]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/vmalloc.c
mm: unexport unmap_kernel_range_noflush
[thirdparty/linux.git] / mm / vmalloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/vmalloc.c
4 *
5 * Copyright (C) 1993 Linus Torvalds
6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 9 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
10 */
11
db64fe02 12#include <linux/vmalloc.h>
1da177e4
LT
13#include <linux/mm.h>
14#include <linux/module.h>
15#include <linux/highmem.h>
c3edc401 16#include <linux/sched/signal.h>
1da177e4
LT
17#include <linux/slab.h>
18#include <linux/spinlock.h>
19#include <linux/interrupt.h>
5f6a6a9c 20#include <linux/proc_fs.h>
a10aa579 21#include <linux/seq_file.h>
868b104d 22#include <linux/set_memory.h>
3ac7fe5a 23#include <linux/debugobjects.h>
23016969 24#include <linux/kallsyms.h>
db64fe02 25#include <linux/list.h>
4da56b99 26#include <linux/notifier.h>
db64fe02
NP
27#include <linux/rbtree.h>
28#include <linux/radix-tree.h>
29#include <linux/rcupdate.h>
f0aa6617 30#include <linux/pfn.h>
89219d37 31#include <linux/kmemleak.h>
60063497 32#include <linux/atomic.h>
3b32123d 33#include <linux/compiler.h>
32fcfd40 34#include <linux/llist.h>
0f616be1 35#include <linux/bitops.h>
68ad4a33 36#include <linux/rbtree_augmented.h>
bdebd6a2 37#include <linux/overflow.h>
3b32123d 38
7c0f6ba6 39#include <linux/uaccess.h>
1da177e4 40#include <asm/tlbflush.h>
2dca6999 41#include <asm/shmparam.h>
1da177e4 42
dd56b046
MG
43#include "internal.h"
44
186525bd
IM
45bool is_vmalloc_addr(const void *x)
46{
47 unsigned long addr = (unsigned long)x;
48
49 return addr >= VMALLOC_START && addr < VMALLOC_END;
50}
51EXPORT_SYMBOL(is_vmalloc_addr);
52
32fcfd40
AV
53struct vfree_deferred {
54 struct llist_head list;
55 struct work_struct wq;
56};
57static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
58
59static void __vunmap(const void *, int);
60
61static void free_work(struct work_struct *w)
62{
63 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
894e58c1
BP
64 struct llist_node *t, *llnode;
65
66 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
67 __vunmap((void *)llnode, 1);
32fcfd40
AV
68}
69
db64fe02 70/*** Page table manipulation functions ***/
b221385b 71
1da177e4
LT
72static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
73{
74 pte_t *pte;
75
76 pte = pte_offset_kernel(pmd, addr);
77 do {
78 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
79 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
80 } while (pte++, addr += PAGE_SIZE, addr != end);
81}
82
db64fe02 83static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
84{
85 pmd_t *pmd;
86 unsigned long next;
87
88 pmd = pmd_offset(pud, addr);
89 do {
90 next = pmd_addr_end(addr, end);
b9820d8f
TK
91 if (pmd_clear_huge(pmd))
92 continue;
1da177e4
LT
93 if (pmd_none_or_clear_bad(pmd))
94 continue;
95 vunmap_pte_range(pmd, addr, next);
96 } while (pmd++, addr = next, addr != end);
97}
98
c2febafc 99static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
1da177e4
LT
100{
101 pud_t *pud;
102 unsigned long next;
103
c2febafc 104 pud = pud_offset(p4d, addr);
1da177e4
LT
105 do {
106 next = pud_addr_end(addr, end);
b9820d8f
TK
107 if (pud_clear_huge(pud))
108 continue;
1da177e4
LT
109 if (pud_none_or_clear_bad(pud))
110 continue;
111 vunmap_pmd_range(pud, addr, next);
112 } while (pud++, addr = next, addr != end);
113}
114
c2febafc
KS
115static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
116{
117 p4d_t *p4d;
118 unsigned long next;
119
120 p4d = p4d_offset(pgd, addr);
121 do {
122 next = p4d_addr_end(addr, end);
123 if (p4d_clear_huge(p4d))
124 continue;
125 if (p4d_none_or_clear_bad(p4d))
126 continue;
127 vunmap_pud_range(p4d, addr, next);
128 } while (p4d++, addr = next, addr != end);
129}
130
db64fe02 131static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
132{
133 pgd_t *pgd;
134 unsigned long next;
1da177e4
LT
135
136 BUG_ON(addr >= end);
137 pgd = pgd_offset_k(addr);
1da177e4
LT
138 do {
139 next = pgd_addr_end(addr, end);
140 if (pgd_none_or_clear_bad(pgd))
141 continue;
c2febafc 142 vunmap_p4d_range(pgd, addr, next);
1da177e4 143 } while (pgd++, addr = next, addr != end);
1da177e4
LT
144}
145
146static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 147 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
148{
149 pte_t *pte;
150
db64fe02
NP
151 /*
152 * nr is a running index into the array which helps higher level
153 * callers keep track of where we're up to.
154 */
155
872fec16 156 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
157 if (!pte)
158 return -ENOMEM;
159 do {
db64fe02
NP
160 struct page *page = pages[*nr];
161
162 if (WARN_ON(!pte_none(*pte)))
163 return -EBUSY;
164 if (WARN_ON(!page))
1da177e4
LT
165 return -ENOMEM;
166 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 167 (*nr)++;
1da177e4
LT
168 } while (pte++, addr += PAGE_SIZE, addr != end);
169 return 0;
170}
171
db64fe02
NP
172static int vmap_pmd_range(pud_t *pud, unsigned long addr,
173 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
174{
175 pmd_t *pmd;
176 unsigned long next;
177
178 pmd = pmd_alloc(&init_mm, pud, addr);
179 if (!pmd)
180 return -ENOMEM;
181 do {
182 next = pmd_addr_end(addr, end);
db64fe02 183 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
184 return -ENOMEM;
185 } while (pmd++, addr = next, addr != end);
186 return 0;
187}
188
c2febafc 189static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
db64fe02 190 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
191{
192 pud_t *pud;
193 unsigned long next;
194
c2febafc 195 pud = pud_alloc(&init_mm, p4d, addr);
1da177e4
LT
196 if (!pud)
197 return -ENOMEM;
198 do {
199 next = pud_addr_end(addr, end);
db64fe02 200 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
201 return -ENOMEM;
202 } while (pud++, addr = next, addr != end);
203 return 0;
204}
205
c2febafc
KS
206static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
207 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
208{
209 p4d_t *p4d;
210 unsigned long next;
211
212 p4d = p4d_alloc(&init_mm, pgd, addr);
213 if (!p4d)
214 return -ENOMEM;
215 do {
216 next = p4d_addr_end(addr, end);
217 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
218 return -ENOMEM;
219 } while (p4d++, addr = next, addr != end);
220 return 0;
221}
222
db64fe02
NP
223/*
224 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
225 * will have pfns corresponding to the "pages" array.
226 *
227 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
228 */
8fc48985
TH
229static int vmap_page_range_noflush(unsigned long start, unsigned long end,
230 pgprot_t prot, struct page **pages)
1da177e4
LT
231{
232 pgd_t *pgd;
233 unsigned long next;
2e4e27c7 234 unsigned long addr = start;
db64fe02
NP
235 int err = 0;
236 int nr = 0;
1da177e4
LT
237
238 BUG_ON(addr >= end);
239 pgd = pgd_offset_k(addr);
1da177e4
LT
240 do {
241 next = pgd_addr_end(addr, end);
c2febafc 242 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
1da177e4 243 if (err)
bf88c8c8 244 return err;
1da177e4 245 } while (pgd++, addr = next, addr != end);
db64fe02 246
db64fe02 247 return nr;
1da177e4
LT
248}
249
8fc48985
TH
250static int vmap_page_range(unsigned long start, unsigned long end,
251 pgprot_t prot, struct page **pages)
252{
253 int ret;
254
255 ret = vmap_page_range_noflush(start, end, prot, pages);
256 flush_cache_vmap(start, end);
257 return ret;
258}
259
81ac3ad9 260int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
261{
262 /*
ab4f2ee1 263 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
264 * and fall back on vmalloc() if that fails. Others
265 * just put it in the vmalloc space.
266 */
267#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
268 unsigned long addr = (unsigned long)x;
269 if (addr >= MODULES_VADDR && addr < MODULES_END)
270 return 1;
271#endif
272 return is_vmalloc_addr(x);
273}
274
48667e7a 275/*
add688fb 276 * Walk a vmap address to the struct page it maps.
48667e7a 277 */
add688fb 278struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
279{
280 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 281 struct page *page = NULL;
48667e7a 282 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
283 p4d_t *p4d;
284 pud_t *pud;
285 pmd_t *pmd;
286 pte_t *ptep, pte;
48667e7a 287
7aa413de
IM
288 /*
289 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
290 * architectures that do not vmalloc module space
291 */
73bdf0a6 292 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 293
c2febafc
KS
294 if (pgd_none(*pgd))
295 return NULL;
296 p4d = p4d_offset(pgd, addr);
297 if (p4d_none(*p4d))
298 return NULL;
299 pud = pud_offset(p4d, addr);
029c54b0
AB
300
301 /*
302 * Don't dereference bad PUD or PMD (below) entries. This will also
303 * identify huge mappings, which we may encounter on architectures
304 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
305 * identified as vmalloc addresses by is_vmalloc_addr(), but are
306 * not [unambiguously] associated with a struct page, so there is
307 * no correct value to return for them.
308 */
309 WARN_ON_ONCE(pud_bad(*pud));
310 if (pud_none(*pud) || pud_bad(*pud))
c2febafc
KS
311 return NULL;
312 pmd = pmd_offset(pud, addr);
029c54b0
AB
313 WARN_ON_ONCE(pmd_bad(*pmd));
314 if (pmd_none(*pmd) || pmd_bad(*pmd))
c2febafc
KS
315 return NULL;
316
317 ptep = pte_offset_map(pmd, addr);
318 pte = *ptep;
319 if (pte_present(pte))
320 page = pte_page(pte);
321 pte_unmap(ptep);
add688fb 322 return page;
48667e7a 323}
add688fb 324EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
325
326/*
add688fb 327 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 328 */
add688fb 329unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 330{
add688fb 331 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 332}
add688fb 333EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 334
db64fe02
NP
335
336/*** Global kva allocator ***/
337
bb850f4d 338#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
a6cf4e0f 339#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
bb850f4d 340
db64fe02 341
db64fe02 342static DEFINE_SPINLOCK(vmap_area_lock);
e36176be 343static DEFINE_SPINLOCK(free_vmap_area_lock);
f1c4069e
JK
344/* Export for kexec only */
345LIST_HEAD(vmap_area_list);
80c4bd7a 346static LLIST_HEAD(vmap_purge_list);
89699605 347static struct rb_root vmap_area_root = RB_ROOT;
68ad4a33 348static bool vmap_initialized __read_mostly;
89699605 349
68ad4a33
URS
350/*
351 * This kmem_cache is used for vmap_area objects. Instead of
352 * allocating from slab we reuse an object from this cache to
353 * make things faster. Especially in "no edge" splitting of
354 * free block.
355 */
356static struct kmem_cache *vmap_area_cachep;
357
358/*
359 * This linked list is used in pair with free_vmap_area_root.
360 * It gives O(1) access to prev/next to perform fast coalescing.
361 */
362static LIST_HEAD(free_vmap_area_list);
363
364/*
365 * This augment red-black tree represents the free vmap space.
366 * All vmap_area objects in this tree are sorted by va->va_start
367 * address. It is used for allocation and merging when a vmap
368 * object is released.
369 *
370 * Each vmap_area node contains a maximum available free block
371 * of its sub-tree, right or left. Therefore it is possible to
372 * find a lowest match of free area.
373 */
374static struct rb_root free_vmap_area_root = RB_ROOT;
375
82dd23e8
URS
376/*
377 * Preload a CPU with one object for "no edge" split case. The
378 * aim is to get rid of allocations from the atomic context, thus
379 * to use more permissive allocation masks.
380 */
381static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
382
68ad4a33
URS
383static __always_inline unsigned long
384va_size(struct vmap_area *va)
385{
386 return (va->va_end - va->va_start);
387}
388
389static __always_inline unsigned long
390get_subtree_max_size(struct rb_node *node)
391{
392 struct vmap_area *va;
393
394 va = rb_entry_safe(node, struct vmap_area, rb_node);
395 return va ? va->subtree_max_size : 0;
396}
89699605 397
68ad4a33
URS
398/*
399 * Gets called when remove the node and rotate.
400 */
401static __always_inline unsigned long
402compute_subtree_max_size(struct vmap_area *va)
403{
404 return max3(va_size(va),
405 get_subtree_max_size(va->rb_node.rb_left),
406 get_subtree_max_size(va->rb_node.rb_right));
407}
408
315cc066
ML
409RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
410 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
68ad4a33
URS
411
412static void purge_vmap_area_lazy(void);
413static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
414static unsigned long lazy_max_pages(void);
db64fe02 415
97105f0a
RG
416static atomic_long_t nr_vmalloc_pages;
417
418unsigned long vmalloc_nr_pages(void)
419{
420 return atomic_long_read(&nr_vmalloc_pages);
421}
422
db64fe02 423static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 424{
db64fe02
NP
425 struct rb_node *n = vmap_area_root.rb_node;
426
427 while (n) {
428 struct vmap_area *va;
429
430 va = rb_entry(n, struct vmap_area, rb_node);
431 if (addr < va->va_start)
432 n = n->rb_left;
cef2ac3f 433 else if (addr >= va->va_end)
db64fe02
NP
434 n = n->rb_right;
435 else
436 return va;
437 }
438
439 return NULL;
440}
441
68ad4a33
URS
442/*
443 * This function returns back addresses of parent node
444 * and its left or right link for further processing.
445 */
446static __always_inline struct rb_node **
447find_va_links(struct vmap_area *va,
448 struct rb_root *root, struct rb_node *from,
449 struct rb_node **parent)
450{
451 struct vmap_area *tmp_va;
452 struct rb_node **link;
453
454 if (root) {
455 link = &root->rb_node;
456 if (unlikely(!*link)) {
457 *parent = NULL;
458 return link;
459 }
460 } else {
461 link = &from;
462 }
db64fe02 463
68ad4a33
URS
464 /*
465 * Go to the bottom of the tree. When we hit the last point
466 * we end up with parent rb_node and correct direction, i name
467 * it link, where the new va->rb_node will be attached to.
468 */
469 do {
470 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
db64fe02 471
68ad4a33
URS
472 /*
473 * During the traversal we also do some sanity check.
474 * Trigger the BUG() if there are sides(left/right)
475 * or full overlaps.
476 */
477 if (va->va_start < tmp_va->va_end &&
478 va->va_end <= tmp_va->va_start)
479 link = &(*link)->rb_left;
480 else if (va->va_end > tmp_va->va_start &&
481 va->va_start >= tmp_va->va_end)
482 link = &(*link)->rb_right;
db64fe02
NP
483 else
484 BUG();
68ad4a33
URS
485 } while (*link);
486
487 *parent = &tmp_va->rb_node;
488 return link;
489}
490
491static __always_inline struct list_head *
492get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
493{
494 struct list_head *list;
495
496 if (unlikely(!parent))
497 /*
498 * The red-black tree where we try to find VA neighbors
499 * before merging or inserting is empty, i.e. it means
500 * there is no free vmap space. Normally it does not
501 * happen but we handle this case anyway.
502 */
503 return NULL;
504
505 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
506 return (&parent->rb_right == link ? list->next : list);
507}
508
509static __always_inline void
510link_va(struct vmap_area *va, struct rb_root *root,
511 struct rb_node *parent, struct rb_node **link, struct list_head *head)
512{
513 /*
514 * VA is still not in the list, but we can
515 * identify its future previous list_head node.
516 */
517 if (likely(parent)) {
518 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
519 if (&parent->rb_right != link)
520 head = head->prev;
db64fe02
NP
521 }
522
68ad4a33
URS
523 /* Insert to the rb-tree */
524 rb_link_node(&va->rb_node, parent, link);
525 if (root == &free_vmap_area_root) {
526 /*
527 * Some explanation here. Just perform simple insertion
528 * to the tree. We do not set va->subtree_max_size to
529 * its current size before calling rb_insert_augmented().
530 * It is because of we populate the tree from the bottom
531 * to parent levels when the node _is_ in the tree.
532 *
533 * Therefore we set subtree_max_size to zero after insertion,
534 * to let __augment_tree_propagate_from() puts everything to
535 * the correct order later on.
536 */
537 rb_insert_augmented(&va->rb_node,
538 root, &free_vmap_area_rb_augment_cb);
539 va->subtree_max_size = 0;
540 } else {
541 rb_insert_color(&va->rb_node, root);
542 }
db64fe02 543
68ad4a33
URS
544 /* Address-sort this list */
545 list_add(&va->list, head);
db64fe02
NP
546}
547
68ad4a33
URS
548static __always_inline void
549unlink_va(struct vmap_area *va, struct rb_root *root)
550{
460e42d1
URS
551 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
552 return;
db64fe02 553
460e42d1
URS
554 if (root == &free_vmap_area_root)
555 rb_erase_augmented(&va->rb_node,
556 root, &free_vmap_area_rb_augment_cb);
557 else
558 rb_erase(&va->rb_node, root);
559
560 list_del(&va->list);
561 RB_CLEAR_NODE(&va->rb_node);
68ad4a33
URS
562}
563
bb850f4d
URS
564#if DEBUG_AUGMENT_PROPAGATE_CHECK
565static void
566augment_tree_propagate_check(struct rb_node *n)
567{
568 struct vmap_area *va;
569 struct rb_node *node;
570 unsigned long size;
571 bool found = false;
572
573 if (n == NULL)
574 return;
575
576 va = rb_entry(n, struct vmap_area, rb_node);
577 size = va->subtree_max_size;
578 node = n;
579
580 while (node) {
581 va = rb_entry(node, struct vmap_area, rb_node);
582
583 if (get_subtree_max_size(node->rb_left) == size) {
584 node = node->rb_left;
585 } else {
586 if (va_size(va) == size) {
587 found = true;
588 break;
589 }
590
591 node = node->rb_right;
592 }
593 }
594
595 if (!found) {
596 va = rb_entry(n, struct vmap_area, rb_node);
597 pr_emerg("tree is corrupted: %lu, %lu\n",
598 va_size(va), va->subtree_max_size);
599 }
600
601 augment_tree_propagate_check(n->rb_left);
602 augment_tree_propagate_check(n->rb_right);
603}
604#endif
605
68ad4a33
URS
606/*
607 * This function populates subtree_max_size from bottom to upper
608 * levels starting from VA point. The propagation must be done
609 * when VA size is modified by changing its va_start/va_end. Or
610 * in case of newly inserting of VA to the tree.
611 *
612 * It means that __augment_tree_propagate_from() must be called:
613 * - After VA has been inserted to the tree(free path);
614 * - After VA has been shrunk(allocation path);
615 * - After VA has been increased(merging path).
616 *
617 * Please note that, it does not mean that upper parent nodes
618 * and their subtree_max_size are recalculated all the time up
619 * to the root node.
620 *
621 * 4--8
622 * /\
623 * / \
624 * / \
625 * 2--2 8--8
626 *
627 * For example if we modify the node 4, shrinking it to 2, then
628 * no any modification is required. If we shrink the node 2 to 1
629 * its subtree_max_size is updated only, and set to 1. If we shrink
630 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
631 * node becomes 4--6.
632 */
633static __always_inline void
634augment_tree_propagate_from(struct vmap_area *va)
635{
636 struct rb_node *node = &va->rb_node;
637 unsigned long new_va_sub_max_size;
638
639 while (node) {
640 va = rb_entry(node, struct vmap_area, rb_node);
641 new_va_sub_max_size = compute_subtree_max_size(va);
642
643 /*
644 * If the newly calculated maximum available size of the
645 * subtree is equal to the current one, then it means that
646 * the tree is propagated correctly. So we have to stop at
647 * this point to save cycles.
648 */
649 if (va->subtree_max_size == new_va_sub_max_size)
650 break;
651
652 va->subtree_max_size = new_va_sub_max_size;
653 node = rb_parent(&va->rb_node);
654 }
bb850f4d
URS
655
656#if DEBUG_AUGMENT_PROPAGATE_CHECK
657 augment_tree_propagate_check(free_vmap_area_root.rb_node);
658#endif
68ad4a33
URS
659}
660
661static void
662insert_vmap_area(struct vmap_area *va,
663 struct rb_root *root, struct list_head *head)
664{
665 struct rb_node **link;
666 struct rb_node *parent;
667
668 link = find_va_links(va, root, NULL, &parent);
669 link_va(va, root, parent, link, head);
670}
671
672static void
673insert_vmap_area_augment(struct vmap_area *va,
674 struct rb_node *from, struct rb_root *root,
675 struct list_head *head)
676{
677 struct rb_node **link;
678 struct rb_node *parent;
679
680 if (from)
681 link = find_va_links(va, NULL, from, &parent);
682 else
683 link = find_va_links(va, root, NULL, &parent);
684
685 link_va(va, root, parent, link, head);
686 augment_tree_propagate_from(va);
687}
688
689/*
690 * Merge de-allocated chunk of VA memory with previous
691 * and next free blocks. If coalesce is not done a new
692 * free area is inserted. If VA has been merged, it is
693 * freed.
694 */
3c5c3cfb 695static __always_inline struct vmap_area *
68ad4a33
URS
696merge_or_add_vmap_area(struct vmap_area *va,
697 struct rb_root *root, struct list_head *head)
698{
699 struct vmap_area *sibling;
700 struct list_head *next;
701 struct rb_node **link;
702 struct rb_node *parent;
703 bool merged = false;
704
705 /*
706 * Find a place in the tree where VA potentially will be
707 * inserted, unless it is merged with its sibling/siblings.
708 */
709 link = find_va_links(va, root, NULL, &parent);
710
711 /*
712 * Get next node of VA to check if merging can be done.
713 */
714 next = get_va_next_sibling(parent, link);
715 if (unlikely(next == NULL))
716 goto insert;
717
718 /*
719 * start end
720 * | |
721 * |<------VA------>|<-----Next----->|
722 * | |
723 * start end
724 */
725 if (next != head) {
726 sibling = list_entry(next, struct vmap_area, list);
727 if (sibling->va_start == va->va_end) {
728 sibling->va_start = va->va_start;
729
730 /* Check and update the tree if needed. */
731 augment_tree_propagate_from(sibling);
732
68ad4a33
URS
733 /* Free vmap_area object. */
734 kmem_cache_free(vmap_area_cachep, va);
735
736 /* Point to the new merged area. */
737 va = sibling;
738 merged = true;
739 }
740 }
741
742 /*
743 * start end
744 * | |
745 * |<-----Prev----->|<------VA------>|
746 * | |
747 * start end
748 */
749 if (next->prev != head) {
750 sibling = list_entry(next->prev, struct vmap_area, list);
751 if (sibling->va_end == va->va_start) {
752 sibling->va_end = va->va_end;
753
754 /* Check and update the tree if needed. */
755 augment_tree_propagate_from(sibling);
756
54f63d9d
URS
757 if (merged)
758 unlink_va(va, root);
68ad4a33
URS
759
760 /* Free vmap_area object. */
761 kmem_cache_free(vmap_area_cachep, va);
3c5c3cfb
DA
762
763 /* Point to the new merged area. */
764 va = sibling;
765 merged = true;
68ad4a33
URS
766 }
767 }
768
769insert:
770 if (!merged) {
771 link_va(va, root, parent, link, head);
772 augment_tree_propagate_from(va);
773 }
3c5c3cfb
DA
774
775 return va;
68ad4a33
URS
776}
777
778static __always_inline bool
779is_within_this_va(struct vmap_area *va, unsigned long size,
780 unsigned long align, unsigned long vstart)
781{
782 unsigned long nva_start_addr;
783
784 if (va->va_start > vstart)
785 nva_start_addr = ALIGN(va->va_start, align);
786 else
787 nva_start_addr = ALIGN(vstart, align);
788
789 /* Can be overflowed due to big size or alignment. */
790 if (nva_start_addr + size < nva_start_addr ||
791 nva_start_addr < vstart)
792 return false;
793
794 return (nva_start_addr + size <= va->va_end);
795}
796
797/*
798 * Find the first free block(lowest start address) in the tree,
799 * that will accomplish the request corresponding to passing
800 * parameters.
801 */
802static __always_inline struct vmap_area *
803find_vmap_lowest_match(unsigned long size,
804 unsigned long align, unsigned long vstart)
805{
806 struct vmap_area *va;
807 struct rb_node *node;
808 unsigned long length;
809
810 /* Start from the root. */
811 node = free_vmap_area_root.rb_node;
812
813 /* Adjust the search size for alignment overhead. */
814 length = size + align - 1;
815
816 while (node) {
817 va = rb_entry(node, struct vmap_area, rb_node);
818
819 if (get_subtree_max_size(node->rb_left) >= length &&
820 vstart < va->va_start) {
821 node = node->rb_left;
822 } else {
823 if (is_within_this_va(va, size, align, vstart))
824 return va;
825
826 /*
827 * Does not make sense to go deeper towards the right
828 * sub-tree if it does not have a free block that is
829 * equal or bigger to the requested search length.
830 */
831 if (get_subtree_max_size(node->rb_right) >= length) {
832 node = node->rb_right;
833 continue;
834 }
835
836 /*
3806b041 837 * OK. We roll back and find the first right sub-tree,
68ad4a33
URS
838 * that will satisfy the search criteria. It can happen
839 * only once due to "vstart" restriction.
840 */
841 while ((node = rb_parent(node))) {
842 va = rb_entry(node, struct vmap_area, rb_node);
843 if (is_within_this_va(va, size, align, vstart))
844 return va;
845
846 if (get_subtree_max_size(node->rb_right) >= length &&
847 vstart <= va->va_start) {
848 node = node->rb_right;
849 break;
850 }
851 }
852 }
853 }
854
855 return NULL;
856}
857
a6cf4e0f
URS
858#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
859#include <linux/random.h>
860
861static struct vmap_area *
862find_vmap_lowest_linear_match(unsigned long size,
863 unsigned long align, unsigned long vstart)
864{
865 struct vmap_area *va;
866
867 list_for_each_entry(va, &free_vmap_area_list, list) {
868 if (!is_within_this_va(va, size, align, vstart))
869 continue;
870
871 return va;
872 }
873
874 return NULL;
875}
876
877static void
878find_vmap_lowest_match_check(unsigned long size)
879{
880 struct vmap_area *va_1, *va_2;
881 unsigned long vstart;
882 unsigned int rnd;
883
884 get_random_bytes(&rnd, sizeof(rnd));
885 vstart = VMALLOC_START + rnd;
886
887 va_1 = find_vmap_lowest_match(size, 1, vstart);
888 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
889
890 if (va_1 != va_2)
891 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
892 va_1, va_2, vstart);
893}
894#endif
895
68ad4a33
URS
896enum fit_type {
897 NOTHING_FIT = 0,
898 FL_FIT_TYPE = 1, /* full fit */
899 LE_FIT_TYPE = 2, /* left edge fit */
900 RE_FIT_TYPE = 3, /* right edge fit */
901 NE_FIT_TYPE = 4 /* no edge fit */
902};
903
904static __always_inline enum fit_type
905classify_va_fit_type(struct vmap_area *va,
906 unsigned long nva_start_addr, unsigned long size)
907{
908 enum fit_type type;
909
910 /* Check if it is within VA. */
911 if (nva_start_addr < va->va_start ||
912 nva_start_addr + size > va->va_end)
913 return NOTHING_FIT;
914
915 /* Now classify. */
916 if (va->va_start == nva_start_addr) {
917 if (va->va_end == nva_start_addr + size)
918 type = FL_FIT_TYPE;
919 else
920 type = LE_FIT_TYPE;
921 } else if (va->va_end == nva_start_addr + size) {
922 type = RE_FIT_TYPE;
923 } else {
924 type = NE_FIT_TYPE;
925 }
926
927 return type;
928}
929
930static __always_inline int
931adjust_va_to_fit_type(struct vmap_area *va,
932 unsigned long nva_start_addr, unsigned long size,
933 enum fit_type type)
934{
2c929233 935 struct vmap_area *lva = NULL;
68ad4a33
URS
936
937 if (type == FL_FIT_TYPE) {
938 /*
939 * No need to split VA, it fully fits.
940 *
941 * | |
942 * V NVA V
943 * |---------------|
944 */
945 unlink_va(va, &free_vmap_area_root);
946 kmem_cache_free(vmap_area_cachep, va);
947 } else if (type == LE_FIT_TYPE) {
948 /*
949 * Split left edge of fit VA.
950 *
951 * | |
952 * V NVA V R
953 * |-------|-------|
954 */
955 va->va_start += size;
956 } else if (type == RE_FIT_TYPE) {
957 /*
958 * Split right edge of fit VA.
959 *
960 * | |
961 * L V NVA V
962 * |-------|-------|
963 */
964 va->va_end = nva_start_addr;
965 } else if (type == NE_FIT_TYPE) {
966 /*
967 * Split no edge of fit VA.
968 *
969 * | |
970 * L V NVA V R
971 * |---|-------|---|
972 */
82dd23e8
URS
973 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
974 if (unlikely(!lva)) {
975 /*
976 * For percpu allocator we do not do any pre-allocation
977 * and leave it as it is. The reason is it most likely
978 * never ends up with NE_FIT_TYPE splitting. In case of
979 * percpu allocations offsets and sizes are aligned to
980 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
981 * are its main fitting cases.
982 *
983 * There are a few exceptions though, as an example it is
984 * a first allocation (early boot up) when we have "one"
985 * big free space that has to be split.
060650a2
URS
986 *
987 * Also we can hit this path in case of regular "vmap"
988 * allocations, if "this" current CPU was not preloaded.
989 * See the comment in alloc_vmap_area() why. If so, then
990 * GFP_NOWAIT is used instead to get an extra object for
991 * split purpose. That is rare and most time does not
992 * occur.
993 *
994 * What happens if an allocation gets failed. Basically,
995 * an "overflow" path is triggered to purge lazily freed
996 * areas to free some memory, then, the "retry" path is
997 * triggered to repeat one more time. See more details
998 * in alloc_vmap_area() function.
82dd23e8
URS
999 */
1000 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1001 if (!lva)
1002 return -1;
1003 }
68ad4a33
URS
1004
1005 /*
1006 * Build the remainder.
1007 */
1008 lva->va_start = va->va_start;
1009 lva->va_end = nva_start_addr;
1010
1011 /*
1012 * Shrink this VA to remaining size.
1013 */
1014 va->va_start = nva_start_addr + size;
1015 } else {
1016 return -1;
1017 }
1018
1019 if (type != FL_FIT_TYPE) {
1020 augment_tree_propagate_from(va);
1021
2c929233 1022 if (lva) /* type == NE_FIT_TYPE */
68ad4a33
URS
1023 insert_vmap_area_augment(lva, &va->rb_node,
1024 &free_vmap_area_root, &free_vmap_area_list);
1025 }
1026
1027 return 0;
1028}
1029
1030/*
1031 * Returns a start address of the newly allocated area, if success.
1032 * Otherwise a vend is returned that indicates failure.
1033 */
1034static __always_inline unsigned long
1035__alloc_vmap_area(unsigned long size, unsigned long align,
cacca6ba 1036 unsigned long vstart, unsigned long vend)
68ad4a33
URS
1037{
1038 unsigned long nva_start_addr;
1039 struct vmap_area *va;
1040 enum fit_type type;
1041 int ret;
1042
1043 va = find_vmap_lowest_match(size, align, vstart);
1044 if (unlikely(!va))
1045 return vend;
1046
1047 if (va->va_start > vstart)
1048 nva_start_addr = ALIGN(va->va_start, align);
1049 else
1050 nva_start_addr = ALIGN(vstart, align);
1051
1052 /* Check the "vend" restriction. */
1053 if (nva_start_addr + size > vend)
1054 return vend;
1055
1056 /* Classify what we have found. */
1057 type = classify_va_fit_type(va, nva_start_addr, size);
1058 if (WARN_ON_ONCE(type == NOTHING_FIT))
1059 return vend;
1060
1061 /* Update the free vmap_area. */
1062 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1063 if (ret)
1064 return vend;
1065
a6cf4e0f
URS
1066#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1067 find_vmap_lowest_match_check(size);
1068#endif
1069
68ad4a33
URS
1070 return nva_start_addr;
1071}
4da56b99 1072
d98c9e83
AR
1073/*
1074 * Free a region of KVA allocated by alloc_vmap_area
1075 */
1076static void free_vmap_area(struct vmap_area *va)
1077{
1078 /*
1079 * Remove from the busy tree/list.
1080 */
1081 spin_lock(&vmap_area_lock);
1082 unlink_va(va, &vmap_area_root);
1083 spin_unlock(&vmap_area_lock);
1084
1085 /*
1086 * Insert/Merge it back to the free tree/list.
1087 */
1088 spin_lock(&free_vmap_area_lock);
1089 merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
1090 spin_unlock(&free_vmap_area_lock);
1091}
1092
db64fe02
NP
1093/*
1094 * Allocate a region of KVA of the specified size and alignment, within the
1095 * vstart and vend.
1096 */
1097static struct vmap_area *alloc_vmap_area(unsigned long size,
1098 unsigned long align,
1099 unsigned long vstart, unsigned long vend,
1100 int node, gfp_t gfp_mask)
1101{
82dd23e8 1102 struct vmap_area *va, *pva;
1da177e4 1103 unsigned long addr;
db64fe02 1104 int purged = 0;
d98c9e83 1105 int ret;
db64fe02 1106
7766970c 1107 BUG_ON(!size);
891c49ab 1108 BUG_ON(offset_in_page(size));
89699605 1109 BUG_ON(!is_power_of_2(align));
db64fe02 1110
68ad4a33
URS
1111 if (unlikely(!vmap_initialized))
1112 return ERR_PTR(-EBUSY);
1113
5803ed29 1114 might_sleep();
f07116d7 1115 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
4da56b99 1116
f07116d7 1117 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
db64fe02
NP
1118 if (unlikely(!va))
1119 return ERR_PTR(-ENOMEM);
1120
7f88f88f
CM
1121 /*
1122 * Only scan the relevant parts containing pointers to other objects
1123 * to avoid false negatives.
1124 */
f07116d7 1125 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
7f88f88f 1126
db64fe02 1127retry:
82dd23e8 1128 /*
81f1ba58
URS
1129 * Preload this CPU with one extra vmap_area object. It is used
1130 * when fit type of free area is NE_FIT_TYPE. Please note, it
1131 * does not guarantee that an allocation occurs on a CPU that
1132 * is preloaded, instead we minimize the case when it is not.
1133 * It can happen because of cpu migration, because there is a
1134 * race until the below spinlock is taken.
82dd23e8
URS
1135 *
1136 * The preload is done in non-atomic context, thus it allows us
1137 * to use more permissive allocation masks to be more stable under
81f1ba58
URS
1138 * low memory condition and high memory pressure. In rare case,
1139 * if not preloaded, GFP_NOWAIT is used.
82dd23e8 1140 *
81f1ba58 1141 * Set "pva" to NULL here, because of "retry" path.
82dd23e8 1142 */
81f1ba58 1143 pva = NULL;
82dd23e8 1144
81f1ba58
URS
1145 if (!this_cpu_read(ne_fit_preload_node))
1146 /*
1147 * Even if it fails we do not really care about that.
1148 * Just proceed as it is. If needed "overflow" path
1149 * will refill the cache we allocate from.
1150 */
f07116d7 1151 pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
82dd23e8 1152
e36176be 1153 spin_lock(&free_vmap_area_lock);
81f1ba58
URS
1154
1155 if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1156 kmem_cache_free(vmap_area_cachep, pva);
89699605 1157
afd07389 1158 /*
68ad4a33
URS
1159 * If an allocation fails, the "vend" address is
1160 * returned. Therefore trigger the overflow path.
afd07389 1161 */
cacca6ba 1162 addr = __alloc_vmap_area(size, align, vstart, vend);
e36176be
URS
1163 spin_unlock(&free_vmap_area_lock);
1164
68ad4a33 1165 if (unlikely(addr == vend))
89699605 1166 goto overflow;
db64fe02
NP
1167
1168 va->va_start = addr;
1169 va->va_end = addr + size;
688fcbfc 1170 va->vm = NULL;
68ad4a33 1171
d98c9e83 1172
e36176be
URS
1173 spin_lock(&vmap_area_lock);
1174 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
db64fe02
NP
1175 spin_unlock(&vmap_area_lock);
1176
61e16557 1177 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
1178 BUG_ON(va->va_start < vstart);
1179 BUG_ON(va->va_end > vend);
1180
d98c9e83
AR
1181 ret = kasan_populate_vmalloc(addr, size);
1182 if (ret) {
1183 free_vmap_area(va);
1184 return ERR_PTR(ret);
1185 }
1186
db64fe02 1187 return va;
89699605
NP
1188
1189overflow:
89699605
NP
1190 if (!purged) {
1191 purge_vmap_area_lazy();
1192 purged = 1;
1193 goto retry;
1194 }
4da56b99
CW
1195
1196 if (gfpflags_allow_blocking(gfp_mask)) {
1197 unsigned long freed = 0;
1198 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1199 if (freed > 0) {
1200 purged = 0;
1201 goto retry;
1202 }
1203 }
1204
03497d76 1205 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
1206 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1207 size);
68ad4a33
URS
1208
1209 kmem_cache_free(vmap_area_cachep, va);
89699605 1210 return ERR_PTR(-EBUSY);
db64fe02
NP
1211}
1212
4da56b99
CW
1213int register_vmap_purge_notifier(struct notifier_block *nb)
1214{
1215 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1216}
1217EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1218
1219int unregister_vmap_purge_notifier(struct notifier_block *nb)
1220{
1221 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1222}
1223EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1224
db64fe02
NP
1225/*
1226 * Clear the pagetable entries of a given vmap_area
1227 */
1228static void unmap_vmap_area(struct vmap_area *va)
1229{
1230 vunmap_page_range(va->va_start, va->va_end);
1231}
1232
1233/*
1234 * lazy_max_pages is the maximum amount of virtual address space we gather up
1235 * before attempting to purge with a TLB flush.
1236 *
1237 * There is a tradeoff here: a larger number will cover more kernel page tables
1238 * and take slightly longer to purge, but it will linearly reduce the number of
1239 * global TLB flushes that must be performed. It would seem natural to scale
1240 * this number up linearly with the number of CPUs (because vmapping activity
1241 * could also scale linearly with the number of CPUs), however it is likely
1242 * that in practice, workloads might be constrained in other ways that mean
1243 * vmap activity will not scale linearly with CPUs. Also, I want to be
1244 * conservative and not introduce a big latency on huge systems, so go with
1245 * a less aggressive log scale. It will still be an improvement over the old
1246 * code, and it will be simple to change the scale factor if we find that it
1247 * becomes a problem on bigger systems.
1248 */
1249static unsigned long lazy_max_pages(void)
1250{
1251 unsigned int log;
1252
1253 log = fls(num_online_cpus());
1254
1255 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1256}
1257
4d36e6f8 1258static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
db64fe02 1259
0574ecd1
CH
1260/*
1261 * Serialize vmap purging. There is no actual criticial section protected
1262 * by this look, but we want to avoid concurrent calls for performance
1263 * reasons and to make the pcpu_get_vm_areas more deterministic.
1264 */
f9e09977 1265static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 1266
02b709df
NP
1267/* for per-CPU blocks */
1268static void purge_fragmented_blocks_allcpus(void);
1269
3ee48b6a
CW
1270/*
1271 * called before a call to iounmap() if the caller wants vm_area_struct's
1272 * immediately freed.
1273 */
1274void set_iounmap_nonlazy(void)
1275{
4d36e6f8 1276 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
3ee48b6a
CW
1277}
1278
db64fe02
NP
1279/*
1280 * Purges all lazily-freed vmap areas.
db64fe02 1281 */
0574ecd1 1282static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 1283{
4d36e6f8 1284 unsigned long resched_threshold;
80c4bd7a 1285 struct llist_node *valist;
db64fe02 1286 struct vmap_area *va;
cbb76676 1287 struct vmap_area *n_va;
db64fe02 1288
0574ecd1 1289 lockdep_assert_held(&vmap_purge_lock);
02b709df 1290
80c4bd7a 1291 valist = llist_del_all(&vmap_purge_list);
68571be9
URS
1292 if (unlikely(valist == NULL))
1293 return false;
1294
3f8fd02b
JR
1295 /*
1296 * First make sure the mappings are removed from all page-tables
1297 * before they are freed.
1298 */
763802b5 1299 vmalloc_sync_unmappings();
3f8fd02b 1300
68571be9
URS
1301 /*
1302 * TODO: to calculate a flush range without looping.
1303 * The list can be up to lazy_max_pages() elements.
1304 */
80c4bd7a 1305 llist_for_each_entry(va, valist, purge_list) {
0574ecd1
CH
1306 if (va->va_start < start)
1307 start = va->va_start;
1308 if (va->va_end > end)
1309 end = va->va_end;
db64fe02 1310 }
db64fe02 1311
0574ecd1 1312 flush_tlb_kernel_range(start, end);
4d36e6f8 1313 resched_threshold = lazy_max_pages() << 1;
db64fe02 1314
e36176be 1315 spin_lock(&free_vmap_area_lock);
763b218d 1316 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
4d36e6f8 1317 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
3c5c3cfb
DA
1318 unsigned long orig_start = va->va_start;
1319 unsigned long orig_end = va->va_end;
763b218d 1320
dd3b8353
URS
1321 /*
1322 * Finally insert or merge lazily-freed area. It is
1323 * detached and there is no need to "unlink" it from
1324 * anything.
1325 */
3c5c3cfb
DA
1326 va = merge_or_add_vmap_area(va, &free_vmap_area_root,
1327 &free_vmap_area_list);
1328
1329 if (is_vmalloc_or_module_addr((void *)orig_start))
1330 kasan_release_vmalloc(orig_start, orig_end,
1331 va->va_start, va->va_end);
dd3b8353 1332
4d36e6f8 1333 atomic_long_sub(nr, &vmap_lazy_nr);
68571be9 1334
4d36e6f8 1335 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
e36176be 1336 cond_resched_lock(&free_vmap_area_lock);
763b218d 1337 }
e36176be 1338 spin_unlock(&free_vmap_area_lock);
0574ecd1 1339 return true;
db64fe02
NP
1340}
1341
496850e5
NP
1342/*
1343 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1344 * is already purging.
1345 */
1346static void try_purge_vmap_area_lazy(void)
1347{
f9e09977 1348 if (mutex_trylock(&vmap_purge_lock)) {
0574ecd1 1349 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1350 mutex_unlock(&vmap_purge_lock);
0574ecd1 1351 }
496850e5
NP
1352}
1353
db64fe02
NP
1354/*
1355 * Kick off a purge of the outstanding lazy areas.
1356 */
1357static void purge_vmap_area_lazy(void)
1358{
f9e09977 1359 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1360 purge_fragmented_blocks_allcpus();
1361 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1362 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
1363}
1364
1365/*
64141da5
JF
1366 * Free a vmap area, caller ensuring that the area has been unmapped
1367 * and flush_cache_vunmap had been called for the correct range
1368 * previously.
db64fe02 1369 */
64141da5 1370static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 1371{
4d36e6f8 1372 unsigned long nr_lazy;
80c4bd7a 1373
dd3b8353
URS
1374 spin_lock(&vmap_area_lock);
1375 unlink_va(va, &vmap_area_root);
1376 spin_unlock(&vmap_area_lock);
1377
4d36e6f8
URS
1378 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1379 PAGE_SHIFT, &vmap_lazy_nr);
80c4bd7a
CW
1380
1381 /* After this point, we may free va at any time */
1382 llist_add(&va->purge_list, &vmap_purge_list);
1383
1384 if (unlikely(nr_lazy > lazy_max_pages()))
496850e5 1385 try_purge_vmap_area_lazy();
db64fe02
NP
1386}
1387
b29acbdc
NP
1388/*
1389 * Free and unmap a vmap area
1390 */
1391static void free_unmap_vmap_area(struct vmap_area *va)
1392{
1393 flush_cache_vunmap(va->va_start, va->va_end);
c8eef01e 1394 unmap_vmap_area(va);
8e57f8ac 1395 if (debug_pagealloc_enabled_static())
82a2e924
CP
1396 flush_tlb_kernel_range(va->va_start, va->va_end);
1397
c8eef01e 1398 free_vmap_area_noflush(va);
b29acbdc
NP
1399}
1400
db64fe02
NP
1401static struct vmap_area *find_vmap_area(unsigned long addr)
1402{
1403 struct vmap_area *va;
1404
1405 spin_lock(&vmap_area_lock);
1406 va = __find_vmap_area(addr);
1407 spin_unlock(&vmap_area_lock);
1408
1409 return va;
1410}
1411
db64fe02
NP
1412/*** Per cpu kva allocator ***/
1413
1414/*
1415 * vmap space is limited especially on 32 bit architectures. Ensure there is
1416 * room for at least 16 percpu vmap blocks per CPU.
1417 */
1418/*
1419 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1420 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1421 * instead (we just need a rough idea)
1422 */
1423#if BITS_PER_LONG == 32
1424#define VMALLOC_SPACE (128UL*1024*1024)
1425#else
1426#define VMALLOC_SPACE (128UL*1024*1024*1024)
1427#endif
1428
1429#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1430#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1431#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1432#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1433#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1434#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
1435#define VMAP_BBMAP_BITS \
1436 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1437 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1438 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
1439
1440#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1441
1442struct vmap_block_queue {
1443 spinlock_t lock;
1444 struct list_head free;
db64fe02
NP
1445};
1446
1447struct vmap_block {
1448 spinlock_t lock;
1449 struct vmap_area *va;
db64fe02 1450 unsigned long free, dirty;
7d61bfe8 1451 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
1452 struct list_head free_list;
1453 struct rcu_head rcu_head;
02b709df 1454 struct list_head purge;
db64fe02
NP
1455};
1456
1457/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1458static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1459
1460/*
1461 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1462 * in the free path. Could get rid of this if we change the API to return a
1463 * "cookie" from alloc, to be passed to free. But no big deal yet.
1464 */
1465static DEFINE_SPINLOCK(vmap_block_tree_lock);
1466static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1467
1468/*
1469 * We should probably have a fallback mechanism to allocate virtual memory
1470 * out of partially filled vmap blocks. However vmap block sizing should be
1471 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1472 * big problem.
1473 */
1474
1475static unsigned long addr_to_vb_idx(unsigned long addr)
1476{
1477 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1478 addr /= VMAP_BLOCK_SIZE;
1479 return addr;
1480}
1481
cf725ce2
RP
1482static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1483{
1484 unsigned long addr;
1485
1486 addr = va_start + (pages_off << PAGE_SHIFT);
1487 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1488 return (void *)addr;
1489}
1490
1491/**
1492 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1493 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1494 * @order: how many 2^order pages should be occupied in newly allocated block
1495 * @gfp_mask: flags for the page level allocator
1496 *
a862f68a 1497 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
cf725ce2
RP
1498 */
1499static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
1500{
1501 struct vmap_block_queue *vbq;
1502 struct vmap_block *vb;
1503 struct vmap_area *va;
1504 unsigned long vb_idx;
1505 int node, err;
cf725ce2 1506 void *vaddr;
db64fe02
NP
1507
1508 node = numa_node_id();
1509
1510 vb = kmalloc_node(sizeof(struct vmap_block),
1511 gfp_mask & GFP_RECLAIM_MASK, node);
1512 if (unlikely(!vb))
1513 return ERR_PTR(-ENOMEM);
1514
1515 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1516 VMALLOC_START, VMALLOC_END,
1517 node, gfp_mask);
ddf9c6d4 1518 if (IS_ERR(va)) {
db64fe02 1519 kfree(vb);
e7d86340 1520 return ERR_CAST(va);
db64fe02
NP
1521 }
1522
1523 err = radix_tree_preload(gfp_mask);
1524 if (unlikely(err)) {
1525 kfree(vb);
1526 free_vmap_area(va);
1527 return ERR_PTR(err);
1528 }
1529
cf725ce2 1530 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
1531 spin_lock_init(&vb->lock);
1532 vb->va = va;
cf725ce2
RP
1533 /* At least something should be left free */
1534 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1535 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 1536 vb->dirty = 0;
7d61bfe8
RP
1537 vb->dirty_min = VMAP_BBMAP_BITS;
1538 vb->dirty_max = 0;
db64fe02 1539 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
1540
1541 vb_idx = addr_to_vb_idx(va->va_start);
1542 spin_lock(&vmap_block_tree_lock);
1543 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1544 spin_unlock(&vmap_block_tree_lock);
1545 BUG_ON(err);
1546 radix_tree_preload_end();
1547
1548 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 1549 spin_lock(&vbq->lock);
68ac546f 1550 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 1551 spin_unlock(&vbq->lock);
3f04ba85 1552 put_cpu_var(vmap_block_queue);
db64fe02 1553
cf725ce2 1554 return vaddr;
db64fe02
NP
1555}
1556
db64fe02
NP
1557static void free_vmap_block(struct vmap_block *vb)
1558{
1559 struct vmap_block *tmp;
1560 unsigned long vb_idx;
1561
db64fe02
NP
1562 vb_idx = addr_to_vb_idx(vb->va->va_start);
1563 spin_lock(&vmap_block_tree_lock);
1564 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1565 spin_unlock(&vmap_block_tree_lock);
1566 BUG_ON(tmp != vb);
1567
64141da5 1568 free_vmap_area_noflush(vb->va);
22a3c7d1 1569 kfree_rcu(vb, rcu_head);
db64fe02
NP
1570}
1571
02b709df
NP
1572static void purge_fragmented_blocks(int cpu)
1573{
1574 LIST_HEAD(purge);
1575 struct vmap_block *vb;
1576 struct vmap_block *n_vb;
1577 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1578
1579 rcu_read_lock();
1580 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1581
1582 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1583 continue;
1584
1585 spin_lock(&vb->lock);
1586 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1587 vb->free = 0; /* prevent further allocs after releasing lock */
1588 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
1589 vb->dirty_min = 0;
1590 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
1591 spin_lock(&vbq->lock);
1592 list_del_rcu(&vb->free_list);
1593 spin_unlock(&vbq->lock);
1594 spin_unlock(&vb->lock);
1595 list_add_tail(&vb->purge, &purge);
1596 } else
1597 spin_unlock(&vb->lock);
1598 }
1599 rcu_read_unlock();
1600
1601 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1602 list_del(&vb->purge);
1603 free_vmap_block(vb);
1604 }
1605}
1606
02b709df
NP
1607static void purge_fragmented_blocks_allcpus(void)
1608{
1609 int cpu;
1610
1611 for_each_possible_cpu(cpu)
1612 purge_fragmented_blocks(cpu);
1613}
1614
db64fe02
NP
1615static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1616{
1617 struct vmap_block_queue *vbq;
1618 struct vmap_block *vb;
cf725ce2 1619 void *vaddr = NULL;
db64fe02
NP
1620 unsigned int order;
1621
891c49ab 1622 BUG_ON(offset_in_page(size));
db64fe02 1623 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
1624 if (WARN_ON(size == 0)) {
1625 /*
1626 * Allocating 0 bytes isn't what caller wants since
1627 * get_order(0) returns funny result. Just warn and terminate
1628 * early.
1629 */
1630 return NULL;
1631 }
db64fe02
NP
1632 order = get_order(size);
1633
db64fe02
NP
1634 rcu_read_lock();
1635 vbq = &get_cpu_var(vmap_block_queue);
1636 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 1637 unsigned long pages_off;
db64fe02
NP
1638
1639 spin_lock(&vb->lock);
cf725ce2
RP
1640 if (vb->free < (1UL << order)) {
1641 spin_unlock(&vb->lock);
1642 continue;
1643 }
02b709df 1644
cf725ce2
RP
1645 pages_off = VMAP_BBMAP_BITS - vb->free;
1646 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
1647 vb->free -= 1UL << order;
1648 if (vb->free == 0) {
1649 spin_lock(&vbq->lock);
1650 list_del_rcu(&vb->free_list);
1651 spin_unlock(&vbq->lock);
1652 }
cf725ce2 1653
02b709df
NP
1654 spin_unlock(&vb->lock);
1655 break;
db64fe02 1656 }
02b709df 1657
3f04ba85 1658 put_cpu_var(vmap_block_queue);
db64fe02
NP
1659 rcu_read_unlock();
1660
cf725ce2
RP
1661 /* Allocate new block if nothing was found */
1662 if (!vaddr)
1663 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 1664
cf725ce2 1665 return vaddr;
db64fe02
NP
1666}
1667
1668static void vb_free(const void *addr, unsigned long size)
1669{
1670 unsigned long offset;
1671 unsigned long vb_idx;
1672 unsigned int order;
1673 struct vmap_block *vb;
1674
891c49ab 1675 BUG_ON(offset_in_page(size));
db64fe02 1676 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
1677
1678 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1679
db64fe02
NP
1680 order = get_order(size);
1681
1682 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
7d61bfe8 1683 offset >>= PAGE_SHIFT;
db64fe02
NP
1684
1685 vb_idx = addr_to_vb_idx((unsigned long)addr);
1686 rcu_read_lock();
1687 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1688 rcu_read_unlock();
1689 BUG_ON(!vb);
1690
64141da5
JF
1691 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1692
8e57f8ac 1693 if (debug_pagealloc_enabled_static())
82a2e924
CP
1694 flush_tlb_kernel_range((unsigned long)addr,
1695 (unsigned long)addr + size);
1696
db64fe02 1697 spin_lock(&vb->lock);
7d61bfe8
RP
1698
1699 /* Expand dirty range */
1700 vb->dirty_min = min(vb->dirty_min, offset);
1701 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 1702
db64fe02
NP
1703 vb->dirty += 1UL << order;
1704 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 1705 BUG_ON(vb->free);
db64fe02
NP
1706 spin_unlock(&vb->lock);
1707 free_vmap_block(vb);
1708 } else
1709 spin_unlock(&vb->lock);
1710}
1711
868b104d 1712static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
db64fe02 1713{
db64fe02 1714 int cpu;
db64fe02 1715
9b463334
JF
1716 if (unlikely(!vmap_initialized))
1717 return;
1718
5803ed29
CH
1719 might_sleep();
1720
db64fe02
NP
1721 for_each_possible_cpu(cpu) {
1722 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1723 struct vmap_block *vb;
1724
1725 rcu_read_lock();
1726 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 1727 spin_lock(&vb->lock);
7d61bfe8
RP
1728 if (vb->dirty) {
1729 unsigned long va_start = vb->va->va_start;
db64fe02 1730 unsigned long s, e;
b136be5e 1731
7d61bfe8
RP
1732 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1733 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 1734
7d61bfe8
RP
1735 start = min(s, start);
1736 end = max(e, end);
db64fe02 1737
7d61bfe8 1738 flush = 1;
db64fe02
NP
1739 }
1740 spin_unlock(&vb->lock);
1741 }
1742 rcu_read_unlock();
1743 }
1744
f9e09977 1745 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1746 purge_fragmented_blocks_allcpus();
1747 if (!__purge_vmap_area_lazy(start, end) && flush)
1748 flush_tlb_kernel_range(start, end);
f9e09977 1749 mutex_unlock(&vmap_purge_lock);
db64fe02 1750}
868b104d
RE
1751
1752/**
1753 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1754 *
1755 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1756 * to amortize TLB flushing overheads. What this means is that any page you
1757 * have now, may, in a former life, have been mapped into kernel virtual
1758 * address by the vmap layer and so there might be some CPUs with TLB entries
1759 * still referencing that page (additional to the regular 1:1 kernel mapping).
1760 *
1761 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1762 * be sure that none of the pages we have control over will have any aliases
1763 * from the vmap layer.
1764 */
1765void vm_unmap_aliases(void)
1766{
1767 unsigned long start = ULONG_MAX, end = 0;
1768 int flush = 0;
1769
1770 _vm_unmap_aliases(start, end, flush);
1771}
db64fe02
NP
1772EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1773
1774/**
1775 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1776 * @mem: the pointer returned by vm_map_ram
1777 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1778 */
1779void vm_unmap_ram(const void *mem, unsigned int count)
1780{
65ee03c4 1781 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02 1782 unsigned long addr = (unsigned long)mem;
9c3acf60 1783 struct vmap_area *va;
db64fe02 1784
5803ed29 1785 might_sleep();
db64fe02
NP
1786 BUG_ON(!addr);
1787 BUG_ON(addr < VMALLOC_START);
1788 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 1789 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02 1790
d98c9e83
AR
1791 kasan_poison_vmalloc(mem, size);
1792
9c3acf60 1793 if (likely(count <= VMAP_MAX_ALLOC)) {
05e3ff95 1794 debug_check_no_locks_freed(mem, size);
db64fe02 1795 vb_free(mem, size);
9c3acf60
CH
1796 return;
1797 }
1798
1799 va = find_vmap_area(addr);
1800 BUG_ON(!va);
05e3ff95
CP
1801 debug_check_no_locks_freed((void *)va->va_start,
1802 (va->va_end - va->va_start));
9c3acf60 1803 free_unmap_vmap_area(va);
db64fe02
NP
1804}
1805EXPORT_SYMBOL(vm_unmap_ram);
1806
1807/**
1808 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1809 * @pages: an array of pointers to the pages to be mapped
1810 * @count: number of pages
1811 * @node: prefer to allocate data structures on this node
1812 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad 1813 *
36437638
GK
1814 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1815 * faster than vmap so it's good. But if you mix long-life and short-life
1816 * objects with vm_map_ram(), it could consume lots of address space through
1817 * fragmentation (especially on a 32bit machine). You could see failures in
1818 * the end. Please use this function for short-lived objects.
1819 *
e99c97ad 1820 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
1821 */
1822void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1823{
65ee03c4 1824 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
1825 unsigned long addr;
1826 void *mem;
1827
1828 if (likely(count <= VMAP_MAX_ALLOC)) {
1829 mem = vb_alloc(size, GFP_KERNEL);
1830 if (IS_ERR(mem))
1831 return NULL;
1832 addr = (unsigned long)mem;
1833 } else {
1834 struct vmap_area *va;
1835 va = alloc_vmap_area(size, PAGE_SIZE,
1836 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1837 if (IS_ERR(va))
1838 return NULL;
1839
1840 addr = va->va_start;
1841 mem = (void *)addr;
1842 }
d98c9e83
AR
1843
1844 kasan_unpoison_vmalloc(mem, size);
1845
db64fe02
NP
1846 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1847 vm_unmap_ram(mem, count);
1848 return NULL;
1849 }
1850 return mem;
1851}
1852EXPORT_SYMBOL(vm_map_ram);
1853
4341fa45 1854static struct vm_struct *vmlist __initdata;
92eac168 1855
be9b7335
NP
1856/**
1857 * vm_area_add_early - add vmap area early during boot
1858 * @vm: vm_struct to add
1859 *
1860 * This function is used to add fixed kernel vm area to vmlist before
1861 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1862 * should contain proper values and the other fields should be zero.
1863 *
1864 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1865 */
1866void __init vm_area_add_early(struct vm_struct *vm)
1867{
1868 struct vm_struct *tmp, **p;
1869
1870 BUG_ON(vmap_initialized);
1871 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1872 if (tmp->addr >= vm->addr) {
1873 BUG_ON(tmp->addr < vm->addr + vm->size);
1874 break;
1875 } else
1876 BUG_ON(tmp->addr + tmp->size > vm->addr);
1877 }
1878 vm->next = *p;
1879 *p = vm;
1880}
1881
f0aa6617
TH
1882/**
1883 * vm_area_register_early - register vmap area early during boot
1884 * @vm: vm_struct to register
c0c0a293 1885 * @align: requested alignment
f0aa6617
TH
1886 *
1887 * This function is used to register kernel vm area before
1888 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1889 * proper values on entry and other fields should be zero. On return,
1890 * vm->addr contains the allocated address.
1891 *
1892 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1893 */
c0c0a293 1894void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1895{
1896 static size_t vm_init_off __initdata;
c0c0a293
TH
1897 unsigned long addr;
1898
1899 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1900 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1901
c0c0a293 1902 vm->addr = (void *)addr;
f0aa6617 1903
be9b7335 1904 vm_area_add_early(vm);
f0aa6617
TH
1905}
1906
68ad4a33
URS
1907static void vmap_init_free_space(void)
1908{
1909 unsigned long vmap_start = 1;
1910 const unsigned long vmap_end = ULONG_MAX;
1911 struct vmap_area *busy, *free;
1912
1913 /*
1914 * B F B B B F
1915 * -|-----|.....|-----|-----|-----|.....|-
1916 * | The KVA space |
1917 * |<--------------------------------->|
1918 */
1919 list_for_each_entry(busy, &vmap_area_list, list) {
1920 if (busy->va_start - vmap_start > 0) {
1921 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1922 if (!WARN_ON_ONCE(!free)) {
1923 free->va_start = vmap_start;
1924 free->va_end = busy->va_start;
1925
1926 insert_vmap_area_augment(free, NULL,
1927 &free_vmap_area_root,
1928 &free_vmap_area_list);
1929 }
1930 }
1931
1932 vmap_start = busy->va_end;
1933 }
1934
1935 if (vmap_end - vmap_start > 0) {
1936 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1937 if (!WARN_ON_ONCE(!free)) {
1938 free->va_start = vmap_start;
1939 free->va_end = vmap_end;
1940
1941 insert_vmap_area_augment(free, NULL,
1942 &free_vmap_area_root,
1943 &free_vmap_area_list);
1944 }
1945 }
1946}
1947
db64fe02
NP
1948void __init vmalloc_init(void)
1949{
822c18f2
IK
1950 struct vmap_area *va;
1951 struct vm_struct *tmp;
db64fe02
NP
1952 int i;
1953
68ad4a33
URS
1954 /*
1955 * Create the cache for vmap_area objects.
1956 */
1957 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1958
db64fe02
NP
1959 for_each_possible_cpu(i) {
1960 struct vmap_block_queue *vbq;
32fcfd40 1961 struct vfree_deferred *p;
db64fe02
NP
1962
1963 vbq = &per_cpu(vmap_block_queue, i);
1964 spin_lock_init(&vbq->lock);
1965 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
1966 p = &per_cpu(vfree_deferred, i);
1967 init_llist_head(&p->list);
1968 INIT_WORK(&p->wq, free_work);
db64fe02 1969 }
9b463334 1970
822c18f2
IK
1971 /* Import existing vmlist entries. */
1972 for (tmp = vmlist; tmp; tmp = tmp->next) {
68ad4a33
URS
1973 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1974 if (WARN_ON_ONCE(!va))
1975 continue;
1976
822c18f2
IK
1977 va->va_start = (unsigned long)tmp->addr;
1978 va->va_end = va->va_start + tmp->size;
dbda591d 1979 va->vm = tmp;
68ad4a33 1980 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
822c18f2 1981 }
ca23e405 1982
68ad4a33
URS
1983 /*
1984 * Now we can initialize a free vmap space.
1985 */
1986 vmap_init_free_space();
9b463334 1987 vmap_initialized = true;
db64fe02
NP
1988}
1989
8fc48985
TH
1990/**
1991 * map_kernel_range_noflush - map kernel VM area with the specified pages
1992 * @addr: start of the VM area to map
1993 * @size: size of the VM area to map
1994 * @prot: page protection flags to use
1995 * @pages: pages to map
1996 *
1997 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1998 * specify should have been allocated using get_vm_area() and its
1999 * friends.
2000 *
2001 * NOTE:
2002 * This function does NOT do any cache flushing. The caller is
2003 * responsible for calling flush_cache_vmap() on to-be-mapped areas
2004 * before calling this function.
2005 *
2006 * RETURNS:
2007 * The number of pages mapped on success, -errno on failure.
2008 */
2009int map_kernel_range_noflush(unsigned long addr, unsigned long size,
2010 pgprot_t prot, struct page **pages)
2011{
2012 return vmap_page_range_noflush(addr, addr + size, prot, pages);
2013}
2014
2015/**
2016 * unmap_kernel_range_noflush - unmap kernel VM area
2017 * @addr: start of the VM area to unmap
2018 * @size: size of the VM area to unmap
2019 *
2020 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
2021 * specify should have been allocated using get_vm_area() and its
2022 * friends.
2023 *
2024 * NOTE:
2025 * This function does NOT do any cache flushing. The caller is
2026 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
2027 * before calling this function and flush_tlb_kernel_range() after.
2028 */
2029void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
2030{
2031 vunmap_page_range(addr, addr + size);
2032}
2033
2034/**
2035 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
2036 * @addr: start of the VM area to unmap
2037 * @size: size of the VM area to unmap
2038 *
2039 * Similar to unmap_kernel_range_noflush() but flushes vcache before
2040 * the unmapping and tlb after.
2041 */
db64fe02
NP
2042void unmap_kernel_range(unsigned long addr, unsigned long size)
2043{
2044 unsigned long end = addr + size;
f6fcba70
TH
2045
2046 flush_cache_vunmap(addr, end);
db64fe02
NP
2047 vunmap_page_range(addr, end);
2048 flush_tlb_kernel_range(addr, end);
2049}
93ef6d6c 2050EXPORT_SYMBOL_GPL(unmap_kernel_range);
db64fe02 2051
f6f8ed47 2052int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
db64fe02
NP
2053{
2054 unsigned long addr = (unsigned long)area->addr;
762216ab 2055 unsigned long end = addr + get_vm_area_size(area);
db64fe02
NP
2056 int err;
2057
f6f8ed47 2058 err = vmap_page_range(addr, end, prot, pages);
db64fe02 2059
f6f8ed47 2060 return err > 0 ? 0 : err;
db64fe02
NP
2061}
2062EXPORT_SYMBOL_GPL(map_vm_area);
2063
e36176be
URS
2064static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2065 struct vmap_area *va, unsigned long flags, const void *caller)
cf88c790 2066{
cf88c790
TH
2067 vm->flags = flags;
2068 vm->addr = (void *)va->va_start;
2069 vm->size = va->va_end - va->va_start;
2070 vm->caller = caller;
db1aecaf 2071 va->vm = vm;
e36176be
URS
2072}
2073
2074static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2075 unsigned long flags, const void *caller)
2076{
2077 spin_lock(&vmap_area_lock);
2078 setup_vmalloc_vm_locked(vm, va, flags, caller);
c69480ad 2079 spin_unlock(&vmap_area_lock);
f5252e00 2080}
cf88c790 2081
20fc02b4 2082static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 2083{
d4033afd 2084 /*
20fc02b4 2085 * Before removing VM_UNINITIALIZED,
d4033afd
JK
2086 * we should make sure that vm has proper values.
2087 * Pair with smp_rmb() in show_numa_info().
2088 */
2089 smp_wmb();
20fc02b4 2090 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
2091}
2092
db64fe02 2093static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 2094 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 2095 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 2096{
0006526d 2097 struct vmap_area *va;
db64fe02 2098 struct vm_struct *area;
d98c9e83 2099 unsigned long requested_size = size;
1da177e4 2100
52fd24ca 2101 BUG_ON(in_interrupt());
1da177e4 2102 size = PAGE_ALIGN(size);
31be8309
OH
2103 if (unlikely(!size))
2104 return NULL;
1da177e4 2105
252e5c6e 2106 if (flags & VM_IOREMAP)
2107 align = 1ul << clamp_t(int, get_count_order_long(size),
2108 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2109
cf88c790 2110 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
2111 if (unlikely(!area))
2112 return NULL;
2113
71394fe5
AR
2114 if (!(flags & VM_NO_GUARD))
2115 size += PAGE_SIZE;
1da177e4 2116
db64fe02
NP
2117 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2118 if (IS_ERR(va)) {
2119 kfree(area);
2120 return NULL;
1da177e4 2121 }
1da177e4 2122
d98c9e83 2123 kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
f5252e00 2124
d98c9e83 2125 setup_vmalloc_vm(area, va, flags, caller);
3c5c3cfb 2126
1da177e4 2127 return area;
1da177e4
LT
2128}
2129
c2968612
BH
2130struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2131 unsigned long start, unsigned long end,
5e6cafc8 2132 const void *caller)
c2968612 2133{
00ef2d2f
DR
2134 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2135 GFP_KERNEL, caller);
c2968612
BH
2136}
2137
1da177e4 2138/**
92eac168
MR
2139 * get_vm_area - reserve a contiguous kernel virtual area
2140 * @size: size of the area
2141 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1da177e4 2142 *
92eac168
MR
2143 * Search an area of @size in the kernel virtual mapping area,
2144 * and reserved it for out purposes. Returns the area descriptor
2145 * on success or %NULL on failure.
a862f68a
MR
2146 *
2147 * Return: the area descriptor on success or %NULL on failure.
1da177e4
LT
2148 */
2149struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2150{
2dca6999 2151 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
2152 NUMA_NO_NODE, GFP_KERNEL,
2153 __builtin_return_address(0));
23016969
CL
2154}
2155
2156struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 2157 const void *caller)
23016969 2158{
2dca6999 2159 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 2160 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
2161}
2162
e9da6e99 2163/**
92eac168
MR
2164 * find_vm_area - find a continuous kernel virtual area
2165 * @addr: base address
e9da6e99 2166 *
92eac168
MR
2167 * Search for the kernel VM area starting at @addr, and return it.
2168 * It is up to the caller to do all required locking to keep the returned
2169 * pointer valid.
a862f68a
MR
2170 *
2171 * Return: pointer to the found area or %NULL on faulure
e9da6e99
MS
2172 */
2173struct vm_struct *find_vm_area(const void *addr)
83342314 2174{
db64fe02 2175 struct vmap_area *va;
83342314 2176
db64fe02 2177 va = find_vmap_area((unsigned long)addr);
688fcbfc
PL
2178 if (!va)
2179 return NULL;
1da177e4 2180
688fcbfc 2181 return va->vm;
1da177e4
LT
2182}
2183
7856dfeb 2184/**
92eac168
MR
2185 * remove_vm_area - find and remove a continuous kernel virtual area
2186 * @addr: base address
7856dfeb 2187 *
92eac168
MR
2188 * Search for the kernel VM area starting at @addr, and remove it.
2189 * This function returns the found VM area, but using it is NOT safe
2190 * on SMP machines, except for its size or flags.
a862f68a
MR
2191 *
2192 * Return: pointer to the found area or %NULL on faulure
7856dfeb 2193 */
b3bdda02 2194struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 2195{
db64fe02
NP
2196 struct vmap_area *va;
2197
5803ed29
CH
2198 might_sleep();
2199
dd3b8353
URS
2200 spin_lock(&vmap_area_lock);
2201 va = __find_vmap_area((unsigned long)addr);
688fcbfc 2202 if (va && va->vm) {
db1aecaf 2203 struct vm_struct *vm = va->vm;
f5252e00 2204
c69480ad 2205 va->vm = NULL;
c69480ad
JK
2206 spin_unlock(&vmap_area_lock);
2207
a5af5aa8 2208 kasan_free_shadow(vm);
dd32c279 2209 free_unmap_vmap_area(va);
dd32c279 2210
db64fe02
NP
2211 return vm;
2212 }
dd3b8353
URS
2213
2214 spin_unlock(&vmap_area_lock);
db64fe02 2215 return NULL;
7856dfeb
AK
2216}
2217
868b104d
RE
2218static inline void set_area_direct_map(const struct vm_struct *area,
2219 int (*set_direct_map)(struct page *page))
2220{
2221 int i;
2222
2223 for (i = 0; i < area->nr_pages; i++)
2224 if (page_address(area->pages[i]))
2225 set_direct_map(area->pages[i]);
2226}
2227
2228/* Handle removing and resetting vm mappings related to the vm_struct. */
2229static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2230{
868b104d
RE
2231 unsigned long start = ULONG_MAX, end = 0;
2232 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
31e67340 2233 int flush_dmap = 0;
868b104d
RE
2234 int i;
2235
868b104d
RE
2236 remove_vm_area(area->addr);
2237
2238 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2239 if (!flush_reset)
2240 return;
2241
2242 /*
2243 * If not deallocating pages, just do the flush of the VM area and
2244 * return.
2245 */
2246 if (!deallocate_pages) {
2247 vm_unmap_aliases();
2248 return;
2249 }
2250
2251 /*
2252 * If execution gets here, flush the vm mapping and reset the direct
2253 * map. Find the start and end range of the direct mappings to make sure
2254 * the vm_unmap_aliases() flush includes the direct map.
2255 */
2256 for (i = 0; i < area->nr_pages; i++) {
8e41f872
RE
2257 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2258 if (addr) {
868b104d 2259 start = min(addr, start);
8e41f872 2260 end = max(addr + PAGE_SIZE, end);
31e67340 2261 flush_dmap = 1;
868b104d
RE
2262 }
2263 }
2264
2265 /*
2266 * Set direct map to something invalid so that it won't be cached if
2267 * there are any accesses after the TLB flush, then flush the TLB and
2268 * reset the direct map permissions to the default.
2269 */
2270 set_area_direct_map(area, set_direct_map_invalid_noflush);
31e67340 2271 _vm_unmap_aliases(start, end, flush_dmap);
868b104d
RE
2272 set_area_direct_map(area, set_direct_map_default_noflush);
2273}
2274
b3bdda02 2275static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
2276{
2277 struct vm_struct *area;
2278
2279 if (!addr)
2280 return;
2281
e69e9d4a 2282 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 2283 addr))
1da177e4 2284 return;
1da177e4 2285
6ade2032 2286 area = find_vm_area(addr);
1da177e4 2287 if (unlikely(!area)) {
4c8573e2 2288 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 2289 addr);
1da177e4
LT
2290 return;
2291 }
2292
05e3ff95
CP
2293 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2294 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
9a11b49a 2295
d98c9e83 2296 kasan_poison_vmalloc(area->addr, area->size);
3c5c3cfb 2297
868b104d
RE
2298 vm_remove_mappings(area, deallocate_pages);
2299
1da177e4
LT
2300 if (deallocate_pages) {
2301 int i;
2302
2303 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2304 struct page *page = area->pages[i];
2305
2306 BUG_ON(!page);
4949148a 2307 __free_pages(page, 0);
1da177e4 2308 }
97105f0a 2309 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2310
244d63ee 2311 kvfree(area->pages);
1da177e4
LT
2312 }
2313
2314 kfree(area);
2315 return;
2316}
bf22e37a
AR
2317
2318static inline void __vfree_deferred(const void *addr)
2319{
2320 /*
2321 * Use raw_cpu_ptr() because this can be called from preemptible
2322 * context. Preemption is absolutely fine here, because the llist_add()
2323 * implementation is lockless, so it works even if we are adding to
2324 * nother cpu's list. schedule_work() should be fine with this too.
2325 */
2326 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2327
2328 if (llist_add((struct llist_node *)addr, &p->list))
2329 schedule_work(&p->wq);
2330}
2331
2332/**
92eac168
MR
2333 * vfree_atomic - release memory allocated by vmalloc()
2334 * @addr: memory base address
bf22e37a 2335 *
92eac168
MR
2336 * This one is just like vfree() but can be called in any atomic context
2337 * except NMIs.
bf22e37a
AR
2338 */
2339void vfree_atomic(const void *addr)
2340{
2341 BUG_ON(in_nmi());
2342
2343 kmemleak_free(addr);
2344
2345 if (!addr)
2346 return;
2347 __vfree_deferred(addr);
2348}
2349
c67dc624
RP
2350static void __vfree(const void *addr)
2351{
2352 if (unlikely(in_interrupt()))
2353 __vfree_deferred(addr);
2354 else
2355 __vunmap(addr, 1);
2356}
2357
1da177e4 2358/**
92eac168
MR
2359 * vfree - release memory allocated by vmalloc()
2360 * @addr: memory base address
1da177e4 2361 *
92eac168
MR
2362 * Free the virtually continuous memory area starting at @addr, as
2363 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2364 * NULL, no operation is performed.
1da177e4 2365 *
92eac168
MR
2366 * Must not be called in NMI context (strictly speaking, only if we don't
2367 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2368 * conventions for vfree() arch-depenedent would be a really bad idea)
c9fcee51 2369 *
92eac168 2370 * May sleep if called *not* from interrupt context.
3ca4ea3a 2371 *
92eac168 2372 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1da177e4 2373 */
b3bdda02 2374void vfree(const void *addr)
1da177e4 2375{
32fcfd40 2376 BUG_ON(in_nmi());
89219d37
CM
2377
2378 kmemleak_free(addr);
2379
a8dda165
AR
2380 might_sleep_if(!in_interrupt());
2381
32fcfd40
AV
2382 if (!addr)
2383 return;
c67dc624
RP
2384
2385 __vfree(addr);
1da177e4 2386}
1da177e4
LT
2387EXPORT_SYMBOL(vfree);
2388
2389/**
92eac168
MR
2390 * vunmap - release virtual mapping obtained by vmap()
2391 * @addr: memory base address
1da177e4 2392 *
92eac168
MR
2393 * Free the virtually contiguous memory area starting at @addr,
2394 * which was created from the page array passed to vmap().
1da177e4 2395 *
92eac168 2396 * Must not be called in interrupt context.
1da177e4 2397 */
b3bdda02 2398void vunmap(const void *addr)
1da177e4
LT
2399{
2400 BUG_ON(in_interrupt());
34754b69 2401 might_sleep();
32fcfd40
AV
2402 if (addr)
2403 __vunmap(addr, 0);
1da177e4 2404}
1da177e4
LT
2405EXPORT_SYMBOL(vunmap);
2406
2407/**
92eac168
MR
2408 * vmap - map an array of pages into virtually contiguous space
2409 * @pages: array of page pointers
2410 * @count: number of pages to map
2411 * @flags: vm_area->flags
2412 * @prot: page protection for the mapping
2413 *
2414 * Maps @count pages from @pages into contiguous kernel virtual
2415 * space.
a862f68a
MR
2416 *
2417 * Return: the address of the area or %NULL on failure
1da177e4
LT
2418 */
2419void *vmap(struct page **pages, unsigned int count,
92eac168 2420 unsigned long flags, pgprot_t prot)
1da177e4
LT
2421{
2422 struct vm_struct *area;
65ee03c4 2423 unsigned long size; /* In bytes */
1da177e4 2424
34754b69
PZ
2425 might_sleep();
2426
ca79b0c2 2427 if (count > totalram_pages())
1da177e4
LT
2428 return NULL;
2429
65ee03c4
GJM
2430 size = (unsigned long)count << PAGE_SHIFT;
2431 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
2432 if (!area)
2433 return NULL;
23016969 2434
f6f8ed47 2435 if (map_vm_area(area, prot, pages)) {
1da177e4
LT
2436 vunmap(area->addr);
2437 return NULL;
2438 }
2439
2440 return area->addr;
2441}
1da177e4
LT
2442EXPORT_SYMBOL(vmap);
2443
8594a21c
MH
2444static void *__vmalloc_node(unsigned long size, unsigned long align,
2445 gfp_t gfp_mask, pgprot_t prot,
2446 int node, const void *caller);
e31d9eb5 2447static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3722e13c 2448 pgprot_t prot, int node)
1da177e4
LT
2449{
2450 struct page **pages;
2451 unsigned int nr_pages, array_size, i;
930f036b 2452 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
704b862f
LA
2453 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2454 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2455 0 :
2456 __GFP_HIGHMEM;
1da177e4 2457
762216ab 2458 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1da177e4
LT
2459 array_size = (nr_pages * sizeof(struct page *));
2460
1da177e4 2461 /* Please note that the recursion is strictly bounded. */
8757d5fa 2462 if (array_size > PAGE_SIZE) {
704b862f 2463 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
3722e13c 2464 PAGE_KERNEL, node, area->caller);
286e1ea3 2465 } else {
976d6dfb 2466 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 2467 }
7ea36242
AK
2468
2469 if (!pages) {
1da177e4
LT
2470 remove_vm_area(area->addr);
2471 kfree(area);
2472 return NULL;
2473 }
1da177e4 2474
7ea36242
AK
2475 area->pages = pages;
2476 area->nr_pages = nr_pages;
2477
1da177e4 2478 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2479 struct page *page;
2480
4b90951c 2481 if (node == NUMA_NO_NODE)
704b862f 2482 page = alloc_page(alloc_mask|highmem_mask);
930fc45a 2483 else
704b862f 2484 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
bf53d6f8
CL
2485
2486 if (unlikely(!page)) {
1da177e4
LT
2487 /* Successfully allocated i pages, free them in __vunmap() */
2488 area->nr_pages = i;
97105f0a 2489 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
1da177e4
LT
2490 goto fail;
2491 }
bf53d6f8 2492 area->pages[i] = page;
dcf61ff0 2493 if (gfpflags_allow_blocking(gfp_mask))
660654f9 2494 cond_resched();
1da177e4 2495 }
97105f0a 2496 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2497
f6f8ed47 2498 if (map_vm_area(area, prot, pages))
1da177e4
LT
2499 goto fail;
2500 return area->addr;
2501
2502fail:
a8e99259 2503 warn_alloc(gfp_mask, NULL,
7877cdcc 2504 "vmalloc: allocation failure, allocated %ld of %ld bytes",
22943ab1 2505 (area->nr_pages*PAGE_SIZE), area->size);
c67dc624 2506 __vfree(area->addr);
1da177e4
LT
2507 return NULL;
2508}
2509
2510/**
92eac168
MR
2511 * __vmalloc_node_range - allocate virtually contiguous memory
2512 * @size: allocation size
2513 * @align: desired alignment
2514 * @start: vm area range start
2515 * @end: vm area range end
2516 * @gfp_mask: flags for the page level allocator
2517 * @prot: protection mask for the allocated pages
2518 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2519 * @node: node to use for allocation or NUMA_NO_NODE
2520 * @caller: caller's return address
2521 *
2522 * Allocate enough pages to cover @size from the page level
2523 * allocator with @gfp_mask flags. Map them into contiguous
2524 * kernel virtual space, using a pagetable protection of @prot.
a862f68a
MR
2525 *
2526 * Return: the address of the area or %NULL on failure
1da177e4 2527 */
d0a21265
DR
2528void *__vmalloc_node_range(unsigned long size, unsigned long align,
2529 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
2530 pgprot_t prot, unsigned long vm_flags, int node,
2531 const void *caller)
1da177e4
LT
2532{
2533 struct vm_struct *area;
89219d37
CM
2534 void *addr;
2535 unsigned long real_size = size;
1da177e4
LT
2536
2537 size = PAGE_ALIGN(size);
ca79b0c2 2538 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
de7d2b56 2539 goto fail;
1da177e4 2540
d98c9e83 2541 area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
cb9e3c29 2542 vm_flags, start, end, node, gfp_mask, caller);
1da177e4 2543 if (!area)
de7d2b56 2544 goto fail;
1da177e4 2545
3722e13c 2546 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1368edf0 2547 if (!addr)
b82225f3 2548 return NULL;
89219d37 2549
f5252e00 2550 /*
20fc02b4
ZY
2551 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2552 * flag. It means that vm_struct is not fully initialized.
4341fa45 2553 * Now, it is fully initialized, so remove this flag here.
f5252e00 2554 */
20fc02b4 2555 clear_vm_uninitialized_flag(area);
f5252e00 2556
94f4a161 2557 kmemleak_vmalloc(area, size, gfp_mask);
89219d37
CM
2558
2559 return addr;
de7d2b56
JP
2560
2561fail:
a8e99259 2562 warn_alloc(gfp_mask, NULL,
7877cdcc 2563 "vmalloc: allocation failure: %lu bytes", real_size);
de7d2b56 2564 return NULL;
1da177e4
LT
2565}
2566
153178ed
URS
2567/*
2568 * This is only for performance analysis of vmalloc and stress purpose.
2569 * It is required by vmalloc test module, therefore do not use it other
2570 * than that.
2571 */
2572#ifdef CONFIG_TEST_VMALLOC_MODULE
2573EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2574#endif
2575
d0a21265 2576/**
92eac168
MR
2577 * __vmalloc_node - allocate virtually contiguous memory
2578 * @size: allocation size
2579 * @align: desired alignment
2580 * @gfp_mask: flags for the page level allocator
2581 * @prot: protection mask for the allocated pages
2582 * @node: node to use for allocation or NUMA_NO_NODE
2583 * @caller: caller's return address
a7c3e901 2584 *
92eac168
MR
2585 * Allocate enough pages to cover @size from the page level
2586 * allocator with @gfp_mask flags. Map them into contiguous
2587 * kernel virtual space, using a pagetable protection of @prot.
a7c3e901 2588 *
92eac168
MR
2589 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2590 * and __GFP_NOFAIL are not supported
a7c3e901 2591 *
92eac168
MR
2592 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2593 * with mm people.
a862f68a
MR
2594 *
2595 * Return: pointer to the allocated memory or %NULL on error
d0a21265 2596 */
8594a21c 2597static void *__vmalloc_node(unsigned long size, unsigned long align,
d0a21265 2598 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 2599 int node, const void *caller)
d0a21265
DR
2600{
2601 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
cb9e3c29 2602 gfp_mask, prot, 0, node, caller);
d0a21265
DR
2603}
2604
930fc45a
CL
2605void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2606{
00ef2d2f 2607 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
23016969 2608 __builtin_return_address(0));
930fc45a 2609}
1da177e4
LT
2610EXPORT_SYMBOL(__vmalloc);
2611
8594a21c
MH
2612static inline void *__vmalloc_node_flags(unsigned long size,
2613 int node, gfp_t flags)
2614{
2615 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2616 node, __builtin_return_address(0));
2617}
2618
2619
2620void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2621 void *caller)
2622{
2623 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2624}
2625
1da177e4 2626/**
92eac168
MR
2627 * vmalloc - allocate virtually contiguous memory
2628 * @size: allocation size
2629 *
2630 * Allocate enough pages to cover @size from the page level
2631 * allocator and map them into contiguous kernel virtual space.
1da177e4 2632 *
92eac168
MR
2633 * For tight control over page level allocator and protection flags
2634 * use __vmalloc() instead.
a862f68a
MR
2635 *
2636 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2637 */
2638void *vmalloc(unsigned long size)
2639{
00ef2d2f 2640 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 2641 GFP_KERNEL);
1da177e4 2642}
1da177e4
LT
2643EXPORT_SYMBOL(vmalloc);
2644
e1ca7788 2645/**
92eac168
MR
2646 * vzalloc - allocate virtually contiguous memory with zero fill
2647 * @size: allocation size
2648 *
2649 * Allocate enough pages to cover @size from the page level
2650 * allocator and map them into contiguous kernel virtual space.
2651 * The memory allocated is set to zero.
2652 *
2653 * For tight control over page level allocator and protection flags
2654 * use __vmalloc() instead.
a862f68a
MR
2655 *
2656 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2657 */
2658void *vzalloc(unsigned long size)
2659{
00ef2d2f 2660 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 2661 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
2662}
2663EXPORT_SYMBOL(vzalloc);
2664
83342314 2665/**
ead04089
REB
2666 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2667 * @size: allocation size
83342314 2668 *
ead04089
REB
2669 * The resulting memory area is zeroed so it can be mapped to userspace
2670 * without leaking data.
a862f68a
MR
2671 *
2672 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2673 */
2674void *vmalloc_user(unsigned long size)
2675{
bc84c535
RP
2676 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2677 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2678 VM_USERMAP, NUMA_NO_NODE,
2679 __builtin_return_address(0));
83342314
NP
2680}
2681EXPORT_SYMBOL(vmalloc_user);
2682
930fc45a 2683/**
92eac168
MR
2684 * vmalloc_node - allocate memory on a specific node
2685 * @size: allocation size
2686 * @node: numa node
930fc45a 2687 *
92eac168
MR
2688 * Allocate enough pages to cover @size from the page level
2689 * allocator and map them into contiguous kernel virtual space.
930fc45a 2690 *
92eac168
MR
2691 * For tight control over page level allocator and protection flags
2692 * use __vmalloc() instead.
a862f68a
MR
2693 *
2694 * Return: pointer to the allocated memory or %NULL on error
930fc45a
CL
2695 */
2696void *vmalloc_node(unsigned long size, int node)
2697{
19809c2d 2698 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
23016969 2699 node, __builtin_return_address(0));
930fc45a
CL
2700}
2701EXPORT_SYMBOL(vmalloc_node);
2702
e1ca7788
DY
2703/**
2704 * vzalloc_node - allocate memory on a specific node with zero fill
2705 * @size: allocation size
2706 * @node: numa node
2707 *
2708 * Allocate enough pages to cover @size from the page level
2709 * allocator and map them into contiguous kernel virtual space.
2710 * The memory allocated is set to zero.
2711 *
2712 * For tight control over page level allocator and protection flags
2713 * use __vmalloc_node() instead.
a862f68a
MR
2714 *
2715 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2716 */
2717void *vzalloc_node(unsigned long size, int node)
2718{
2719 return __vmalloc_node_flags(size, node,
19809c2d 2720 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
2721}
2722EXPORT_SYMBOL(vzalloc_node);
2723
fc970227
AN
2724/**
2725 * vmalloc_user_node_flags - allocate memory for userspace on a specific node
2726 * @size: allocation size
2727 * @node: numa node
2728 * @flags: flags for the page level allocator
2729 *
2730 * The resulting memory area is zeroed so it can be mapped to userspace
2731 * without leaking data.
2732 *
2733 * Return: pointer to the allocated memory or %NULL on error
2734 */
2735void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags)
2736{
2737 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2738 flags | __GFP_ZERO, PAGE_KERNEL,
2739 VM_USERMAP, node,
2740 __builtin_return_address(0));
2741}
2742EXPORT_SYMBOL(vmalloc_user_node_flags);
2743
1da177e4 2744/**
92eac168
MR
2745 * vmalloc_exec - allocate virtually contiguous, executable memory
2746 * @size: allocation size
1da177e4 2747 *
92eac168
MR
2748 * Kernel-internal function to allocate enough pages to cover @size
2749 * the page level allocator and map them into contiguous and
2750 * executable kernel virtual space.
1da177e4 2751 *
92eac168
MR
2752 * For tight control over page level allocator and protection flags
2753 * use __vmalloc() instead.
a862f68a
MR
2754 *
2755 * Return: pointer to the allocated memory or %NULL on error
1da177e4 2756 */
1da177e4
LT
2757void *vmalloc_exec(unsigned long size)
2758{
868b104d
RE
2759 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2760 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2761 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4
LT
2762}
2763
0d08e0d3 2764#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
698d0831 2765#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3 2766#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
698d0831 2767#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
0d08e0d3 2768#else
698d0831
MH
2769/*
2770 * 64b systems should always have either DMA or DMA32 zones. For others
2771 * GFP_DMA32 should do the right thing and use the normal zone.
2772 */
2773#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3
AK
2774#endif
2775
1da177e4 2776/**
92eac168
MR
2777 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2778 * @size: allocation size
1da177e4 2779 *
92eac168
MR
2780 * Allocate enough 32bit PA addressable pages to cover @size from the
2781 * page level allocator and map them into contiguous kernel virtual space.
a862f68a
MR
2782 *
2783 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2784 */
2785void *vmalloc_32(unsigned long size)
2786{
2dca6999 2787 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
00ef2d2f 2788 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4 2789}
1da177e4
LT
2790EXPORT_SYMBOL(vmalloc_32);
2791
83342314 2792/**
ead04089 2793 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
92eac168 2794 * @size: allocation size
ead04089
REB
2795 *
2796 * The resulting memory area is 32bit addressable and zeroed so it can be
2797 * mapped to userspace without leaking data.
a862f68a
MR
2798 *
2799 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2800 */
2801void *vmalloc_32_user(unsigned long size)
2802{
bc84c535
RP
2803 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2804 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2805 VM_USERMAP, NUMA_NO_NODE,
2806 __builtin_return_address(0));
83342314
NP
2807}
2808EXPORT_SYMBOL(vmalloc_32_user);
2809
d0107eb0
KH
2810/*
2811 * small helper routine , copy contents to buf from addr.
2812 * If the page is not present, fill zero.
2813 */
2814
2815static int aligned_vread(char *buf, char *addr, unsigned long count)
2816{
2817 struct page *p;
2818 int copied = 0;
2819
2820 while (count) {
2821 unsigned long offset, length;
2822
891c49ab 2823 offset = offset_in_page(addr);
d0107eb0
KH
2824 length = PAGE_SIZE - offset;
2825 if (length > count)
2826 length = count;
2827 p = vmalloc_to_page(addr);
2828 /*
2829 * To do safe access to this _mapped_ area, we need
2830 * lock. But adding lock here means that we need to add
2831 * overhead of vmalloc()/vfree() calles for this _debug_
2832 * interface, rarely used. Instead of that, we'll use
2833 * kmap() and get small overhead in this access function.
2834 */
2835 if (p) {
2836 /*
2837 * we can expect USER0 is not used (see vread/vwrite's
2838 * function description)
2839 */
9b04c5fe 2840 void *map = kmap_atomic(p);
d0107eb0 2841 memcpy(buf, map + offset, length);
9b04c5fe 2842 kunmap_atomic(map);
d0107eb0
KH
2843 } else
2844 memset(buf, 0, length);
2845
2846 addr += length;
2847 buf += length;
2848 copied += length;
2849 count -= length;
2850 }
2851 return copied;
2852}
2853
2854static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2855{
2856 struct page *p;
2857 int copied = 0;
2858
2859 while (count) {
2860 unsigned long offset, length;
2861
891c49ab 2862 offset = offset_in_page(addr);
d0107eb0
KH
2863 length = PAGE_SIZE - offset;
2864 if (length > count)
2865 length = count;
2866 p = vmalloc_to_page(addr);
2867 /*
2868 * To do safe access to this _mapped_ area, we need
2869 * lock. But adding lock here means that we need to add
2870 * overhead of vmalloc()/vfree() calles for this _debug_
2871 * interface, rarely used. Instead of that, we'll use
2872 * kmap() and get small overhead in this access function.
2873 */
2874 if (p) {
2875 /*
2876 * we can expect USER0 is not used (see vread/vwrite's
2877 * function description)
2878 */
9b04c5fe 2879 void *map = kmap_atomic(p);
d0107eb0 2880 memcpy(map + offset, buf, length);
9b04c5fe 2881 kunmap_atomic(map);
d0107eb0
KH
2882 }
2883 addr += length;
2884 buf += length;
2885 copied += length;
2886 count -= length;
2887 }
2888 return copied;
2889}
2890
2891/**
92eac168
MR
2892 * vread() - read vmalloc area in a safe way.
2893 * @buf: buffer for reading data
2894 * @addr: vm address.
2895 * @count: number of bytes to be read.
2896 *
92eac168
MR
2897 * This function checks that addr is a valid vmalloc'ed area, and
2898 * copy data from that area to a given buffer. If the given memory range
2899 * of [addr...addr+count) includes some valid address, data is copied to
2900 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2901 * IOREMAP area is treated as memory hole and no copy is done.
2902 *
2903 * If [addr...addr+count) doesn't includes any intersects with alive
2904 * vm_struct area, returns 0. @buf should be kernel's buffer.
2905 *
2906 * Note: In usual ops, vread() is never necessary because the caller
2907 * should know vmalloc() area is valid and can use memcpy().
2908 * This is for routines which have to access vmalloc area without
d9009d67 2909 * any information, as /dev/kmem.
a862f68a
MR
2910 *
2911 * Return: number of bytes for which addr and buf should be increased
2912 * (same number as @count) or %0 if [addr...addr+count) doesn't
2913 * include any intersection with valid vmalloc area
d0107eb0 2914 */
1da177e4
LT
2915long vread(char *buf, char *addr, unsigned long count)
2916{
e81ce85f
JK
2917 struct vmap_area *va;
2918 struct vm_struct *vm;
1da177e4 2919 char *vaddr, *buf_start = buf;
d0107eb0 2920 unsigned long buflen = count;
1da177e4
LT
2921 unsigned long n;
2922
2923 /* Don't allow overflow */
2924 if ((unsigned long) addr + count < count)
2925 count = -(unsigned long) addr;
2926
e81ce85f
JK
2927 spin_lock(&vmap_area_lock);
2928 list_for_each_entry(va, &vmap_area_list, list) {
2929 if (!count)
2930 break;
2931
688fcbfc 2932 if (!va->vm)
e81ce85f
JK
2933 continue;
2934
2935 vm = va->vm;
2936 vaddr = (char *) vm->addr;
762216ab 2937 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2938 continue;
2939 while (addr < vaddr) {
2940 if (count == 0)
2941 goto finished;
2942 *buf = '\0';
2943 buf++;
2944 addr++;
2945 count--;
2946 }
762216ab 2947 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2948 if (n > count)
2949 n = count;
e81ce85f 2950 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
2951 aligned_vread(buf, addr, n);
2952 else /* IOREMAP area is treated as memory hole */
2953 memset(buf, 0, n);
2954 buf += n;
2955 addr += n;
2956 count -= n;
1da177e4
LT
2957 }
2958finished:
e81ce85f 2959 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2960
2961 if (buf == buf_start)
2962 return 0;
2963 /* zero-fill memory holes */
2964 if (buf != buf_start + buflen)
2965 memset(buf, 0, buflen - (buf - buf_start));
2966
2967 return buflen;
1da177e4
LT
2968}
2969
d0107eb0 2970/**
92eac168
MR
2971 * vwrite() - write vmalloc area in a safe way.
2972 * @buf: buffer for source data
2973 * @addr: vm address.
2974 * @count: number of bytes to be read.
2975 *
92eac168
MR
2976 * This function checks that addr is a valid vmalloc'ed area, and
2977 * copy data from a buffer to the given addr. If specified range of
2978 * [addr...addr+count) includes some valid address, data is copied from
2979 * proper area of @buf. If there are memory holes, no copy to hole.
2980 * IOREMAP area is treated as memory hole and no copy is done.
2981 *
2982 * If [addr...addr+count) doesn't includes any intersects with alive
2983 * vm_struct area, returns 0. @buf should be kernel's buffer.
2984 *
2985 * Note: In usual ops, vwrite() is never necessary because the caller
2986 * should know vmalloc() area is valid and can use memcpy().
2987 * This is for routines which have to access vmalloc area without
d9009d67 2988 * any information, as /dev/kmem.
a862f68a
MR
2989 *
2990 * Return: number of bytes for which addr and buf should be
2991 * increased (same number as @count) or %0 if [addr...addr+count)
2992 * doesn't include any intersection with valid vmalloc area
d0107eb0 2993 */
1da177e4
LT
2994long vwrite(char *buf, char *addr, unsigned long count)
2995{
e81ce85f
JK
2996 struct vmap_area *va;
2997 struct vm_struct *vm;
d0107eb0
KH
2998 char *vaddr;
2999 unsigned long n, buflen;
3000 int copied = 0;
1da177e4
LT
3001
3002 /* Don't allow overflow */
3003 if ((unsigned long) addr + count < count)
3004 count = -(unsigned long) addr;
d0107eb0 3005 buflen = count;
1da177e4 3006
e81ce85f
JK
3007 spin_lock(&vmap_area_lock);
3008 list_for_each_entry(va, &vmap_area_list, list) {
3009 if (!count)
3010 break;
3011
688fcbfc 3012 if (!va->vm)
e81ce85f
JK
3013 continue;
3014
3015 vm = va->vm;
3016 vaddr = (char *) vm->addr;
762216ab 3017 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
3018 continue;
3019 while (addr < vaddr) {
3020 if (count == 0)
3021 goto finished;
3022 buf++;
3023 addr++;
3024 count--;
3025 }
762216ab 3026 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
3027 if (n > count)
3028 n = count;
e81ce85f 3029 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
3030 aligned_vwrite(buf, addr, n);
3031 copied++;
3032 }
3033 buf += n;
3034 addr += n;
3035 count -= n;
1da177e4
LT
3036 }
3037finished:
e81ce85f 3038 spin_unlock(&vmap_area_lock);
d0107eb0
KH
3039 if (!copied)
3040 return 0;
3041 return buflen;
1da177e4 3042}
83342314
NP
3043
3044/**
92eac168
MR
3045 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3046 * @vma: vma to cover
3047 * @uaddr: target user address to start at
3048 * @kaddr: virtual address of vmalloc kernel memory
bdebd6a2 3049 * @pgoff: offset from @kaddr to start at
92eac168 3050 * @size: size of map area
7682486b 3051 *
92eac168 3052 * Returns: 0 for success, -Exxx on failure
83342314 3053 *
92eac168
MR
3054 * This function checks that @kaddr is a valid vmalloc'ed area,
3055 * and that it is big enough to cover the range starting at
3056 * @uaddr in @vma. Will return failure if that criteria isn't
3057 * met.
83342314 3058 *
92eac168 3059 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 3060 */
e69e9d4a 3061int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
bdebd6a2
JH
3062 void *kaddr, unsigned long pgoff,
3063 unsigned long size)
83342314
NP
3064{
3065 struct vm_struct *area;
bdebd6a2
JH
3066 unsigned long off;
3067 unsigned long end_index;
3068
3069 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3070 return -EINVAL;
83342314 3071
e69e9d4a
HD
3072 size = PAGE_ALIGN(size);
3073
3074 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
3075 return -EINVAL;
3076
e69e9d4a 3077 area = find_vm_area(kaddr);
83342314 3078 if (!area)
db64fe02 3079 return -EINVAL;
83342314 3080
fe9041c2 3081 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
db64fe02 3082 return -EINVAL;
83342314 3083
bdebd6a2
JH
3084 if (check_add_overflow(size, off, &end_index) ||
3085 end_index > get_vm_area_size(area))
db64fe02 3086 return -EINVAL;
bdebd6a2 3087 kaddr += off;
83342314 3088
83342314 3089 do {
e69e9d4a 3090 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
3091 int ret;
3092
83342314
NP
3093 ret = vm_insert_page(vma, uaddr, page);
3094 if (ret)
3095 return ret;
3096
3097 uaddr += PAGE_SIZE;
e69e9d4a
HD
3098 kaddr += PAGE_SIZE;
3099 size -= PAGE_SIZE;
3100 } while (size > 0);
83342314 3101
314e51b9 3102 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 3103
db64fe02 3104 return 0;
83342314 3105}
e69e9d4a
HD
3106EXPORT_SYMBOL(remap_vmalloc_range_partial);
3107
3108/**
92eac168
MR
3109 * remap_vmalloc_range - map vmalloc pages to userspace
3110 * @vma: vma to cover (map full range of vma)
3111 * @addr: vmalloc memory
3112 * @pgoff: number of pages into addr before first page to map
e69e9d4a 3113 *
92eac168 3114 * Returns: 0 for success, -Exxx on failure
e69e9d4a 3115 *
92eac168
MR
3116 * This function checks that addr is a valid vmalloc'ed area, and
3117 * that it is big enough to cover the vma. Will return failure if
3118 * that criteria isn't met.
e69e9d4a 3119 *
92eac168 3120 * Similar to remap_pfn_range() (see mm/memory.c)
e69e9d4a
HD
3121 */
3122int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3123 unsigned long pgoff)
3124{
3125 return remap_vmalloc_range_partial(vma, vma->vm_start,
bdebd6a2 3126 addr, pgoff,
e69e9d4a
HD
3127 vma->vm_end - vma->vm_start);
3128}
83342314
NP
3129EXPORT_SYMBOL(remap_vmalloc_range);
3130
1eeb66a1 3131/*
763802b5
JR
3132 * Implement stubs for vmalloc_sync_[un]mappings () if the architecture chose
3133 * not to have one.
3f8fd02b
JR
3134 *
3135 * The purpose of this function is to make sure the vmalloc area
3136 * mappings are identical in all page-tables in the system.
1eeb66a1 3137 */
763802b5 3138void __weak vmalloc_sync_mappings(void)
1eeb66a1
CH
3139{
3140}
5f4352fb 3141
763802b5
JR
3142void __weak vmalloc_sync_unmappings(void)
3143{
3144}
5f4352fb 3145
8b1e0f81 3146static int f(pte_t *pte, unsigned long addr, void *data)
5f4352fb 3147{
cd12909c
DV
3148 pte_t ***p = data;
3149
3150 if (p) {
3151 *(*p) = pte;
3152 (*p)++;
3153 }
5f4352fb
JF
3154 return 0;
3155}
3156
3157/**
92eac168
MR
3158 * alloc_vm_area - allocate a range of kernel address space
3159 * @size: size of the area
3160 * @ptes: returns the PTEs for the address space
7682486b 3161 *
92eac168 3162 * Returns: NULL on failure, vm_struct on success
5f4352fb 3163 *
92eac168
MR
3164 * This function reserves a range of kernel address space, and
3165 * allocates pagetables to map that range. No actual mappings
3166 * are created.
cd12909c 3167 *
92eac168
MR
3168 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3169 * allocated for the VM area are returned.
5f4352fb 3170 */
cd12909c 3171struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
5f4352fb
JF
3172{
3173 struct vm_struct *area;
3174
23016969
CL
3175 area = get_vm_area_caller(size, VM_IOREMAP,
3176 __builtin_return_address(0));
5f4352fb
JF
3177 if (area == NULL)
3178 return NULL;
3179
3180 /*
3181 * This ensures that page tables are constructed for this region
3182 * of kernel virtual address space and mapped into init_mm.
3183 */
3184 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
cd12909c 3185 size, f, ptes ? &ptes : NULL)) {
5f4352fb
JF
3186 free_vm_area(area);
3187 return NULL;
3188 }
3189
5f4352fb
JF
3190 return area;
3191}
3192EXPORT_SYMBOL_GPL(alloc_vm_area);
3193
3194void free_vm_area(struct vm_struct *area)
3195{
3196 struct vm_struct *ret;
3197 ret = remove_vm_area(area->addr);
3198 BUG_ON(ret != area);
3199 kfree(area);
3200}
3201EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 3202
4f8b02b4 3203#ifdef CONFIG_SMP
ca23e405
TH
3204static struct vmap_area *node_to_va(struct rb_node *n)
3205{
4583e773 3206 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
3207}
3208
3209/**
68ad4a33
URS
3210 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3211 * @addr: target address
ca23e405 3212 *
68ad4a33
URS
3213 * Returns: vmap_area if it is found. If there is no such area
3214 * the first highest(reverse order) vmap_area is returned
3215 * i.e. va->va_start < addr && va->va_end < addr or NULL
3216 * if there are no any areas before @addr.
ca23e405 3217 */
68ad4a33
URS
3218static struct vmap_area *
3219pvm_find_va_enclose_addr(unsigned long addr)
ca23e405 3220{
68ad4a33
URS
3221 struct vmap_area *va, *tmp;
3222 struct rb_node *n;
3223
3224 n = free_vmap_area_root.rb_node;
3225 va = NULL;
ca23e405
TH
3226
3227 while (n) {
68ad4a33
URS
3228 tmp = rb_entry(n, struct vmap_area, rb_node);
3229 if (tmp->va_start <= addr) {
3230 va = tmp;
3231 if (tmp->va_end >= addr)
3232 break;
3233
ca23e405 3234 n = n->rb_right;
68ad4a33
URS
3235 } else {
3236 n = n->rb_left;
3237 }
ca23e405
TH
3238 }
3239
68ad4a33 3240 return va;
ca23e405
TH
3241}
3242
3243/**
68ad4a33
URS
3244 * pvm_determine_end_from_reverse - find the highest aligned address
3245 * of free block below VMALLOC_END
3246 * @va:
3247 * in - the VA we start the search(reverse order);
3248 * out - the VA with the highest aligned end address.
ca23e405 3249 *
68ad4a33 3250 * Returns: determined end address within vmap_area
ca23e405 3251 */
68ad4a33
URS
3252static unsigned long
3253pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
ca23e405 3254{
68ad4a33 3255 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
ca23e405
TH
3256 unsigned long addr;
3257
68ad4a33
URS
3258 if (likely(*va)) {
3259 list_for_each_entry_from_reverse((*va),
3260 &free_vmap_area_list, list) {
3261 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3262 if ((*va)->va_start < addr)
3263 return addr;
3264 }
ca23e405
TH
3265 }
3266
68ad4a33 3267 return 0;
ca23e405
TH
3268}
3269
3270/**
3271 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3272 * @offsets: array containing offset of each area
3273 * @sizes: array containing size of each area
3274 * @nr_vms: the number of areas to allocate
3275 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
3276 *
3277 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3278 * vm_structs on success, %NULL on failure
3279 *
3280 * Percpu allocator wants to use congruent vm areas so that it can
3281 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
3282 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3283 * be scattered pretty far, distance between two areas easily going up
3284 * to gigabytes. To avoid interacting with regular vmallocs, these
3285 * areas are allocated from top.
ca23e405 3286 *
68ad4a33
URS
3287 * Despite its complicated look, this allocator is rather simple. It
3288 * does everything top-down and scans free blocks from the end looking
3289 * for matching base. While scanning, if any of the areas do not fit the
3290 * base address is pulled down to fit the area. Scanning is repeated till
3291 * all the areas fit and then all necessary data structures are inserted
3292 * and the result is returned.
ca23e405
TH
3293 */
3294struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3295 const size_t *sizes, int nr_vms,
ec3f64fc 3296 size_t align)
ca23e405
TH
3297{
3298 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3299 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
68ad4a33 3300 struct vmap_area **vas, *va;
ca23e405
TH
3301 struct vm_struct **vms;
3302 int area, area2, last_area, term_area;
253a496d 3303 unsigned long base, start, size, end, last_end, orig_start, orig_end;
ca23e405 3304 bool purged = false;
68ad4a33 3305 enum fit_type type;
ca23e405 3306
ca23e405 3307 /* verify parameters and allocate data structures */
891c49ab 3308 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
3309 for (last_area = 0, area = 0; area < nr_vms; area++) {
3310 start = offsets[area];
3311 end = start + sizes[area];
3312
3313 /* is everything aligned properly? */
3314 BUG_ON(!IS_ALIGNED(offsets[area], align));
3315 BUG_ON(!IS_ALIGNED(sizes[area], align));
3316
3317 /* detect the area with the highest address */
3318 if (start > offsets[last_area])
3319 last_area = area;
3320
c568da28 3321 for (area2 = area + 1; area2 < nr_vms; area2++) {
ca23e405
TH
3322 unsigned long start2 = offsets[area2];
3323 unsigned long end2 = start2 + sizes[area2];
3324
c568da28 3325 BUG_ON(start2 < end && start < end2);
ca23e405
TH
3326 }
3327 }
3328 last_end = offsets[last_area] + sizes[last_area];
3329
3330 if (vmalloc_end - vmalloc_start < last_end) {
3331 WARN_ON(true);
3332 return NULL;
3333 }
3334
4d67d860
TM
3335 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3336 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 3337 if (!vas || !vms)
f1db7afd 3338 goto err_free2;
ca23e405
TH
3339
3340 for (area = 0; area < nr_vms; area++) {
68ad4a33 3341 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
ec3f64fc 3342 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
3343 if (!vas[area] || !vms[area])
3344 goto err_free;
3345 }
3346retry:
e36176be 3347 spin_lock(&free_vmap_area_lock);
ca23e405
TH
3348
3349 /* start scanning - we scan from the top, begin with the last area */
3350 area = term_area = last_area;
3351 start = offsets[area];
3352 end = start + sizes[area];
3353
68ad4a33
URS
3354 va = pvm_find_va_enclose_addr(vmalloc_end);
3355 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3356
3357 while (true) {
ca23e405
TH
3358 /*
3359 * base might have underflowed, add last_end before
3360 * comparing.
3361 */
68ad4a33
URS
3362 if (base + last_end < vmalloc_start + last_end)
3363 goto overflow;
ca23e405
TH
3364
3365 /*
68ad4a33 3366 * Fitting base has not been found.
ca23e405 3367 */
68ad4a33
URS
3368 if (va == NULL)
3369 goto overflow;
ca23e405 3370
5336e52c 3371 /*
d8cc323d 3372 * If required width exceeds current VA block, move
5336e52c
KS
3373 * base downwards and then recheck.
3374 */
3375 if (base + end > va->va_end) {
3376 base = pvm_determine_end_from_reverse(&va, align) - end;
3377 term_area = area;
3378 continue;
3379 }
3380
ca23e405 3381 /*
68ad4a33 3382 * If this VA does not fit, move base downwards and recheck.
ca23e405 3383 */
5336e52c 3384 if (base + start < va->va_start) {
68ad4a33
URS
3385 va = node_to_va(rb_prev(&va->rb_node));
3386 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3387 term_area = area;
3388 continue;
3389 }
3390
3391 /*
3392 * This area fits, move on to the previous one. If
3393 * the previous one is the terminal one, we're done.
3394 */
3395 area = (area + nr_vms - 1) % nr_vms;
3396 if (area == term_area)
3397 break;
68ad4a33 3398
ca23e405
TH
3399 start = offsets[area];
3400 end = start + sizes[area];
68ad4a33 3401 va = pvm_find_va_enclose_addr(base + end);
ca23e405 3402 }
68ad4a33 3403
ca23e405
TH
3404 /* we've found a fitting base, insert all va's */
3405 for (area = 0; area < nr_vms; area++) {
68ad4a33 3406 int ret;
ca23e405 3407
68ad4a33
URS
3408 start = base + offsets[area];
3409 size = sizes[area];
ca23e405 3410
68ad4a33
URS
3411 va = pvm_find_va_enclose_addr(start);
3412 if (WARN_ON_ONCE(va == NULL))
3413 /* It is a BUG(), but trigger recovery instead. */
3414 goto recovery;
3415
3416 type = classify_va_fit_type(va, start, size);
3417 if (WARN_ON_ONCE(type == NOTHING_FIT))
3418 /* It is a BUG(), but trigger recovery instead. */
3419 goto recovery;
3420
3421 ret = adjust_va_to_fit_type(va, start, size, type);
3422 if (unlikely(ret))
3423 goto recovery;
3424
3425 /* Allocated area. */
3426 va = vas[area];
3427 va->va_start = start;
3428 va->va_end = start + size;
68ad4a33 3429 }
ca23e405 3430
e36176be 3431 spin_unlock(&free_vmap_area_lock);
ca23e405 3432
253a496d
DA
3433 /* populate the kasan shadow space */
3434 for (area = 0; area < nr_vms; area++) {
3435 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3436 goto err_free_shadow;
3437
3438 kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3439 sizes[area]);
3440 }
3441
ca23e405 3442 /* insert all vm's */
e36176be
URS
3443 spin_lock(&vmap_area_lock);
3444 for (area = 0; area < nr_vms; area++) {
3445 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3446
3447 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3645cb4a 3448 pcpu_get_vm_areas);
e36176be
URS
3449 }
3450 spin_unlock(&vmap_area_lock);
ca23e405
TH
3451
3452 kfree(vas);
3453 return vms;
3454
68ad4a33 3455recovery:
e36176be
URS
3456 /*
3457 * Remove previously allocated areas. There is no
3458 * need in removing these areas from the busy tree,
3459 * because they are inserted only on the final step
3460 * and when pcpu_get_vm_areas() is success.
3461 */
68ad4a33 3462 while (area--) {
253a496d
DA
3463 orig_start = vas[area]->va_start;
3464 orig_end = vas[area]->va_end;
3465 va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3466 &free_vmap_area_list);
3467 kasan_release_vmalloc(orig_start, orig_end,
3468 va->va_start, va->va_end);
68ad4a33
URS
3469 vas[area] = NULL;
3470 }
3471
3472overflow:
e36176be 3473 spin_unlock(&free_vmap_area_lock);
68ad4a33
URS
3474 if (!purged) {
3475 purge_vmap_area_lazy();
3476 purged = true;
3477
3478 /* Before "retry", check if we recover. */
3479 for (area = 0; area < nr_vms; area++) {
3480 if (vas[area])
3481 continue;
3482
3483 vas[area] = kmem_cache_zalloc(
3484 vmap_area_cachep, GFP_KERNEL);
3485 if (!vas[area])
3486 goto err_free;
3487 }
3488
3489 goto retry;
3490 }
3491
ca23e405
TH
3492err_free:
3493 for (area = 0; area < nr_vms; area++) {
68ad4a33
URS
3494 if (vas[area])
3495 kmem_cache_free(vmap_area_cachep, vas[area]);
3496
f1db7afd 3497 kfree(vms[area]);
ca23e405 3498 }
f1db7afd 3499err_free2:
ca23e405
TH
3500 kfree(vas);
3501 kfree(vms);
3502 return NULL;
253a496d
DA
3503
3504err_free_shadow:
3505 spin_lock(&free_vmap_area_lock);
3506 /*
3507 * We release all the vmalloc shadows, even the ones for regions that
3508 * hadn't been successfully added. This relies on kasan_release_vmalloc
3509 * being able to tolerate this case.
3510 */
3511 for (area = 0; area < nr_vms; area++) {
3512 orig_start = vas[area]->va_start;
3513 orig_end = vas[area]->va_end;
3514 va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3515 &free_vmap_area_list);
3516 kasan_release_vmalloc(orig_start, orig_end,
3517 va->va_start, va->va_end);
3518 vas[area] = NULL;
3519 kfree(vms[area]);
3520 }
3521 spin_unlock(&free_vmap_area_lock);
3522 kfree(vas);
3523 kfree(vms);
3524 return NULL;
ca23e405
TH
3525}
3526
3527/**
3528 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3529 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3530 * @nr_vms: the number of allocated areas
3531 *
3532 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3533 */
3534void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3535{
3536 int i;
3537
3538 for (i = 0; i < nr_vms; i++)
3539 free_vm_area(vms[i]);
3540 kfree(vms);
3541}
4f8b02b4 3542#endif /* CONFIG_SMP */
a10aa579
CL
3543
3544#ifdef CONFIG_PROC_FS
3545static void *s_start(struct seq_file *m, loff_t *pos)
e36176be 3546 __acquires(&vmap_purge_lock)
d4033afd 3547 __acquires(&vmap_area_lock)
a10aa579 3548{
e36176be 3549 mutex_lock(&vmap_purge_lock);
d4033afd 3550 spin_lock(&vmap_area_lock);
e36176be 3551
3f500069 3552 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
3553}
3554
3555static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3556{
3f500069 3557 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
3558}
3559
3560static void s_stop(struct seq_file *m, void *p)
e36176be 3561 __releases(&vmap_purge_lock)
d4033afd 3562 __releases(&vmap_area_lock)
a10aa579 3563{
e36176be 3564 mutex_unlock(&vmap_purge_lock);
d4033afd 3565 spin_unlock(&vmap_area_lock);
a10aa579
CL
3566}
3567
a47a126a
ED
3568static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3569{
e5adfffc 3570 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
3571 unsigned int nr, *counters = m->private;
3572
3573 if (!counters)
3574 return;
3575
af12346c
WL
3576 if (v->flags & VM_UNINITIALIZED)
3577 return;
7e5b528b
DV
3578 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3579 smp_rmb();
af12346c 3580
a47a126a
ED
3581 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3582
3583 for (nr = 0; nr < v->nr_pages; nr++)
3584 counters[page_to_nid(v->pages[nr])]++;
3585
3586 for_each_node_state(nr, N_HIGH_MEMORY)
3587 if (counters[nr])
3588 seq_printf(m, " N%u=%u", nr, counters[nr]);
3589 }
3590}
3591
dd3b8353
URS
3592static void show_purge_info(struct seq_file *m)
3593{
3594 struct llist_node *head;
3595 struct vmap_area *va;
3596
3597 head = READ_ONCE(vmap_purge_list.first);
3598 if (head == NULL)
3599 return;
3600
3601 llist_for_each_entry(va, head, purge_list) {
3602 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3603 (void *)va->va_start, (void *)va->va_end,
3604 va->va_end - va->va_start);
3605 }
3606}
3607
a10aa579
CL
3608static int s_show(struct seq_file *m, void *p)
3609{
3f500069 3610 struct vmap_area *va;
d4033afd
JK
3611 struct vm_struct *v;
3612
3f500069 3613 va = list_entry(p, struct vmap_area, list);
3614
c2ce8c14 3615 /*
688fcbfc
PL
3616 * s_show can encounter race with remove_vm_area, !vm on behalf
3617 * of vmap area is being tear down or vm_map_ram allocation.
c2ce8c14 3618 */
688fcbfc 3619 if (!va->vm) {
dd3b8353 3620 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
78c72746 3621 (void *)va->va_start, (void *)va->va_end,
dd3b8353 3622 va->va_end - va->va_start);
78c72746 3623
d4033afd 3624 return 0;
78c72746 3625 }
d4033afd
JK
3626
3627 v = va->vm;
a10aa579 3628
45ec1690 3629 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
3630 v->addr, v->addr + v->size, v->size);
3631
62c70bce
JP
3632 if (v->caller)
3633 seq_printf(m, " %pS", v->caller);
23016969 3634
a10aa579
CL
3635 if (v->nr_pages)
3636 seq_printf(m, " pages=%d", v->nr_pages);
3637
3638 if (v->phys_addr)
199eaa05 3639 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579
CL
3640
3641 if (v->flags & VM_IOREMAP)
f4527c90 3642 seq_puts(m, " ioremap");
a10aa579
CL
3643
3644 if (v->flags & VM_ALLOC)
f4527c90 3645 seq_puts(m, " vmalloc");
a10aa579
CL
3646
3647 if (v->flags & VM_MAP)
f4527c90 3648 seq_puts(m, " vmap");
a10aa579
CL
3649
3650 if (v->flags & VM_USERMAP)
f4527c90 3651 seq_puts(m, " user");
a10aa579 3652
fe9041c2
CH
3653 if (v->flags & VM_DMA_COHERENT)
3654 seq_puts(m, " dma-coherent");
3655
244d63ee 3656 if (is_vmalloc_addr(v->pages))
f4527c90 3657 seq_puts(m, " vpages");
a10aa579 3658
a47a126a 3659 show_numa_info(m, v);
a10aa579 3660 seq_putc(m, '\n');
dd3b8353
URS
3661
3662 /*
3663 * As a final step, dump "unpurged" areas. Note,
3664 * that entire "/proc/vmallocinfo" output will not
3665 * be address sorted, because the purge list is not
3666 * sorted.
3667 */
3668 if (list_is_last(&va->list, &vmap_area_list))
3669 show_purge_info(m);
3670
a10aa579
CL
3671 return 0;
3672}
3673
5f6a6a9c 3674static const struct seq_operations vmalloc_op = {
a10aa579
CL
3675 .start = s_start,
3676 .next = s_next,
3677 .stop = s_stop,
3678 .show = s_show,
3679};
5f6a6a9c 3680
5f6a6a9c
AD
3681static int __init proc_vmalloc_init(void)
3682{
fddda2b7 3683 if (IS_ENABLED(CONFIG_NUMA))
0825a6f9 3684 proc_create_seq_private("vmallocinfo", 0400, NULL,
44414d82
CH
3685 &vmalloc_op,
3686 nr_node_ids * sizeof(unsigned int), NULL);
fddda2b7 3687 else
0825a6f9 3688 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
5f6a6a9c
AD
3689 return 0;
3690}
3691module_init(proc_vmalloc_init);
db3808c1 3692
a10aa579 3693#endif