]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - virt/kvm/kvm_main.c
ca54b09adf5b7876dd1b102262d562e6d5c3f2dd
[thirdparty/kernel/stable.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54 #include <linux/io.h>
55 #include <linux/lockdep.h>
56
57 #include <asm/processor.h>
58 #include <asm/ioctl.h>
59 #include <linux/uaccess.h>
60 #include <asm/pgtable.h>
61
62 #include "coalesced_mmio.h"
63 #include "async_pf.h"
64 #include "vfio.h"
65
66 #define CREATE_TRACE_POINTS
67 #include <trace/events/kvm.h>
68
69 /* Worst case buffer size needed for holding an integer. */
70 #define ITOA_MAX_LEN 12
71
72 MODULE_AUTHOR("Qumranet");
73 MODULE_LICENSE("GPL");
74
75 /* Architectures should define their poll value according to the halt latency */
76 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
77 module_param(halt_poll_ns, uint, 0644);
78 EXPORT_SYMBOL_GPL(halt_poll_ns);
79
80 /* Default doubles per-vcpu halt_poll_ns. */
81 unsigned int halt_poll_ns_grow = 2;
82 module_param(halt_poll_ns_grow, uint, 0644);
83 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
84
85 /* The start value to grow halt_poll_ns from */
86 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
87 module_param(halt_poll_ns_grow_start, uint, 0644);
88 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
89
90 /* Default resets per-vcpu halt_poll_ns . */
91 unsigned int halt_poll_ns_shrink;
92 module_param(halt_poll_ns_shrink, uint, 0644);
93 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
94
95 /*
96 * Ordering of locks:
97 *
98 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
99 */
100
101 DEFINE_SPINLOCK(kvm_lock);
102 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
103 LIST_HEAD(vm_list);
104
105 static cpumask_var_t cpus_hardware_enabled;
106 static int kvm_usage_count;
107 static atomic_t hardware_enable_failed;
108
109 struct kmem_cache *kvm_vcpu_cache;
110 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
111
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113
114 struct dentry *kvm_debugfs_dir;
115 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
116
117 static int kvm_debugfs_num_entries;
118 static const struct file_operations *stat_fops_per_vm[];
119
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121 unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124 unsigned long arg);
125 #define KVM_COMPAT(c) .compat_ioctl = (c)
126 #else
127 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
128 unsigned long arg) { return -EINVAL; }
129 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl
130 #endif
131 static int hardware_enable_all(void);
132 static void hardware_disable_all(void);
133
134 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
135
136 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
137
138 __visible bool kvm_rebooting;
139 EXPORT_SYMBOL_GPL(kvm_rebooting);
140
141 static bool largepages_enabled = true;
142
143 #define KVM_EVENT_CREATE_VM 0
144 #define KVM_EVENT_DESTROY_VM 1
145 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
146 static unsigned long long kvm_createvm_count;
147 static unsigned long long kvm_active_vms;
148
149 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
150 unsigned long start, unsigned long end, bool blockable)
151 {
152 return 0;
153 }
154
155 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
156 {
157 if (pfn_valid(pfn))
158 return PageReserved(pfn_to_page(pfn));
159
160 return true;
161 }
162
163 /*
164 * Switches to specified vcpu, until a matching vcpu_put()
165 */
166 void vcpu_load(struct kvm_vcpu *vcpu)
167 {
168 int cpu = get_cpu();
169 preempt_notifier_register(&vcpu->preempt_notifier);
170 kvm_arch_vcpu_load(vcpu, cpu);
171 put_cpu();
172 }
173 EXPORT_SYMBOL_GPL(vcpu_load);
174
175 void vcpu_put(struct kvm_vcpu *vcpu)
176 {
177 preempt_disable();
178 kvm_arch_vcpu_put(vcpu);
179 preempt_notifier_unregister(&vcpu->preempt_notifier);
180 preempt_enable();
181 }
182 EXPORT_SYMBOL_GPL(vcpu_put);
183
184 /* TODO: merge with kvm_arch_vcpu_should_kick */
185 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
186 {
187 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
188
189 /*
190 * We need to wait for the VCPU to reenable interrupts and get out of
191 * READING_SHADOW_PAGE_TABLES mode.
192 */
193 if (req & KVM_REQUEST_WAIT)
194 return mode != OUTSIDE_GUEST_MODE;
195
196 /*
197 * Need to kick a running VCPU, but otherwise there is nothing to do.
198 */
199 return mode == IN_GUEST_MODE;
200 }
201
202 static void ack_flush(void *_completed)
203 {
204 }
205
206 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
207 {
208 if (unlikely(!cpus))
209 cpus = cpu_online_mask;
210
211 if (cpumask_empty(cpus))
212 return false;
213
214 smp_call_function_many(cpus, ack_flush, NULL, wait);
215 return true;
216 }
217
218 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
219 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
220 {
221 int i, cpu, me;
222 struct kvm_vcpu *vcpu;
223 bool called;
224
225 me = get_cpu();
226
227 kvm_for_each_vcpu(i, vcpu, kvm) {
228 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
229 continue;
230
231 kvm_make_request(req, vcpu);
232 cpu = vcpu->cpu;
233
234 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
235 continue;
236
237 if (tmp != NULL && cpu != -1 && cpu != me &&
238 kvm_request_needs_ipi(vcpu, req))
239 __cpumask_set_cpu(cpu, tmp);
240 }
241
242 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
243 put_cpu();
244
245 return called;
246 }
247
248 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
249 {
250 cpumask_var_t cpus;
251 bool called;
252
253 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
254
255 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
256
257 free_cpumask_var(cpus);
258 return called;
259 }
260
261 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
262 void kvm_flush_remote_tlbs(struct kvm *kvm)
263 {
264 /*
265 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
266 * kvm_make_all_cpus_request.
267 */
268 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
269
270 /*
271 * We want to publish modifications to the page tables before reading
272 * mode. Pairs with a memory barrier in arch-specific code.
273 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
274 * and smp_mb in walk_shadow_page_lockless_begin/end.
275 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
276 *
277 * There is already an smp_mb__after_atomic() before
278 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
279 * barrier here.
280 */
281 if (!kvm_arch_flush_remote_tlb(kvm)
282 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
283 ++kvm->stat.remote_tlb_flush;
284 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
285 }
286 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
287 #endif
288
289 void kvm_reload_remote_mmus(struct kvm *kvm)
290 {
291 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
292 }
293
294 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
295 {
296 struct page *page;
297 int r;
298
299 mutex_init(&vcpu->mutex);
300 vcpu->cpu = -1;
301 vcpu->kvm = kvm;
302 vcpu->vcpu_id = id;
303 vcpu->pid = NULL;
304 init_swait_queue_head(&vcpu->wq);
305 kvm_async_pf_vcpu_init(vcpu);
306
307 vcpu->pre_pcpu = -1;
308 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
309
310 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
311 if (!page) {
312 r = -ENOMEM;
313 goto fail;
314 }
315 vcpu->run = page_address(page);
316
317 kvm_vcpu_set_in_spin_loop(vcpu, false);
318 kvm_vcpu_set_dy_eligible(vcpu, false);
319 vcpu->preempted = false;
320
321 r = kvm_arch_vcpu_init(vcpu);
322 if (r < 0)
323 goto fail_free_run;
324 return 0;
325
326 fail_free_run:
327 free_page((unsigned long)vcpu->run);
328 fail:
329 return r;
330 }
331 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
332
333 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
334 {
335 /*
336 * no need for rcu_read_lock as VCPU_RUN is the only place that
337 * will change the vcpu->pid pointer and on uninit all file
338 * descriptors are already gone.
339 */
340 put_pid(rcu_dereference_protected(vcpu->pid, 1));
341 kvm_arch_vcpu_uninit(vcpu);
342 free_page((unsigned long)vcpu->run);
343 }
344 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
345
346 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
347 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
348 {
349 return container_of(mn, struct kvm, mmu_notifier);
350 }
351
352 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
353 struct mm_struct *mm,
354 unsigned long address,
355 pte_t pte)
356 {
357 struct kvm *kvm = mmu_notifier_to_kvm(mn);
358 int idx;
359
360 idx = srcu_read_lock(&kvm->srcu);
361 spin_lock(&kvm->mmu_lock);
362 kvm->mmu_notifier_seq++;
363
364 if (kvm_set_spte_hva(kvm, address, pte))
365 kvm_flush_remote_tlbs(kvm);
366
367 spin_unlock(&kvm->mmu_lock);
368 srcu_read_unlock(&kvm->srcu, idx);
369 }
370
371 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
372 const struct mmu_notifier_range *range)
373 {
374 struct kvm *kvm = mmu_notifier_to_kvm(mn);
375 int need_tlb_flush = 0, idx;
376 int ret;
377
378 idx = srcu_read_lock(&kvm->srcu);
379 spin_lock(&kvm->mmu_lock);
380 /*
381 * The count increase must become visible at unlock time as no
382 * spte can be established without taking the mmu_lock and
383 * count is also read inside the mmu_lock critical section.
384 */
385 kvm->mmu_notifier_count++;
386 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
387 need_tlb_flush |= kvm->tlbs_dirty;
388 /* we've to flush the tlb before the pages can be freed */
389 if (need_tlb_flush)
390 kvm_flush_remote_tlbs(kvm);
391
392 spin_unlock(&kvm->mmu_lock);
393
394 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
395 range->end,
396 mmu_notifier_range_blockable(range));
397
398 srcu_read_unlock(&kvm->srcu, idx);
399
400 return ret;
401 }
402
403 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
404 const struct mmu_notifier_range *range)
405 {
406 struct kvm *kvm = mmu_notifier_to_kvm(mn);
407
408 spin_lock(&kvm->mmu_lock);
409 /*
410 * This sequence increase will notify the kvm page fault that
411 * the page that is going to be mapped in the spte could have
412 * been freed.
413 */
414 kvm->mmu_notifier_seq++;
415 smp_wmb();
416 /*
417 * The above sequence increase must be visible before the
418 * below count decrease, which is ensured by the smp_wmb above
419 * in conjunction with the smp_rmb in mmu_notifier_retry().
420 */
421 kvm->mmu_notifier_count--;
422 spin_unlock(&kvm->mmu_lock);
423
424 BUG_ON(kvm->mmu_notifier_count < 0);
425 }
426
427 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
428 struct mm_struct *mm,
429 unsigned long start,
430 unsigned long end)
431 {
432 struct kvm *kvm = mmu_notifier_to_kvm(mn);
433 int young, idx;
434
435 idx = srcu_read_lock(&kvm->srcu);
436 spin_lock(&kvm->mmu_lock);
437
438 young = kvm_age_hva(kvm, start, end);
439 if (young)
440 kvm_flush_remote_tlbs(kvm);
441
442 spin_unlock(&kvm->mmu_lock);
443 srcu_read_unlock(&kvm->srcu, idx);
444
445 return young;
446 }
447
448 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
449 struct mm_struct *mm,
450 unsigned long start,
451 unsigned long end)
452 {
453 struct kvm *kvm = mmu_notifier_to_kvm(mn);
454 int young, idx;
455
456 idx = srcu_read_lock(&kvm->srcu);
457 spin_lock(&kvm->mmu_lock);
458 /*
459 * Even though we do not flush TLB, this will still adversely
460 * affect performance on pre-Haswell Intel EPT, where there is
461 * no EPT Access Bit to clear so that we have to tear down EPT
462 * tables instead. If we find this unacceptable, we can always
463 * add a parameter to kvm_age_hva so that it effectively doesn't
464 * do anything on clear_young.
465 *
466 * Also note that currently we never issue secondary TLB flushes
467 * from clear_young, leaving this job up to the regular system
468 * cadence. If we find this inaccurate, we might come up with a
469 * more sophisticated heuristic later.
470 */
471 young = kvm_age_hva(kvm, start, end);
472 spin_unlock(&kvm->mmu_lock);
473 srcu_read_unlock(&kvm->srcu, idx);
474
475 return young;
476 }
477
478 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
479 struct mm_struct *mm,
480 unsigned long address)
481 {
482 struct kvm *kvm = mmu_notifier_to_kvm(mn);
483 int young, idx;
484
485 idx = srcu_read_lock(&kvm->srcu);
486 spin_lock(&kvm->mmu_lock);
487 young = kvm_test_age_hva(kvm, address);
488 spin_unlock(&kvm->mmu_lock);
489 srcu_read_unlock(&kvm->srcu, idx);
490
491 return young;
492 }
493
494 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
495 struct mm_struct *mm)
496 {
497 struct kvm *kvm = mmu_notifier_to_kvm(mn);
498 int idx;
499
500 idx = srcu_read_lock(&kvm->srcu);
501 kvm_arch_flush_shadow_all(kvm);
502 srcu_read_unlock(&kvm->srcu, idx);
503 }
504
505 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
506 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
507 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
508 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
509 .clear_young = kvm_mmu_notifier_clear_young,
510 .test_young = kvm_mmu_notifier_test_young,
511 .change_pte = kvm_mmu_notifier_change_pte,
512 .release = kvm_mmu_notifier_release,
513 };
514
515 static int kvm_init_mmu_notifier(struct kvm *kvm)
516 {
517 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
518 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
519 }
520
521 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
522
523 static int kvm_init_mmu_notifier(struct kvm *kvm)
524 {
525 return 0;
526 }
527
528 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
529
530 static struct kvm_memslots *kvm_alloc_memslots(void)
531 {
532 int i;
533 struct kvm_memslots *slots;
534
535 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
536 if (!slots)
537 return NULL;
538
539 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
540 slots->id_to_index[i] = slots->memslots[i].id = i;
541
542 return slots;
543 }
544
545 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
546 {
547 if (!memslot->dirty_bitmap)
548 return;
549
550 kvfree(memslot->dirty_bitmap);
551 memslot->dirty_bitmap = NULL;
552 }
553
554 /*
555 * Free any memory in @free but not in @dont.
556 */
557 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
558 struct kvm_memory_slot *dont)
559 {
560 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
561 kvm_destroy_dirty_bitmap(free);
562
563 kvm_arch_free_memslot(kvm, free, dont);
564
565 free->npages = 0;
566 }
567
568 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
569 {
570 struct kvm_memory_slot *memslot;
571
572 if (!slots)
573 return;
574
575 kvm_for_each_memslot(memslot, slots)
576 kvm_free_memslot(kvm, memslot, NULL);
577
578 kvfree(slots);
579 }
580
581 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
582 {
583 int i;
584
585 if (!kvm->debugfs_dentry)
586 return;
587
588 debugfs_remove_recursive(kvm->debugfs_dentry);
589
590 if (kvm->debugfs_stat_data) {
591 for (i = 0; i < kvm_debugfs_num_entries; i++)
592 kfree(kvm->debugfs_stat_data[i]);
593 kfree(kvm->debugfs_stat_data);
594 }
595 }
596
597 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
598 {
599 char dir_name[ITOA_MAX_LEN * 2];
600 struct kvm_stat_data *stat_data;
601 struct kvm_stats_debugfs_item *p;
602
603 if (!debugfs_initialized())
604 return 0;
605
606 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
607 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
608
609 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
610 sizeof(*kvm->debugfs_stat_data),
611 GFP_KERNEL_ACCOUNT);
612 if (!kvm->debugfs_stat_data)
613 return -ENOMEM;
614
615 for (p = debugfs_entries; p->name; p++) {
616 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
617 if (!stat_data)
618 return -ENOMEM;
619
620 stat_data->kvm = kvm;
621 stat_data->offset = p->offset;
622 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
623 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
624 stat_data, stat_fops_per_vm[p->kind]);
625 }
626 return 0;
627 }
628
629 static struct kvm *kvm_create_vm(unsigned long type)
630 {
631 int r, i;
632 struct kvm *kvm = kvm_arch_alloc_vm();
633
634 if (!kvm)
635 return ERR_PTR(-ENOMEM);
636
637 spin_lock_init(&kvm->mmu_lock);
638 mmgrab(current->mm);
639 kvm->mm = current->mm;
640 kvm_eventfd_init(kvm);
641 mutex_init(&kvm->lock);
642 mutex_init(&kvm->irq_lock);
643 mutex_init(&kvm->slots_lock);
644 refcount_set(&kvm->users_count, 1);
645 INIT_LIST_HEAD(&kvm->devices);
646
647 r = kvm_arch_init_vm(kvm, type);
648 if (r)
649 goto out_err_no_disable;
650
651 r = hardware_enable_all();
652 if (r)
653 goto out_err_no_disable;
654
655 #ifdef CONFIG_HAVE_KVM_IRQFD
656 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
657 #endif
658
659 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
660
661 r = -ENOMEM;
662 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
663 struct kvm_memslots *slots = kvm_alloc_memslots();
664 if (!slots)
665 goto out_err_no_srcu;
666 /* Generations must be different for each address space. */
667 slots->generation = i;
668 rcu_assign_pointer(kvm->memslots[i], slots);
669 }
670
671 if (init_srcu_struct(&kvm->srcu))
672 goto out_err_no_srcu;
673 if (init_srcu_struct(&kvm->irq_srcu))
674 goto out_err_no_irq_srcu;
675 for (i = 0; i < KVM_NR_BUSES; i++) {
676 rcu_assign_pointer(kvm->buses[i],
677 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
678 if (!kvm->buses[i])
679 goto out_err;
680 }
681
682 r = kvm_init_mmu_notifier(kvm);
683 if (r)
684 goto out_err;
685
686 spin_lock(&kvm_lock);
687 list_add(&kvm->vm_list, &vm_list);
688 spin_unlock(&kvm_lock);
689
690 preempt_notifier_inc();
691
692 return kvm;
693
694 out_err:
695 cleanup_srcu_struct(&kvm->irq_srcu);
696 out_err_no_irq_srcu:
697 cleanup_srcu_struct(&kvm->srcu);
698 out_err_no_srcu:
699 hardware_disable_all();
700 out_err_no_disable:
701 refcount_set(&kvm->users_count, 0);
702 for (i = 0; i < KVM_NR_BUSES; i++)
703 kfree(kvm_get_bus(kvm, i));
704 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
705 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
706 kvm_arch_free_vm(kvm);
707 mmdrop(current->mm);
708 return ERR_PTR(r);
709 }
710
711 static void kvm_destroy_devices(struct kvm *kvm)
712 {
713 struct kvm_device *dev, *tmp;
714
715 /*
716 * We do not need to take the kvm->lock here, because nobody else
717 * has a reference to the struct kvm at this point and therefore
718 * cannot access the devices list anyhow.
719 */
720 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
721 list_del(&dev->vm_node);
722 dev->ops->destroy(dev);
723 }
724 }
725
726 static void kvm_destroy_vm(struct kvm *kvm)
727 {
728 int i;
729 struct mm_struct *mm = kvm->mm;
730
731 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
732 kvm_destroy_vm_debugfs(kvm);
733 kvm_arch_sync_events(kvm);
734 spin_lock(&kvm_lock);
735 list_del(&kvm->vm_list);
736 spin_unlock(&kvm_lock);
737 kvm_free_irq_routing(kvm);
738 for (i = 0; i < KVM_NR_BUSES; i++) {
739 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
740
741 if (bus)
742 kvm_io_bus_destroy(bus);
743 kvm->buses[i] = NULL;
744 }
745 kvm_coalesced_mmio_free(kvm);
746 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
747 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
748 #else
749 kvm_arch_flush_shadow_all(kvm);
750 #endif
751 kvm_arch_destroy_vm(kvm);
752 kvm_destroy_devices(kvm);
753 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
754 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
755 cleanup_srcu_struct(&kvm->irq_srcu);
756 cleanup_srcu_struct(&kvm->srcu);
757 kvm_arch_free_vm(kvm);
758 preempt_notifier_dec();
759 hardware_disable_all();
760 mmdrop(mm);
761 }
762
763 void kvm_get_kvm(struct kvm *kvm)
764 {
765 refcount_inc(&kvm->users_count);
766 }
767 EXPORT_SYMBOL_GPL(kvm_get_kvm);
768
769 void kvm_put_kvm(struct kvm *kvm)
770 {
771 if (refcount_dec_and_test(&kvm->users_count))
772 kvm_destroy_vm(kvm);
773 }
774 EXPORT_SYMBOL_GPL(kvm_put_kvm);
775
776
777 static int kvm_vm_release(struct inode *inode, struct file *filp)
778 {
779 struct kvm *kvm = filp->private_data;
780
781 kvm_irqfd_release(kvm);
782
783 kvm_put_kvm(kvm);
784 return 0;
785 }
786
787 /*
788 * Allocation size is twice as large as the actual dirty bitmap size.
789 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
790 */
791 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
792 {
793 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
794
795 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
796 if (!memslot->dirty_bitmap)
797 return -ENOMEM;
798
799 return 0;
800 }
801
802 /*
803 * Insert memslot and re-sort memslots based on their GFN,
804 * so binary search could be used to lookup GFN.
805 * Sorting algorithm takes advantage of having initially
806 * sorted array and known changed memslot position.
807 */
808 static void update_memslots(struct kvm_memslots *slots,
809 struct kvm_memory_slot *new,
810 enum kvm_mr_change change)
811 {
812 int id = new->id;
813 int i = slots->id_to_index[id];
814 struct kvm_memory_slot *mslots = slots->memslots;
815
816 WARN_ON(mslots[i].id != id);
817 switch (change) {
818 case KVM_MR_CREATE:
819 slots->used_slots++;
820 WARN_ON(mslots[i].npages || !new->npages);
821 break;
822 case KVM_MR_DELETE:
823 slots->used_slots--;
824 WARN_ON(new->npages || !mslots[i].npages);
825 break;
826 default:
827 break;
828 }
829
830 while (i < KVM_MEM_SLOTS_NUM - 1 &&
831 new->base_gfn <= mslots[i + 1].base_gfn) {
832 if (!mslots[i + 1].npages)
833 break;
834 mslots[i] = mslots[i + 1];
835 slots->id_to_index[mslots[i].id] = i;
836 i++;
837 }
838
839 /*
840 * The ">=" is needed when creating a slot with base_gfn == 0,
841 * so that it moves before all those with base_gfn == npages == 0.
842 *
843 * On the other hand, if new->npages is zero, the above loop has
844 * already left i pointing to the beginning of the empty part of
845 * mslots, and the ">=" would move the hole backwards in this
846 * case---which is wrong. So skip the loop when deleting a slot.
847 */
848 if (new->npages) {
849 while (i > 0 &&
850 new->base_gfn >= mslots[i - 1].base_gfn) {
851 mslots[i] = mslots[i - 1];
852 slots->id_to_index[mslots[i].id] = i;
853 i--;
854 }
855 } else
856 WARN_ON_ONCE(i != slots->used_slots);
857
858 mslots[i] = *new;
859 slots->id_to_index[mslots[i].id] = i;
860 }
861
862 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
863 {
864 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
865
866 #ifdef __KVM_HAVE_READONLY_MEM
867 valid_flags |= KVM_MEM_READONLY;
868 #endif
869
870 if (mem->flags & ~valid_flags)
871 return -EINVAL;
872
873 return 0;
874 }
875
876 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
877 int as_id, struct kvm_memslots *slots)
878 {
879 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
880 u64 gen = old_memslots->generation;
881
882 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
883 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
884
885 rcu_assign_pointer(kvm->memslots[as_id], slots);
886 synchronize_srcu_expedited(&kvm->srcu);
887
888 /*
889 * Increment the new memslot generation a second time, dropping the
890 * update in-progress flag and incrementing then generation based on
891 * the number of address spaces. This provides a unique and easily
892 * identifiable generation number while the memslots are in flux.
893 */
894 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
895
896 /*
897 * Generations must be unique even across address spaces. We do not need
898 * a global counter for that, instead the generation space is evenly split
899 * across address spaces. For example, with two address spaces, address
900 * space 0 will use generations 0, 2, 4, ... while address space 1 will
901 * use generations 1, 3, 5, ...
902 */
903 gen += KVM_ADDRESS_SPACE_NUM;
904
905 kvm_arch_memslots_updated(kvm, gen);
906
907 slots->generation = gen;
908
909 return old_memslots;
910 }
911
912 /*
913 * Allocate some memory and give it an address in the guest physical address
914 * space.
915 *
916 * Discontiguous memory is allowed, mostly for framebuffers.
917 *
918 * Must be called holding kvm->slots_lock for write.
919 */
920 int __kvm_set_memory_region(struct kvm *kvm,
921 const struct kvm_userspace_memory_region *mem)
922 {
923 int r;
924 gfn_t base_gfn;
925 unsigned long npages;
926 struct kvm_memory_slot *slot;
927 struct kvm_memory_slot old, new;
928 struct kvm_memslots *slots = NULL, *old_memslots;
929 int as_id, id;
930 enum kvm_mr_change change;
931
932 r = check_memory_region_flags(mem);
933 if (r)
934 goto out;
935
936 r = -EINVAL;
937 as_id = mem->slot >> 16;
938 id = (u16)mem->slot;
939
940 /* General sanity checks */
941 if (mem->memory_size & (PAGE_SIZE - 1))
942 goto out;
943 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
944 goto out;
945 /* We can read the guest memory with __xxx_user() later on. */
946 if ((id < KVM_USER_MEM_SLOTS) &&
947 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
948 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
949 mem->memory_size)))
950 goto out;
951 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
952 goto out;
953 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
954 goto out;
955
956 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
957 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
958 npages = mem->memory_size >> PAGE_SHIFT;
959
960 if (npages > KVM_MEM_MAX_NR_PAGES)
961 goto out;
962
963 new = old = *slot;
964
965 new.id = id;
966 new.base_gfn = base_gfn;
967 new.npages = npages;
968 new.flags = mem->flags;
969
970 if (npages) {
971 if (!old.npages)
972 change = KVM_MR_CREATE;
973 else { /* Modify an existing slot. */
974 if ((mem->userspace_addr != old.userspace_addr) ||
975 (npages != old.npages) ||
976 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
977 goto out;
978
979 if (base_gfn != old.base_gfn)
980 change = KVM_MR_MOVE;
981 else if (new.flags != old.flags)
982 change = KVM_MR_FLAGS_ONLY;
983 else { /* Nothing to change. */
984 r = 0;
985 goto out;
986 }
987 }
988 } else {
989 if (!old.npages)
990 goto out;
991
992 change = KVM_MR_DELETE;
993 new.base_gfn = 0;
994 new.flags = 0;
995 }
996
997 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
998 /* Check for overlaps */
999 r = -EEXIST;
1000 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1001 if (slot->id == id)
1002 continue;
1003 if (!((base_gfn + npages <= slot->base_gfn) ||
1004 (base_gfn >= slot->base_gfn + slot->npages)))
1005 goto out;
1006 }
1007 }
1008
1009 /* Free page dirty bitmap if unneeded */
1010 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1011 new.dirty_bitmap = NULL;
1012
1013 r = -ENOMEM;
1014 if (change == KVM_MR_CREATE) {
1015 new.userspace_addr = mem->userspace_addr;
1016
1017 if (kvm_arch_create_memslot(kvm, &new, npages))
1018 goto out_free;
1019 }
1020
1021 /* Allocate page dirty bitmap if needed */
1022 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1023 if (kvm_create_dirty_bitmap(&new) < 0)
1024 goto out_free;
1025 }
1026
1027 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1028 if (!slots)
1029 goto out_free;
1030 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1031
1032 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1033 slot = id_to_memslot(slots, id);
1034 slot->flags |= KVM_MEMSLOT_INVALID;
1035
1036 old_memslots = install_new_memslots(kvm, as_id, slots);
1037
1038 /* From this point no new shadow pages pointing to a deleted,
1039 * or moved, memslot will be created.
1040 *
1041 * validation of sp->gfn happens in:
1042 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1043 * - kvm_is_visible_gfn (mmu_check_roots)
1044 */
1045 kvm_arch_flush_shadow_memslot(kvm, slot);
1046
1047 /*
1048 * We can re-use the old_memslots from above, the only difference
1049 * from the currently installed memslots is the invalid flag. This
1050 * will get overwritten by update_memslots anyway.
1051 */
1052 slots = old_memslots;
1053 }
1054
1055 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1056 if (r)
1057 goto out_slots;
1058
1059 /* actual memory is freed via old in kvm_free_memslot below */
1060 if (change == KVM_MR_DELETE) {
1061 new.dirty_bitmap = NULL;
1062 memset(&new.arch, 0, sizeof(new.arch));
1063 }
1064
1065 update_memslots(slots, &new, change);
1066 old_memslots = install_new_memslots(kvm, as_id, slots);
1067
1068 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1069
1070 kvm_free_memslot(kvm, &old, &new);
1071 kvfree(old_memslots);
1072 return 0;
1073
1074 out_slots:
1075 kvfree(slots);
1076 out_free:
1077 kvm_free_memslot(kvm, &new, &old);
1078 out:
1079 return r;
1080 }
1081 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1082
1083 int kvm_set_memory_region(struct kvm *kvm,
1084 const struct kvm_userspace_memory_region *mem)
1085 {
1086 int r;
1087
1088 mutex_lock(&kvm->slots_lock);
1089 r = __kvm_set_memory_region(kvm, mem);
1090 mutex_unlock(&kvm->slots_lock);
1091 return r;
1092 }
1093 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1094
1095 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1096 struct kvm_userspace_memory_region *mem)
1097 {
1098 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1099 return -EINVAL;
1100
1101 return kvm_set_memory_region(kvm, mem);
1102 }
1103
1104 int kvm_get_dirty_log(struct kvm *kvm,
1105 struct kvm_dirty_log *log, int *is_dirty)
1106 {
1107 struct kvm_memslots *slots;
1108 struct kvm_memory_slot *memslot;
1109 int i, as_id, id;
1110 unsigned long n;
1111 unsigned long any = 0;
1112
1113 as_id = log->slot >> 16;
1114 id = (u16)log->slot;
1115 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1116 return -EINVAL;
1117
1118 slots = __kvm_memslots(kvm, as_id);
1119 memslot = id_to_memslot(slots, id);
1120 if (!memslot->dirty_bitmap)
1121 return -ENOENT;
1122
1123 n = kvm_dirty_bitmap_bytes(memslot);
1124
1125 for (i = 0; !any && i < n/sizeof(long); ++i)
1126 any = memslot->dirty_bitmap[i];
1127
1128 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1129 return -EFAULT;
1130
1131 if (any)
1132 *is_dirty = 1;
1133 return 0;
1134 }
1135 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1136
1137 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1138 /**
1139 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1140 * and reenable dirty page tracking for the corresponding pages.
1141 * @kvm: pointer to kvm instance
1142 * @log: slot id and address to which we copy the log
1143 * @flush: true if TLB flush is needed by caller
1144 *
1145 * We need to keep it in mind that VCPU threads can write to the bitmap
1146 * concurrently. So, to avoid losing track of dirty pages we keep the
1147 * following order:
1148 *
1149 * 1. Take a snapshot of the bit and clear it if needed.
1150 * 2. Write protect the corresponding page.
1151 * 3. Copy the snapshot to the userspace.
1152 * 4. Upon return caller flushes TLB's if needed.
1153 *
1154 * Between 2 and 4, the guest may write to the page using the remaining TLB
1155 * entry. This is not a problem because the page is reported dirty using
1156 * the snapshot taken before and step 4 ensures that writes done after
1157 * exiting to userspace will be logged for the next call.
1158 *
1159 */
1160 int kvm_get_dirty_log_protect(struct kvm *kvm,
1161 struct kvm_dirty_log *log, bool *flush)
1162 {
1163 struct kvm_memslots *slots;
1164 struct kvm_memory_slot *memslot;
1165 int i, as_id, id;
1166 unsigned long n;
1167 unsigned long *dirty_bitmap;
1168 unsigned long *dirty_bitmap_buffer;
1169
1170 as_id = log->slot >> 16;
1171 id = (u16)log->slot;
1172 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1173 return -EINVAL;
1174
1175 slots = __kvm_memslots(kvm, as_id);
1176 memslot = id_to_memslot(slots, id);
1177
1178 dirty_bitmap = memslot->dirty_bitmap;
1179 if (!dirty_bitmap)
1180 return -ENOENT;
1181
1182 n = kvm_dirty_bitmap_bytes(memslot);
1183 *flush = false;
1184 if (kvm->manual_dirty_log_protect) {
1185 /*
1186 * Unlike kvm_get_dirty_log, we always return false in *flush,
1187 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1188 * is some code duplication between this function and
1189 * kvm_get_dirty_log, but hopefully all architecture
1190 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1191 * can be eliminated.
1192 */
1193 dirty_bitmap_buffer = dirty_bitmap;
1194 } else {
1195 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1196 memset(dirty_bitmap_buffer, 0, n);
1197
1198 spin_lock(&kvm->mmu_lock);
1199 for (i = 0; i < n / sizeof(long); i++) {
1200 unsigned long mask;
1201 gfn_t offset;
1202
1203 if (!dirty_bitmap[i])
1204 continue;
1205
1206 *flush = true;
1207 mask = xchg(&dirty_bitmap[i], 0);
1208 dirty_bitmap_buffer[i] = mask;
1209
1210 offset = i * BITS_PER_LONG;
1211 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1212 offset, mask);
1213 }
1214 spin_unlock(&kvm->mmu_lock);
1215 }
1216
1217 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1218 return -EFAULT;
1219 return 0;
1220 }
1221 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1222
1223 /**
1224 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1225 * and reenable dirty page tracking for the corresponding pages.
1226 * @kvm: pointer to kvm instance
1227 * @log: slot id and address from which to fetch the bitmap of dirty pages
1228 * @flush: true if TLB flush is needed by caller
1229 */
1230 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1231 struct kvm_clear_dirty_log *log, bool *flush)
1232 {
1233 struct kvm_memslots *slots;
1234 struct kvm_memory_slot *memslot;
1235 int as_id, id;
1236 gfn_t offset;
1237 unsigned long i, n;
1238 unsigned long *dirty_bitmap;
1239 unsigned long *dirty_bitmap_buffer;
1240
1241 as_id = log->slot >> 16;
1242 id = (u16)log->slot;
1243 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1244 return -EINVAL;
1245
1246 if (log->first_page & 63)
1247 return -EINVAL;
1248
1249 slots = __kvm_memslots(kvm, as_id);
1250 memslot = id_to_memslot(slots, id);
1251
1252 dirty_bitmap = memslot->dirty_bitmap;
1253 if (!dirty_bitmap)
1254 return -ENOENT;
1255
1256 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1257
1258 if (log->first_page > memslot->npages ||
1259 log->num_pages > memslot->npages - log->first_page ||
1260 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1261 return -EINVAL;
1262
1263 *flush = false;
1264 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1265 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1266 return -EFAULT;
1267
1268 spin_lock(&kvm->mmu_lock);
1269 for (offset = log->first_page, i = offset / BITS_PER_LONG,
1270 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1271 i++, offset += BITS_PER_LONG) {
1272 unsigned long mask = *dirty_bitmap_buffer++;
1273 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1274 if (!mask)
1275 continue;
1276
1277 mask &= atomic_long_fetch_andnot(mask, p);
1278
1279 /*
1280 * mask contains the bits that really have been cleared. This
1281 * never includes any bits beyond the length of the memslot (if
1282 * the length is not aligned to 64 pages), therefore it is not
1283 * a problem if userspace sets them in log->dirty_bitmap.
1284 */
1285 if (mask) {
1286 *flush = true;
1287 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1288 offset, mask);
1289 }
1290 }
1291 spin_unlock(&kvm->mmu_lock);
1292
1293 return 0;
1294 }
1295 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1296 #endif
1297
1298 bool kvm_largepages_enabled(void)
1299 {
1300 return largepages_enabled;
1301 }
1302
1303 void kvm_disable_largepages(void)
1304 {
1305 largepages_enabled = false;
1306 }
1307 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1308
1309 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1310 {
1311 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1312 }
1313 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1314
1315 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1316 {
1317 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1318 }
1319
1320 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1321 {
1322 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1323
1324 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1325 memslot->flags & KVM_MEMSLOT_INVALID)
1326 return false;
1327
1328 return true;
1329 }
1330 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1331
1332 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1333 {
1334 struct vm_area_struct *vma;
1335 unsigned long addr, size;
1336
1337 size = PAGE_SIZE;
1338
1339 addr = gfn_to_hva(kvm, gfn);
1340 if (kvm_is_error_hva(addr))
1341 return PAGE_SIZE;
1342
1343 down_read(&current->mm->mmap_sem);
1344 vma = find_vma(current->mm, addr);
1345 if (!vma)
1346 goto out;
1347
1348 size = vma_kernel_pagesize(vma);
1349
1350 out:
1351 up_read(&current->mm->mmap_sem);
1352
1353 return size;
1354 }
1355
1356 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1357 {
1358 return slot->flags & KVM_MEM_READONLY;
1359 }
1360
1361 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1362 gfn_t *nr_pages, bool write)
1363 {
1364 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1365 return KVM_HVA_ERR_BAD;
1366
1367 if (memslot_is_readonly(slot) && write)
1368 return KVM_HVA_ERR_RO_BAD;
1369
1370 if (nr_pages)
1371 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1372
1373 return __gfn_to_hva_memslot(slot, gfn);
1374 }
1375
1376 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1377 gfn_t *nr_pages)
1378 {
1379 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1380 }
1381
1382 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1383 gfn_t gfn)
1384 {
1385 return gfn_to_hva_many(slot, gfn, NULL);
1386 }
1387 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1388
1389 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1390 {
1391 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1392 }
1393 EXPORT_SYMBOL_GPL(gfn_to_hva);
1394
1395 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1396 {
1397 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1398 }
1399 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1400
1401 /*
1402 * Return the hva of a @gfn and the R/W attribute if possible.
1403 *
1404 * @slot: the kvm_memory_slot which contains @gfn
1405 * @gfn: the gfn to be translated
1406 * @writable: used to return the read/write attribute of the @slot if the hva
1407 * is valid and @writable is not NULL
1408 */
1409 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1410 gfn_t gfn, bool *writable)
1411 {
1412 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1413
1414 if (!kvm_is_error_hva(hva) && writable)
1415 *writable = !memslot_is_readonly(slot);
1416
1417 return hva;
1418 }
1419
1420 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1421 {
1422 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1423
1424 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1425 }
1426
1427 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1428 {
1429 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1430
1431 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1432 }
1433
1434 static inline int check_user_page_hwpoison(unsigned long addr)
1435 {
1436 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1437
1438 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1439 return rc == -EHWPOISON;
1440 }
1441
1442 /*
1443 * The fast path to get the writable pfn which will be stored in @pfn,
1444 * true indicates success, otherwise false is returned. It's also the
1445 * only part that runs if we can are in atomic context.
1446 */
1447 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1448 bool *writable, kvm_pfn_t *pfn)
1449 {
1450 struct page *page[1];
1451 int npages;
1452
1453 /*
1454 * Fast pin a writable pfn only if it is a write fault request
1455 * or the caller allows to map a writable pfn for a read fault
1456 * request.
1457 */
1458 if (!(write_fault || writable))
1459 return false;
1460
1461 npages = __get_user_pages_fast(addr, 1, 1, page);
1462 if (npages == 1) {
1463 *pfn = page_to_pfn(page[0]);
1464
1465 if (writable)
1466 *writable = true;
1467 return true;
1468 }
1469
1470 return false;
1471 }
1472
1473 /*
1474 * The slow path to get the pfn of the specified host virtual address,
1475 * 1 indicates success, -errno is returned if error is detected.
1476 */
1477 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1478 bool *writable, kvm_pfn_t *pfn)
1479 {
1480 unsigned int flags = FOLL_HWPOISON;
1481 struct page *page;
1482 int npages = 0;
1483
1484 might_sleep();
1485
1486 if (writable)
1487 *writable = write_fault;
1488
1489 if (write_fault)
1490 flags |= FOLL_WRITE;
1491 if (async)
1492 flags |= FOLL_NOWAIT;
1493
1494 npages = get_user_pages_unlocked(addr, 1, &page, flags);
1495 if (npages != 1)
1496 return npages;
1497
1498 /* map read fault as writable if possible */
1499 if (unlikely(!write_fault) && writable) {
1500 struct page *wpage;
1501
1502 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1503 *writable = true;
1504 put_page(page);
1505 page = wpage;
1506 }
1507 }
1508 *pfn = page_to_pfn(page);
1509 return npages;
1510 }
1511
1512 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1513 {
1514 if (unlikely(!(vma->vm_flags & VM_READ)))
1515 return false;
1516
1517 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1518 return false;
1519
1520 return true;
1521 }
1522
1523 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1524 unsigned long addr, bool *async,
1525 bool write_fault, bool *writable,
1526 kvm_pfn_t *p_pfn)
1527 {
1528 unsigned long pfn;
1529 int r;
1530
1531 r = follow_pfn(vma, addr, &pfn);
1532 if (r) {
1533 /*
1534 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1535 * not call the fault handler, so do it here.
1536 */
1537 bool unlocked = false;
1538 r = fixup_user_fault(current, current->mm, addr,
1539 (write_fault ? FAULT_FLAG_WRITE : 0),
1540 &unlocked);
1541 if (unlocked)
1542 return -EAGAIN;
1543 if (r)
1544 return r;
1545
1546 r = follow_pfn(vma, addr, &pfn);
1547 if (r)
1548 return r;
1549
1550 }
1551
1552 if (writable)
1553 *writable = true;
1554
1555 /*
1556 * Get a reference here because callers of *hva_to_pfn* and
1557 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1558 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1559 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1560 * simply do nothing for reserved pfns.
1561 *
1562 * Whoever called remap_pfn_range is also going to call e.g.
1563 * unmap_mapping_range before the underlying pages are freed,
1564 * causing a call to our MMU notifier.
1565 */
1566 kvm_get_pfn(pfn);
1567
1568 *p_pfn = pfn;
1569 return 0;
1570 }
1571
1572 /*
1573 * Pin guest page in memory and return its pfn.
1574 * @addr: host virtual address which maps memory to the guest
1575 * @atomic: whether this function can sleep
1576 * @async: whether this function need to wait IO complete if the
1577 * host page is not in the memory
1578 * @write_fault: whether we should get a writable host page
1579 * @writable: whether it allows to map a writable host page for !@write_fault
1580 *
1581 * The function will map a writable host page for these two cases:
1582 * 1): @write_fault = true
1583 * 2): @write_fault = false && @writable, @writable will tell the caller
1584 * whether the mapping is writable.
1585 */
1586 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1587 bool write_fault, bool *writable)
1588 {
1589 struct vm_area_struct *vma;
1590 kvm_pfn_t pfn = 0;
1591 int npages, r;
1592
1593 /* we can do it either atomically or asynchronously, not both */
1594 BUG_ON(atomic && async);
1595
1596 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1597 return pfn;
1598
1599 if (atomic)
1600 return KVM_PFN_ERR_FAULT;
1601
1602 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1603 if (npages == 1)
1604 return pfn;
1605
1606 down_read(&current->mm->mmap_sem);
1607 if (npages == -EHWPOISON ||
1608 (!async && check_user_page_hwpoison(addr))) {
1609 pfn = KVM_PFN_ERR_HWPOISON;
1610 goto exit;
1611 }
1612
1613 retry:
1614 vma = find_vma_intersection(current->mm, addr, addr + 1);
1615
1616 if (vma == NULL)
1617 pfn = KVM_PFN_ERR_FAULT;
1618 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1619 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1620 if (r == -EAGAIN)
1621 goto retry;
1622 if (r < 0)
1623 pfn = KVM_PFN_ERR_FAULT;
1624 } else {
1625 if (async && vma_is_valid(vma, write_fault))
1626 *async = true;
1627 pfn = KVM_PFN_ERR_FAULT;
1628 }
1629 exit:
1630 up_read(&current->mm->mmap_sem);
1631 return pfn;
1632 }
1633
1634 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1635 bool atomic, bool *async, bool write_fault,
1636 bool *writable)
1637 {
1638 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1639
1640 if (addr == KVM_HVA_ERR_RO_BAD) {
1641 if (writable)
1642 *writable = false;
1643 return KVM_PFN_ERR_RO_FAULT;
1644 }
1645
1646 if (kvm_is_error_hva(addr)) {
1647 if (writable)
1648 *writable = false;
1649 return KVM_PFN_NOSLOT;
1650 }
1651
1652 /* Do not map writable pfn in the readonly memslot. */
1653 if (writable && memslot_is_readonly(slot)) {
1654 *writable = false;
1655 writable = NULL;
1656 }
1657
1658 return hva_to_pfn(addr, atomic, async, write_fault,
1659 writable);
1660 }
1661 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1662
1663 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1664 bool *writable)
1665 {
1666 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1667 write_fault, writable);
1668 }
1669 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1670
1671 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1672 {
1673 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1674 }
1675 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1676
1677 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1678 {
1679 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1680 }
1681 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1682
1683 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1684 {
1685 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1686 }
1687 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1688
1689 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1690 {
1691 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1692 }
1693 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1694
1695 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1696 {
1697 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1698 }
1699 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1700
1701 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1702 {
1703 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1704 }
1705 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1706
1707 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1708 struct page **pages, int nr_pages)
1709 {
1710 unsigned long addr;
1711 gfn_t entry = 0;
1712
1713 addr = gfn_to_hva_many(slot, gfn, &entry);
1714 if (kvm_is_error_hva(addr))
1715 return -1;
1716
1717 if (entry < nr_pages)
1718 return 0;
1719
1720 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1721 }
1722 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1723
1724 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1725 {
1726 if (is_error_noslot_pfn(pfn))
1727 return KVM_ERR_PTR_BAD_PAGE;
1728
1729 if (kvm_is_reserved_pfn(pfn)) {
1730 WARN_ON(1);
1731 return KVM_ERR_PTR_BAD_PAGE;
1732 }
1733
1734 return pfn_to_page(pfn);
1735 }
1736
1737 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1738 {
1739 kvm_pfn_t pfn;
1740
1741 pfn = gfn_to_pfn(kvm, gfn);
1742
1743 return kvm_pfn_to_page(pfn);
1744 }
1745 EXPORT_SYMBOL_GPL(gfn_to_page);
1746
1747 static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn,
1748 struct kvm_host_map *map)
1749 {
1750 kvm_pfn_t pfn;
1751 void *hva = NULL;
1752 struct page *page = KVM_UNMAPPED_PAGE;
1753
1754 if (!map)
1755 return -EINVAL;
1756
1757 pfn = gfn_to_pfn_memslot(slot, gfn);
1758 if (is_error_noslot_pfn(pfn))
1759 return -EINVAL;
1760
1761 if (pfn_valid(pfn)) {
1762 page = pfn_to_page(pfn);
1763 hva = kmap(page);
1764 #ifdef CONFIG_HAS_IOMEM
1765 } else {
1766 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1767 #endif
1768 }
1769
1770 if (!hva)
1771 return -EFAULT;
1772
1773 map->page = page;
1774 map->hva = hva;
1775 map->pfn = pfn;
1776 map->gfn = gfn;
1777
1778 return 0;
1779 }
1780
1781 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1782 {
1783 return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map);
1784 }
1785 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1786
1787 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1788 bool dirty)
1789 {
1790 if (!map)
1791 return;
1792
1793 if (!map->hva)
1794 return;
1795
1796 if (map->page)
1797 kunmap(map->page);
1798 #ifdef CONFIG_HAS_IOMEM
1799 else
1800 memunmap(map->hva);
1801 #endif
1802
1803 if (dirty) {
1804 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
1805 kvm_release_pfn_dirty(map->pfn);
1806 } else {
1807 kvm_release_pfn_clean(map->pfn);
1808 }
1809
1810 map->hva = NULL;
1811 map->page = NULL;
1812 }
1813 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1814
1815 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1816 {
1817 kvm_pfn_t pfn;
1818
1819 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1820
1821 return kvm_pfn_to_page(pfn);
1822 }
1823 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1824
1825 void kvm_release_page_clean(struct page *page)
1826 {
1827 WARN_ON(is_error_page(page));
1828
1829 kvm_release_pfn_clean(page_to_pfn(page));
1830 }
1831 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1832
1833 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1834 {
1835 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1836 put_page(pfn_to_page(pfn));
1837 }
1838 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1839
1840 void kvm_release_page_dirty(struct page *page)
1841 {
1842 WARN_ON(is_error_page(page));
1843
1844 kvm_release_pfn_dirty(page_to_pfn(page));
1845 }
1846 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1847
1848 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1849 {
1850 kvm_set_pfn_dirty(pfn);
1851 kvm_release_pfn_clean(pfn);
1852 }
1853 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1854
1855 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1856 {
1857 if (!kvm_is_reserved_pfn(pfn)) {
1858 struct page *page = pfn_to_page(pfn);
1859
1860 if (!PageReserved(page))
1861 SetPageDirty(page);
1862 }
1863 }
1864 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1865
1866 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1867 {
1868 if (!kvm_is_reserved_pfn(pfn))
1869 mark_page_accessed(pfn_to_page(pfn));
1870 }
1871 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1872
1873 void kvm_get_pfn(kvm_pfn_t pfn)
1874 {
1875 if (!kvm_is_reserved_pfn(pfn))
1876 get_page(pfn_to_page(pfn));
1877 }
1878 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1879
1880 static int next_segment(unsigned long len, int offset)
1881 {
1882 if (len > PAGE_SIZE - offset)
1883 return PAGE_SIZE - offset;
1884 else
1885 return len;
1886 }
1887
1888 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1889 void *data, int offset, int len)
1890 {
1891 int r;
1892 unsigned long addr;
1893
1894 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1895 if (kvm_is_error_hva(addr))
1896 return -EFAULT;
1897 r = __copy_from_user(data, (void __user *)addr + offset, len);
1898 if (r)
1899 return -EFAULT;
1900 return 0;
1901 }
1902
1903 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1904 int len)
1905 {
1906 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1907
1908 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1909 }
1910 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1911
1912 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1913 int offset, int len)
1914 {
1915 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1916
1917 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1918 }
1919 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1920
1921 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1922 {
1923 gfn_t gfn = gpa >> PAGE_SHIFT;
1924 int seg;
1925 int offset = offset_in_page(gpa);
1926 int ret;
1927
1928 while ((seg = next_segment(len, offset)) != 0) {
1929 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1930 if (ret < 0)
1931 return ret;
1932 offset = 0;
1933 len -= seg;
1934 data += seg;
1935 ++gfn;
1936 }
1937 return 0;
1938 }
1939 EXPORT_SYMBOL_GPL(kvm_read_guest);
1940
1941 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1942 {
1943 gfn_t gfn = gpa >> PAGE_SHIFT;
1944 int seg;
1945 int offset = offset_in_page(gpa);
1946 int ret;
1947
1948 while ((seg = next_segment(len, offset)) != 0) {
1949 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1950 if (ret < 0)
1951 return ret;
1952 offset = 0;
1953 len -= seg;
1954 data += seg;
1955 ++gfn;
1956 }
1957 return 0;
1958 }
1959 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1960
1961 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1962 void *data, int offset, unsigned long len)
1963 {
1964 int r;
1965 unsigned long addr;
1966
1967 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1968 if (kvm_is_error_hva(addr))
1969 return -EFAULT;
1970 pagefault_disable();
1971 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1972 pagefault_enable();
1973 if (r)
1974 return -EFAULT;
1975 return 0;
1976 }
1977
1978 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1979 unsigned long len)
1980 {
1981 gfn_t gfn = gpa >> PAGE_SHIFT;
1982 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1983 int offset = offset_in_page(gpa);
1984
1985 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1986 }
1987 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1988
1989 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1990 void *data, unsigned long len)
1991 {
1992 gfn_t gfn = gpa >> PAGE_SHIFT;
1993 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1994 int offset = offset_in_page(gpa);
1995
1996 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1997 }
1998 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1999
2000 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2001 const void *data, int offset, int len)
2002 {
2003 int r;
2004 unsigned long addr;
2005
2006 addr = gfn_to_hva_memslot(memslot, gfn);
2007 if (kvm_is_error_hva(addr))
2008 return -EFAULT;
2009 r = __copy_to_user((void __user *)addr + offset, data, len);
2010 if (r)
2011 return -EFAULT;
2012 mark_page_dirty_in_slot(memslot, gfn);
2013 return 0;
2014 }
2015
2016 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2017 const void *data, int offset, int len)
2018 {
2019 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2020
2021 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2022 }
2023 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2024
2025 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2026 const void *data, int offset, int len)
2027 {
2028 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2029
2030 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2031 }
2032 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2033
2034 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2035 unsigned long len)
2036 {
2037 gfn_t gfn = gpa >> PAGE_SHIFT;
2038 int seg;
2039 int offset = offset_in_page(gpa);
2040 int ret;
2041
2042 while ((seg = next_segment(len, offset)) != 0) {
2043 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2044 if (ret < 0)
2045 return ret;
2046 offset = 0;
2047 len -= seg;
2048 data += seg;
2049 ++gfn;
2050 }
2051 return 0;
2052 }
2053 EXPORT_SYMBOL_GPL(kvm_write_guest);
2054
2055 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2056 unsigned long len)
2057 {
2058 gfn_t gfn = gpa >> PAGE_SHIFT;
2059 int seg;
2060 int offset = offset_in_page(gpa);
2061 int ret;
2062
2063 while ((seg = next_segment(len, offset)) != 0) {
2064 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2065 if (ret < 0)
2066 return ret;
2067 offset = 0;
2068 len -= seg;
2069 data += seg;
2070 ++gfn;
2071 }
2072 return 0;
2073 }
2074 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2075
2076 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2077 struct gfn_to_hva_cache *ghc,
2078 gpa_t gpa, unsigned long len)
2079 {
2080 int offset = offset_in_page(gpa);
2081 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2082 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2083 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2084 gfn_t nr_pages_avail;
2085 int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2086
2087 ghc->gpa = gpa;
2088 ghc->generation = slots->generation;
2089 ghc->len = len;
2090 ghc->hva = KVM_HVA_ERR_BAD;
2091
2092 /*
2093 * If the requested region crosses two memslots, we still
2094 * verify that the entire region is valid here.
2095 */
2096 while (!r && start_gfn <= end_gfn) {
2097 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2098 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2099 &nr_pages_avail);
2100 if (kvm_is_error_hva(ghc->hva))
2101 r = -EFAULT;
2102 start_gfn += nr_pages_avail;
2103 }
2104
2105 /* Use the slow path for cross page reads and writes. */
2106 if (!r && nr_pages_needed == 1)
2107 ghc->hva += offset;
2108 else
2109 ghc->memslot = NULL;
2110
2111 return r;
2112 }
2113
2114 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2115 gpa_t gpa, unsigned long len)
2116 {
2117 struct kvm_memslots *slots = kvm_memslots(kvm);
2118 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2119 }
2120 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2121
2122 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2123 void *data, unsigned int offset,
2124 unsigned long len)
2125 {
2126 struct kvm_memslots *slots = kvm_memslots(kvm);
2127 int r;
2128 gpa_t gpa = ghc->gpa + offset;
2129
2130 BUG_ON(len + offset > ghc->len);
2131
2132 if (slots->generation != ghc->generation)
2133 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2134
2135 if (unlikely(!ghc->memslot))
2136 return kvm_write_guest(kvm, gpa, data, len);
2137
2138 if (kvm_is_error_hva(ghc->hva))
2139 return -EFAULT;
2140
2141 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2142 if (r)
2143 return -EFAULT;
2144 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2145
2146 return 0;
2147 }
2148 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2149
2150 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2151 void *data, unsigned long len)
2152 {
2153 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2154 }
2155 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2156
2157 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2158 void *data, unsigned long len)
2159 {
2160 struct kvm_memslots *slots = kvm_memslots(kvm);
2161 int r;
2162
2163 BUG_ON(len > ghc->len);
2164
2165 if (slots->generation != ghc->generation)
2166 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2167
2168 if (unlikely(!ghc->memslot))
2169 return kvm_read_guest(kvm, ghc->gpa, data, len);
2170
2171 if (kvm_is_error_hva(ghc->hva))
2172 return -EFAULT;
2173
2174 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2175 if (r)
2176 return -EFAULT;
2177
2178 return 0;
2179 }
2180 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2181
2182 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2183 {
2184 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2185
2186 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2187 }
2188 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2189
2190 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2191 {
2192 gfn_t gfn = gpa >> PAGE_SHIFT;
2193 int seg;
2194 int offset = offset_in_page(gpa);
2195 int ret;
2196
2197 while ((seg = next_segment(len, offset)) != 0) {
2198 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2199 if (ret < 0)
2200 return ret;
2201 offset = 0;
2202 len -= seg;
2203 ++gfn;
2204 }
2205 return 0;
2206 }
2207 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2208
2209 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2210 gfn_t gfn)
2211 {
2212 if (memslot && memslot->dirty_bitmap) {
2213 unsigned long rel_gfn = gfn - memslot->base_gfn;
2214
2215 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2216 }
2217 }
2218
2219 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2220 {
2221 struct kvm_memory_slot *memslot;
2222
2223 memslot = gfn_to_memslot(kvm, gfn);
2224 mark_page_dirty_in_slot(memslot, gfn);
2225 }
2226 EXPORT_SYMBOL_GPL(mark_page_dirty);
2227
2228 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2229 {
2230 struct kvm_memory_slot *memslot;
2231
2232 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2233 mark_page_dirty_in_slot(memslot, gfn);
2234 }
2235 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2236
2237 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2238 {
2239 if (!vcpu->sigset_active)
2240 return;
2241
2242 /*
2243 * This does a lockless modification of ->real_blocked, which is fine
2244 * because, only current can change ->real_blocked and all readers of
2245 * ->real_blocked don't care as long ->real_blocked is always a subset
2246 * of ->blocked.
2247 */
2248 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2249 }
2250
2251 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2252 {
2253 if (!vcpu->sigset_active)
2254 return;
2255
2256 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2257 sigemptyset(&current->real_blocked);
2258 }
2259
2260 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2261 {
2262 unsigned int old, val, grow, grow_start;
2263
2264 old = val = vcpu->halt_poll_ns;
2265 grow_start = READ_ONCE(halt_poll_ns_grow_start);
2266 grow = READ_ONCE(halt_poll_ns_grow);
2267 if (!grow)
2268 goto out;
2269
2270 val *= grow;
2271 if (val < grow_start)
2272 val = grow_start;
2273
2274 if (val > halt_poll_ns)
2275 val = halt_poll_ns;
2276
2277 vcpu->halt_poll_ns = val;
2278 out:
2279 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2280 }
2281
2282 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2283 {
2284 unsigned int old, val, shrink;
2285
2286 old = val = vcpu->halt_poll_ns;
2287 shrink = READ_ONCE(halt_poll_ns_shrink);
2288 if (shrink == 0)
2289 val = 0;
2290 else
2291 val /= shrink;
2292
2293 vcpu->halt_poll_ns = val;
2294 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2295 }
2296
2297 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2298 {
2299 int ret = -EINTR;
2300 int idx = srcu_read_lock(&vcpu->kvm->srcu);
2301
2302 if (kvm_arch_vcpu_runnable(vcpu)) {
2303 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2304 goto out;
2305 }
2306 if (kvm_cpu_has_pending_timer(vcpu))
2307 goto out;
2308 if (signal_pending(current))
2309 goto out;
2310
2311 ret = 0;
2312 out:
2313 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2314 return ret;
2315 }
2316
2317 /*
2318 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2319 */
2320 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2321 {
2322 ktime_t start, cur;
2323 DECLARE_SWAITQUEUE(wait);
2324 bool waited = false;
2325 u64 block_ns;
2326
2327 start = cur = ktime_get();
2328 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2329 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2330
2331 ++vcpu->stat.halt_attempted_poll;
2332 do {
2333 /*
2334 * This sets KVM_REQ_UNHALT if an interrupt
2335 * arrives.
2336 */
2337 if (kvm_vcpu_check_block(vcpu) < 0) {
2338 ++vcpu->stat.halt_successful_poll;
2339 if (!vcpu_valid_wakeup(vcpu))
2340 ++vcpu->stat.halt_poll_invalid;
2341 goto out;
2342 }
2343 cur = ktime_get();
2344 } while (single_task_running() && ktime_before(cur, stop));
2345 }
2346
2347 kvm_arch_vcpu_blocking(vcpu);
2348
2349 for (;;) {
2350 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2351
2352 if (kvm_vcpu_check_block(vcpu) < 0)
2353 break;
2354
2355 waited = true;
2356 schedule();
2357 }
2358
2359 finish_swait(&vcpu->wq, &wait);
2360 cur = ktime_get();
2361
2362 kvm_arch_vcpu_unblocking(vcpu);
2363 out:
2364 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2365
2366 if (!vcpu_valid_wakeup(vcpu))
2367 shrink_halt_poll_ns(vcpu);
2368 else if (halt_poll_ns) {
2369 if (block_ns <= vcpu->halt_poll_ns)
2370 ;
2371 /* we had a long block, shrink polling */
2372 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2373 shrink_halt_poll_ns(vcpu);
2374 /* we had a short halt and our poll time is too small */
2375 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2376 block_ns < halt_poll_ns)
2377 grow_halt_poll_ns(vcpu);
2378 } else
2379 vcpu->halt_poll_ns = 0;
2380
2381 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2382 kvm_arch_vcpu_block_finish(vcpu);
2383 }
2384 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2385
2386 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2387 {
2388 struct swait_queue_head *wqp;
2389
2390 wqp = kvm_arch_vcpu_wq(vcpu);
2391 if (swq_has_sleeper(wqp)) {
2392 swake_up_one(wqp);
2393 ++vcpu->stat.halt_wakeup;
2394 return true;
2395 }
2396
2397 return false;
2398 }
2399 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2400
2401 #ifndef CONFIG_S390
2402 /*
2403 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2404 */
2405 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2406 {
2407 int me;
2408 int cpu = vcpu->cpu;
2409
2410 if (kvm_vcpu_wake_up(vcpu))
2411 return;
2412
2413 me = get_cpu();
2414 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2415 if (kvm_arch_vcpu_should_kick(vcpu))
2416 smp_send_reschedule(cpu);
2417 put_cpu();
2418 }
2419 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2420 #endif /* !CONFIG_S390 */
2421
2422 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2423 {
2424 struct pid *pid;
2425 struct task_struct *task = NULL;
2426 int ret = 0;
2427
2428 rcu_read_lock();
2429 pid = rcu_dereference(target->pid);
2430 if (pid)
2431 task = get_pid_task(pid, PIDTYPE_PID);
2432 rcu_read_unlock();
2433 if (!task)
2434 return ret;
2435 ret = yield_to(task, 1);
2436 put_task_struct(task);
2437
2438 return ret;
2439 }
2440 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2441
2442 /*
2443 * Helper that checks whether a VCPU is eligible for directed yield.
2444 * Most eligible candidate to yield is decided by following heuristics:
2445 *
2446 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2447 * (preempted lock holder), indicated by @in_spin_loop.
2448 * Set at the beiginning and cleared at the end of interception/PLE handler.
2449 *
2450 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2451 * chance last time (mostly it has become eligible now since we have probably
2452 * yielded to lockholder in last iteration. This is done by toggling
2453 * @dy_eligible each time a VCPU checked for eligibility.)
2454 *
2455 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2456 * to preempted lock-holder could result in wrong VCPU selection and CPU
2457 * burning. Giving priority for a potential lock-holder increases lock
2458 * progress.
2459 *
2460 * Since algorithm is based on heuristics, accessing another VCPU data without
2461 * locking does not harm. It may result in trying to yield to same VCPU, fail
2462 * and continue with next VCPU and so on.
2463 */
2464 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2465 {
2466 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2467 bool eligible;
2468
2469 eligible = !vcpu->spin_loop.in_spin_loop ||
2470 vcpu->spin_loop.dy_eligible;
2471
2472 if (vcpu->spin_loop.in_spin_loop)
2473 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2474
2475 return eligible;
2476 #else
2477 return true;
2478 #endif
2479 }
2480
2481 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2482 {
2483 struct kvm *kvm = me->kvm;
2484 struct kvm_vcpu *vcpu;
2485 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2486 int yielded = 0;
2487 int try = 3;
2488 int pass;
2489 int i;
2490
2491 kvm_vcpu_set_in_spin_loop(me, true);
2492 /*
2493 * We boost the priority of a VCPU that is runnable but not
2494 * currently running, because it got preempted by something
2495 * else and called schedule in __vcpu_run. Hopefully that
2496 * VCPU is holding the lock that we need and will release it.
2497 * We approximate round-robin by starting at the last boosted VCPU.
2498 */
2499 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2500 kvm_for_each_vcpu(i, vcpu, kvm) {
2501 if (!pass && i <= last_boosted_vcpu) {
2502 i = last_boosted_vcpu;
2503 continue;
2504 } else if (pass && i > last_boosted_vcpu)
2505 break;
2506 if (!READ_ONCE(vcpu->preempted))
2507 continue;
2508 if (vcpu == me)
2509 continue;
2510 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2511 continue;
2512 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2513 continue;
2514 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2515 continue;
2516
2517 yielded = kvm_vcpu_yield_to(vcpu);
2518 if (yielded > 0) {
2519 kvm->last_boosted_vcpu = i;
2520 break;
2521 } else if (yielded < 0) {
2522 try--;
2523 if (!try)
2524 break;
2525 }
2526 }
2527 }
2528 kvm_vcpu_set_in_spin_loop(me, false);
2529
2530 /* Ensure vcpu is not eligible during next spinloop */
2531 kvm_vcpu_set_dy_eligible(me, false);
2532 }
2533 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2534
2535 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2536 {
2537 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2538 struct page *page;
2539
2540 if (vmf->pgoff == 0)
2541 page = virt_to_page(vcpu->run);
2542 #ifdef CONFIG_X86
2543 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2544 page = virt_to_page(vcpu->arch.pio_data);
2545 #endif
2546 #ifdef CONFIG_KVM_MMIO
2547 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2548 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2549 #endif
2550 else
2551 return kvm_arch_vcpu_fault(vcpu, vmf);
2552 get_page(page);
2553 vmf->page = page;
2554 return 0;
2555 }
2556
2557 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2558 .fault = kvm_vcpu_fault,
2559 };
2560
2561 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2562 {
2563 vma->vm_ops = &kvm_vcpu_vm_ops;
2564 return 0;
2565 }
2566
2567 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2568 {
2569 struct kvm_vcpu *vcpu = filp->private_data;
2570
2571 debugfs_remove_recursive(vcpu->debugfs_dentry);
2572 kvm_put_kvm(vcpu->kvm);
2573 return 0;
2574 }
2575
2576 static struct file_operations kvm_vcpu_fops = {
2577 .release = kvm_vcpu_release,
2578 .unlocked_ioctl = kvm_vcpu_ioctl,
2579 .mmap = kvm_vcpu_mmap,
2580 .llseek = noop_llseek,
2581 KVM_COMPAT(kvm_vcpu_compat_ioctl),
2582 };
2583
2584 /*
2585 * Allocates an inode for the vcpu.
2586 */
2587 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2588 {
2589 char name[8 + 1 + ITOA_MAX_LEN + 1];
2590
2591 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2592 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2593 }
2594
2595 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2596 {
2597 char dir_name[ITOA_MAX_LEN * 2];
2598 int ret;
2599
2600 if (!kvm_arch_has_vcpu_debugfs())
2601 return 0;
2602
2603 if (!debugfs_initialized())
2604 return 0;
2605
2606 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2607 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2608 vcpu->kvm->debugfs_dentry);
2609 if (!vcpu->debugfs_dentry)
2610 return -ENOMEM;
2611
2612 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2613 if (ret < 0) {
2614 debugfs_remove_recursive(vcpu->debugfs_dentry);
2615 return ret;
2616 }
2617
2618 return 0;
2619 }
2620
2621 /*
2622 * Creates some virtual cpus. Good luck creating more than one.
2623 */
2624 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2625 {
2626 int r;
2627 struct kvm_vcpu *vcpu;
2628
2629 if (id >= KVM_MAX_VCPU_ID)
2630 return -EINVAL;
2631
2632 mutex_lock(&kvm->lock);
2633 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2634 mutex_unlock(&kvm->lock);
2635 return -EINVAL;
2636 }
2637
2638 kvm->created_vcpus++;
2639 mutex_unlock(&kvm->lock);
2640
2641 vcpu = kvm_arch_vcpu_create(kvm, id);
2642 if (IS_ERR(vcpu)) {
2643 r = PTR_ERR(vcpu);
2644 goto vcpu_decrement;
2645 }
2646
2647 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2648
2649 r = kvm_arch_vcpu_setup(vcpu);
2650 if (r)
2651 goto vcpu_destroy;
2652
2653 r = kvm_create_vcpu_debugfs(vcpu);
2654 if (r)
2655 goto vcpu_destroy;
2656
2657 mutex_lock(&kvm->lock);
2658 if (kvm_get_vcpu_by_id(kvm, id)) {
2659 r = -EEXIST;
2660 goto unlock_vcpu_destroy;
2661 }
2662
2663 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2664
2665 /* Now it's all set up, let userspace reach it */
2666 kvm_get_kvm(kvm);
2667 r = create_vcpu_fd(vcpu);
2668 if (r < 0) {
2669 kvm_put_kvm(kvm);
2670 goto unlock_vcpu_destroy;
2671 }
2672
2673 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2674
2675 /*
2676 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2677 * before kvm->online_vcpu's incremented value.
2678 */
2679 smp_wmb();
2680 atomic_inc(&kvm->online_vcpus);
2681
2682 mutex_unlock(&kvm->lock);
2683 kvm_arch_vcpu_postcreate(vcpu);
2684 return r;
2685
2686 unlock_vcpu_destroy:
2687 mutex_unlock(&kvm->lock);
2688 debugfs_remove_recursive(vcpu->debugfs_dentry);
2689 vcpu_destroy:
2690 kvm_arch_vcpu_destroy(vcpu);
2691 vcpu_decrement:
2692 mutex_lock(&kvm->lock);
2693 kvm->created_vcpus--;
2694 mutex_unlock(&kvm->lock);
2695 return r;
2696 }
2697
2698 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2699 {
2700 if (sigset) {
2701 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2702 vcpu->sigset_active = 1;
2703 vcpu->sigset = *sigset;
2704 } else
2705 vcpu->sigset_active = 0;
2706 return 0;
2707 }
2708
2709 static long kvm_vcpu_ioctl(struct file *filp,
2710 unsigned int ioctl, unsigned long arg)
2711 {
2712 struct kvm_vcpu *vcpu = filp->private_data;
2713 void __user *argp = (void __user *)arg;
2714 int r;
2715 struct kvm_fpu *fpu = NULL;
2716 struct kvm_sregs *kvm_sregs = NULL;
2717
2718 if (vcpu->kvm->mm != current->mm)
2719 return -EIO;
2720
2721 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2722 return -EINVAL;
2723
2724 /*
2725 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2726 * execution; mutex_lock() would break them.
2727 */
2728 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2729 if (r != -ENOIOCTLCMD)
2730 return r;
2731
2732 if (mutex_lock_killable(&vcpu->mutex))
2733 return -EINTR;
2734 switch (ioctl) {
2735 case KVM_RUN: {
2736 struct pid *oldpid;
2737 r = -EINVAL;
2738 if (arg)
2739 goto out;
2740 oldpid = rcu_access_pointer(vcpu->pid);
2741 if (unlikely(oldpid != task_pid(current))) {
2742 /* The thread running this VCPU changed. */
2743 struct pid *newpid;
2744
2745 r = kvm_arch_vcpu_run_pid_change(vcpu);
2746 if (r)
2747 break;
2748
2749 newpid = get_task_pid(current, PIDTYPE_PID);
2750 rcu_assign_pointer(vcpu->pid, newpid);
2751 if (oldpid)
2752 synchronize_rcu();
2753 put_pid(oldpid);
2754 }
2755 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2756 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2757 break;
2758 }
2759 case KVM_GET_REGS: {
2760 struct kvm_regs *kvm_regs;
2761
2762 r = -ENOMEM;
2763 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2764 if (!kvm_regs)
2765 goto out;
2766 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2767 if (r)
2768 goto out_free1;
2769 r = -EFAULT;
2770 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2771 goto out_free1;
2772 r = 0;
2773 out_free1:
2774 kfree(kvm_regs);
2775 break;
2776 }
2777 case KVM_SET_REGS: {
2778 struct kvm_regs *kvm_regs;
2779
2780 r = -ENOMEM;
2781 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2782 if (IS_ERR(kvm_regs)) {
2783 r = PTR_ERR(kvm_regs);
2784 goto out;
2785 }
2786 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2787 kfree(kvm_regs);
2788 break;
2789 }
2790 case KVM_GET_SREGS: {
2791 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2792 GFP_KERNEL_ACCOUNT);
2793 r = -ENOMEM;
2794 if (!kvm_sregs)
2795 goto out;
2796 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2797 if (r)
2798 goto out;
2799 r = -EFAULT;
2800 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2801 goto out;
2802 r = 0;
2803 break;
2804 }
2805 case KVM_SET_SREGS: {
2806 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2807 if (IS_ERR(kvm_sregs)) {
2808 r = PTR_ERR(kvm_sregs);
2809 kvm_sregs = NULL;
2810 goto out;
2811 }
2812 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2813 break;
2814 }
2815 case KVM_GET_MP_STATE: {
2816 struct kvm_mp_state mp_state;
2817
2818 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2819 if (r)
2820 goto out;
2821 r = -EFAULT;
2822 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2823 goto out;
2824 r = 0;
2825 break;
2826 }
2827 case KVM_SET_MP_STATE: {
2828 struct kvm_mp_state mp_state;
2829
2830 r = -EFAULT;
2831 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2832 goto out;
2833 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2834 break;
2835 }
2836 case KVM_TRANSLATE: {
2837 struct kvm_translation tr;
2838
2839 r = -EFAULT;
2840 if (copy_from_user(&tr, argp, sizeof(tr)))
2841 goto out;
2842 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2843 if (r)
2844 goto out;
2845 r = -EFAULT;
2846 if (copy_to_user(argp, &tr, sizeof(tr)))
2847 goto out;
2848 r = 0;
2849 break;
2850 }
2851 case KVM_SET_GUEST_DEBUG: {
2852 struct kvm_guest_debug dbg;
2853
2854 r = -EFAULT;
2855 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2856 goto out;
2857 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2858 break;
2859 }
2860 case KVM_SET_SIGNAL_MASK: {
2861 struct kvm_signal_mask __user *sigmask_arg = argp;
2862 struct kvm_signal_mask kvm_sigmask;
2863 sigset_t sigset, *p;
2864
2865 p = NULL;
2866 if (argp) {
2867 r = -EFAULT;
2868 if (copy_from_user(&kvm_sigmask, argp,
2869 sizeof(kvm_sigmask)))
2870 goto out;
2871 r = -EINVAL;
2872 if (kvm_sigmask.len != sizeof(sigset))
2873 goto out;
2874 r = -EFAULT;
2875 if (copy_from_user(&sigset, sigmask_arg->sigset,
2876 sizeof(sigset)))
2877 goto out;
2878 p = &sigset;
2879 }
2880 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2881 break;
2882 }
2883 case KVM_GET_FPU: {
2884 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
2885 r = -ENOMEM;
2886 if (!fpu)
2887 goto out;
2888 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2889 if (r)
2890 goto out;
2891 r = -EFAULT;
2892 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2893 goto out;
2894 r = 0;
2895 break;
2896 }
2897 case KVM_SET_FPU: {
2898 fpu = memdup_user(argp, sizeof(*fpu));
2899 if (IS_ERR(fpu)) {
2900 r = PTR_ERR(fpu);
2901 fpu = NULL;
2902 goto out;
2903 }
2904 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2905 break;
2906 }
2907 default:
2908 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2909 }
2910 out:
2911 mutex_unlock(&vcpu->mutex);
2912 kfree(fpu);
2913 kfree(kvm_sregs);
2914 return r;
2915 }
2916
2917 #ifdef CONFIG_KVM_COMPAT
2918 static long kvm_vcpu_compat_ioctl(struct file *filp,
2919 unsigned int ioctl, unsigned long arg)
2920 {
2921 struct kvm_vcpu *vcpu = filp->private_data;
2922 void __user *argp = compat_ptr(arg);
2923 int r;
2924
2925 if (vcpu->kvm->mm != current->mm)
2926 return -EIO;
2927
2928 switch (ioctl) {
2929 case KVM_SET_SIGNAL_MASK: {
2930 struct kvm_signal_mask __user *sigmask_arg = argp;
2931 struct kvm_signal_mask kvm_sigmask;
2932 sigset_t sigset;
2933
2934 if (argp) {
2935 r = -EFAULT;
2936 if (copy_from_user(&kvm_sigmask, argp,
2937 sizeof(kvm_sigmask)))
2938 goto out;
2939 r = -EINVAL;
2940 if (kvm_sigmask.len != sizeof(compat_sigset_t))
2941 goto out;
2942 r = -EFAULT;
2943 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2944 goto out;
2945 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2946 } else
2947 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2948 break;
2949 }
2950 default:
2951 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2952 }
2953
2954 out:
2955 return r;
2956 }
2957 #endif
2958
2959 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
2960 {
2961 struct kvm_device *dev = filp->private_data;
2962
2963 if (dev->ops->mmap)
2964 return dev->ops->mmap(dev, vma);
2965
2966 return -ENODEV;
2967 }
2968
2969 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2970 int (*accessor)(struct kvm_device *dev,
2971 struct kvm_device_attr *attr),
2972 unsigned long arg)
2973 {
2974 struct kvm_device_attr attr;
2975
2976 if (!accessor)
2977 return -EPERM;
2978
2979 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2980 return -EFAULT;
2981
2982 return accessor(dev, &attr);
2983 }
2984
2985 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2986 unsigned long arg)
2987 {
2988 struct kvm_device *dev = filp->private_data;
2989
2990 if (dev->kvm->mm != current->mm)
2991 return -EIO;
2992
2993 switch (ioctl) {
2994 case KVM_SET_DEVICE_ATTR:
2995 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2996 case KVM_GET_DEVICE_ATTR:
2997 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2998 case KVM_HAS_DEVICE_ATTR:
2999 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3000 default:
3001 if (dev->ops->ioctl)
3002 return dev->ops->ioctl(dev, ioctl, arg);
3003
3004 return -ENOTTY;
3005 }
3006 }
3007
3008 static int kvm_device_release(struct inode *inode, struct file *filp)
3009 {
3010 struct kvm_device *dev = filp->private_data;
3011 struct kvm *kvm = dev->kvm;
3012
3013 if (dev->ops->release) {
3014 mutex_lock(&kvm->lock);
3015 list_del(&dev->vm_node);
3016 dev->ops->release(dev);
3017 mutex_unlock(&kvm->lock);
3018 }
3019
3020 kvm_put_kvm(kvm);
3021 return 0;
3022 }
3023
3024 static const struct file_operations kvm_device_fops = {
3025 .unlocked_ioctl = kvm_device_ioctl,
3026 .release = kvm_device_release,
3027 KVM_COMPAT(kvm_device_ioctl),
3028 .mmap = kvm_device_mmap,
3029 };
3030
3031 struct kvm_device *kvm_device_from_filp(struct file *filp)
3032 {
3033 if (filp->f_op != &kvm_device_fops)
3034 return NULL;
3035
3036 return filp->private_data;
3037 }
3038
3039 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3040 #ifdef CONFIG_KVM_MPIC
3041 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
3042 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
3043 #endif
3044 };
3045
3046 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
3047 {
3048 if (type >= ARRAY_SIZE(kvm_device_ops_table))
3049 return -ENOSPC;
3050
3051 if (kvm_device_ops_table[type] != NULL)
3052 return -EEXIST;
3053
3054 kvm_device_ops_table[type] = ops;
3055 return 0;
3056 }
3057
3058 void kvm_unregister_device_ops(u32 type)
3059 {
3060 if (kvm_device_ops_table[type] != NULL)
3061 kvm_device_ops_table[type] = NULL;
3062 }
3063
3064 static int kvm_ioctl_create_device(struct kvm *kvm,
3065 struct kvm_create_device *cd)
3066 {
3067 struct kvm_device_ops *ops = NULL;
3068 struct kvm_device *dev;
3069 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3070 int type;
3071 int ret;
3072
3073 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3074 return -ENODEV;
3075
3076 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3077 ops = kvm_device_ops_table[type];
3078 if (ops == NULL)
3079 return -ENODEV;
3080
3081 if (test)
3082 return 0;
3083
3084 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3085 if (!dev)
3086 return -ENOMEM;
3087
3088 dev->ops = ops;
3089 dev->kvm = kvm;
3090
3091 mutex_lock(&kvm->lock);
3092 ret = ops->create(dev, type);
3093 if (ret < 0) {
3094 mutex_unlock(&kvm->lock);
3095 kfree(dev);
3096 return ret;
3097 }
3098 list_add(&dev->vm_node, &kvm->devices);
3099 mutex_unlock(&kvm->lock);
3100
3101 if (ops->init)
3102 ops->init(dev);
3103
3104 kvm_get_kvm(kvm);
3105 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3106 if (ret < 0) {
3107 kvm_put_kvm(kvm);
3108 mutex_lock(&kvm->lock);
3109 list_del(&dev->vm_node);
3110 mutex_unlock(&kvm->lock);
3111 ops->destroy(dev);
3112 return ret;
3113 }
3114
3115 cd->fd = ret;
3116 return 0;
3117 }
3118
3119 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3120 {
3121 switch (arg) {
3122 case KVM_CAP_USER_MEMORY:
3123 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3124 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3125 case KVM_CAP_INTERNAL_ERROR_DATA:
3126 #ifdef CONFIG_HAVE_KVM_MSI
3127 case KVM_CAP_SIGNAL_MSI:
3128 #endif
3129 #ifdef CONFIG_HAVE_KVM_IRQFD
3130 case KVM_CAP_IRQFD:
3131 case KVM_CAP_IRQFD_RESAMPLE:
3132 #endif
3133 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3134 case KVM_CAP_CHECK_EXTENSION_VM:
3135 case KVM_CAP_ENABLE_CAP_VM:
3136 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3137 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3138 #endif
3139 return 1;
3140 #ifdef CONFIG_KVM_MMIO
3141 case KVM_CAP_COALESCED_MMIO:
3142 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3143 case KVM_CAP_COALESCED_PIO:
3144 return 1;
3145 #endif
3146 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3147 case KVM_CAP_IRQ_ROUTING:
3148 return KVM_MAX_IRQ_ROUTES;
3149 #endif
3150 #if KVM_ADDRESS_SPACE_NUM > 1
3151 case KVM_CAP_MULTI_ADDRESS_SPACE:
3152 return KVM_ADDRESS_SPACE_NUM;
3153 #endif
3154 case KVM_CAP_NR_MEMSLOTS:
3155 return KVM_USER_MEM_SLOTS;
3156 default:
3157 break;
3158 }
3159 return kvm_vm_ioctl_check_extension(kvm, arg);
3160 }
3161
3162 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3163 struct kvm_enable_cap *cap)
3164 {
3165 return -EINVAL;
3166 }
3167
3168 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3169 struct kvm_enable_cap *cap)
3170 {
3171 switch (cap->cap) {
3172 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3173 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3174 if (cap->flags || (cap->args[0] & ~1))
3175 return -EINVAL;
3176 kvm->manual_dirty_log_protect = cap->args[0];
3177 return 0;
3178 #endif
3179 default:
3180 return kvm_vm_ioctl_enable_cap(kvm, cap);
3181 }
3182 }
3183
3184 static long kvm_vm_ioctl(struct file *filp,
3185 unsigned int ioctl, unsigned long arg)
3186 {
3187 struct kvm *kvm = filp->private_data;
3188 void __user *argp = (void __user *)arg;
3189 int r;
3190
3191 if (kvm->mm != current->mm)
3192 return -EIO;
3193 switch (ioctl) {
3194 case KVM_CREATE_VCPU:
3195 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3196 break;
3197 case KVM_ENABLE_CAP: {
3198 struct kvm_enable_cap cap;
3199
3200 r = -EFAULT;
3201 if (copy_from_user(&cap, argp, sizeof(cap)))
3202 goto out;
3203 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3204 break;
3205 }
3206 case KVM_SET_USER_MEMORY_REGION: {
3207 struct kvm_userspace_memory_region kvm_userspace_mem;
3208
3209 r = -EFAULT;
3210 if (copy_from_user(&kvm_userspace_mem, argp,
3211 sizeof(kvm_userspace_mem)))
3212 goto out;
3213
3214 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3215 break;
3216 }
3217 case KVM_GET_DIRTY_LOG: {
3218 struct kvm_dirty_log log;
3219
3220 r = -EFAULT;
3221 if (copy_from_user(&log, argp, sizeof(log)))
3222 goto out;
3223 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3224 break;
3225 }
3226 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3227 case KVM_CLEAR_DIRTY_LOG: {
3228 struct kvm_clear_dirty_log log;
3229
3230 r = -EFAULT;
3231 if (copy_from_user(&log, argp, sizeof(log)))
3232 goto out;
3233 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3234 break;
3235 }
3236 #endif
3237 #ifdef CONFIG_KVM_MMIO
3238 case KVM_REGISTER_COALESCED_MMIO: {
3239 struct kvm_coalesced_mmio_zone zone;
3240
3241 r = -EFAULT;
3242 if (copy_from_user(&zone, argp, sizeof(zone)))
3243 goto out;
3244 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3245 break;
3246 }
3247 case KVM_UNREGISTER_COALESCED_MMIO: {
3248 struct kvm_coalesced_mmio_zone zone;
3249
3250 r = -EFAULT;
3251 if (copy_from_user(&zone, argp, sizeof(zone)))
3252 goto out;
3253 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3254 break;
3255 }
3256 #endif
3257 case KVM_IRQFD: {
3258 struct kvm_irqfd data;
3259
3260 r = -EFAULT;
3261 if (copy_from_user(&data, argp, sizeof(data)))
3262 goto out;
3263 r = kvm_irqfd(kvm, &data);
3264 break;
3265 }
3266 case KVM_IOEVENTFD: {
3267 struct kvm_ioeventfd data;
3268
3269 r = -EFAULT;
3270 if (copy_from_user(&data, argp, sizeof(data)))
3271 goto out;
3272 r = kvm_ioeventfd(kvm, &data);
3273 break;
3274 }
3275 #ifdef CONFIG_HAVE_KVM_MSI
3276 case KVM_SIGNAL_MSI: {
3277 struct kvm_msi msi;
3278
3279 r = -EFAULT;
3280 if (copy_from_user(&msi, argp, sizeof(msi)))
3281 goto out;
3282 r = kvm_send_userspace_msi(kvm, &msi);
3283 break;
3284 }
3285 #endif
3286 #ifdef __KVM_HAVE_IRQ_LINE
3287 case KVM_IRQ_LINE_STATUS:
3288 case KVM_IRQ_LINE: {
3289 struct kvm_irq_level irq_event;
3290
3291 r = -EFAULT;
3292 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3293 goto out;
3294
3295 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3296 ioctl == KVM_IRQ_LINE_STATUS);
3297 if (r)
3298 goto out;
3299
3300 r = -EFAULT;
3301 if (ioctl == KVM_IRQ_LINE_STATUS) {
3302 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3303 goto out;
3304 }
3305
3306 r = 0;
3307 break;
3308 }
3309 #endif
3310 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3311 case KVM_SET_GSI_ROUTING: {
3312 struct kvm_irq_routing routing;
3313 struct kvm_irq_routing __user *urouting;
3314 struct kvm_irq_routing_entry *entries = NULL;
3315
3316 r = -EFAULT;
3317 if (copy_from_user(&routing, argp, sizeof(routing)))
3318 goto out;
3319 r = -EINVAL;
3320 if (!kvm_arch_can_set_irq_routing(kvm))
3321 goto out;
3322 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3323 goto out;
3324 if (routing.flags)
3325 goto out;
3326 if (routing.nr) {
3327 r = -ENOMEM;
3328 entries = vmalloc(array_size(sizeof(*entries),
3329 routing.nr));
3330 if (!entries)
3331 goto out;
3332 r = -EFAULT;
3333 urouting = argp;
3334 if (copy_from_user(entries, urouting->entries,
3335 routing.nr * sizeof(*entries)))
3336 goto out_free_irq_routing;
3337 }
3338 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3339 routing.flags);
3340 out_free_irq_routing:
3341 vfree(entries);
3342 break;
3343 }
3344 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3345 case KVM_CREATE_DEVICE: {
3346 struct kvm_create_device cd;
3347
3348 r = -EFAULT;
3349 if (copy_from_user(&cd, argp, sizeof(cd)))
3350 goto out;
3351
3352 r = kvm_ioctl_create_device(kvm, &cd);
3353 if (r)
3354 goto out;
3355
3356 r = -EFAULT;
3357 if (copy_to_user(argp, &cd, sizeof(cd)))
3358 goto out;
3359
3360 r = 0;
3361 break;
3362 }
3363 case KVM_CHECK_EXTENSION:
3364 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3365 break;
3366 default:
3367 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3368 }
3369 out:
3370 return r;
3371 }
3372
3373 #ifdef CONFIG_KVM_COMPAT
3374 struct compat_kvm_dirty_log {
3375 __u32 slot;
3376 __u32 padding1;
3377 union {
3378 compat_uptr_t dirty_bitmap; /* one bit per page */
3379 __u64 padding2;
3380 };
3381 };
3382
3383 static long kvm_vm_compat_ioctl(struct file *filp,
3384 unsigned int ioctl, unsigned long arg)
3385 {
3386 struct kvm *kvm = filp->private_data;
3387 int r;
3388
3389 if (kvm->mm != current->mm)
3390 return -EIO;
3391 switch (ioctl) {
3392 case KVM_GET_DIRTY_LOG: {
3393 struct compat_kvm_dirty_log compat_log;
3394 struct kvm_dirty_log log;
3395
3396 if (copy_from_user(&compat_log, (void __user *)arg,
3397 sizeof(compat_log)))
3398 return -EFAULT;
3399 log.slot = compat_log.slot;
3400 log.padding1 = compat_log.padding1;
3401 log.padding2 = compat_log.padding2;
3402 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3403
3404 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3405 break;
3406 }
3407 default:
3408 r = kvm_vm_ioctl(filp, ioctl, arg);
3409 }
3410 return r;
3411 }
3412 #endif
3413
3414 static struct file_operations kvm_vm_fops = {
3415 .release = kvm_vm_release,
3416 .unlocked_ioctl = kvm_vm_ioctl,
3417 .llseek = noop_llseek,
3418 KVM_COMPAT(kvm_vm_compat_ioctl),
3419 };
3420
3421 static int kvm_dev_ioctl_create_vm(unsigned long type)
3422 {
3423 int r;
3424 struct kvm *kvm;
3425 struct file *file;
3426
3427 kvm = kvm_create_vm(type);
3428 if (IS_ERR(kvm))
3429 return PTR_ERR(kvm);
3430 #ifdef CONFIG_KVM_MMIO
3431 r = kvm_coalesced_mmio_init(kvm);
3432 if (r < 0)
3433 goto put_kvm;
3434 #endif
3435 r = get_unused_fd_flags(O_CLOEXEC);
3436 if (r < 0)
3437 goto put_kvm;
3438
3439 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3440 if (IS_ERR(file)) {
3441 put_unused_fd(r);
3442 r = PTR_ERR(file);
3443 goto put_kvm;
3444 }
3445
3446 /*
3447 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3448 * already set, with ->release() being kvm_vm_release(). In error
3449 * cases it will be called by the final fput(file) and will take
3450 * care of doing kvm_put_kvm(kvm).
3451 */
3452 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3453 put_unused_fd(r);
3454 fput(file);
3455 return -ENOMEM;
3456 }
3457 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3458
3459 fd_install(r, file);
3460 return r;
3461
3462 put_kvm:
3463 kvm_put_kvm(kvm);
3464 return r;
3465 }
3466
3467 static long kvm_dev_ioctl(struct file *filp,
3468 unsigned int ioctl, unsigned long arg)
3469 {
3470 long r = -EINVAL;
3471
3472 switch (ioctl) {
3473 case KVM_GET_API_VERSION:
3474 if (arg)
3475 goto out;
3476 r = KVM_API_VERSION;
3477 break;
3478 case KVM_CREATE_VM:
3479 r = kvm_dev_ioctl_create_vm(arg);
3480 break;
3481 case KVM_CHECK_EXTENSION:
3482 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3483 break;
3484 case KVM_GET_VCPU_MMAP_SIZE:
3485 if (arg)
3486 goto out;
3487 r = PAGE_SIZE; /* struct kvm_run */
3488 #ifdef CONFIG_X86
3489 r += PAGE_SIZE; /* pio data page */
3490 #endif
3491 #ifdef CONFIG_KVM_MMIO
3492 r += PAGE_SIZE; /* coalesced mmio ring page */
3493 #endif
3494 break;
3495 case KVM_TRACE_ENABLE:
3496 case KVM_TRACE_PAUSE:
3497 case KVM_TRACE_DISABLE:
3498 r = -EOPNOTSUPP;
3499 break;
3500 default:
3501 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3502 }
3503 out:
3504 return r;
3505 }
3506
3507 static struct file_operations kvm_chardev_ops = {
3508 .unlocked_ioctl = kvm_dev_ioctl,
3509 .llseek = noop_llseek,
3510 KVM_COMPAT(kvm_dev_ioctl),
3511 };
3512
3513 static struct miscdevice kvm_dev = {
3514 KVM_MINOR,
3515 "kvm",
3516 &kvm_chardev_ops,
3517 };
3518
3519 static void hardware_enable_nolock(void *junk)
3520 {
3521 int cpu = raw_smp_processor_id();
3522 int r;
3523
3524 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3525 return;
3526
3527 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3528
3529 r = kvm_arch_hardware_enable();
3530
3531 if (r) {
3532 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3533 atomic_inc(&hardware_enable_failed);
3534 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3535 }
3536 }
3537
3538 static int kvm_starting_cpu(unsigned int cpu)
3539 {
3540 raw_spin_lock(&kvm_count_lock);
3541 if (kvm_usage_count)
3542 hardware_enable_nolock(NULL);
3543 raw_spin_unlock(&kvm_count_lock);
3544 return 0;
3545 }
3546
3547 static void hardware_disable_nolock(void *junk)
3548 {
3549 int cpu = raw_smp_processor_id();
3550
3551 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3552 return;
3553 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3554 kvm_arch_hardware_disable();
3555 }
3556
3557 static int kvm_dying_cpu(unsigned int cpu)
3558 {
3559 raw_spin_lock(&kvm_count_lock);
3560 if (kvm_usage_count)
3561 hardware_disable_nolock(NULL);
3562 raw_spin_unlock(&kvm_count_lock);
3563 return 0;
3564 }
3565
3566 static void hardware_disable_all_nolock(void)
3567 {
3568 BUG_ON(!kvm_usage_count);
3569
3570 kvm_usage_count--;
3571 if (!kvm_usage_count)
3572 on_each_cpu(hardware_disable_nolock, NULL, 1);
3573 }
3574
3575 static void hardware_disable_all(void)
3576 {
3577 raw_spin_lock(&kvm_count_lock);
3578 hardware_disable_all_nolock();
3579 raw_spin_unlock(&kvm_count_lock);
3580 }
3581
3582 static int hardware_enable_all(void)
3583 {
3584 int r = 0;
3585
3586 raw_spin_lock(&kvm_count_lock);
3587
3588 kvm_usage_count++;
3589 if (kvm_usage_count == 1) {
3590 atomic_set(&hardware_enable_failed, 0);
3591 on_each_cpu(hardware_enable_nolock, NULL, 1);
3592
3593 if (atomic_read(&hardware_enable_failed)) {
3594 hardware_disable_all_nolock();
3595 r = -EBUSY;
3596 }
3597 }
3598
3599 raw_spin_unlock(&kvm_count_lock);
3600
3601 return r;
3602 }
3603
3604 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3605 void *v)
3606 {
3607 /*
3608 * Some (well, at least mine) BIOSes hang on reboot if
3609 * in vmx root mode.
3610 *
3611 * And Intel TXT required VMX off for all cpu when system shutdown.
3612 */
3613 pr_info("kvm: exiting hardware virtualization\n");
3614 kvm_rebooting = true;
3615 on_each_cpu(hardware_disable_nolock, NULL, 1);
3616 return NOTIFY_OK;
3617 }
3618
3619 static struct notifier_block kvm_reboot_notifier = {
3620 .notifier_call = kvm_reboot,
3621 .priority = 0,
3622 };
3623
3624 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3625 {
3626 int i;
3627
3628 for (i = 0; i < bus->dev_count; i++) {
3629 struct kvm_io_device *pos = bus->range[i].dev;
3630
3631 kvm_iodevice_destructor(pos);
3632 }
3633 kfree(bus);
3634 }
3635
3636 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3637 const struct kvm_io_range *r2)
3638 {
3639 gpa_t addr1 = r1->addr;
3640 gpa_t addr2 = r2->addr;
3641
3642 if (addr1 < addr2)
3643 return -1;
3644
3645 /* If r2->len == 0, match the exact address. If r2->len != 0,
3646 * accept any overlapping write. Any order is acceptable for
3647 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3648 * we process all of them.
3649 */
3650 if (r2->len) {
3651 addr1 += r1->len;
3652 addr2 += r2->len;
3653 }
3654
3655 if (addr1 > addr2)
3656 return 1;
3657
3658 return 0;
3659 }
3660
3661 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3662 {
3663 return kvm_io_bus_cmp(p1, p2);
3664 }
3665
3666 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3667 gpa_t addr, int len)
3668 {
3669 struct kvm_io_range *range, key;
3670 int off;
3671
3672 key = (struct kvm_io_range) {
3673 .addr = addr,
3674 .len = len,
3675 };
3676
3677 range = bsearch(&key, bus->range, bus->dev_count,
3678 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3679 if (range == NULL)
3680 return -ENOENT;
3681
3682 off = range - bus->range;
3683
3684 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3685 off--;
3686
3687 return off;
3688 }
3689
3690 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3691 struct kvm_io_range *range, const void *val)
3692 {
3693 int idx;
3694
3695 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3696 if (idx < 0)
3697 return -EOPNOTSUPP;
3698
3699 while (idx < bus->dev_count &&
3700 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3701 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3702 range->len, val))
3703 return idx;
3704 idx++;
3705 }
3706
3707 return -EOPNOTSUPP;
3708 }
3709
3710 /* kvm_io_bus_write - called under kvm->slots_lock */
3711 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3712 int len, const void *val)
3713 {
3714 struct kvm_io_bus *bus;
3715 struct kvm_io_range range;
3716 int r;
3717
3718 range = (struct kvm_io_range) {
3719 .addr = addr,
3720 .len = len,
3721 };
3722
3723 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3724 if (!bus)
3725 return -ENOMEM;
3726 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3727 return r < 0 ? r : 0;
3728 }
3729 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3730
3731 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3732 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3733 gpa_t addr, int len, const void *val, long cookie)
3734 {
3735 struct kvm_io_bus *bus;
3736 struct kvm_io_range range;
3737
3738 range = (struct kvm_io_range) {
3739 .addr = addr,
3740 .len = len,
3741 };
3742
3743 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3744 if (!bus)
3745 return -ENOMEM;
3746
3747 /* First try the device referenced by cookie. */
3748 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3749 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3750 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3751 val))
3752 return cookie;
3753
3754 /*
3755 * cookie contained garbage; fall back to search and return the
3756 * correct cookie value.
3757 */
3758 return __kvm_io_bus_write(vcpu, bus, &range, val);
3759 }
3760
3761 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3762 struct kvm_io_range *range, void *val)
3763 {
3764 int idx;
3765
3766 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3767 if (idx < 0)
3768 return -EOPNOTSUPP;
3769
3770 while (idx < bus->dev_count &&
3771 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3772 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3773 range->len, val))
3774 return idx;
3775 idx++;
3776 }
3777
3778 return -EOPNOTSUPP;
3779 }
3780
3781 /* kvm_io_bus_read - called under kvm->slots_lock */
3782 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3783 int len, void *val)
3784 {
3785 struct kvm_io_bus *bus;
3786 struct kvm_io_range range;
3787 int r;
3788
3789 range = (struct kvm_io_range) {
3790 .addr = addr,
3791 .len = len,
3792 };
3793
3794 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3795 if (!bus)
3796 return -ENOMEM;
3797 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3798 return r < 0 ? r : 0;
3799 }
3800
3801 /* Caller must hold slots_lock. */
3802 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3803 int len, struct kvm_io_device *dev)
3804 {
3805 int i;
3806 struct kvm_io_bus *new_bus, *bus;
3807 struct kvm_io_range range;
3808
3809 bus = kvm_get_bus(kvm, bus_idx);
3810 if (!bus)
3811 return -ENOMEM;
3812
3813 /* exclude ioeventfd which is limited by maximum fd */
3814 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3815 return -ENOSPC;
3816
3817 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3818 GFP_KERNEL_ACCOUNT);
3819 if (!new_bus)
3820 return -ENOMEM;
3821
3822 range = (struct kvm_io_range) {
3823 .addr = addr,
3824 .len = len,
3825 .dev = dev,
3826 };
3827
3828 for (i = 0; i < bus->dev_count; i++)
3829 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3830 break;
3831
3832 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3833 new_bus->dev_count++;
3834 new_bus->range[i] = range;
3835 memcpy(new_bus->range + i + 1, bus->range + i,
3836 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3837 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3838 synchronize_srcu_expedited(&kvm->srcu);
3839 kfree(bus);
3840
3841 return 0;
3842 }
3843
3844 /* Caller must hold slots_lock. */
3845 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3846 struct kvm_io_device *dev)
3847 {
3848 int i;
3849 struct kvm_io_bus *new_bus, *bus;
3850
3851 bus = kvm_get_bus(kvm, bus_idx);
3852 if (!bus)
3853 return;
3854
3855 for (i = 0; i < bus->dev_count; i++)
3856 if (bus->range[i].dev == dev) {
3857 break;
3858 }
3859
3860 if (i == bus->dev_count)
3861 return;
3862
3863 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
3864 GFP_KERNEL_ACCOUNT);
3865 if (!new_bus) {
3866 pr_err("kvm: failed to shrink bus, removing it completely\n");
3867 goto broken;
3868 }
3869
3870 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3871 new_bus->dev_count--;
3872 memcpy(new_bus->range + i, bus->range + i + 1,
3873 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3874
3875 broken:
3876 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3877 synchronize_srcu_expedited(&kvm->srcu);
3878 kfree(bus);
3879 return;
3880 }
3881
3882 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3883 gpa_t addr)
3884 {
3885 struct kvm_io_bus *bus;
3886 int dev_idx, srcu_idx;
3887 struct kvm_io_device *iodev = NULL;
3888
3889 srcu_idx = srcu_read_lock(&kvm->srcu);
3890
3891 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3892 if (!bus)
3893 goto out_unlock;
3894
3895 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3896 if (dev_idx < 0)
3897 goto out_unlock;
3898
3899 iodev = bus->range[dev_idx].dev;
3900
3901 out_unlock:
3902 srcu_read_unlock(&kvm->srcu, srcu_idx);
3903
3904 return iodev;
3905 }
3906 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3907
3908 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3909 int (*get)(void *, u64 *), int (*set)(void *, u64),
3910 const char *fmt)
3911 {
3912 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3913 inode->i_private;
3914
3915 /* The debugfs files are a reference to the kvm struct which
3916 * is still valid when kvm_destroy_vm is called.
3917 * To avoid the race between open and the removal of the debugfs
3918 * directory we test against the users count.
3919 */
3920 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3921 return -ENOENT;
3922
3923 if (simple_attr_open(inode, file, get, set, fmt)) {
3924 kvm_put_kvm(stat_data->kvm);
3925 return -ENOMEM;
3926 }
3927
3928 return 0;
3929 }
3930
3931 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3932 {
3933 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3934 inode->i_private;
3935
3936 simple_attr_release(inode, file);
3937 kvm_put_kvm(stat_data->kvm);
3938
3939 return 0;
3940 }
3941
3942 static int vm_stat_get_per_vm(void *data, u64 *val)
3943 {
3944 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3945
3946 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3947
3948 return 0;
3949 }
3950
3951 static int vm_stat_clear_per_vm(void *data, u64 val)
3952 {
3953 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3954
3955 if (val)
3956 return -EINVAL;
3957
3958 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3959
3960 return 0;
3961 }
3962
3963 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3964 {
3965 __simple_attr_check_format("%llu\n", 0ull);
3966 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3967 vm_stat_clear_per_vm, "%llu\n");
3968 }
3969
3970 static const struct file_operations vm_stat_get_per_vm_fops = {
3971 .owner = THIS_MODULE,
3972 .open = vm_stat_get_per_vm_open,
3973 .release = kvm_debugfs_release,
3974 .read = simple_attr_read,
3975 .write = simple_attr_write,
3976 .llseek = no_llseek,
3977 };
3978
3979 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3980 {
3981 int i;
3982 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3983 struct kvm_vcpu *vcpu;
3984
3985 *val = 0;
3986
3987 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3988 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3989
3990 return 0;
3991 }
3992
3993 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3994 {
3995 int i;
3996 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3997 struct kvm_vcpu *vcpu;
3998
3999 if (val)
4000 return -EINVAL;
4001
4002 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4003 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
4004
4005 return 0;
4006 }
4007
4008 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
4009 {
4010 __simple_attr_check_format("%llu\n", 0ull);
4011 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
4012 vcpu_stat_clear_per_vm, "%llu\n");
4013 }
4014
4015 static const struct file_operations vcpu_stat_get_per_vm_fops = {
4016 .owner = THIS_MODULE,
4017 .open = vcpu_stat_get_per_vm_open,
4018 .release = kvm_debugfs_release,
4019 .read = simple_attr_read,
4020 .write = simple_attr_write,
4021 .llseek = no_llseek,
4022 };
4023
4024 static const struct file_operations *stat_fops_per_vm[] = {
4025 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
4026 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
4027 };
4028
4029 static int vm_stat_get(void *_offset, u64 *val)
4030 {
4031 unsigned offset = (long)_offset;
4032 struct kvm *kvm;
4033 struct kvm_stat_data stat_tmp = {.offset = offset};
4034 u64 tmp_val;
4035
4036 *val = 0;
4037 spin_lock(&kvm_lock);
4038 list_for_each_entry(kvm, &vm_list, vm_list) {
4039 stat_tmp.kvm = kvm;
4040 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4041 *val += tmp_val;
4042 }
4043 spin_unlock(&kvm_lock);
4044 return 0;
4045 }
4046
4047 static int vm_stat_clear(void *_offset, u64 val)
4048 {
4049 unsigned offset = (long)_offset;
4050 struct kvm *kvm;
4051 struct kvm_stat_data stat_tmp = {.offset = offset};
4052
4053 if (val)
4054 return -EINVAL;
4055
4056 spin_lock(&kvm_lock);
4057 list_for_each_entry(kvm, &vm_list, vm_list) {
4058 stat_tmp.kvm = kvm;
4059 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
4060 }
4061 spin_unlock(&kvm_lock);
4062
4063 return 0;
4064 }
4065
4066 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4067
4068 static int vcpu_stat_get(void *_offset, u64 *val)
4069 {
4070 unsigned offset = (long)_offset;
4071 struct kvm *kvm;
4072 struct kvm_stat_data stat_tmp = {.offset = offset};
4073 u64 tmp_val;
4074
4075 *val = 0;
4076 spin_lock(&kvm_lock);
4077 list_for_each_entry(kvm, &vm_list, vm_list) {
4078 stat_tmp.kvm = kvm;
4079 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4080 *val += tmp_val;
4081 }
4082 spin_unlock(&kvm_lock);
4083 return 0;
4084 }
4085
4086 static int vcpu_stat_clear(void *_offset, u64 val)
4087 {
4088 unsigned offset = (long)_offset;
4089 struct kvm *kvm;
4090 struct kvm_stat_data stat_tmp = {.offset = offset};
4091
4092 if (val)
4093 return -EINVAL;
4094
4095 spin_lock(&kvm_lock);
4096 list_for_each_entry(kvm, &vm_list, vm_list) {
4097 stat_tmp.kvm = kvm;
4098 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4099 }
4100 spin_unlock(&kvm_lock);
4101
4102 return 0;
4103 }
4104
4105 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4106 "%llu\n");
4107
4108 static const struct file_operations *stat_fops[] = {
4109 [KVM_STAT_VCPU] = &vcpu_stat_fops,
4110 [KVM_STAT_VM] = &vm_stat_fops,
4111 };
4112
4113 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4114 {
4115 struct kobj_uevent_env *env;
4116 unsigned long long created, active;
4117
4118 if (!kvm_dev.this_device || !kvm)
4119 return;
4120
4121 spin_lock(&kvm_lock);
4122 if (type == KVM_EVENT_CREATE_VM) {
4123 kvm_createvm_count++;
4124 kvm_active_vms++;
4125 } else if (type == KVM_EVENT_DESTROY_VM) {
4126 kvm_active_vms--;
4127 }
4128 created = kvm_createvm_count;
4129 active = kvm_active_vms;
4130 spin_unlock(&kvm_lock);
4131
4132 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4133 if (!env)
4134 return;
4135
4136 add_uevent_var(env, "CREATED=%llu", created);
4137 add_uevent_var(env, "COUNT=%llu", active);
4138
4139 if (type == KVM_EVENT_CREATE_VM) {
4140 add_uevent_var(env, "EVENT=create");
4141 kvm->userspace_pid = task_pid_nr(current);
4142 } else if (type == KVM_EVENT_DESTROY_VM) {
4143 add_uevent_var(env, "EVENT=destroy");
4144 }
4145 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4146
4147 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4148 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4149
4150 if (p) {
4151 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4152 if (!IS_ERR(tmp))
4153 add_uevent_var(env, "STATS_PATH=%s", tmp);
4154 kfree(p);
4155 }
4156 }
4157 /* no need for checks, since we are adding at most only 5 keys */
4158 env->envp[env->envp_idx++] = NULL;
4159 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4160 kfree(env);
4161 }
4162
4163 static void kvm_init_debug(void)
4164 {
4165 struct kvm_stats_debugfs_item *p;
4166
4167 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4168
4169 kvm_debugfs_num_entries = 0;
4170 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4171 debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
4172 (void *)(long)p->offset,
4173 stat_fops[p->kind]);
4174 }
4175 }
4176
4177 static int kvm_suspend(void)
4178 {
4179 if (kvm_usage_count)
4180 hardware_disable_nolock(NULL);
4181 return 0;
4182 }
4183
4184 static void kvm_resume(void)
4185 {
4186 if (kvm_usage_count) {
4187 #ifdef CONFIG_LOCKDEP
4188 WARN_ON(lockdep_is_held(&kvm_count_lock));
4189 #endif
4190 hardware_enable_nolock(NULL);
4191 }
4192 }
4193
4194 static struct syscore_ops kvm_syscore_ops = {
4195 .suspend = kvm_suspend,
4196 .resume = kvm_resume,
4197 };
4198
4199 static inline
4200 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4201 {
4202 return container_of(pn, struct kvm_vcpu, preempt_notifier);
4203 }
4204
4205 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4206 {
4207 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4208
4209 if (vcpu->preempted)
4210 vcpu->preempted = false;
4211
4212 kvm_arch_sched_in(vcpu, cpu);
4213
4214 kvm_arch_vcpu_load(vcpu, cpu);
4215 }
4216
4217 static void kvm_sched_out(struct preempt_notifier *pn,
4218 struct task_struct *next)
4219 {
4220 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4221
4222 if (current->state == TASK_RUNNING)
4223 vcpu->preempted = true;
4224 kvm_arch_vcpu_put(vcpu);
4225 }
4226
4227 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4228 struct module *module)
4229 {
4230 int r;
4231 int cpu;
4232
4233 r = kvm_arch_init(opaque);
4234 if (r)
4235 goto out_fail;
4236
4237 /*
4238 * kvm_arch_init makes sure there's at most one caller
4239 * for architectures that support multiple implementations,
4240 * like intel and amd on x86.
4241 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4242 * conflicts in case kvm is already setup for another implementation.
4243 */
4244 r = kvm_irqfd_init();
4245 if (r)
4246 goto out_irqfd;
4247
4248 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4249 r = -ENOMEM;
4250 goto out_free_0;
4251 }
4252
4253 r = kvm_arch_hardware_setup();
4254 if (r < 0)
4255 goto out_free_0a;
4256
4257 for_each_online_cpu(cpu) {
4258 smp_call_function_single(cpu,
4259 kvm_arch_check_processor_compat,
4260 &r, 1);
4261 if (r < 0)
4262 goto out_free_1;
4263 }
4264
4265 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4266 kvm_starting_cpu, kvm_dying_cpu);
4267 if (r)
4268 goto out_free_2;
4269 register_reboot_notifier(&kvm_reboot_notifier);
4270
4271 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4272 if (!vcpu_align)
4273 vcpu_align = __alignof__(struct kvm_vcpu);
4274 kvm_vcpu_cache =
4275 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4276 SLAB_ACCOUNT,
4277 offsetof(struct kvm_vcpu, arch),
4278 sizeof_field(struct kvm_vcpu, arch),
4279 NULL);
4280 if (!kvm_vcpu_cache) {
4281 r = -ENOMEM;
4282 goto out_free_3;
4283 }
4284
4285 r = kvm_async_pf_init();
4286 if (r)
4287 goto out_free;
4288
4289 kvm_chardev_ops.owner = module;
4290 kvm_vm_fops.owner = module;
4291 kvm_vcpu_fops.owner = module;
4292
4293 r = misc_register(&kvm_dev);
4294 if (r) {
4295 pr_err("kvm: misc device register failed\n");
4296 goto out_unreg;
4297 }
4298
4299 register_syscore_ops(&kvm_syscore_ops);
4300
4301 kvm_preempt_ops.sched_in = kvm_sched_in;
4302 kvm_preempt_ops.sched_out = kvm_sched_out;
4303
4304 kvm_init_debug();
4305
4306 r = kvm_vfio_ops_init();
4307 WARN_ON(r);
4308
4309 return 0;
4310
4311 out_unreg:
4312 kvm_async_pf_deinit();
4313 out_free:
4314 kmem_cache_destroy(kvm_vcpu_cache);
4315 out_free_3:
4316 unregister_reboot_notifier(&kvm_reboot_notifier);
4317 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4318 out_free_2:
4319 out_free_1:
4320 kvm_arch_hardware_unsetup();
4321 out_free_0a:
4322 free_cpumask_var(cpus_hardware_enabled);
4323 out_free_0:
4324 kvm_irqfd_exit();
4325 out_irqfd:
4326 kvm_arch_exit();
4327 out_fail:
4328 return r;
4329 }
4330 EXPORT_SYMBOL_GPL(kvm_init);
4331
4332 void kvm_exit(void)
4333 {
4334 debugfs_remove_recursive(kvm_debugfs_dir);
4335 misc_deregister(&kvm_dev);
4336 kmem_cache_destroy(kvm_vcpu_cache);
4337 kvm_async_pf_deinit();
4338 unregister_syscore_ops(&kvm_syscore_ops);
4339 unregister_reboot_notifier(&kvm_reboot_notifier);
4340 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4341 on_each_cpu(hardware_disable_nolock, NULL, 1);
4342 kvm_arch_hardware_unsetup();
4343 kvm_arch_exit();
4344 kvm_irqfd_exit();
4345 free_cpumask_var(cpus_hardware_enabled);
4346 kvm_vfio_ops_exit();
4347 }
4348 EXPORT_SYMBOL_GPL(kvm_exit);