]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - net/sunrpc/xprtrdma/rpc_rdma.c
xprtrdma: Replace rpcrdma_receive_wq with a per-xprt workqueue
[thirdparty/kernel/stable.git] / net / sunrpc / xprtrdma / rpc_rdma.c
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3 * Copyright (c) 2014-2017 Oracle. All rights reserved.
4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the BSD-type
10 * license below:
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 *
16 * Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 *
19 * Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials provided
22 * with the distribution.
23 *
24 * Neither the name of the Network Appliance, Inc. nor the names of
25 * its contributors may be used to endorse or promote products
26 * derived from this software without specific prior written
27 * permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42 /*
43 * rpc_rdma.c
44 *
45 * This file contains the guts of the RPC RDMA protocol, and
46 * does marshaling/unmarshaling, etc. It is also where interfacing
47 * to the Linux RPC framework lives.
48 */
49
50 #include <linux/highmem.h>
51
52 #include <linux/sunrpc/svc_rdma.h>
53
54 #include "xprt_rdma.h"
55 #include <trace/events/rpcrdma.h>
56
57 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
58 # define RPCDBG_FACILITY RPCDBG_TRANS
59 #endif
60
61 /* Returns size of largest RPC-over-RDMA header in a Call message
62 *
63 * The largest Call header contains a full-size Read list and a
64 * minimal Reply chunk.
65 */
66 static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs)
67 {
68 unsigned int size;
69
70 /* Fixed header fields and list discriminators */
71 size = RPCRDMA_HDRLEN_MIN;
72
73 /* Maximum Read list size */
74 size = maxsegs * rpcrdma_readchunk_maxsz * sizeof(__be32);
75
76 /* Minimal Read chunk size */
77 size += sizeof(__be32); /* segment count */
78 size += rpcrdma_segment_maxsz * sizeof(__be32);
79 size += sizeof(__be32); /* list discriminator */
80
81 dprintk("RPC: %s: max call header size = %u\n",
82 __func__, size);
83 return size;
84 }
85
86 /* Returns size of largest RPC-over-RDMA header in a Reply message
87 *
88 * There is only one Write list or one Reply chunk per Reply
89 * message. The larger list is the Write list.
90 */
91 static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs)
92 {
93 unsigned int size;
94
95 /* Fixed header fields and list discriminators */
96 size = RPCRDMA_HDRLEN_MIN;
97
98 /* Maximum Write list size */
99 size = sizeof(__be32); /* segment count */
100 size += maxsegs * rpcrdma_segment_maxsz * sizeof(__be32);
101 size += sizeof(__be32); /* list discriminator */
102
103 dprintk("RPC: %s: max reply header size = %u\n",
104 __func__, size);
105 return size;
106 }
107
108 void rpcrdma_set_max_header_sizes(struct rpcrdma_xprt *r_xprt)
109 {
110 struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data;
111 struct rpcrdma_ia *ia = &r_xprt->rx_ia;
112 unsigned int maxsegs = ia->ri_max_segs;
113
114 ia->ri_max_inline_write = cdata->inline_wsize -
115 rpcrdma_max_call_header_size(maxsegs);
116 ia->ri_max_inline_read = cdata->inline_rsize -
117 rpcrdma_max_reply_header_size(maxsegs);
118 }
119
120 /* The client can send a request inline as long as the RPCRDMA header
121 * plus the RPC call fit under the transport's inline limit. If the
122 * combined call message size exceeds that limit, the client must use
123 * a Read chunk for this operation.
124 *
125 * A Read chunk is also required if sending the RPC call inline would
126 * exceed this device's max_sge limit.
127 */
128 static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt,
129 struct rpc_rqst *rqst)
130 {
131 struct xdr_buf *xdr = &rqst->rq_snd_buf;
132 unsigned int count, remaining, offset;
133
134 if (xdr->len > r_xprt->rx_ia.ri_max_inline_write)
135 return false;
136
137 if (xdr->page_len) {
138 remaining = xdr->page_len;
139 offset = offset_in_page(xdr->page_base);
140 count = RPCRDMA_MIN_SEND_SGES;
141 while (remaining) {
142 remaining -= min_t(unsigned int,
143 PAGE_SIZE - offset, remaining);
144 offset = 0;
145 if (++count > r_xprt->rx_ia.ri_max_send_sges)
146 return false;
147 }
148 }
149
150 return true;
151 }
152
153 /* The client can't know how large the actual reply will be. Thus it
154 * plans for the largest possible reply for that particular ULP
155 * operation. If the maximum combined reply message size exceeds that
156 * limit, the client must provide a write list or a reply chunk for
157 * this request.
158 */
159 static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt,
160 struct rpc_rqst *rqst)
161 {
162 struct rpcrdma_ia *ia = &r_xprt->rx_ia;
163
164 return rqst->rq_rcv_buf.buflen <= ia->ri_max_inline_read;
165 }
166
167 /* Split @vec on page boundaries into SGEs. FMR registers pages, not
168 * a byte range. Other modes coalesce these SGEs into a single MR
169 * when they can.
170 *
171 * Returns pointer to next available SGE, and bumps the total number
172 * of SGEs consumed.
173 */
174 static struct rpcrdma_mr_seg *
175 rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg,
176 unsigned int *n)
177 {
178 u32 remaining, page_offset;
179 char *base;
180
181 base = vec->iov_base;
182 page_offset = offset_in_page(base);
183 remaining = vec->iov_len;
184 while (remaining) {
185 seg->mr_page = NULL;
186 seg->mr_offset = base;
187 seg->mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining);
188 remaining -= seg->mr_len;
189 base += seg->mr_len;
190 ++seg;
191 ++(*n);
192 page_offset = 0;
193 }
194 return seg;
195 }
196
197 /* Convert @xdrbuf into SGEs no larger than a page each. As they
198 * are registered, these SGEs are then coalesced into RDMA segments
199 * when the selected memreg mode supports it.
200 *
201 * Returns positive number of SGEs consumed, or a negative errno.
202 */
203
204 static int
205 rpcrdma_convert_iovs(struct rpcrdma_xprt *r_xprt, struct xdr_buf *xdrbuf,
206 unsigned int pos, enum rpcrdma_chunktype type,
207 struct rpcrdma_mr_seg *seg)
208 {
209 unsigned long page_base;
210 unsigned int len, n;
211 struct page **ppages;
212
213 n = 0;
214 if (pos == 0)
215 seg = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, &n);
216
217 len = xdrbuf->page_len;
218 ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
219 page_base = offset_in_page(xdrbuf->page_base);
220 while (len) {
221 if (unlikely(!*ppages)) {
222 /* XXX: Certain upper layer operations do
223 * not provide receive buffer pages.
224 */
225 *ppages = alloc_page(GFP_ATOMIC);
226 if (!*ppages)
227 return -ENOBUFS;
228 }
229 seg->mr_page = *ppages;
230 seg->mr_offset = (char *)page_base;
231 seg->mr_len = min_t(u32, PAGE_SIZE - page_base, len);
232 len -= seg->mr_len;
233 ++ppages;
234 ++seg;
235 ++n;
236 page_base = 0;
237 }
238
239 /* When encoding a Read chunk, the tail iovec contains an
240 * XDR pad and may be omitted.
241 */
242 if (type == rpcrdma_readch && r_xprt->rx_ia.ri_implicit_roundup)
243 goto out;
244
245 /* When encoding a Write chunk, some servers need to see an
246 * extra segment for non-XDR-aligned Write chunks. The upper
247 * layer provides space in the tail iovec that may be used
248 * for this purpose.
249 */
250 if (type == rpcrdma_writech && r_xprt->rx_ia.ri_implicit_roundup)
251 goto out;
252
253 if (xdrbuf->tail[0].iov_len)
254 seg = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, &n);
255
256 out:
257 if (unlikely(n > RPCRDMA_MAX_SEGS))
258 return -EIO;
259 return n;
260 }
261
262 static inline int
263 encode_item_present(struct xdr_stream *xdr)
264 {
265 __be32 *p;
266
267 p = xdr_reserve_space(xdr, sizeof(*p));
268 if (unlikely(!p))
269 return -EMSGSIZE;
270
271 *p = xdr_one;
272 return 0;
273 }
274
275 static inline int
276 encode_item_not_present(struct xdr_stream *xdr)
277 {
278 __be32 *p;
279
280 p = xdr_reserve_space(xdr, sizeof(*p));
281 if (unlikely(!p))
282 return -EMSGSIZE;
283
284 *p = xdr_zero;
285 return 0;
286 }
287
288 static void
289 xdr_encode_rdma_segment(__be32 *iptr, struct rpcrdma_mr *mr)
290 {
291 *iptr++ = cpu_to_be32(mr->mr_handle);
292 *iptr++ = cpu_to_be32(mr->mr_length);
293 xdr_encode_hyper(iptr, mr->mr_offset);
294 }
295
296 static int
297 encode_rdma_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr)
298 {
299 __be32 *p;
300
301 p = xdr_reserve_space(xdr, 4 * sizeof(*p));
302 if (unlikely(!p))
303 return -EMSGSIZE;
304
305 xdr_encode_rdma_segment(p, mr);
306 return 0;
307 }
308
309 static int
310 encode_read_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr,
311 u32 position)
312 {
313 __be32 *p;
314
315 p = xdr_reserve_space(xdr, 6 * sizeof(*p));
316 if (unlikely(!p))
317 return -EMSGSIZE;
318
319 *p++ = xdr_one; /* Item present */
320 *p++ = cpu_to_be32(position);
321 xdr_encode_rdma_segment(p, mr);
322 return 0;
323 }
324
325 /* Register and XDR encode the Read list. Supports encoding a list of read
326 * segments that belong to a single read chunk.
327 *
328 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
329 *
330 * Read chunklist (a linked list):
331 * N elements, position P (same P for all chunks of same arg!):
332 * 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
333 *
334 * Returns zero on success, or a negative errno if a failure occurred.
335 * @xdr is advanced to the next position in the stream.
336 *
337 * Only a single @pos value is currently supported.
338 */
339 static noinline int
340 rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
341 struct rpc_rqst *rqst, enum rpcrdma_chunktype rtype)
342 {
343 struct xdr_stream *xdr = &req->rl_stream;
344 struct rpcrdma_mr_seg *seg;
345 struct rpcrdma_mr *mr;
346 unsigned int pos;
347 int nsegs;
348
349 pos = rqst->rq_snd_buf.head[0].iov_len;
350 if (rtype == rpcrdma_areadch)
351 pos = 0;
352 seg = req->rl_segments;
353 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_snd_buf, pos,
354 rtype, seg);
355 if (nsegs < 0)
356 return nsegs;
357
358 do {
359 seg = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
360 false, &mr);
361 if (IS_ERR(seg))
362 return PTR_ERR(seg);
363 rpcrdma_mr_push(mr, &req->rl_registered);
364
365 if (encode_read_segment(xdr, mr, pos) < 0)
366 return -EMSGSIZE;
367
368 trace_xprtrdma_read_chunk(rqst->rq_task, pos, mr, nsegs);
369 r_xprt->rx_stats.read_chunk_count++;
370 nsegs -= mr->mr_nents;
371 } while (nsegs);
372
373 return 0;
374 }
375
376 /* Register and XDR encode the Write list. Supports encoding a list
377 * containing one array of plain segments that belong to a single
378 * write chunk.
379 *
380 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
381 *
382 * Write chunklist (a list of (one) counted array):
383 * N elements:
384 * 1 - N - HLOO - HLOO - ... - HLOO - 0
385 *
386 * Returns zero on success, or a negative errno if a failure occurred.
387 * @xdr is advanced to the next position in the stream.
388 *
389 * Only a single Write chunk is currently supported.
390 */
391 static noinline int
392 rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
393 struct rpc_rqst *rqst, enum rpcrdma_chunktype wtype)
394 {
395 struct xdr_stream *xdr = &req->rl_stream;
396 struct rpcrdma_mr_seg *seg;
397 struct rpcrdma_mr *mr;
398 int nsegs, nchunks;
399 __be32 *segcount;
400
401 seg = req->rl_segments;
402 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf,
403 rqst->rq_rcv_buf.head[0].iov_len,
404 wtype, seg);
405 if (nsegs < 0)
406 return nsegs;
407
408 if (encode_item_present(xdr) < 0)
409 return -EMSGSIZE;
410 segcount = xdr_reserve_space(xdr, sizeof(*segcount));
411 if (unlikely(!segcount))
412 return -EMSGSIZE;
413 /* Actual value encoded below */
414
415 nchunks = 0;
416 do {
417 seg = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
418 true, &mr);
419 if (IS_ERR(seg))
420 return PTR_ERR(seg);
421 rpcrdma_mr_push(mr, &req->rl_registered);
422
423 if (encode_rdma_segment(xdr, mr) < 0)
424 return -EMSGSIZE;
425
426 trace_xprtrdma_write_chunk(rqst->rq_task, mr, nsegs);
427 r_xprt->rx_stats.write_chunk_count++;
428 r_xprt->rx_stats.total_rdma_request += mr->mr_length;
429 nchunks++;
430 nsegs -= mr->mr_nents;
431 } while (nsegs);
432
433 /* Update count of segments in this Write chunk */
434 *segcount = cpu_to_be32(nchunks);
435
436 return 0;
437 }
438
439 /* Register and XDR encode the Reply chunk. Supports encoding an array
440 * of plain segments that belong to a single write (reply) chunk.
441 *
442 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
443 *
444 * Reply chunk (a counted array):
445 * N elements:
446 * 1 - N - HLOO - HLOO - ... - HLOO
447 *
448 * Returns zero on success, or a negative errno if a failure occurred.
449 * @xdr is advanced to the next position in the stream.
450 */
451 static noinline int
452 rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
453 struct rpc_rqst *rqst, enum rpcrdma_chunktype wtype)
454 {
455 struct xdr_stream *xdr = &req->rl_stream;
456 struct rpcrdma_mr_seg *seg;
457 struct rpcrdma_mr *mr;
458 int nsegs, nchunks;
459 __be32 *segcount;
460
461 seg = req->rl_segments;
462 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 0, wtype, seg);
463 if (nsegs < 0)
464 return nsegs;
465
466 if (encode_item_present(xdr) < 0)
467 return -EMSGSIZE;
468 segcount = xdr_reserve_space(xdr, sizeof(*segcount));
469 if (unlikely(!segcount))
470 return -EMSGSIZE;
471 /* Actual value encoded below */
472
473 nchunks = 0;
474 do {
475 seg = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
476 true, &mr);
477 if (IS_ERR(seg))
478 return PTR_ERR(seg);
479 rpcrdma_mr_push(mr, &req->rl_registered);
480
481 if (encode_rdma_segment(xdr, mr) < 0)
482 return -EMSGSIZE;
483
484 trace_xprtrdma_reply_chunk(rqst->rq_task, mr, nsegs);
485 r_xprt->rx_stats.reply_chunk_count++;
486 r_xprt->rx_stats.total_rdma_request += mr->mr_length;
487 nchunks++;
488 nsegs -= mr->mr_nents;
489 } while (nsegs);
490
491 /* Update count of segments in the Reply chunk */
492 *segcount = cpu_to_be32(nchunks);
493
494 return 0;
495 }
496
497 /**
498 * rpcrdma_unmap_sendctx - DMA-unmap Send buffers
499 * @sc: sendctx containing SGEs to unmap
500 *
501 */
502 void
503 rpcrdma_unmap_sendctx(struct rpcrdma_sendctx *sc)
504 {
505 struct rpcrdma_ia *ia = &sc->sc_xprt->rx_ia;
506 struct ib_sge *sge;
507 unsigned int count;
508
509 /* The first two SGEs contain the transport header and
510 * the inline buffer. These are always left mapped so
511 * they can be cheaply re-used.
512 */
513 sge = &sc->sc_sges[2];
514 for (count = sc->sc_unmap_count; count; ++sge, --count)
515 ib_dma_unmap_page(ia->ri_device,
516 sge->addr, sge->length, DMA_TO_DEVICE);
517
518 if (test_and_clear_bit(RPCRDMA_REQ_F_TX_RESOURCES, &sc->sc_req->rl_flags)) {
519 smp_mb__after_atomic();
520 wake_up_bit(&sc->sc_req->rl_flags, RPCRDMA_REQ_F_TX_RESOURCES);
521 }
522 }
523
524 /* Prepare an SGE for the RPC-over-RDMA transport header.
525 */
526 static bool
527 rpcrdma_prepare_hdr_sge(struct rpcrdma_ia *ia, struct rpcrdma_req *req,
528 u32 len)
529 {
530 struct rpcrdma_sendctx *sc = req->rl_sendctx;
531 struct rpcrdma_regbuf *rb = req->rl_rdmabuf;
532 struct ib_sge *sge = sc->sc_sges;
533
534 if (!rpcrdma_dma_map_regbuf(ia, rb))
535 goto out_regbuf;
536 sge->addr = rdmab_addr(rb);
537 sge->length = len;
538 sge->lkey = rdmab_lkey(rb);
539
540 ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr,
541 sge->length, DMA_TO_DEVICE);
542 sc->sc_wr.num_sge++;
543 return true;
544
545 out_regbuf:
546 pr_err("rpcrdma: failed to DMA map a Send buffer\n");
547 return false;
548 }
549
550 /* Prepare the Send SGEs. The head and tail iovec, and each entry
551 * in the page list, gets its own SGE.
552 */
553 static bool
554 rpcrdma_prepare_msg_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req,
555 struct xdr_buf *xdr, enum rpcrdma_chunktype rtype)
556 {
557 struct rpcrdma_sendctx *sc = req->rl_sendctx;
558 unsigned int sge_no, page_base, len, remaining;
559 struct rpcrdma_regbuf *rb = req->rl_sendbuf;
560 struct ib_device *device = ia->ri_device;
561 struct ib_sge *sge = sc->sc_sges;
562 u32 lkey = ia->ri_pd->local_dma_lkey;
563 struct page *page, **ppages;
564
565 /* The head iovec is straightforward, as it is already
566 * DMA-mapped. Sync the content that has changed.
567 */
568 if (!rpcrdma_dma_map_regbuf(ia, rb))
569 goto out_regbuf;
570 sge_no = 1;
571 sge[sge_no].addr = rdmab_addr(rb);
572 sge[sge_no].length = xdr->head[0].iov_len;
573 sge[sge_no].lkey = rdmab_lkey(rb);
574 ib_dma_sync_single_for_device(rdmab_device(rb), sge[sge_no].addr,
575 sge[sge_no].length, DMA_TO_DEVICE);
576
577 /* If there is a Read chunk, the page list is being handled
578 * via explicit RDMA, and thus is skipped here. However, the
579 * tail iovec may include an XDR pad for the page list, as
580 * well as additional content, and may not reside in the
581 * same page as the head iovec.
582 */
583 if (rtype == rpcrdma_readch) {
584 len = xdr->tail[0].iov_len;
585
586 /* Do not include the tail if it is only an XDR pad */
587 if (len < 4)
588 goto out;
589
590 page = virt_to_page(xdr->tail[0].iov_base);
591 page_base = offset_in_page(xdr->tail[0].iov_base);
592
593 /* If the content in the page list is an odd length,
594 * xdr_write_pages() has added a pad at the beginning
595 * of the tail iovec. Force the tail's non-pad content
596 * to land at the next XDR position in the Send message.
597 */
598 page_base += len & 3;
599 len -= len & 3;
600 goto map_tail;
601 }
602
603 /* If there is a page list present, temporarily DMA map
604 * and prepare an SGE for each page to be sent.
605 */
606 if (xdr->page_len) {
607 ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
608 page_base = offset_in_page(xdr->page_base);
609 remaining = xdr->page_len;
610 while (remaining) {
611 sge_no++;
612 if (sge_no > RPCRDMA_MAX_SEND_SGES - 2)
613 goto out_mapping_overflow;
614
615 len = min_t(u32, PAGE_SIZE - page_base, remaining);
616 sge[sge_no].addr = ib_dma_map_page(device, *ppages,
617 page_base, len,
618 DMA_TO_DEVICE);
619 if (ib_dma_mapping_error(device, sge[sge_no].addr))
620 goto out_mapping_err;
621 sge[sge_no].length = len;
622 sge[sge_no].lkey = lkey;
623
624 sc->sc_unmap_count++;
625 ppages++;
626 remaining -= len;
627 page_base = 0;
628 }
629 }
630
631 /* The tail iovec is not always constructed in the same
632 * page where the head iovec resides (see, for example,
633 * gss_wrap_req_priv). To neatly accommodate that case,
634 * DMA map it separately.
635 */
636 if (xdr->tail[0].iov_len) {
637 page = virt_to_page(xdr->tail[0].iov_base);
638 page_base = offset_in_page(xdr->tail[0].iov_base);
639 len = xdr->tail[0].iov_len;
640
641 map_tail:
642 sge_no++;
643 sge[sge_no].addr = ib_dma_map_page(device, page,
644 page_base, len,
645 DMA_TO_DEVICE);
646 if (ib_dma_mapping_error(device, sge[sge_no].addr))
647 goto out_mapping_err;
648 sge[sge_no].length = len;
649 sge[sge_no].lkey = lkey;
650 sc->sc_unmap_count++;
651 }
652
653 out:
654 sc->sc_wr.num_sge += sge_no;
655 if (sc->sc_unmap_count)
656 __set_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags);
657 return true;
658
659 out_regbuf:
660 pr_err("rpcrdma: failed to DMA map a Send buffer\n");
661 return false;
662
663 out_mapping_overflow:
664 rpcrdma_unmap_sendctx(sc);
665 pr_err("rpcrdma: too many Send SGEs (%u)\n", sge_no);
666 return false;
667
668 out_mapping_err:
669 rpcrdma_unmap_sendctx(sc);
670 pr_err("rpcrdma: Send mapping error\n");
671 return false;
672 }
673
674 /**
675 * rpcrdma_prepare_send_sges - Construct SGEs for a Send WR
676 * @r_xprt: controlling transport
677 * @req: context of RPC Call being marshalled
678 * @hdrlen: size of transport header, in bytes
679 * @xdr: xdr_buf containing RPC Call
680 * @rtype: chunk type being encoded
681 *
682 * Returns 0 on success; otherwise a negative errno is returned.
683 */
684 int
685 rpcrdma_prepare_send_sges(struct rpcrdma_xprt *r_xprt,
686 struct rpcrdma_req *req, u32 hdrlen,
687 struct xdr_buf *xdr, enum rpcrdma_chunktype rtype)
688 {
689 req->rl_sendctx = rpcrdma_sendctx_get_locked(&r_xprt->rx_buf);
690 if (!req->rl_sendctx)
691 return -EAGAIN;
692 req->rl_sendctx->sc_wr.num_sge = 0;
693 req->rl_sendctx->sc_unmap_count = 0;
694 req->rl_sendctx->sc_req = req;
695 __clear_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags);
696
697 if (!rpcrdma_prepare_hdr_sge(&r_xprt->rx_ia, req, hdrlen))
698 return -EIO;
699
700 if (rtype != rpcrdma_areadch)
701 if (!rpcrdma_prepare_msg_sges(&r_xprt->rx_ia, req, xdr, rtype))
702 return -EIO;
703
704 return 0;
705 }
706
707 /**
708 * rpcrdma_marshal_req - Marshal and send one RPC request
709 * @r_xprt: controlling transport
710 * @rqst: RPC request to be marshaled
711 *
712 * For the RPC in "rqst", this function:
713 * - Chooses the transfer mode (eg., RDMA_MSG or RDMA_NOMSG)
714 * - Registers Read, Write, and Reply chunks
715 * - Constructs the transport header
716 * - Posts a Send WR to send the transport header and request
717 *
718 * Returns:
719 * %0 if the RPC was sent successfully,
720 * %-ENOTCONN if the connection was lost,
721 * %-EAGAIN if the caller should call again with the same arguments,
722 * %-ENOBUFS if the caller should call again after a delay,
723 * %-EMSGSIZE if the transport header is too small,
724 * %-EIO if a permanent problem occurred while marshaling.
725 */
726 int
727 rpcrdma_marshal_req(struct rpcrdma_xprt *r_xprt, struct rpc_rqst *rqst)
728 {
729 struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
730 struct xdr_stream *xdr = &req->rl_stream;
731 enum rpcrdma_chunktype rtype, wtype;
732 bool ddp_allowed;
733 __be32 *p;
734 int ret;
735
736 rpcrdma_set_xdrlen(&req->rl_hdrbuf, 0);
737 xdr_init_encode(xdr, &req->rl_hdrbuf,
738 req->rl_rdmabuf->rg_base);
739
740 /* Fixed header fields */
741 ret = -EMSGSIZE;
742 p = xdr_reserve_space(xdr, 4 * sizeof(*p));
743 if (!p)
744 goto out_err;
745 *p++ = rqst->rq_xid;
746 *p++ = rpcrdma_version;
747 *p++ = cpu_to_be32(r_xprt->rx_buf.rb_max_requests);
748
749 /* When the ULP employs a GSS flavor that guarantees integrity
750 * or privacy, direct data placement of individual data items
751 * is not allowed.
752 */
753 ddp_allowed = !(rqst->rq_cred->cr_auth->au_flags &
754 RPCAUTH_AUTH_DATATOUCH);
755
756 /*
757 * Chunks needed for results?
758 *
759 * o If the expected result is under the inline threshold, all ops
760 * return as inline.
761 * o Large read ops return data as write chunk(s), header as
762 * inline.
763 * o Large non-read ops return as a single reply chunk.
764 */
765 if (rpcrdma_results_inline(r_xprt, rqst))
766 wtype = rpcrdma_noch;
767 else if (ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ)
768 wtype = rpcrdma_writech;
769 else
770 wtype = rpcrdma_replych;
771
772 /*
773 * Chunks needed for arguments?
774 *
775 * o If the total request is under the inline threshold, all ops
776 * are sent as inline.
777 * o Large write ops transmit data as read chunk(s), header as
778 * inline.
779 * o Large non-write ops are sent with the entire message as a
780 * single read chunk (protocol 0-position special case).
781 *
782 * This assumes that the upper layer does not present a request
783 * that both has a data payload, and whose non-data arguments
784 * by themselves are larger than the inline threshold.
785 */
786 if (rpcrdma_args_inline(r_xprt, rqst)) {
787 *p++ = rdma_msg;
788 rtype = rpcrdma_noch;
789 } else if (ddp_allowed && rqst->rq_snd_buf.flags & XDRBUF_WRITE) {
790 *p++ = rdma_msg;
791 rtype = rpcrdma_readch;
792 } else {
793 r_xprt->rx_stats.nomsg_call_count++;
794 *p++ = rdma_nomsg;
795 rtype = rpcrdma_areadch;
796 }
797
798 /* If this is a retransmit, discard previously registered
799 * chunks. Very likely the connection has been replaced,
800 * so these registrations are invalid and unusable.
801 */
802 while (unlikely(!list_empty(&req->rl_registered))) {
803 struct rpcrdma_mr *mr;
804
805 mr = rpcrdma_mr_pop(&req->rl_registered);
806 rpcrdma_mr_recycle(mr);
807 }
808
809 /* This implementation supports the following combinations
810 * of chunk lists in one RPC-over-RDMA Call message:
811 *
812 * - Read list
813 * - Write list
814 * - Reply chunk
815 * - Read list + Reply chunk
816 *
817 * It might not yet support the following combinations:
818 *
819 * - Read list + Write list
820 *
821 * It does not support the following combinations:
822 *
823 * - Write list + Reply chunk
824 * - Read list + Write list + Reply chunk
825 *
826 * This implementation supports only a single chunk in each
827 * Read or Write list. Thus for example the client cannot
828 * send a Call message with a Position Zero Read chunk and a
829 * regular Read chunk at the same time.
830 */
831 if (rtype != rpcrdma_noch) {
832 ret = rpcrdma_encode_read_list(r_xprt, req, rqst, rtype);
833 if (ret)
834 goto out_err;
835 }
836 ret = encode_item_not_present(xdr);
837 if (ret)
838 goto out_err;
839
840 if (wtype == rpcrdma_writech) {
841 ret = rpcrdma_encode_write_list(r_xprt, req, rqst, wtype);
842 if (ret)
843 goto out_err;
844 }
845 ret = encode_item_not_present(xdr);
846 if (ret)
847 goto out_err;
848
849 if (wtype != rpcrdma_replych)
850 ret = encode_item_not_present(xdr);
851 else
852 ret = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, wtype);
853 if (ret)
854 goto out_err;
855
856 trace_xprtrdma_marshal(rqst, xdr_stream_pos(xdr), rtype, wtype);
857
858 ret = rpcrdma_prepare_send_sges(r_xprt, req, xdr_stream_pos(xdr),
859 &rqst->rq_snd_buf, rtype);
860 if (ret)
861 goto out_err;
862 return 0;
863
864 out_err:
865 switch (ret) {
866 case -EAGAIN:
867 xprt_wait_for_buffer_space(rqst->rq_xprt);
868 break;
869 case -ENOBUFS:
870 break;
871 default:
872 r_xprt->rx_stats.failed_marshal_count++;
873 }
874 return ret;
875 }
876
877 /**
878 * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs
879 * @rqst: controlling RPC request
880 * @srcp: points to RPC message payload in receive buffer
881 * @copy_len: remaining length of receive buffer content
882 * @pad: Write chunk pad bytes needed (zero for pure inline)
883 *
884 * The upper layer has set the maximum number of bytes it can
885 * receive in each component of rq_rcv_buf. These values are set in
886 * the head.iov_len, page_len, tail.iov_len, and buflen fields.
887 *
888 * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in
889 * many cases this function simply updates iov_base pointers in
890 * rq_rcv_buf to point directly to the received reply data, to
891 * avoid copying reply data.
892 *
893 * Returns the count of bytes which had to be memcopied.
894 */
895 static unsigned long
896 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
897 {
898 unsigned long fixup_copy_count;
899 int i, npages, curlen;
900 char *destp;
901 struct page **ppages;
902 int page_base;
903
904 /* The head iovec is redirected to the RPC reply message
905 * in the receive buffer, to avoid a memcopy.
906 */
907 rqst->rq_rcv_buf.head[0].iov_base = srcp;
908 rqst->rq_private_buf.head[0].iov_base = srcp;
909
910 /* The contents of the receive buffer that follow
911 * head.iov_len bytes are copied into the page list.
912 */
913 curlen = rqst->rq_rcv_buf.head[0].iov_len;
914 if (curlen > copy_len)
915 curlen = copy_len;
916 trace_xprtrdma_fixup(rqst, copy_len, curlen);
917 srcp += curlen;
918 copy_len -= curlen;
919
920 ppages = rqst->rq_rcv_buf.pages +
921 (rqst->rq_rcv_buf.page_base >> PAGE_SHIFT);
922 page_base = offset_in_page(rqst->rq_rcv_buf.page_base);
923 fixup_copy_count = 0;
924 if (copy_len && rqst->rq_rcv_buf.page_len) {
925 int pagelist_len;
926
927 pagelist_len = rqst->rq_rcv_buf.page_len;
928 if (pagelist_len > copy_len)
929 pagelist_len = copy_len;
930 npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT;
931 for (i = 0; i < npages; i++) {
932 curlen = PAGE_SIZE - page_base;
933 if (curlen > pagelist_len)
934 curlen = pagelist_len;
935
936 trace_xprtrdma_fixup_pg(rqst, i, srcp,
937 copy_len, curlen);
938 destp = kmap_atomic(ppages[i]);
939 memcpy(destp + page_base, srcp, curlen);
940 flush_dcache_page(ppages[i]);
941 kunmap_atomic(destp);
942 srcp += curlen;
943 copy_len -= curlen;
944 fixup_copy_count += curlen;
945 pagelist_len -= curlen;
946 if (!pagelist_len)
947 break;
948 page_base = 0;
949 }
950
951 /* Implicit padding for the last segment in a Write
952 * chunk is inserted inline at the front of the tail
953 * iovec. The upper layer ignores the content of
954 * the pad. Simply ensure inline content in the tail
955 * that follows the Write chunk is properly aligned.
956 */
957 if (pad)
958 srcp -= pad;
959 }
960
961 /* The tail iovec is redirected to the remaining data
962 * in the receive buffer, to avoid a memcopy.
963 */
964 if (copy_len || pad) {
965 rqst->rq_rcv_buf.tail[0].iov_base = srcp;
966 rqst->rq_private_buf.tail[0].iov_base = srcp;
967 }
968
969 return fixup_copy_count;
970 }
971
972 /* By convention, backchannel calls arrive via rdma_msg type
973 * messages, and never populate the chunk lists. This makes
974 * the RPC/RDMA header small and fixed in size, so it is
975 * straightforward to check the RPC header's direction field.
976 */
977 static bool
978 rpcrdma_is_bcall(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
979 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
980 {
981 struct xdr_stream *xdr = &rep->rr_stream;
982 __be32 *p;
983
984 if (rep->rr_proc != rdma_msg)
985 return false;
986
987 /* Peek at stream contents without advancing. */
988 p = xdr_inline_decode(xdr, 0);
989
990 /* Chunk lists */
991 if (*p++ != xdr_zero)
992 return false;
993 if (*p++ != xdr_zero)
994 return false;
995 if (*p++ != xdr_zero)
996 return false;
997
998 /* RPC header */
999 if (*p++ != rep->rr_xid)
1000 return false;
1001 if (*p != cpu_to_be32(RPC_CALL))
1002 return false;
1003
1004 /* Now that we are sure this is a backchannel call,
1005 * advance to the RPC header.
1006 */
1007 p = xdr_inline_decode(xdr, 3 * sizeof(*p));
1008 if (unlikely(!p))
1009 goto out_short;
1010
1011 rpcrdma_bc_receive_call(r_xprt, rep);
1012 return true;
1013
1014 out_short:
1015 pr_warn("RPC/RDMA short backward direction call\n");
1016 return true;
1017 }
1018 #else /* CONFIG_SUNRPC_BACKCHANNEL */
1019 {
1020 return false;
1021 }
1022 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1023
1024 static int decode_rdma_segment(struct xdr_stream *xdr, u32 *length)
1025 {
1026 u32 handle;
1027 u64 offset;
1028 __be32 *p;
1029
1030 p = xdr_inline_decode(xdr, 4 * sizeof(*p));
1031 if (unlikely(!p))
1032 return -EIO;
1033
1034 handle = be32_to_cpup(p++);
1035 *length = be32_to_cpup(p++);
1036 xdr_decode_hyper(p, &offset);
1037
1038 trace_xprtrdma_decode_seg(handle, *length, offset);
1039 return 0;
1040 }
1041
1042 static int decode_write_chunk(struct xdr_stream *xdr, u32 *length)
1043 {
1044 u32 segcount, seglength;
1045 __be32 *p;
1046
1047 p = xdr_inline_decode(xdr, sizeof(*p));
1048 if (unlikely(!p))
1049 return -EIO;
1050
1051 *length = 0;
1052 segcount = be32_to_cpup(p);
1053 while (segcount--) {
1054 if (decode_rdma_segment(xdr, &seglength))
1055 return -EIO;
1056 *length += seglength;
1057 }
1058
1059 return 0;
1060 }
1061
1062 /* In RPC-over-RDMA Version One replies, a Read list is never
1063 * expected. This decoder is a stub that returns an error if
1064 * a Read list is present.
1065 */
1066 static int decode_read_list(struct xdr_stream *xdr)
1067 {
1068 __be32 *p;
1069
1070 p = xdr_inline_decode(xdr, sizeof(*p));
1071 if (unlikely(!p))
1072 return -EIO;
1073 if (unlikely(*p != xdr_zero))
1074 return -EIO;
1075 return 0;
1076 }
1077
1078 /* Supports only one Write chunk in the Write list
1079 */
1080 static int decode_write_list(struct xdr_stream *xdr, u32 *length)
1081 {
1082 u32 chunklen;
1083 bool first;
1084 __be32 *p;
1085
1086 *length = 0;
1087 first = true;
1088 do {
1089 p = xdr_inline_decode(xdr, sizeof(*p));
1090 if (unlikely(!p))
1091 return -EIO;
1092 if (*p == xdr_zero)
1093 break;
1094 if (!first)
1095 return -EIO;
1096
1097 if (decode_write_chunk(xdr, &chunklen))
1098 return -EIO;
1099 *length += chunklen;
1100 first = false;
1101 } while (true);
1102 return 0;
1103 }
1104
1105 static int decode_reply_chunk(struct xdr_stream *xdr, u32 *length)
1106 {
1107 __be32 *p;
1108
1109 p = xdr_inline_decode(xdr, sizeof(*p));
1110 if (unlikely(!p))
1111 return -EIO;
1112
1113 *length = 0;
1114 if (*p != xdr_zero)
1115 if (decode_write_chunk(xdr, length))
1116 return -EIO;
1117 return 0;
1118 }
1119
1120 static int
1121 rpcrdma_decode_msg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1122 struct rpc_rqst *rqst)
1123 {
1124 struct xdr_stream *xdr = &rep->rr_stream;
1125 u32 writelist, replychunk, rpclen;
1126 char *base;
1127
1128 /* Decode the chunk lists */
1129 if (decode_read_list(xdr))
1130 return -EIO;
1131 if (decode_write_list(xdr, &writelist))
1132 return -EIO;
1133 if (decode_reply_chunk(xdr, &replychunk))
1134 return -EIO;
1135
1136 /* RDMA_MSG sanity checks */
1137 if (unlikely(replychunk))
1138 return -EIO;
1139
1140 /* Build the RPC reply's Payload stream in rqst->rq_rcv_buf */
1141 base = (char *)xdr_inline_decode(xdr, 0);
1142 rpclen = xdr_stream_remaining(xdr);
1143 r_xprt->rx_stats.fixup_copy_count +=
1144 rpcrdma_inline_fixup(rqst, base, rpclen, writelist & 3);
1145
1146 r_xprt->rx_stats.total_rdma_reply += writelist;
1147 return rpclen + xdr_align_size(writelist);
1148 }
1149
1150 static noinline int
1151 rpcrdma_decode_nomsg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
1152 {
1153 struct xdr_stream *xdr = &rep->rr_stream;
1154 u32 writelist, replychunk;
1155
1156 /* Decode the chunk lists */
1157 if (decode_read_list(xdr))
1158 return -EIO;
1159 if (decode_write_list(xdr, &writelist))
1160 return -EIO;
1161 if (decode_reply_chunk(xdr, &replychunk))
1162 return -EIO;
1163
1164 /* RDMA_NOMSG sanity checks */
1165 if (unlikely(writelist))
1166 return -EIO;
1167 if (unlikely(!replychunk))
1168 return -EIO;
1169
1170 /* Reply chunk buffer already is the reply vector */
1171 r_xprt->rx_stats.total_rdma_reply += replychunk;
1172 return replychunk;
1173 }
1174
1175 static noinline int
1176 rpcrdma_decode_error(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1177 struct rpc_rqst *rqst)
1178 {
1179 struct xdr_stream *xdr = &rep->rr_stream;
1180 __be32 *p;
1181
1182 p = xdr_inline_decode(xdr, sizeof(*p));
1183 if (unlikely(!p))
1184 return -EIO;
1185
1186 switch (*p) {
1187 case err_vers:
1188 p = xdr_inline_decode(xdr, 2 * sizeof(*p));
1189 if (!p)
1190 break;
1191 dprintk("RPC: %5u: %s: server reports version error (%u-%u)\n",
1192 rqst->rq_task->tk_pid, __func__,
1193 be32_to_cpup(p), be32_to_cpu(*(p + 1)));
1194 break;
1195 case err_chunk:
1196 dprintk("RPC: %5u: %s: server reports header decoding error\n",
1197 rqst->rq_task->tk_pid, __func__);
1198 break;
1199 default:
1200 dprintk("RPC: %5u: %s: server reports unrecognized error %d\n",
1201 rqst->rq_task->tk_pid, __func__, be32_to_cpup(p));
1202 }
1203
1204 r_xprt->rx_stats.bad_reply_count++;
1205 return -EREMOTEIO;
1206 }
1207
1208 /* Perform XID lookup, reconstruction of the RPC reply, and
1209 * RPC completion while holding the transport lock to ensure
1210 * the rep, rqst, and rq_task pointers remain stable.
1211 */
1212 void rpcrdma_complete_rqst(struct rpcrdma_rep *rep)
1213 {
1214 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1215 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1216 struct rpc_rqst *rqst = rep->rr_rqst;
1217 int status;
1218
1219 xprt->reestablish_timeout = 0;
1220
1221 switch (rep->rr_proc) {
1222 case rdma_msg:
1223 status = rpcrdma_decode_msg(r_xprt, rep, rqst);
1224 break;
1225 case rdma_nomsg:
1226 status = rpcrdma_decode_nomsg(r_xprt, rep);
1227 break;
1228 case rdma_error:
1229 status = rpcrdma_decode_error(r_xprt, rep, rqst);
1230 break;
1231 default:
1232 status = -EIO;
1233 }
1234 if (status < 0)
1235 goto out_badheader;
1236
1237 out:
1238 spin_lock(&xprt->queue_lock);
1239 xprt_complete_rqst(rqst->rq_task, status);
1240 xprt_unpin_rqst(rqst);
1241 spin_unlock(&xprt->queue_lock);
1242 return;
1243
1244 /* If the incoming reply terminated a pending RPC, the next
1245 * RPC call will post a replacement receive buffer as it is
1246 * being marshaled.
1247 */
1248 out_badheader:
1249 trace_xprtrdma_reply_hdr(rep);
1250 r_xprt->rx_stats.bad_reply_count++;
1251 status = -EIO;
1252 goto out;
1253 }
1254
1255 void rpcrdma_release_rqst(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
1256 {
1257 /* Invalidate and unmap the data payloads before waking
1258 * the waiting application. This guarantees the memory
1259 * regions are properly fenced from the server before the
1260 * application accesses the data. It also ensures proper
1261 * send flow control: waking the next RPC waits until this
1262 * RPC has relinquished all its Send Queue entries.
1263 */
1264 if (!list_empty(&req->rl_registered))
1265 r_xprt->rx_ia.ri_ops->ro_unmap_sync(r_xprt,
1266 &req->rl_registered);
1267
1268 /* Ensure that any DMA mapped pages associated with
1269 * the Send of the RPC Call have been unmapped before
1270 * allowing the RPC to complete. This protects argument
1271 * memory not controlled by the RPC client from being
1272 * re-used before we're done with it.
1273 */
1274 if (test_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags)) {
1275 r_xprt->rx_stats.reply_waits_for_send++;
1276 out_of_line_wait_on_bit(&req->rl_flags,
1277 RPCRDMA_REQ_F_TX_RESOURCES,
1278 bit_wait,
1279 TASK_UNINTERRUPTIBLE);
1280 }
1281 }
1282
1283 /* Reply handling runs in the poll worker thread. Anything that
1284 * might wait is deferred to a separate workqueue.
1285 */
1286 void rpcrdma_deferred_completion(struct work_struct *work)
1287 {
1288 struct rpcrdma_rep *rep =
1289 container_of(work, struct rpcrdma_rep, rr_work);
1290 struct rpcrdma_req *req = rpcr_to_rdmar(rep->rr_rqst);
1291 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1292
1293 trace_xprtrdma_defer_cmp(rep);
1294 if (rep->rr_wc_flags & IB_WC_WITH_INVALIDATE)
1295 r_xprt->rx_ia.ri_ops->ro_reminv(rep, &req->rl_registered);
1296 rpcrdma_release_rqst(r_xprt, req);
1297 rpcrdma_complete_rqst(rep);
1298 }
1299
1300 /* Process received RPC/RDMA messages.
1301 *
1302 * Errors must result in the RPC task either being awakened, or
1303 * allowed to timeout, to discover the errors at that time.
1304 */
1305 void rpcrdma_reply_handler(struct rpcrdma_rep *rep)
1306 {
1307 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1308 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1309 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1310 struct rpcrdma_req *req;
1311 struct rpc_rqst *rqst;
1312 u32 credits;
1313 __be32 *p;
1314
1315 /* Fixed transport header fields */
1316 xdr_init_decode(&rep->rr_stream, &rep->rr_hdrbuf,
1317 rep->rr_hdrbuf.head[0].iov_base);
1318 p = xdr_inline_decode(&rep->rr_stream, 4 * sizeof(*p));
1319 if (unlikely(!p))
1320 goto out_shortreply;
1321 rep->rr_xid = *p++;
1322 rep->rr_vers = *p++;
1323 credits = be32_to_cpu(*p++);
1324 rep->rr_proc = *p++;
1325
1326 if (rep->rr_vers != rpcrdma_version)
1327 goto out_badversion;
1328
1329 if (rpcrdma_is_bcall(r_xprt, rep))
1330 return;
1331
1332 /* Match incoming rpcrdma_rep to an rpcrdma_req to
1333 * get context for handling any incoming chunks.
1334 */
1335 spin_lock(&xprt->queue_lock);
1336 rqst = xprt_lookup_rqst(xprt, rep->rr_xid);
1337 if (!rqst)
1338 goto out_norqst;
1339 xprt_pin_rqst(rqst);
1340 spin_unlock(&xprt->queue_lock);
1341
1342 if (credits == 0)
1343 credits = 1; /* don't deadlock */
1344 else if (credits > buf->rb_max_requests)
1345 credits = buf->rb_max_requests;
1346 if (buf->rb_credits != credits) {
1347 spin_lock_bh(&xprt->transport_lock);
1348 buf->rb_credits = credits;
1349 xprt->cwnd = credits << RPC_CWNDSHIFT;
1350 spin_unlock_bh(&xprt->transport_lock);
1351 }
1352
1353 req = rpcr_to_rdmar(rqst);
1354 req->rl_reply = rep;
1355 rep->rr_rqst = rqst;
1356 clear_bit(RPCRDMA_REQ_F_PENDING, &req->rl_flags);
1357
1358 trace_xprtrdma_reply(rqst->rq_task, rep, req, credits);
1359 queue_work(buf->rb_completion_wq, &rep->rr_work);
1360 return;
1361
1362 out_badversion:
1363 trace_xprtrdma_reply_vers(rep);
1364 goto out;
1365
1366 out_norqst:
1367 spin_unlock(&xprt->queue_lock);
1368 trace_xprtrdma_reply_rqst(rep);
1369 goto out;
1370
1371 out_shortreply:
1372 trace_xprtrdma_reply_short(rep);
1373
1374 out:
1375 rpcrdma_recv_buffer_put(rep);
1376 }