]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/swapfile.c
mm/compaction: reverse the change that forbade sync migraton with __GFP_NO_KSWAPD
[thirdparty/linux.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/shm.h>
18#include <linux/blkdev.h>
20137a49 19#include <linux/random.h>
1da177e4
LT
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
24#include <linux/module.h>
5ad64688 25#include <linux/ksm.h>
1da177e4
LT
26#include <linux/rmap.h>
27#include <linux/security.h>
28#include <linux/backing-dev.h>
fc0abb14 29#include <linux/mutex.h>
c59ede7b 30#include <linux/capability.h>
1da177e4 31#include <linux/syscalls.h>
8a9f3ccd 32#include <linux/memcontrol.h>
66d7dd51 33#include <linux/poll.h>
1da177e4
LT
34
35#include <asm/pgtable.h>
36#include <asm/tlbflush.h>
37#include <linux/swapops.h>
27a7faa0 38#include <linux/page_cgroup.h>
1da177e4 39
570a335b
HD
40static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
41 unsigned char);
42static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 43static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 44
7c363b8c
AB
45static DEFINE_SPINLOCK(swap_lock);
46static unsigned int nr_swapfiles;
b962716b 47long nr_swap_pages;
1da177e4 48long total_swap_pages;
78ecba08 49static int least_priority;
1da177e4 50
1da177e4
LT
51static const char Bad_file[] = "Bad swap file entry ";
52static const char Unused_file[] = "Unused swap file entry ";
53static const char Bad_offset[] = "Bad swap offset entry ";
54static const char Unused_offset[] = "Unused swap offset entry ";
55
7c363b8c 56static struct swap_list_t swap_list = {-1, -1};
1da177e4 57
efa90a98 58static struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 59
fc0abb14 60static DEFINE_MUTEX(swapon_mutex);
1da177e4 61
66d7dd51
KS
62static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
63/* Activity counter to indicate that a swapon or swapoff has occurred */
64static atomic_t proc_poll_event = ATOMIC_INIT(0);
65
8d69aaee 66static inline unsigned char swap_count(unsigned char ent)
355cfa73 67{
570a335b 68 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
355cfa73
KH
69}
70
efa90a98 71/* returns 1 if swap entry is freed */
c9e44410
KH
72static int
73__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
74{
efa90a98 75 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
76 struct page *page;
77 int ret = 0;
78
79 page = find_get_page(&swapper_space, entry.val);
80 if (!page)
81 return 0;
82 /*
83 * This function is called from scan_swap_map() and it's called
84 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
85 * We have to use trylock for avoiding deadlock. This is a special
86 * case and you should use try_to_free_swap() with explicit lock_page()
87 * in usual operations.
88 */
89 if (trylock_page(page)) {
90 ret = try_to_free_swap(page);
91 unlock_page(page);
92 }
93 page_cache_release(page);
94 return ret;
95}
355cfa73 96
6a6ba831
HD
97/*
98 * swapon tell device that all the old swap contents can be discarded,
99 * to allow the swap device to optimize its wear-levelling.
100 */
101static int discard_swap(struct swap_info_struct *si)
102{
103 struct swap_extent *se;
9625a5f2
HD
104 sector_t start_block;
105 sector_t nr_blocks;
6a6ba831
HD
106 int err = 0;
107
9625a5f2
HD
108 /* Do not discard the swap header page! */
109 se = &si->first_swap_extent;
110 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
111 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
112 if (nr_blocks) {
113 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 114 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
115 if (err)
116 return err;
117 cond_resched();
118 }
6a6ba831 119
9625a5f2
HD
120 list_for_each_entry(se, &si->first_swap_extent.list, list) {
121 start_block = se->start_block << (PAGE_SHIFT - 9);
122 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
123
124 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 125 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
126 if (err)
127 break;
128
129 cond_resched();
130 }
131 return err; /* That will often be -EOPNOTSUPP */
132}
133
7992fde7
HD
134/*
135 * swap allocation tell device that a cluster of swap can now be discarded,
136 * to allow the swap device to optimize its wear-levelling.
137 */
138static void discard_swap_cluster(struct swap_info_struct *si,
139 pgoff_t start_page, pgoff_t nr_pages)
140{
141 struct swap_extent *se = si->curr_swap_extent;
142 int found_extent = 0;
143
144 while (nr_pages) {
145 struct list_head *lh;
146
147 if (se->start_page <= start_page &&
148 start_page < se->start_page + se->nr_pages) {
149 pgoff_t offset = start_page - se->start_page;
150 sector_t start_block = se->start_block + offset;
858a2990 151 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
152
153 if (nr_blocks > nr_pages)
154 nr_blocks = nr_pages;
155 start_page += nr_blocks;
156 nr_pages -= nr_blocks;
157
158 if (!found_extent++)
159 si->curr_swap_extent = se;
160
161 start_block <<= PAGE_SHIFT - 9;
162 nr_blocks <<= PAGE_SHIFT - 9;
163 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 164 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
165 break;
166 }
167
168 lh = se->list.next;
7992fde7
HD
169 se = list_entry(lh, struct swap_extent, list);
170 }
171}
172
173static int wait_for_discard(void *word)
174{
175 schedule();
176 return 0;
177}
178
048c27fd
HD
179#define SWAPFILE_CLUSTER 256
180#define LATENCY_LIMIT 256
181
24b8ff7c
CEB
182static unsigned long scan_swap_map(struct swap_info_struct *si,
183 unsigned char usage)
1da177e4 184{
ebebbbe9 185 unsigned long offset;
c60aa176 186 unsigned long scan_base;
7992fde7 187 unsigned long last_in_cluster = 0;
048c27fd 188 int latency_ration = LATENCY_LIMIT;
7992fde7 189 int found_free_cluster = 0;
7dfad418 190
886bb7e9 191 /*
7dfad418
HD
192 * We try to cluster swap pages by allocating them sequentially
193 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
194 * way, however, we resort to first-free allocation, starting
195 * a new cluster. This prevents us from scattering swap pages
196 * all over the entire swap partition, so that we reduce
197 * overall disk seek times between swap pages. -- sct
198 * But we do now try to find an empty cluster. -Andrea
c60aa176 199 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
200 */
201
52b7efdb 202 si->flags += SWP_SCANNING;
c60aa176 203 scan_base = offset = si->cluster_next;
ebebbbe9
HD
204
205 if (unlikely(!si->cluster_nr--)) {
206 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
207 si->cluster_nr = SWAPFILE_CLUSTER - 1;
208 goto checks;
209 }
7992fde7
HD
210 if (si->flags & SWP_DISCARDABLE) {
211 /*
212 * Start range check on racing allocations, in case
213 * they overlap the cluster we eventually decide on
214 * (we scan without swap_lock to allow preemption).
215 * It's hardly conceivable that cluster_nr could be
216 * wrapped during our scan, but don't depend on it.
217 */
218 if (si->lowest_alloc)
219 goto checks;
220 si->lowest_alloc = si->max;
221 si->highest_alloc = 0;
222 }
5d337b91 223 spin_unlock(&swap_lock);
7dfad418 224
c60aa176
HD
225 /*
226 * If seek is expensive, start searching for new cluster from
227 * start of partition, to minimize the span of allocated swap.
228 * But if seek is cheap, search from our current position, so
229 * that swap is allocated from all over the partition: if the
230 * Flash Translation Layer only remaps within limited zones,
231 * we don't want to wear out the first zone too quickly.
232 */
233 if (!(si->flags & SWP_SOLIDSTATE))
234 scan_base = offset = si->lowest_bit;
7dfad418
HD
235 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
236
237 /* Locate the first empty (unaligned) cluster */
238 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 239 if (si->swap_map[offset])
7dfad418
HD
240 last_in_cluster = offset + SWAPFILE_CLUSTER;
241 else if (offset == last_in_cluster) {
5d337b91 242 spin_lock(&swap_lock);
ebebbbe9
HD
243 offset -= SWAPFILE_CLUSTER - 1;
244 si->cluster_next = offset;
245 si->cluster_nr = SWAPFILE_CLUSTER - 1;
7992fde7 246 found_free_cluster = 1;
ebebbbe9 247 goto checks;
1da177e4 248 }
048c27fd
HD
249 if (unlikely(--latency_ration < 0)) {
250 cond_resched();
251 latency_ration = LATENCY_LIMIT;
252 }
7dfad418 253 }
ebebbbe9
HD
254
255 offset = si->lowest_bit;
c60aa176
HD
256 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
257
258 /* Locate the first empty (unaligned) cluster */
259 for (; last_in_cluster < scan_base; offset++) {
260 if (si->swap_map[offset])
261 last_in_cluster = offset + SWAPFILE_CLUSTER;
262 else if (offset == last_in_cluster) {
263 spin_lock(&swap_lock);
264 offset -= SWAPFILE_CLUSTER - 1;
265 si->cluster_next = offset;
266 si->cluster_nr = SWAPFILE_CLUSTER - 1;
267 found_free_cluster = 1;
268 goto checks;
269 }
270 if (unlikely(--latency_ration < 0)) {
271 cond_resched();
272 latency_ration = LATENCY_LIMIT;
273 }
274 }
275
276 offset = scan_base;
5d337b91 277 spin_lock(&swap_lock);
ebebbbe9 278 si->cluster_nr = SWAPFILE_CLUSTER - 1;
7992fde7 279 si->lowest_alloc = 0;
1da177e4 280 }
7dfad418 281
ebebbbe9
HD
282checks:
283 if (!(si->flags & SWP_WRITEOK))
52b7efdb 284 goto no_page;
7dfad418
HD
285 if (!si->highest_bit)
286 goto no_page;
ebebbbe9 287 if (offset > si->highest_bit)
c60aa176 288 scan_base = offset = si->lowest_bit;
c9e44410 289
b73d7fce
HD
290 /* reuse swap entry of cache-only swap if not busy. */
291 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410
KH
292 int swap_was_freed;
293 spin_unlock(&swap_lock);
294 swap_was_freed = __try_to_reclaim_swap(si, offset);
295 spin_lock(&swap_lock);
296 /* entry was freed successfully, try to use this again */
297 if (swap_was_freed)
298 goto checks;
299 goto scan; /* check next one */
300 }
301
ebebbbe9
HD
302 if (si->swap_map[offset])
303 goto scan;
304
305 if (offset == si->lowest_bit)
306 si->lowest_bit++;
307 if (offset == si->highest_bit)
308 si->highest_bit--;
309 si->inuse_pages++;
310 if (si->inuse_pages == si->pages) {
311 si->lowest_bit = si->max;
312 si->highest_bit = 0;
1da177e4 313 }
253d553b 314 si->swap_map[offset] = usage;
ebebbbe9
HD
315 si->cluster_next = offset + 1;
316 si->flags -= SWP_SCANNING;
7992fde7
HD
317
318 if (si->lowest_alloc) {
319 /*
320 * Only set when SWP_DISCARDABLE, and there's a scan
321 * for a free cluster in progress or just completed.
322 */
323 if (found_free_cluster) {
324 /*
325 * To optimize wear-levelling, discard the
326 * old data of the cluster, taking care not to
327 * discard any of its pages that have already
328 * been allocated by racing tasks (offset has
329 * already stepped over any at the beginning).
330 */
331 if (offset < si->highest_alloc &&
332 si->lowest_alloc <= last_in_cluster)
333 last_in_cluster = si->lowest_alloc - 1;
334 si->flags |= SWP_DISCARDING;
335 spin_unlock(&swap_lock);
336
337 if (offset < last_in_cluster)
338 discard_swap_cluster(si, offset,
339 last_in_cluster - offset + 1);
340
341 spin_lock(&swap_lock);
342 si->lowest_alloc = 0;
343 si->flags &= ~SWP_DISCARDING;
344
345 smp_mb(); /* wake_up_bit advises this */
346 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
347
348 } else if (si->flags & SWP_DISCARDING) {
349 /*
350 * Delay using pages allocated by racing tasks
351 * until the whole discard has been issued. We
352 * could defer that delay until swap_writepage,
353 * but it's easier to keep this self-contained.
354 */
355 spin_unlock(&swap_lock);
356 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
357 wait_for_discard, TASK_UNINTERRUPTIBLE);
358 spin_lock(&swap_lock);
359 } else {
360 /*
361 * Note pages allocated by racing tasks while
362 * scan for a free cluster is in progress, so
363 * that its final discard can exclude them.
364 */
365 if (offset < si->lowest_alloc)
366 si->lowest_alloc = offset;
367 if (offset > si->highest_alloc)
368 si->highest_alloc = offset;
369 }
370 }
ebebbbe9 371 return offset;
7dfad418 372
ebebbbe9 373scan:
5d337b91 374 spin_unlock(&swap_lock);
7dfad418 375 while (++offset <= si->highest_bit) {
52b7efdb 376 if (!si->swap_map[offset]) {
5d337b91 377 spin_lock(&swap_lock);
52b7efdb
HD
378 goto checks;
379 }
c9e44410
KH
380 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
381 spin_lock(&swap_lock);
382 goto checks;
383 }
048c27fd
HD
384 if (unlikely(--latency_ration < 0)) {
385 cond_resched();
386 latency_ration = LATENCY_LIMIT;
387 }
7dfad418 388 }
c60aa176
HD
389 offset = si->lowest_bit;
390 while (++offset < scan_base) {
391 if (!si->swap_map[offset]) {
392 spin_lock(&swap_lock);
393 goto checks;
394 }
c9e44410
KH
395 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
396 spin_lock(&swap_lock);
397 goto checks;
398 }
c60aa176
HD
399 if (unlikely(--latency_ration < 0)) {
400 cond_resched();
401 latency_ration = LATENCY_LIMIT;
402 }
403 }
5d337b91 404 spin_lock(&swap_lock);
7dfad418
HD
405
406no_page:
52b7efdb 407 si->flags -= SWP_SCANNING;
1da177e4
LT
408 return 0;
409}
410
411swp_entry_t get_swap_page(void)
412{
fb4f88dc
HD
413 struct swap_info_struct *si;
414 pgoff_t offset;
415 int type, next;
416 int wrapped = 0;
1da177e4 417
5d337b91 418 spin_lock(&swap_lock);
1da177e4 419 if (nr_swap_pages <= 0)
fb4f88dc
HD
420 goto noswap;
421 nr_swap_pages--;
422
423 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
efa90a98 424 si = swap_info[type];
fb4f88dc
HD
425 next = si->next;
426 if (next < 0 ||
efa90a98 427 (!wrapped && si->prio != swap_info[next]->prio)) {
fb4f88dc
HD
428 next = swap_list.head;
429 wrapped++;
1da177e4 430 }
fb4f88dc
HD
431
432 if (!si->highest_bit)
433 continue;
434 if (!(si->flags & SWP_WRITEOK))
435 continue;
436
437 swap_list.next = next;
355cfa73 438 /* This is called for allocating swap entry for cache */
253d553b 439 offset = scan_swap_map(si, SWAP_HAS_CACHE);
5d337b91
HD
440 if (offset) {
441 spin_unlock(&swap_lock);
fb4f88dc 442 return swp_entry(type, offset);
5d337b91 443 }
fb4f88dc 444 next = swap_list.next;
1da177e4 445 }
fb4f88dc
HD
446
447 nr_swap_pages++;
448noswap:
5d337b91 449 spin_unlock(&swap_lock);
fb4f88dc 450 return (swp_entry_t) {0};
1da177e4
LT
451}
452
910321ea
HD
453/* The only caller of this function is now susupend routine */
454swp_entry_t get_swap_page_of_type(int type)
455{
456 struct swap_info_struct *si;
457 pgoff_t offset;
458
459 spin_lock(&swap_lock);
460 si = swap_info[type];
461 if (si && (si->flags & SWP_WRITEOK)) {
462 nr_swap_pages--;
463 /* This is called for allocating swap entry, not cache */
464 offset = scan_swap_map(si, 1);
465 if (offset) {
466 spin_unlock(&swap_lock);
467 return swp_entry(type, offset);
468 }
469 nr_swap_pages++;
470 }
471 spin_unlock(&swap_lock);
472 return (swp_entry_t) {0};
473}
474
73c34b6a 475static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1da177e4 476{
73c34b6a 477 struct swap_info_struct *p;
1da177e4
LT
478 unsigned long offset, type;
479
480 if (!entry.val)
481 goto out;
482 type = swp_type(entry);
483 if (type >= nr_swapfiles)
484 goto bad_nofile;
efa90a98 485 p = swap_info[type];
1da177e4
LT
486 if (!(p->flags & SWP_USED))
487 goto bad_device;
488 offset = swp_offset(entry);
489 if (offset >= p->max)
490 goto bad_offset;
491 if (!p->swap_map[offset])
492 goto bad_free;
5d337b91 493 spin_lock(&swap_lock);
1da177e4
LT
494 return p;
495
496bad_free:
497 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
498 goto out;
499bad_offset:
500 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
501 goto out;
502bad_device:
503 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
504 goto out;
505bad_nofile:
506 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
507out:
508 return NULL;
886bb7e9 509}
1da177e4 510
8d69aaee
HD
511static unsigned char swap_entry_free(struct swap_info_struct *p,
512 swp_entry_t entry, unsigned char usage)
1da177e4 513{
253d553b 514 unsigned long offset = swp_offset(entry);
8d69aaee
HD
515 unsigned char count;
516 unsigned char has_cache;
355cfa73 517
253d553b
HD
518 count = p->swap_map[offset];
519 has_cache = count & SWAP_HAS_CACHE;
520 count &= ~SWAP_HAS_CACHE;
355cfa73 521
253d553b 522 if (usage == SWAP_HAS_CACHE) {
355cfa73 523 VM_BUG_ON(!has_cache);
253d553b 524 has_cache = 0;
aaa46865
HD
525 } else if (count == SWAP_MAP_SHMEM) {
526 /*
527 * Or we could insist on shmem.c using a special
528 * swap_shmem_free() and free_shmem_swap_and_cache()...
529 */
530 count = 0;
570a335b
HD
531 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
532 if (count == COUNT_CONTINUED) {
533 if (swap_count_continued(p, offset, count))
534 count = SWAP_MAP_MAX | COUNT_CONTINUED;
535 else
536 count = SWAP_MAP_MAX;
537 } else
538 count--;
539 }
253d553b
HD
540
541 if (!count)
542 mem_cgroup_uncharge_swap(entry);
543
544 usage = count | has_cache;
545 p->swap_map[offset] = usage;
355cfa73 546
355cfa73 547 /* free if no reference */
253d553b 548 if (!usage) {
b3a27d05 549 struct gendisk *disk = p->bdev->bd_disk;
355cfa73
KH
550 if (offset < p->lowest_bit)
551 p->lowest_bit = offset;
552 if (offset > p->highest_bit)
553 p->highest_bit = offset;
efa90a98
HD
554 if (swap_list.next >= 0 &&
555 p->prio > swap_info[swap_list.next]->prio)
556 swap_list.next = p->type;
355cfa73
KH
557 nr_swap_pages++;
558 p->inuse_pages--;
b3a27d05
NG
559 if ((p->flags & SWP_BLKDEV) &&
560 disk->fops->swap_slot_free_notify)
561 disk->fops->swap_slot_free_notify(p->bdev, offset);
1da177e4 562 }
253d553b
HD
563
564 return usage;
1da177e4
LT
565}
566
567/*
568 * Caller has made sure that the swapdevice corresponding to entry
569 * is still around or has not been recycled.
570 */
571void swap_free(swp_entry_t entry)
572{
73c34b6a 573 struct swap_info_struct *p;
1da177e4
LT
574
575 p = swap_info_get(entry);
576 if (p) {
253d553b 577 swap_entry_free(p, entry, 1);
5d337b91 578 spin_unlock(&swap_lock);
1da177e4
LT
579 }
580}
581
cb4b86ba
KH
582/*
583 * Called after dropping swapcache to decrease refcnt to swap entries.
584 */
585void swapcache_free(swp_entry_t entry, struct page *page)
586{
355cfa73 587 struct swap_info_struct *p;
8d69aaee 588 unsigned char count;
355cfa73 589
355cfa73
KH
590 p = swap_info_get(entry);
591 if (p) {
253d553b
HD
592 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
593 if (page)
594 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
355cfa73
KH
595 spin_unlock(&swap_lock);
596 }
cb4b86ba
KH
597}
598
1da177e4 599/*
c475a8ab 600 * How many references to page are currently swapped out?
570a335b
HD
601 * This does not give an exact answer when swap count is continued,
602 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 603 */
c475a8ab 604static inline int page_swapcount(struct page *page)
1da177e4 605{
c475a8ab
HD
606 int count = 0;
607 struct swap_info_struct *p;
1da177e4
LT
608 swp_entry_t entry;
609
4c21e2f2 610 entry.val = page_private(page);
1da177e4
LT
611 p = swap_info_get(entry);
612 if (p) {
355cfa73 613 count = swap_count(p->swap_map[swp_offset(entry)]);
5d337b91 614 spin_unlock(&swap_lock);
1da177e4 615 }
c475a8ab 616 return count;
1da177e4
LT
617}
618
619/*
7b1fe597
HD
620 * We can write to an anon page without COW if there are no other references
621 * to it. And as a side-effect, free up its swap: because the old content
622 * on disk will never be read, and seeking back there to write new content
623 * later would only waste time away from clustering.
1da177e4 624 */
7b1fe597 625int reuse_swap_page(struct page *page)
1da177e4 626{
c475a8ab
HD
627 int count;
628
51726b12 629 VM_BUG_ON(!PageLocked(page));
5ad64688
HD
630 if (unlikely(PageKsm(page)))
631 return 0;
c475a8ab 632 count = page_mapcount(page);
7b1fe597 633 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 634 count += page_swapcount(page);
7b1fe597
HD
635 if (count == 1 && !PageWriteback(page)) {
636 delete_from_swap_cache(page);
637 SetPageDirty(page);
638 }
639 }
5ad64688 640 return count <= 1;
1da177e4
LT
641}
642
643/*
a2c43eed
HD
644 * If swap is getting full, or if there are no more mappings of this page,
645 * then try_to_free_swap is called to free its swap space.
1da177e4 646 */
a2c43eed 647int try_to_free_swap(struct page *page)
1da177e4 648{
51726b12 649 VM_BUG_ON(!PageLocked(page));
1da177e4
LT
650
651 if (!PageSwapCache(page))
652 return 0;
653 if (PageWriteback(page))
654 return 0;
a2c43eed 655 if (page_swapcount(page))
1da177e4
LT
656 return 0;
657
b73d7fce
HD
658 /*
659 * Once hibernation has begun to create its image of memory,
660 * there's a danger that one of the calls to try_to_free_swap()
661 * - most probably a call from __try_to_reclaim_swap() while
662 * hibernation is allocating its own swap pages for the image,
663 * but conceivably even a call from memory reclaim - will free
664 * the swap from a page which has already been recorded in the
665 * image as a clean swapcache page, and then reuse its swap for
666 * another page of the image. On waking from hibernation, the
667 * original page might be freed under memory pressure, then
668 * later read back in from swap, now with the wrong data.
669 *
670 * Hibernation clears bits from gfp_allowed_mask to prevent
671 * memory reclaim from writing to disk, so check that here.
672 */
673 if (!(gfp_allowed_mask & __GFP_IO))
674 return 0;
675
a2c43eed
HD
676 delete_from_swap_cache(page);
677 SetPageDirty(page);
678 return 1;
68a22394
RR
679}
680
1da177e4
LT
681/*
682 * Free the swap entry like above, but also try to
683 * free the page cache entry if it is the last user.
684 */
2509ef26 685int free_swap_and_cache(swp_entry_t entry)
1da177e4 686{
2509ef26 687 struct swap_info_struct *p;
1da177e4
LT
688 struct page *page = NULL;
689
a7420aa5 690 if (non_swap_entry(entry))
2509ef26 691 return 1;
0697212a 692
1da177e4
LT
693 p = swap_info_get(entry);
694 if (p) {
253d553b 695 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
93fac704 696 page = find_get_page(&swapper_space, entry.val);
8413ac9d 697 if (page && !trylock_page(page)) {
93fac704
NP
698 page_cache_release(page);
699 page = NULL;
700 }
701 }
5d337b91 702 spin_unlock(&swap_lock);
1da177e4
LT
703 }
704 if (page) {
a2c43eed
HD
705 /*
706 * Not mapped elsewhere, or swap space full? Free it!
707 * Also recheck PageSwapCache now page is locked (above).
708 */
93fac704 709 if (PageSwapCache(page) && !PageWriteback(page) &&
a2c43eed 710 (!page_mapped(page) || vm_swap_full())) {
1da177e4
LT
711 delete_from_swap_cache(page);
712 SetPageDirty(page);
713 }
714 unlock_page(page);
715 page_cache_release(page);
716 }
2509ef26 717 return p != NULL;
1da177e4
LT
718}
719
02491447
DN
720#ifdef CONFIG_CGROUP_MEM_RES_CTLR
721/**
722 * mem_cgroup_count_swap_user - count the user of a swap entry
723 * @ent: the swap entry to be checked
724 * @pagep: the pointer for the swap cache page of the entry to be stored
725 *
726 * Returns the number of the user of the swap entry. The number is valid only
727 * for swaps of anonymous pages.
728 * If the entry is found on swap cache, the page is stored to pagep with
729 * refcount of it being incremented.
730 */
731int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
732{
733 struct page *page;
734 struct swap_info_struct *p;
735 int count = 0;
736
737 page = find_get_page(&swapper_space, ent.val);
738 if (page)
739 count += page_mapcount(page);
740 p = swap_info_get(ent);
741 if (p) {
742 count += swap_count(p->swap_map[swp_offset(ent)]);
743 spin_unlock(&swap_lock);
744 }
745
746 *pagep = page;
747 return count;
748}
749#endif
750
b0cb1a19 751#ifdef CONFIG_HIBERNATION
f577eb30 752/*
915bae9e 753 * Find the swap type that corresponds to given device (if any).
f577eb30 754 *
915bae9e
RW
755 * @offset - number of the PAGE_SIZE-sized block of the device, starting
756 * from 0, in which the swap header is expected to be located.
757 *
758 * This is needed for the suspend to disk (aka swsusp).
f577eb30 759 */
7bf23687 760int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 761{
915bae9e 762 struct block_device *bdev = NULL;
efa90a98 763 int type;
f577eb30 764
915bae9e
RW
765 if (device)
766 bdev = bdget(device);
767
f577eb30 768 spin_lock(&swap_lock);
efa90a98
HD
769 for (type = 0; type < nr_swapfiles; type++) {
770 struct swap_info_struct *sis = swap_info[type];
f577eb30 771
915bae9e 772 if (!(sis->flags & SWP_WRITEOK))
f577eb30 773 continue;
b6b5bce3 774
915bae9e 775 if (!bdev) {
7bf23687 776 if (bdev_p)
dddac6a7 777 *bdev_p = bdgrab(sis->bdev);
7bf23687 778
6e1819d6 779 spin_unlock(&swap_lock);
efa90a98 780 return type;
6e1819d6 781 }
915bae9e 782 if (bdev == sis->bdev) {
9625a5f2 783 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 784
915bae9e 785 if (se->start_block == offset) {
7bf23687 786 if (bdev_p)
dddac6a7 787 *bdev_p = bdgrab(sis->bdev);
7bf23687 788
915bae9e
RW
789 spin_unlock(&swap_lock);
790 bdput(bdev);
efa90a98 791 return type;
915bae9e 792 }
f577eb30
RW
793 }
794 }
795 spin_unlock(&swap_lock);
915bae9e
RW
796 if (bdev)
797 bdput(bdev);
798
f577eb30
RW
799 return -ENODEV;
800}
801
73c34b6a
HD
802/*
803 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
804 * corresponding to given index in swap_info (swap type).
805 */
806sector_t swapdev_block(int type, pgoff_t offset)
807{
808 struct block_device *bdev;
809
810 if ((unsigned int)type >= nr_swapfiles)
811 return 0;
812 if (!(swap_info[type]->flags & SWP_WRITEOK))
813 return 0;
d4906e1a 814 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
815}
816
f577eb30
RW
817/*
818 * Return either the total number of swap pages of given type, or the number
819 * of free pages of that type (depending on @free)
820 *
821 * This is needed for software suspend
822 */
823unsigned int count_swap_pages(int type, int free)
824{
825 unsigned int n = 0;
826
efa90a98
HD
827 spin_lock(&swap_lock);
828 if ((unsigned int)type < nr_swapfiles) {
829 struct swap_info_struct *sis = swap_info[type];
830
831 if (sis->flags & SWP_WRITEOK) {
832 n = sis->pages;
f577eb30 833 if (free)
efa90a98 834 n -= sis->inuse_pages;
f577eb30 835 }
f577eb30 836 }
efa90a98 837 spin_unlock(&swap_lock);
f577eb30
RW
838 return n;
839}
73c34b6a 840#endif /* CONFIG_HIBERNATION */
f577eb30 841
1da177e4 842/*
72866f6f
HD
843 * No need to decide whether this PTE shares the swap entry with others,
844 * just let do_wp_page work it out if a write is requested later - to
845 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 846 */
044d66c1 847static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
848 unsigned long addr, swp_entry_t entry, struct page *page)
849{
56039efa 850 struct mem_cgroup *ptr;
044d66c1
HD
851 spinlock_t *ptl;
852 pte_t *pte;
853 int ret = 1;
854
85d9fc89 855 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
044d66c1 856 ret = -ENOMEM;
85d9fc89
KH
857 goto out_nolock;
858 }
044d66c1
HD
859
860 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
861 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
862 if (ret > 0)
7a81b88c 863 mem_cgroup_cancel_charge_swapin(ptr);
044d66c1
HD
864 ret = 0;
865 goto out;
866 }
8a9f3ccd 867
b084d435 868 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 869 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
870 get_page(page);
871 set_pte_at(vma->vm_mm, addr, pte,
872 pte_mkold(mk_pte(page, vma->vm_page_prot)));
873 page_add_anon_rmap(page, vma, addr);
7a81b88c 874 mem_cgroup_commit_charge_swapin(page, ptr);
1da177e4
LT
875 swap_free(entry);
876 /*
877 * Move the page to the active list so it is not
878 * immediately swapped out again after swapon.
879 */
880 activate_page(page);
044d66c1
HD
881out:
882 pte_unmap_unlock(pte, ptl);
85d9fc89 883out_nolock:
044d66c1 884 return ret;
1da177e4
LT
885}
886
887static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
888 unsigned long addr, unsigned long end,
889 swp_entry_t entry, struct page *page)
890{
1da177e4 891 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 892 pte_t *pte;
8a9f3ccd 893 int ret = 0;
1da177e4 894
044d66c1
HD
895 /*
896 * We don't actually need pte lock while scanning for swp_pte: since
897 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
898 * page table while we're scanning; though it could get zapped, and on
899 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
900 * of unmatched parts which look like swp_pte, so unuse_pte must
901 * recheck under pte lock. Scanning without pte lock lets it be
902 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
903 */
904 pte = pte_offset_map(pmd, addr);
1da177e4
LT
905 do {
906 /*
907 * swapoff spends a _lot_ of time in this loop!
908 * Test inline before going to call unuse_pte.
909 */
910 if (unlikely(pte_same(*pte, swp_pte))) {
044d66c1
HD
911 pte_unmap(pte);
912 ret = unuse_pte(vma, pmd, addr, entry, page);
913 if (ret)
914 goto out;
915 pte = pte_offset_map(pmd, addr);
1da177e4
LT
916 }
917 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
918 pte_unmap(pte - 1);
919out:
8a9f3ccd 920 return ret;
1da177e4
LT
921}
922
923static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
924 unsigned long addr, unsigned long end,
925 swp_entry_t entry, struct page *page)
926{
927 pmd_t *pmd;
928 unsigned long next;
8a9f3ccd 929 int ret;
1da177e4
LT
930
931 pmd = pmd_offset(pud, addr);
932 do {
933 next = pmd_addr_end(addr, end);
3f04f62f
AA
934 if (unlikely(pmd_trans_huge(*pmd)))
935 continue;
1da177e4
LT
936 if (pmd_none_or_clear_bad(pmd))
937 continue;
8a9f3ccd
BS
938 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
939 if (ret)
940 return ret;
1da177e4
LT
941 } while (pmd++, addr = next, addr != end);
942 return 0;
943}
944
945static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
946 unsigned long addr, unsigned long end,
947 swp_entry_t entry, struct page *page)
948{
949 pud_t *pud;
950 unsigned long next;
8a9f3ccd 951 int ret;
1da177e4
LT
952
953 pud = pud_offset(pgd, addr);
954 do {
955 next = pud_addr_end(addr, end);
956 if (pud_none_or_clear_bad(pud))
957 continue;
8a9f3ccd
BS
958 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
959 if (ret)
960 return ret;
1da177e4
LT
961 } while (pud++, addr = next, addr != end);
962 return 0;
963}
964
965static int unuse_vma(struct vm_area_struct *vma,
966 swp_entry_t entry, struct page *page)
967{
968 pgd_t *pgd;
969 unsigned long addr, end, next;
8a9f3ccd 970 int ret;
1da177e4 971
3ca7b3c5 972 if (page_anon_vma(page)) {
1da177e4
LT
973 addr = page_address_in_vma(page, vma);
974 if (addr == -EFAULT)
975 return 0;
976 else
977 end = addr + PAGE_SIZE;
978 } else {
979 addr = vma->vm_start;
980 end = vma->vm_end;
981 }
982
983 pgd = pgd_offset(vma->vm_mm, addr);
984 do {
985 next = pgd_addr_end(addr, end);
986 if (pgd_none_or_clear_bad(pgd))
987 continue;
8a9f3ccd
BS
988 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
989 if (ret)
990 return ret;
1da177e4
LT
991 } while (pgd++, addr = next, addr != end);
992 return 0;
993}
994
995static int unuse_mm(struct mm_struct *mm,
996 swp_entry_t entry, struct page *page)
997{
998 struct vm_area_struct *vma;
8a9f3ccd 999 int ret = 0;
1da177e4
LT
1000
1001 if (!down_read_trylock(&mm->mmap_sem)) {
1002 /*
7d03431c
FLVC
1003 * Activate page so shrink_inactive_list is unlikely to unmap
1004 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1005 */
c475a8ab 1006 activate_page(page);
1da177e4
LT
1007 unlock_page(page);
1008 down_read(&mm->mmap_sem);
1009 lock_page(page);
1010 }
1da177e4 1011 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1012 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4
LT
1013 break;
1014 }
1da177e4 1015 up_read(&mm->mmap_sem);
8a9f3ccd 1016 return (ret < 0)? ret: 0;
1da177e4
LT
1017}
1018
1019/*
1020 * Scan swap_map from current position to next entry still in use.
1021 * Recycle to start on reaching the end, returning 0 when empty.
1022 */
6eb396dc
HD
1023static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1024 unsigned int prev)
1da177e4 1025{
6eb396dc
HD
1026 unsigned int max = si->max;
1027 unsigned int i = prev;
8d69aaee 1028 unsigned char count;
1da177e4
LT
1029
1030 /*
5d337b91 1031 * No need for swap_lock here: we're just looking
1da177e4
LT
1032 * for whether an entry is in use, not modifying it; false
1033 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1034 * allocations from this area (while holding swap_lock).
1da177e4
LT
1035 */
1036 for (;;) {
1037 if (++i >= max) {
1038 if (!prev) {
1039 i = 0;
1040 break;
1041 }
1042 /*
1043 * No entries in use at top of swap_map,
1044 * loop back to start and recheck there.
1045 */
1046 max = prev + 1;
1047 prev = 0;
1048 i = 1;
1049 }
1050 count = si->swap_map[i];
355cfa73 1051 if (count && swap_count(count) != SWAP_MAP_BAD)
1da177e4
LT
1052 break;
1053 }
1054 return i;
1055}
1056
1057/*
1058 * We completely avoid races by reading each swap page in advance,
1059 * and then search for the process using it. All the necessary
1060 * page table adjustments can then be made atomically.
1061 */
1062static int try_to_unuse(unsigned int type)
1063{
efa90a98 1064 struct swap_info_struct *si = swap_info[type];
1da177e4 1065 struct mm_struct *start_mm;
8d69aaee
HD
1066 unsigned char *swap_map;
1067 unsigned char swcount;
1da177e4
LT
1068 struct page *page;
1069 swp_entry_t entry;
6eb396dc 1070 unsigned int i = 0;
1da177e4 1071 int retval = 0;
1da177e4
LT
1072
1073 /*
1074 * When searching mms for an entry, a good strategy is to
1075 * start at the first mm we freed the previous entry from
1076 * (though actually we don't notice whether we or coincidence
1077 * freed the entry). Initialize this start_mm with a hold.
1078 *
1079 * A simpler strategy would be to start at the last mm we
1080 * freed the previous entry from; but that would take less
1081 * advantage of mmlist ordering, which clusters forked mms
1082 * together, child after parent. If we race with dup_mmap(), we
1083 * prefer to resolve parent before child, lest we miss entries
1084 * duplicated after we scanned child: using last mm would invert
570a335b 1085 * that.
1da177e4
LT
1086 */
1087 start_mm = &init_mm;
1088 atomic_inc(&init_mm.mm_users);
1089
1090 /*
1091 * Keep on scanning until all entries have gone. Usually,
1092 * one pass through swap_map is enough, but not necessarily:
1093 * there are races when an instance of an entry might be missed.
1094 */
1095 while ((i = find_next_to_unuse(si, i)) != 0) {
1096 if (signal_pending(current)) {
1097 retval = -EINTR;
1098 break;
1099 }
1100
886bb7e9 1101 /*
1da177e4
LT
1102 * Get a page for the entry, using the existing swap
1103 * cache page if there is one. Otherwise, get a clean
886bb7e9 1104 * page and read the swap into it.
1da177e4
LT
1105 */
1106 swap_map = &si->swap_map[i];
1107 entry = swp_entry(type, i);
02098fea
HD
1108 page = read_swap_cache_async(entry,
1109 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
1110 if (!page) {
1111 /*
1112 * Either swap_duplicate() failed because entry
1113 * has been freed independently, and will not be
1114 * reused since sys_swapoff() already disabled
1115 * allocation from here, or alloc_page() failed.
1116 */
1117 if (!*swap_map)
1118 continue;
1119 retval = -ENOMEM;
1120 break;
1121 }
1122
1123 /*
1124 * Don't hold on to start_mm if it looks like exiting.
1125 */
1126 if (atomic_read(&start_mm->mm_users) == 1) {
1127 mmput(start_mm);
1128 start_mm = &init_mm;
1129 atomic_inc(&init_mm.mm_users);
1130 }
1131
1132 /*
1133 * Wait for and lock page. When do_swap_page races with
1134 * try_to_unuse, do_swap_page can handle the fault much
1135 * faster than try_to_unuse can locate the entry. This
1136 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1137 * defer to do_swap_page in such a case - in some tests,
1138 * do_swap_page and try_to_unuse repeatedly compete.
1139 */
1140 wait_on_page_locked(page);
1141 wait_on_page_writeback(page);
1142 lock_page(page);
1143 wait_on_page_writeback(page);
1144
1145 /*
1146 * Remove all references to entry.
1da177e4 1147 */
1da177e4 1148 swcount = *swap_map;
aaa46865
HD
1149 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1150 retval = shmem_unuse(entry, page);
1151 /* page has already been unlocked and released */
1152 if (retval < 0)
1153 break;
1154 continue;
1da177e4 1155 }
aaa46865
HD
1156 if (swap_count(swcount) && start_mm != &init_mm)
1157 retval = unuse_mm(start_mm, entry, page);
1158
355cfa73 1159 if (swap_count(*swap_map)) {
1da177e4
LT
1160 int set_start_mm = (*swap_map >= swcount);
1161 struct list_head *p = &start_mm->mmlist;
1162 struct mm_struct *new_start_mm = start_mm;
1163 struct mm_struct *prev_mm = start_mm;
1164 struct mm_struct *mm;
1165
1166 atomic_inc(&new_start_mm->mm_users);
1167 atomic_inc(&prev_mm->mm_users);
1168 spin_lock(&mmlist_lock);
aaa46865 1169 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
1170 (p = p->next) != &start_mm->mmlist) {
1171 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 1172 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 1173 continue;
1da177e4
LT
1174 spin_unlock(&mmlist_lock);
1175 mmput(prev_mm);
1176 prev_mm = mm;
1177
1178 cond_resched();
1179
1180 swcount = *swap_map;
355cfa73 1181 if (!swap_count(swcount)) /* any usage ? */
1da177e4 1182 ;
aaa46865 1183 else if (mm == &init_mm)
1da177e4 1184 set_start_mm = 1;
aaa46865 1185 else
1da177e4 1186 retval = unuse_mm(mm, entry, page);
355cfa73 1187
32c5fc10 1188 if (set_start_mm && *swap_map < swcount) {
1da177e4
LT
1189 mmput(new_start_mm);
1190 atomic_inc(&mm->mm_users);
1191 new_start_mm = mm;
1192 set_start_mm = 0;
1193 }
1194 spin_lock(&mmlist_lock);
1195 }
1196 spin_unlock(&mmlist_lock);
1197 mmput(prev_mm);
1198 mmput(start_mm);
1199 start_mm = new_start_mm;
1200 }
1201 if (retval) {
1202 unlock_page(page);
1203 page_cache_release(page);
1204 break;
1205 }
1206
1da177e4
LT
1207 /*
1208 * If a reference remains (rare), we would like to leave
1209 * the page in the swap cache; but try_to_unmap could
1210 * then re-duplicate the entry once we drop page lock,
1211 * so we might loop indefinitely; also, that page could
1212 * not be swapped out to other storage meanwhile. So:
1213 * delete from cache even if there's another reference,
1214 * after ensuring that the data has been saved to disk -
1215 * since if the reference remains (rarer), it will be
1216 * read from disk into another page. Splitting into two
1217 * pages would be incorrect if swap supported "shared
1218 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
1219 *
1220 * Given how unuse_vma() targets one particular offset
1221 * in an anon_vma, once the anon_vma has been determined,
1222 * this splitting happens to be just what is needed to
1223 * handle where KSM pages have been swapped out: re-reading
1224 * is unnecessarily slow, but we can fix that later on.
1da177e4 1225 */
355cfa73
KH
1226 if (swap_count(*swap_map) &&
1227 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
1228 struct writeback_control wbc = {
1229 .sync_mode = WB_SYNC_NONE,
1230 };
1231
1232 swap_writepage(page, &wbc);
1233 lock_page(page);
1234 wait_on_page_writeback(page);
1235 }
68bdc8d6
HD
1236
1237 /*
1238 * It is conceivable that a racing task removed this page from
1239 * swap cache just before we acquired the page lock at the top,
1240 * or while we dropped it in unuse_mm(). The page might even
1241 * be back in swap cache on another swap area: that we must not
1242 * delete, since it may not have been written out to swap yet.
1243 */
1244 if (PageSwapCache(page) &&
1245 likely(page_private(page) == entry.val))
2e0e26c7 1246 delete_from_swap_cache(page);
1da177e4
LT
1247
1248 /*
1249 * So we could skip searching mms once swap count went
1250 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 1251 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
1252 */
1253 SetPageDirty(page);
1254 unlock_page(page);
1255 page_cache_release(page);
1256
1257 /*
1258 * Make sure that we aren't completely killing
1259 * interactive performance.
1260 */
1261 cond_resched();
1262 }
1263
1264 mmput(start_mm);
1da177e4
LT
1265 return retval;
1266}
1267
1268/*
5d337b91
HD
1269 * After a successful try_to_unuse, if no swap is now in use, we know
1270 * we can empty the mmlist. swap_lock must be held on entry and exit.
1271 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
1272 * added to the mmlist just after page_duplicate - before would be racy.
1273 */
1274static void drain_mmlist(void)
1275{
1276 struct list_head *p, *next;
efa90a98 1277 unsigned int type;
1da177e4 1278
efa90a98
HD
1279 for (type = 0; type < nr_swapfiles; type++)
1280 if (swap_info[type]->inuse_pages)
1da177e4
LT
1281 return;
1282 spin_lock(&mmlist_lock);
1283 list_for_each_safe(p, next, &init_mm.mmlist)
1284 list_del_init(p);
1285 spin_unlock(&mmlist_lock);
1286}
1287
1288/*
1289 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
1290 * corresponds to page offset for the specified swap entry.
1291 * Note that the type of this function is sector_t, but it returns page offset
1292 * into the bdev, not sector offset.
1da177e4 1293 */
d4906e1a 1294static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 1295{
f29ad6a9
HD
1296 struct swap_info_struct *sis;
1297 struct swap_extent *start_se;
1298 struct swap_extent *se;
1299 pgoff_t offset;
1300
efa90a98 1301 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
1302 *bdev = sis->bdev;
1303
1304 offset = swp_offset(entry);
1305 start_se = sis->curr_swap_extent;
1306 se = start_se;
1da177e4
LT
1307
1308 for ( ; ; ) {
1309 struct list_head *lh;
1310
1311 if (se->start_page <= offset &&
1312 offset < (se->start_page + se->nr_pages)) {
1313 return se->start_block + (offset - se->start_page);
1314 }
11d31886 1315 lh = se->list.next;
1da177e4
LT
1316 se = list_entry(lh, struct swap_extent, list);
1317 sis->curr_swap_extent = se;
1318 BUG_ON(se == start_se); /* It *must* be present */
1319 }
1320}
1321
d4906e1a
LS
1322/*
1323 * Returns the page offset into bdev for the specified page's swap entry.
1324 */
1325sector_t map_swap_page(struct page *page, struct block_device **bdev)
1326{
1327 swp_entry_t entry;
1328 entry.val = page_private(page);
1329 return map_swap_entry(entry, bdev);
1330}
1331
1da177e4
LT
1332/*
1333 * Free all of a swapdev's extent information
1334 */
1335static void destroy_swap_extents(struct swap_info_struct *sis)
1336{
9625a5f2 1337 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
1338 struct swap_extent *se;
1339
9625a5f2 1340 se = list_entry(sis->first_swap_extent.list.next,
1da177e4
LT
1341 struct swap_extent, list);
1342 list_del(&se->list);
1343 kfree(se);
1344 }
1da177e4
LT
1345}
1346
1347/*
1348 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1349 * extent list. The extent list is kept sorted in page order.
1da177e4 1350 *
11d31886 1351 * This function rather assumes that it is called in ascending page order.
1da177e4
LT
1352 */
1353static int
1354add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1355 unsigned long nr_pages, sector_t start_block)
1356{
1357 struct swap_extent *se;
1358 struct swap_extent *new_se;
1359 struct list_head *lh;
1360
9625a5f2
HD
1361 if (start_page == 0) {
1362 se = &sis->first_swap_extent;
1363 sis->curr_swap_extent = se;
1364 se->start_page = 0;
1365 se->nr_pages = nr_pages;
1366 se->start_block = start_block;
1367 return 1;
1368 } else {
1369 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 1370 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1371 BUG_ON(se->start_page + se->nr_pages != start_page);
1372 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1373 /* Merge it */
1374 se->nr_pages += nr_pages;
1375 return 0;
1376 }
1da177e4
LT
1377 }
1378
1379 /*
1380 * No merge. Insert a new extent, preserving ordering.
1381 */
1382 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1383 if (new_se == NULL)
1384 return -ENOMEM;
1385 new_se->start_page = start_page;
1386 new_se->nr_pages = nr_pages;
1387 new_se->start_block = start_block;
1388
9625a5f2 1389 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 1390 return 1;
1da177e4
LT
1391}
1392
1393/*
1394 * A `swap extent' is a simple thing which maps a contiguous range of pages
1395 * onto a contiguous range of disk blocks. An ordered list of swap extents
1396 * is built at swapon time and is then used at swap_writepage/swap_readpage
1397 * time for locating where on disk a page belongs.
1398 *
1399 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1400 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1401 * swap files identically.
1402 *
1403 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1404 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1405 * swapfiles are handled *identically* after swapon time.
1406 *
1407 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1408 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1409 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1410 * requirements, they are simply tossed out - we will never use those blocks
1411 * for swapping.
1412 *
b0d9bcd4 1413 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1414 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1415 * which will scribble on the fs.
1416 *
1417 * The amount of disk space which a single swap extent represents varies.
1418 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1419 * extents in the list. To avoid much list walking, we cache the previous
1420 * search location in `curr_swap_extent', and start new searches from there.
1421 * This is extremely effective. The average number of iterations in
1422 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1423 */
53092a74 1424static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4
LT
1425{
1426 struct inode *inode;
1427 unsigned blocks_per_page;
1428 unsigned long page_no;
1429 unsigned blkbits;
1430 sector_t probe_block;
1431 sector_t last_block;
53092a74
HD
1432 sector_t lowest_block = -1;
1433 sector_t highest_block = 0;
1434 int nr_extents = 0;
1da177e4
LT
1435 int ret;
1436
1437 inode = sis->swap_file->f_mapping->host;
1438 if (S_ISBLK(inode->i_mode)) {
1439 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1440 *span = sis->pages;
9625a5f2 1441 goto out;
1da177e4
LT
1442 }
1443
1444 blkbits = inode->i_blkbits;
1445 blocks_per_page = PAGE_SIZE >> blkbits;
1446
1447 /*
1448 * Map all the blocks into the extent list. This code doesn't try
1449 * to be very smart.
1450 */
1451 probe_block = 0;
1452 page_no = 0;
1453 last_block = i_size_read(inode) >> blkbits;
1454 while ((probe_block + blocks_per_page) <= last_block &&
1455 page_no < sis->max) {
1456 unsigned block_in_page;
1457 sector_t first_block;
1458
1459 first_block = bmap(inode, probe_block);
1460 if (first_block == 0)
1461 goto bad_bmap;
1462
1463 /*
1464 * It must be PAGE_SIZE aligned on-disk
1465 */
1466 if (first_block & (blocks_per_page - 1)) {
1467 probe_block++;
1468 goto reprobe;
1469 }
1470
1471 for (block_in_page = 1; block_in_page < blocks_per_page;
1472 block_in_page++) {
1473 sector_t block;
1474
1475 block = bmap(inode, probe_block + block_in_page);
1476 if (block == 0)
1477 goto bad_bmap;
1478 if (block != first_block + block_in_page) {
1479 /* Discontiguity */
1480 probe_block++;
1481 goto reprobe;
1482 }
1483 }
1484
53092a74
HD
1485 first_block >>= (PAGE_SHIFT - blkbits);
1486 if (page_no) { /* exclude the header page */
1487 if (first_block < lowest_block)
1488 lowest_block = first_block;
1489 if (first_block > highest_block)
1490 highest_block = first_block;
1491 }
1492
1da177e4
LT
1493 /*
1494 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1495 */
53092a74
HD
1496 ret = add_swap_extent(sis, page_no, 1, first_block);
1497 if (ret < 0)
1da177e4 1498 goto out;
53092a74 1499 nr_extents += ret;
1da177e4
LT
1500 page_no++;
1501 probe_block += blocks_per_page;
1502reprobe:
1503 continue;
1504 }
53092a74
HD
1505 ret = nr_extents;
1506 *span = 1 + highest_block - lowest_block;
1da177e4 1507 if (page_no == 0)
e2244ec2 1508 page_no = 1; /* force Empty message */
1da177e4 1509 sis->max = page_no;
e2244ec2 1510 sis->pages = page_no - 1;
1da177e4 1511 sis->highest_bit = page_no - 1;
9625a5f2
HD
1512out:
1513 return ret;
1da177e4
LT
1514bad_bmap:
1515 printk(KERN_ERR "swapon: swapfile has holes\n");
1516 ret = -EINVAL;
9625a5f2 1517 goto out;
1da177e4
LT
1518}
1519
40531542
CEB
1520static void enable_swap_info(struct swap_info_struct *p, int prio,
1521 unsigned char *swap_map)
1522{
1523 int i, prev;
1524
1525 spin_lock(&swap_lock);
1526 if (prio >= 0)
1527 p->prio = prio;
1528 else
1529 p->prio = --least_priority;
1530 p->swap_map = swap_map;
1531 p->flags |= SWP_WRITEOK;
1532 nr_swap_pages += p->pages;
1533 total_swap_pages += p->pages;
1534
1535 /* insert swap space into swap_list: */
1536 prev = -1;
1537 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1538 if (p->prio >= swap_info[i]->prio)
1539 break;
1540 prev = i;
1541 }
1542 p->next = i;
1543 if (prev < 0)
1544 swap_list.head = swap_list.next = p->type;
1545 else
1546 swap_info[prev]->next = p->type;
1547 spin_unlock(&swap_lock);
1548}
1549
c4ea37c2 1550SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 1551{
73c34b6a 1552 struct swap_info_struct *p = NULL;
8d69aaee 1553 unsigned char *swap_map;
1da177e4
LT
1554 struct file *swap_file, *victim;
1555 struct address_space *mapping;
1556 struct inode *inode;
73c34b6a 1557 char *pathname;
1da177e4
LT
1558 int i, type, prev;
1559 int err;
886bb7e9 1560
1da177e4
LT
1561 if (!capable(CAP_SYS_ADMIN))
1562 return -EPERM;
1563
1564 pathname = getname(specialfile);
1565 err = PTR_ERR(pathname);
1566 if (IS_ERR(pathname))
1567 goto out;
1568
1569 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1570 putname(pathname);
1571 err = PTR_ERR(victim);
1572 if (IS_ERR(victim))
1573 goto out;
1574
1575 mapping = victim->f_mapping;
1576 prev = -1;
5d337b91 1577 spin_lock(&swap_lock);
efa90a98
HD
1578 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1579 p = swap_info[type];
22c6f8fd 1580 if (p->flags & SWP_WRITEOK) {
1da177e4
LT
1581 if (p->swap_file->f_mapping == mapping)
1582 break;
1583 }
1584 prev = type;
1585 }
1586 if (type < 0) {
1587 err = -EINVAL;
5d337b91 1588 spin_unlock(&swap_lock);
1da177e4
LT
1589 goto out_dput;
1590 }
1591 if (!security_vm_enough_memory(p->pages))
1592 vm_unacct_memory(p->pages);
1593 else {
1594 err = -ENOMEM;
5d337b91 1595 spin_unlock(&swap_lock);
1da177e4
LT
1596 goto out_dput;
1597 }
efa90a98 1598 if (prev < 0)
1da177e4 1599 swap_list.head = p->next;
efa90a98
HD
1600 else
1601 swap_info[prev]->next = p->next;
1da177e4
LT
1602 if (type == swap_list.next) {
1603 /* just pick something that's safe... */
1604 swap_list.next = swap_list.head;
1605 }
78ecba08 1606 if (p->prio < 0) {
efa90a98
HD
1607 for (i = p->next; i >= 0; i = swap_info[i]->next)
1608 swap_info[i]->prio = p->prio--;
78ecba08
HD
1609 least_priority++;
1610 }
1da177e4
LT
1611 nr_swap_pages -= p->pages;
1612 total_swap_pages -= p->pages;
1613 p->flags &= ~SWP_WRITEOK;
5d337b91 1614 spin_unlock(&swap_lock);
fb4f88dc 1615
35451bee 1616 current->flags |= PF_OOM_ORIGIN;
1da177e4 1617 err = try_to_unuse(type);
35451bee 1618 current->flags &= ~PF_OOM_ORIGIN;
1da177e4 1619
1da177e4 1620 if (err) {
40531542
CEB
1621 /*
1622 * reading p->prio and p->swap_map outside the lock is
1623 * safe here because only sys_swapon and sys_swapoff
1624 * change them, and there can be no other sys_swapon or
1625 * sys_swapoff for this swap_info_struct at this point.
1626 */
1da177e4 1627 /* re-insert swap space back into swap_list */
40531542 1628 enable_swap_info(p, p->prio, p->swap_map);
1da177e4
LT
1629 goto out_dput;
1630 }
52b7efdb 1631
5d337b91 1632 destroy_swap_extents(p);
570a335b
HD
1633 if (p->flags & SWP_CONTINUED)
1634 free_swap_count_continuations(p);
1635
fc0abb14 1636 mutex_lock(&swapon_mutex);
5d337b91
HD
1637 spin_lock(&swap_lock);
1638 drain_mmlist();
1639
52b7efdb 1640 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1641 p->highest_bit = 0; /* cuts scans short */
1642 while (p->flags >= SWP_SCANNING) {
5d337b91 1643 spin_unlock(&swap_lock);
13e4b57f 1644 schedule_timeout_uninterruptible(1);
5d337b91 1645 spin_lock(&swap_lock);
52b7efdb 1646 }
52b7efdb 1647
1da177e4
LT
1648 swap_file = p->swap_file;
1649 p->swap_file = NULL;
1650 p->max = 0;
1651 swap_map = p->swap_map;
1652 p->swap_map = NULL;
1653 p->flags = 0;
5d337b91 1654 spin_unlock(&swap_lock);
fc0abb14 1655 mutex_unlock(&swapon_mutex);
1da177e4 1656 vfree(swap_map);
27a7faa0
KH
1657 /* Destroy swap account informatin */
1658 swap_cgroup_swapoff(type);
1659
1da177e4
LT
1660 inode = mapping->host;
1661 if (S_ISBLK(inode->i_mode)) {
1662 struct block_device *bdev = I_BDEV(inode);
1663 set_blocksize(bdev, p->old_block_size);
e525fd89 1664 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 1665 } else {
1b1dcc1b 1666 mutex_lock(&inode->i_mutex);
1da177e4 1667 inode->i_flags &= ~S_SWAPFILE;
1b1dcc1b 1668 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1669 }
1670 filp_close(swap_file, NULL);
1671 err = 0;
66d7dd51
KS
1672 atomic_inc(&proc_poll_event);
1673 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
1674
1675out_dput:
1676 filp_close(victim, NULL);
1677out:
1678 return err;
1679}
1680
1681#ifdef CONFIG_PROC_FS
66d7dd51
KS
1682struct proc_swaps {
1683 struct seq_file seq;
1684 int event;
1685};
1686
1687static unsigned swaps_poll(struct file *file, poll_table *wait)
1688{
1689 struct proc_swaps *s = file->private_data;
1690
1691 poll_wait(file, &proc_poll_wait, wait);
1692
1693 if (s->event != atomic_read(&proc_poll_event)) {
1694 s->event = atomic_read(&proc_poll_event);
1695 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1696 }
1697
1698 return POLLIN | POLLRDNORM;
1699}
1700
1da177e4
LT
1701/* iterator */
1702static void *swap_start(struct seq_file *swap, loff_t *pos)
1703{
efa90a98
HD
1704 struct swap_info_struct *si;
1705 int type;
1da177e4
LT
1706 loff_t l = *pos;
1707
fc0abb14 1708 mutex_lock(&swapon_mutex);
1da177e4 1709
881e4aab
SS
1710 if (!l)
1711 return SEQ_START_TOKEN;
1712
efa90a98
HD
1713 for (type = 0; type < nr_swapfiles; type++) {
1714 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1715 si = swap_info[type];
1716 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 1717 continue;
881e4aab 1718 if (!--l)
efa90a98 1719 return si;
1da177e4
LT
1720 }
1721
1722 return NULL;
1723}
1724
1725static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1726{
efa90a98
HD
1727 struct swap_info_struct *si = v;
1728 int type;
1da177e4 1729
881e4aab 1730 if (v == SEQ_START_TOKEN)
efa90a98
HD
1731 type = 0;
1732 else
1733 type = si->type + 1;
881e4aab 1734
efa90a98
HD
1735 for (; type < nr_swapfiles; type++) {
1736 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1737 si = swap_info[type];
1738 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
1739 continue;
1740 ++*pos;
efa90a98 1741 return si;
1da177e4
LT
1742 }
1743
1744 return NULL;
1745}
1746
1747static void swap_stop(struct seq_file *swap, void *v)
1748{
fc0abb14 1749 mutex_unlock(&swapon_mutex);
1da177e4
LT
1750}
1751
1752static int swap_show(struct seq_file *swap, void *v)
1753{
efa90a98 1754 struct swap_info_struct *si = v;
1da177e4
LT
1755 struct file *file;
1756 int len;
1757
efa90a98 1758 if (si == SEQ_START_TOKEN) {
881e4aab
SS
1759 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1760 return 0;
1761 }
1da177e4 1762
efa90a98 1763 file = si->swap_file;
c32c2f63 1764 len = seq_path(swap, &file->f_path, " \t\n\\");
6eb396dc 1765 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9
HD
1766 len < 40 ? 40 - len : 1, " ",
1767 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1da177e4 1768 "partition" : "file\t",
efa90a98
HD
1769 si->pages << (PAGE_SHIFT - 10),
1770 si->inuse_pages << (PAGE_SHIFT - 10),
1771 si->prio);
1da177e4
LT
1772 return 0;
1773}
1774
15ad7cdc 1775static const struct seq_operations swaps_op = {
1da177e4
LT
1776 .start = swap_start,
1777 .next = swap_next,
1778 .stop = swap_stop,
1779 .show = swap_show
1780};
1781
1782static int swaps_open(struct inode *inode, struct file *file)
1783{
66d7dd51
KS
1784 struct proc_swaps *s;
1785 int ret;
1786
1787 s = kmalloc(sizeof(struct proc_swaps), GFP_KERNEL);
1788 if (!s)
1789 return -ENOMEM;
1790
1791 file->private_data = s;
1792
1793 ret = seq_open(file, &swaps_op);
1794 if (ret) {
1795 kfree(s);
1796 return ret;
1797 }
1798
1799 s->seq.private = s;
1800 s->event = atomic_read(&proc_poll_event);
1801 return ret;
1da177e4
LT
1802}
1803
15ad7cdc 1804static const struct file_operations proc_swaps_operations = {
1da177e4
LT
1805 .open = swaps_open,
1806 .read = seq_read,
1807 .llseek = seq_lseek,
1808 .release = seq_release,
66d7dd51 1809 .poll = swaps_poll,
1da177e4
LT
1810};
1811
1812static int __init procswaps_init(void)
1813{
3d71f86f 1814 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
1815 return 0;
1816}
1817__initcall(procswaps_init);
1818#endif /* CONFIG_PROC_FS */
1819
1796316a
JB
1820#ifdef MAX_SWAPFILES_CHECK
1821static int __init max_swapfiles_check(void)
1822{
1823 MAX_SWAPFILES_CHECK();
1824 return 0;
1825}
1826late_initcall(max_swapfiles_check);
1827#endif
1828
53cbb243 1829static struct swap_info_struct *alloc_swap_info(void)
1da177e4 1830{
73c34b6a 1831 struct swap_info_struct *p;
1da177e4 1832 unsigned int type;
efa90a98
HD
1833
1834 p = kzalloc(sizeof(*p), GFP_KERNEL);
1835 if (!p)
53cbb243 1836 return ERR_PTR(-ENOMEM);
efa90a98 1837
5d337b91 1838 spin_lock(&swap_lock);
efa90a98
HD
1839 for (type = 0; type < nr_swapfiles; type++) {
1840 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 1841 break;
efa90a98 1842 }
0697212a 1843 if (type >= MAX_SWAPFILES) {
5d337b91 1844 spin_unlock(&swap_lock);
efa90a98 1845 kfree(p);
730c0581 1846 return ERR_PTR(-EPERM);
1da177e4 1847 }
efa90a98
HD
1848 if (type >= nr_swapfiles) {
1849 p->type = type;
1850 swap_info[type] = p;
1851 /*
1852 * Write swap_info[type] before nr_swapfiles, in case a
1853 * racing procfs swap_start() or swap_next() is reading them.
1854 * (We never shrink nr_swapfiles, we never free this entry.)
1855 */
1856 smp_wmb();
1857 nr_swapfiles++;
1858 } else {
1859 kfree(p);
1860 p = swap_info[type];
1861 /*
1862 * Do not memset this entry: a racing procfs swap_next()
1863 * would be relying on p->type to remain valid.
1864 */
1865 }
9625a5f2 1866 INIT_LIST_HEAD(&p->first_swap_extent.list);
1da177e4 1867 p->flags = SWP_USED;
1da177e4 1868 p->next = -1;
5d337b91 1869 spin_unlock(&swap_lock);
efa90a98 1870
53cbb243 1871 return p;
53cbb243
CEB
1872}
1873
4d0e1e10
CEB
1874static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
1875{
1876 int error;
1877
1878 if (S_ISBLK(inode->i_mode)) {
1879 p->bdev = bdgrab(I_BDEV(inode));
1880 error = blkdev_get(p->bdev,
1881 FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1882 sys_swapon);
1883 if (error < 0) {
1884 p->bdev = NULL;
87ade72a 1885 return -EINVAL;
4d0e1e10
CEB
1886 }
1887 p->old_block_size = block_size(p->bdev);
1888 error = set_blocksize(p->bdev, PAGE_SIZE);
1889 if (error < 0)
87ade72a 1890 return error;
4d0e1e10
CEB
1891 p->flags |= SWP_BLKDEV;
1892 } else if (S_ISREG(inode->i_mode)) {
1893 p->bdev = inode->i_sb->s_bdev;
1894 mutex_lock(&inode->i_mutex);
87ade72a
CEB
1895 if (IS_SWAPFILE(inode))
1896 return -EBUSY;
1897 } else
1898 return -EINVAL;
4d0e1e10
CEB
1899
1900 return 0;
4d0e1e10
CEB
1901}
1902
ca8bd38b
CEB
1903static unsigned long read_swap_header(struct swap_info_struct *p,
1904 union swap_header *swap_header,
1905 struct inode *inode)
1906{
1907 int i;
1908 unsigned long maxpages;
1909 unsigned long swapfilepages;
1910
1911 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1912 printk(KERN_ERR "Unable to find swap-space signature\n");
38719025 1913 return 0;
ca8bd38b
CEB
1914 }
1915
1916 /* swap partition endianess hack... */
1917 if (swab32(swap_header->info.version) == 1) {
1918 swab32s(&swap_header->info.version);
1919 swab32s(&swap_header->info.last_page);
1920 swab32s(&swap_header->info.nr_badpages);
1921 for (i = 0; i < swap_header->info.nr_badpages; i++)
1922 swab32s(&swap_header->info.badpages[i]);
1923 }
1924 /* Check the swap header's sub-version */
1925 if (swap_header->info.version != 1) {
1926 printk(KERN_WARNING
1927 "Unable to handle swap header version %d\n",
1928 swap_header->info.version);
38719025 1929 return 0;
ca8bd38b
CEB
1930 }
1931
1932 p->lowest_bit = 1;
1933 p->cluster_next = 1;
1934 p->cluster_nr = 0;
1935
1936 /*
1937 * Find out how many pages are allowed for a single swap
1938 * device. There are two limiting factors: 1) the number of
1939 * bits for the swap offset in the swp_entry_t type and
1940 * 2) the number of bits in the a swap pte as defined by
1941 * the different architectures. In order to find the
1942 * largest possible bit mask a swap entry with swap type 0
1943 * and swap offset ~0UL is created, encoded to a swap pte,
1944 * decoded to a swp_entry_t again and finally the swap
1945 * offset is extracted. This will mask all the bits from
1946 * the initial ~0UL mask that can't be encoded in either
1947 * the swp_entry_t or the architecture definition of a
1948 * swap pte.
1949 */
1950 maxpages = swp_offset(pte_to_swp_entry(
1951 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
1952 if (maxpages > swap_header->info.last_page) {
1953 maxpages = swap_header->info.last_page + 1;
1954 /* p->max is an unsigned int: don't overflow it */
1955 if ((unsigned int)maxpages == 0)
1956 maxpages = UINT_MAX;
1957 }
1958 p->highest_bit = maxpages - 1;
1959
1960 if (!maxpages)
38719025 1961 return 0;
ca8bd38b
CEB
1962 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1963 if (swapfilepages && maxpages > swapfilepages) {
1964 printk(KERN_WARNING
1965 "Swap area shorter than signature indicates\n");
38719025 1966 return 0;
ca8bd38b
CEB
1967 }
1968 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 1969 return 0;
ca8bd38b 1970 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 1971 return 0;
ca8bd38b
CEB
1972
1973 return maxpages;
ca8bd38b
CEB
1974}
1975
915d4d7b
CEB
1976static int setup_swap_map_and_extents(struct swap_info_struct *p,
1977 union swap_header *swap_header,
1978 unsigned char *swap_map,
1979 unsigned long maxpages,
1980 sector_t *span)
1981{
1982 int i;
915d4d7b
CEB
1983 unsigned int nr_good_pages;
1984 int nr_extents;
1985
1986 nr_good_pages = maxpages - 1; /* omit header page */
1987
1988 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1989 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
1990 if (page_nr == 0 || page_nr > swap_header->info.last_page)
1991 return -EINVAL;
915d4d7b
CEB
1992 if (page_nr < maxpages) {
1993 swap_map[page_nr] = SWAP_MAP_BAD;
1994 nr_good_pages--;
1995 }
1996 }
1997
1998 if (nr_good_pages) {
1999 swap_map[0] = SWAP_MAP_BAD;
2000 p->max = maxpages;
2001 p->pages = nr_good_pages;
2002 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
2003 if (nr_extents < 0)
2004 return nr_extents;
915d4d7b
CEB
2005 nr_good_pages = p->pages;
2006 }
2007 if (!nr_good_pages) {
2008 printk(KERN_WARNING "Empty swap-file\n");
bdb8e3f6 2009 return -EINVAL;
915d4d7b
CEB
2010 }
2011
2012 return nr_extents;
915d4d7b
CEB
2013}
2014
53cbb243
CEB
2015SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2016{
2017 struct swap_info_struct *p;
28b36bd7 2018 char *name;
53cbb243
CEB
2019 struct file *swap_file = NULL;
2020 struct address_space *mapping;
40531542
CEB
2021 int i;
2022 int prio;
53cbb243
CEB
2023 int error;
2024 union swap_header *swap_header;
915d4d7b 2025 int nr_extents;
53cbb243
CEB
2026 sector_t span;
2027 unsigned long maxpages;
53cbb243
CEB
2028 unsigned char *swap_map = NULL;
2029 struct page *page = NULL;
2030 struct inode *inode = NULL;
53cbb243
CEB
2031
2032 if (!capable(CAP_SYS_ADMIN))
2033 return -EPERM;
2034
2035 p = alloc_swap_info();
2542e513
CEB
2036 if (IS_ERR(p))
2037 return PTR_ERR(p);
53cbb243 2038
1da177e4 2039 name = getname(specialfile);
1da177e4 2040 if (IS_ERR(name)) {
7de7fb6b 2041 error = PTR_ERR(name);
1da177e4 2042 name = NULL;
bd69010b 2043 goto bad_swap;
1da177e4
LT
2044 }
2045 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 2046 if (IS_ERR(swap_file)) {
7de7fb6b 2047 error = PTR_ERR(swap_file);
1da177e4 2048 swap_file = NULL;
bd69010b 2049 goto bad_swap;
1da177e4
LT
2050 }
2051
2052 p->swap_file = swap_file;
2053 mapping = swap_file->f_mapping;
1da177e4 2054
1da177e4 2055 for (i = 0; i < nr_swapfiles; i++) {
efa90a98 2056 struct swap_info_struct *q = swap_info[i];
1da177e4 2057
e8e6c2ec 2058 if (q == p || !q->swap_file)
1da177e4 2059 continue;
7de7fb6b
CEB
2060 if (mapping == q->swap_file->f_mapping) {
2061 error = -EBUSY;
1da177e4 2062 goto bad_swap;
7de7fb6b 2063 }
1da177e4
LT
2064 }
2065
2130781e
CEB
2066 inode = mapping->host;
2067 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
4d0e1e10
CEB
2068 error = claim_swapfile(p, inode);
2069 if (unlikely(error))
1da177e4 2070 goto bad_swap;
1da177e4 2071
1da177e4
LT
2072 /*
2073 * Read the swap header.
2074 */
2075 if (!mapping->a_ops->readpage) {
2076 error = -EINVAL;
2077 goto bad_swap;
2078 }
090d2b18 2079 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
2080 if (IS_ERR(page)) {
2081 error = PTR_ERR(page);
2082 goto bad_swap;
2083 }
81e33971 2084 swap_header = kmap(page);
1da177e4 2085
ca8bd38b
CEB
2086 maxpages = read_swap_header(p, swap_header, inode);
2087 if (unlikely(!maxpages)) {
1da177e4
LT
2088 error = -EINVAL;
2089 goto bad_swap;
2090 }
886bb7e9 2091
81e33971 2092 /* OK, set up the swap map and apply the bad block list */
803d0c83 2093 swap_map = vzalloc(maxpages);
81e33971
HD
2094 if (!swap_map) {
2095 error = -ENOMEM;
2096 goto bad_swap;
2097 }
1da177e4 2098
1421ef3c
CEB
2099 error = swap_cgroup_swapon(p->type, maxpages);
2100 if (error)
2101 goto bad_swap;
2102
915d4d7b
CEB
2103 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2104 maxpages, &span);
2105 if (unlikely(nr_extents < 0)) {
2106 error = nr_extents;
1da177e4
LT
2107 goto bad_swap;
2108 }
1da177e4 2109
3bd0f0c7
SJ
2110 if (p->bdev) {
2111 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2112 p->flags |= SWP_SOLIDSTATE;
2113 p->cluster_next = 1 + (random32() % p->highest_bit);
2114 }
33994466 2115 if (discard_swap(p) == 0 && (swap_flags & SWAP_FLAG_DISCARD))
3bd0f0c7 2116 p->flags |= SWP_DISCARDABLE;
20137a49 2117 }
6a6ba831 2118
fc0abb14 2119 mutex_lock(&swapon_mutex);
40531542 2120 prio = -1;
78ecba08 2121 if (swap_flags & SWAP_FLAG_PREFER)
40531542 2122 prio =
78ecba08 2123 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
40531542 2124 enable_swap_info(p, prio, swap_map);
c69dbfb8
CEB
2125
2126 printk(KERN_INFO "Adding %uk swap on %s. "
2127 "Priority:%d extents:%d across:%lluk %s%s\n",
2128 p->pages<<(PAGE_SHIFT-10), name, p->prio,
2129 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2130 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2131 (p->flags & SWP_DISCARDABLE) ? "D" : "");
2132
fc0abb14 2133 mutex_unlock(&swapon_mutex);
66d7dd51
KS
2134 atomic_inc(&proc_poll_event);
2135 wake_up_interruptible(&proc_poll_wait);
2136
9b01c350
CEB
2137 if (S_ISREG(inode->i_mode))
2138 inode->i_flags |= S_SWAPFILE;
1da177e4
LT
2139 error = 0;
2140 goto out;
2141bad_swap:
bd69010b 2142 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
2143 set_blocksize(p->bdev, p->old_block_size);
2144 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2145 }
4cd3bb10 2146 destroy_swap_extents(p);
e8e6c2ec 2147 swap_cgroup_swapoff(p->type);
5d337b91 2148 spin_lock(&swap_lock);
1da177e4 2149 p->swap_file = NULL;
1da177e4 2150 p->flags = 0;
5d337b91 2151 spin_unlock(&swap_lock);
1da177e4 2152 vfree(swap_map);
52c50567 2153 if (swap_file) {
2130781e 2154 if (inode && S_ISREG(inode->i_mode)) {
52c50567 2155 mutex_unlock(&inode->i_mutex);
2130781e
CEB
2156 inode = NULL;
2157 }
1da177e4 2158 filp_close(swap_file, NULL);
52c50567 2159 }
1da177e4
LT
2160out:
2161 if (page && !IS_ERR(page)) {
2162 kunmap(page);
2163 page_cache_release(page);
2164 }
2165 if (name)
2166 putname(name);
9b01c350 2167 if (inode && S_ISREG(inode->i_mode))
1b1dcc1b 2168 mutex_unlock(&inode->i_mutex);
1da177e4
LT
2169 return error;
2170}
2171
2172void si_swapinfo(struct sysinfo *val)
2173{
efa90a98 2174 unsigned int type;
1da177e4
LT
2175 unsigned long nr_to_be_unused = 0;
2176
5d337b91 2177 spin_lock(&swap_lock);
efa90a98
HD
2178 for (type = 0; type < nr_swapfiles; type++) {
2179 struct swap_info_struct *si = swap_info[type];
2180
2181 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2182 nr_to_be_unused += si->inuse_pages;
1da177e4
LT
2183 }
2184 val->freeswap = nr_swap_pages + nr_to_be_unused;
2185 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 2186 spin_unlock(&swap_lock);
1da177e4
LT
2187}
2188
2189/*
2190 * Verify that a swap entry is valid and increment its swap map count.
2191 *
355cfa73
KH
2192 * Returns error code in following case.
2193 * - success -> 0
2194 * - swp_entry is invalid -> EINVAL
2195 * - swp_entry is migration entry -> EINVAL
2196 * - swap-cache reference is requested but there is already one. -> EEXIST
2197 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 2198 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 2199 */
8d69aaee 2200static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 2201{
73c34b6a 2202 struct swap_info_struct *p;
1da177e4 2203 unsigned long offset, type;
8d69aaee
HD
2204 unsigned char count;
2205 unsigned char has_cache;
253d553b 2206 int err = -EINVAL;
1da177e4 2207
a7420aa5 2208 if (non_swap_entry(entry))
253d553b 2209 goto out;
0697212a 2210
1da177e4
LT
2211 type = swp_type(entry);
2212 if (type >= nr_swapfiles)
2213 goto bad_file;
efa90a98 2214 p = swap_info[type];
1da177e4
LT
2215 offset = swp_offset(entry);
2216
5d337b91 2217 spin_lock(&swap_lock);
355cfa73
KH
2218 if (unlikely(offset >= p->max))
2219 goto unlock_out;
2220
253d553b
HD
2221 count = p->swap_map[offset];
2222 has_cache = count & SWAP_HAS_CACHE;
2223 count &= ~SWAP_HAS_CACHE;
2224 err = 0;
355cfa73 2225
253d553b 2226 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
2227
2228 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
2229 if (!has_cache && count)
2230 has_cache = SWAP_HAS_CACHE;
2231 else if (has_cache) /* someone else added cache */
2232 err = -EEXIST;
2233 else /* no users remaining */
2234 err = -ENOENT;
355cfa73
KH
2235
2236 } else if (count || has_cache) {
253d553b 2237
570a335b
HD
2238 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2239 count += usage;
2240 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 2241 err = -EINVAL;
570a335b
HD
2242 else if (swap_count_continued(p, offset, count))
2243 count = COUNT_CONTINUED;
2244 else
2245 err = -ENOMEM;
355cfa73 2246 } else
253d553b
HD
2247 err = -ENOENT; /* unused swap entry */
2248
2249 p->swap_map[offset] = count | has_cache;
2250
355cfa73 2251unlock_out:
5d337b91 2252 spin_unlock(&swap_lock);
1da177e4 2253out:
253d553b 2254 return err;
1da177e4
LT
2255
2256bad_file:
2257 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2258 goto out;
2259}
253d553b 2260
aaa46865
HD
2261/*
2262 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2263 * (in which case its reference count is never incremented).
2264 */
2265void swap_shmem_alloc(swp_entry_t entry)
2266{
2267 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2268}
2269
355cfa73 2270/*
08259d58
HD
2271 * Increase reference count of swap entry by 1.
2272 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2273 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2274 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2275 * might occur if a page table entry has got corrupted.
355cfa73 2276 */
570a335b 2277int swap_duplicate(swp_entry_t entry)
355cfa73 2278{
570a335b
HD
2279 int err = 0;
2280
2281 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2282 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2283 return err;
355cfa73 2284}
1da177e4 2285
cb4b86ba 2286/*
355cfa73
KH
2287 * @entry: swap entry for which we allocate swap cache.
2288 *
73c34b6a 2289 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
2290 * This can return error codes. Returns 0 at success.
2291 * -EBUSY means there is a swap cache.
2292 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
2293 */
2294int swapcache_prepare(swp_entry_t entry)
2295{
253d553b 2296 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
2297}
2298
1da177e4 2299/*
5d337b91 2300 * swap_lock prevents swap_map being freed. Don't grab an extra
1da177e4
LT
2301 * reference on the swaphandle, it doesn't matter if it becomes unused.
2302 */
2303int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2304{
8952898b 2305 struct swap_info_struct *si;
3f9e7949 2306 int our_page_cluster = page_cluster;
8952898b
HD
2307 pgoff_t target, toff;
2308 pgoff_t base, end;
2309 int nr_pages = 0;
1da177e4 2310
3f9e7949 2311 if (!our_page_cluster) /* no readahead */
1da177e4 2312 return 0;
8952898b 2313
efa90a98 2314 si = swap_info[swp_type(entry)];
8952898b
HD
2315 target = swp_offset(entry);
2316 base = (target >> our_page_cluster) << our_page_cluster;
2317 end = base + (1 << our_page_cluster);
2318 if (!base) /* first page is swap header */
2319 base++;
1da177e4 2320
5d337b91 2321 spin_lock(&swap_lock);
8952898b
HD
2322 if (end > si->max) /* don't go beyond end of map */
2323 end = si->max;
2324
2325 /* Count contiguous allocated slots above our target */
2326 for (toff = target; ++toff < end; nr_pages++) {
2327 /* Don't read in free or bad pages */
2328 if (!si->swap_map[toff])
2329 break;
355cfa73 2330 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
1da177e4 2331 break;
8952898b
HD
2332 }
2333 /* Count contiguous allocated slots below our target */
2334 for (toff = target; --toff >= base; nr_pages++) {
1da177e4 2335 /* Don't read in free or bad pages */
8952898b 2336 if (!si->swap_map[toff])
1da177e4 2337 break;
355cfa73 2338 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
1da177e4 2339 break;
8952898b 2340 }
5d337b91 2341 spin_unlock(&swap_lock);
8952898b
HD
2342
2343 /*
2344 * Indicate starting offset, and return number of pages to get:
2345 * if only 1, say 0, since there's then no readahead to be done.
2346 */
2347 *offset = ++toff;
2348 return nr_pages? ++nr_pages: 0;
1da177e4 2349}
570a335b
HD
2350
2351/*
2352 * add_swap_count_continuation - called when a swap count is duplicated
2353 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2354 * page of the original vmalloc'ed swap_map, to hold the continuation count
2355 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2356 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2357 *
2358 * These continuation pages are seldom referenced: the common paths all work
2359 * on the original swap_map, only referring to a continuation page when the
2360 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2361 *
2362 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2363 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2364 * can be called after dropping locks.
2365 */
2366int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2367{
2368 struct swap_info_struct *si;
2369 struct page *head;
2370 struct page *page;
2371 struct page *list_page;
2372 pgoff_t offset;
2373 unsigned char count;
2374
2375 /*
2376 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2377 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2378 */
2379 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2380
2381 si = swap_info_get(entry);
2382 if (!si) {
2383 /*
2384 * An acceptable race has occurred since the failing
2385 * __swap_duplicate(): the swap entry has been freed,
2386 * perhaps even the whole swap_map cleared for swapoff.
2387 */
2388 goto outer;
2389 }
2390
2391 offset = swp_offset(entry);
2392 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2393
2394 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2395 /*
2396 * The higher the swap count, the more likely it is that tasks
2397 * will race to add swap count continuation: we need to avoid
2398 * over-provisioning.
2399 */
2400 goto out;
2401 }
2402
2403 if (!page) {
2404 spin_unlock(&swap_lock);
2405 return -ENOMEM;
2406 }
2407
2408 /*
2409 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2410 * no architecture is using highmem pages for kernel pagetables: so it
2411 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2412 */
2413 head = vmalloc_to_page(si->swap_map + offset);
2414 offset &= ~PAGE_MASK;
2415
2416 /*
2417 * Page allocation does not initialize the page's lru field,
2418 * but it does always reset its private field.
2419 */
2420 if (!page_private(head)) {
2421 BUG_ON(count & COUNT_CONTINUED);
2422 INIT_LIST_HEAD(&head->lru);
2423 set_page_private(head, SWP_CONTINUED);
2424 si->flags |= SWP_CONTINUED;
2425 }
2426
2427 list_for_each_entry(list_page, &head->lru, lru) {
2428 unsigned char *map;
2429
2430 /*
2431 * If the previous map said no continuation, but we've found
2432 * a continuation page, free our allocation and use this one.
2433 */
2434 if (!(count & COUNT_CONTINUED))
2435 goto out;
2436
2437 map = kmap_atomic(list_page, KM_USER0) + offset;
2438 count = *map;
2439 kunmap_atomic(map, KM_USER0);
2440
2441 /*
2442 * If this continuation count now has some space in it,
2443 * free our allocation and use this one.
2444 */
2445 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2446 goto out;
2447 }
2448
2449 list_add_tail(&page->lru, &head->lru);
2450 page = NULL; /* now it's attached, don't free it */
2451out:
2452 spin_unlock(&swap_lock);
2453outer:
2454 if (page)
2455 __free_page(page);
2456 return 0;
2457}
2458
2459/*
2460 * swap_count_continued - when the original swap_map count is incremented
2461 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2462 * into, carry if so, or else fail until a new continuation page is allocated;
2463 * when the original swap_map count is decremented from 0 with continuation,
2464 * borrow from the continuation and report whether it still holds more.
2465 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2466 */
2467static bool swap_count_continued(struct swap_info_struct *si,
2468 pgoff_t offset, unsigned char count)
2469{
2470 struct page *head;
2471 struct page *page;
2472 unsigned char *map;
2473
2474 head = vmalloc_to_page(si->swap_map + offset);
2475 if (page_private(head) != SWP_CONTINUED) {
2476 BUG_ON(count & COUNT_CONTINUED);
2477 return false; /* need to add count continuation */
2478 }
2479
2480 offset &= ~PAGE_MASK;
2481 page = list_entry(head->lru.next, struct page, lru);
2482 map = kmap_atomic(page, KM_USER0) + offset;
2483
2484 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2485 goto init_map; /* jump over SWAP_CONT_MAX checks */
2486
2487 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2488 /*
2489 * Think of how you add 1 to 999
2490 */
2491 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2492 kunmap_atomic(map, KM_USER0);
2493 page = list_entry(page->lru.next, struct page, lru);
2494 BUG_ON(page == head);
2495 map = kmap_atomic(page, KM_USER0) + offset;
2496 }
2497 if (*map == SWAP_CONT_MAX) {
2498 kunmap_atomic(map, KM_USER0);
2499 page = list_entry(page->lru.next, struct page, lru);
2500 if (page == head)
2501 return false; /* add count continuation */
2502 map = kmap_atomic(page, KM_USER0) + offset;
2503init_map: *map = 0; /* we didn't zero the page */
2504 }
2505 *map += 1;
2506 kunmap_atomic(map, KM_USER0);
2507 page = list_entry(page->lru.prev, struct page, lru);
2508 while (page != head) {
2509 map = kmap_atomic(page, KM_USER0) + offset;
2510 *map = COUNT_CONTINUED;
2511 kunmap_atomic(map, KM_USER0);
2512 page = list_entry(page->lru.prev, struct page, lru);
2513 }
2514 return true; /* incremented */
2515
2516 } else { /* decrementing */
2517 /*
2518 * Think of how you subtract 1 from 1000
2519 */
2520 BUG_ON(count != COUNT_CONTINUED);
2521 while (*map == COUNT_CONTINUED) {
2522 kunmap_atomic(map, KM_USER0);
2523 page = list_entry(page->lru.next, struct page, lru);
2524 BUG_ON(page == head);
2525 map = kmap_atomic(page, KM_USER0) + offset;
2526 }
2527 BUG_ON(*map == 0);
2528 *map -= 1;
2529 if (*map == 0)
2530 count = 0;
2531 kunmap_atomic(map, KM_USER0);
2532 page = list_entry(page->lru.prev, struct page, lru);
2533 while (page != head) {
2534 map = kmap_atomic(page, KM_USER0) + offset;
2535 *map = SWAP_CONT_MAX | count;
2536 count = COUNT_CONTINUED;
2537 kunmap_atomic(map, KM_USER0);
2538 page = list_entry(page->lru.prev, struct page, lru);
2539 }
2540 return count == COUNT_CONTINUED;
2541 }
2542}
2543
2544/*
2545 * free_swap_count_continuations - swapoff free all the continuation pages
2546 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2547 */
2548static void free_swap_count_continuations(struct swap_info_struct *si)
2549{
2550 pgoff_t offset;
2551
2552 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2553 struct page *head;
2554 head = vmalloc_to_page(si->swap_map + offset);
2555 if (page_private(head)) {
2556 struct list_head *this, *next;
2557 list_for_each_safe(this, next, &head->lru) {
2558 struct page *page;
2559 page = list_entry(this, struct page, lru);
2560 list_del(this);
2561 __free_page(page);
2562 }
2563 }
2564 }
2565}