcing other
3059 * processes to block on log_wait_commit().
3060 */
3061 if (current->flags & PF_KTHREAD)
3062 goto out;
3063
3064 /*
3065 * If a fatal signal is pending, this process should not throttle.
3066 * It should return quickly so it can exit and free its memory
3067 */
3068 if (fatal_signal_pending(current))
3069 goto out;
3070
3071 /*
3072 * Check if the pfmemalloc reserves are ok by finding the first node
3073 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3074 * GFP_KERNEL will be required for allocating network buffers when
3075 * swapping over the network so ZONE_HIGHMEM is unusable.
3076 *
3077 * Throttling is based on the first usable node and throttled processes
3078 * wait on a queue until kswapd makes progress and wakes them. There
3079 * is an affinity then between processes waking up and where reclaim
3080 * progress has been made assuming the process wakes on the same node.
3081 * More importantly, processes running on remote nodes will not compete
3082 * for remote pfmemalloc reserves and processes on different nodes
3083 * should make reasonable progress.
3084 */
3085 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3086 gfp_zone(gfp_mask), nodemask) {
3087 if (zone_idx(zone) > ZONE_NORMAL)
3088 continue;
3089
3090 /* Throttle based on the first usable node */
3091 pgdat = zone->zone_pgdat;
3092 if (allow_direct_reclaim(pgdat))
3093 goto out;
3094 break;
3095 }
3096
3097 /* If no zone was usable by the allocation flags then do not throttle */
3098 if (!pgdat)
3099 goto out;
3100
3101 /* Account for the throttling */
3102 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3103
3104 /*
3105 * If the caller cannot enter the filesystem, it's possible that it
3106 * is due to the caller holding an FS lock or performing a journal
3107 * transaction in the case of a filesystem like ext[3|4]. In this case,
3108 * it is not safe to block on pfmemalloc_wait as kswapd could be
3109 * blocked waiting on the same lock. Instead, throttle for up to a
3110 * second before continuing.
3111 */
3112 if (!(gfp_mask & __GFP_FS)) {
3113 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3114 allow_direct_reclaim(pgdat), HZ);
3115
3116 goto check_pending;
3117 }
3118
3119 /* Throttle until kswapd wakes the process */
3120 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3121 allow_direct_reclaim(pgdat));
3122
3123 check_pending:
3124 if (fatal_signal_pending(current))
3125 return true;
3126
3127 out:
3128 return false;
3129 }
3130
3131 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3132 gfp_t gfp_mask, nodemask_t *nodemask)
3133 {
3134 unsigned long nr_reclaimed;
3135 struct scan_control sc = {
3136 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3137 .gfp_mask = current_gfp_context(gfp_mask),
3138 .reclaim_idx = gfp_zone(gfp_mask),
3139 .order = order,
3140 .nodemask = nodemask,
3141 .priority = DEF_PRIORITY,
3142 .may_writepage = !laptop_mode,
3143 .may_unmap = 1,
3144 .may_swap = 1,
3145 .may_shrinkslab = 1,
3146 };
3147
3148 /*
3149 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3150 * Confirm they are large enough for max values.
3151 */
3152 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3153 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3154 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3155
3156 /*
3157 * Do not enter reclaim if fatal signal was delivered while throttled.
3158 * 1 is returned so that the page allocator does not OOM kill at this
3159 * point.
3160 */
3161 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3162 return 1;
3163
3164 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3165
3166 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3167
3168 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3169
3170 return nr_reclaimed;
3171 }
3172
3173 #ifdef CONFIG_MEMCG
3174
3175 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3176 gfp_t gfp_mask, bool noswap,
3177 pg_data_t *pgdat,
3178 unsigned long *nr_scanned)
3179 {
3180 struct scan_control sc = {
3181 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3182 .target_mem_cgroup = memcg,
3183 .may_writepage = !laptop_mode,
3184 .may_unmap = 1,
3185 .reclaim_idx = MAX_NR_ZONES - 1,
3186 .may_swap = !noswap,
3187 .may_shrinkslab = 1,
3188 };
3189 unsigned long lru_pages;
3190
3191 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3192 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3193
3194 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3195 sc.gfp_mask);
3196
3197 /*
3198 * NOTE: Although we can get the priority field, using it
3199 * here is not a good idea, since it limits the pages we can scan.
3200 * if we don't reclaim here, the shrink_node from balance_pgdat
3201 * will pick up pages from other mem cgroup's as well. We hack
3202 * the priority and make it zero.
3203 */
3204 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3205
3206 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3207
3208 *nr_scanned = sc.nr_scanned;
3209 return sc.nr_reclaimed;
3210 }
3211
3212 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3213 unsigned long nr_pages,
3214 gfp_t gfp_mask,
3215 bool may_swap)
3216 {
3217 struct zonelist *zonelist;
3218 unsigned long nr_reclaimed;
3219 unsigned long pflags;
3220 int nid;
3221 unsigned int noreclaim_flag;
3222 struct scan_control sc = {
3223 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3224 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3225 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3226 .reclaim_idx = MAX_NR_ZONES - 1,
3227 .target_mem_cgroup = memcg,
3228 .priority = DEF_PRIORITY,
3229 .may_writepage = !laptop_mode,
3230 .may_unmap = 1,
3231 .may_swap = may_swap,
3232 .may_shrinkslab = 1,
3233 };
3234
3235 /*
3236 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3237 * take care of from where we get pages. So the node where we start the
3238 * scan does not need to be the current node.
3239 */
3240 nid = mem_cgroup_select_victim_node(memcg);
3241
3242 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3243
3244 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3245
3246 psi_memstall_enter(&pflags);
3247 noreclaim_flag = memalloc_noreclaim_save();
3248
3249 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3250
3251 memalloc_noreclaim_restore(noreclaim_flag);
3252 psi_memstall_leave(&pflags);
3253
3254 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3255
3256 return nr_reclaimed;
3257 }
3258 #endif
3259
3260 static void age_active_anon(struct pglist_data *pgdat,
3261 struct scan_control *sc)
3262 {
3263 struct mem_cgroup *memcg;
3264
3265 if (!total_swap_pages)
3266 return;
3267
3268 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3269 do {
3270 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3271
3272 if (inactive_list_is_low(lruvec, false, sc, true))
3273 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3274 sc, LRU_ACTIVE_ANON);
3275
3276 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3277 } while (memcg);
3278 }
3279
3280 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3281 {
3282 int i;
3283 struct zone *zone;
3284
3285 /*
3286 * Check for watermark boosts top-down as the higher zones
3287 * are more likely to be boosted. Both watermarks and boosts
3288 * should not be checked at the time time as reclaim would
3289 * start prematurely when there is no boosting and a lower
3290 * zone is balanced.
3291 */
3292 for (i = classzone_idx; i >= 0; i--) {
3293 zone = pgdat->node_zones + i;
3294 if (!managed_zone(zone))
3295 continue;
3296
3297 if (zone->watermark_boost)
3298 return true;
3299 }
3300
3301 return false;
3302 }
3303
3304 /*
3305 * Returns true if there is an eligible zone balanced for the request order
3306 * and classzone_idx
3307 */
3308 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3309 {
3310 int i;
3311 unsigned long mark = -1;
3312 struct zone *zone;
3313
3314 /*
3315 * Check watermarks bottom-up as lower zones are more likely to
3316 * meet watermarks.
3317 */
3318 for (i = 0; i <= classzone_idx; i++) {
3319 zone = pgdat->node_zones + i;
3320
3321 if (!managed_zone(zone))
3322 continue;
3323
3324 mark = high_wmark_pages(zone);
3325 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3326 return true;
3327 }
3328
3329 /*
3330 * If a node has no populated zone within classzone_idx, it does not
3331 * need balancing by definition. This can happen if a zone-restricted
3332 * allocation tries to wake a remote kswapd.
3333 */
3334 if (mark == -1)
3335 return true;
3336
3337 return false;
3338 }
3339
3340 /* Clear pgdat state for congested, dirty or under writeback. */
3341 static void clear_pgdat_congested(pg_data_t *pgdat)
3342 {
3343 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3344 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3345 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3346 }
3347
3348 /*
3349 * Prepare kswapd for sleeping. This verifies that there are no processes
3350 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3351 *
3352 * Returns true if kswapd is ready to sleep
3353 */
3354 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3355 {
3356 /*
3357 * The throttled processes are normally woken up in balance_pgdat() as
3358 * soon as allow_direct_reclaim() is true. But there is a potential
3359 * race between when kswapd checks the watermarks and a process gets
3360 * throttled. There is also a potential race if processes get
3361 * throttled, kswapd wakes, a large process exits thereby balancing the
3362 * zones, which causes kswapd to exit balance_pgdat() before reaching
3363 * the wake up checks. If kswapd is going to sleep, no process should
3364 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3365 * the wake up is premature, processes will wake kswapd and get
3366 * throttled again. The difference from wake ups in balance_pgdat() is
3367 * that here we are under prepare_to_wait().
3368 */
3369 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3370 wake_up_all(&pgdat->pfmemalloc_wait);
3371
3372 /* Hopeless node, leave it to direct reclaim */
3373 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3374 return true;
3375
3376 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3377 clear_pgdat_congested(pgdat);
3378 return true;
3379 }
3380
3381 return false;
3382 }
3383
3384 /*
3385 * kswapd shrinks a node of pages that are at or below the highest usable
3386 * zone that is currently unbalanced.
3387 *
3388 * Returns true if kswapd scanned at least the requested number of pages to
3389 * reclaim or if the lack of progress was due to pages under writeback.
3390 * This is used to determine if the scanning priority needs to be raised.
3391 */
3392 static bool kswapd_shrink_node(pg_data_t *pgdat,
3393 struct scan_control *sc)
3394 {
3395 struct zone *zone;
3396 int z;
3397
3398 /* Reclaim a number of pages proportional to the number of zones */
3399 sc->nr_to_reclaim = 0;
3400 for (z = 0; z <= sc->reclaim_idx; z++) {
3401 zone = pgdat->node_zones + z;
3402 if (!managed_zone(zone))
3403 continue;
3404
3405 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3406 }
3407
3408 /*
3409 * Historically care was taken to put equal pressure on all zones but
3410 * now pressure is applied based on node LRU order.
3411 */
3412 shrink_node(pgdat, sc);
3413
3414 /*
3415 * Fragmentation may mean that the system cannot be rebalanced for
3416 * high-order allocations. If twice the allocation size has been
3417 * reclaimed then recheck watermarks only at order-0 to prevent
3418 * excessive reclaim. Assume that a process requested a high-order
3419 * can direct reclaim/compact.
3420 */
3421 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3422 sc->order = 0;
3423
3424 return sc->nr_scanned >= sc->nr_to_reclaim;
3425 }
3426
3427 /*
3428 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3429 * that are eligible for use by the caller until at least one zone is
3430 * balanced.
3431 *
3432 * Returns the order kswapd finished reclaiming at.
3433 *
3434 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3435 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3436 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3437 * or lower is eligible for reclaim until at least one usable zone is
3438 * balanced.
3439 */
3440 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3441 {
3442 int i;
3443 unsigned long nr_soft_reclaimed;
3444 unsigned long nr_soft_scanned;
3445 unsigned long pflags;
3446 unsigned long nr_boost_reclaim;
3447 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3448 bool boosted;
3449 struct zone *zone;
3450 struct scan_control sc = {
3451 .gfp_mask = GFP_KERNEL,
3452 .order = order,
3453 .may_unmap = 1,
3454 };
3455
3456 psi_memstall_enter(&pflags);
3457 __fs_reclaim_acquire();
3458
3459 count_vm_event(PAGEOUTRUN);
3460
3461 /*
3462 * Account for the reclaim boost. Note that the zone boost is left in
3463 * place so that parallel allocations that are near the watermark will
3464 * stall or direct reclaim until kswapd is finished.
3465 */
3466 nr_boost_reclaim = 0;
3467 for (i = 0; i <= classzone_idx; i++) {
3468 zone = pgdat->node_zones + i;
3469 if (!managed_zone(zone))
3470 continue;
3471
3472 nr_boost_reclaim += zone->watermark_boost;
3473 zone_boosts[i] = zone->watermark_boost;
3474 }
3475 boosted = nr_boost_reclaim;
3476
3477 restart:
3478 sc.priority = DEF_PRIORITY;
3479 do {
3480 unsigned long nr_reclaimed = sc.nr_reclaimed;
3481 bool raise_priority = true;
3482 bool balanced;
3483 bool ret;
3484
3485 sc.reclaim_idx = classzone_idx;
3486
3487 /*
3488 * If the number of buffer_heads exceeds the maximum allowed
3489 * then consider reclaiming from all zones. This has a dual
3490 * purpose -- on 64-bit systems it is expected that
3491 * buffer_heads are stripped during active rotation. On 32-bit
3492 * systems, highmem pages can pin lowmem memory and shrinking
3493 * buffers can relieve lowmem pressure. Reclaim may still not
3494 * go ahead if all eligible zones for the original allocation
3495 * request are balanced to avoid excessive reclaim from kswapd.
3496 */
3497 if (buffer_heads_over_limit) {
3498 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3499 zone = pgdat->node_zones + i;
3500 if (!managed_zone(zone))
3501 continue;
3502
3503 sc.reclaim_idx = i;
3504 break;
3505 }
3506 }
3507
3508 /*
3509 * If the pgdat is imbalanced then ignore boosting and preserve
3510 * the watermarks for a later time and restart. Note that the
3511 * zone watermarks will be still reset at the end of balancing
3512 * on the grounds that the normal reclaim should be enough to
3513 * re-evaluate if boosting is required when kswapd next wakes.
3514 */
3515 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3516 if (!balanced && nr_boost_reclaim) {
3517 nr_boost_reclaim = 0;
3518 goto restart;
3519 }
3520
3521 /*
3522 * If boosting is not active then only reclaim if there are no
3523 * eligible zones. Note that sc.reclaim_idx is not used as
3524 * buffer_heads_over_limit may have adjusted it.
3525 */
3526 if (!nr_boost_reclaim && balanced)
3527 goto out;
3528
3529 /* Limit the priority of boosting to avoid reclaim writeback */
3530 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3531 raise_priority = false;
3532
3533 /*
3534 * Do not writeback or swap pages for boosted reclaim. The
3535 * intent is to relieve pressure not issue sub-optimal IO
3536 * from reclaim context. If no pages are reclaimed, the
3537 * reclaim will be aborted.
3538 */
3539 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3540 sc.may_swap = !nr_boost_reclaim;
3541 sc.may_shrinkslab = !nr_boost_reclaim;
3542
3543 /*
3544 * Do some background aging of the anon list, to give
3545 * pages a chance to be referenced before reclaiming. All
3546 * pages are rotated regardless of classzone as this is
3547 * about consistent aging.
3548 */
3549 age_active_anon(pgdat, &sc);
3550
3551 /*
3552 * If we're getting trouble reclaiming, start doing writepage
3553 * even in laptop mode.
3554 */
3555 if (sc.priority < DEF_PRIORITY - 2)
3556 sc.may_writepage = 1;
3557
3558 /* Call soft limit reclaim before calling shrink_node. */
3559 sc.nr_scanned = 0;
3560 nr_soft_scanned = 0;
3561 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3562 sc.gfp_mask, &nr_soft_scanned);
3563 sc.nr_reclaimed += nr_soft_reclaimed;
3564
3565 /*
3566 * There should be no need to raise the scanning priority if
3567 * enough pages are already being scanned that that high
3568 * watermark would be met at 100% efficiency.
3569 */
3570 if (kswapd_shrink_node(pgdat, &sc))
3571 raise_priority = false;
3572
3573 /*
3574 * If the low watermark is met there is no need for processes
3575 * to be throttled on pfmemalloc_wait as they should not be
3576 * able to safely make forward progress. Wake them
3577 */
3578 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3579 allow_direct_reclaim(pgdat))
3580 wake_up_all(&pgdat->pfmemalloc_wait);
3581
3582 /* Check if kswapd should be suspending */
3583 __fs_reclaim_release();
3584 ret = try_to_freeze();
3585 __fs_reclaim_acquire();
3586 if (ret || kthread_should_stop())
3587 break;
3588
3589 /*
3590 * Raise priority if scanning rate is too low or there was no
3591 * progress in reclaiming pages
3592 */
3593 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3594 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3595
3596 /*
3597 * If reclaim made no progress for a boost, stop reclaim as
3598 * IO cannot be queued and it could be an infinite loop in
3599 * extreme circumstances.
3600 */
3601 if (nr_boost_reclaim && !nr_reclaimed)
3602 break;
3603
3604 if (raise_priority || !nr_reclaimed)
3605 sc.priority--;
3606 } while (sc.priority >= 1);
3607
3608 if (!sc.nr_reclaimed)
3609 pgdat->kswapd_failures++;
3610
3611 out:
3612 /* If reclaim was boosted, account for the reclaim done in this pass */
3613 if (boosted) {
3614 unsigned long flags;
3615
3616 for (i = 0; i <= classzone_idx; i++) {
3617 if (!zone_boosts[i])
3618 continue;
3619
3620 /* Increments are under the zone lock */
3621 zone = pgdat->node_zones + i;
3622 spin_lock_irqsave(&zone->lock, flags);
3623 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3624 spin_unlock_irqrestore(&zone->lock, flags);
3625 }
3626
3627 /*
3628 * As there is now likely space, wakeup kcompact to defragment
3629 * pageblocks.
3630 */
3631 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3632 }
3633
3634 snapshot_refaults(NULL, pgdat);
3635 __fs_reclaim_release();
3636 psi_memstall_leave(&pflags);
3637 /*
3638 * Return the order kswapd stopped reclaiming at as
3639 * prepare_kswapd_sleep() takes it into account. If another caller
3640 * entered the allocator slow path while kswapd was awake, order will
3641 * remain at the higher level.
3642 */
3643 return sc.order;
3644 }
3645
3646 /*
3647 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3648 * allocation request woke kswapd for. When kswapd has not woken recently,
3649 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3650 * given classzone and returns it or the highest classzone index kswapd
3651 * was recently woke for.
3652 */
3653 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3654 enum zone_type classzone_idx)
3655 {
3656 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3657 return classzone_idx;
3658
3659 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3660 }
3661
3662 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3663 unsigned int classzone_idx)
3664 {
3665 long remaining = 0;
3666 DEFINE_WAIT(wait);
3667
3668 if (freezing(current) || kthread_should_stop())
3669 return;
3670
3671 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3672
3673 /*
3674 * Try to sleep for a short interval. Note that kcompactd will only be
3675 * woken if it is possible to sleep for a short interval. This is
3676 * deliberate on the assumption that if reclaim cannot keep an
3677 * eligible zone balanced that it's also unlikely that compaction will
3678 * succeed.
3679 */
3680 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3681 /*
3682 * Compaction records what page blocks it recently failed to
3683 * isolate pages from and skips them in the future scanning.
3684 * When kswapd is going to sleep, it is reasonable to assume
3685 * that pages and compaction may succeed so reset the cache.
3686 */
3687 reset_isolation_suitable(pgdat);
3688
3689 /*
3690 * We have freed the memory, now we should compact it to make
3691 * allocation of the requested order possible.
3692 */
3693 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3694
3695 remaining = schedule_timeout(HZ/10);
3696
3697 /*
3698 * If woken prematurely then reset kswapd_classzone_idx and
3699 * order. The values will either be from a wakeup request or
3700 * the previous request that slept prematurely.
3701 */
3702 if (remaining) {
3703 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3704 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3705 }
3706
3707 finish_wait(&pgdat->kswapd_wait, &wait);
3708 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3709 }
3710
3711 /*
3712 * After a short sleep, check if it was a premature sleep. If not, then
3713 * go fully to sleep until explicitly woken up.
3714 */
3715 if (!remaining &&
3716 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3717 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3718
3719 /*
3720 * vmstat counters are not perfectly accurate and the estimated
3721 * value for counters such as NR_FREE_PAGES can deviate from the
3722 * true value by nr_online_cpus * threshold. To avoid the zone
3723 * watermarks being breached while under pressure, we reduce the
3724 * per-cpu vmstat threshold while kswapd is awake and restore
3725 * them before going back to sleep.
3726 */
3727 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3728
3729 if (!kthread_should_stop())
3730 schedule();
3731
3732 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3733 } else {
3734 if (remaining)
3735 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3736 else
3737 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3738 }
3739 finish_wait(&pgdat->kswapd_wait, &wait);
3740 }
3741
3742 /*
3743 * The background pageout daemon, started as a kernel thread
3744 * from the init process.
3745 *
3746 * This basically trickles out pages so that we have _some_
3747 * free memory available even if there is no other activity
3748 * that frees anything up. This is needed for things like routing
3749 * etc, where we otherwise might have all activity going on in
3750 * asynchronous contexts that cannot page things out.
3751 *
3752 * If there are applications that are active memory-allocators
3753 * (most normal use), this basically shouldn't matter.
3754 */
3755 static int kswapd(void *p)
3756 {
3757 unsigned int alloc_order, reclaim_order;
3758 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3759 pg_data_t *pgdat = (pg_data_t*)p;
3760 struct task_struct *tsk = current;
3761
3762 struct reclaim_state reclaim_state = {
3763 .reclaimed_slab = 0,
3764 };
3765 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3766
3767 if (!cpumask_empty(cpumask))
3768 set_cpus_allowed_ptr(tsk, cpumask);
3769 current->reclaim_state = &reclaim_state;
3770
3771 /*
3772 * Tell the memory management that we're a "memory allocator",
3773 * and that if we need more memory we should get access to it
3774 * regardless (see "__alloc_pages()"). "kswapd" should
3775 * never get caught in the normal page freeing logic.
3776 *
3777 * (Kswapd normally doesn't need memory anyway, but sometimes
3778 * you need a small amount of memory in order to be able to
3779 * page out something else, and this flag essentially protects
3780 * us from recursively trying to free more memory as we're
3781 * trying to free the first piece of memory in the first place).
3782 */
3783 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3784 set_freezable();
3785
3786 pgdat->kswapd_order = 0;
3787 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3788 for ( ; ; ) {
3789 bool ret;
3790
3791 alloc_order = reclaim_order = pgdat->kswapd_order;
3792 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3793
3794 kswapd_try_sleep:
3795 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3796 classzone_idx);
3797
3798 /* Read the new order and classzone_idx */
3799 alloc_order = reclaim_order = pgdat->kswapd_order;
3800 classzone_idx = kswapd_classzone_idx(pgdat, 0);
3801 pgdat->kswapd_order = 0;
3802 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3803
3804 ret = try_to_freeze();
3805 if (kthread_should_stop())
3806 break;
3807
3808 /*
3809 * We can speed up thawing tasks if we don't call balance_pgdat
3810 * after returning from the refrigerator
3811 */
3812 if (ret)
3813 continue;
3814
3815 /*
3816 * Reclaim begins at the requested order but if a high-order
3817 * reclaim fails then kswapd falls back to reclaiming for
3818 * order-0. If that happens, kswapd will consider sleeping
3819 * for the order it finished reclaiming at (reclaim_order)
3820 * but kcompactd is woken to compact for the original
3821 * request (alloc_order).
3822 */
3823 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3824 alloc_order);
3825 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3826 if (reclaim_order < alloc_order)
3827 goto kswapd_try_sleep;
3828 }
3829
3830 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3831 current->reclaim_state = NULL;
3832
3833 return 0;
3834 }
3835
3836 /*
3837 * A zone is low on free memory or too fragmented for high-order memory. If
3838 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3839 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3840 * has failed or is not needed, still wake up kcompactd if only compaction is
3841 * needed.
3842 */
3843 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3844 enum zone_type classzone_idx)
3845 {
3846 pg_data_t *pgdat;
3847
3848 if (!managed_zone(zone))
3849 return;
3850
3851 if (!cpuset_zone_allowed(zone, gfp_flags))
3852 return;
3853 pgdat = zone->zone_pgdat;
3854 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3855 classzone_idx);
3856 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3857 if (!waitqueue_active(&pgdat->kswapd_wait))
3858 return;
3859
3860 /* Hopeless node, leave it to direct reclaim if possible */
3861 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3862 (pgdat_balanced(pgdat, order, classzone_idx) &&
3863 !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3864 /*
3865 * There may be plenty of free memory available, but it's too
3866 * fragmented for high-order allocations. Wake up kcompactd
3867 * and rely on compaction_suitable() to determine if it's
3868 * needed. If it fails, it will defer subsequent attempts to
3869 * ratelimit its work.
3870 */
3871 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3872 wakeup_kcompactd(pgdat, order, classzone_idx);
3873 return;
3874 }
3875
3876 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3877 gfp_flags);
3878 wake_up_interruptible(&pgdat->kswapd_wait);
3879 }
3880
3881 #ifdef CONFIG_HIBERNATION
3882 /*
3883 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3884 * freed pages.
3885 *
3886 * Rather than trying to age LRUs the aim is to preserve the overall
3887 * LRU order by reclaiming preferentially
3888 * inactive > active > active referenced > active mapped
3889 */
3890 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3891 {
3892 struct reclaim_state reclaim_state;
3893 struct scan_control sc = {
3894 .nr_to_reclaim = nr_to_reclaim,
3895 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3896 .reclaim_idx = MAX_NR_ZONES - 1,
3897 .priority = DEF_PRIORITY,
3898 .may_writepage = 1,
3899 .may_unmap = 1,
3900 .may_swap = 1,
3901 .hibernation_mode = 1,
3902 };
3903 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3904 struct task_struct *p = current;
3905 unsigned long nr_reclaimed;
3906 unsigned int noreclaim_flag;
3907
3908 fs_reclaim_acquire(sc.gfp_mask);
3909 noreclaim_flag = memalloc_noreclaim_save();
3910 reclaim_state.reclaimed_slab = 0;
3911 p->reclaim_state = &reclaim_state;
3912
3913 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3914
3915 p->reclaim_state = NULL;
3916 memalloc_noreclaim_restore(noreclaim_flag);
3917 fs_reclaim_release(sc.gfp_mask);
3918
3919 return nr_reclaimed;
3920 }
3921 #endif /* CONFIG_HIBERNATION */
3922
3923 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3924 not required for correctness. So if the last cpu in a node goes
3925 away, we get changed to run anywhere: as the first one comes back,
3926 restore their cpu bindings. */
3927 static int kswapd_cpu_online(unsigned int cpu)
3928 {
3929 int nid;
3930
3931 for_each_node_state(nid, N_MEMORY) {
3932 pg_data_t *pgdat = NODE_DATA(nid);
3933 const struct cpumask *mask;
3934
3935 mask = cpumask_of_node(pgdat->node_id);
3936
3937 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3938 /* One of our CPUs online: restore mask */
3939 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3940 }
3941 return 0;
3942 }
3943
3944 /*
3945 * This kswapd start function will be called by init and node-hot-add.
3946 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3947 */
3948 int kswapd_run(int nid)
3949 {
3950 pg_data_t *pgdat = NODE_DATA(nid);
3951 int ret = 0;
3952
3953 if (pgdat->kswapd)
3954 return 0;
3955
3956 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3957 if (IS_ERR(pgdat->kswapd)) {
3958 /* failure at boot is fatal */
3959 BUG_ON(system_state < SYSTEM_RUNNING);
3960 pr_err("Failed to start kswapd on node %d\n", nid);
3961 ret = PTR_ERR(pgdat->kswapd);
3962 pgdat->kswapd = NULL;
3963 }
3964 return ret;
3965 }
3966
3967 /*
3968 * Called by memory hotplug when all memory in a node is offlined. Caller must
3969 * hold mem_hotplug_begin/end().
3970 */
3971 void kswapd_stop(int nid)
3972 {
3973 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3974
3975 if (kswapd) {
3976 kthread_stop(kswapd);
3977 NODE_DATA(nid)->kswapd = NULL;
3978 }
3979 }
3980
3981 static int __init kswapd_init(void)
3982 {
3983 int nid, ret;
3984
3985 swap_setup();
3986 for_each_node_state(nid, N_MEMORY)
3987 kswapd_run(nid);
3988 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3989 "mm/vmscan:online", kswapd_cpu_online,
3990 NULL);
3991 WARN_ON(ret < 0);
3992 return 0;
3993 }
3994
3995 module_init(kswapd_init)
3996
3997 #ifdef CONFIG_NUMA
3998 /*
3999 * Node reclaim mode
4000 *
4001 * If non-zero call node_reclaim when the number of free pages falls below
4002 * the watermarks.
4003 */
4004 int node_reclaim_mode __read_mostly;
4005
4006 #define RECLAIM_OFF 0
4007 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
4008 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
4009 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
4010
4011 /*
4012 * Priority for NODE_RECLAIM. This determines the fraction of pages
4013 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4014 * a zone.
4015 */
4016 #define NODE_RECLAIM_PRIORITY 4
4017
4018 /*
4019 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4020 * occur.
4021 */
4022 int sysctl_min_unmapped_ratio = 1;
4023
4024 /*
4025 * If the number of slab pages in a zone grows beyond this percentage then
4026 * slab reclaim needs to occur.
4027 */
4028 int sysctl_min_slab_ratio = 5;
4029
4030 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4031 {
4032 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4033 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4034 node_page_state(pgdat, NR_ACTIVE_FILE);
4035
4036 /*
4037 * It's possible for there to be more file mapped pages than
4038 * accounted for by the pages on the file LRU lists because
4039 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4040 */
4041 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4042 }
4043
4044 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4045 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4046 {
4047 unsigned long nr_pagecache_reclaimable;
4048 unsigned long delta = 0;
4049
4050 /*
4051 * If RECLAIM_UNMAP is set, then all file pages are considered
4052 * potentially reclaimable. Otherwise, we have to worry about
4053 * pages like swapcache and node_unmapped_file_pages() provides
4054 * a better estimate
4055 */
4056 if (node_reclaim_mode & RECLAIM_UNMAP)
4057 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4058 else
4059 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4060
4061 /* If we can't clean pages, remove dirty pages from consideration */
4062 if (!(node_reclaim_mode & RECLAIM_WRITE))
4063 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4064
4065 /* Watch for any possible underflows due to delta */
4066 if (unlikely(delta > nr_pagecache_reclaimable))
4067 delta = nr_pagecache_reclaimable;
4068
4069 return nr_pagecache_reclaimable - delta;
4070 }
4071
4072 /*
4073 * Try to free up some pages from this node through reclaim.
4074 */
4075 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4076 {
4077 /* Minimum pages needed in order to stay on node */
4078 const unsigned long nr_pages = 1 << order;
4079 struct task_struct *p = current;
4080 struct reclaim_state reclaim_state;
4081 unsigned int noreclaim_flag;
4082 struct scan_control sc = {
4083 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4084 .gfp_mask = current_gfp_context(gfp_mask),
4085 .order = order,
4086 .priority = NODE_RECLAIM_PRIORITY,
4087 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4088 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4089 .may_swap = 1,
4090 .reclaim_idx = gfp_zone(gfp_mask),
4091 };
4092
4093 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4094 sc.gfp_mask);
4095
4096 cond_resched();
4097 fs_reclaim_acquire(sc.gfp_mask);
4098 /*
4099 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4100 * and we also need to be able to write out pages for RECLAIM_WRITE
4101 * and RECLAIM_UNMAP.
4102 */
4103 noreclaim_flag = memalloc_noreclaim_save();
4104 p->flags |= PF_SWAPWRITE;
4105 reclaim_state.reclaimed_slab = 0;
4106 p->reclaim_state = &reclaim_state;
4107
4108 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4109 /*
4110 * Free memory by calling shrink node with increasing
4111 * priorities until we have enough memory freed.
4112 */
4113 do {
4114 shrink_node(pgdat, &sc);
4115 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4116 }
4117
4118 p->reclaim_state = NULL;
4119 current->flags &= ~PF_SWAPWRITE;
4120 memalloc_noreclaim_restore(noreclaim_flag);
4121 fs_reclaim_release(sc.gfp_mask);
4122
4123 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4124
4125 return sc.nr_reclaimed >= nr_pages;
4126 }
4127
4128 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4129 {
4130 int ret;
4131
4132 /*
4133 * Node reclaim reclaims unmapped file backed pages and
4134 * slab pages if we are over the defined limits.
4135 *
4136 * A small portion of unmapped file backed pages is needed for
4137 * file I/O otherwise pages read by file I/O will be immediately
4138 * thrown out if the node is overallocated. So we do not reclaim
4139 * if less than a specified percentage of the node is used by
4140 * unmapped file backed pages.
4141 */
4142 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4143 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4144 return NODE_RECLAIM_FULL;
4145
4146 /*
4147 * Do not scan if the allocation should not be delayed.
4148 */
4149 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4150 return NODE_RECLAIM_NOSCAN;
4151
4152 /*
4153 * Only run node reclaim on the local node or on nodes that do not
4154 * have associated processors. This will favor the local processor
4155 * over remote processors and spread off node memory allocations
4156 * as wide as possible.
4157 */
4158 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4159 return NODE_RECLAIM_NOSCAN;
4160
4161 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4162 return NODE_RECLAIM_NOSCAN;
4163
4164 ret = __node_reclaim(pgdat, gfp_mask, order);
4165 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4166
4167 if (!ret)
4168 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4169
4170 return ret;
4171 }
4172 #endif
4173
4174 /*
4175 * page_evictable - test whether a page is evictable
4176 * @page: the page to test
4177 *
4178 * Test whether page is evictable--i.e., should be placed on active/inactive
4179 * lists vs unevictable list.
4180 *
4181 * Reasons page might not be evictable:
4182 * (1) page's mapping marked unevictable
4183 * (2) page is part of an mlocked VMA
4184 *
4185 */
4186 int page_evictable(struct page *page)
4187 {
4188 int ret;
4189
4190 /* Prevent address_space of inode and swap cache from being freed */
4191 rcu_read_lock();
4192 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4193 rcu_read_unlock();
4194 return ret;
4195 }
4196
4197 /**
4198 * check_move_unevictable_pages - check pages for evictability and move to
4199 * appropriate zone lru list
4200 * @pvec: pagevec with lru pages to check
4201 *
4202 * Checks pages for evictability, if an evictable page is in the unevictable
4203 * lru list, moves it to the appropriate evictable lru list. This function
4204 * should be only used for lru pages.
4205 */
4206 void check_move_unevictable_pages(struct pagevec *pvec)
4207 {
4208 struct lruvec *lruvec;
4209 struct pglist_data *pgdat = NULL;
4210 int pgscanned = 0;
4211 int pgrescued = 0;
4212 int i;
4213
4214 for (i = 0; i < pvec->nr; i++) {
4215 struct page *page = pvec->pages[i];
4216 struct pglist_data *pagepgdat = page_pgdat(page);
4217
4218 pgscanned++;
4219 if (pagepgdat != pgdat) {
4220 if (pgdat)
4221 spin_unlock_irq(&pgdat->lru_lock);
4222 pgdat = pagepgdat;
4223 spin_lock_irq(&pgdat->lru_lock);
4224 }
4225 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4226
4227 if (!PageLRU(page) || !PageUnevictable(page))
4228 continue;
4229
4230 if (page_evictable(page)) {
4231 enum lru_list lru = page_lru_base_type(page);
4232
4233 VM_BUG_ON_PAGE(PageActive(page), page);
4234 ClearPageUnevictable(page);
4235 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4236 add_page_to_lru_list(page, lruvec, lru);
4237 pgrescued++;
4238 }
4239 }
4240
4241 if (pgdat) {
4242 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4243 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4244 spin_unlock_irq(&pgdat->lru_lock);
4245 }
4246 }
4247 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);