]> git.ipfire.org Git - thirdparty/linux.git/blame - lib/bitmap.c
lib: bitmap: eliminate branch in __bitmap_shift_left
[thirdparty/linux.git] / lib / bitmap.c
CommitLineData
1da177e4
LT
1/*
2 * lib/bitmap.c
3 * Helper functions for bitmap.h.
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8bc3bcc9
PG
8#include <linux/export.h>
9#include <linux/thread_info.h>
1da177e4
LT
10#include <linux/ctype.h>
11#include <linux/errno.h>
12#include <linux/bitmap.h>
13#include <linux/bitops.h>
50af5ead 14#include <linux/bug.h>
5aaba363
SH
15
16#include <asm/page.h>
1da177e4
LT
17#include <asm/uaccess.h>
18
19/*
20 * bitmaps provide an array of bits, implemented using an an
21 * array of unsigned longs. The number of valid bits in a
22 * given bitmap does _not_ need to be an exact multiple of
23 * BITS_PER_LONG.
24 *
25 * The possible unused bits in the last, partially used word
26 * of a bitmap are 'don't care'. The implementation makes
27 * no particular effort to keep them zero. It ensures that
28 * their value will not affect the results of any operation.
29 * The bitmap operations that return Boolean (bitmap_empty,
30 * for example) or scalar (bitmap_weight, for example) results
31 * carefully filter out these unused bits from impacting their
32 * results.
33 *
34 * These operations actually hold to a slightly stronger rule:
35 * if you don't input any bitmaps to these ops that have some
36 * unused bits set, then they won't output any set unused bits
37 * in output bitmaps.
38 *
39 * The byte ordering of bitmaps is more natural on little
40 * endian architectures. See the big-endian headers
41 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
42 * for the best explanations of this ordering.
43 */
44
0679cc48 45int __bitmap_empty(const unsigned long *bitmap, unsigned int bits)
1da177e4 46{
0679cc48 47 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
48 for (k = 0; k < lim; ++k)
49 if (bitmap[k])
50 return 0;
51
52 if (bits % BITS_PER_LONG)
53 if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
54 return 0;
55
56 return 1;
57}
58EXPORT_SYMBOL(__bitmap_empty);
59
8397927c 60int __bitmap_full(const unsigned long *bitmap, unsigned int bits)
1da177e4 61{
8397927c 62 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
63 for (k = 0; k < lim; ++k)
64 if (~bitmap[k])
65 return 0;
66
67 if (bits % BITS_PER_LONG)
68 if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
69 return 0;
70
71 return 1;
72}
73EXPORT_SYMBOL(__bitmap_full);
74
75int __bitmap_equal(const unsigned long *bitmap1,
5e068069 76 const unsigned long *bitmap2, unsigned int bits)
1da177e4 77{
5e068069 78 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
79 for (k = 0; k < lim; ++k)
80 if (bitmap1[k] != bitmap2[k])
81 return 0;
82
83 if (bits % BITS_PER_LONG)
84 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
85 return 0;
86
87 return 1;
88}
89EXPORT_SYMBOL(__bitmap_equal);
90
3d6684f4 91void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
1da177e4 92{
3d6684f4 93 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
94 for (k = 0; k < lim; ++k)
95 dst[k] = ~src[k];
96
97 if (bits % BITS_PER_LONG)
65b4ee62 98 dst[k] = ~src[k];
1da177e4
LT
99}
100EXPORT_SYMBOL(__bitmap_complement);
101
72fd4a35 102/**
1da177e4 103 * __bitmap_shift_right - logical right shift of the bits in a bitmap
05fb6bf0
RD
104 * @dst : destination bitmap
105 * @src : source bitmap
106 * @shift : shift by this many bits
2fbad299 107 * @nbits : bitmap size, in bits
1da177e4
LT
108 *
109 * Shifting right (dividing) means moving bits in the MS -> LS bit
110 * direction. Zeros are fed into the vacated MS positions and the
111 * LS bits shifted off the bottom are lost.
112 */
2fbad299
RV
113void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
114 unsigned shift, unsigned nbits)
1da177e4 115{
cfac1d08 116 unsigned k, lim = BITS_TO_LONGS(nbits);
2fbad299 117 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
cfac1d08 118 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
1da177e4
LT
119 for (k = 0; off + k < lim; ++k) {
120 unsigned long upper, lower;
121
122 /*
123 * If shift is not word aligned, take lower rem bits of
124 * word above and make them the top rem bits of result.
125 */
126 if (!rem || off + k + 1 >= lim)
127 upper = 0;
128 else {
129 upper = src[off + k + 1];
cfac1d08 130 if (off + k + 1 == lim - 1)
1da177e4 131 upper &= mask;
9d8a6b2a 132 upper <<= (BITS_PER_LONG - rem);
1da177e4
LT
133 }
134 lower = src[off + k];
cfac1d08 135 if (off + k == lim - 1)
1da177e4 136 lower &= mask;
9d8a6b2a
RV
137 lower >>= rem;
138 dst[k] = lower | upper;
1da177e4
LT
139 }
140 if (off)
141 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
142}
143EXPORT_SYMBOL(__bitmap_shift_right);
144
145
72fd4a35 146/**
1da177e4 147 * __bitmap_shift_left - logical left shift of the bits in a bitmap
05fb6bf0
RD
148 * @dst : destination bitmap
149 * @src : source bitmap
150 * @shift : shift by this many bits
dba94c25 151 * @nbits : bitmap size, in bits
1da177e4
LT
152 *
153 * Shifting left (multiplying) means moving bits in the LS -> MS
154 * direction. Zeros are fed into the vacated LS bit positions
155 * and those MS bits shifted off the top are lost.
156 */
157
dba94c25
RV
158void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
159 unsigned int shift, unsigned int nbits)
1da177e4 160{
dba94c25
RV
161 int k;
162 unsigned int lim = BITS_TO_LONGS(nbits), left = nbits % BITS_PER_LONG;
163 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
1da177e4
LT
164 for (k = lim - off - 1; k >= 0; --k) {
165 unsigned long upper, lower;
166
167 /*
168 * If shift is not word aligned, take upper rem bits of
169 * word below and make them the bottom rem bits of result.
170 */
171 if (rem && k > 0)
6d874eca 172 lower = src[k - 1] >> (BITS_PER_LONG - rem);
1da177e4
LT
173 else
174 lower = 0;
175 upper = src[k];
176 if (left && k == lim - 1)
177 upper &= (1UL << left) - 1;
6d874eca
RV
178 upper <<= rem;
179 dst[k + off] = lower | upper;
1da177e4
LT
180 if (left && k + off == lim - 1)
181 dst[k + off] &= (1UL << left) - 1;
182 }
183 if (off)
184 memset(dst, 0, off*sizeof(unsigned long));
185}
186EXPORT_SYMBOL(__bitmap_shift_left);
187
f4b0373b 188int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 189 const unsigned long *bitmap2, unsigned int bits)
1da177e4 190{
2f9305eb 191 unsigned int k;
7e5f97d1 192 unsigned int lim = bits/BITS_PER_LONG;
f4b0373b 193 unsigned long result = 0;
1da177e4 194
7e5f97d1 195 for (k = 0; k < lim; k++)
f4b0373b 196 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
7e5f97d1
RV
197 if (bits % BITS_PER_LONG)
198 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
199 BITMAP_LAST_WORD_MASK(bits));
f4b0373b 200 return result != 0;
1da177e4
LT
201}
202EXPORT_SYMBOL(__bitmap_and);
203
204void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 205 const unsigned long *bitmap2, unsigned int bits)
1da177e4 206{
2f9305eb
RV
207 unsigned int k;
208 unsigned int nr = BITS_TO_LONGS(bits);
1da177e4
LT
209
210 for (k = 0; k < nr; k++)
211 dst[k] = bitmap1[k] | bitmap2[k];
212}
213EXPORT_SYMBOL(__bitmap_or);
214
215void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 216 const unsigned long *bitmap2, unsigned int bits)
1da177e4 217{
2f9305eb
RV
218 unsigned int k;
219 unsigned int nr = BITS_TO_LONGS(bits);
1da177e4
LT
220
221 for (k = 0; k < nr; k++)
222 dst[k] = bitmap1[k] ^ bitmap2[k];
223}
224EXPORT_SYMBOL(__bitmap_xor);
225
f4b0373b 226int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 227 const unsigned long *bitmap2, unsigned int bits)
1da177e4 228{
2f9305eb 229 unsigned int k;
74e76531 230 unsigned int lim = bits/BITS_PER_LONG;
f4b0373b 231 unsigned long result = 0;
1da177e4 232
74e76531 233 for (k = 0; k < lim; k++)
f4b0373b 234 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
74e76531
RV
235 if (bits % BITS_PER_LONG)
236 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
237 BITMAP_LAST_WORD_MASK(bits));
f4b0373b 238 return result != 0;
1da177e4
LT
239}
240EXPORT_SYMBOL(__bitmap_andnot);
241
242int __bitmap_intersects(const unsigned long *bitmap1,
6dfe9799 243 const unsigned long *bitmap2, unsigned int bits)
1da177e4 244{
6dfe9799 245 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
246 for (k = 0; k < lim; ++k)
247 if (bitmap1[k] & bitmap2[k])
248 return 1;
249
250 if (bits % BITS_PER_LONG)
251 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
252 return 1;
253 return 0;
254}
255EXPORT_SYMBOL(__bitmap_intersects);
256
257int __bitmap_subset(const unsigned long *bitmap1,
5be20213 258 const unsigned long *bitmap2, unsigned int bits)
1da177e4 259{
5be20213 260 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
261 for (k = 0; k < lim; ++k)
262 if (bitmap1[k] & ~bitmap2[k])
263 return 0;
264
265 if (bits % BITS_PER_LONG)
266 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
267 return 0;
268 return 1;
269}
270EXPORT_SYMBOL(__bitmap_subset);
271
877d9f3b 272int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
1da177e4 273{
877d9f3b
RV
274 unsigned int k, lim = bits/BITS_PER_LONG;
275 int w = 0;
1da177e4
LT
276
277 for (k = 0; k < lim; k++)
37d54111 278 w += hweight_long(bitmap[k]);
1da177e4
LT
279
280 if (bits % BITS_PER_LONG)
37d54111 281 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
1da177e4
LT
282
283 return w;
284}
1da177e4
LT
285EXPORT_SYMBOL(__bitmap_weight);
286
fb5ac542 287void bitmap_set(unsigned long *map, unsigned int start, int len)
c1a2a962
AM
288{
289 unsigned long *p = map + BIT_WORD(start);
fb5ac542 290 const unsigned int size = start + len;
c1a2a962
AM
291 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
292 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
293
fb5ac542 294 while (len - bits_to_set >= 0) {
c1a2a962 295 *p |= mask_to_set;
fb5ac542 296 len -= bits_to_set;
c1a2a962
AM
297 bits_to_set = BITS_PER_LONG;
298 mask_to_set = ~0UL;
299 p++;
300 }
fb5ac542 301 if (len) {
c1a2a962
AM
302 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
303 *p |= mask_to_set;
304 }
305}
306EXPORT_SYMBOL(bitmap_set);
307
154f5e38 308void bitmap_clear(unsigned long *map, unsigned int start, int len)
c1a2a962
AM
309{
310 unsigned long *p = map + BIT_WORD(start);
154f5e38 311 const unsigned int size = start + len;
c1a2a962
AM
312 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
313 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
314
154f5e38 315 while (len - bits_to_clear >= 0) {
c1a2a962 316 *p &= ~mask_to_clear;
154f5e38 317 len -= bits_to_clear;
c1a2a962
AM
318 bits_to_clear = BITS_PER_LONG;
319 mask_to_clear = ~0UL;
320 p++;
321 }
154f5e38 322 if (len) {
c1a2a962
AM
323 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
324 *p &= ~mask_to_clear;
325 }
326}
327EXPORT_SYMBOL(bitmap_clear);
328
5e19b013
MN
329/**
330 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
c1a2a962
AM
331 * @map: The address to base the search on
332 * @size: The bitmap size in bits
333 * @start: The bitnumber to start searching at
334 * @nr: The number of zeroed bits we're looking for
335 * @align_mask: Alignment mask for zero area
5e19b013 336 * @align_offset: Alignment offset for zero area.
c1a2a962
AM
337 *
338 * The @align_mask should be one less than a power of 2; the effect is that
5e19b013
MN
339 * the bit offset of all zero areas this function finds plus @align_offset
340 * is multiple of that power of 2.
c1a2a962 341 */
5e19b013
MN
342unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
343 unsigned long size,
344 unsigned long start,
345 unsigned int nr,
346 unsigned long align_mask,
347 unsigned long align_offset)
c1a2a962
AM
348{
349 unsigned long index, end, i;
350again:
351 index = find_next_zero_bit(map, size, start);
352
353 /* Align allocation */
5e19b013 354 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
c1a2a962
AM
355
356 end = index + nr;
357 if (end > size)
358 return end;
359 i = find_next_bit(map, end, index);
360 if (i < end) {
361 start = i + 1;
362 goto again;
363 }
364 return index;
365}
5e19b013 366EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
c1a2a962 367
1da177e4 368/*
6d49e352 369 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
1da177e4
LT
370 * second version by Paul Jackson, third by Joe Korty.
371 */
372
373#define CHUNKSZ 32
374#define nbits_to_hold_value(val) fls(val)
1da177e4
LT
375#define BASEDEC 10 /* fancier cpuset lists input in decimal */
376
377/**
378 * bitmap_scnprintf - convert bitmap to an ASCII hex string.
379 * @buf: byte buffer into which string is placed
380 * @buflen: reserved size of @buf, in bytes
381 * @maskp: pointer to bitmap to convert
382 * @nmaskbits: size of bitmap, in bits
383 *
384 * Exactly @nmaskbits bits are displayed. Hex digits are grouped into
05a6c8a9
AM
385 * comma-separated sets of eight digits per set. Returns the number of
386 * characters which were written to *buf, excluding the trailing \0.
1da177e4
LT
387 */
388int bitmap_scnprintf(char *buf, unsigned int buflen,
389 const unsigned long *maskp, int nmaskbits)
390{
391 int i, word, bit, len = 0;
392 unsigned long val;
393 const char *sep = "";
394 int chunksz;
395 u32 chunkmask;
396
397 chunksz = nmaskbits & (CHUNKSZ - 1);
398 if (chunksz == 0)
399 chunksz = CHUNKSZ;
400
8c0e33c1 401 i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
1da177e4
LT
402 for (; i >= 0; i -= CHUNKSZ) {
403 chunkmask = ((1ULL << chunksz) - 1);
404 word = i / BITS_PER_LONG;
405 bit = i % BITS_PER_LONG;
406 val = (maskp[word] >> bit) & chunkmask;
407 len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
408 (chunksz+3)/4, val);
409 chunksz = CHUNKSZ;
410 sep = ",";
411 }
412 return len;
413}
414EXPORT_SYMBOL(bitmap_scnprintf);
415
416/**
01a3ee2b
RC
417 * __bitmap_parse - convert an ASCII hex string into a bitmap.
418 * @buf: pointer to buffer containing string.
419 * @buflen: buffer size in bytes. If string is smaller than this
1da177e4 420 * then it must be terminated with a \0.
01a3ee2b 421 * @is_user: location of buffer, 0 indicates kernel space
1da177e4
LT
422 * @maskp: pointer to bitmap array that will contain result.
423 * @nmaskbits: size of bitmap, in bits.
424 *
425 * Commas group hex digits into chunks. Each chunk defines exactly 32
426 * bits of the resultant bitmask. No chunk may specify a value larger
6e1907ff
RD
427 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
428 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
1da177e4
LT
429 * characters and for grouping errors such as "1,,5", ",44", "," and "".
430 * Leading and trailing whitespace accepted, but not embedded whitespace.
431 */
01a3ee2b
RC
432int __bitmap_parse(const char *buf, unsigned int buflen,
433 int is_user, unsigned long *maskp,
434 int nmaskbits)
1da177e4
LT
435{
436 int c, old_c, totaldigits, ndigits, nchunks, nbits;
437 u32 chunk;
b9c321fd 438 const char __user __force *ubuf = (const char __user __force *)buf;
1da177e4
LT
439
440 bitmap_zero(maskp, nmaskbits);
441
442 nchunks = nbits = totaldigits = c = 0;
443 do {
444 chunk = ndigits = 0;
445
446 /* Get the next chunk of the bitmap */
01a3ee2b 447 while (buflen) {
1da177e4 448 old_c = c;
01a3ee2b
RC
449 if (is_user) {
450 if (__get_user(c, ubuf++))
451 return -EFAULT;
452 }
453 else
454 c = *buf++;
455 buflen--;
1da177e4
LT
456 if (isspace(c))
457 continue;
458
459 /*
460 * If the last character was a space and the current
461 * character isn't '\0', we've got embedded whitespace.
462 * This is a no-no, so throw an error.
463 */
464 if (totaldigits && c && isspace(old_c))
465 return -EINVAL;
466
467 /* A '\0' or a ',' signal the end of the chunk */
468 if (c == '\0' || c == ',')
469 break;
470
471 if (!isxdigit(c))
472 return -EINVAL;
473
474 /*
475 * Make sure there are at least 4 free bits in 'chunk'.
476 * If not, this hexdigit will overflow 'chunk', so
477 * throw an error.
478 */
479 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
480 return -EOVERFLOW;
481
66f1991b 482 chunk = (chunk << 4) | hex_to_bin(c);
1da177e4
LT
483 ndigits++; totaldigits++;
484 }
485 if (ndigits == 0)
486 return -EINVAL;
487 if (nchunks == 0 && chunk == 0)
488 continue;
489
490 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
491 *maskp |= chunk;
492 nchunks++;
493 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
494 if (nbits > nmaskbits)
495 return -EOVERFLOW;
01a3ee2b 496 } while (buflen && c == ',');
1da177e4
LT
497
498 return 0;
499}
01a3ee2b
RC
500EXPORT_SYMBOL(__bitmap_parse);
501
502/**
9a86e2ba 503 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
01a3ee2b
RC
504 *
505 * @ubuf: pointer to user buffer containing string.
506 * @ulen: buffer size in bytes. If string is smaller than this
507 * then it must be terminated with a \0.
508 * @maskp: pointer to bitmap array that will contain result.
509 * @nmaskbits: size of bitmap, in bits.
510 *
511 * Wrapper for __bitmap_parse(), providing it with user buffer.
512 *
513 * We cannot have this as an inline function in bitmap.h because it needs
514 * linux/uaccess.h to get the access_ok() declaration and this causes
515 * cyclic dependencies.
516 */
517int bitmap_parse_user(const char __user *ubuf,
518 unsigned int ulen, unsigned long *maskp,
519 int nmaskbits)
520{
521 if (!access_ok(VERIFY_READ, ubuf, ulen))
522 return -EFAULT;
b9c321fd
HS
523 return __bitmap_parse((const char __force *)ubuf,
524 ulen, 1, maskp, nmaskbits);
525
01a3ee2b
RC
526}
527EXPORT_SYMBOL(bitmap_parse_user);
1da177e4
LT
528
529/*
530 * bscnl_emit(buf, buflen, rbot, rtop, bp)
531 *
532 * Helper routine for bitmap_scnlistprintf(). Write decimal number
533 * or range to buf, suppressing output past buf+buflen, with optional
05a6c8a9
AM
534 * comma-prefix. Return len of what was written to *buf, excluding the
535 * trailing \0.
1da177e4
LT
536 */
537static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
538{
539 if (len > 0)
540 len += scnprintf(buf + len, buflen - len, ",");
541 if (rbot == rtop)
542 len += scnprintf(buf + len, buflen - len, "%d", rbot);
543 else
544 len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
545 return len;
546}
547
548/**
549 * bitmap_scnlistprintf - convert bitmap to list format ASCII string
550 * @buf: byte buffer into which string is placed
551 * @buflen: reserved size of @buf, in bytes
552 * @maskp: pointer to bitmap to convert
553 * @nmaskbits: size of bitmap, in bits
554 *
555 * Output format is a comma-separated list of decimal numbers and
556 * ranges. Consecutively set bits are shown as two hyphen-separated
557 * decimal numbers, the smallest and largest bit numbers set in
558 * the range. Output format is compatible with the format
559 * accepted as input by bitmap_parselist().
560 *
05a6c8a9
AM
561 * The return value is the number of characters which were written to *buf
562 * excluding the trailing '\0', as per ISO C99's scnprintf.
1da177e4
LT
563 */
564int bitmap_scnlistprintf(char *buf, unsigned int buflen,
565 const unsigned long *maskp, int nmaskbits)
566{
567 int len = 0;
568 /* current bit is 'cur', most recently seen range is [rbot, rtop] */
569 int cur, rbot, rtop;
570
0b030c2c
AK
571 if (buflen == 0)
572 return 0;
573 buf[0] = 0;
574
1da177e4
LT
575 rbot = cur = find_first_bit(maskp, nmaskbits);
576 while (cur < nmaskbits) {
577 rtop = cur;
578 cur = find_next_bit(maskp, nmaskbits, cur+1);
579 if (cur >= nmaskbits || cur > rtop + 1) {
580 len = bscnl_emit(buf, buflen, rbot, rtop, len);
581 rbot = cur;
582 }
583 }
584 return len;
585}
586EXPORT_SYMBOL(bitmap_scnlistprintf);
587
5aaba363
SH
588/**
589 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
590 * @list: indicates whether the bitmap must be list
591 * @buf: page aligned buffer into which string is placed
592 * @maskp: pointer to bitmap to convert
593 * @nmaskbits: size of bitmap, in bits
594 *
595 * Output format is a comma-separated list of decimal numbers and
596 * ranges if list is specified or hex digits grouped into comma-separated
597 * sets of 8 digits/set. Returns the number of characters written to buf.
598 */
599int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
600 int nmaskbits)
601{
602 ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf - 2;
603 int n = 0;
604
605 if (len > 1) {
606 n = list ? bitmap_scnlistprintf(buf, len, maskp, nmaskbits) :
607 bitmap_scnprintf(buf, len, maskp, nmaskbits);
608 buf[n++] = '\n';
609 buf[n] = '\0';
610 }
611 return n;
612}
613EXPORT_SYMBOL(bitmap_print_to_pagebuf);
614
1da177e4 615/**
4b060420 616 * __bitmap_parselist - convert list format ASCII string to bitmap
b0825ee3 617 * @buf: read nul-terminated user string from this buffer
4b060420
MT
618 * @buflen: buffer size in bytes. If string is smaller than this
619 * then it must be terminated with a \0.
620 * @is_user: location of buffer, 0 indicates kernel space
6e1907ff 621 * @maskp: write resulting mask here
1da177e4
LT
622 * @nmaskbits: number of bits in mask to be written
623 *
624 * Input format is a comma-separated list of decimal numbers and
625 * ranges. Consecutively set bits are shown as two hyphen-separated
626 * decimal numbers, the smallest and largest bit numbers set in
627 * the range.
628 *
6e1907ff
RD
629 * Returns 0 on success, -errno on invalid input strings.
630 * Error values:
631 * %-EINVAL: second number in range smaller than first
632 * %-EINVAL: invalid character in string
633 * %-ERANGE: bit number specified too large for mask
1da177e4 634 */
4b060420
MT
635static int __bitmap_parselist(const char *buf, unsigned int buflen,
636 int is_user, unsigned long *maskp,
637 int nmaskbits)
1da177e4
LT
638{
639 unsigned a, b;
4b060420 640 int c, old_c, totaldigits;
b9c321fd 641 const char __user __force *ubuf = (const char __user __force *)buf;
4b060420 642 int exp_digit, in_range;
1da177e4 643
4b060420 644 totaldigits = c = 0;
1da177e4
LT
645 bitmap_zero(maskp, nmaskbits);
646 do {
4b060420
MT
647 exp_digit = 1;
648 in_range = 0;
649 a = b = 0;
650
651 /* Get the next cpu# or a range of cpu#'s */
652 while (buflen) {
653 old_c = c;
654 if (is_user) {
655 if (__get_user(c, ubuf++))
656 return -EFAULT;
657 } else
658 c = *buf++;
659 buflen--;
660 if (isspace(c))
661 continue;
662
663 /*
664 * If the last character was a space and the current
665 * character isn't '\0', we've got embedded whitespace.
666 * This is a no-no, so throw an error.
667 */
668 if (totaldigits && c && isspace(old_c))
669 return -EINVAL;
670
671 /* A '\0' or a ',' signal the end of a cpu# or range */
672 if (c == '\0' || c == ',')
673 break;
674
675 if (c == '-') {
676 if (exp_digit || in_range)
677 return -EINVAL;
678 b = 0;
679 in_range = 1;
680 exp_digit = 1;
681 continue;
682 }
683
684 if (!isdigit(c))
1da177e4 685 return -EINVAL;
4b060420
MT
686
687 b = b * 10 + (c - '0');
688 if (!in_range)
689 a = b;
690 exp_digit = 0;
691 totaldigits++;
1da177e4
LT
692 }
693 if (!(a <= b))
694 return -EINVAL;
695 if (b >= nmaskbits)
696 return -ERANGE;
697 while (a <= b) {
698 set_bit(a, maskp);
699 a++;
700 }
4b060420 701 } while (buflen && c == ',');
1da177e4
LT
702 return 0;
703}
4b060420
MT
704
705int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
706{
bc5be182
RV
707 char *nl = strchrnul(bp, '\n');
708 int len = nl - bp;
4b060420
MT
709
710 return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
711}
1da177e4
LT
712EXPORT_SYMBOL(bitmap_parselist);
713
4b060420
MT
714
715/**
716 * bitmap_parselist_user()
717 *
718 * @ubuf: pointer to user buffer containing string.
719 * @ulen: buffer size in bytes. If string is smaller than this
720 * then it must be terminated with a \0.
721 * @maskp: pointer to bitmap array that will contain result.
722 * @nmaskbits: size of bitmap, in bits.
723 *
724 * Wrapper for bitmap_parselist(), providing it with user buffer.
725 *
726 * We cannot have this as an inline function in bitmap.h because it needs
727 * linux/uaccess.h to get the access_ok() declaration and this causes
728 * cyclic dependencies.
729 */
730int bitmap_parselist_user(const char __user *ubuf,
731 unsigned int ulen, unsigned long *maskp,
732 int nmaskbits)
733{
734 if (!access_ok(VERIFY_READ, ubuf, ulen))
735 return -EFAULT;
b9c321fd 736 return __bitmap_parselist((const char __force *)ubuf,
4b060420
MT
737 ulen, 1, maskp, nmaskbits);
738}
739EXPORT_SYMBOL(bitmap_parselist_user);
740
741
72fd4a35 742/**
9a86e2ba 743 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
fb5eeeee 744 * @buf: pointer to a bitmap
df1d80a9
RV
745 * @pos: a bit position in @buf (0 <= @pos < @nbits)
746 * @nbits: number of valid bit positions in @buf
fb5eeeee 747 *
df1d80a9 748 * Map the bit at position @pos in @buf (of length @nbits) to the
fb5eeeee 749 * ordinal of which set bit it is. If it is not set or if @pos
96b7f341 750 * is not a valid bit position, map to -1.
fb5eeeee
PJ
751 *
752 * If for example, just bits 4 through 7 are set in @buf, then @pos
753 * values 4 through 7 will get mapped to 0 through 3, respectively,
a8551748 754 * and other @pos values will get mapped to -1. When @pos value 7
fb5eeeee
PJ
755 * gets mapped to (returns) @ord value 3 in this example, that means
756 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
757 *
758 * The bit positions 0 through @bits are valid positions in @buf.
759 */
df1d80a9 760static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
fb5eeeee 761{
df1d80a9 762 if (pos >= nbits || !test_bit(pos, buf))
96b7f341 763 return -1;
fb5eeeee 764
df1d80a9 765 return __bitmap_weight(buf, pos);
fb5eeeee
PJ
766}
767
768/**
9a86e2ba 769 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
fb5eeeee
PJ
770 * @buf: pointer to bitmap
771 * @ord: ordinal bit position (n-th set bit, n >= 0)
f6a1f5db 772 * @nbits: number of valid bit positions in @buf
fb5eeeee
PJ
773 *
774 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
f6a1f5db
RV
775 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
776 * >= weight(buf), returns @nbits.
fb5eeeee
PJ
777 *
778 * If for example, just bits 4 through 7 are set in @buf, then @ord
779 * values 0 through 3 will get mapped to 4 through 7, respectively,
f6a1f5db 780 * and all other @ord values returns @nbits. When @ord value 3
fb5eeeee
PJ
781 * gets mapped to (returns) @pos value 7 in this example, that means
782 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
783 *
f6a1f5db 784 * The bit positions 0 through @nbits-1 are valid positions in @buf.
fb5eeeee 785 */
f6a1f5db 786unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
fb5eeeee 787{
f6a1f5db 788 unsigned int pos;
fb5eeeee 789
f6a1f5db
RV
790 for (pos = find_first_bit(buf, nbits);
791 pos < nbits && ord;
792 pos = find_next_bit(buf, nbits, pos + 1))
793 ord--;
fb5eeeee
PJ
794
795 return pos;
796}
797
798/**
799 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
fb5eeeee 800 * @dst: remapped result
96b7f341 801 * @src: subset to be remapped
fb5eeeee
PJ
802 * @old: defines domain of map
803 * @new: defines range of map
9814ec13 804 * @nbits: number of bits in each of these bitmaps
fb5eeeee
PJ
805 *
806 * Let @old and @new define a mapping of bit positions, such that
807 * whatever position is held by the n-th set bit in @old is mapped
808 * to the n-th set bit in @new. In the more general case, allowing
809 * for the possibility that the weight 'w' of @new is less than the
810 * weight of @old, map the position of the n-th set bit in @old to
811 * the position of the m-th set bit in @new, where m == n % w.
812 *
96b7f341
PJ
813 * If either of the @old and @new bitmaps are empty, or if @src and
814 * @dst point to the same location, then this routine copies @src
815 * to @dst.
fb5eeeee 816 *
96b7f341
PJ
817 * The positions of unset bits in @old are mapped to themselves
818 * (the identify map).
fb5eeeee
PJ
819 *
820 * Apply the above specified mapping to @src, placing the result in
821 * @dst, clearing any bits previously set in @dst.
822 *
fb5eeeee
PJ
823 * For example, lets say that @old has bits 4 through 7 set, and
824 * @new has bits 12 through 15 set. This defines the mapping of bit
825 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
96b7f341
PJ
826 * bit positions unchanged. So if say @src comes into this routine
827 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
828 * 13 and 15 set.
fb5eeeee
PJ
829 */
830void bitmap_remap(unsigned long *dst, const unsigned long *src,
831 const unsigned long *old, const unsigned long *new,
9814ec13 832 unsigned int nbits)
fb5eeeee 833{
9814ec13 834 unsigned int oldbit, w;
fb5eeeee 835
fb5eeeee
PJ
836 if (dst == src) /* following doesn't handle inplace remaps */
837 return;
9814ec13 838 bitmap_zero(dst, nbits);
96b7f341 839
9814ec13
RV
840 w = bitmap_weight(new, nbits);
841 for_each_set_bit(oldbit, src, nbits) {
842 int n = bitmap_pos_to_ord(old, oldbit, nbits);
08564fb7 843
96b7f341
PJ
844 if (n < 0 || w == 0)
845 set_bit(oldbit, dst); /* identity map */
846 else
9814ec13 847 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
fb5eeeee
PJ
848 }
849}
850EXPORT_SYMBOL(bitmap_remap);
851
852/**
853 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
6e1907ff
RD
854 * @oldbit: bit position to be mapped
855 * @old: defines domain of map
856 * @new: defines range of map
857 * @bits: number of bits in each of these bitmaps
fb5eeeee
PJ
858 *
859 * Let @old and @new define a mapping of bit positions, such that
860 * whatever position is held by the n-th set bit in @old is mapped
861 * to the n-th set bit in @new. In the more general case, allowing
862 * for the possibility that the weight 'w' of @new is less than the
863 * weight of @old, map the position of the n-th set bit in @old to
864 * the position of the m-th set bit in @new, where m == n % w.
865 *
96b7f341
PJ
866 * The positions of unset bits in @old are mapped to themselves
867 * (the identify map).
fb5eeeee
PJ
868 *
869 * Apply the above specified mapping to bit position @oldbit, returning
870 * the new bit position.
871 *
872 * For example, lets say that @old has bits 4 through 7 set, and
873 * @new has bits 12 through 15 set. This defines the mapping of bit
874 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
96b7f341
PJ
875 * bit positions unchanged. So if say @oldbit is 5, then this routine
876 * returns 13.
fb5eeeee
PJ
877 */
878int bitmap_bitremap(int oldbit, const unsigned long *old,
879 const unsigned long *new, int bits)
880{
96b7f341
PJ
881 int w = bitmap_weight(new, bits);
882 int n = bitmap_pos_to_ord(old, oldbit, bits);
883 if (n < 0 || w == 0)
884 return oldbit;
885 else
886 return bitmap_ord_to_pos(new, n % w, bits);
fb5eeeee
PJ
887}
888EXPORT_SYMBOL(bitmap_bitremap);
889
7ea931c9
PJ
890/**
891 * bitmap_onto - translate one bitmap relative to another
892 * @dst: resulting translated bitmap
893 * @orig: original untranslated bitmap
894 * @relmap: bitmap relative to which translated
895 * @bits: number of bits in each of these bitmaps
896 *
897 * Set the n-th bit of @dst iff there exists some m such that the
898 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
899 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
900 * (If you understood the previous sentence the first time your
901 * read it, you're overqualified for your current job.)
902 *
903 * In other words, @orig is mapped onto (surjectively) @dst,
da3dae54 904 * using the map { <n, m> | the n-th bit of @relmap is the
7ea931c9
PJ
905 * m-th set bit of @relmap }.
906 *
907 * Any set bits in @orig above bit number W, where W is the
908 * weight of (number of set bits in) @relmap are mapped nowhere.
909 * In particular, if for all bits m set in @orig, m >= W, then
910 * @dst will end up empty. In situations where the possibility
911 * of such an empty result is not desired, one way to avoid it is
912 * to use the bitmap_fold() operator, below, to first fold the
913 * @orig bitmap over itself so that all its set bits x are in the
914 * range 0 <= x < W. The bitmap_fold() operator does this by
915 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
916 *
917 * Example [1] for bitmap_onto():
918 * Let's say @relmap has bits 30-39 set, and @orig has bits
919 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
920 * @dst will have bits 31, 33, 35, 37 and 39 set.
921 *
922 * When bit 0 is set in @orig, it means turn on the bit in
923 * @dst corresponding to whatever is the first bit (if any)
924 * that is turned on in @relmap. Since bit 0 was off in the
925 * above example, we leave off that bit (bit 30) in @dst.
926 *
927 * When bit 1 is set in @orig (as in the above example), it
928 * means turn on the bit in @dst corresponding to whatever
929 * is the second bit that is turned on in @relmap. The second
930 * bit in @relmap that was turned on in the above example was
931 * bit 31, so we turned on bit 31 in @dst.
932 *
933 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
934 * because they were the 4th, 6th, 8th and 10th set bits
935 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
936 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
937 *
938 * When bit 11 is set in @orig, it means turn on the bit in
25985edc 939 * @dst corresponding to whatever is the twelfth bit that is
7ea931c9
PJ
940 * turned on in @relmap. In the above example, there were
941 * only ten bits turned on in @relmap (30..39), so that bit
942 * 11 was set in @orig had no affect on @dst.
943 *
944 * Example [2] for bitmap_fold() + bitmap_onto():
945 * Let's say @relmap has these ten bits set:
946 * 40 41 42 43 45 48 53 61 74 95
947 * (for the curious, that's 40 plus the first ten terms of the
948 * Fibonacci sequence.)
949 *
950 * Further lets say we use the following code, invoking
951 * bitmap_fold() then bitmap_onto, as suggested above to
da3dae54 952 * avoid the possibility of an empty @dst result:
7ea931c9
PJ
953 *
954 * unsigned long *tmp; // a temporary bitmap's bits
955 *
956 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
957 * bitmap_onto(dst, tmp, relmap, bits);
958 *
959 * Then this table shows what various values of @dst would be, for
960 * various @orig's. I list the zero-based positions of each set bit.
961 * The tmp column shows the intermediate result, as computed by
962 * using bitmap_fold() to fold the @orig bitmap modulo ten
963 * (the weight of @relmap).
964 *
965 * @orig tmp @dst
966 * 0 0 40
967 * 1 1 41
968 * 9 9 95
969 * 10 0 40 (*)
970 * 1 3 5 7 1 3 5 7 41 43 48 61
971 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
972 * 0 9 18 27 0 9 8 7 40 61 74 95
973 * 0 10 20 30 0 40
974 * 0 11 22 33 0 1 2 3 40 41 42 43
975 * 0 12 24 36 0 2 4 6 40 42 45 53
976 * 78 102 211 1 2 8 41 42 74 (*)
977 *
978 * (*) For these marked lines, if we hadn't first done bitmap_fold()
979 * into tmp, then the @dst result would have been empty.
980 *
981 * If either of @orig or @relmap is empty (no set bits), then @dst
982 * will be returned empty.
983 *
984 * If (as explained above) the only set bits in @orig are in positions
985 * m where m >= W, (where W is the weight of @relmap) then @dst will
986 * once again be returned empty.
987 *
988 * All bits in @dst not set by the above rule are cleared.
989 */
990void bitmap_onto(unsigned long *dst, const unsigned long *orig,
eb569883 991 const unsigned long *relmap, unsigned int bits)
7ea931c9 992{
eb569883 993 unsigned int n, m; /* same meaning as in above comment */
7ea931c9
PJ
994
995 if (dst == orig) /* following doesn't handle inplace mappings */
996 return;
997 bitmap_zero(dst, bits);
998
999 /*
1000 * The following code is a more efficient, but less
1001 * obvious, equivalent to the loop:
1002 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
1003 * n = bitmap_ord_to_pos(orig, m, bits);
1004 * if (test_bit(m, orig))
1005 * set_bit(n, dst);
1006 * }
1007 */
1008
1009 m = 0;
08564fb7 1010 for_each_set_bit(n, relmap, bits) {
7ea931c9
PJ
1011 /* m == bitmap_pos_to_ord(relmap, n, bits) */
1012 if (test_bit(m, orig))
1013 set_bit(n, dst);
1014 m++;
1015 }
1016}
1017EXPORT_SYMBOL(bitmap_onto);
1018
1019/**
1020 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1021 * @dst: resulting smaller bitmap
1022 * @orig: original larger bitmap
1023 * @sz: specified size
b26ad583 1024 * @nbits: number of bits in each of these bitmaps
7ea931c9
PJ
1025 *
1026 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1027 * Clear all other bits in @dst. See further the comment and
1028 * Example [2] for bitmap_onto() for why and how to use this.
1029 */
1030void bitmap_fold(unsigned long *dst, const unsigned long *orig,
b26ad583 1031 unsigned int sz, unsigned int nbits)
7ea931c9 1032{
b26ad583 1033 unsigned int oldbit;
7ea931c9
PJ
1034
1035 if (dst == orig) /* following doesn't handle inplace mappings */
1036 return;
b26ad583 1037 bitmap_zero(dst, nbits);
7ea931c9 1038
b26ad583 1039 for_each_set_bit(oldbit, orig, nbits)
7ea931c9
PJ
1040 set_bit(oldbit % sz, dst);
1041}
1042EXPORT_SYMBOL(bitmap_fold);
1043
3cf64b93
PJ
1044/*
1045 * Common code for bitmap_*_region() routines.
1046 * bitmap: array of unsigned longs corresponding to the bitmap
1047 * pos: the beginning of the region
1048 * order: region size (log base 2 of number of bits)
1049 * reg_op: operation(s) to perform on that region of bitmap
1da177e4 1050 *
3cf64b93
PJ
1051 * Can set, verify and/or release a region of bits in a bitmap,
1052 * depending on which combination of REG_OP_* flag bits is set.
1da177e4 1053 *
3cf64b93
PJ
1054 * A region of a bitmap is a sequence of bits in the bitmap, of
1055 * some size '1 << order' (a power of two), aligned to that same
1056 * '1 << order' power of two.
1057 *
1058 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1059 * Returns 0 in all other cases and reg_ops.
1da177e4 1060 */
3cf64b93
PJ
1061
1062enum {
1063 REG_OP_ISFREE, /* true if region is all zero bits */
1064 REG_OP_ALLOC, /* set all bits in region */
1065 REG_OP_RELEASE, /* clear all bits in region */
1066};
1067
9279d328 1068static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1da177e4 1069{
3cf64b93
PJ
1070 int nbits_reg; /* number of bits in region */
1071 int index; /* index first long of region in bitmap */
1072 int offset; /* bit offset region in bitmap[index] */
1073 int nlongs_reg; /* num longs spanned by region in bitmap */
74373c6a 1074 int nbitsinlong; /* num bits of region in each spanned long */
3cf64b93 1075 unsigned long mask; /* bitmask for one long of region */
74373c6a 1076 int i; /* scans bitmap by longs */
3cf64b93 1077 int ret = 0; /* return value */
74373c6a 1078
3cf64b93
PJ
1079 /*
1080 * Either nlongs_reg == 1 (for small orders that fit in one long)
1081 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1082 */
1083 nbits_reg = 1 << order;
1084 index = pos / BITS_PER_LONG;
1085 offset = pos - (index * BITS_PER_LONG);
1086 nlongs_reg = BITS_TO_LONGS(nbits_reg);
1087 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
1da177e4 1088
3cf64b93
PJ
1089 /*
1090 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1091 * overflows if nbitsinlong == BITS_PER_LONG.
1092 */
74373c6a 1093 mask = (1UL << (nbitsinlong - 1));
1da177e4 1094 mask += mask - 1;
3cf64b93 1095 mask <<= offset;
1da177e4 1096
3cf64b93
PJ
1097 switch (reg_op) {
1098 case REG_OP_ISFREE:
1099 for (i = 0; i < nlongs_reg; i++) {
1100 if (bitmap[index + i] & mask)
1101 goto done;
1102 }
1103 ret = 1; /* all bits in region free (zero) */
1104 break;
1105
1106 case REG_OP_ALLOC:
1107 for (i = 0; i < nlongs_reg; i++)
1108 bitmap[index + i] |= mask;
1109 break;
1110
1111 case REG_OP_RELEASE:
1112 for (i = 0; i < nlongs_reg; i++)
1113 bitmap[index + i] &= ~mask;
1114 break;
1da177e4 1115 }
3cf64b93
PJ
1116done:
1117 return ret;
1118}
1119
1120/**
1121 * bitmap_find_free_region - find a contiguous aligned mem region
1122 * @bitmap: array of unsigned longs corresponding to the bitmap
1123 * @bits: number of bits in the bitmap
1124 * @order: region size (log base 2 of number of bits) to find
1125 *
1126 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1127 * allocate them (set them to one). Only consider regions of length
1128 * a power (@order) of two, aligned to that power of two, which
1129 * makes the search algorithm much faster.
1130 *
1131 * Return the bit offset in bitmap of the allocated region,
1132 * or -errno on failure.
1133 */
9279d328 1134int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
3cf64b93 1135{
9279d328 1136 unsigned int pos, end; /* scans bitmap by regions of size order */
aa8e4fc6 1137
9279d328 1138 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
aa8e4fc6
LT
1139 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1140 continue;
1141 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1142 return pos;
1143 }
1144 return -ENOMEM;
1da177e4
LT
1145}
1146EXPORT_SYMBOL(bitmap_find_free_region);
1147
1148/**
87e24802 1149 * bitmap_release_region - release allocated bitmap region
3cf64b93
PJ
1150 * @bitmap: array of unsigned longs corresponding to the bitmap
1151 * @pos: beginning of bit region to release
1152 * @order: region size (log base 2 of number of bits) to release
1da177e4 1153 *
72fd4a35 1154 * This is the complement to __bitmap_find_free_region() and releases
1da177e4 1155 * the found region (by clearing it in the bitmap).
3cf64b93
PJ
1156 *
1157 * No return value.
1da177e4 1158 */
9279d328 1159void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1da177e4 1160{
3cf64b93 1161 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1da177e4
LT
1162}
1163EXPORT_SYMBOL(bitmap_release_region);
1164
87e24802
PJ
1165/**
1166 * bitmap_allocate_region - allocate bitmap region
3cf64b93
PJ
1167 * @bitmap: array of unsigned longs corresponding to the bitmap
1168 * @pos: beginning of bit region to allocate
1169 * @order: region size (log base 2 of number of bits) to allocate
87e24802
PJ
1170 *
1171 * Allocate (set bits in) a specified region of a bitmap.
3cf64b93 1172 *
6e1907ff 1173 * Return 0 on success, or %-EBUSY if specified region wasn't
87e24802
PJ
1174 * free (not all bits were zero).
1175 */
9279d328 1176int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1da177e4 1177{
3cf64b93
PJ
1178 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1179 return -EBUSY;
2ac521d3 1180 return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1da177e4
LT
1181}
1182EXPORT_SYMBOL(bitmap_allocate_region);
ccbe329b
DV
1183
1184/**
1185 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1186 * @dst: destination buffer
1187 * @src: bitmap to copy
1188 * @nbits: number of bits in the bitmap
1189 *
1190 * Require nbits % BITS_PER_LONG == 0.
1191 */
e8f24278 1192#ifdef __BIG_ENDIAN
9b6c2d2e 1193void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
ccbe329b 1194{
9b6c2d2e 1195 unsigned int i;
ccbe329b
DV
1196
1197 for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1198 if (BITS_PER_LONG == 64)
9b6c2d2e 1199 dst[i] = cpu_to_le64(src[i]);
ccbe329b 1200 else
9b6c2d2e 1201 dst[i] = cpu_to_le32(src[i]);
ccbe329b
DV
1202 }
1203}
1204EXPORT_SYMBOL(bitmap_copy_le);
e8f24278 1205#endif