]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - net/ipv4/tcp.c
tcp: Reset bytes_acked and bytes_received when disconnecting
[thirdparty/kernel/stable.git] / net / ipv4 / tcp.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244 #define pr_fmt(fmt) "TCP: " fmt
245
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/time.h>
267 #include <linux/slab.h>
268 #include <linux/errqueue.h>
269 #include <linux/static_key.h>
270
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/xfrm.h>
275 #include <net/ip.h>
276 #include <net/sock.h>
277
278 #include <linux/uaccess.h>
279 #include <asm/ioctls.h>
280 #include <net/busy_poll.h>
281
282 struct percpu_counter tcp_orphan_count;
283 EXPORT_SYMBOL_GPL(tcp_orphan_count);
284
285 long sysctl_tcp_mem[3] __read_mostly;
286 EXPORT_SYMBOL(sysctl_tcp_mem);
287
288 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
289 EXPORT_SYMBOL(tcp_memory_allocated);
290
291 #if IS_ENABLED(CONFIG_SMC)
292 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
293 EXPORT_SYMBOL(tcp_have_smc);
294 #endif
295
296 /*
297 * Current number of TCP sockets.
298 */
299 struct percpu_counter tcp_sockets_allocated;
300 EXPORT_SYMBOL(tcp_sockets_allocated);
301
302 /*
303 * TCP splice context
304 */
305 struct tcp_splice_state {
306 struct pipe_inode_info *pipe;
307 size_t len;
308 unsigned int flags;
309 };
310
311 /*
312 * Pressure flag: try to collapse.
313 * Technical note: it is used by multiple contexts non atomically.
314 * All the __sk_mem_schedule() is of this nature: accounting
315 * is strict, actions are advisory and have some latency.
316 */
317 unsigned long tcp_memory_pressure __read_mostly;
318 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
319
320 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
321 EXPORT_SYMBOL(tcp_rx_skb_cache_key);
322
323 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
324
325 void tcp_enter_memory_pressure(struct sock *sk)
326 {
327 unsigned long val;
328
329 if (tcp_memory_pressure)
330 return;
331 val = jiffies;
332
333 if (!val)
334 val--;
335 if (!cmpxchg(&tcp_memory_pressure, 0, val))
336 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
337 }
338 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
339
340 void tcp_leave_memory_pressure(struct sock *sk)
341 {
342 unsigned long val;
343
344 if (!tcp_memory_pressure)
345 return;
346 val = xchg(&tcp_memory_pressure, 0);
347 if (val)
348 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
349 jiffies_to_msecs(jiffies - val));
350 }
351 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
352
353 /* Convert seconds to retransmits based on initial and max timeout */
354 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
355 {
356 u8 res = 0;
357
358 if (seconds > 0) {
359 int period = timeout;
360
361 res = 1;
362 while (seconds > period && res < 255) {
363 res++;
364 timeout <<= 1;
365 if (timeout > rto_max)
366 timeout = rto_max;
367 period += timeout;
368 }
369 }
370 return res;
371 }
372
373 /* Convert retransmits to seconds based on initial and max timeout */
374 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
375 {
376 int period = 0;
377
378 if (retrans > 0) {
379 period = timeout;
380 while (--retrans) {
381 timeout <<= 1;
382 if (timeout > rto_max)
383 timeout = rto_max;
384 period += timeout;
385 }
386 }
387 return period;
388 }
389
390 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
391 {
392 u32 rate = READ_ONCE(tp->rate_delivered);
393 u32 intv = READ_ONCE(tp->rate_interval_us);
394 u64 rate64 = 0;
395
396 if (rate && intv) {
397 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
398 do_div(rate64, intv);
399 }
400 return rate64;
401 }
402
403 /* Address-family independent initialization for a tcp_sock.
404 *
405 * NOTE: A lot of things set to zero explicitly by call to
406 * sk_alloc() so need not be done here.
407 */
408 void tcp_init_sock(struct sock *sk)
409 {
410 struct inet_connection_sock *icsk = inet_csk(sk);
411 struct tcp_sock *tp = tcp_sk(sk);
412
413 tp->out_of_order_queue = RB_ROOT;
414 sk->tcp_rtx_queue = RB_ROOT;
415 tcp_init_xmit_timers(sk);
416 INIT_LIST_HEAD(&tp->tsq_node);
417 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
418
419 icsk->icsk_rto = TCP_TIMEOUT_INIT;
420 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
421 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
422
423 /* So many TCP implementations out there (incorrectly) count the
424 * initial SYN frame in their delayed-ACK and congestion control
425 * algorithms that we must have the following bandaid to talk
426 * efficiently to them. -DaveM
427 */
428 tp->snd_cwnd = TCP_INIT_CWND;
429
430 /* There's a bubble in the pipe until at least the first ACK. */
431 tp->app_limited = ~0U;
432
433 /* See draft-stevens-tcpca-spec-01 for discussion of the
434 * initialization of these values.
435 */
436 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
437 tp->snd_cwnd_clamp = ~0;
438 tp->mss_cache = TCP_MSS_DEFAULT;
439
440 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
441 tcp_assign_congestion_control(sk);
442
443 tp->tsoffset = 0;
444 tp->rack.reo_wnd_steps = 1;
445
446 sk->sk_state = TCP_CLOSE;
447
448 sk->sk_write_space = sk_stream_write_space;
449 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
450
451 icsk->icsk_sync_mss = tcp_sync_mss;
452
453 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
454 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
455
456 sk_sockets_allocated_inc(sk);
457 sk->sk_route_forced_caps = NETIF_F_GSO;
458 }
459 EXPORT_SYMBOL(tcp_init_sock);
460
461 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
462 {
463 struct sk_buff *skb = tcp_write_queue_tail(sk);
464
465 if (tsflags && skb) {
466 struct skb_shared_info *shinfo = skb_shinfo(skb);
467 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
468
469 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
470 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
471 tcb->txstamp_ack = 1;
472 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
473 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
474 }
475 }
476
477 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
478 int target, struct sock *sk)
479 {
480 return (tp->rcv_nxt - tp->copied_seq >= target) ||
481 (sk->sk_prot->stream_memory_read ?
482 sk->sk_prot->stream_memory_read(sk) : false);
483 }
484
485 /*
486 * Wait for a TCP event.
487 *
488 * Note that we don't need to lock the socket, as the upper poll layers
489 * take care of normal races (between the test and the event) and we don't
490 * go look at any of the socket buffers directly.
491 */
492 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
493 {
494 __poll_t mask;
495 struct sock *sk = sock->sk;
496 const struct tcp_sock *tp = tcp_sk(sk);
497 int state;
498
499 sock_poll_wait(file, sock, wait);
500
501 state = inet_sk_state_load(sk);
502 if (state == TCP_LISTEN)
503 return inet_csk_listen_poll(sk);
504
505 /* Socket is not locked. We are protected from async events
506 * by poll logic and correct handling of state changes
507 * made by other threads is impossible in any case.
508 */
509
510 mask = 0;
511
512 /*
513 * EPOLLHUP is certainly not done right. But poll() doesn't
514 * have a notion of HUP in just one direction, and for a
515 * socket the read side is more interesting.
516 *
517 * Some poll() documentation says that EPOLLHUP is incompatible
518 * with the EPOLLOUT/POLLWR flags, so somebody should check this
519 * all. But careful, it tends to be safer to return too many
520 * bits than too few, and you can easily break real applications
521 * if you don't tell them that something has hung up!
522 *
523 * Check-me.
524 *
525 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
526 * our fs/select.c). It means that after we received EOF,
527 * poll always returns immediately, making impossible poll() on write()
528 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
529 * if and only if shutdown has been made in both directions.
530 * Actually, it is interesting to look how Solaris and DUX
531 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
532 * then we could set it on SND_SHUTDOWN. BTW examples given
533 * in Stevens' books assume exactly this behaviour, it explains
534 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
535 *
536 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
537 * blocking on fresh not-connected or disconnected socket. --ANK
538 */
539 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
540 mask |= EPOLLHUP;
541 if (sk->sk_shutdown & RCV_SHUTDOWN)
542 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
543
544 /* Connected or passive Fast Open socket? */
545 if (state != TCP_SYN_SENT &&
546 (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
547 int target = sock_rcvlowat(sk, 0, INT_MAX);
548
549 if (tp->urg_seq == tp->copied_seq &&
550 !sock_flag(sk, SOCK_URGINLINE) &&
551 tp->urg_data)
552 target++;
553
554 if (tcp_stream_is_readable(tp, target, sk))
555 mask |= EPOLLIN | EPOLLRDNORM;
556
557 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
558 if (sk_stream_is_writeable(sk)) {
559 mask |= EPOLLOUT | EPOLLWRNORM;
560 } else { /* send SIGIO later */
561 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
562 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
563
564 /* Race breaker. If space is freed after
565 * wspace test but before the flags are set,
566 * IO signal will be lost. Memory barrier
567 * pairs with the input side.
568 */
569 smp_mb__after_atomic();
570 if (sk_stream_is_writeable(sk))
571 mask |= EPOLLOUT | EPOLLWRNORM;
572 }
573 } else
574 mask |= EPOLLOUT | EPOLLWRNORM;
575
576 if (tp->urg_data & TCP_URG_VALID)
577 mask |= EPOLLPRI;
578 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
579 /* Active TCP fastopen socket with defer_connect
580 * Return EPOLLOUT so application can call write()
581 * in order for kernel to generate SYN+data
582 */
583 mask |= EPOLLOUT | EPOLLWRNORM;
584 }
585 /* This barrier is coupled with smp_wmb() in tcp_reset() */
586 smp_rmb();
587 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
588 mask |= EPOLLERR;
589
590 return mask;
591 }
592 EXPORT_SYMBOL(tcp_poll);
593
594 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
595 {
596 struct tcp_sock *tp = tcp_sk(sk);
597 int answ;
598 bool slow;
599
600 switch (cmd) {
601 case SIOCINQ:
602 if (sk->sk_state == TCP_LISTEN)
603 return -EINVAL;
604
605 slow = lock_sock_fast(sk);
606 answ = tcp_inq(sk);
607 unlock_sock_fast(sk, slow);
608 break;
609 case SIOCATMARK:
610 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
611 break;
612 case SIOCOUTQ:
613 if (sk->sk_state == TCP_LISTEN)
614 return -EINVAL;
615
616 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
617 answ = 0;
618 else
619 answ = tp->write_seq - tp->snd_una;
620 break;
621 case SIOCOUTQNSD:
622 if (sk->sk_state == TCP_LISTEN)
623 return -EINVAL;
624
625 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
626 answ = 0;
627 else
628 answ = tp->write_seq - tp->snd_nxt;
629 break;
630 default:
631 return -ENOIOCTLCMD;
632 }
633
634 return put_user(answ, (int __user *)arg);
635 }
636 EXPORT_SYMBOL(tcp_ioctl);
637
638 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
639 {
640 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
641 tp->pushed_seq = tp->write_seq;
642 }
643
644 static inline bool forced_push(const struct tcp_sock *tp)
645 {
646 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
647 }
648
649 static void skb_entail(struct sock *sk, struct sk_buff *skb)
650 {
651 struct tcp_sock *tp = tcp_sk(sk);
652 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
653
654 skb->csum = 0;
655 tcb->seq = tcb->end_seq = tp->write_seq;
656 tcb->tcp_flags = TCPHDR_ACK;
657 tcb->sacked = 0;
658 __skb_header_release(skb);
659 tcp_add_write_queue_tail(sk, skb);
660 sk->sk_wmem_queued += skb->truesize;
661 sk_mem_charge(sk, skb->truesize);
662 if (tp->nonagle & TCP_NAGLE_PUSH)
663 tp->nonagle &= ~TCP_NAGLE_PUSH;
664
665 tcp_slow_start_after_idle_check(sk);
666 }
667
668 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
669 {
670 if (flags & MSG_OOB)
671 tp->snd_up = tp->write_seq;
672 }
673
674 /* If a not yet filled skb is pushed, do not send it if
675 * we have data packets in Qdisc or NIC queues :
676 * Because TX completion will happen shortly, it gives a chance
677 * to coalesce future sendmsg() payload into this skb, without
678 * need for a timer, and with no latency trade off.
679 * As packets containing data payload have a bigger truesize
680 * than pure acks (dataless) packets, the last checks prevent
681 * autocorking if we only have an ACK in Qdisc/NIC queues,
682 * or if TX completion was delayed after we processed ACK packet.
683 */
684 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
685 int size_goal)
686 {
687 return skb->len < size_goal &&
688 sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
689 !tcp_rtx_queue_empty(sk) &&
690 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
691 }
692
693 static void tcp_push(struct sock *sk, int flags, int mss_now,
694 int nonagle, int size_goal)
695 {
696 struct tcp_sock *tp = tcp_sk(sk);
697 struct sk_buff *skb;
698
699 skb = tcp_write_queue_tail(sk);
700 if (!skb)
701 return;
702 if (!(flags & MSG_MORE) || forced_push(tp))
703 tcp_mark_push(tp, skb);
704
705 tcp_mark_urg(tp, flags);
706
707 if (tcp_should_autocork(sk, skb, size_goal)) {
708
709 /* avoid atomic op if TSQ_THROTTLED bit is already set */
710 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
711 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
712 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
713 }
714 /* It is possible TX completion already happened
715 * before we set TSQ_THROTTLED.
716 */
717 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
718 return;
719 }
720
721 if (flags & MSG_MORE)
722 nonagle = TCP_NAGLE_CORK;
723
724 __tcp_push_pending_frames(sk, mss_now, nonagle);
725 }
726
727 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
728 unsigned int offset, size_t len)
729 {
730 struct tcp_splice_state *tss = rd_desc->arg.data;
731 int ret;
732
733 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
734 min(rd_desc->count, len), tss->flags);
735 if (ret > 0)
736 rd_desc->count -= ret;
737 return ret;
738 }
739
740 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
741 {
742 /* Store TCP splice context information in read_descriptor_t. */
743 read_descriptor_t rd_desc = {
744 .arg.data = tss,
745 .count = tss->len,
746 };
747
748 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
749 }
750
751 /**
752 * tcp_splice_read - splice data from TCP socket to a pipe
753 * @sock: socket to splice from
754 * @ppos: position (not valid)
755 * @pipe: pipe to splice to
756 * @len: number of bytes to splice
757 * @flags: splice modifier flags
758 *
759 * Description:
760 * Will read pages from given socket and fill them into a pipe.
761 *
762 **/
763 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
764 struct pipe_inode_info *pipe, size_t len,
765 unsigned int flags)
766 {
767 struct sock *sk = sock->sk;
768 struct tcp_splice_state tss = {
769 .pipe = pipe,
770 .len = len,
771 .flags = flags,
772 };
773 long timeo;
774 ssize_t spliced;
775 int ret;
776
777 sock_rps_record_flow(sk);
778 /*
779 * We can't seek on a socket input
780 */
781 if (unlikely(*ppos))
782 return -ESPIPE;
783
784 ret = spliced = 0;
785
786 lock_sock(sk);
787
788 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
789 while (tss.len) {
790 ret = __tcp_splice_read(sk, &tss);
791 if (ret < 0)
792 break;
793 else if (!ret) {
794 if (spliced)
795 break;
796 if (sock_flag(sk, SOCK_DONE))
797 break;
798 if (sk->sk_err) {
799 ret = sock_error(sk);
800 break;
801 }
802 if (sk->sk_shutdown & RCV_SHUTDOWN)
803 break;
804 if (sk->sk_state == TCP_CLOSE) {
805 /*
806 * This occurs when user tries to read
807 * from never connected socket.
808 */
809 ret = -ENOTCONN;
810 break;
811 }
812 if (!timeo) {
813 ret = -EAGAIN;
814 break;
815 }
816 /* if __tcp_splice_read() got nothing while we have
817 * an skb in receive queue, we do not want to loop.
818 * This might happen with URG data.
819 */
820 if (!skb_queue_empty(&sk->sk_receive_queue))
821 break;
822 sk_wait_data(sk, &timeo, NULL);
823 if (signal_pending(current)) {
824 ret = sock_intr_errno(timeo);
825 break;
826 }
827 continue;
828 }
829 tss.len -= ret;
830 spliced += ret;
831
832 if (!timeo)
833 break;
834 release_sock(sk);
835 lock_sock(sk);
836
837 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
838 (sk->sk_shutdown & RCV_SHUTDOWN) ||
839 signal_pending(current))
840 break;
841 }
842
843 release_sock(sk);
844
845 if (spliced)
846 return spliced;
847
848 return ret;
849 }
850 EXPORT_SYMBOL(tcp_splice_read);
851
852 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
853 bool force_schedule)
854 {
855 struct sk_buff *skb;
856
857 if (likely(!size)) {
858 skb = sk->sk_tx_skb_cache;
859 if (skb) {
860 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
861 sk->sk_tx_skb_cache = NULL;
862 pskb_trim(skb, 0);
863 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
864 skb_shinfo(skb)->tx_flags = 0;
865 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb));
866 return skb;
867 }
868 }
869 /* The TCP header must be at least 32-bit aligned. */
870 size = ALIGN(size, 4);
871
872 if (unlikely(tcp_under_memory_pressure(sk)))
873 sk_mem_reclaim_partial(sk);
874
875 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
876 if (likely(skb)) {
877 bool mem_scheduled;
878
879 if (force_schedule) {
880 mem_scheduled = true;
881 sk_forced_mem_schedule(sk, skb->truesize);
882 } else {
883 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
884 }
885 if (likely(mem_scheduled)) {
886 skb_reserve(skb, sk->sk_prot->max_header);
887 /*
888 * Make sure that we have exactly size bytes
889 * available to the caller, no more, no less.
890 */
891 skb->reserved_tailroom = skb->end - skb->tail - size;
892 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
893 return skb;
894 }
895 __kfree_skb(skb);
896 } else {
897 sk->sk_prot->enter_memory_pressure(sk);
898 sk_stream_moderate_sndbuf(sk);
899 }
900 return NULL;
901 }
902
903 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
904 int large_allowed)
905 {
906 struct tcp_sock *tp = tcp_sk(sk);
907 u32 new_size_goal, size_goal;
908
909 if (!large_allowed)
910 return mss_now;
911
912 /* Note : tcp_tso_autosize() will eventually split this later */
913 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
914 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
915
916 /* We try hard to avoid divides here */
917 size_goal = tp->gso_segs * mss_now;
918 if (unlikely(new_size_goal < size_goal ||
919 new_size_goal >= size_goal + mss_now)) {
920 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
921 sk->sk_gso_max_segs);
922 size_goal = tp->gso_segs * mss_now;
923 }
924
925 return max(size_goal, mss_now);
926 }
927
928 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
929 {
930 int mss_now;
931
932 mss_now = tcp_current_mss(sk);
933 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
934
935 return mss_now;
936 }
937
938 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
939 size_t size, int flags)
940 {
941 struct tcp_sock *tp = tcp_sk(sk);
942 int mss_now, size_goal;
943 int err;
944 ssize_t copied;
945 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
946
947 if (IS_ENABLED(CONFIG_DEBUG_VM) &&
948 WARN_ONCE(PageSlab(page), "page must not be a Slab one"))
949 return -EINVAL;
950
951 /* Wait for a connection to finish. One exception is TCP Fast Open
952 * (passive side) where data is allowed to be sent before a connection
953 * is fully established.
954 */
955 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
956 !tcp_passive_fastopen(sk)) {
957 err = sk_stream_wait_connect(sk, &timeo);
958 if (err != 0)
959 goto out_err;
960 }
961
962 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
963
964 mss_now = tcp_send_mss(sk, &size_goal, flags);
965 copied = 0;
966
967 err = -EPIPE;
968 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
969 goto out_err;
970
971 while (size > 0) {
972 struct sk_buff *skb = tcp_write_queue_tail(sk);
973 int copy, i;
974 bool can_coalesce;
975
976 if (!skb || (copy = size_goal - skb->len) <= 0 ||
977 !tcp_skb_can_collapse_to(skb)) {
978 new_segment:
979 if (!sk_stream_memory_free(sk))
980 goto wait_for_sndbuf;
981
982 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
983 tcp_rtx_and_write_queues_empty(sk));
984 if (!skb)
985 goto wait_for_memory;
986
987 skb_entail(sk, skb);
988 copy = size_goal;
989 }
990
991 if (copy > size)
992 copy = size;
993
994 i = skb_shinfo(skb)->nr_frags;
995 can_coalesce = skb_can_coalesce(skb, i, page, offset);
996 if (!can_coalesce && i >= sysctl_max_skb_frags) {
997 tcp_mark_push(tp, skb);
998 goto new_segment;
999 }
1000 if (!sk_wmem_schedule(sk, copy))
1001 goto wait_for_memory;
1002
1003 if (can_coalesce) {
1004 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1005 } else {
1006 get_page(page);
1007 skb_fill_page_desc(skb, i, page, offset, copy);
1008 }
1009
1010 if (!(flags & MSG_NO_SHARED_FRAGS))
1011 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1012
1013 skb->len += copy;
1014 skb->data_len += copy;
1015 skb->truesize += copy;
1016 sk->sk_wmem_queued += copy;
1017 sk_mem_charge(sk, copy);
1018 skb->ip_summed = CHECKSUM_PARTIAL;
1019 tp->write_seq += copy;
1020 TCP_SKB_CB(skb)->end_seq += copy;
1021 tcp_skb_pcount_set(skb, 0);
1022
1023 if (!copied)
1024 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1025
1026 copied += copy;
1027 offset += copy;
1028 size -= copy;
1029 if (!size)
1030 goto out;
1031
1032 if (skb->len < size_goal || (flags & MSG_OOB))
1033 continue;
1034
1035 if (forced_push(tp)) {
1036 tcp_mark_push(tp, skb);
1037 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1038 } else if (skb == tcp_send_head(sk))
1039 tcp_push_one(sk, mss_now);
1040 continue;
1041
1042 wait_for_sndbuf:
1043 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1044 wait_for_memory:
1045 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1046 TCP_NAGLE_PUSH, size_goal);
1047
1048 err = sk_stream_wait_memory(sk, &timeo);
1049 if (err != 0)
1050 goto do_error;
1051
1052 mss_now = tcp_send_mss(sk, &size_goal, flags);
1053 }
1054
1055 out:
1056 if (copied) {
1057 tcp_tx_timestamp(sk, sk->sk_tsflags);
1058 if (!(flags & MSG_SENDPAGE_NOTLAST))
1059 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1060 }
1061 return copied;
1062
1063 do_error:
1064 if (copied)
1065 goto out;
1066 out_err:
1067 /* make sure we wake any epoll edge trigger waiter */
1068 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1069 err == -EAGAIN)) {
1070 sk->sk_write_space(sk);
1071 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1072 }
1073 return sk_stream_error(sk, flags, err);
1074 }
1075 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1076
1077 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1078 size_t size, int flags)
1079 {
1080 if (!(sk->sk_route_caps & NETIF_F_SG))
1081 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1082
1083 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1084
1085 return do_tcp_sendpages(sk, page, offset, size, flags);
1086 }
1087 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1088
1089 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1090 size_t size, int flags)
1091 {
1092 int ret;
1093
1094 lock_sock(sk);
1095 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1096 release_sock(sk);
1097
1098 return ret;
1099 }
1100 EXPORT_SYMBOL(tcp_sendpage);
1101
1102 void tcp_free_fastopen_req(struct tcp_sock *tp)
1103 {
1104 if (tp->fastopen_req) {
1105 kfree(tp->fastopen_req);
1106 tp->fastopen_req = NULL;
1107 }
1108 }
1109
1110 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1111 int *copied, size_t size,
1112 struct ubuf_info *uarg)
1113 {
1114 struct tcp_sock *tp = tcp_sk(sk);
1115 struct inet_sock *inet = inet_sk(sk);
1116 struct sockaddr *uaddr = msg->msg_name;
1117 int err, flags;
1118
1119 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1120 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1121 uaddr->sa_family == AF_UNSPEC))
1122 return -EOPNOTSUPP;
1123 if (tp->fastopen_req)
1124 return -EALREADY; /* Another Fast Open is in progress */
1125
1126 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1127 sk->sk_allocation);
1128 if (unlikely(!tp->fastopen_req))
1129 return -ENOBUFS;
1130 tp->fastopen_req->data = msg;
1131 tp->fastopen_req->size = size;
1132 tp->fastopen_req->uarg = uarg;
1133
1134 if (inet->defer_connect) {
1135 err = tcp_connect(sk);
1136 /* Same failure procedure as in tcp_v4/6_connect */
1137 if (err) {
1138 tcp_set_state(sk, TCP_CLOSE);
1139 inet->inet_dport = 0;
1140 sk->sk_route_caps = 0;
1141 }
1142 }
1143 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1144 err = __inet_stream_connect(sk->sk_socket, uaddr,
1145 msg->msg_namelen, flags, 1);
1146 /* fastopen_req could already be freed in __inet_stream_connect
1147 * if the connection times out or gets rst
1148 */
1149 if (tp->fastopen_req) {
1150 *copied = tp->fastopen_req->copied;
1151 tcp_free_fastopen_req(tp);
1152 inet->defer_connect = 0;
1153 }
1154 return err;
1155 }
1156
1157 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1158 {
1159 struct tcp_sock *tp = tcp_sk(sk);
1160 struct ubuf_info *uarg = NULL;
1161 struct sk_buff *skb;
1162 struct sockcm_cookie sockc;
1163 int flags, err, copied = 0;
1164 int mss_now = 0, size_goal, copied_syn = 0;
1165 bool process_backlog = false;
1166 bool zc = false;
1167 long timeo;
1168
1169 flags = msg->msg_flags;
1170
1171 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1172 skb = tcp_write_queue_tail(sk);
1173 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1174 if (!uarg) {
1175 err = -ENOBUFS;
1176 goto out_err;
1177 }
1178
1179 zc = sk->sk_route_caps & NETIF_F_SG;
1180 if (!zc)
1181 uarg->zerocopy = 0;
1182 }
1183
1184 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1185 !tp->repair) {
1186 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1187 if (err == -EINPROGRESS && copied_syn > 0)
1188 goto out;
1189 else if (err)
1190 goto out_err;
1191 }
1192
1193 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1194
1195 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1196
1197 /* Wait for a connection to finish. One exception is TCP Fast Open
1198 * (passive side) where data is allowed to be sent before a connection
1199 * is fully established.
1200 */
1201 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1202 !tcp_passive_fastopen(sk)) {
1203 err = sk_stream_wait_connect(sk, &timeo);
1204 if (err != 0)
1205 goto do_error;
1206 }
1207
1208 if (unlikely(tp->repair)) {
1209 if (tp->repair_queue == TCP_RECV_QUEUE) {
1210 copied = tcp_send_rcvq(sk, msg, size);
1211 goto out_nopush;
1212 }
1213
1214 err = -EINVAL;
1215 if (tp->repair_queue == TCP_NO_QUEUE)
1216 goto out_err;
1217
1218 /* 'common' sending to sendq */
1219 }
1220
1221 sockcm_init(&sockc, sk);
1222 if (msg->msg_controllen) {
1223 err = sock_cmsg_send(sk, msg, &sockc);
1224 if (unlikely(err)) {
1225 err = -EINVAL;
1226 goto out_err;
1227 }
1228 }
1229
1230 /* This should be in poll */
1231 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1232
1233 /* Ok commence sending. */
1234 copied = 0;
1235
1236 restart:
1237 mss_now = tcp_send_mss(sk, &size_goal, flags);
1238
1239 err = -EPIPE;
1240 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1241 goto do_error;
1242
1243 while (msg_data_left(msg)) {
1244 int copy = 0;
1245
1246 skb = tcp_write_queue_tail(sk);
1247 if (skb)
1248 copy = size_goal - skb->len;
1249
1250 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1251 bool first_skb;
1252
1253 new_segment:
1254 if (!sk_stream_memory_free(sk))
1255 goto wait_for_sndbuf;
1256
1257 if (process_backlog && sk_flush_backlog(sk)) {
1258 process_backlog = false;
1259 goto restart;
1260 }
1261 first_skb = tcp_rtx_and_write_queues_empty(sk);
1262 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1263 first_skb);
1264 if (!skb)
1265 goto wait_for_memory;
1266
1267 process_backlog = true;
1268 skb->ip_summed = CHECKSUM_PARTIAL;
1269
1270 skb_entail(sk, skb);
1271 copy = size_goal;
1272
1273 /* All packets are restored as if they have
1274 * already been sent. skb_mstamp_ns isn't set to
1275 * avoid wrong rtt estimation.
1276 */
1277 if (tp->repair)
1278 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1279 }
1280
1281 /* Try to append data to the end of skb. */
1282 if (copy > msg_data_left(msg))
1283 copy = msg_data_left(msg);
1284
1285 /* Where to copy to? */
1286 if (skb_availroom(skb) > 0 && !zc) {
1287 /* We have some space in skb head. Superb! */
1288 copy = min_t(int, copy, skb_availroom(skb));
1289 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1290 if (err)
1291 goto do_fault;
1292 } else if (!zc) {
1293 bool merge = true;
1294 int i = skb_shinfo(skb)->nr_frags;
1295 struct page_frag *pfrag = sk_page_frag(sk);
1296
1297 if (!sk_page_frag_refill(sk, pfrag))
1298 goto wait_for_memory;
1299
1300 if (!skb_can_coalesce(skb, i, pfrag->page,
1301 pfrag->offset)) {
1302 if (i >= sysctl_max_skb_frags) {
1303 tcp_mark_push(tp, skb);
1304 goto new_segment;
1305 }
1306 merge = false;
1307 }
1308
1309 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1310
1311 if (!sk_wmem_schedule(sk, copy))
1312 goto wait_for_memory;
1313
1314 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1315 pfrag->page,
1316 pfrag->offset,
1317 copy);
1318 if (err)
1319 goto do_error;
1320
1321 /* Update the skb. */
1322 if (merge) {
1323 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1324 } else {
1325 skb_fill_page_desc(skb, i, pfrag->page,
1326 pfrag->offset, copy);
1327 page_ref_inc(pfrag->page);
1328 }
1329 pfrag->offset += copy;
1330 } else {
1331 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1332 if (err == -EMSGSIZE || err == -EEXIST) {
1333 tcp_mark_push(tp, skb);
1334 goto new_segment;
1335 }
1336 if (err < 0)
1337 goto do_error;
1338 copy = err;
1339 }
1340
1341 if (!copied)
1342 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1343
1344 tp->write_seq += copy;
1345 TCP_SKB_CB(skb)->end_seq += copy;
1346 tcp_skb_pcount_set(skb, 0);
1347
1348 copied += copy;
1349 if (!msg_data_left(msg)) {
1350 if (unlikely(flags & MSG_EOR))
1351 TCP_SKB_CB(skb)->eor = 1;
1352 goto out;
1353 }
1354
1355 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1356 continue;
1357
1358 if (forced_push(tp)) {
1359 tcp_mark_push(tp, skb);
1360 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1361 } else if (skb == tcp_send_head(sk))
1362 tcp_push_one(sk, mss_now);
1363 continue;
1364
1365 wait_for_sndbuf:
1366 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1367 wait_for_memory:
1368 if (copied)
1369 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1370 TCP_NAGLE_PUSH, size_goal);
1371
1372 err = sk_stream_wait_memory(sk, &timeo);
1373 if (err != 0)
1374 goto do_error;
1375
1376 mss_now = tcp_send_mss(sk, &size_goal, flags);
1377 }
1378
1379 out:
1380 if (copied) {
1381 tcp_tx_timestamp(sk, sockc.tsflags);
1382 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1383 }
1384 out_nopush:
1385 sock_zerocopy_put(uarg);
1386 return copied + copied_syn;
1387
1388 do_fault:
1389 if (!skb->len) {
1390 tcp_unlink_write_queue(skb, sk);
1391 /* It is the one place in all of TCP, except connection
1392 * reset, where we can be unlinking the send_head.
1393 */
1394 if (tcp_write_queue_empty(sk))
1395 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1396 sk_wmem_free_skb(sk, skb);
1397 }
1398
1399 do_error:
1400 if (copied + copied_syn)
1401 goto out;
1402 out_err:
1403 sock_zerocopy_put_abort(uarg, true);
1404 err = sk_stream_error(sk, flags, err);
1405 /* make sure we wake any epoll edge trigger waiter */
1406 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1407 err == -EAGAIN)) {
1408 sk->sk_write_space(sk);
1409 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1410 }
1411 return err;
1412 }
1413 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1414
1415 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1416 {
1417 int ret;
1418
1419 lock_sock(sk);
1420 ret = tcp_sendmsg_locked(sk, msg, size);
1421 release_sock(sk);
1422
1423 return ret;
1424 }
1425 EXPORT_SYMBOL(tcp_sendmsg);
1426
1427 /*
1428 * Handle reading urgent data. BSD has very simple semantics for
1429 * this, no blocking and very strange errors 8)
1430 */
1431
1432 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1433 {
1434 struct tcp_sock *tp = tcp_sk(sk);
1435
1436 /* No URG data to read. */
1437 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1438 tp->urg_data == TCP_URG_READ)
1439 return -EINVAL; /* Yes this is right ! */
1440
1441 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1442 return -ENOTCONN;
1443
1444 if (tp->urg_data & TCP_URG_VALID) {
1445 int err = 0;
1446 char c = tp->urg_data;
1447
1448 if (!(flags & MSG_PEEK))
1449 tp->urg_data = TCP_URG_READ;
1450
1451 /* Read urgent data. */
1452 msg->msg_flags |= MSG_OOB;
1453
1454 if (len > 0) {
1455 if (!(flags & MSG_TRUNC))
1456 err = memcpy_to_msg(msg, &c, 1);
1457 len = 1;
1458 } else
1459 msg->msg_flags |= MSG_TRUNC;
1460
1461 return err ? -EFAULT : len;
1462 }
1463
1464 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1465 return 0;
1466
1467 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1468 * the available implementations agree in this case:
1469 * this call should never block, independent of the
1470 * blocking state of the socket.
1471 * Mike <pall@rz.uni-karlsruhe.de>
1472 */
1473 return -EAGAIN;
1474 }
1475
1476 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1477 {
1478 struct sk_buff *skb;
1479 int copied = 0, err = 0;
1480
1481 /* XXX -- need to support SO_PEEK_OFF */
1482
1483 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1484 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1485 if (err)
1486 return err;
1487 copied += skb->len;
1488 }
1489
1490 skb_queue_walk(&sk->sk_write_queue, skb) {
1491 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1492 if (err)
1493 break;
1494
1495 copied += skb->len;
1496 }
1497
1498 return err ?: copied;
1499 }
1500
1501 /* Clean up the receive buffer for full frames taken by the user,
1502 * then send an ACK if necessary. COPIED is the number of bytes
1503 * tcp_recvmsg has given to the user so far, it speeds up the
1504 * calculation of whether or not we must ACK for the sake of
1505 * a window update.
1506 */
1507 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1508 {
1509 struct tcp_sock *tp = tcp_sk(sk);
1510 bool time_to_ack = false;
1511
1512 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1513
1514 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1515 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1516 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1517
1518 if (inet_csk_ack_scheduled(sk)) {
1519 const struct inet_connection_sock *icsk = inet_csk(sk);
1520 /* Delayed ACKs frequently hit locked sockets during bulk
1521 * receive. */
1522 if (icsk->icsk_ack.blocked ||
1523 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1524 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1525 /*
1526 * If this read emptied read buffer, we send ACK, if
1527 * connection is not bidirectional, user drained
1528 * receive buffer and there was a small segment
1529 * in queue.
1530 */
1531 (copied > 0 &&
1532 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1533 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1534 !inet_csk_in_pingpong_mode(sk))) &&
1535 !atomic_read(&sk->sk_rmem_alloc)))
1536 time_to_ack = true;
1537 }
1538
1539 /* We send an ACK if we can now advertise a non-zero window
1540 * which has been raised "significantly".
1541 *
1542 * Even if window raised up to infinity, do not send window open ACK
1543 * in states, where we will not receive more. It is useless.
1544 */
1545 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1546 __u32 rcv_window_now = tcp_receive_window(tp);
1547
1548 /* Optimize, __tcp_select_window() is not cheap. */
1549 if (2*rcv_window_now <= tp->window_clamp) {
1550 __u32 new_window = __tcp_select_window(sk);
1551
1552 /* Send ACK now, if this read freed lots of space
1553 * in our buffer. Certainly, new_window is new window.
1554 * We can advertise it now, if it is not less than current one.
1555 * "Lots" means "at least twice" here.
1556 */
1557 if (new_window && new_window >= 2 * rcv_window_now)
1558 time_to_ack = true;
1559 }
1560 }
1561 if (time_to_ack)
1562 tcp_send_ack(sk);
1563 }
1564
1565 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1566 {
1567 struct sk_buff *skb;
1568 u32 offset;
1569
1570 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1571 offset = seq - TCP_SKB_CB(skb)->seq;
1572 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1573 pr_err_once("%s: found a SYN, please report !\n", __func__);
1574 offset--;
1575 }
1576 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1577 *off = offset;
1578 return skb;
1579 }
1580 /* This looks weird, but this can happen if TCP collapsing
1581 * splitted a fat GRO packet, while we released socket lock
1582 * in skb_splice_bits()
1583 */
1584 sk_eat_skb(sk, skb);
1585 }
1586 return NULL;
1587 }
1588
1589 /*
1590 * This routine provides an alternative to tcp_recvmsg() for routines
1591 * that would like to handle copying from skbuffs directly in 'sendfile'
1592 * fashion.
1593 * Note:
1594 * - It is assumed that the socket was locked by the caller.
1595 * - The routine does not block.
1596 * - At present, there is no support for reading OOB data
1597 * or for 'peeking' the socket using this routine
1598 * (although both would be easy to implement).
1599 */
1600 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1601 sk_read_actor_t recv_actor)
1602 {
1603 struct sk_buff *skb;
1604 struct tcp_sock *tp = tcp_sk(sk);
1605 u32 seq = tp->copied_seq;
1606 u32 offset;
1607 int copied = 0;
1608
1609 if (sk->sk_state == TCP_LISTEN)
1610 return -ENOTCONN;
1611 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1612 if (offset < skb->len) {
1613 int used;
1614 size_t len;
1615
1616 len = skb->len - offset;
1617 /* Stop reading if we hit a patch of urgent data */
1618 if (tp->urg_data) {
1619 u32 urg_offset = tp->urg_seq - seq;
1620 if (urg_offset < len)
1621 len = urg_offset;
1622 if (!len)
1623 break;
1624 }
1625 used = recv_actor(desc, skb, offset, len);
1626 if (used <= 0) {
1627 if (!copied)
1628 copied = used;
1629 break;
1630 } else if (used <= len) {
1631 seq += used;
1632 copied += used;
1633 offset += used;
1634 }
1635 /* If recv_actor drops the lock (e.g. TCP splice
1636 * receive) the skb pointer might be invalid when
1637 * getting here: tcp_collapse might have deleted it
1638 * while aggregating skbs from the socket queue.
1639 */
1640 skb = tcp_recv_skb(sk, seq - 1, &offset);
1641 if (!skb)
1642 break;
1643 /* TCP coalescing might have appended data to the skb.
1644 * Try to splice more frags
1645 */
1646 if (offset + 1 != skb->len)
1647 continue;
1648 }
1649 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1650 sk_eat_skb(sk, skb);
1651 ++seq;
1652 break;
1653 }
1654 sk_eat_skb(sk, skb);
1655 if (!desc->count)
1656 break;
1657 tp->copied_seq = seq;
1658 }
1659 tp->copied_seq = seq;
1660
1661 tcp_rcv_space_adjust(sk);
1662
1663 /* Clean up data we have read: This will do ACK frames. */
1664 if (copied > 0) {
1665 tcp_recv_skb(sk, seq, &offset);
1666 tcp_cleanup_rbuf(sk, copied);
1667 }
1668 return copied;
1669 }
1670 EXPORT_SYMBOL(tcp_read_sock);
1671
1672 int tcp_peek_len(struct socket *sock)
1673 {
1674 return tcp_inq(sock->sk);
1675 }
1676 EXPORT_SYMBOL(tcp_peek_len);
1677
1678 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1679 int tcp_set_rcvlowat(struct sock *sk, int val)
1680 {
1681 int cap;
1682
1683 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1684 cap = sk->sk_rcvbuf >> 1;
1685 else
1686 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1687 val = min(val, cap);
1688 sk->sk_rcvlowat = val ? : 1;
1689
1690 /* Check if we need to signal EPOLLIN right now */
1691 tcp_data_ready(sk);
1692
1693 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1694 return 0;
1695
1696 val <<= 1;
1697 if (val > sk->sk_rcvbuf) {
1698 sk->sk_rcvbuf = val;
1699 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1700 }
1701 return 0;
1702 }
1703 EXPORT_SYMBOL(tcp_set_rcvlowat);
1704
1705 #ifdef CONFIG_MMU
1706 static const struct vm_operations_struct tcp_vm_ops = {
1707 };
1708
1709 int tcp_mmap(struct file *file, struct socket *sock,
1710 struct vm_area_struct *vma)
1711 {
1712 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1713 return -EPERM;
1714 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1715
1716 /* Instruct vm_insert_page() to not down_read(mmap_sem) */
1717 vma->vm_flags |= VM_MIXEDMAP;
1718
1719 vma->vm_ops = &tcp_vm_ops;
1720 return 0;
1721 }
1722 EXPORT_SYMBOL(tcp_mmap);
1723
1724 static int tcp_zerocopy_receive(struct sock *sk,
1725 struct tcp_zerocopy_receive *zc)
1726 {
1727 unsigned long address = (unsigned long)zc->address;
1728 const skb_frag_t *frags = NULL;
1729 u32 length = 0, seq, offset;
1730 struct vm_area_struct *vma;
1731 struct sk_buff *skb = NULL;
1732 struct tcp_sock *tp;
1733 int inq;
1734 int ret;
1735
1736 if (address & (PAGE_SIZE - 1) || address != zc->address)
1737 return -EINVAL;
1738
1739 if (sk->sk_state == TCP_LISTEN)
1740 return -ENOTCONN;
1741
1742 sock_rps_record_flow(sk);
1743
1744 down_read(&current->mm->mmap_sem);
1745
1746 ret = -EINVAL;
1747 vma = find_vma(current->mm, address);
1748 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops)
1749 goto out;
1750 zc->length = min_t(unsigned long, zc->length, vma->vm_end - address);
1751
1752 tp = tcp_sk(sk);
1753 seq = tp->copied_seq;
1754 inq = tcp_inq(sk);
1755 zc->length = min_t(u32, zc->length, inq);
1756 zc->length &= ~(PAGE_SIZE - 1);
1757 if (zc->length) {
1758 zap_page_range(vma, address, zc->length);
1759 zc->recv_skip_hint = 0;
1760 } else {
1761 zc->recv_skip_hint = inq;
1762 }
1763 ret = 0;
1764 while (length + PAGE_SIZE <= zc->length) {
1765 if (zc->recv_skip_hint < PAGE_SIZE) {
1766 if (skb) {
1767 skb = skb->next;
1768 offset = seq - TCP_SKB_CB(skb)->seq;
1769 } else {
1770 skb = tcp_recv_skb(sk, seq, &offset);
1771 }
1772
1773 zc->recv_skip_hint = skb->len - offset;
1774 offset -= skb_headlen(skb);
1775 if ((int)offset < 0 || skb_has_frag_list(skb))
1776 break;
1777 frags = skb_shinfo(skb)->frags;
1778 while (offset) {
1779 if (frags->size > offset)
1780 goto out;
1781 offset -= frags->size;
1782 frags++;
1783 }
1784 }
1785 if (frags->size != PAGE_SIZE || frags->page_offset) {
1786 int remaining = zc->recv_skip_hint;
1787
1788 while (remaining && (frags->size != PAGE_SIZE ||
1789 frags->page_offset)) {
1790 remaining -= frags->size;
1791 frags++;
1792 }
1793 zc->recv_skip_hint -= remaining;
1794 break;
1795 }
1796 ret = vm_insert_page(vma, address + length,
1797 skb_frag_page(frags));
1798 if (ret)
1799 break;
1800 length += PAGE_SIZE;
1801 seq += PAGE_SIZE;
1802 zc->recv_skip_hint -= PAGE_SIZE;
1803 frags++;
1804 }
1805 out:
1806 up_read(&current->mm->mmap_sem);
1807 if (length) {
1808 tp->copied_seq = seq;
1809 tcp_rcv_space_adjust(sk);
1810
1811 /* Clean up data we have read: This will do ACK frames. */
1812 tcp_recv_skb(sk, seq, &offset);
1813 tcp_cleanup_rbuf(sk, length);
1814 ret = 0;
1815 if (length == zc->length)
1816 zc->recv_skip_hint = 0;
1817 } else {
1818 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
1819 ret = -EIO;
1820 }
1821 zc->length = length;
1822 return ret;
1823 }
1824 #endif
1825
1826 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1827 struct scm_timestamping_internal *tss)
1828 {
1829 if (skb->tstamp)
1830 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1831 else
1832 tss->ts[0] = (struct timespec64) {0};
1833
1834 if (skb_hwtstamps(skb)->hwtstamp)
1835 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1836 else
1837 tss->ts[2] = (struct timespec64) {0};
1838 }
1839
1840 /* Similar to __sock_recv_timestamp, but does not require an skb */
1841 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1842 struct scm_timestamping_internal *tss)
1843 {
1844 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
1845 bool has_timestamping = false;
1846
1847 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1848 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1849 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1850 if (new_tstamp) {
1851 struct __kernel_timespec kts = {tss->ts[0].tv_sec, tss->ts[0].tv_nsec};
1852
1853 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
1854 sizeof(kts), &kts);
1855 } else {
1856 struct timespec ts_old = timespec64_to_timespec(tss->ts[0]);
1857
1858 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
1859 sizeof(ts_old), &ts_old);
1860 }
1861 } else {
1862 if (new_tstamp) {
1863 struct __kernel_sock_timeval stv;
1864
1865 stv.tv_sec = tss->ts[0].tv_sec;
1866 stv.tv_usec = tss->ts[0].tv_nsec / 1000;
1867 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
1868 sizeof(stv), &stv);
1869 } else {
1870 struct __kernel_old_timeval tv;
1871
1872 tv.tv_sec = tss->ts[0].tv_sec;
1873 tv.tv_usec = tss->ts[0].tv_nsec / 1000;
1874 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
1875 sizeof(tv), &tv);
1876 }
1877 }
1878 }
1879
1880 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1881 has_timestamping = true;
1882 else
1883 tss->ts[0] = (struct timespec64) {0};
1884 }
1885
1886 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1887 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1888 has_timestamping = true;
1889 else
1890 tss->ts[2] = (struct timespec64) {0};
1891 }
1892
1893 if (has_timestamping) {
1894 tss->ts[1] = (struct timespec64) {0};
1895 if (sock_flag(sk, SOCK_TSTAMP_NEW))
1896 put_cmsg_scm_timestamping64(msg, tss);
1897 else
1898 put_cmsg_scm_timestamping(msg, tss);
1899 }
1900 }
1901
1902 static int tcp_inq_hint(struct sock *sk)
1903 {
1904 const struct tcp_sock *tp = tcp_sk(sk);
1905 u32 copied_seq = READ_ONCE(tp->copied_seq);
1906 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
1907 int inq;
1908
1909 inq = rcv_nxt - copied_seq;
1910 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
1911 lock_sock(sk);
1912 inq = tp->rcv_nxt - tp->copied_seq;
1913 release_sock(sk);
1914 }
1915 /* After receiving a FIN, tell the user-space to continue reading
1916 * by returning a non-zero inq.
1917 */
1918 if (inq == 0 && sock_flag(sk, SOCK_DONE))
1919 inq = 1;
1920 return inq;
1921 }
1922
1923 /*
1924 * This routine copies from a sock struct into the user buffer.
1925 *
1926 * Technical note: in 2.3 we work on _locked_ socket, so that
1927 * tricks with *seq access order and skb->users are not required.
1928 * Probably, code can be easily improved even more.
1929 */
1930
1931 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1932 int flags, int *addr_len)
1933 {
1934 struct tcp_sock *tp = tcp_sk(sk);
1935 int copied = 0;
1936 u32 peek_seq;
1937 u32 *seq;
1938 unsigned long used;
1939 int err, inq;
1940 int target; /* Read at least this many bytes */
1941 long timeo;
1942 struct sk_buff *skb, *last;
1943 u32 urg_hole = 0;
1944 struct scm_timestamping_internal tss;
1945 bool has_tss = false;
1946 bool has_cmsg;
1947
1948 if (unlikely(flags & MSG_ERRQUEUE))
1949 return inet_recv_error(sk, msg, len, addr_len);
1950
1951 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1952 (sk->sk_state == TCP_ESTABLISHED))
1953 sk_busy_loop(sk, nonblock);
1954
1955 lock_sock(sk);
1956
1957 err = -ENOTCONN;
1958 if (sk->sk_state == TCP_LISTEN)
1959 goto out;
1960
1961 has_cmsg = tp->recvmsg_inq;
1962 timeo = sock_rcvtimeo(sk, nonblock);
1963
1964 /* Urgent data needs to be handled specially. */
1965 if (flags & MSG_OOB)
1966 goto recv_urg;
1967
1968 if (unlikely(tp->repair)) {
1969 err = -EPERM;
1970 if (!(flags & MSG_PEEK))
1971 goto out;
1972
1973 if (tp->repair_queue == TCP_SEND_QUEUE)
1974 goto recv_sndq;
1975
1976 err = -EINVAL;
1977 if (tp->repair_queue == TCP_NO_QUEUE)
1978 goto out;
1979
1980 /* 'common' recv queue MSG_PEEK-ing */
1981 }
1982
1983 seq = &tp->copied_seq;
1984 if (flags & MSG_PEEK) {
1985 peek_seq = tp->copied_seq;
1986 seq = &peek_seq;
1987 }
1988
1989 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1990
1991 do {
1992 u32 offset;
1993
1994 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1995 if (tp->urg_data && tp->urg_seq == *seq) {
1996 if (copied)
1997 break;
1998 if (signal_pending(current)) {
1999 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2000 break;
2001 }
2002 }
2003
2004 /* Next get a buffer. */
2005
2006 last = skb_peek_tail(&sk->sk_receive_queue);
2007 skb_queue_walk(&sk->sk_receive_queue, skb) {
2008 last = skb;
2009 /* Now that we have two receive queues this
2010 * shouldn't happen.
2011 */
2012 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2013 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2014 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2015 flags))
2016 break;
2017
2018 offset = *seq - TCP_SKB_CB(skb)->seq;
2019 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2020 pr_err_once("%s: found a SYN, please report !\n", __func__);
2021 offset--;
2022 }
2023 if (offset < skb->len)
2024 goto found_ok_skb;
2025 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2026 goto found_fin_ok;
2027 WARN(!(flags & MSG_PEEK),
2028 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2029 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2030 }
2031
2032 /* Well, if we have backlog, try to process it now yet. */
2033
2034 if (copied >= target && !sk->sk_backlog.tail)
2035 break;
2036
2037 if (copied) {
2038 if (sk->sk_err ||
2039 sk->sk_state == TCP_CLOSE ||
2040 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2041 !timeo ||
2042 signal_pending(current))
2043 break;
2044 } else {
2045 if (sock_flag(sk, SOCK_DONE))
2046 break;
2047
2048 if (sk->sk_err) {
2049 copied = sock_error(sk);
2050 break;
2051 }
2052
2053 if (sk->sk_shutdown & RCV_SHUTDOWN)
2054 break;
2055
2056 if (sk->sk_state == TCP_CLOSE) {
2057 /* This occurs when user tries to read
2058 * from never connected socket.
2059 */
2060 copied = -ENOTCONN;
2061 break;
2062 }
2063
2064 if (!timeo) {
2065 copied = -EAGAIN;
2066 break;
2067 }
2068
2069 if (signal_pending(current)) {
2070 copied = sock_intr_errno(timeo);
2071 break;
2072 }
2073 }
2074
2075 tcp_cleanup_rbuf(sk, copied);
2076
2077 if (copied >= target) {
2078 /* Do not sleep, just process backlog. */
2079 release_sock(sk);
2080 lock_sock(sk);
2081 } else {
2082 sk_wait_data(sk, &timeo, last);
2083 }
2084
2085 if ((flags & MSG_PEEK) &&
2086 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2087 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2088 current->comm,
2089 task_pid_nr(current));
2090 peek_seq = tp->copied_seq;
2091 }
2092 continue;
2093
2094 found_ok_skb:
2095 /* Ok so how much can we use? */
2096 used = skb->len - offset;
2097 if (len < used)
2098 used = len;
2099
2100 /* Do we have urgent data here? */
2101 if (tp->urg_data) {
2102 u32 urg_offset = tp->urg_seq - *seq;
2103 if (urg_offset < used) {
2104 if (!urg_offset) {
2105 if (!sock_flag(sk, SOCK_URGINLINE)) {
2106 ++*seq;
2107 urg_hole++;
2108 offset++;
2109 used--;
2110 if (!used)
2111 goto skip_copy;
2112 }
2113 } else
2114 used = urg_offset;
2115 }
2116 }
2117
2118 if (!(flags & MSG_TRUNC)) {
2119 err = skb_copy_datagram_msg(skb, offset, msg, used);
2120 if (err) {
2121 /* Exception. Bailout! */
2122 if (!copied)
2123 copied = -EFAULT;
2124 break;
2125 }
2126 }
2127
2128 *seq += used;
2129 copied += used;
2130 len -= used;
2131
2132 tcp_rcv_space_adjust(sk);
2133
2134 skip_copy:
2135 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2136 tp->urg_data = 0;
2137 tcp_fast_path_check(sk);
2138 }
2139 if (used + offset < skb->len)
2140 continue;
2141
2142 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2143 tcp_update_recv_tstamps(skb, &tss);
2144 has_tss = true;
2145 has_cmsg = true;
2146 }
2147 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2148 goto found_fin_ok;
2149 if (!(flags & MSG_PEEK))
2150 sk_eat_skb(sk, skb);
2151 continue;
2152
2153 found_fin_ok:
2154 /* Process the FIN. */
2155 ++*seq;
2156 if (!(flags & MSG_PEEK))
2157 sk_eat_skb(sk, skb);
2158 break;
2159 } while (len > 0);
2160
2161 /* According to UNIX98, msg_name/msg_namelen are ignored
2162 * on connected socket. I was just happy when found this 8) --ANK
2163 */
2164
2165 /* Clean up data we have read: This will do ACK frames. */
2166 tcp_cleanup_rbuf(sk, copied);
2167
2168 release_sock(sk);
2169
2170 if (has_cmsg) {
2171 if (has_tss)
2172 tcp_recv_timestamp(msg, sk, &tss);
2173 if (tp->recvmsg_inq) {
2174 inq = tcp_inq_hint(sk);
2175 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2176 }
2177 }
2178
2179 return copied;
2180
2181 out:
2182 release_sock(sk);
2183 return err;
2184
2185 recv_urg:
2186 err = tcp_recv_urg(sk, msg, len, flags);
2187 goto out;
2188
2189 recv_sndq:
2190 err = tcp_peek_sndq(sk, msg, len);
2191 goto out;
2192 }
2193 EXPORT_SYMBOL(tcp_recvmsg);
2194
2195 void tcp_set_state(struct sock *sk, int state)
2196 {
2197 int oldstate = sk->sk_state;
2198
2199 /* We defined a new enum for TCP states that are exported in BPF
2200 * so as not force the internal TCP states to be frozen. The
2201 * following checks will detect if an internal state value ever
2202 * differs from the BPF value. If this ever happens, then we will
2203 * need to remap the internal value to the BPF value before calling
2204 * tcp_call_bpf_2arg.
2205 */
2206 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2207 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2208 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2209 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2210 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2211 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2212 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2213 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2214 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2215 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2216 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2217 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2218 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2219
2220 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2221 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2222
2223 switch (state) {
2224 case TCP_ESTABLISHED:
2225 if (oldstate != TCP_ESTABLISHED)
2226 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2227 break;
2228
2229 case TCP_CLOSE:
2230 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2231 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2232
2233 sk->sk_prot->unhash(sk);
2234 if (inet_csk(sk)->icsk_bind_hash &&
2235 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2236 inet_put_port(sk);
2237 /* fall through */
2238 default:
2239 if (oldstate == TCP_ESTABLISHED)
2240 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2241 }
2242
2243 /* Change state AFTER socket is unhashed to avoid closed
2244 * socket sitting in hash tables.
2245 */
2246 inet_sk_state_store(sk, state);
2247 }
2248 EXPORT_SYMBOL_GPL(tcp_set_state);
2249
2250 /*
2251 * State processing on a close. This implements the state shift for
2252 * sending our FIN frame. Note that we only send a FIN for some
2253 * states. A shutdown() may have already sent the FIN, or we may be
2254 * closed.
2255 */
2256
2257 static const unsigned char new_state[16] = {
2258 /* current state: new state: action: */
2259 [0 /* (Invalid) */] = TCP_CLOSE,
2260 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2261 [TCP_SYN_SENT] = TCP_CLOSE,
2262 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2263 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2264 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2265 [TCP_TIME_WAIT] = TCP_CLOSE,
2266 [TCP_CLOSE] = TCP_CLOSE,
2267 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2268 [TCP_LAST_ACK] = TCP_LAST_ACK,
2269 [TCP_LISTEN] = TCP_CLOSE,
2270 [TCP_CLOSING] = TCP_CLOSING,
2271 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2272 };
2273
2274 static int tcp_close_state(struct sock *sk)
2275 {
2276 int next = (int)new_state[sk->sk_state];
2277 int ns = next & TCP_STATE_MASK;
2278
2279 tcp_set_state(sk, ns);
2280
2281 return next & TCP_ACTION_FIN;
2282 }
2283
2284 /*
2285 * Shutdown the sending side of a connection. Much like close except
2286 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2287 */
2288
2289 void tcp_shutdown(struct sock *sk, int how)
2290 {
2291 /* We need to grab some memory, and put together a FIN,
2292 * and then put it into the queue to be sent.
2293 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2294 */
2295 if (!(how & SEND_SHUTDOWN))
2296 return;
2297
2298 /* If we've already sent a FIN, or it's a closed state, skip this. */
2299 if ((1 << sk->sk_state) &
2300 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2301 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2302 /* Clear out any half completed packets. FIN if needed. */
2303 if (tcp_close_state(sk))
2304 tcp_send_fin(sk);
2305 }
2306 }
2307 EXPORT_SYMBOL(tcp_shutdown);
2308
2309 bool tcp_check_oom(struct sock *sk, int shift)
2310 {
2311 bool too_many_orphans, out_of_socket_memory;
2312
2313 too_many_orphans = tcp_too_many_orphans(sk, shift);
2314 out_of_socket_memory = tcp_out_of_memory(sk);
2315
2316 if (too_many_orphans)
2317 net_info_ratelimited("too many orphaned sockets\n");
2318 if (out_of_socket_memory)
2319 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2320 return too_many_orphans || out_of_socket_memory;
2321 }
2322
2323 void tcp_close(struct sock *sk, long timeout)
2324 {
2325 struct sk_buff *skb;
2326 int data_was_unread = 0;
2327 int state;
2328
2329 lock_sock(sk);
2330 sk->sk_shutdown = SHUTDOWN_MASK;
2331
2332 if (sk->sk_state == TCP_LISTEN) {
2333 tcp_set_state(sk, TCP_CLOSE);
2334
2335 /* Special case. */
2336 inet_csk_listen_stop(sk);
2337
2338 goto adjudge_to_death;
2339 }
2340
2341 /* We need to flush the recv. buffs. We do this only on the
2342 * descriptor close, not protocol-sourced closes, because the
2343 * reader process may not have drained the data yet!
2344 */
2345 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2346 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2347
2348 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2349 len--;
2350 data_was_unread += len;
2351 __kfree_skb(skb);
2352 }
2353
2354 sk_mem_reclaim(sk);
2355
2356 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2357 if (sk->sk_state == TCP_CLOSE)
2358 goto adjudge_to_death;
2359
2360 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2361 * data was lost. To witness the awful effects of the old behavior of
2362 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2363 * GET in an FTP client, suspend the process, wait for the client to
2364 * advertise a zero window, then kill -9 the FTP client, wheee...
2365 * Note: timeout is always zero in such a case.
2366 */
2367 if (unlikely(tcp_sk(sk)->repair)) {
2368 sk->sk_prot->disconnect(sk, 0);
2369 } else if (data_was_unread) {
2370 /* Unread data was tossed, zap the connection. */
2371 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2372 tcp_set_state(sk, TCP_CLOSE);
2373 tcp_send_active_reset(sk, sk->sk_allocation);
2374 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2375 /* Check zero linger _after_ checking for unread data. */
2376 sk->sk_prot->disconnect(sk, 0);
2377 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2378 } else if (tcp_close_state(sk)) {
2379 /* We FIN if the application ate all the data before
2380 * zapping the connection.
2381 */
2382
2383 /* RED-PEN. Formally speaking, we have broken TCP state
2384 * machine. State transitions:
2385 *
2386 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2387 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2388 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2389 *
2390 * are legal only when FIN has been sent (i.e. in window),
2391 * rather than queued out of window. Purists blame.
2392 *
2393 * F.e. "RFC state" is ESTABLISHED,
2394 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2395 *
2396 * The visible declinations are that sometimes
2397 * we enter time-wait state, when it is not required really
2398 * (harmless), do not send active resets, when they are
2399 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2400 * they look as CLOSING or LAST_ACK for Linux)
2401 * Probably, I missed some more holelets.
2402 * --ANK
2403 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2404 * in a single packet! (May consider it later but will
2405 * probably need API support or TCP_CORK SYN-ACK until
2406 * data is written and socket is closed.)
2407 */
2408 tcp_send_fin(sk);
2409 }
2410
2411 sk_stream_wait_close(sk, timeout);
2412
2413 adjudge_to_death:
2414 state = sk->sk_state;
2415 sock_hold(sk);
2416 sock_orphan(sk);
2417
2418 local_bh_disable();
2419 bh_lock_sock(sk);
2420 /* remove backlog if any, without releasing ownership. */
2421 __release_sock(sk);
2422
2423 percpu_counter_inc(sk->sk_prot->orphan_count);
2424
2425 /* Have we already been destroyed by a softirq or backlog? */
2426 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2427 goto out;
2428
2429 /* This is a (useful) BSD violating of the RFC. There is a
2430 * problem with TCP as specified in that the other end could
2431 * keep a socket open forever with no application left this end.
2432 * We use a 1 minute timeout (about the same as BSD) then kill
2433 * our end. If they send after that then tough - BUT: long enough
2434 * that we won't make the old 4*rto = almost no time - whoops
2435 * reset mistake.
2436 *
2437 * Nope, it was not mistake. It is really desired behaviour
2438 * f.e. on http servers, when such sockets are useless, but
2439 * consume significant resources. Let's do it with special
2440 * linger2 option. --ANK
2441 */
2442
2443 if (sk->sk_state == TCP_FIN_WAIT2) {
2444 struct tcp_sock *tp = tcp_sk(sk);
2445 if (tp->linger2 < 0) {
2446 tcp_set_state(sk, TCP_CLOSE);
2447 tcp_send_active_reset(sk, GFP_ATOMIC);
2448 __NET_INC_STATS(sock_net(sk),
2449 LINUX_MIB_TCPABORTONLINGER);
2450 } else {
2451 const int tmo = tcp_fin_time(sk);
2452
2453 if (tmo > TCP_TIMEWAIT_LEN) {
2454 inet_csk_reset_keepalive_timer(sk,
2455 tmo - TCP_TIMEWAIT_LEN);
2456 } else {
2457 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2458 goto out;
2459 }
2460 }
2461 }
2462 if (sk->sk_state != TCP_CLOSE) {
2463 sk_mem_reclaim(sk);
2464 if (tcp_check_oom(sk, 0)) {
2465 tcp_set_state(sk, TCP_CLOSE);
2466 tcp_send_active_reset(sk, GFP_ATOMIC);
2467 __NET_INC_STATS(sock_net(sk),
2468 LINUX_MIB_TCPABORTONMEMORY);
2469 } else if (!check_net(sock_net(sk))) {
2470 /* Not possible to send reset; just close */
2471 tcp_set_state(sk, TCP_CLOSE);
2472 }
2473 }
2474
2475 if (sk->sk_state == TCP_CLOSE) {
2476 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2477 /* We could get here with a non-NULL req if the socket is
2478 * aborted (e.g., closed with unread data) before 3WHS
2479 * finishes.
2480 */
2481 if (req)
2482 reqsk_fastopen_remove(sk, req, false);
2483 inet_csk_destroy_sock(sk);
2484 }
2485 /* Otherwise, socket is reprieved until protocol close. */
2486
2487 out:
2488 bh_unlock_sock(sk);
2489 local_bh_enable();
2490 release_sock(sk);
2491 sock_put(sk);
2492 }
2493 EXPORT_SYMBOL(tcp_close);
2494
2495 /* These states need RST on ABORT according to RFC793 */
2496
2497 static inline bool tcp_need_reset(int state)
2498 {
2499 return (1 << state) &
2500 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2501 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2502 }
2503
2504 static void tcp_rtx_queue_purge(struct sock *sk)
2505 {
2506 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2507
2508 while (p) {
2509 struct sk_buff *skb = rb_to_skb(p);
2510
2511 p = rb_next(p);
2512 /* Since we are deleting whole queue, no need to
2513 * list_del(&skb->tcp_tsorted_anchor)
2514 */
2515 tcp_rtx_queue_unlink(skb, sk);
2516 sk_wmem_free_skb(sk, skb);
2517 }
2518 }
2519
2520 void tcp_write_queue_purge(struct sock *sk)
2521 {
2522 struct sk_buff *skb;
2523
2524 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2525 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2526 tcp_skb_tsorted_anchor_cleanup(skb);
2527 sk_wmem_free_skb(sk, skb);
2528 }
2529 tcp_rtx_queue_purge(sk);
2530 skb = sk->sk_tx_skb_cache;
2531 if (skb) {
2532 __kfree_skb(skb);
2533 sk->sk_tx_skb_cache = NULL;
2534 }
2535 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2536 sk_mem_reclaim(sk);
2537 tcp_clear_all_retrans_hints(tcp_sk(sk));
2538 tcp_sk(sk)->packets_out = 0;
2539 inet_csk(sk)->icsk_backoff = 0;
2540 }
2541
2542 int tcp_disconnect(struct sock *sk, int flags)
2543 {
2544 struct inet_sock *inet = inet_sk(sk);
2545 struct inet_connection_sock *icsk = inet_csk(sk);
2546 struct tcp_sock *tp = tcp_sk(sk);
2547 int old_state = sk->sk_state;
2548
2549 if (old_state != TCP_CLOSE)
2550 tcp_set_state(sk, TCP_CLOSE);
2551
2552 /* ABORT function of RFC793 */
2553 if (old_state == TCP_LISTEN) {
2554 inet_csk_listen_stop(sk);
2555 } else if (unlikely(tp->repair)) {
2556 sk->sk_err = ECONNABORTED;
2557 } else if (tcp_need_reset(old_state) ||
2558 (tp->snd_nxt != tp->write_seq &&
2559 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2560 /* The last check adjusts for discrepancy of Linux wrt. RFC
2561 * states
2562 */
2563 tcp_send_active_reset(sk, gfp_any());
2564 sk->sk_err = ECONNRESET;
2565 } else if (old_state == TCP_SYN_SENT)
2566 sk->sk_err = ECONNRESET;
2567
2568 tcp_clear_xmit_timers(sk);
2569 __skb_queue_purge(&sk->sk_receive_queue);
2570 if (sk->sk_rx_skb_cache) {
2571 __kfree_skb(sk->sk_rx_skb_cache);
2572 sk->sk_rx_skb_cache = NULL;
2573 }
2574 tp->copied_seq = tp->rcv_nxt;
2575 tp->urg_data = 0;
2576 tcp_write_queue_purge(sk);
2577 tcp_fastopen_active_disable_ofo_check(sk);
2578 skb_rbtree_purge(&tp->out_of_order_queue);
2579
2580 inet->inet_dport = 0;
2581
2582 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2583 inet_reset_saddr(sk);
2584
2585 sk->sk_shutdown = 0;
2586 sock_reset_flag(sk, SOCK_DONE);
2587 tp->srtt_us = 0;
2588 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2589 tp->rcv_rtt_last_tsecr = 0;
2590 tp->write_seq += tp->max_window + 2;
2591 if (tp->write_seq == 0)
2592 tp->write_seq = 1;
2593 icsk->icsk_backoff = 0;
2594 tp->snd_cwnd = 2;
2595 icsk->icsk_probes_out = 0;
2596 icsk->icsk_rto = TCP_TIMEOUT_INIT;
2597 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2598 tp->snd_cwnd = TCP_INIT_CWND;
2599 tp->snd_cwnd_cnt = 0;
2600 tp->window_clamp = 0;
2601 tp->delivered_ce = 0;
2602 tcp_set_ca_state(sk, TCP_CA_Open);
2603 tp->is_sack_reneg = 0;
2604 tcp_clear_retrans(tp);
2605 inet_csk_delack_init(sk);
2606 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2607 * issue in __tcp_select_window()
2608 */
2609 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2610 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2611 __sk_dst_reset(sk);
2612 dst_release(sk->sk_rx_dst);
2613 sk->sk_rx_dst = NULL;
2614 tcp_saved_syn_free(tp);
2615 tp->compressed_ack = 0;
2616 tp->bytes_sent = 0;
2617 tp->bytes_acked = 0;
2618 tp->bytes_received = 0;
2619 tp->bytes_retrans = 0;
2620 tp->duplicate_sack[0].start_seq = 0;
2621 tp->duplicate_sack[0].end_seq = 0;
2622 tp->dsack_dups = 0;
2623 tp->reord_seen = 0;
2624 tp->retrans_out = 0;
2625 tp->sacked_out = 0;
2626 tp->tlp_high_seq = 0;
2627 tp->last_oow_ack_time = 0;
2628 /* There's a bubble in the pipe until at least the first ACK. */
2629 tp->app_limited = ~0U;
2630 tp->rack.mstamp = 0;
2631 tp->rack.advanced = 0;
2632 tp->rack.reo_wnd_steps = 1;
2633 tp->rack.last_delivered = 0;
2634 tp->rack.reo_wnd_persist = 0;
2635 tp->rack.dsack_seen = 0;
2636 tp->syn_data_acked = 0;
2637 tp->rx_opt.saw_tstamp = 0;
2638 tp->rx_opt.dsack = 0;
2639 tp->rx_opt.num_sacks = 0;
2640
2641
2642 /* Clean up fastopen related fields */
2643 tcp_free_fastopen_req(tp);
2644 inet->defer_connect = 0;
2645
2646 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2647
2648 if (sk->sk_frag.page) {
2649 put_page(sk->sk_frag.page);
2650 sk->sk_frag.page = NULL;
2651 sk->sk_frag.offset = 0;
2652 }
2653
2654 sk->sk_error_report(sk);
2655 return 0;
2656 }
2657 EXPORT_SYMBOL(tcp_disconnect);
2658
2659 static inline bool tcp_can_repair_sock(const struct sock *sk)
2660 {
2661 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2662 (sk->sk_state != TCP_LISTEN);
2663 }
2664
2665 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2666 {
2667 struct tcp_repair_window opt;
2668
2669 if (!tp->repair)
2670 return -EPERM;
2671
2672 if (len != sizeof(opt))
2673 return -EINVAL;
2674
2675 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2676 return -EFAULT;
2677
2678 if (opt.max_window < opt.snd_wnd)
2679 return -EINVAL;
2680
2681 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2682 return -EINVAL;
2683
2684 if (after(opt.rcv_wup, tp->rcv_nxt))
2685 return -EINVAL;
2686
2687 tp->snd_wl1 = opt.snd_wl1;
2688 tp->snd_wnd = opt.snd_wnd;
2689 tp->max_window = opt.max_window;
2690
2691 tp->rcv_wnd = opt.rcv_wnd;
2692 tp->rcv_wup = opt.rcv_wup;
2693
2694 return 0;
2695 }
2696
2697 static int tcp_repair_options_est(struct sock *sk,
2698 struct tcp_repair_opt __user *optbuf, unsigned int len)
2699 {
2700 struct tcp_sock *tp = tcp_sk(sk);
2701 struct tcp_repair_opt opt;
2702
2703 while (len >= sizeof(opt)) {
2704 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2705 return -EFAULT;
2706
2707 optbuf++;
2708 len -= sizeof(opt);
2709
2710 switch (opt.opt_code) {
2711 case TCPOPT_MSS:
2712 tp->rx_opt.mss_clamp = opt.opt_val;
2713 tcp_mtup_init(sk);
2714 break;
2715 case TCPOPT_WINDOW:
2716 {
2717 u16 snd_wscale = opt.opt_val & 0xFFFF;
2718 u16 rcv_wscale = opt.opt_val >> 16;
2719
2720 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2721 return -EFBIG;
2722
2723 tp->rx_opt.snd_wscale = snd_wscale;
2724 tp->rx_opt.rcv_wscale = rcv_wscale;
2725 tp->rx_opt.wscale_ok = 1;
2726 }
2727 break;
2728 case TCPOPT_SACK_PERM:
2729 if (opt.opt_val != 0)
2730 return -EINVAL;
2731
2732 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2733 break;
2734 case TCPOPT_TIMESTAMP:
2735 if (opt.opt_val != 0)
2736 return -EINVAL;
2737
2738 tp->rx_opt.tstamp_ok = 1;
2739 break;
2740 }
2741 }
2742
2743 return 0;
2744 }
2745
2746 /*
2747 * Socket option code for TCP.
2748 */
2749 static int do_tcp_setsockopt(struct sock *sk, int level,
2750 int optname, char __user *optval, unsigned int optlen)
2751 {
2752 struct tcp_sock *tp = tcp_sk(sk);
2753 struct inet_connection_sock *icsk = inet_csk(sk);
2754 struct net *net = sock_net(sk);
2755 int val;
2756 int err = 0;
2757
2758 /* These are data/string values, all the others are ints */
2759 switch (optname) {
2760 case TCP_CONGESTION: {
2761 char name[TCP_CA_NAME_MAX];
2762
2763 if (optlen < 1)
2764 return -EINVAL;
2765
2766 val = strncpy_from_user(name, optval,
2767 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2768 if (val < 0)
2769 return -EFAULT;
2770 name[val] = 0;
2771
2772 lock_sock(sk);
2773 err = tcp_set_congestion_control(sk, name, true, true);
2774 release_sock(sk);
2775 return err;
2776 }
2777 case TCP_ULP: {
2778 char name[TCP_ULP_NAME_MAX];
2779
2780 if (optlen < 1)
2781 return -EINVAL;
2782
2783 val = strncpy_from_user(name, optval,
2784 min_t(long, TCP_ULP_NAME_MAX - 1,
2785 optlen));
2786 if (val < 0)
2787 return -EFAULT;
2788 name[val] = 0;
2789
2790 lock_sock(sk);
2791 err = tcp_set_ulp(sk, name);
2792 release_sock(sk);
2793 return err;
2794 }
2795 case TCP_FASTOPEN_KEY: {
2796 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
2797
2798 if (optlen != sizeof(key))
2799 return -EINVAL;
2800
2801 if (copy_from_user(key, optval, optlen))
2802 return -EFAULT;
2803
2804 return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key));
2805 }
2806 default:
2807 /* fallthru */
2808 break;
2809 }
2810
2811 if (optlen < sizeof(int))
2812 return -EINVAL;
2813
2814 if (get_user(val, (int __user *)optval))
2815 return -EFAULT;
2816
2817 lock_sock(sk);
2818
2819 switch (optname) {
2820 case TCP_MAXSEG:
2821 /* Values greater than interface MTU won't take effect. However
2822 * at the point when this call is done we typically don't yet
2823 * know which interface is going to be used
2824 */
2825 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2826 err = -EINVAL;
2827 break;
2828 }
2829 tp->rx_opt.user_mss = val;
2830 break;
2831
2832 case TCP_NODELAY:
2833 if (val) {
2834 /* TCP_NODELAY is weaker than TCP_CORK, so that
2835 * this option on corked socket is remembered, but
2836 * it is not activated until cork is cleared.
2837 *
2838 * However, when TCP_NODELAY is set we make
2839 * an explicit push, which overrides even TCP_CORK
2840 * for currently queued segments.
2841 */
2842 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2843 tcp_push_pending_frames(sk);
2844 } else {
2845 tp->nonagle &= ~TCP_NAGLE_OFF;
2846 }
2847 break;
2848
2849 case TCP_THIN_LINEAR_TIMEOUTS:
2850 if (val < 0 || val > 1)
2851 err = -EINVAL;
2852 else
2853 tp->thin_lto = val;
2854 break;
2855
2856 case TCP_THIN_DUPACK:
2857 if (val < 0 || val > 1)
2858 err = -EINVAL;
2859 break;
2860
2861 case TCP_REPAIR:
2862 if (!tcp_can_repair_sock(sk))
2863 err = -EPERM;
2864 else if (val == TCP_REPAIR_ON) {
2865 tp->repair = 1;
2866 sk->sk_reuse = SK_FORCE_REUSE;
2867 tp->repair_queue = TCP_NO_QUEUE;
2868 } else if (val == TCP_REPAIR_OFF) {
2869 tp->repair = 0;
2870 sk->sk_reuse = SK_NO_REUSE;
2871 tcp_send_window_probe(sk);
2872 } else if (val == TCP_REPAIR_OFF_NO_WP) {
2873 tp->repair = 0;
2874 sk->sk_reuse = SK_NO_REUSE;
2875 } else
2876 err = -EINVAL;
2877
2878 break;
2879
2880 case TCP_REPAIR_QUEUE:
2881 if (!tp->repair)
2882 err = -EPERM;
2883 else if ((unsigned int)val < TCP_QUEUES_NR)
2884 tp->repair_queue = val;
2885 else
2886 err = -EINVAL;
2887 break;
2888
2889 case TCP_QUEUE_SEQ:
2890 if (sk->sk_state != TCP_CLOSE)
2891 err = -EPERM;
2892 else if (tp->repair_queue == TCP_SEND_QUEUE)
2893 tp->write_seq = val;
2894 else if (tp->repair_queue == TCP_RECV_QUEUE)
2895 tp->rcv_nxt = val;
2896 else
2897 err = -EINVAL;
2898 break;
2899
2900 case TCP_REPAIR_OPTIONS:
2901 if (!tp->repair)
2902 err = -EINVAL;
2903 else if (sk->sk_state == TCP_ESTABLISHED)
2904 err = tcp_repair_options_est(sk,
2905 (struct tcp_repair_opt __user *)optval,
2906 optlen);
2907 else
2908 err = -EPERM;
2909 break;
2910
2911 case TCP_CORK:
2912 /* When set indicates to always queue non-full frames.
2913 * Later the user clears this option and we transmit
2914 * any pending partial frames in the queue. This is
2915 * meant to be used alongside sendfile() to get properly
2916 * filled frames when the user (for example) must write
2917 * out headers with a write() call first and then use
2918 * sendfile to send out the data parts.
2919 *
2920 * TCP_CORK can be set together with TCP_NODELAY and it is
2921 * stronger than TCP_NODELAY.
2922 */
2923 if (val) {
2924 tp->nonagle |= TCP_NAGLE_CORK;
2925 } else {
2926 tp->nonagle &= ~TCP_NAGLE_CORK;
2927 if (tp->nonagle&TCP_NAGLE_OFF)
2928 tp->nonagle |= TCP_NAGLE_PUSH;
2929 tcp_push_pending_frames(sk);
2930 }
2931 break;
2932
2933 case TCP_KEEPIDLE:
2934 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2935 err = -EINVAL;
2936 else {
2937 tp->keepalive_time = val * HZ;
2938 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2939 !((1 << sk->sk_state) &
2940 (TCPF_CLOSE | TCPF_LISTEN))) {
2941 u32 elapsed = keepalive_time_elapsed(tp);
2942 if (tp->keepalive_time > elapsed)
2943 elapsed = tp->keepalive_time - elapsed;
2944 else
2945 elapsed = 0;
2946 inet_csk_reset_keepalive_timer(sk, elapsed);
2947 }
2948 }
2949 break;
2950 case TCP_KEEPINTVL:
2951 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2952 err = -EINVAL;
2953 else
2954 tp->keepalive_intvl = val * HZ;
2955 break;
2956 case TCP_KEEPCNT:
2957 if (val < 1 || val > MAX_TCP_KEEPCNT)
2958 err = -EINVAL;
2959 else
2960 tp->keepalive_probes = val;
2961 break;
2962 case TCP_SYNCNT:
2963 if (val < 1 || val > MAX_TCP_SYNCNT)
2964 err = -EINVAL;
2965 else
2966 icsk->icsk_syn_retries = val;
2967 break;
2968
2969 case TCP_SAVE_SYN:
2970 if (val < 0 || val > 1)
2971 err = -EINVAL;
2972 else
2973 tp->save_syn = val;
2974 break;
2975
2976 case TCP_LINGER2:
2977 if (val < 0)
2978 tp->linger2 = -1;
2979 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2980 tp->linger2 = 0;
2981 else
2982 tp->linger2 = val * HZ;
2983 break;
2984
2985 case TCP_DEFER_ACCEPT:
2986 /* Translate value in seconds to number of retransmits */
2987 icsk->icsk_accept_queue.rskq_defer_accept =
2988 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2989 TCP_RTO_MAX / HZ);
2990 break;
2991
2992 case TCP_WINDOW_CLAMP:
2993 if (!val) {
2994 if (sk->sk_state != TCP_CLOSE) {
2995 err = -EINVAL;
2996 break;
2997 }
2998 tp->window_clamp = 0;
2999 } else
3000 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3001 SOCK_MIN_RCVBUF / 2 : val;
3002 break;
3003
3004 case TCP_QUICKACK:
3005 if (!val) {
3006 inet_csk_enter_pingpong_mode(sk);
3007 } else {
3008 inet_csk_exit_pingpong_mode(sk);
3009 if ((1 << sk->sk_state) &
3010 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3011 inet_csk_ack_scheduled(sk)) {
3012 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
3013 tcp_cleanup_rbuf(sk, 1);
3014 if (!(val & 1))
3015 inet_csk_enter_pingpong_mode(sk);
3016 }
3017 }
3018 break;
3019
3020 #ifdef CONFIG_TCP_MD5SIG
3021 case TCP_MD5SIG:
3022 case TCP_MD5SIG_EXT:
3023 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
3024 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3025 else
3026 err = -EINVAL;
3027 break;
3028 #endif
3029 case TCP_USER_TIMEOUT:
3030 /* Cap the max time in ms TCP will retry or probe the window
3031 * before giving up and aborting (ETIMEDOUT) a connection.
3032 */
3033 if (val < 0)
3034 err = -EINVAL;
3035 else
3036 icsk->icsk_user_timeout = val;
3037 break;
3038
3039 case TCP_FASTOPEN:
3040 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3041 TCPF_LISTEN))) {
3042 tcp_fastopen_init_key_once(net);
3043
3044 fastopen_queue_tune(sk, val);
3045 } else {
3046 err = -EINVAL;
3047 }
3048 break;
3049 case TCP_FASTOPEN_CONNECT:
3050 if (val > 1 || val < 0) {
3051 err = -EINVAL;
3052 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3053 if (sk->sk_state == TCP_CLOSE)
3054 tp->fastopen_connect = val;
3055 else
3056 err = -EINVAL;
3057 } else {
3058 err = -EOPNOTSUPP;
3059 }
3060 break;
3061 case TCP_FASTOPEN_NO_COOKIE:
3062 if (val > 1 || val < 0)
3063 err = -EINVAL;
3064 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3065 err = -EINVAL;
3066 else
3067 tp->fastopen_no_cookie = val;
3068 break;
3069 case TCP_TIMESTAMP:
3070 if (!tp->repair)
3071 err = -EPERM;
3072 else
3073 tp->tsoffset = val - tcp_time_stamp_raw();
3074 break;
3075 case TCP_REPAIR_WINDOW:
3076 err = tcp_repair_set_window(tp, optval, optlen);
3077 break;
3078 case TCP_NOTSENT_LOWAT:
3079 tp->notsent_lowat = val;
3080 sk->sk_write_space(sk);
3081 break;
3082 case TCP_INQ:
3083 if (val > 1 || val < 0)
3084 err = -EINVAL;
3085 else
3086 tp->recvmsg_inq = val;
3087 break;
3088 default:
3089 err = -ENOPROTOOPT;
3090 break;
3091 }
3092
3093 release_sock(sk);
3094 return err;
3095 }
3096
3097 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
3098 unsigned int optlen)
3099 {
3100 const struct inet_connection_sock *icsk = inet_csk(sk);
3101
3102 if (level != SOL_TCP)
3103 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3104 optval, optlen);
3105 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3106 }
3107 EXPORT_SYMBOL(tcp_setsockopt);
3108
3109 #ifdef CONFIG_COMPAT
3110 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
3111 char __user *optval, unsigned int optlen)
3112 {
3113 if (level != SOL_TCP)
3114 return inet_csk_compat_setsockopt(sk, level, optname,
3115 optval, optlen);
3116 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3117 }
3118 EXPORT_SYMBOL(compat_tcp_setsockopt);
3119 #endif
3120
3121 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3122 struct tcp_info *info)
3123 {
3124 u64 stats[__TCP_CHRONO_MAX], total = 0;
3125 enum tcp_chrono i;
3126
3127 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3128 stats[i] = tp->chrono_stat[i - 1];
3129 if (i == tp->chrono_type)
3130 stats[i] += tcp_jiffies32 - tp->chrono_start;
3131 stats[i] *= USEC_PER_SEC / HZ;
3132 total += stats[i];
3133 }
3134
3135 info->tcpi_busy_time = total;
3136 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3137 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3138 }
3139
3140 /* Return information about state of tcp endpoint in API format. */
3141 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3142 {
3143 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3144 const struct inet_connection_sock *icsk = inet_csk(sk);
3145 unsigned long rate;
3146 u32 now;
3147 u64 rate64;
3148 bool slow;
3149
3150 memset(info, 0, sizeof(*info));
3151 if (sk->sk_type != SOCK_STREAM)
3152 return;
3153
3154 info->tcpi_state = inet_sk_state_load(sk);
3155
3156 /* Report meaningful fields for all TCP states, including listeners */
3157 rate = READ_ONCE(sk->sk_pacing_rate);
3158 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3159 info->tcpi_pacing_rate = rate64;
3160
3161 rate = READ_ONCE(sk->sk_max_pacing_rate);
3162 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3163 info->tcpi_max_pacing_rate = rate64;
3164
3165 info->tcpi_reordering = tp->reordering;
3166 info->tcpi_snd_cwnd = tp->snd_cwnd;
3167
3168 if (info->tcpi_state == TCP_LISTEN) {
3169 /* listeners aliased fields :
3170 * tcpi_unacked -> Number of children ready for accept()
3171 * tcpi_sacked -> max backlog
3172 */
3173 info->tcpi_unacked = sk->sk_ack_backlog;
3174 info->tcpi_sacked = sk->sk_max_ack_backlog;
3175 return;
3176 }
3177
3178 slow = lock_sock_fast(sk);
3179
3180 info->tcpi_ca_state = icsk->icsk_ca_state;
3181 info->tcpi_retransmits = icsk->icsk_retransmits;
3182 info->tcpi_probes = icsk->icsk_probes_out;
3183 info->tcpi_backoff = icsk->icsk_backoff;
3184
3185 if (tp->rx_opt.tstamp_ok)
3186 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3187 if (tcp_is_sack(tp))
3188 info->tcpi_options |= TCPI_OPT_SACK;
3189 if (tp->rx_opt.wscale_ok) {
3190 info->tcpi_options |= TCPI_OPT_WSCALE;
3191 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3192 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3193 }
3194
3195 if (tp->ecn_flags & TCP_ECN_OK)
3196 info->tcpi_options |= TCPI_OPT_ECN;
3197 if (tp->ecn_flags & TCP_ECN_SEEN)
3198 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3199 if (tp->syn_data_acked)
3200 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3201
3202 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3203 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3204 info->tcpi_snd_mss = tp->mss_cache;
3205 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3206
3207 info->tcpi_unacked = tp->packets_out;
3208 info->tcpi_sacked = tp->sacked_out;
3209
3210 info->tcpi_lost = tp->lost_out;
3211 info->tcpi_retrans = tp->retrans_out;
3212
3213 now = tcp_jiffies32;
3214 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3215 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3216 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3217
3218 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3219 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3220 info->tcpi_rtt = tp->srtt_us >> 3;
3221 info->tcpi_rttvar = tp->mdev_us >> 2;
3222 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3223 info->tcpi_advmss = tp->advmss;
3224
3225 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3226 info->tcpi_rcv_space = tp->rcvq_space.space;
3227
3228 info->tcpi_total_retrans = tp->total_retrans;
3229
3230 info->tcpi_bytes_acked = tp->bytes_acked;
3231 info->tcpi_bytes_received = tp->bytes_received;
3232 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3233 tcp_get_info_chrono_stats(tp, info);
3234
3235 info->tcpi_segs_out = tp->segs_out;
3236 info->tcpi_segs_in = tp->segs_in;
3237
3238 info->tcpi_min_rtt = tcp_min_rtt(tp);
3239 info->tcpi_data_segs_in = tp->data_segs_in;
3240 info->tcpi_data_segs_out = tp->data_segs_out;
3241
3242 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3243 rate64 = tcp_compute_delivery_rate(tp);
3244 if (rate64)
3245 info->tcpi_delivery_rate = rate64;
3246 info->tcpi_delivered = tp->delivered;
3247 info->tcpi_delivered_ce = tp->delivered_ce;
3248 info->tcpi_bytes_sent = tp->bytes_sent;
3249 info->tcpi_bytes_retrans = tp->bytes_retrans;
3250 info->tcpi_dsack_dups = tp->dsack_dups;
3251 info->tcpi_reord_seen = tp->reord_seen;
3252 unlock_sock_fast(sk, slow);
3253 }
3254 EXPORT_SYMBOL_GPL(tcp_get_info);
3255
3256 static size_t tcp_opt_stats_get_size(void)
3257 {
3258 return
3259 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3260 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3261 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3262 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3263 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3264 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3265 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3266 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3267 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3268 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3269 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3270 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3271 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3272 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3273 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3274 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3275 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3276 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3277 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3278 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3279 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3280 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3281 0;
3282 }
3283
3284 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
3285 {
3286 const struct tcp_sock *tp = tcp_sk(sk);
3287 struct sk_buff *stats;
3288 struct tcp_info info;
3289 unsigned long rate;
3290 u64 rate64;
3291
3292 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3293 if (!stats)
3294 return NULL;
3295
3296 tcp_get_info_chrono_stats(tp, &info);
3297 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3298 info.tcpi_busy_time, TCP_NLA_PAD);
3299 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3300 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3301 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3302 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3303 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3304 tp->data_segs_out, TCP_NLA_PAD);
3305 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3306 tp->total_retrans, TCP_NLA_PAD);
3307
3308 rate = READ_ONCE(sk->sk_pacing_rate);
3309 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3310 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3311
3312 rate64 = tcp_compute_delivery_rate(tp);
3313 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3314
3315 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3316 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3317 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3318
3319 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3320 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3321 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3322 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3323 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3324
3325 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3326 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3327
3328 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3329 TCP_NLA_PAD);
3330 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3331 TCP_NLA_PAD);
3332 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3333 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3334 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3335
3336 return stats;
3337 }
3338
3339 static int do_tcp_getsockopt(struct sock *sk, int level,
3340 int optname, char __user *optval, int __user *optlen)
3341 {
3342 struct inet_connection_sock *icsk = inet_csk(sk);
3343 struct tcp_sock *tp = tcp_sk(sk);
3344 struct net *net = sock_net(sk);
3345 int val, len;
3346
3347 if (get_user(len, optlen))
3348 return -EFAULT;
3349
3350 len = min_t(unsigned int, len, sizeof(int));
3351
3352 if (len < 0)
3353 return -EINVAL;
3354
3355 switch (optname) {
3356 case TCP_MAXSEG:
3357 val = tp->mss_cache;
3358 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3359 val = tp->rx_opt.user_mss;
3360 if (tp->repair)
3361 val = tp->rx_opt.mss_clamp;
3362 break;
3363 case TCP_NODELAY:
3364 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3365 break;
3366 case TCP_CORK:
3367 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3368 break;
3369 case TCP_KEEPIDLE:
3370 val = keepalive_time_when(tp) / HZ;
3371 break;
3372 case TCP_KEEPINTVL:
3373 val = keepalive_intvl_when(tp) / HZ;
3374 break;
3375 case TCP_KEEPCNT:
3376 val = keepalive_probes(tp);
3377 break;
3378 case TCP_SYNCNT:
3379 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3380 break;
3381 case TCP_LINGER2:
3382 val = tp->linger2;
3383 if (val >= 0)
3384 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3385 break;
3386 case TCP_DEFER_ACCEPT:
3387 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3388 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3389 break;
3390 case TCP_WINDOW_CLAMP:
3391 val = tp->window_clamp;
3392 break;
3393 case TCP_INFO: {
3394 struct tcp_info info;
3395
3396 if (get_user(len, optlen))
3397 return -EFAULT;
3398
3399 tcp_get_info(sk, &info);
3400
3401 len = min_t(unsigned int, len, sizeof(info));
3402 if (put_user(len, optlen))
3403 return -EFAULT;
3404 if (copy_to_user(optval, &info, len))
3405 return -EFAULT;
3406 return 0;
3407 }
3408 case TCP_CC_INFO: {
3409 const struct tcp_congestion_ops *ca_ops;
3410 union tcp_cc_info info;
3411 size_t sz = 0;
3412 int attr;
3413
3414 if (get_user(len, optlen))
3415 return -EFAULT;
3416
3417 ca_ops = icsk->icsk_ca_ops;
3418 if (ca_ops && ca_ops->get_info)
3419 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3420
3421 len = min_t(unsigned int, len, sz);
3422 if (put_user(len, optlen))
3423 return -EFAULT;
3424 if (copy_to_user(optval, &info, len))
3425 return -EFAULT;
3426 return 0;
3427 }
3428 case TCP_QUICKACK:
3429 val = !inet_csk_in_pingpong_mode(sk);
3430 break;
3431
3432 case TCP_CONGESTION:
3433 if (get_user(len, optlen))
3434 return -EFAULT;
3435 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3436 if (put_user(len, optlen))
3437 return -EFAULT;
3438 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3439 return -EFAULT;
3440 return 0;
3441
3442 case TCP_ULP:
3443 if (get_user(len, optlen))
3444 return -EFAULT;
3445 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3446 if (!icsk->icsk_ulp_ops) {
3447 if (put_user(0, optlen))
3448 return -EFAULT;
3449 return 0;
3450 }
3451 if (put_user(len, optlen))
3452 return -EFAULT;
3453 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3454 return -EFAULT;
3455 return 0;
3456
3457 case TCP_FASTOPEN_KEY: {
3458 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
3459 struct tcp_fastopen_context *ctx;
3460
3461 if (get_user(len, optlen))
3462 return -EFAULT;
3463
3464 rcu_read_lock();
3465 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3466 if (ctx)
3467 memcpy(key, ctx->key, sizeof(key));
3468 else
3469 len = 0;
3470 rcu_read_unlock();
3471
3472 len = min_t(unsigned int, len, sizeof(key));
3473 if (put_user(len, optlen))
3474 return -EFAULT;
3475 if (copy_to_user(optval, key, len))
3476 return -EFAULT;
3477 return 0;
3478 }
3479 case TCP_THIN_LINEAR_TIMEOUTS:
3480 val = tp->thin_lto;
3481 break;
3482
3483 case TCP_THIN_DUPACK:
3484 val = 0;
3485 break;
3486
3487 case TCP_REPAIR:
3488 val = tp->repair;
3489 break;
3490
3491 case TCP_REPAIR_QUEUE:
3492 if (tp->repair)
3493 val = tp->repair_queue;
3494 else
3495 return -EINVAL;
3496 break;
3497
3498 case TCP_REPAIR_WINDOW: {
3499 struct tcp_repair_window opt;
3500
3501 if (get_user(len, optlen))
3502 return -EFAULT;
3503
3504 if (len != sizeof(opt))
3505 return -EINVAL;
3506
3507 if (!tp->repair)
3508 return -EPERM;
3509
3510 opt.snd_wl1 = tp->snd_wl1;
3511 opt.snd_wnd = tp->snd_wnd;
3512 opt.max_window = tp->max_window;
3513 opt.rcv_wnd = tp->rcv_wnd;
3514 opt.rcv_wup = tp->rcv_wup;
3515
3516 if (copy_to_user(optval, &opt, len))
3517 return -EFAULT;
3518 return 0;
3519 }
3520 case TCP_QUEUE_SEQ:
3521 if (tp->repair_queue == TCP_SEND_QUEUE)
3522 val = tp->write_seq;
3523 else if (tp->repair_queue == TCP_RECV_QUEUE)
3524 val = tp->rcv_nxt;
3525 else
3526 return -EINVAL;
3527 break;
3528
3529 case TCP_USER_TIMEOUT:
3530 val = icsk->icsk_user_timeout;
3531 break;
3532
3533 case TCP_FASTOPEN:
3534 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3535 break;
3536
3537 case TCP_FASTOPEN_CONNECT:
3538 val = tp->fastopen_connect;
3539 break;
3540
3541 case TCP_FASTOPEN_NO_COOKIE:
3542 val = tp->fastopen_no_cookie;
3543 break;
3544
3545 case TCP_TIMESTAMP:
3546 val = tcp_time_stamp_raw() + tp->tsoffset;
3547 break;
3548 case TCP_NOTSENT_LOWAT:
3549 val = tp->notsent_lowat;
3550 break;
3551 case TCP_INQ:
3552 val = tp->recvmsg_inq;
3553 break;
3554 case TCP_SAVE_SYN:
3555 val = tp->save_syn;
3556 break;
3557 case TCP_SAVED_SYN: {
3558 if (get_user(len, optlen))
3559 return -EFAULT;
3560
3561 lock_sock(sk);
3562 if (tp->saved_syn) {
3563 if (len < tp->saved_syn[0]) {
3564 if (put_user(tp->saved_syn[0], optlen)) {
3565 release_sock(sk);
3566 return -EFAULT;
3567 }
3568 release_sock(sk);
3569 return -EINVAL;
3570 }
3571 len = tp->saved_syn[0];
3572 if (put_user(len, optlen)) {
3573 release_sock(sk);
3574 return -EFAULT;
3575 }
3576 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3577 release_sock(sk);
3578 return -EFAULT;
3579 }
3580 tcp_saved_syn_free(tp);
3581 release_sock(sk);
3582 } else {
3583 release_sock(sk);
3584 len = 0;
3585 if (put_user(len, optlen))
3586 return -EFAULT;
3587 }
3588 return 0;
3589 }
3590 #ifdef CONFIG_MMU
3591 case TCP_ZEROCOPY_RECEIVE: {
3592 struct tcp_zerocopy_receive zc;
3593 int err;
3594
3595 if (get_user(len, optlen))
3596 return -EFAULT;
3597 if (len != sizeof(zc))
3598 return -EINVAL;
3599 if (copy_from_user(&zc, optval, len))
3600 return -EFAULT;
3601 lock_sock(sk);
3602 err = tcp_zerocopy_receive(sk, &zc);
3603 release_sock(sk);
3604 if (!err && copy_to_user(optval, &zc, len))
3605 err = -EFAULT;
3606 return err;
3607 }
3608 #endif
3609 default:
3610 return -ENOPROTOOPT;
3611 }
3612
3613 if (put_user(len, optlen))
3614 return -EFAULT;
3615 if (copy_to_user(optval, &val, len))
3616 return -EFAULT;
3617 return 0;
3618 }
3619
3620 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3621 int __user *optlen)
3622 {
3623 struct inet_connection_sock *icsk = inet_csk(sk);
3624
3625 if (level != SOL_TCP)
3626 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3627 optval, optlen);
3628 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3629 }
3630 EXPORT_SYMBOL(tcp_getsockopt);
3631
3632 #ifdef CONFIG_COMPAT
3633 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3634 char __user *optval, int __user *optlen)
3635 {
3636 if (level != SOL_TCP)
3637 return inet_csk_compat_getsockopt(sk, level, optname,
3638 optval, optlen);
3639 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3640 }
3641 EXPORT_SYMBOL(compat_tcp_getsockopt);
3642 #endif
3643
3644 #ifdef CONFIG_TCP_MD5SIG
3645 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3646 static DEFINE_MUTEX(tcp_md5sig_mutex);
3647 static bool tcp_md5sig_pool_populated = false;
3648
3649 static void __tcp_alloc_md5sig_pool(void)
3650 {
3651 struct crypto_ahash *hash;
3652 int cpu;
3653
3654 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3655 if (IS_ERR(hash))
3656 return;
3657
3658 for_each_possible_cpu(cpu) {
3659 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3660 struct ahash_request *req;
3661
3662 if (!scratch) {
3663 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3664 sizeof(struct tcphdr),
3665 GFP_KERNEL,
3666 cpu_to_node(cpu));
3667 if (!scratch)
3668 return;
3669 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3670 }
3671 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3672 continue;
3673
3674 req = ahash_request_alloc(hash, GFP_KERNEL);
3675 if (!req)
3676 return;
3677
3678 ahash_request_set_callback(req, 0, NULL, NULL);
3679
3680 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3681 }
3682 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3683 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3684 */
3685 smp_wmb();
3686 tcp_md5sig_pool_populated = true;
3687 }
3688
3689 bool tcp_alloc_md5sig_pool(void)
3690 {
3691 if (unlikely(!tcp_md5sig_pool_populated)) {
3692 mutex_lock(&tcp_md5sig_mutex);
3693
3694 if (!tcp_md5sig_pool_populated) {
3695 __tcp_alloc_md5sig_pool();
3696 if (tcp_md5sig_pool_populated)
3697 static_branch_inc(&tcp_md5_needed);
3698 }
3699
3700 mutex_unlock(&tcp_md5sig_mutex);
3701 }
3702 return tcp_md5sig_pool_populated;
3703 }
3704 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3705
3706
3707 /**
3708 * tcp_get_md5sig_pool - get md5sig_pool for this user
3709 *
3710 * We use percpu structure, so if we succeed, we exit with preemption
3711 * and BH disabled, to make sure another thread or softirq handling
3712 * wont try to get same context.
3713 */
3714 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3715 {
3716 local_bh_disable();
3717
3718 if (tcp_md5sig_pool_populated) {
3719 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3720 smp_rmb();
3721 return this_cpu_ptr(&tcp_md5sig_pool);
3722 }
3723 local_bh_enable();
3724 return NULL;
3725 }
3726 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3727
3728 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3729 const struct sk_buff *skb, unsigned int header_len)
3730 {
3731 struct scatterlist sg;
3732 const struct tcphdr *tp = tcp_hdr(skb);
3733 struct ahash_request *req = hp->md5_req;
3734 unsigned int i;
3735 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3736 skb_headlen(skb) - header_len : 0;
3737 const struct skb_shared_info *shi = skb_shinfo(skb);
3738 struct sk_buff *frag_iter;
3739
3740 sg_init_table(&sg, 1);
3741
3742 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3743 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3744 if (crypto_ahash_update(req))
3745 return 1;
3746
3747 for (i = 0; i < shi->nr_frags; ++i) {
3748 const struct skb_frag_struct *f = &shi->frags[i];
3749 unsigned int offset = f->page_offset;
3750 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3751
3752 sg_set_page(&sg, page, skb_frag_size(f),
3753 offset_in_page(offset));
3754 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3755 if (crypto_ahash_update(req))
3756 return 1;
3757 }
3758
3759 skb_walk_frags(skb, frag_iter)
3760 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3761 return 1;
3762
3763 return 0;
3764 }
3765 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3766
3767 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3768 {
3769 struct scatterlist sg;
3770
3771 sg_init_one(&sg, key->key, key->keylen);
3772 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3773 return crypto_ahash_update(hp->md5_req);
3774 }
3775 EXPORT_SYMBOL(tcp_md5_hash_key);
3776
3777 #endif
3778
3779 void tcp_done(struct sock *sk)
3780 {
3781 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3782
3783 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3784 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3785
3786 tcp_set_state(sk, TCP_CLOSE);
3787 tcp_clear_xmit_timers(sk);
3788 if (req)
3789 reqsk_fastopen_remove(sk, req, false);
3790
3791 sk->sk_shutdown = SHUTDOWN_MASK;
3792
3793 if (!sock_flag(sk, SOCK_DEAD))
3794 sk->sk_state_change(sk);
3795 else
3796 inet_csk_destroy_sock(sk);
3797 }
3798 EXPORT_SYMBOL_GPL(tcp_done);
3799
3800 int tcp_abort(struct sock *sk, int err)
3801 {
3802 if (!sk_fullsock(sk)) {
3803 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3804 struct request_sock *req = inet_reqsk(sk);
3805
3806 local_bh_disable();
3807 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
3808 local_bh_enable();
3809 return 0;
3810 }
3811 return -EOPNOTSUPP;
3812 }
3813
3814 /* Don't race with userspace socket closes such as tcp_close. */
3815 lock_sock(sk);
3816
3817 if (sk->sk_state == TCP_LISTEN) {
3818 tcp_set_state(sk, TCP_CLOSE);
3819 inet_csk_listen_stop(sk);
3820 }
3821
3822 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3823 local_bh_disable();
3824 bh_lock_sock(sk);
3825
3826 if (!sock_flag(sk, SOCK_DEAD)) {
3827 sk->sk_err = err;
3828 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3829 smp_wmb();
3830 sk->sk_error_report(sk);
3831 if (tcp_need_reset(sk->sk_state))
3832 tcp_send_active_reset(sk, GFP_ATOMIC);
3833 tcp_done(sk);
3834 }
3835
3836 bh_unlock_sock(sk);
3837 local_bh_enable();
3838 tcp_write_queue_purge(sk);
3839 release_sock(sk);
3840 return 0;
3841 }
3842 EXPORT_SYMBOL_GPL(tcp_abort);
3843
3844 extern struct tcp_congestion_ops tcp_reno;
3845
3846 static __initdata unsigned long thash_entries;
3847 static int __init set_thash_entries(char *str)
3848 {
3849 ssize_t ret;
3850
3851 if (!str)
3852 return 0;
3853
3854 ret = kstrtoul(str, 0, &thash_entries);
3855 if (ret)
3856 return 0;
3857
3858 return 1;
3859 }
3860 __setup("thash_entries=", set_thash_entries);
3861
3862 static void __init tcp_init_mem(void)
3863 {
3864 unsigned long limit = nr_free_buffer_pages() / 16;
3865
3866 limit = max(limit, 128UL);
3867 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3868 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3869 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3870 }
3871
3872 void __init tcp_init(void)
3873 {
3874 int max_rshare, max_wshare, cnt;
3875 unsigned long limit;
3876 unsigned int i;
3877
3878 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
3879 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3880 FIELD_SIZEOF(struct sk_buff, cb));
3881
3882 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3883 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3884 inet_hashinfo_init(&tcp_hashinfo);
3885 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
3886 thash_entries, 21, /* one slot per 2 MB*/
3887 0, 64 * 1024);
3888 tcp_hashinfo.bind_bucket_cachep =
3889 kmem_cache_create("tcp_bind_bucket",
3890 sizeof(struct inet_bind_bucket), 0,
3891 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3892
3893 /* Size and allocate the main established and bind bucket
3894 * hash tables.
3895 *
3896 * The methodology is similar to that of the buffer cache.
3897 */
3898 tcp_hashinfo.ehash =
3899 alloc_large_system_hash("TCP established",
3900 sizeof(struct inet_ehash_bucket),
3901 thash_entries,
3902 17, /* one slot per 128 KB of memory */
3903 0,
3904 NULL,
3905 &tcp_hashinfo.ehash_mask,
3906 0,
3907 thash_entries ? 0 : 512 * 1024);
3908 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3909 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3910
3911 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3912 panic("TCP: failed to alloc ehash_locks");
3913 tcp_hashinfo.bhash =
3914 alloc_large_system_hash("TCP bind",
3915 sizeof(struct inet_bind_hashbucket),
3916 tcp_hashinfo.ehash_mask + 1,
3917 17, /* one slot per 128 KB of memory */
3918 0,
3919 &tcp_hashinfo.bhash_size,
3920 NULL,
3921 0,
3922 64 * 1024);
3923 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3924 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3925 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3926 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3927 }
3928
3929
3930 cnt = tcp_hashinfo.ehash_mask + 1;
3931 sysctl_tcp_max_orphans = cnt / 2;
3932
3933 tcp_init_mem();
3934 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3935 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3936 max_wshare = min(4UL*1024*1024, limit);
3937 max_rshare = min(6UL*1024*1024, limit);
3938
3939 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3940 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
3941 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3942
3943 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3944 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
3945 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
3946
3947 pr_info("Hash tables configured (established %u bind %u)\n",
3948 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3949
3950 tcp_v4_init();
3951 tcp_metrics_init();
3952 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3953 tcp_tasklet_init();
3954 }