]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - net/sunrpc/sched.c
Revert "SUNRPC: Declare RPC timers as TIMER_DEFERRABLE"
[thirdparty/kernel/stable.git] / net / sunrpc / sched.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/net/sunrpc/sched.c
4 *
5 * Scheduling for synchronous and asynchronous RPC requests.
6 *
7 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8 *
9 * TCP NFS related read + write fixes
10 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
11 */
12
13 #include <linux/module.h>
14
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/mempool.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 #include <linux/freezer.h>
23 #include <linux/sched/mm.h>
24
25 #include <linux/sunrpc/clnt.h>
26
27 #include "sunrpc.h"
28
29 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
30 #define RPCDBG_FACILITY RPCDBG_SCHED
31 #endif
32
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/sunrpc.h>
35
36 /*
37 * RPC slabs and memory pools
38 */
39 #define RPC_BUFFER_MAXSIZE (2048)
40 #define RPC_BUFFER_POOLSIZE (8)
41 #define RPC_TASK_POOLSIZE (8)
42 static struct kmem_cache *rpc_task_slabp __read_mostly;
43 static struct kmem_cache *rpc_buffer_slabp __read_mostly;
44 static mempool_t *rpc_task_mempool __read_mostly;
45 static mempool_t *rpc_buffer_mempool __read_mostly;
46
47 static void rpc_async_schedule(struct work_struct *);
48 static void rpc_release_task(struct rpc_task *task);
49 static void __rpc_queue_timer_fn(struct timer_list *t);
50
51 /*
52 * RPC tasks sit here while waiting for conditions to improve.
53 */
54 static struct rpc_wait_queue delay_queue;
55
56 /*
57 * rpciod-related stuff
58 */
59 struct workqueue_struct *rpciod_workqueue __read_mostly;
60 struct workqueue_struct *xprtiod_workqueue __read_mostly;
61
62 unsigned long
63 rpc_task_timeout(const struct rpc_task *task)
64 {
65 unsigned long timeout = READ_ONCE(task->tk_timeout);
66
67 if (timeout != 0) {
68 unsigned long now = jiffies;
69 if (time_before(now, timeout))
70 return timeout - now;
71 }
72 return 0;
73 }
74 EXPORT_SYMBOL_GPL(rpc_task_timeout);
75
76 /*
77 * Disable the timer for a given RPC task. Should be called with
78 * queue->lock and bh_disabled in order to avoid races within
79 * rpc_run_timer().
80 */
81 static void
82 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
83 {
84 if (list_empty(&task->u.tk_wait.timer_list))
85 return;
86 dprintk("RPC: %5u disabling timer\n", task->tk_pid);
87 task->tk_timeout = 0;
88 list_del(&task->u.tk_wait.timer_list);
89 if (list_empty(&queue->timer_list.list))
90 del_timer(&queue->timer_list.timer);
91 }
92
93 static void
94 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
95 {
96 timer_reduce(&queue->timer_list.timer, expires);
97 }
98
99 /*
100 * Set up a timer for the current task.
101 */
102 static void
103 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
104 unsigned long timeout)
105 {
106 dprintk("RPC: %5u setting alarm for %u ms\n",
107 task->tk_pid, jiffies_to_msecs(timeout - jiffies));
108
109 task->tk_timeout = timeout;
110 rpc_set_queue_timer(queue, timeout);
111 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
112 }
113
114 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
115 {
116 if (queue->priority != priority) {
117 queue->priority = priority;
118 queue->nr = 1U << priority;
119 }
120 }
121
122 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
123 {
124 rpc_set_waitqueue_priority(queue, queue->maxpriority);
125 }
126
127 /*
128 * Add a request to a queue list
129 */
130 static void
131 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
132 {
133 struct rpc_task *t;
134
135 list_for_each_entry(t, q, u.tk_wait.list) {
136 if (t->tk_owner == task->tk_owner) {
137 list_add_tail(&task->u.tk_wait.links,
138 &t->u.tk_wait.links);
139 /* Cache the queue head in task->u.tk_wait.list */
140 task->u.tk_wait.list.next = q;
141 task->u.tk_wait.list.prev = NULL;
142 return;
143 }
144 }
145 INIT_LIST_HEAD(&task->u.tk_wait.links);
146 list_add_tail(&task->u.tk_wait.list, q);
147 }
148
149 /*
150 * Remove request from a queue list
151 */
152 static void
153 __rpc_list_dequeue_task(struct rpc_task *task)
154 {
155 struct list_head *q;
156 struct rpc_task *t;
157
158 if (task->u.tk_wait.list.prev == NULL) {
159 list_del(&task->u.tk_wait.links);
160 return;
161 }
162 if (!list_empty(&task->u.tk_wait.links)) {
163 t = list_first_entry(&task->u.tk_wait.links,
164 struct rpc_task,
165 u.tk_wait.links);
166 /* Assume __rpc_list_enqueue_task() cached the queue head */
167 q = t->u.tk_wait.list.next;
168 list_add_tail(&t->u.tk_wait.list, q);
169 list_del(&task->u.tk_wait.links);
170 }
171 list_del(&task->u.tk_wait.list);
172 }
173
174 /*
175 * Add new request to a priority queue.
176 */
177 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
178 struct rpc_task *task,
179 unsigned char queue_priority)
180 {
181 if (unlikely(queue_priority > queue->maxpriority))
182 queue_priority = queue->maxpriority;
183 __rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
184 }
185
186 /*
187 * Add new request to wait queue.
188 *
189 * Swapper tasks always get inserted at the head of the queue.
190 * This should avoid many nasty memory deadlocks and hopefully
191 * improve overall performance.
192 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
193 */
194 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
195 struct rpc_task *task,
196 unsigned char queue_priority)
197 {
198 WARN_ON_ONCE(RPC_IS_QUEUED(task));
199 if (RPC_IS_QUEUED(task))
200 return;
201
202 INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
203 if (RPC_IS_PRIORITY(queue))
204 __rpc_add_wait_queue_priority(queue, task, queue_priority);
205 else if (RPC_IS_SWAPPER(task))
206 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
207 else
208 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
209 task->tk_waitqueue = queue;
210 queue->qlen++;
211 /* barrier matches the read in rpc_wake_up_task_queue_locked() */
212 smp_wmb();
213 rpc_set_queued(task);
214
215 dprintk("RPC: %5u added to queue %p \"%s\"\n",
216 task->tk_pid, queue, rpc_qname(queue));
217 }
218
219 /*
220 * Remove request from a priority queue.
221 */
222 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
223 {
224 __rpc_list_dequeue_task(task);
225 }
226
227 /*
228 * Remove request from queue.
229 * Note: must be called with spin lock held.
230 */
231 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
232 {
233 __rpc_disable_timer(queue, task);
234 if (RPC_IS_PRIORITY(queue))
235 __rpc_remove_wait_queue_priority(task);
236 else
237 list_del(&task->u.tk_wait.list);
238 queue->qlen--;
239 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
240 task->tk_pid, queue, rpc_qname(queue));
241 }
242
243 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
244 {
245 int i;
246
247 spin_lock_init(&queue->lock);
248 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
249 INIT_LIST_HEAD(&queue->tasks[i]);
250 queue->maxpriority = nr_queues - 1;
251 rpc_reset_waitqueue_priority(queue);
252 queue->qlen = 0;
253 timer_setup(&queue->timer_list.timer, __rpc_queue_timer_fn, 0);
254 INIT_LIST_HEAD(&queue->timer_list.list);
255 rpc_assign_waitqueue_name(queue, qname);
256 }
257
258 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
259 {
260 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
261 }
262 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
263
264 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
265 {
266 __rpc_init_priority_wait_queue(queue, qname, 1);
267 }
268 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
269
270 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
271 {
272 del_timer_sync(&queue->timer_list.timer);
273 }
274 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
275
276 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
277 {
278 freezable_schedule_unsafe();
279 if (signal_pending_state(mode, current))
280 return -ERESTARTSYS;
281 return 0;
282 }
283
284 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
285 static void rpc_task_set_debuginfo(struct rpc_task *task)
286 {
287 static atomic_t rpc_pid;
288
289 task->tk_pid = atomic_inc_return(&rpc_pid);
290 }
291 #else
292 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
293 {
294 }
295 #endif
296
297 static void rpc_set_active(struct rpc_task *task)
298 {
299 rpc_task_set_debuginfo(task);
300 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
301 trace_rpc_task_begin(task, NULL);
302 }
303
304 /*
305 * Mark an RPC call as having completed by clearing the 'active' bit
306 * and then waking up all tasks that were sleeping.
307 */
308 static int rpc_complete_task(struct rpc_task *task)
309 {
310 void *m = &task->tk_runstate;
311 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
312 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
313 unsigned long flags;
314 int ret;
315
316 trace_rpc_task_complete(task, NULL);
317
318 spin_lock_irqsave(&wq->lock, flags);
319 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
320 ret = atomic_dec_and_test(&task->tk_count);
321 if (waitqueue_active(wq))
322 __wake_up_locked_key(wq, TASK_NORMAL, &k);
323 spin_unlock_irqrestore(&wq->lock, flags);
324 return ret;
325 }
326
327 /*
328 * Allow callers to wait for completion of an RPC call
329 *
330 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
331 * to enforce taking of the wq->lock and hence avoid races with
332 * rpc_complete_task().
333 */
334 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
335 {
336 if (action == NULL)
337 action = rpc_wait_bit_killable;
338 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
339 action, TASK_KILLABLE);
340 }
341 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
342
343 /*
344 * Make an RPC task runnable.
345 *
346 * Note: If the task is ASYNC, and is being made runnable after sitting on an
347 * rpc_wait_queue, this must be called with the queue spinlock held to protect
348 * the wait queue operation.
349 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
350 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
351 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
352 * the RPC_TASK_RUNNING flag.
353 */
354 static void rpc_make_runnable(struct workqueue_struct *wq,
355 struct rpc_task *task)
356 {
357 bool need_wakeup = !rpc_test_and_set_running(task);
358
359 rpc_clear_queued(task);
360 if (!need_wakeup)
361 return;
362 if (RPC_IS_ASYNC(task)) {
363 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
364 queue_work(wq, &task->u.tk_work);
365 } else
366 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
367 }
368
369 /*
370 * Prepare for sleeping on a wait queue.
371 * By always appending tasks to the list we ensure FIFO behavior.
372 * NB: An RPC task will only receive interrupt-driven events as long
373 * as it's on a wait queue.
374 */
375 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
376 struct rpc_task *task,
377 unsigned char queue_priority)
378 {
379 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
380 task->tk_pid, rpc_qname(q), jiffies);
381
382 trace_rpc_task_sleep(task, q);
383
384 __rpc_add_wait_queue(q, task, queue_priority);
385
386 }
387
388 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
389 struct rpc_task *task, unsigned long timeout,
390 unsigned char queue_priority)
391 {
392 if (time_is_after_jiffies(timeout)) {
393 __rpc_sleep_on_priority(q, task, queue_priority);
394 __rpc_add_timer(q, task, timeout);
395 } else
396 task->tk_status = -ETIMEDOUT;
397 }
398
399 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
400 {
401 if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
402 task->tk_callback = action;
403 }
404
405 static bool rpc_sleep_check_activated(struct rpc_task *task)
406 {
407 /* We shouldn't ever put an inactive task to sleep */
408 if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
409 task->tk_status = -EIO;
410 rpc_put_task_async(task);
411 return false;
412 }
413 return true;
414 }
415
416 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
417 rpc_action action, unsigned long timeout)
418 {
419 if (!rpc_sleep_check_activated(task))
420 return;
421
422 rpc_set_tk_callback(task, action);
423
424 /*
425 * Protect the queue operations.
426 */
427 spin_lock_bh(&q->lock);
428 __rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
429 spin_unlock_bh(&q->lock);
430 }
431 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
432
433 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
434 rpc_action action)
435 {
436 if (!rpc_sleep_check_activated(task))
437 return;
438
439 rpc_set_tk_callback(task, action);
440
441 WARN_ON_ONCE(task->tk_timeout != 0);
442 /*
443 * Protect the queue operations.
444 */
445 spin_lock_bh(&q->lock);
446 __rpc_sleep_on_priority(q, task, task->tk_priority);
447 spin_unlock_bh(&q->lock);
448 }
449 EXPORT_SYMBOL_GPL(rpc_sleep_on);
450
451 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
452 struct rpc_task *task, unsigned long timeout, int priority)
453 {
454 if (!rpc_sleep_check_activated(task))
455 return;
456
457 priority -= RPC_PRIORITY_LOW;
458 /*
459 * Protect the queue operations.
460 */
461 spin_lock_bh(&q->lock);
462 __rpc_sleep_on_priority_timeout(q, task, timeout, priority);
463 spin_unlock_bh(&q->lock);
464 }
465 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
466
467 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
468 int priority)
469 {
470 if (!rpc_sleep_check_activated(task))
471 return;
472
473 WARN_ON_ONCE(task->tk_timeout != 0);
474 priority -= RPC_PRIORITY_LOW;
475 /*
476 * Protect the queue operations.
477 */
478 spin_lock_bh(&q->lock);
479 __rpc_sleep_on_priority(q, task, priority);
480 spin_unlock_bh(&q->lock);
481 }
482 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
483
484 /**
485 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
486 * @wq: workqueue on which to run task
487 * @queue: wait queue
488 * @task: task to be woken up
489 *
490 * Caller must hold queue->lock, and have cleared the task queued flag.
491 */
492 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
493 struct rpc_wait_queue *queue,
494 struct rpc_task *task)
495 {
496 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
497 task->tk_pid, jiffies);
498
499 /* Has the task been executed yet? If not, we cannot wake it up! */
500 if (!RPC_IS_ACTIVATED(task)) {
501 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
502 return;
503 }
504
505 trace_rpc_task_wakeup(task, queue);
506
507 __rpc_remove_wait_queue(queue, task);
508
509 rpc_make_runnable(wq, task);
510
511 dprintk("RPC: __rpc_wake_up_task done\n");
512 }
513
514 /*
515 * Wake up a queued task while the queue lock is being held
516 */
517 static struct rpc_task *
518 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
519 struct rpc_wait_queue *queue, struct rpc_task *task,
520 bool (*action)(struct rpc_task *, void *), void *data)
521 {
522 if (RPC_IS_QUEUED(task)) {
523 smp_rmb();
524 if (task->tk_waitqueue == queue) {
525 if (action == NULL || action(task, data)) {
526 __rpc_do_wake_up_task_on_wq(wq, queue, task);
527 return task;
528 }
529 }
530 }
531 return NULL;
532 }
533
534 static void
535 rpc_wake_up_task_on_wq_queue_locked(struct workqueue_struct *wq,
536 struct rpc_wait_queue *queue, struct rpc_task *task)
537 {
538 rpc_wake_up_task_on_wq_queue_action_locked(wq, queue, task, NULL, NULL);
539 }
540
541 /*
542 * Wake up a queued task while the queue lock is being held
543 */
544 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
545 {
546 rpc_wake_up_task_on_wq_queue_locked(rpciod_workqueue, queue, task);
547 }
548
549 /*
550 * Wake up a task on a specific queue
551 */
552 void rpc_wake_up_queued_task_on_wq(struct workqueue_struct *wq,
553 struct rpc_wait_queue *queue,
554 struct rpc_task *task)
555 {
556 if (!RPC_IS_QUEUED(task))
557 return;
558 spin_lock_bh(&queue->lock);
559 rpc_wake_up_task_on_wq_queue_locked(wq, queue, task);
560 spin_unlock_bh(&queue->lock);
561 }
562
563 /*
564 * Wake up a task on a specific queue
565 */
566 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
567 {
568 if (!RPC_IS_QUEUED(task))
569 return;
570 spin_lock_bh(&queue->lock);
571 rpc_wake_up_task_queue_locked(queue, task);
572 spin_unlock_bh(&queue->lock);
573 }
574 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
575
576 static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
577 {
578 task->tk_status = *(int *)status;
579 return true;
580 }
581
582 static void
583 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
584 struct rpc_task *task, int status)
585 {
586 rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
587 task, rpc_task_action_set_status, &status);
588 }
589
590 /**
591 * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
592 * @queue: pointer to rpc_wait_queue
593 * @task: pointer to rpc_task
594 * @status: integer error value
595 *
596 * If @task is queued on @queue, then it is woken up, and @task->tk_status is
597 * set to the value of @status.
598 */
599 void
600 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
601 struct rpc_task *task, int status)
602 {
603 if (!RPC_IS_QUEUED(task))
604 return;
605 spin_lock_bh(&queue->lock);
606 rpc_wake_up_task_queue_set_status_locked(queue, task, status);
607 spin_unlock_bh(&queue->lock);
608 }
609
610 /*
611 * Wake up the next task on a priority queue.
612 */
613 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
614 {
615 struct list_head *q;
616 struct rpc_task *task;
617
618 /*
619 * Service a batch of tasks from a single owner.
620 */
621 q = &queue->tasks[queue->priority];
622 if (!list_empty(q) && --queue->nr) {
623 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
624 goto out;
625 }
626
627 /*
628 * Service the next queue.
629 */
630 do {
631 if (q == &queue->tasks[0])
632 q = &queue->tasks[queue->maxpriority];
633 else
634 q = q - 1;
635 if (!list_empty(q)) {
636 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
637 goto new_queue;
638 }
639 } while (q != &queue->tasks[queue->priority]);
640
641 rpc_reset_waitqueue_priority(queue);
642 return NULL;
643
644 new_queue:
645 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
646 out:
647 return task;
648 }
649
650 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
651 {
652 if (RPC_IS_PRIORITY(queue))
653 return __rpc_find_next_queued_priority(queue);
654 if (!list_empty(&queue->tasks[0]))
655 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
656 return NULL;
657 }
658
659 /*
660 * Wake up the first task on the wait queue.
661 */
662 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
663 struct rpc_wait_queue *queue,
664 bool (*func)(struct rpc_task *, void *), void *data)
665 {
666 struct rpc_task *task = NULL;
667
668 dprintk("RPC: wake_up_first(%p \"%s\")\n",
669 queue, rpc_qname(queue));
670 spin_lock_bh(&queue->lock);
671 task = __rpc_find_next_queued(queue);
672 if (task != NULL)
673 task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
674 task, func, data);
675 spin_unlock_bh(&queue->lock);
676
677 return task;
678 }
679
680 /*
681 * Wake up the first task on the wait queue.
682 */
683 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
684 bool (*func)(struct rpc_task *, void *), void *data)
685 {
686 return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
687 }
688 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
689
690 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
691 {
692 return true;
693 }
694
695 /*
696 * Wake up the next task on the wait queue.
697 */
698 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
699 {
700 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
701 }
702 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
703
704 /**
705 * rpc_wake_up - wake up all rpc_tasks
706 * @queue: rpc_wait_queue on which the tasks are sleeping
707 *
708 * Grabs queue->lock
709 */
710 void rpc_wake_up(struct rpc_wait_queue *queue)
711 {
712 struct list_head *head;
713
714 spin_lock_bh(&queue->lock);
715 head = &queue->tasks[queue->maxpriority];
716 for (;;) {
717 while (!list_empty(head)) {
718 struct rpc_task *task;
719 task = list_first_entry(head,
720 struct rpc_task,
721 u.tk_wait.list);
722 rpc_wake_up_task_queue_locked(queue, task);
723 }
724 if (head == &queue->tasks[0])
725 break;
726 head--;
727 }
728 spin_unlock_bh(&queue->lock);
729 }
730 EXPORT_SYMBOL_GPL(rpc_wake_up);
731
732 /**
733 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
734 * @queue: rpc_wait_queue on which the tasks are sleeping
735 * @status: status value to set
736 *
737 * Grabs queue->lock
738 */
739 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
740 {
741 struct list_head *head;
742
743 spin_lock_bh(&queue->lock);
744 head = &queue->tasks[queue->maxpriority];
745 for (;;) {
746 while (!list_empty(head)) {
747 struct rpc_task *task;
748 task = list_first_entry(head,
749 struct rpc_task,
750 u.tk_wait.list);
751 task->tk_status = status;
752 rpc_wake_up_task_queue_locked(queue, task);
753 }
754 if (head == &queue->tasks[0])
755 break;
756 head--;
757 }
758 spin_unlock_bh(&queue->lock);
759 }
760 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
761
762 static void __rpc_queue_timer_fn(struct timer_list *t)
763 {
764 struct rpc_wait_queue *queue = from_timer(queue, t, timer_list.timer);
765 struct rpc_task *task, *n;
766 unsigned long expires, now, timeo;
767
768 spin_lock(&queue->lock);
769 expires = now = jiffies;
770 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
771 timeo = task->tk_timeout;
772 if (time_after_eq(now, timeo)) {
773 dprintk("RPC: %5u timeout\n", task->tk_pid);
774 task->tk_status = -ETIMEDOUT;
775 rpc_wake_up_task_queue_locked(queue, task);
776 continue;
777 }
778 if (expires == now || time_after(expires, timeo))
779 expires = timeo;
780 }
781 if (!list_empty(&queue->timer_list.list))
782 rpc_set_queue_timer(queue, expires);
783 spin_unlock(&queue->lock);
784 }
785
786 static void __rpc_atrun(struct rpc_task *task)
787 {
788 if (task->tk_status == -ETIMEDOUT)
789 task->tk_status = 0;
790 }
791
792 /*
793 * Run a task at a later time
794 */
795 void rpc_delay(struct rpc_task *task, unsigned long delay)
796 {
797 rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
798 }
799 EXPORT_SYMBOL_GPL(rpc_delay);
800
801 /*
802 * Helper to call task->tk_ops->rpc_call_prepare
803 */
804 void rpc_prepare_task(struct rpc_task *task)
805 {
806 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
807 }
808
809 static void
810 rpc_init_task_statistics(struct rpc_task *task)
811 {
812 /* Initialize retry counters */
813 task->tk_garb_retry = 2;
814 task->tk_cred_retry = 2;
815 task->tk_rebind_retry = 2;
816
817 /* starting timestamp */
818 task->tk_start = ktime_get();
819 }
820
821 static void
822 rpc_reset_task_statistics(struct rpc_task *task)
823 {
824 task->tk_timeouts = 0;
825 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
826 rpc_init_task_statistics(task);
827 }
828
829 /*
830 * Helper that calls task->tk_ops->rpc_call_done if it exists
831 */
832 void rpc_exit_task(struct rpc_task *task)
833 {
834 task->tk_action = NULL;
835 if (task->tk_ops->rpc_call_done != NULL) {
836 task->tk_ops->rpc_call_done(task, task->tk_calldata);
837 if (task->tk_action != NULL) {
838 /* Always release the RPC slot and buffer memory */
839 xprt_release(task);
840 rpc_reset_task_statistics(task);
841 }
842 }
843 }
844
845 void rpc_signal_task(struct rpc_task *task)
846 {
847 struct rpc_wait_queue *queue;
848
849 if (!RPC_IS_ACTIVATED(task))
850 return;
851 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
852 smp_mb__after_atomic();
853 queue = READ_ONCE(task->tk_waitqueue);
854 if (queue)
855 rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
856 }
857
858 void rpc_exit(struct rpc_task *task, int status)
859 {
860 task->tk_status = status;
861 task->tk_action = rpc_exit_task;
862 rpc_wake_up_queued_task(task->tk_waitqueue, task);
863 }
864 EXPORT_SYMBOL_GPL(rpc_exit);
865
866 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
867 {
868 if (ops->rpc_release != NULL)
869 ops->rpc_release(calldata);
870 }
871
872 /*
873 * This is the RPC `scheduler' (or rather, the finite state machine).
874 */
875 static void __rpc_execute(struct rpc_task *task)
876 {
877 struct rpc_wait_queue *queue;
878 int task_is_async = RPC_IS_ASYNC(task);
879 int status = 0;
880
881 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
882 task->tk_pid, task->tk_flags);
883
884 WARN_ON_ONCE(RPC_IS_QUEUED(task));
885 if (RPC_IS_QUEUED(task))
886 return;
887
888 for (;;) {
889 void (*do_action)(struct rpc_task *);
890
891 /*
892 * Perform the next FSM step or a pending callback.
893 *
894 * tk_action may be NULL if the task has been killed.
895 * In particular, note that rpc_killall_tasks may
896 * do this at any time, so beware when dereferencing.
897 */
898 do_action = task->tk_action;
899 if (task->tk_callback) {
900 do_action = task->tk_callback;
901 task->tk_callback = NULL;
902 }
903 if (!do_action)
904 break;
905 trace_rpc_task_run_action(task, do_action);
906 do_action(task);
907
908 /*
909 * Lockless check for whether task is sleeping or not.
910 */
911 if (!RPC_IS_QUEUED(task))
912 continue;
913
914 /*
915 * Signalled tasks should exit rather than sleep.
916 */
917 if (RPC_SIGNALLED(task))
918 rpc_exit(task, -ERESTARTSYS);
919
920 /*
921 * The queue->lock protects against races with
922 * rpc_make_runnable().
923 *
924 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
925 * rpc_task, rpc_make_runnable() can assign it to a
926 * different workqueue. We therefore cannot assume that the
927 * rpc_task pointer may still be dereferenced.
928 */
929 queue = task->tk_waitqueue;
930 spin_lock_bh(&queue->lock);
931 if (!RPC_IS_QUEUED(task)) {
932 spin_unlock_bh(&queue->lock);
933 continue;
934 }
935 rpc_clear_running(task);
936 spin_unlock_bh(&queue->lock);
937 if (task_is_async)
938 return;
939
940 /* sync task: sleep here */
941 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
942 status = out_of_line_wait_on_bit(&task->tk_runstate,
943 RPC_TASK_QUEUED, rpc_wait_bit_killable,
944 TASK_KILLABLE);
945 if (status < 0) {
946 /*
947 * When a sync task receives a signal, it exits with
948 * -ERESTARTSYS. In order to catch any callbacks that
949 * clean up after sleeping on some queue, we don't
950 * break the loop here, but go around once more.
951 */
952 dprintk("RPC: %5u got signal\n", task->tk_pid);
953 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
954 rpc_exit(task, -ERESTARTSYS);
955 }
956 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
957 }
958
959 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
960 task->tk_status);
961 /* Release all resources associated with the task */
962 rpc_release_task(task);
963 }
964
965 /*
966 * User-visible entry point to the scheduler.
967 *
968 * This may be called recursively if e.g. an async NFS task updates
969 * the attributes and finds that dirty pages must be flushed.
970 * NOTE: Upon exit of this function the task is guaranteed to be
971 * released. In particular note that tk_release() will have
972 * been called, so your task memory may have been freed.
973 */
974 void rpc_execute(struct rpc_task *task)
975 {
976 bool is_async = RPC_IS_ASYNC(task);
977
978 rpc_set_active(task);
979 rpc_make_runnable(rpciod_workqueue, task);
980 if (!is_async)
981 __rpc_execute(task);
982 }
983
984 static void rpc_async_schedule(struct work_struct *work)
985 {
986 unsigned int pflags = memalloc_nofs_save();
987
988 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
989 memalloc_nofs_restore(pflags);
990 }
991
992 /**
993 * rpc_malloc - allocate RPC buffer resources
994 * @task: RPC task
995 *
996 * A single memory region is allocated, which is split between the
997 * RPC call and RPC reply that this task is being used for. When
998 * this RPC is retired, the memory is released by calling rpc_free.
999 *
1000 * To prevent rpciod from hanging, this allocator never sleeps,
1001 * returning -ENOMEM and suppressing warning if the request cannot
1002 * be serviced immediately. The caller can arrange to sleep in a
1003 * way that is safe for rpciod.
1004 *
1005 * Most requests are 'small' (under 2KiB) and can be serviced from a
1006 * mempool, ensuring that NFS reads and writes can always proceed,
1007 * and that there is good locality of reference for these buffers.
1008 */
1009 int rpc_malloc(struct rpc_task *task)
1010 {
1011 struct rpc_rqst *rqst = task->tk_rqstp;
1012 size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1013 struct rpc_buffer *buf;
1014 gfp_t gfp = GFP_NOFS;
1015
1016 if (RPC_IS_SWAPPER(task))
1017 gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
1018
1019 size += sizeof(struct rpc_buffer);
1020 if (size <= RPC_BUFFER_MAXSIZE)
1021 buf = mempool_alloc(rpc_buffer_mempool, gfp);
1022 else
1023 buf = kmalloc(size, gfp);
1024
1025 if (!buf)
1026 return -ENOMEM;
1027
1028 buf->len = size;
1029 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
1030 task->tk_pid, size, buf);
1031 rqst->rq_buffer = buf->data;
1032 rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1033 return 0;
1034 }
1035 EXPORT_SYMBOL_GPL(rpc_malloc);
1036
1037 /**
1038 * rpc_free - free RPC buffer resources allocated via rpc_malloc
1039 * @task: RPC task
1040 *
1041 */
1042 void rpc_free(struct rpc_task *task)
1043 {
1044 void *buffer = task->tk_rqstp->rq_buffer;
1045 size_t size;
1046 struct rpc_buffer *buf;
1047
1048 buf = container_of(buffer, struct rpc_buffer, data);
1049 size = buf->len;
1050
1051 dprintk("RPC: freeing buffer of size %zu at %p\n",
1052 size, buf);
1053
1054 if (size <= RPC_BUFFER_MAXSIZE)
1055 mempool_free(buf, rpc_buffer_mempool);
1056 else
1057 kfree(buf);
1058 }
1059 EXPORT_SYMBOL_GPL(rpc_free);
1060
1061 /*
1062 * Creation and deletion of RPC task structures
1063 */
1064 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1065 {
1066 memset(task, 0, sizeof(*task));
1067 atomic_set(&task->tk_count, 1);
1068 task->tk_flags = task_setup_data->flags;
1069 task->tk_ops = task_setup_data->callback_ops;
1070 task->tk_calldata = task_setup_data->callback_data;
1071 INIT_LIST_HEAD(&task->tk_task);
1072
1073 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1074 task->tk_owner = current->tgid;
1075
1076 /* Initialize workqueue for async tasks */
1077 task->tk_workqueue = task_setup_data->workqueue;
1078
1079 task->tk_xprt = xprt_get(task_setup_data->rpc_xprt);
1080
1081 task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1082
1083 if (task->tk_ops->rpc_call_prepare != NULL)
1084 task->tk_action = rpc_prepare_task;
1085
1086 rpc_init_task_statistics(task);
1087
1088 dprintk("RPC: new task initialized, procpid %u\n",
1089 task_pid_nr(current));
1090 }
1091
1092 static struct rpc_task *
1093 rpc_alloc_task(void)
1094 {
1095 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
1096 }
1097
1098 /*
1099 * Create a new task for the specified client.
1100 */
1101 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1102 {
1103 struct rpc_task *task = setup_data->task;
1104 unsigned short flags = 0;
1105
1106 if (task == NULL) {
1107 task = rpc_alloc_task();
1108 flags = RPC_TASK_DYNAMIC;
1109 }
1110
1111 rpc_init_task(task, setup_data);
1112 task->tk_flags |= flags;
1113 dprintk("RPC: allocated task %p\n", task);
1114 return task;
1115 }
1116
1117 /*
1118 * rpc_free_task - release rpc task and perform cleanups
1119 *
1120 * Note that we free up the rpc_task _after_ rpc_release_calldata()
1121 * in order to work around a workqueue dependency issue.
1122 *
1123 * Tejun Heo states:
1124 * "Workqueue currently considers two work items to be the same if they're
1125 * on the same address and won't execute them concurrently - ie. it
1126 * makes a work item which is queued again while being executed wait
1127 * for the previous execution to complete.
1128 *
1129 * If a work function frees the work item, and then waits for an event
1130 * which should be performed by another work item and *that* work item
1131 * recycles the freed work item, it can create a false dependency loop.
1132 * There really is no reliable way to detect this short of verifying
1133 * every memory free."
1134 *
1135 */
1136 static void rpc_free_task(struct rpc_task *task)
1137 {
1138 unsigned short tk_flags = task->tk_flags;
1139
1140 put_rpccred(task->tk_op_cred);
1141 rpc_release_calldata(task->tk_ops, task->tk_calldata);
1142
1143 if (tk_flags & RPC_TASK_DYNAMIC) {
1144 dprintk("RPC: %5u freeing task\n", task->tk_pid);
1145 mempool_free(task, rpc_task_mempool);
1146 }
1147 }
1148
1149 static void rpc_async_release(struct work_struct *work)
1150 {
1151 unsigned int pflags = memalloc_nofs_save();
1152
1153 rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1154 memalloc_nofs_restore(pflags);
1155 }
1156
1157 static void rpc_release_resources_task(struct rpc_task *task)
1158 {
1159 xprt_release(task);
1160 if (task->tk_msg.rpc_cred) {
1161 put_cred(task->tk_msg.rpc_cred);
1162 task->tk_msg.rpc_cred = NULL;
1163 }
1164 rpc_task_release_client(task);
1165 }
1166
1167 static void rpc_final_put_task(struct rpc_task *task,
1168 struct workqueue_struct *q)
1169 {
1170 if (q != NULL) {
1171 INIT_WORK(&task->u.tk_work, rpc_async_release);
1172 queue_work(q, &task->u.tk_work);
1173 } else
1174 rpc_free_task(task);
1175 }
1176
1177 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1178 {
1179 if (atomic_dec_and_test(&task->tk_count)) {
1180 rpc_release_resources_task(task);
1181 rpc_final_put_task(task, q);
1182 }
1183 }
1184
1185 void rpc_put_task(struct rpc_task *task)
1186 {
1187 rpc_do_put_task(task, NULL);
1188 }
1189 EXPORT_SYMBOL_GPL(rpc_put_task);
1190
1191 void rpc_put_task_async(struct rpc_task *task)
1192 {
1193 rpc_do_put_task(task, task->tk_workqueue);
1194 }
1195 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1196
1197 static void rpc_release_task(struct rpc_task *task)
1198 {
1199 dprintk("RPC: %5u release task\n", task->tk_pid);
1200
1201 WARN_ON_ONCE(RPC_IS_QUEUED(task));
1202
1203 rpc_release_resources_task(task);
1204
1205 /*
1206 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1207 * so it should be safe to use task->tk_count as a test for whether
1208 * or not any other processes still hold references to our rpc_task.
1209 */
1210 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1211 /* Wake up anyone who may be waiting for task completion */
1212 if (!rpc_complete_task(task))
1213 return;
1214 } else {
1215 if (!atomic_dec_and_test(&task->tk_count))
1216 return;
1217 }
1218 rpc_final_put_task(task, task->tk_workqueue);
1219 }
1220
1221 int rpciod_up(void)
1222 {
1223 return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1224 }
1225
1226 void rpciod_down(void)
1227 {
1228 module_put(THIS_MODULE);
1229 }
1230
1231 /*
1232 * Start up the rpciod workqueue.
1233 */
1234 static int rpciod_start(void)
1235 {
1236 struct workqueue_struct *wq;
1237
1238 /*
1239 * Create the rpciod thread and wait for it to start.
1240 */
1241 dprintk("RPC: creating workqueue rpciod\n");
1242 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1243 if (!wq)
1244 goto out_failed;
1245 rpciod_workqueue = wq;
1246 /* Note: highpri because network receive is latency sensitive */
1247 wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1248 if (!wq)
1249 goto free_rpciod;
1250 xprtiod_workqueue = wq;
1251 return 1;
1252 free_rpciod:
1253 wq = rpciod_workqueue;
1254 rpciod_workqueue = NULL;
1255 destroy_workqueue(wq);
1256 out_failed:
1257 return 0;
1258 }
1259
1260 static void rpciod_stop(void)
1261 {
1262 struct workqueue_struct *wq = NULL;
1263
1264 if (rpciod_workqueue == NULL)
1265 return;
1266 dprintk("RPC: destroying workqueue rpciod\n");
1267
1268 wq = rpciod_workqueue;
1269 rpciod_workqueue = NULL;
1270 destroy_workqueue(wq);
1271 wq = xprtiod_workqueue;
1272 xprtiod_workqueue = NULL;
1273 destroy_workqueue(wq);
1274 }
1275
1276 void
1277 rpc_destroy_mempool(void)
1278 {
1279 rpciod_stop();
1280 mempool_destroy(rpc_buffer_mempool);
1281 mempool_destroy(rpc_task_mempool);
1282 kmem_cache_destroy(rpc_task_slabp);
1283 kmem_cache_destroy(rpc_buffer_slabp);
1284 rpc_destroy_wait_queue(&delay_queue);
1285 }
1286
1287 int
1288 rpc_init_mempool(void)
1289 {
1290 /*
1291 * The following is not strictly a mempool initialisation,
1292 * but there is no harm in doing it here
1293 */
1294 rpc_init_wait_queue(&delay_queue, "delayq");
1295 if (!rpciod_start())
1296 goto err_nomem;
1297
1298 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1299 sizeof(struct rpc_task),
1300 0, SLAB_HWCACHE_ALIGN,
1301 NULL);
1302 if (!rpc_task_slabp)
1303 goto err_nomem;
1304 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1305 RPC_BUFFER_MAXSIZE,
1306 0, SLAB_HWCACHE_ALIGN,
1307 NULL);
1308 if (!rpc_buffer_slabp)
1309 goto err_nomem;
1310 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1311 rpc_task_slabp);
1312 if (!rpc_task_mempool)
1313 goto err_nomem;
1314 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1315 rpc_buffer_slabp);
1316 if (!rpc_buffer_mempool)
1317 goto err_nomem;
1318 return 0;
1319 err_nomem:
1320 rpc_destroy_mempool();
1321 return -ENOMEM;
1322 }