]> git.ipfire.org Git - thirdparty/linux.git/blame - arch/x86/mm/tlb.c
docs: move protection-keys.rst to the core-api book
[thirdparty/linux.git] / arch / x86 / mm / tlb.c
CommitLineData
c048fdfe
GC
1#include <linux/init.h>
2
3#include <linux/mm.h>
c048fdfe
GC
4#include <linux/spinlock.h>
5#include <linux/smp.h>
c048fdfe 6#include <linux/interrupt.h>
4b599fed 7#include <linux/export.h>
93296720 8#include <linux/cpu.h>
18bf3c3e 9#include <linux/debugfs.h>
c048fdfe 10
c048fdfe 11#include <asm/tlbflush.h>
c048fdfe 12#include <asm/mmu_context.h>
18bf3c3e 13#include <asm/nospec-branch.h>
350f8f56 14#include <asm/cache.h>
6dd01bed 15#include <asm/apic.h>
bdbcdd48 16#include <asm/uv/uv.h>
5af5573e 17
935f5839
PZ
18#include "mm_internal.h"
19
c048fdfe 20/*
ce4a4e56 21 * TLB flushing, formerly SMP-only
c048fdfe
GC
22 * c/o Linus Torvalds.
23 *
24 * These mean you can really definitely utterly forget about
25 * writing to user space from interrupts. (Its not allowed anyway).
26 *
27 * Optimizations Manfred Spraul <manfred@colorfullife.com>
28 *
29 * More scalable flush, from Andi Kleen
30 *
52aec330 31 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
c048fdfe
GC
32 */
33
4c71a2b6
TG
34/*
35 * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is
36 * stored in cpu_tlb_state.last_user_mm_ibpb.
37 */
38#define LAST_USER_MM_IBPB 0x1UL
39
2ea907c4
DH
40/*
41 * We get here when we do something requiring a TLB invalidation
42 * but could not go invalidate all of the contexts. We do the
43 * necessary invalidation by clearing out the 'ctx_id' which
44 * forces a TLB flush when the context is loaded.
45 */
387048f5 46static void clear_asid_other(void)
2ea907c4
DH
47{
48 u16 asid;
49
50 /*
51 * This is only expected to be set if we have disabled
52 * kernel _PAGE_GLOBAL pages.
53 */
54 if (!static_cpu_has(X86_FEATURE_PTI)) {
55 WARN_ON_ONCE(1);
56 return;
57 }
58
59 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
60 /* Do not need to flush the current asid */
61 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
62 continue;
63 /*
64 * Make sure the next time we go to switch to
65 * this asid, we do a flush:
66 */
67 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
68 }
69 this_cpu_write(cpu_tlbstate.invalidate_other, false);
70}
71
f39681ed
AL
72atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
73
b956575b 74
10af6235
AL
75static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
76 u16 *new_asid, bool *need_flush)
77{
78 u16 asid;
79
80 if (!static_cpu_has(X86_FEATURE_PCID)) {
81 *new_asid = 0;
82 *need_flush = true;
83 return;
84 }
85
2ea907c4
DH
86 if (this_cpu_read(cpu_tlbstate.invalidate_other))
87 clear_asid_other();
88
10af6235
AL
89 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
90 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
91 next->context.ctx_id)
92 continue;
93
94 *new_asid = asid;
95 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
96 next_tlb_gen);
97 return;
98 }
99
100 /*
101 * We don't currently own an ASID slot on this CPU.
102 * Allocate a slot.
103 */
104 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
105 if (*new_asid >= TLB_NR_DYN_ASIDS) {
106 *new_asid = 0;
107 this_cpu_write(cpu_tlbstate.next_asid, 1);
108 }
109 *need_flush = true;
110}
111
48e11198
DH
112static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
113{
114 unsigned long new_mm_cr3;
115
116 if (need_flush) {
6fd166aa 117 invalidate_user_asid(new_asid);
48e11198
DH
118 new_mm_cr3 = build_cr3(pgdir, new_asid);
119 } else {
120 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
121 }
122
123 /*
124 * Caution: many callers of this function expect
125 * that load_cr3() is serializing and orders TLB
126 * fills with respect to the mm_cpumask writes.
127 */
128 write_cr3(new_mm_cr3);
129}
130
c048fdfe
GC
131void leave_mm(int cpu)
132{
3d28ebce
AL
133 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
134
135 /*
136 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
137 * If so, our callers still expect us to flush the TLB, but there
138 * aren't any user TLB entries in init_mm to worry about.
139 *
140 * This needs to happen before any other sanity checks due to
141 * intel_idle's shenanigans.
142 */
143 if (loaded_mm == &init_mm)
144 return;
145
94b1b03b 146 /* Warn if we're not lazy. */
b956575b 147 WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
3d28ebce
AL
148
149 switch_mm(NULL, &init_mm, NULL);
c048fdfe 150}
67535736 151EXPORT_SYMBOL_GPL(leave_mm);
c048fdfe 152
69c0319a
AL
153void switch_mm(struct mm_struct *prev, struct mm_struct *next,
154 struct task_struct *tsk)
078194f8
AL
155{
156 unsigned long flags;
157
158 local_irq_save(flags);
159 switch_mm_irqs_off(prev, next, tsk);
160 local_irq_restore(flags);
161}
162
5beda7d5
AL
163static void sync_current_stack_to_mm(struct mm_struct *mm)
164{
165 unsigned long sp = current_stack_pointer;
166 pgd_t *pgd = pgd_offset(mm, sp);
167
ed7588d5 168 if (pgtable_l5_enabled()) {
5beda7d5
AL
169 if (unlikely(pgd_none(*pgd))) {
170 pgd_t *pgd_ref = pgd_offset_k(sp);
171
172 set_pgd(pgd, *pgd_ref);
173 }
174 } else {
175 /*
176 * "pgd" is faked. The top level entries are "p4d"s, so sync
177 * the p4d. This compiles to approximately the same code as
178 * the 5-level case.
179 */
180 p4d_t *p4d = p4d_offset(pgd, sp);
181
182 if (unlikely(p4d_none(*p4d))) {
183 pgd_t *pgd_ref = pgd_offset_k(sp);
184 p4d_t *p4d_ref = p4d_offset(pgd_ref, sp);
185
186 set_p4d(p4d, *p4d_ref);
187 }
188 }
189}
190
4c71a2b6
TG
191static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
192{
193 unsigned long next_tif = task_thread_info(next)->flags;
194 unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB;
195
196 return (unsigned long)next->mm | ibpb;
197}
198
199static void cond_ibpb(struct task_struct *next)
dbfe2953 200{
4c71a2b6
TG
201 if (!next || !next->mm)
202 return;
203
dbfe2953 204 /*
4c71a2b6
TG
205 * Both, the conditional and the always IBPB mode use the mm
206 * pointer to avoid the IBPB when switching between tasks of the
207 * same process. Using the mm pointer instead of mm->context.ctx_id
208 * opens a hypothetical hole vs. mm_struct reuse, which is more or
209 * less impossible to control by an attacker. Aside of that it
210 * would only affect the first schedule so the theoretically
211 * exposed data is not really interesting.
dbfe2953 212 */
4c71a2b6
TG
213 if (static_branch_likely(&switch_mm_cond_ibpb)) {
214 unsigned long prev_mm, next_mm;
215
216 /*
217 * This is a bit more complex than the always mode because
218 * it has to handle two cases:
219 *
220 * 1) Switch from a user space task (potential attacker)
221 * which has TIF_SPEC_IB set to a user space task
222 * (potential victim) which has TIF_SPEC_IB not set.
223 *
224 * 2) Switch from a user space task (potential attacker)
225 * which has TIF_SPEC_IB not set to a user space task
226 * (potential victim) which has TIF_SPEC_IB set.
227 *
228 * This could be done by unconditionally issuing IBPB when
229 * a task which has TIF_SPEC_IB set is either scheduled in
230 * or out. Though that results in two flushes when:
231 *
232 * - the same user space task is scheduled out and later
233 * scheduled in again and only a kernel thread ran in
234 * between.
235 *
236 * - a user space task belonging to the same process is
237 * scheduled in after a kernel thread ran in between
238 *
239 * - a user space task belonging to the same process is
240 * scheduled in immediately.
241 *
242 * Optimize this with reasonably small overhead for the
243 * above cases. Mangle the TIF_SPEC_IB bit into the mm
244 * pointer of the incoming task which is stored in
245 * cpu_tlbstate.last_user_mm_ibpb for comparison.
246 */
247 next_mm = mm_mangle_tif_spec_ib(next);
248 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb);
249
250 /*
251 * Issue IBPB only if the mm's are different and one or
252 * both have the IBPB bit set.
253 */
254 if (next_mm != prev_mm &&
255 (next_mm | prev_mm) & LAST_USER_MM_IBPB)
256 indirect_branch_prediction_barrier();
257
258 this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm);
259 }
260
261 if (static_branch_unlikely(&switch_mm_always_ibpb)) {
262 /*
263 * Only flush when switching to a user space task with a
264 * different context than the user space task which ran
265 * last on this CPU.
266 */
267 if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) {
268 indirect_branch_prediction_barrier();
269 this_cpu_write(cpu_tlbstate.last_user_mm, next->mm);
270 }
271 }
dbfe2953
JK
272}
273
078194f8
AL
274void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
275 struct task_struct *tsk)
69c0319a 276{
3d28ebce 277 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
10af6235 278 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
145f573b 279 bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy);
94b1b03b
AL
280 unsigned cpu = smp_processor_id();
281 u64 next_tlb_gen;
12c4d978
RR
282 bool need_flush;
283 u16 new_asid;
69c0319a 284
3d28ebce 285 /*
94b1b03b
AL
286 * NB: The scheduler will call us with prev == next when switching
287 * from lazy TLB mode to normal mode if active_mm isn't changing.
288 * When this happens, we don't assume that CR3 (and hence
289 * cpu_tlbstate.loaded_mm) matches next.
3d28ebce
AL
290 *
291 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
292 */
e37e43a4 293
94b1b03b
AL
294 /* We don't want flush_tlb_func_* to run concurrently with us. */
295 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
296 WARN_ON_ONCE(!irqs_disabled());
297
298 /*
299 * Verify that CR3 is what we think it is. This will catch
300 * hypothetical buggy code that directly switches to swapper_pg_dir
10af6235
AL
301 * without going through leave_mm() / switch_mm_irqs_off() or that
302 * does something like write_cr3(read_cr3_pa()).
a376e7f9
AL
303 *
304 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
305 * isn't free.
94b1b03b 306 */
a376e7f9 307#ifdef CONFIG_DEBUG_VM
50fb83a6 308 if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
a376e7f9
AL
309 /*
310 * If we were to BUG here, we'd be very likely to kill
311 * the system so hard that we don't see the call trace.
312 * Try to recover instead by ignoring the error and doing
313 * a global flush to minimize the chance of corruption.
314 *
315 * (This is far from being a fully correct recovery.
316 * Architecturally, the CPU could prefetch something
317 * back into an incorrect ASID slot and leave it there
318 * to cause trouble down the road. It's better than
319 * nothing, though.)
320 */
321 __flush_tlb_all();
322 }
323#endif
b956575b 324 this_cpu_write(cpu_tlbstate.is_lazy, false);
e37e43a4 325
306e0604 326 /*
10bcc80e
MD
327 * The membarrier system call requires a full memory barrier and
328 * core serialization before returning to user-space, after
329 * storing to rq->curr. Writing to CR3 provides that full
330 * memory barrier and core serializing instruction.
306e0604 331 */
3d28ebce 332 if (real_prev == next) {
e8b9b0cc
AL
333 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
334 next->context.ctx_id);
94b1b03b 335
69c0319a 336 /*
145f573b
RR
337 * Even in lazy TLB mode, the CPU should stay set in the
338 * mm_cpumask. The TLB shootdown code can figure out from
339 * from cpu_tlbstate.is_lazy whether or not to send an IPI.
69c0319a 340 */
b956575b
AL
341 if (WARN_ON_ONCE(real_prev != &init_mm &&
342 !cpumask_test_cpu(cpu, mm_cpumask(next))))
343 cpumask_set_cpu(cpu, mm_cpumask(next));
344
145f573b
RR
345 /*
346 * If the CPU is not in lazy TLB mode, we are just switching
347 * from one thread in a process to another thread in the same
348 * process. No TLB flush required.
349 */
350 if (!was_lazy)
351 return;
352
353 /*
354 * Read the tlb_gen to check whether a flush is needed.
355 * If the TLB is up to date, just use it.
356 * The barrier synchronizes with the tlb_gen increment in
357 * the TLB shootdown code.
358 */
359 smp_mb();
360 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
361 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
362 next_tlb_gen)
363 return;
364
365 /*
366 * TLB contents went out of date while we were in lazy
367 * mode. Fall through to the TLB switching code below.
368 */
369 new_asid = prev_asid;
370 need_flush = true;
94b1b03b 371 } else {
18bf3c3e
TC
372 /*
373 * Avoid user/user BTB poisoning by flushing the branch
374 * predictor when switching between processes. This stops
375 * one process from doing Spectre-v2 attacks on another.
18bf3c3e 376 */
4c71a2b6 377 cond_ibpb(tsk);
94b1b03b
AL
378
379 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
380 /*
381 * If our current stack is in vmalloc space and isn't
382 * mapped in the new pgd, we'll double-fault. Forcibly
383 * map it.
384 */
5beda7d5 385 sync_current_stack_to_mm(next);
94b1b03b 386 }
69c0319a 387
e9d8c615
RR
388 /*
389 * Stop remote flushes for the previous mm.
390 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
391 * but the bitmap manipulation can cause cache line contention.
392 */
393 if (real_prev != &init_mm) {
394 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
395 mm_cpumask(real_prev)));
396 cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
397 }
3d28ebce 398
94b1b03b
AL
399 /*
400 * Start remote flushes and then read tlb_gen.
401 */
e9d8c615
RR
402 if (next != &init_mm)
403 cpumask_set_cpu(cpu, mm_cpumask(next));
94b1b03b 404 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
3d28ebce 405
10af6235 406 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
3d28ebce 407
4012e77a
AL
408 /* Let nmi_uaccess_okay() know that we're changing CR3. */
409 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
410 barrier();
12c4d978 411 }
4012e77a 412
12c4d978
RR
413 if (need_flush) {
414 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
415 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
416 load_new_mm_cr3(next->pgd, new_asid, true);
10af6235 417
18bf3c3e 418 /*
12c4d978
RR
419 * NB: This gets called via leave_mm() in the idle path
420 * where RCU functions differently. Tracing normally
421 * uses RCU, so we need to use the _rcuidle variant.
422 *
423 * (There is no good reason for this. The idle code should
424 * be rearranged to call this before rcu_idle_enter().)
18bf3c3e 425 */
12c4d978
RR
426 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
427 } else {
428 /* The new ASID is already up to date. */
429 load_new_mm_cr3(next->pgd, new_asid, false);
4012e77a 430
12c4d978
RR
431 /* See above wrt _rcuidle. */
432 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
94b1b03b 433 }
3d28ebce 434
12c4d978
RR
435 /* Make sure we write CR3 before loaded_mm. */
436 barrier();
437
438 this_cpu_write(cpu_tlbstate.loaded_mm, next);
439 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
440
145f573b
RR
441 if (next != real_prev) {
442 load_mm_cr4(next);
443 switch_ldt(real_prev, next);
444 }
69c0319a
AL
445}
446
b956575b 447/*
4e57b946
AL
448 * Please ignore the name of this function. It should be called
449 * switch_to_kernel_thread().
450 *
b956575b
AL
451 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
452 * kernel thread or other context without an mm. Acceptable implementations
453 * include doing nothing whatsoever, switching to init_mm, or various clever
454 * lazy tricks to try to minimize TLB flushes.
455 *
456 * The scheduler reserves the right to call enter_lazy_tlb() several times
457 * in a row. It will notify us that we're going back to a real mm by
458 * calling switch_mm_irqs_off().
459 */
460void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
461{
462 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
463 return;
464
5462bc3a 465 this_cpu_write(cpu_tlbstate.is_lazy, true);
b956575b
AL
466}
467
72c0098d
AL
468/*
469 * Call this when reinitializing a CPU. It fixes the following potential
470 * problems:
471 *
472 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
473 * because the CPU was taken down and came back up with CR3's PCID
474 * bits clear. CPU hotplug can do this.
475 *
476 * - The TLB contains junk in slots corresponding to inactive ASIDs.
477 *
478 * - The CPU went so far out to lunch that it may have missed a TLB
479 * flush.
480 */
481void initialize_tlbstate_and_flush(void)
482{
483 int i;
484 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
485 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
486 unsigned long cr3 = __read_cr3();
487
488 /* Assert that CR3 already references the right mm. */
489 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
490
491 /*
492 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization
493 * doesn't work like other CR4 bits because it can only be set from
494 * long mode.)
495 */
7898f796 496 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
72c0098d
AL
497 !(cr4_read_shadow() & X86_CR4_PCIDE));
498
499 /* Force ASID 0 and force a TLB flush. */
50fb83a6 500 write_cr3(build_cr3(mm->pgd, 0));
72c0098d
AL
501
502 /* Reinitialize tlbstate. */
4c71a2b6 503 this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB);
72c0098d
AL
504 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
505 this_cpu_write(cpu_tlbstate.next_asid, 1);
506 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
507 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
508
509 for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
510 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
511}
512
b0579ade
AL
513/*
514 * flush_tlb_func_common()'s memory ordering requirement is that any
515 * TLB fills that happen after we flush the TLB are ordered after we
516 * read active_mm's tlb_gen. We don't need any explicit barriers
517 * because all x86 flush operations are serializing and the
518 * atomic64_read operation won't be reordered by the compiler.
519 */
454bbad9
AL
520static void flush_tlb_func_common(const struct flush_tlb_info *f,
521 bool local, enum tlb_flush_reason reason)
c048fdfe 522{
b0579ade
AL
523 /*
524 * We have three different tlb_gen values in here. They are:
525 *
526 * - mm_tlb_gen: the latest generation.
527 * - local_tlb_gen: the generation that this CPU has already caught
528 * up to.
529 * - f->new_tlb_gen: the generation that the requester of the flush
530 * wants us to catch up to.
531 */
532 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
10af6235 533 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
b0579ade 534 u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
10af6235 535 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
b0579ade 536
bc0d5a89
AL
537 /* This code cannot presently handle being reentered. */
538 VM_WARN_ON(!irqs_disabled());
539
b956575b
AL
540 if (unlikely(loaded_mm == &init_mm))
541 return;
542
10af6235 543 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
b0579ade
AL
544 loaded_mm->context.ctx_id);
545
b956575b 546 if (this_cpu_read(cpu_tlbstate.is_lazy)) {
b0579ade 547 /*
b956575b
AL
548 * We're in lazy mode. We need to at least flush our
549 * paging-structure cache to avoid speculatively reading
550 * garbage into our TLB. Since switching to init_mm is barely
551 * slower than a minimal flush, just switch to init_mm.
145f573b
RR
552 *
553 * This should be rare, with native_flush_tlb_others skipping
554 * IPIs to lazy TLB mode CPUs.
b0579ade 555 */
b956575b 556 switch_mm_irqs_off(NULL, &init_mm, NULL);
b3b90e5a
AL
557 return;
558 }
c048fdfe 559
b0579ade
AL
560 if (unlikely(local_tlb_gen == mm_tlb_gen)) {
561 /*
562 * There's nothing to do: we're already up to date. This can
563 * happen if two concurrent flushes happen -- the first flush to
564 * be handled can catch us all the way up, leaving no work for
565 * the second flush.
566 */
94b1b03b 567 trace_tlb_flush(reason, 0);
b0579ade
AL
568 return;
569 }
570
571 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
572 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
573
574 /*
575 * If we get to this point, we know that our TLB is out of date.
576 * This does not strictly imply that we need to flush (it's
577 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
578 * going to need to flush in the very near future, so we might
579 * as well get it over with.
580 *
581 * The only question is whether to do a full or partial flush.
582 *
583 * We do a partial flush if requested and two extra conditions
584 * are met:
585 *
586 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that
587 * we've always done all needed flushes to catch up to
588 * local_tlb_gen. If, for example, local_tlb_gen == 2 and
589 * f->new_tlb_gen == 3, then we know that the flush needed to bring
590 * us up to date for tlb_gen 3 is the partial flush we're
591 * processing.
592 *
593 * As an example of why this check is needed, suppose that there
594 * are two concurrent flushes. The first is a full flush that
595 * changes context.tlb_gen from 1 to 2. The second is a partial
596 * flush that changes context.tlb_gen from 2 to 3. If they get
597 * processed on this CPU in reverse order, we'll see
598 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
1299ef1d 599 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to
b0579ade
AL
600 * 3, we'd be break the invariant: we'd update local_tlb_gen above
601 * 1 without the full flush that's needed for tlb_gen 2.
602 *
603 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimiation.
604 * Partial TLB flushes are not all that much cheaper than full TLB
605 * flushes, so it seems unlikely that it would be a performance win
606 * to do a partial flush if that won't bring our TLB fully up to
607 * date. By doing a full flush instead, we can increase
608 * local_tlb_gen all the way to mm_tlb_gen and we can probably
609 * avoid another flush in the very near future.
610 */
611 if (f->end != TLB_FLUSH_ALL &&
612 f->new_tlb_gen == local_tlb_gen + 1 &&
613 f->new_tlb_gen == mm_tlb_gen) {
614 /* Partial flush */
a31acd3e
PZ
615 unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift;
616 unsigned long addr = f->start;
b0579ade 617
a2055abe 618 while (addr < f->end) {
1299ef1d 619 __flush_tlb_one_user(addr);
a31acd3e 620 addr += 1UL << f->stride_shift;
b3b90e5a 621 }
454bbad9 622 if (local)
a31acd3e
PZ
623 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
624 trace_tlb_flush(reason, nr_invalidate);
b0579ade
AL
625 } else {
626 /* Full flush. */
627 local_flush_tlb();
628 if (local)
629 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
630 trace_tlb_flush(reason, TLB_FLUSH_ALL);
b3b90e5a 631 }
b0579ade
AL
632
633 /* Both paths above update our state to mm_tlb_gen. */
10af6235 634 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
c048fdfe
GC
635}
636
3db6d5a5 637static void flush_tlb_func_local(const void *info, enum tlb_flush_reason reason)
454bbad9
AL
638{
639 const struct flush_tlb_info *f = info;
640
641 flush_tlb_func_common(f, true, reason);
642}
643
644static void flush_tlb_func_remote(void *info)
645{
646 const struct flush_tlb_info *f = info;
647
648 inc_irq_stat(irq_tlb_count);
649
3d28ebce 650 if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
454bbad9
AL
651 return;
652
653 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
654 flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
655}
656
145f573b
RR
657static bool tlb_is_not_lazy(int cpu, void *data)
658{
659 return !per_cpu(cpu_tlbstate.is_lazy, cpu);
660}
661
4595f962 662void native_flush_tlb_others(const struct cpumask *cpumask,
a2055abe 663 const struct flush_tlb_info *info)
4595f962 664{
ec659934 665 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
a2055abe 666 if (info->end == TLB_FLUSH_ALL)
18c98243
NA
667 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
668 else
669 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
a2055abe 670 (info->end - info->start) >> PAGE_SHIFT);
18c98243 671
4595f962 672 if (is_uv_system()) {
94b1b03b
AL
673 /*
674 * This whole special case is confused. UV has a "Broadcast
675 * Assist Unit", which seems to be a fancy way to send IPIs.
676 * Back when x86 used an explicit TLB flush IPI, UV was
677 * optimized to use its own mechanism. These days, x86 uses
678 * smp_call_function_many(), but UV still uses a manual IPI,
679 * and that IPI's action is out of date -- it does a manual
680 * flush instead of calling flush_tlb_func_remote(). This
681 * means that the percpu tlb_gen variables won't be updated
682 * and we'll do pointless flushes on future context switches.
683 *
684 * Rather than hooking native_flush_tlb_others() here, I think
685 * that UV should be updated so that smp_call_function_many(),
686 * etc, are optimal on UV.
687 */
a2055abe 688 cpumask = uv_flush_tlb_others(cpumask, info);
bdbcdd48 689 if (cpumask)
454bbad9 690 smp_call_function_many(cpumask, flush_tlb_func_remote,
a2055abe 691 (void *)info, 1);
0e21990a 692 return;
4595f962 693 }
145f573b
RR
694
695 /*
696 * If no page tables were freed, we can skip sending IPIs to
697 * CPUs in lazy TLB mode. They will flush the CPU themselves
698 * at the next context switch.
699 *
700 * However, if page tables are getting freed, we need to send the
701 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
702 * up on the new contents of what used to be page tables, while
703 * doing a speculative memory access.
704 */
705 if (info->freed_tables)
706 smp_call_function_many(cpumask, flush_tlb_func_remote,
ac031589 707 (void *)info, 1);
145f573b
RR
708 else
709 on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote,
710 (void *)info, 1, GFP_ATOMIC, cpumask);
c048fdfe 711}
c048fdfe 712
a5102476
DH
713/*
714 * See Documentation/x86/tlb.txt for details. We choose 33
715 * because it is large enough to cover the vast majority (at
716 * least 95%) of allocations, and is small enough that we are
717 * confident it will not cause too much overhead. Each single
718 * flush is about 100 ns, so this caps the maximum overhead at
719 * _about_ 3,000 ns.
720 *
721 * This is in units of pages.
722 */
935f5839 723unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
e9f4e0a9 724
3db6d5a5
NA
725static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
726
727#ifdef CONFIG_DEBUG_VM
728static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
729#endif
730
731static inline struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
732 unsigned long start, unsigned long end,
733 unsigned int stride_shift, bool freed_tables,
734 u64 new_tlb_gen)
735{
736 struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
737
738#ifdef CONFIG_DEBUG_VM
739 /*
740 * Ensure that the following code is non-reentrant and flush_tlb_info
741 * is not overwritten. This means no TLB flushing is initiated by
742 * interrupt handlers and machine-check exception handlers.
743 */
744 BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
745#endif
746
747 info->start = start;
748 info->end = end;
749 info->mm = mm;
750 info->stride_shift = stride_shift;
751 info->freed_tables = freed_tables;
752 info->new_tlb_gen = new_tlb_gen;
753
754 return info;
755}
756
757static inline void put_flush_tlb_info(void)
758{
759#ifdef CONFIG_DEBUG_VM
760 /* Complete reentrency prevention checks */
761 barrier();
762 this_cpu_dec(flush_tlb_info_idx);
763#endif
764}
765
611ae8e3 766void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
016c4d92
RR
767 unsigned long end, unsigned int stride_shift,
768 bool freed_tables)
611ae8e3 769{
3db6d5a5
NA
770 struct flush_tlb_info *info;
771 u64 new_tlb_gen;
454bbad9 772 int cpu;
ce27374f 773
454bbad9 774 cpu = get_cpu();
71b3c126 775
454bbad9 776 /* Should we flush just the requested range? */
3db6d5a5
NA
777 if ((end == TLB_FLUSH_ALL) ||
778 ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
779 start = 0;
780 end = TLB_FLUSH_ALL;
4995ab9c 781 }
454bbad9 782
3db6d5a5
NA
783 /* This is also a barrier that synchronizes with switch_mm(). */
784 new_tlb_gen = inc_mm_tlb_gen(mm);
785
786 info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
787 new_tlb_gen);
788
bc0d5a89 789 if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
3db6d5a5 790 lockdep_assert_irqs_enabled();
bc0d5a89 791 local_irq_disable();
3db6d5a5 792 flush_tlb_func_local(info, TLB_LOCAL_MM_SHOOTDOWN);
bc0d5a89
AL
793 local_irq_enable();
794 }
795
454bbad9 796 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
3db6d5a5 797 flush_tlb_others(mm_cpumask(mm), info);
94b1b03b 798
3db6d5a5 799 put_flush_tlb_info();
454bbad9 800 put_cpu();
c048fdfe
GC
801}
802
a2055abe 803
c048fdfe
GC
804static void do_flush_tlb_all(void *info)
805{
ec659934 806 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
c048fdfe 807 __flush_tlb_all();
c048fdfe
GC
808}
809
810void flush_tlb_all(void)
811{
ec659934 812 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
15c8b6c1 813 on_each_cpu(do_flush_tlb_all, NULL, 1);
c048fdfe 814}
3df3212f 815
effee4b9
AS
816static void do_kernel_range_flush(void *info)
817{
818 struct flush_tlb_info *f = info;
819 unsigned long addr;
820
821 /* flush range by one by one 'invlpg' */
a2055abe 822 for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
1299ef1d 823 __flush_tlb_one_kernel(addr);
effee4b9
AS
824}
825
826void flush_tlb_kernel_range(unsigned long start, unsigned long end)
827{
effee4b9 828 /* Balance as user space task's flush, a bit conservative */
e9f4e0a9 829 if (end == TLB_FLUSH_ALL ||
be4ffc0d 830 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
effee4b9 831 on_each_cpu(do_flush_tlb_all, NULL, 1);
e9f4e0a9 832 } else {
3db6d5a5
NA
833 struct flush_tlb_info *info;
834
835 preempt_disable();
836 info = get_flush_tlb_info(NULL, start, end, 0, false, 0);
837
838 on_each_cpu(do_kernel_range_flush, info, 1);
839
840 put_flush_tlb_info();
841 preempt_enable();
effee4b9
AS
842 }
843}
2d040a1c 844
3db6d5a5
NA
845/*
846 * arch_tlbbatch_flush() performs a full TLB flush regardless of the active mm.
847 * This means that the 'struct flush_tlb_info' that describes which mappings to
848 * flush is actually fixed. We therefore set a single fixed struct and use it in
849 * arch_tlbbatch_flush().
850 */
851static const struct flush_tlb_info full_flush_tlb_info = {
852 .mm = NULL,
853 .start = 0,
854 .end = TLB_FLUSH_ALL,
855};
856
e73ad5ff
AL
857void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
858{
859 int cpu = get_cpu();
860
bc0d5a89 861 if (cpumask_test_cpu(cpu, &batch->cpumask)) {
3db6d5a5 862 lockdep_assert_irqs_enabled();
bc0d5a89 863 local_irq_disable();
3db6d5a5 864 flush_tlb_func_local(&full_flush_tlb_info, TLB_LOCAL_SHOOTDOWN);
bc0d5a89
AL
865 local_irq_enable();
866 }
867
e73ad5ff 868 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
3db6d5a5 869 flush_tlb_others(&batch->cpumask, &full_flush_tlb_info);
94b1b03b 870
e73ad5ff
AL
871 cpumask_clear(&batch->cpumask);
872
873 put_cpu();
874}
875
2d040a1c
DH
876static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
877 size_t count, loff_t *ppos)
878{
879 char buf[32];
880 unsigned int len;
881
882 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
883 return simple_read_from_buffer(user_buf, count, ppos, buf, len);
884}
885
886static ssize_t tlbflush_write_file(struct file *file,
887 const char __user *user_buf, size_t count, loff_t *ppos)
888{
889 char buf[32];
890 ssize_t len;
891 int ceiling;
892
893 len = min(count, sizeof(buf) - 1);
894 if (copy_from_user(buf, user_buf, len))
895 return -EFAULT;
896
897 buf[len] = '\0';
898 if (kstrtoint(buf, 0, &ceiling))
899 return -EINVAL;
900
901 if (ceiling < 0)
902 return -EINVAL;
903
904 tlb_single_page_flush_ceiling = ceiling;
905 return count;
906}
907
908static const struct file_operations fops_tlbflush = {
909 .read = tlbflush_read_file,
910 .write = tlbflush_write_file,
911 .llseek = default_llseek,
912};
913
914static int __init create_tlb_single_page_flush_ceiling(void)
915{
916 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
917 arch_debugfs_dir, NULL, &fops_tlbflush);
918 return 0;
919}
920late_initcall(create_tlb_single_page_flush_ceiling);