]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/mips/kvm/emulate.c
Merge tag 'hyperv-fixes-signed' of git://git.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/linux.git] / arch / mips / kvm / emulate.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: Instruction/Exception emulation
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/ktime.h>
15 #include <linux/kvm_host.h>
16 #include <linux/vmalloc.h>
17 #include <linux/fs.h>
18 #include <linux/memblock.h>
19 #include <linux/random.h>
20 #include <asm/page.h>
21 #include <asm/cacheflush.h>
22 #include <asm/cacheops.h>
23 #include <asm/cpu-info.h>
24 #include <asm/mmu_context.h>
25 #include <asm/tlbflush.h>
26 #include <asm/inst.h>
27
28 #undef CONFIG_MIPS_MT
29 #include <asm/r4kcache.h>
30 #define CONFIG_MIPS_MT
31
32 #include "interrupt.h"
33 #include "commpage.h"
34
35 #include "trace.h"
36
37 /*
38 * Compute the return address and do emulate branch simulation, if required.
39 * This function should be called only in branch delay slot active.
40 */
41 static int kvm_compute_return_epc(struct kvm_vcpu *vcpu, unsigned long instpc,
42 unsigned long *out)
43 {
44 unsigned int dspcontrol;
45 union mips_instruction insn;
46 struct kvm_vcpu_arch *arch = &vcpu->arch;
47 long epc = instpc;
48 long nextpc;
49 int err;
50
51 if (epc & 3) {
52 kvm_err("%s: unaligned epc\n", __func__);
53 return -EINVAL;
54 }
55
56 /* Read the instruction */
57 err = kvm_get_badinstrp((u32 *)epc, vcpu, &insn.word);
58 if (err)
59 return err;
60
61 switch (insn.i_format.opcode) {
62 /* jr and jalr are in r_format format. */
63 case spec_op:
64 switch (insn.r_format.func) {
65 case jalr_op:
66 arch->gprs[insn.r_format.rd] = epc + 8;
67 /* Fall through */
68 case jr_op:
69 nextpc = arch->gprs[insn.r_format.rs];
70 break;
71 default:
72 return -EINVAL;
73 }
74 break;
75
76 /*
77 * This group contains:
78 * bltz_op, bgez_op, bltzl_op, bgezl_op,
79 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
80 */
81 case bcond_op:
82 switch (insn.i_format.rt) {
83 case bltz_op:
84 case bltzl_op:
85 if ((long)arch->gprs[insn.i_format.rs] < 0)
86 epc = epc + 4 + (insn.i_format.simmediate << 2);
87 else
88 epc += 8;
89 nextpc = epc;
90 break;
91
92 case bgez_op:
93 case bgezl_op:
94 if ((long)arch->gprs[insn.i_format.rs] >= 0)
95 epc = epc + 4 + (insn.i_format.simmediate << 2);
96 else
97 epc += 8;
98 nextpc = epc;
99 break;
100
101 case bltzal_op:
102 case bltzall_op:
103 arch->gprs[31] = epc + 8;
104 if ((long)arch->gprs[insn.i_format.rs] < 0)
105 epc = epc + 4 + (insn.i_format.simmediate << 2);
106 else
107 epc += 8;
108 nextpc = epc;
109 break;
110
111 case bgezal_op:
112 case bgezall_op:
113 arch->gprs[31] = epc + 8;
114 if ((long)arch->gprs[insn.i_format.rs] >= 0)
115 epc = epc + 4 + (insn.i_format.simmediate << 2);
116 else
117 epc += 8;
118 nextpc = epc;
119 break;
120 case bposge32_op:
121 if (!cpu_has_dsp) {
122 kvm_err("%s: DSP branch but not DSP ASE\n",
123 __func__);
124 return -EINVAL;
125 }
126
127 dspcontrol = rddsp(0x01);
128
129 if (dspcontrol >= 32)
130 epc = epc + 4 + (insn.i_format.simmediate << 2);
131 else
132 epc += 8;
133 nextpc = epc;
134 break;
135 default:
136 return -EINVAL;
137 }
138 break;
139
140 /* These are unconditional and in j_format. */
141 case jal_op:
142 arch->gprs[31] = instpc + 8;
143 /* fall through */
144 case j_op:
145 epc += 4;
146 epc >>= 28;
147 epc <<= 28;
148 epc |= (insn.j_format.target << 2);
149 nextpc = epc;
150 break;
151
152 /* These are conditional and in i_format. */
153 case beq_op:
154 case beql_op:
155 if (arch->gprs[insn.i_format.rs] ==
156 arch->gprs[insn.i_format.rt])
157 epc = epc + 4 + (insn.i_format.simmediate << 2);
158 else
159 epc += 8;
160 nextpc = epc;
161 break;
162
163 case bne_op:
164 case bnel_op:
165 if (arch->gprs[insn.i_format.rs] !=
166 arch->gprs[insn.i_format.rt])
167 epc = epc + 4 + (insn.i_format.simmediate << 2);
168 else
169 epc += 8;
170 nextpc = epc;
171 break;
172
173 case blez_op: /* POP06 */
174 #ifndef CONFIG_CPU_MIPSR6
175 case blezl_op: /* removed in R6 */
176 #endif
177 if (insn.i_format.rt != 0)
178 goto compact_branch;
179 if ((long)arch->gprs[insn.i_format.rs] <= 0)
180 epc = epc + 4 + (insn.i_format.simmediate << 2);
181 else
182 epc += 8;
183 nextpc = epc;
184 break;
185
186 case bgtz_op: /* POP07 */
187 #ifndef CONFIG_CPU_MIPSR6
188 case bgtzl_op: /* removed in R6 */
189 #endif
190 if (insn.i_format.rt != 0)
191 goto compact_branch;
192 if ((long)arch->gprs[insn.i_format.rs] > 0)
193 epc = epc + 4 + (insn.i_format.simmediate << 2);
194 else
195 epc += 8;
196 nextpc = epc;
197 break;
198
199 /* And now the FPA/cp1 branch instructions. */
200 case cop1_op:
201 kvm_err("%s: unsupported cop1_op\n", __func__);
202 return -EINVAL;
203
204 #ifdef CONFIG_CPU_MIPSR6
205 /* R6 added the following compact branches with forbidden slots */
206 case blezl_op: /* POP26 */
207 case bgtzl_op: /* POP27 */
208 /* only rt == 0 isn't compact branch */
209 if (insn.i_format.rt != 0)
210 goto compact_branch;
211 return -EINVAL;
212 case pop10_op:
213 case pop30_op:
214 /* only rs == rt == 0 is reserved, rest are compact branches */
215 if (insn.i_format.rs != 0 || insn.i_format.rt != 0)
216 goto compact_branch;
217 return -EINVAL;
218 case pop66_op:
219 case pop76_op:
220 /* only rs == 0 isn't compact branch */
221 if (insn.i_format.rs != 0)
222 goto compact_branch;
223 return -EINVAL;
224 compact_branch:
225 /*
226 * If we've hit an exception on the forbidden slot, then
227 * the branch must not have been taken.
228 */
229 epc += 8;
230 nextpc = epc;
231 break;
232 #else
233 compact_branch:
234 /* Fall through - Compact branches not supported before R6 */
235 #endif
236 default:
237 return -EINVAL;
238 }
239
240 *out = nextpc;
241 return 0;
242 }
243
244 enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause)
245 {
246 int err;
247
248 if (cause & CAUSEF_BD) {
249 err = kvm_compute_return_epc(vcpu, vcpu->arch.pc,
250 &vcpu->arch.pc);
251 if (err)
252 return EMULATE_FAIL;
253 } else {
254 vcpu->arch.pc += 4;
255 }
256
257 kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
258
259 return EMULATE_DONE;
260 }
261
262 /**
263 * kvm_get_badinstr() - Get bad instruction encoding.
264 * @opc: Guest pointer to faulting instruction.
265 * @vcpu: KVM VCPU information.
266 *
267 * Gets the instruction encoding of the faulting instruction, using the saved
268 * BadInstr register value if it exists, otherwise falling back to reading guest
269 * memory at @opc.
270 *
271 * Returns: The instruction encoding of the faulting instruction.
272 */
273 int kvm_get_badinstr(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
274 {
275 if (cpu_has_badinstr) {
276 *out = vcpu->arch.host_cp0_badinstr;
277 return 0;
278 } else {
279 return kvm_get_inst(opc, vcpu, out);
280 }
281 }
282
283 /**
284 * kvm_get_badinstrp() - Get bad prior instruction encoding.
285 * @opc: Guest pointer to prior faulting instruction.
286 * @vcpu: KVM VCPU information.
287 *
288 * Gets the instruction encoding of the prior faulting instruction (the branch
289 * containing the delay slot which faulted), using the saved BadInstrP register
290 * value if it exists, otherwise falling back to reading guest memory at @opc.
291 *
292 * Returns: The instruction encoding of the prior faulting instruction.
293 */
294 int kvm_get_badinstrp(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
295 {
296 if (cpu_has_badinstrp) {
297 *out = vcpu->arch.host_cp0_badinstrp;
298 return 0;
299 } else {
300 return kvm_get_inst(opc, vcpu, out);
301 }
302 }
303
304 /**
305 * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
306 * @vcpu: Virtual CPU.
307 *
308 * Returns: 1 if the CP0_Count timer is disabled by either the guest
309 * CP0_Cause.DC bit or the count_ctl.DC bit.
310 * 0 otherwise (in which case CP0_Count timer is running).
311 */
312 int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
313 {
314 struct mips_coproc *cop0 = vcpu->arch.cop0;
315
316 return (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
317 (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
318 }
319
320 /**
321 * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
322 *
323 * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
324 *
325 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
326 */
327 static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
328 {
329 s64 now_ns, periods;
330 u64 delta;
331
332 now_ns = ktime_to_ns(now);
333 delta = now_ns + vcpu->arch.count_dyn_bias;
334
335 if (delta >= vcpu->arch.count_period) {
336 /* If delta is out of safe range the bias needs adjusting */
337 periods = div64_s64(now_ns, vcpu->arch.count_period);
338 vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
339 /* Recalculate delta with new bias */
340 delta = now_ns + vcpu->arch.count_dyn_bias;
341 }
342
343 /*
344 * We've ensured that:
345 * delta < count_period
346 *
347 * Therefore the intermediate delta*count_hz will never overflow since
348 * at the boundary condition:
349 * delta = count_period
350 * delta = NSEC_PER_SEC * 2^32 / count_hz
351 * delta * count_hz = NSEC_PER_SEC * 2^32
352 */
353 return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
354 }
355
356 /**
357 * kvm_mips_count_time() - Get effective current time.
358 * @vcpu: Virtual CPU.
359 *
360 * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
361 * except when the master disable bit is set in count_ctl, in which case it is
362 * count_resume, i.e. the time that the count was disabled.
363 *
364 * Returns: Effective monotonic ktime for CP0_Count.
365 */
366 static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
367 {
368 if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
369 return vcpu->arch.count_resume;
370
371 return ktime_get();
372 }
373
374 /**
375 * kvm_mips_read_count_running() - Read the current count value as if running.
376 * @vcpu: Virtual CPU.
377 * @now: Kernel time to read CP0_Count at.
378 *
379 * Returns the current guest CP0_Count register at time @now and handles if the
380 * timer interrupt is pending and hasn't been handled yet.
381 *
382 * Returns: The current value of the guest CP0_Count register.
383 */
384 static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
385 {
386 struct mips_coproc *cop0 = vcpu->arch.cop0;
387 ktime_t expires, threshold;
388 u32 count, compare;
389 int running;
390
391 /* Calculate the biased and scaled guest CP0_Count */
392 count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
393 compare = kvm_read_c0_guest_compare(cop0);
394
395 /*
396 * Find whether CP0_Count has reached the closest timer interrupt. If
397 * not, we shouldn't inject it.
398 */
399 if ((s32)(count - compare) < 0)
400 return count;
401
402 /*
403 * The CP0_Count we're going to return has already reached the closest
404 * timer interrupt. Quickly check if it really is a new interrupt by
405 * looking at whether the interval until the hrtimer expiry time is
406 * less than 1/4 of the timer period.
407 */
408 expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
409 threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
410 if (ktime_before(expires, threshold)) {
411 /*
412 * Cancel it while we handle it so there's no chance of
413 * interference with the timeout handler.
414 */
415 running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
416
417 /* Nothing should be waiting on the timeout */
418 kvm_mips_callbacks->queue_timer_int(vcpu);
419
420 /*
421 * Restart the timer if it was running based on the expiry time
422 * we read, so that we don't push it back 2 periods.
423 */
424 if (running) {
425 expires = ktime_add_ns(expires,
426 vcpu->arch.count_period);
427 hrtimer_start(&vcpu->arch.comparecount_timer, expires,
428 HRTIMER_MODE_ABS);
429 }
430 }
431
432 return count;
433 }
434
435 /**
436 * kvm_mips_read_count() - Read the current count value.
437 * @vcpu: Virtual CPU.
438 *
439 * Read the current guest CP0_Count value, taking into account whether the timer
440 * is stopped.
441 *
442 * Returns: The current guest CP0_Count value.
443 */
444 u32 kvm_mips_read_count(struct kvm_vcpu *vcpu)
445 {
446 struct mips_coproc *cop0 = vcpu->arch.cop0;
447
448 /* If count disabled just read static copy of count */
449 if (kvm_mips_count_disabled(vcpu))
450 return kvm_read_c0_guest_count(cop0);
451
452 return kvm_mips_read_count_running(vcpu, ktime_get());
453 }
454
455 /**
456 * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
457 * @vcpu: Virtual CPU.
458 * @count: Output pointer for CP0_Count value at point of freeze.
459 *
460 * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
461 * at the point it was frozen. It is guaranteed that any pending interrupts at
462 * the point it was frozen are handled, and none after that point.
463 *
464 * This is useful where the time/CP0_Count is needed in the calculation of the
465 * new parameters.
466 *
467 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
468 *
469 * Returns: The ktime at the point of freeze.
470 */
471 ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count)
472 {
473 ktime_t now;
474
475 /* stop hrtimer before finding time */
476 hrtimer_cancel(&vcpu->arch.comparecount_timer);
477 now = ktime_get();
478
479 /* find count at this point and handle pending hrtimer */
480 *count = kvm_mips_read_count_running(vcpu, now);
481
482 return now;
483 }
484
485 /**
486 * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
487 * @vcpu: Virtual CPU.
488 * @now: ktime at point of resume.
489 * @count: CP0_Count at point of resume.
490 *
491 * Resumes the timer and updates the timer expiry based on @now and @count.
492 * This can be used in conjunction with kvm_mips_freeze_timer() when timer
493 * parameters need to be changed.
494 *
495 * It is guaranteed that a timer interrupt immediately after resume will be
496 * handled, but not if CP_Compare is exactly at @count. That case is already
497 * handled by kvm_mips_freeze_timer().
498 *
499 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
500 */
501 static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
502 ktime_t now, u32 count)
503 {
504 struct mips_coproc *cop0 = vcpu->arch.cop0;
505 u32 compare;
506 u64 delta;
507 ktime_t expire;
508
509 /* Calculate timeout (wrap 0 to 2^32) */
510 compare = kvm_read_c0_guest_compare(cop0);
511 delta = (u64)(u32)(compare - count - 1) + 1;
512 delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
513 expire = ktime_add_ns(now, delta);
514
515 /* Update hrtimer to use new timeout */
516 hrtimer_cancel(&vcpu->arch.comparecount_timer);
517 hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
518 }
519
520 /**
521 * kvm_mips_restore_hrtimer() - Restore hrtimer after a gap, updating expiry.
522 * @vcpu: Virtual CPU.
523 * @before: Time before Count was saved, lower bound of drift calculation.
524 * @count: CP0_Count at point of restore.
525 * @min_drift: Minimum amount of drift permitted before correction.
526 * Must be <= 0.
527 *
528 * Restores the timer from a particular @count, accounting for drift. This can
529 * be used in conjunction with kvm_mips_freeze_timer() when a hardware timer is
530 * to be used for a period of time, but the exact ktime corresponding to the
531 * final Count that must be restored is not known.
532 *
533 * It is gauranteed that a timer interrupt immediately after restore will be
534 * handled, but not if CP0_Compare is exactly at @count. That case should
535 * already be handled when the hardware timer state is saved.
536 *
537 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is not
538 * stopped).
539 *
540 * Returns: Amount of correction to count_bias due to drift.
541 */
542 int kvm_mips_restore_hrtimer(struct kvm_vcpu *vcpu, ktime_t before,
543 u32 count, int min_drift)
544 {
545 ktime_t now, count_time;
546 u32 now_count, before_count;
547 u64 delta;
548 int drift, ret = 0;
549
550 /* Calculate expected count at before */
551 before_count = vcpu->arch.count_bias +
552 kvm_mips_ktime_to_count(vcpu, before);
553
554 /*
555 * Detect significantly negative drift, where count is lower than
556 * expected. Some negative drift is expected when hardware counter is
557 * set after kvm_mips_freeze_timer(), and it is harmless to allow the
558 * time to jump forwards a little, within reason. If the drift is too
559 * significant, adjust the bias to avoid a big Guest.CP0_Count jump.
560 */
561 drift = count - before_count;
562 if (drift < min_drift) {
563 count_time = before;
564 vcpu->arch.count_bias += drift;
565 ret = drift;
566 goto resume;
567 }
568
569 /* Calculate expected count right now */
570 now = ktime_get();
571 now_count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
572
573 /*
574 * Detect positive drift, where count is higher than expected, and
575 * adjust the bias to avoid guest time going backwards.
576 */
577 drift = count - now_count;
578 if (drift > 0) {
579 count_time = now;
580 vcpu->arch.count_bias += drift;
581 ret = drift;
582 goto resume;
583 }
584
585 /* Subtract nanosecond delta to find ktime when count was read */
586 delta = (u64)(u32)(now_count - count);
587 delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
588 count_time = ktime_sub_ns(now, delta);
589
590 resume:
591 /* Resume using the calculated ktime */
592 kvm_mips_resume_hrtimer(vcpu, count_time, count);
593 return ret;
594 }
595
596 /**
597 * kvm_mips_write_count() - Modify the count and update timer.
598 * @vcpu: Virtual CPU.
599 * @count: Guest CP0_Count value to set.
600 *
601 * Sets the CP0_Count value and updates the timer accordingly.
602 */
603 void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count)
604 {
605 struct mips_coproc *cop0 = vcpu->arch.cop0;
606 ktime_t now;
607
608 /* Calculate bias */
609 now = kvm_mips_count_time(vcpu);
610 vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
611
612 if (kvm_mips_count_disabled(vcpu))
613 /* The timer's disabled, adjust the static count */
614 kvm_write_c0_guest_count(cop0, count);
615 else
616 /* Update timeout */
617 kvm_mips_resume_hrtimer(vcpu, now, count);
618 }
619
620 /**
621 * kvm_mips_init_count() - Initialise timer.
622 * @vcpu: Virtual CPU.
623 * @count_hz: Frequency of timer.
624 *
625 * Initialise the timer to the specified frequency, zero it, and set it going if
626 * it's enabled.
627 */
628 void kvm_mips_init_count(struct kvm_vcpu *vcpu, unsigned long count_hz)
629 {
630 vcpu->arch.count_hz = count_hz;
631 vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
632 vcpu->arch.count_dyn_bias = 0;
633
634 /* Starting at 0 */
635 kvm_mips_write_count(vcpu, 0);
636 }
637
638 /**
639 * kvm_mips_set_count_hz() - Update the frequency of the timer.
640 * @vcpu: Virtual CPU.
641 * @count_hz: Frequency of CP0_Count timer in Hz.
642 *
643 * Change the frequency of the CP0_Count timer. This is done atomically so that
644 * CP0_Count is continuous and no timer interrupt is lost.
645 *
646 * Returns: -EINVAL if @count_hz is out of range.
647 * 0 on success.
648 */
649 int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
650 {
651 struct mips_coproc *cop0 = vcpu->arch.cop0;
652 int dc;
653 ktime_t now;
654 u32 count;
655
656 /* ensure the frequency is in a sensible range... */
657 if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
658 return -EINVAL;
659 /* ... and has actually changed */
660 if (vcpu->arch.count_hz == count_hz)
661 return 0;
662
663 /* Safely freeze timer so we can keep it continuous */
664 dc = kvm_mips_count_disabled(vcpu);
665 if (dc) {
666 now = kvm_mips_count_time(vcpu);
667 count = kvm_read_c0_guest_count(cop0);
668 } else {
669 now = kvm_mips_freeze_hrtimer(vcpu, &count);
670 }
671
672 /* Update the frequency */
673 vcpu->arch.count_hz = count_hz;
674 vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
675 vcpu->arch.count_dyn_bias = 0;
676
677 /* Calculate adjusted bias so dynamic count is unchanged */
678 vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
679
680 /* Update and resume hrtimer */
681 if (!dc)
682 kvm_mips_resume_hrtimer(vcpu, now, count);
683 return 0;
684 }
685
686 /**
687 * kvm_mips_write_compare() - Modify compare and update timer.
688 * @vcpu: Virtual CPU.
689 * @compare: New CP0_Compare value.
690 * @ack: Whether to acknowledge timer interrupt.
691 *
692 * Update CP0_Compare to a new value and update the timeout.
693 * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
694 * any pending timer interrupt is preserved.
695 */
696 void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack)
697 {
698 struct mips_coproc *cop0 = vcpu->arch.cop0;
699 int dc;
700 u32 old_compare = kvm_read_c0_guest_compare(cop0);
701 s32 delta = compare - old_compare;
702 u32 cause;
703 ktime_t now = ktime_set(0, 0); /* silence bogus GCC warning */
704 u32 count;
705
706 /* if unchanged, must just be an ack */
707 if (old_compare == compare) {
708 if (!ack)
709 return;
710 kvm_mips_callbacks->dequeue_timer_int(vcpu);
711 kvm_write_c0_guest_compare(cop0, compare);
712 return;
713 }
714
715 /*
716 * If guest CP0_Compare moves forward, CP0_GTOffset should be adjusted
717 * too to prevent guest CP0_Count hitting guest CP0_Compare.
718 *
719 * The new GTOffset corresponds to the new value of CP0_Compare, and is
720 * set prior to it being written into the guest context. We disable
721 * preemption until the new value is written to prevent restore of a
722 * GTOffset corresponding to the old CP0_Compare value.
723 */
724 if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && delta > 0) {
725 preempt_disable();
726 write_c0_gtoffset(compare - read_c0_count());
727 back_to_back_c0_hazard();
728 }
729
730 /* freeze_hrtimer() takes care of timer interrupts <= count */
731 dc = kvm_mips_count_disabled(vcpu);
732 if (!dc)
733 now = kvm_mips_freeze_hrtimer(vcpu, &count);
734
735 if (ack)
736 kvm_mips_callbacks->dequeue_timer_int(vcpu);
737 else if (IS_ENABLED(CONFIG_KVM_MIPS_VZ))
738 /*
739 * With VZ, writing CP0_Compare acks (clears) CP0_Cause.TI, so
740 * preserve guest CP0_Cause.TI if we don't want to ack it.
741 */
742 cause = kvm_read_c0_guest_cause(cop0);
743
744 kvm_write_c0_guest_compare(cop0, compare);
745
746 if (IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
747 if (delta > 0)
748 preempt_enable();
749
750 back_to_back_c0_hazard();
751
752 if (!ack && cause & CAUSEF_TI)
753 kvm_write_c0_guest_cause(cop0, cause);
754 }
755
756 /* resume_hrtimer() takes care of timer interrupts > count */
757 if (!dc)
758 kvm_mips_resume_hrtimer(vcpu, now, count);
759
760 /*
761 * If guest CP0_Compare is moving backward, we delay CP0_GTOffset change
762 * until after the new CP0_Compare is written, otherwise new guest
763 * CP0_Count could hit new guest CP0_Compare.
764 */
765 if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && delta <= 0)
766 write_c0_gtoffset(compare - read_c0_count());
767 }
768
769 /**
770 * kvm_mips_count_disable() - Disable count.
771 * @vcpu: Virtual CPU.
772 *
773 * Disable the CP0_Count timer. A timer interrupt on or before the final stop
774 * time will be handled but not after.
775 *
776 * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
777 * count_ctl.DC has been set (count disabled).
778 *
779 * Returns: The time that the timer was stopped.
780 */
781 static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
782 {
783 struct mips_coproc *cop0 = vcpu->arch.cop0;
784 u32 count;
785 ktime_t now;
786
787 /* Stop hrtimer */
788 hrtimer_cancel(&vcpu->arch.comparecount_timer);
789
790 /* Set the static count from the dynamic count, handling pending TI */
791 now = ktime_get();
792 count = kvm_mips_read_count_running(vcpu, now);
793 kvm_write_c0_guest_count(cop0, count);
794
795 return now;
796 }
797
798 /**
799 * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
800 * @vcpu: Virtual CPU.
801 *
802 * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
803 * before the final stop time will be handled if the timer isn't disabled by
804 * count_ctl.DC, but not after.
805 *
806 * Assumes CP0_Cause.DC is clear (count enabled).
807 */
808 void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
809 {
810 struct mips_coproc *cop0 = vcpu->arch.cop0;
811
812 kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
813 if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
814 kvm_mips_count_disable(vcpu);
815 }
816
817 /**
818 * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
819 * @vcpu: Virtual CPU.
820 *
821 * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
822 * the start time will be handled if the timer isn't disabled by count_ctl.DC,
823 * potentially before even returning, so the caller should be careful with
824 * ordering of CP0_Cause modifications so as not to lose it.
825 *
826 * Assumes CP0_Cause.DC is set (count disabled).
827 */
828 void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
829 {
830 struct mips_coproc *cop0 = vcpu->arch.cop0;
831 u32 count;
832
833 kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
834
835 /*
836 * Set the dynamic count to match the static count.
837 * This starts the hrtimer if count_ctl.DC allows it.
838 * Otherwise it conveniently updates the biases.
839 */
840 count = kvm_read_c0_guest_count(cop0);
841 kvm_mips_write_count(vcpu, count);
842 }
843
844 /**
845 * kvm_mips_set_count_ctl() - Update the count control KVM register.
846 * @vcpu: Virtual CPU.
847 * @count_ctl: Count control register new value.
848 *
849 * Set the count control KVM register. The timer is updated accordingly.
850 *
851 * Returns: -EINVAL if reserved bits are set.
852 * 0 on success.
853 */
854 int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
855 {
856 struct mips_coproc *cop0 = vcpu->arch.cop0;
857 s64 changed = count_ctl ^ vcpu->arch.count_ctl;
858 s64 delta;
859 ktime_t expire, now;
860 u32 count, compare;
861
862 /* Only allow defined bits to be changed */
863 if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
864 return -EINVAL;
865
866 /* Apply new value */
867 vcpu->arch.count_ctl = count_ctl;
868
869 /* Master CP0_Count disable */
870 if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
871 /* Is CP0_Cause.DC already disabling CP0_Count? */
872 if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
873 if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
874 /* Just record the current time */
875 vcpu->arch.count_resume = ktime_get();
876 } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
877 /* disable timer and record current time */
878 vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
879 } else {
880 /*
881 * Calculate timeout relative to static count at resume
882 * time (wrap 0 to 2^32).
883 */
884 count = kvm_read_c0_guest_count(cop0);
885 compare = kvm_read_c0_guest_compare(cop0);
886 delta = (u64)(u32)(compare - count - 1) + 1;
887 delta = div_u64(delta * NSEC_PER_SEC,
888 vcpu->arch.count_hz);
889 expire = ktime_add_ns(vcpu->arch.count_resume, delta);
890
891 /* Handle pending interrupt */
892 now = ktime_get();
893 if (ktime_compare(now, expire) >= 0)
894 /* Nothing should be waiting on the timeout */
895 kvm_mips_callbacks->queue_timer_int(vcpu);
896
897 /* Resume hrtimer without changing bias */
898 count = kvm_mips_read_count_running(vcpu, now);
899 kvm_mips_resume_hrtimer(vcpu, now, count);
900 }
901 }
902
903 return 0;
904 }
905
906 /**
907 * kvm_mips_set_count_resume() - Update the count resume KVM register.
908 * @vcpu: Virtual CPU.
909 * @count_resume: Count resume register new value.
910 *
911 * Set the count resume KVM register.
912 *
913 * Returns: -EINVAL if out of valid range (0..now).
914 * 0 on success.
915 */
916 int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
917 {
918 /*
919 * It doesn't make sense for the resume time to be in the future, as it
920 * would be possible for the next interrupt to be more than a full
921 * period in the future.
922 */
923 if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
924 return -EINVAL;
925
926 vcpu->arch.count_resume = ns_to_ktime(count_resume);
927 return 0;
928 }
929
930 /**
931 * kvm_mips_count_timeout() - Push timer forward on timeout.
932 * @vcpu: Virtual CPU.
933 *
934 * Handle an hrtimer event by push the hrtimer forward a period.
935 *
936 * Returns: The hrtimer_restart value to return to the hrtimer subsystem.
937 */
938 enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
939 {
940 /* Add the Count period to the current expiry time */
941 hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
942 vcpu->arch.count_period);
943 return HRTIMER_RESTART;
944 }
945
946 enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
947 {
948 struct mips_coproc *cop0 = vcpu->arch.cop0;
949 enum emulation_result er = EMULATE_DONE;
950
951 if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
952 kvm_clear_c0_guest_status(cop0, ST0_ERL);
953 vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
954 } else if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
955 kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
956 kvm_read_c0_guest_epc(cop0));
957 kvm_clear_c0_guest_status(cop0, ST0_EXL);
958 vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
959
960 } else {
961 kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
962 vcpu->arch.pc);
963 er = EMULATE_FAIL;
964 }
965
966 return er;
967 }
968
969 enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
970 {
971 kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
972 vcpu->arch.pending_exceptions);
973
974 ++vcpu->stat.wait_exits;
975 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT);
976 if (!vcpu->arch.pending_exceptions) {
977 kvm_vz_lose_htimer(vcpu);
978 vcpu->arch.wait = 1;
979 kvm_vcpu_block(vcpu);
980
981 /*
982 * We we are runnable, then definitely go off to user space to
983 * check if any I/O interrupts are pending.
984 */
985 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
986 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
987 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
988 }
989 }
990
991 return EMULATE_DONE;
992 }
993
994 static void kvm_mips_change_entryhi(struct kvm_vcpu *vcpu,
995 unsigned long entryhi)
996 {
997 struct mips_coproc *cop0 = vcpu->arch.cop0;
998 struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
999 int cpu, i;
1000 u32 nasid = entryhi & KVM_ENTRYHI_ASID;
1001
1002 if (((kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID) != nasid)) {
1003 trace_kvm_asid_change(vcpu, kvm_read_c0_guest_entryhi(cop0) &
1004 KVM_ENTRYHI_ASID, nasid);
1005
1006 /*
1007 * Flush entries from the GVA page tables.
1008 * Guest user page table will get flushed lazily on re-entry to
1009 * guest user if the guest ASID actually changes.
1010 */
1011 kvm_mips_flush_gva_pt(kern_mm->pgd, KMF_KERN);
1012
1013 /*
1014 * Regenerate/invalidate kernel MMU context.
1015 * The user MMU context will be regenerated lazily on re-entry
1016 * to guest user if the guest ASID actually changes.
1017 */
1018 preempt_disable();
1019 cpu = smp_processor_id();
1020 get_new_mmu_context(kern_mm);
1021 for_each_possible_cpu(i)
1022 if (i != cpu)
1023 set_cpu_context(i, kern_mm, 0);
1024 preempt_enable();
1025 }
1026 kvm_write_c0_guest_entryhi(cop0, entryhi);
1027 }
1028
1029 enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
1030 {
1031 struct mips_coproc *cop0 = vcpu->arch.cop0;
1032 struct kvm_mips_tlb *tlb;
1033 unsigned long pc = vcpu->arch.pc;
1034 int index;
1035
1036 index = kvm_read_c0_guest_index(cop0);
1037 if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
1038 /* UNDEFINED */
1039 kvm_debug("[%#lx] TLBR Index %#x out of range\n", pc, index);
1040 index &= KVM_MIPS_GUEST_TLB_SIZE - 1;
1041 }
1042
1043 tlb = &vcpu->arch.guest_tlb[index];
1044 kvm_write_c0_guest_pagemask(cop0, tlb->tlb_mask);
1045 kvm_write_c0_guest_entrylo0(cop0, tlb->tlb_lo[0]);
1046 kvm_write_c0_guest_entrylo1(cop0, tlb->tlb_lo[1]);
1047 kvm_mips_change_entryhi(vcpu, tlb->tlb_hi);
1048
1049 return EMULATE_DONE;
1050 }
1051
1052 /**
1053 * kvm_mips_invalidate_guest_tlb() - Indicates a change in guest MMU map.
1054 * @vcpu: VCPU with changed mappings.
1055 * @tlb: TLB entry being removed.
1056 *
1057 * This is called to indicate a single change in guest MMU mappings, so that we
1058 * can arrange TLB flushes on this and other CPUs.
1059 */
1060 static void kvm_mips_invalidate_guest_tlb(struct kvm_vcpu *vcpu,
1061 struct kvm_mips_tlb *tlb)
1062 {
1063 struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
1064 struct mm_struct *user_mm = &vcpu->arch.guest_user_mm;
1065 int cpu, i;
1066 bool user;
1067
1068 /* No need to flush for entries which are already invalid */
1069 if (!((tlb->tlb_lo[0] | tlb->tlb_lo[1]) & ENTRYLO_V))
1070 return;
1071 /* Don't touch host kernel page tables or TLB mappings */
1072 if ((unsigned long)tlb->tlb_hi > 0x7fffffff)
1073 return;
1074 /* User address space doesn't need flushing for KSeg2/3 changes */
1075 user = tlb->tlb_hi < KVM_GUEST_KSEG0;
1076
1077 preempt_disable();
1078
1079 /* Invalidate page table entries */
1080 kvm_trap_emul_invalidate_gva(vcpu, tlb->tlb_hi & VPN2_MASK, user);
1081
1082 /*
1083 * Probe the shadow host TLB for the entry being overwritten, if one
1084 * matches, invalidate it
1085 */
1086 kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi, user, true);
1087
1088 /* Invalidate the whole ASID on other CPUs */
1089 cpu = smp_processor_id();
1090 for_each_possible_cpu(i) {
1091 if (i == cpu)
1092 continue;
1093 if (user)
1094 set_cpu_context(i, user_mm, 0);
1095 set_cpu_context(i, kern_mm, 0);
1096 }
1097
1098 preempt_enable();
1099 }
1100
1101 /* Write Guest TLB Entry @ Index */
1102 enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
1103 {
1104 struct mips_coproc *cop0 = vcpu->arch.cop0;
1105 int index = kvm_read_c0_guest_index(cop0);
1106 struct kvm_mips_tlb *tlb = NULL;
1107 unsigned long pc = vcpu->arch.pc;
1108
1109 if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
1110 kvm_debug("%s: illegal index: %d\n", __func__, index);
1111 kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
1112 pc, index, kvm_read_c0_guest_entryhi(cop0),
1113 kvm_read_c0_guest_entrylo0(cop0),
1114 kvm_read_c0_guest_entrylo1(cop0),
1115 kvm_read_c0_guest_pagemask(cop0));
1116 index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
1117 }
1118
1119 tlb = &vcpu->arch.guest_tlb[index];
1120
1121 kvm_mips_invalidate_guest_tlb(vcpu, tlb);
1122
1123 tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
1124 tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
1125 tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
1126 tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
1127
1128 kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
1129 pc, index, kvm_read_c0_guest_entryhi(cop0),
1130 kvm_read_c0_guest_entrylo0(cop0),
1131 kvm_read_c0_guest_entrylo1(cop0),
1132 kvm_read_c0_guest_pagemask(cop0));
1133
1134 return EMULATE_DONE;
1135 }
1136
1137 /* Write Guest TLB Entry @ Random Index */
1138 enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
1139 {
1140 struct mips_coproc *cop0 = vcpu->arch.cop0;
1141 struct kvm_mips_tlb *tlb = NULL;
1142 unsigned long pc = vcpu->arch.pc;
1143 int index;
1144
1145 index = prandom_u32_max(KVM_MIPS_GUEST_TLB_SIZE);
1146 tlb = &vcpu->arch.guest_tlb[index];
1147
1148 kvm_mips_invalidate_guest_tlb(vcpu, tlb);
1149
1150 tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
1151 tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
1152 tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
1153 tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
1154
1155 kvm_debug("[%#lx] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
1156 pc, index, kvm_read_c0_guest_entryhi(cop0),
1157 kvm_read_c0_guest_entrylo0(cop0),
1158 kvm_read_c0_guest_entrylo1(cop0));
1159
1160 return EMULATE_DONE;
1161 }
1162
1163 enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
1164 {
1165 struct mips_coproc *cop0 = vcpu->arch.cop0;
1166 long entryhi = kvm_read_c0_guest_entryhi(cop0);
1167 unsigned long pc = vcpu->arch.pc;
1168 int index = -1;
1169
1170 index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
1171
1172 kvm_write_c0_guest_index(cop0, index);
1173
1174 kvm_debug("[%#lx] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
1175 index);
1176
1177 return EMULATE_DONE;
1178 }
1179
1180 /**
1181 * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
1182 * @vcpu: Virtual CPU.
1183 *
1184 * Finds the mask of bits which are writable in the guest's Config1 CP0
1185 * register, by userland (currently read-only to the guest).
1186 */
1187 unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
1188 {
1189 unsigned int mask = 0;
1190
1191 /* Permit FPU to be present if FPU is supported */
1192 if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
1193 mask |= MIPS_CONF1_FP;
1194
1195 return mask;
1196 }
1197
1198 /**
1199 * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
1200 * @vcpu: Virtual CPU.
1201 *
1202 * Finds the mask of bits which are writable in the guest's Config3 CP0
1203 * register, by userland (currently read-only to the guest).
1204 */
1205 unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
1206 {
1207 /* Config4 and ULRI are optional */
1208 unsigned int mask = MIPS_CONF_M | MIPS_CONF3_ULRI;
1209
1210 /* Permit MSA to be present if MSA is supported */
1211 if (kvm_mips_guest_can_have_msa(&vcpu->arch))
1212 mask |= MIPS_CONF3_MSA;
1213
1214 return mask;
1215 }
1216
1217 /**
1218 * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
1219 * @vcpu: Virtual CPU.
1220 *
1221 * Finds the mask of bits which are writable in the guest's Config4 CP0
1222 * register, by userland (currently read-only to the guest).
1223 */
1224 unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
1225 {
1226 /* Config5 is optional */
1227 unsigned int mask = MIPS_CONF_M;
1228
1229 /* KScrExist */
1230 mask |= 0xfc << MIPS_CONF4_KSCREXIST_SHIFT;
1231
1232 return mask;
1233 }
1234
1235 /**
1236 * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
1237 * @vcpu: Virtual CPU.
1238 *
1239 * Finds the mask of bits which are writable in the guest's Config5 CP0
1240 * register, by the guest itself.
1241 */
1242 unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
1243 {
1244 unsigned int mask = 0;
1245
1246 /* Permit MSAEn changes if MSA supported and enabled */
1247 if (kvm_mips_guest_has_msa(&vcpu->arch))
1248 mask |= MIPS_CONF5_MSAEN;
1249
1250 /*
1251 * Permit guest FPU mode changes if FPU is enabled and the relevant
1252 * feature exists according to FIR register.
1253 */
1254 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1255 if (cpu_has_fre)
1256 mask |= MIPS_CONF5_FRE;
1257 /* We don't support UFR or UFE */
1258 }
1259
1260 return mask;
1261 }
1262
1263 enum emulation_result kvm_mips_emulate_CP0(union mips_instruction inst,
1264 u32 *opc, u32 cause,
1265 struct kvm_run *run,
1266 struct kvm_vcpu *vcpu)
1267 {
1268 struct mips_coproc *cop0 = vcpu->arch.cop0;
1269 enum emulation_result er = EMULATE_DONE;
1270 u32 rt, rd, sel;
1271 unsigned long curr_pc;
1272
1273 /*
1274 * Update PC and hold onto current PC in case there is
1275 * an error and we want to rollback the PC
1276 */
1277 curr_pc = vcpu->arch.pc;
1278 er = update_pc(vcpu, cause);
1279 if (er == EMULATE_FAIL)
1280 return er;
1281
1282 if (inst.co_format.co) {
1283 switch (inst.co_format.func) {
1284 case tlbr_op: /* Read indexed TLB entry */
1285 er = kvm_mips_emul_tlbr(vcpu);
1286 break;
1287 case tlbwi_op: /* Write indexed */
1288 er = kvm_mips_emul_tlbwi(vcpu);
1289 break;
1290 case tlbwr_op: /* Write random */
1291 er = kvm_mips_emul_tlbwr(vcpu);
1292 break;
1293 case tlbp_op: /* TLB Probe */
1294 er = kvm_mips_emul_tlbp(vcpu);
1295 break;
1296 case rfe_op:
1297 kvm_err("!!!COP0_RFE!!!\n");
1298 break;
1299 case eret_op:
1300 er = kvm_mips_emul_eret(vcpu);
1301 goto dont_update_pc;
1302 case wait_op:
1303 er = kvm_mips_emul_wait(vcpu);
1304 break;
1305 case hypcall_op:
1306 er = kvm_mips_emul_hypcall(vcpu, inst);
1307 break;
1308 }
1309 } else {
1310 rt = inst.c0r_format.rt;
1311 rd = inst.c0r_format.rd;
1312 sel = inst.c0r_format.sel;
1313
1314 switch (inst.c0r_format.rs) {
1315 case mfc_op:
1316 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1317 cop0->stat[rd][sel]++;
1318 #endif
1319 /* Get reg */
1320 if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1321 vcpu->arch.gprs[rt] =
1322 (s32)kvm_mips_read_count(vcpu);
1323 } else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1324 vcpu->arch.gprs[rt] = 0x0;
1325 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1326 kvm_mips_trans_mfc0(inst, opc, vcpu);
1327 #endif
1328 } else {
1329 vcpu->arch.gprs[rt] = (s32)cop0->reg[rd][sel];
1330
1331 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1332 kvm_mips_trans_mfc0(inst, opc, vcpu);
1333 #endif
1334 }
1335
1336 trace_kvm_hwr(vcpu, KVM_TRACE_MFC0,
1337 KVM_TRACE_COP0(rd, sel),
1338 vcpu->arch.gprs[rt]);
1339 break;
1340
1341 case dmfc_op:
1342 vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1343
1344 trace_kvm_hwr(vcpu, KVM_TRACE_DMFC0,
1345 KVM_TRACE_COP0(rd, sel),
1346 vcpu->arch.gprs[rt]);
1347 break;
1348
1349 case mtc_op:
1350 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1351 cop0->stat[rd][sel]++;
1352 #endif
1353 trace_kvm_hwr(vcpu, KVM_TRACE_MTC0,
1354 KVM_TRACE_COP0(rd, sel),
1355 vcpu->arch.gprs[rt]);
1356
1357 if ((rd == MIPS_CP0_TLB_INDEX)
1358 && (vcpu->arch.gprs[rt] >=
1359 KVM_MIPS_GUEST_TLB_SIZE)) {
1360 kvm_err("Invalid TLB Index: %ld",
1361 vcpu->arch.gprs[rt]);
1362 er = EMULATE_FAIL;
1363 break;
1364 }
1365 if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1366 /*
1367 * Preserve core number, and keep the exception
1368 * base in guest KSeg0.
1369 */
1370 kvm_change_c0_guest_ebase(cop0, 0x1ffff000,
1371 vcpu->arch.gprs[rt]);
1372 } else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
1373 kvm_mips_change_entryhi(vcpu,
1374 vcpu->arch.gprs[rt]);
1375 }
1376 /* Are we writing to COUNT */
1377 else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1378 kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1379 goto done;
1380 } else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1381 /* If we are writing to COMPARE */
1382 /* Clear pending timer interrupt, if any */
1383 kvm_mips_write_compare(vcpu,
1384 vcpu->arch.gprs[rt],
1385 true);
1386 } else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1387 unsigned int old_val, val, change;
1388
1389 old_val = kvm_read_c0_guest_status(cop0);
1390 val = vcpu->arch.gprs[rt];
1391 change = val ^ old_val;
1392
1393 /* Make sure that the NMI bit is never set */
1394 val &= ~ST0_NMI;
1395
1396 /*
1397 * Don't allow CU1 or FR to be set unless FPU
1398 * capability enabled and exists in guest
1399 * configuration.
1400 */
1401 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1402 val &= ~(ST0_CU1 | ST0_FR);
1403
1404 /*
1405 * Also don't allow FR to be set if host doesn't
1406 * support it.
1407 */
1408 if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1409 val &= ~ST0_FR;
1410
1411
1412 /* Handle changes in FPU mode */
1413 preempt_disable();
1414
1415 /*
1416 * FPU and Vector register state is made
1417 * UNPREDICTABLE by a change of FR, so don't
1418 * even bother saving it.
1419 */
1420 if (change & ST0_FR)
1421 kvm_drop_fpu(vcpu);
1422
1423 /*
1424 * If MSA state is already live, it is undefined
1425 * how it interacts with FR=0 FPU state, and we
1426 * don't want to hit reserved instruction
1427 * exceptions trying to save the MSA state later
1428 * when CU=1 && FR=1, so play it safe and save
1429 * it first.
1430 */
1431 if (change & ST0_CU1 && !(val & ST0_FR) &&
1432 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1433 kvm_lose_fpu(vcpu);
1434
1435 /*
1436 * Propagate CU1 (FPU enable) changes
1437 * immediately if the FPU context is already
1438 * loaded. When disabling we leave the context
1439 * loaded so it can be quickly enabled again in
1440 * the near future.
1441 */
1442 if (change & ST0_CU1 &&
1443 vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1444 change_c0_status(ST0_CU1, val);
1445
1446 preempt_enable();
1447
1448 kvm_write_c0_guest_status(cop0, val);
1449
1450 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1451 /*
1452 * If FPU present, we need CU1/FR bits to take
1453 * effect fairly soon.
1454 */
1455 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1456 kvm_mips_trans_mtc0(inst, opc, vcpu);
1457 #endif
1458 } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1459 unsigned int old_val, val, change, wrmask;
1460
1461 old_val = kvm_read_c0_guest_config5(cop0);
1462 val = vcpu->arch.gprs[rt];
1463
1464 /* Only a few bits are writable in Config5 */
1465 wrmask = kvm_mips_config5_wrmask(vcpu);
1466 change = (val ^ old_val) & wrmask;
1467 val = old_val ^ change;
1468
1469
1470 /* Handle changes in FPU/MSA modes */
1471 preempt_disable();
1472
1473 /*
1474 * Propagate FRE changes immediately if the FPU
1475 * context is already loaded.
1476 */
1477 if (change & MIPS_CONF5_FRE &&
1478 vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1479 change_c0_config5(MIPS_CONF5_FRE, val);
1480
1481 /*
1482 * Propagate MSAEn changes immediately if the
1483 * MSA context is already loaded. When disabling
1484 * we leave the context loaded so it can be
1485 * quickly enabled again in the near future.
1486 */
1487 if (change & MIPS_CONF5_MSAEN &&
1488 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1489 change_c0_config5(MIPS_CONF5_MSAEN,
1490 val);
1491
1492 preempt_enable();
1493
1494 kvm_write_c0_guest_config5(cop0, val);
1495 } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1496 u32 old_cause, new_cause;
1497
1498 old_cause = kvm_read_c0_guest_cause(cop0);
1499 new_cause = vcpu->arch.gprs[rt];
1500 /* Update R/W bits */
1501 kvm_change_c0_guest_cause(cop0, 0x08800300,
1502 new_cause);
1503 /* DC bit enabling/disabling timer? */
1504 if ((old_cause ^ new_cause) & CAUSEF_DC) {
1505 if (new_cause & CAUSEF_DC)
1506 kvm_mips_count_disable_cause(vcpu);
1507 else
1508 kvm_mips_count_enable_cause(vcpu);
1509 }
1510 } else if ((rd == MIPS_CP0_HWRENA) && (sel == 0)) {
1511 u32 mask = MIPS_HWRENA_CPUNUM |
1512 MIPS_HWRENA_SYNCISTEP |
1513 MIPS_HWRENA_CC |
1514 MIPS_HWRENA_CCRES;
1515
1516 if (kvm_read_c0_guest_config3(cop0) &
1517 MIPS_CONF3_ULRI)
1518 mask |= MIPS_HWRENA_ULR;
1519 cop0->reg[rd][sel] = vcpu->arch.gprs[rt] & mask;
1520 } else {
1521 cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1522 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1523 kvm_mips_trans_mtc0(inst, opc, vcpu);
1524 #endif
1525 }
1526 break;
1527
1528 case dmtc_op:
1529 kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1530 vcpu->arch.pc, rt, rd, sel);
1531 trace_kvm_hwr(vcpu, KVM_TRACE_DMTC0,
1532 KVM_TRACE_COP0(rd, sel),
1533 vcpu->arch.gprs[rt]);
1534 er = EMULATE_FAIL;
1535 break;
1536
1537 case mfmc0_op:
1538 #ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1539 cop0->stat[MIPS_CP0_STATUS][0]++;
1540 #endif
1541 if (rt != 0)
1542 vcpu->arch.gprs[rt] =
1543 kvm_read_c0_guest_status(cop0);
1544 /* EI */
1545 if (inst.mfmc0_format.sc) {
1546 kvm_debug("[%#lx] mfmc0_op: EI\n",
1547 vcpu->arch.pc);
1548 kvm_set_c0_guest_status(cop0, ST0_IE);
1549 } else {
1550 kvm_debug("[%#lx] mfmc0_op: DI\n",
1551 vcpu->arch.pc);
1552 kvm_clear_c0_guest_status(cop0, ST0_IE);
1553 }
1554
1555 break;
1556
1557 case wrpgpr_op:
1558 {
1559 u32 css = cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1560 u32 pss =
1561 (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1562 /*
1563 * We don't support any shadow register sets, so
1564 * SRSCtl[PSS] == SRSCtl[CSS] = 0
1565 */
1566 if (css || pss) {
1567 er = EMULATE_FAIL;
1568 break;
1569 }
1570 kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1571 vcpu->arch.gprs[rt]);
1572 vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1573 }
1574 break;
1575 default:
1576 kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1577 vcpu->arch.pc, inst.c0r_format.rs);
1578 er = EMULATE_FAIL;
1579 break;
1580 }
1581 }
1582
1583 done:
1584 /* Rollback PC only if emulation was unsuccessful */
1585 if (er == EMULATE_FAIL)
1586 vcpu->arch.pc = curr_pc;
1587
1588 dont_update_pc:
1589 /*
1590 * This is for special instructions whose emulation
1591 * updates the PC, so do not overwrite the PC under
1592 * any circumstances
1593 */
1594
1595 return er;
1596 }
1597
1598 enum emulation_result kvm_mips_emulate_store(union mips_instruction inst,
1599 u32 cause,
1600 struct kvm_run *run,
1601 struct kvm_vcpu *vcpu)
1602 {
1603 enum emulation_result er;
1604 u32 rt;
1605 void *data = run->mmio.data;
1606 unsigned long curr_pc;
1607
1608 /*
1609 * Update PC and hold onto current PC in case there is
1610 * an error and we want to rollback the PC
1611 */
1612 curr_pc = vcpu->arch.pc;
1613 er = update_pc(vcpu, cause);
1614 if (er == EMULATE_FAIL)
1615 return er;
1616
1617 rt = inst.i_format.rt;
1618
1619 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1620 vcpu->arch.host_cp0_badvaddr);
1621 if (run->mmio.phys_addr == KVM_INVALID_ADDR)
1622 goto out_fail;
1623
1624 switch (inst.i_format.opcode) {
1625 #if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
1626 case sd_op:
1627 run->mmio.len = 8;
1628 *(u64 *)data = vcpu->arch.gprs[rt];
1629
1630 kvm_debug("[%#lx] OP_SD: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
1631 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1632 vcpu->arch.gprs[rt], *(u64 *)data);
1633 break;
1634 #endif
1635
1636 case sw_op:
1637 run->mmio.len = 4;
1638 *(u32 *)data = vcpu->arch.gprs[rt];
1639
1640 kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1641 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1642 vcpu->arch.gprs[rt], *(u32 *)data);
1643 break;
1644
1645 case sh_op:
1646 run->mmio.len = 2;
1647 *(u16 *)data = vcpu->arch.gprs[rt];
1648
1649 kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1650 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1651 vcpu->arch.gprs[rt], *(u16 *)data);
1652 break;
1653
1654 case sb_op:
1655 run->mmio.len = 1;
1656 *(u8 *)data = vcpu->arch.gprs[rt];
1657
1658 kvm_debug("[%#lx] OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1659 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1660 vcpu->arch.gprs[rt], *(u8 *)data);
1661 break;
1662
1663 default:
1664 kvm_err("Store not yet supported (inst=0x%08x)\n",
1665 inst.word);
1666 goto out_fail;
1667 }
1668
1669 run->mmio.is_write = 1;
1670 vcpu->mmio_needed = 1;
1671 vcpu->mmio_is_write = 1;
1672 return EMULATE_DO_MMIO;
1673
1674 out_fail:
1675 /* Rollback PC if emulation was unsuccessful */
1676 vcpu->arch.pc = curr_pc;
1677 return EMULATE_FAIL;
1678 }
1679
1680 enum emulation_result kvm_mips_emulate_load(union mips_instruction inst,
1681 u32 cause, struct kvm_run *run,
1682 struct kvm_vcpu *vcpu)
1683 {
1684 enum emulation_result er;
1685 unsigned long curr_pc;
1686 u32 op, rt;
1687
1688 rt = inst.i_format.rt;
1689 op = inst.i_format.opcode;
1690
1691 /*
1692 * Find the resume PC now while we have safe and easy access to the
1693 * prior branch instruction, and save it for
1694 * kvm_mips_complete_mmio_load() to restore later.
1695 */
1696 curr_pc = vcpu->arch.pc;
1697 er = update_pc(vcpu, cause);
1698 if (er == EMULATE_FAIL)
1699 return er;
1700 vcpu->arch.io_pc = vcpu->arch.pc;
1701 vcpu->arch.pc = curr_pc;
1702
1703 vcpu->arch.io_gpr = rt;
1704
1705 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1706 vcpu->arch.host_cp0_badvaddr);
1707 if (run->mmio.phys_addr == KVM_INVALID_ADDR)
1708 return EMULATE_FAIL;
1709
1710 vcpu->mmio_needed = 2; /* signed */
1711 switch (op) {
1712 #if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
1713 case ld_op:
1714 run->mmio.len = 8;
1715 break;
1716
1717 case lwu_op:
1718 vcpu->mmio_needed = 1; /* unsigned */
1719 /* fall through */
1720 #endif
1721 case lw_op:
1722 run->mmio.len = 4;
1723 break;
1724
1725 case lhu_op:
1726 vcpu->mmio_needed = 1; /* unsigned */
1727 /* fall through */
1728 case lh_op:
1729 run->mmio.len = 2;
1730 break;
1731
1732 case lbu_op:
1733 vcpu->mmio_needed = 1; /* unsigned */
1734 /* fall through */
1735 case lb_op:
1736 run->mmio.len = 1;
1737 break;
1738
1739 default:
1740 kvm_err("Load not yet supported (inst=0x%08x)\n",
1741 inst.word);
1742 vcpu->mmio_needed = 0;
1743 return EMULATE_FAIL;
1744 }
1745
1746 run->mmio.is_write = 0;
1747 vcpu->mmio_is_write = 0;
1748 return EMULATE_DO_MMIO;
1749 }
1750
1751 #ifndef CONFIG_KVM_MIPS_VZ
1752 static enum emulation_result kvm_mips_guest_cache_op(int (*fn)(unsigned long),
1753 unsigned long curr_pc,
1754 unsigned long addr,
1755 struct kvm_run *run,
1756 struct kvm_vcpu *vcpu,
1757 u32 cause)
1758 {
1759 int err;
1760
1761 for (;;) {
1762 /* Carefully attempt the cache operation */
1763 kvm_trap_emul_gva_lockless_begin(vcpu);
1764 err = fn(addr);
1765 kvm_trap_emul_gva_lockless_end(vcpu);
1766
1767 if (likely(!err))
1768 return EMULATE_DONE;
1769
1770 /*
1771 * Try to handle the fault and retry, maybe we just raced with a
1772 * GVA invalidation.
1773 */
1774 switch (kvm_trap_emul_gva_fault(vcpu, addr, false)) {
1775 case KVM_MIPS_GVA:
1776 case KVM_MIPS_GPA:
1777 /* bad virtual or physical address */
1778 return EMULATE_FAIL;
1779 case KVM_MIPS_TLB:
1780 /* no matching guest TLB */
1781 vcpu->arch.host_cp0_badvaddr = addr;
1782 vcpu->arch.pc = curr_pc;
1783 kvm_mips_emulate_tlbmiss_ld(cause, NULL, run, vcpu);
1784 return EMULATE_EXCEPT;
1785 case KVM_MIPS_TLBINV:
1786 /* invalid matching guest TLB */
1787 vcpu->arch.host_cp0_badvaddr = addr;
1788 vcpu->arch.pc = curr_pc;
1789 kvm_mips_emulate_tlbinv_ld(cause, NULL, run, vcpu);
1790 return EMULATE_EXCEPT;
1791 default:
1792 break;
1793 };
1794 }
1795 }
1796
1797 enum emulation_result kvm_mips_emulate_cache(union mips_instruction inst,
1798 u32 *opc, u32 cause,
1799 struct kvm_run *run,
1800 struct kvm_vcpu *vcpu)
1801 {
1802 enum emulation_result er = EMULATE_DONE;
1803 u32 cache, op_inst, op, base;
1804 s16 offset;
1805 struct kvm_vcpu_arch *arch = &vcpu->arch;
1806 unsigned long va;
1807 unsigned long curr_pc;
1808
1809 /*
1810 * Update PC and hold onto current PC in case there is
1811 * an error and we want to rollback the PC
1812 */
1813 curr_pc = vcpu->arch.pc;
1814 er = update_pc(vcpu, cause);
1815 if (er == EMULATE_FAIL)
1816 return er;
1817
1818 base = inst.i_format.rs;
1819 op_inst = inst.i_format.rt;
1820 if (cpu_has_mips_r6)
1821 offset = inst.spec3_format.simmediate;
1822 else
1823 offset = inst.i_format.simmediate;
1824 cache = op_inst & CacheOp_Cache;
1825 op = op_inst & CacheOp_Op;
1826
1827 va = arch->gprs[base] + offset;
1828
1829 kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1830 cache, op, base, arch->gprs[base], offset);
1831
1832 /*
1833 * Treat INDEX_INV as a nop, basically issued by Linux on startup to
1834 * invalidate the caches entirely by stepping through all the
1835 * ways/indexes
1836 */
1837 if (op == Index_Writeback_Inv) {
1838 kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1839 vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
1840 arch->gprs[base], offset);
1841
1842 if (cache == Cache_D) {
1843 #ifdef CONFIG_CPU_R4K_CACHE_TLB
1844 r4k_blast_dcache();
1845 #else
1846 switch (boot_cpu_type()) {
1847 case CPU_CAVIUM_OCTEON3:
1848 /* locally flush icache */
1849 local_flush_icache_range(0, 0);
1850 break;
1851 default:
1852 __flush_cache_all();
1853 break;
1854 }
1855 #endif
1856 } else if (cache == Cache_I) {
1857 #ifdef CONFIG_CPU_R4K_CACHE_TLB
1858 r4k_blast_icache();
1859 #else
1860 switch (boot_cpu_type()) {
1861 case CPU_CAVIUM_OCTEON3:
1862 /* locally flush icache */
1863 local_flush_icache_range(0, 0);
1864 break;
1865 default:
1866 flush_icache_all();
1867 break;
1868 }
1869 #endif
1870 } else {
1871 kvm_err("%s: unsupported CACHE INDEX operation\n",
1872 __func__);
1873 return EMULATE_FAIL;
1874 }
1875
1876 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1877 kvm_mips_trans_cache_index(inst, opc, vcpu);
1878 #endif
1879 goto done;
1880 }
1881
1882 /* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
1883 if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) {
1884 /*
1885 * Perform the dcache part of icache synchronisation on the
1886 * guest's behalf.
1887 */
1888 er = kvm_mips_guest_cache_op(protected_writeback_dcache_line,
1889 curr_pc, va, run, vcpu, cause);
1890 if (er != EMULATE_DONE)
1891 goto done;
1892 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1893 /*
1894 * Replace the CACHE instruction, with a SYNCI, not the same,
1895 * but avoids a trap
1896 */
1897 kvm_mips_trans_cache_va(inst, opc, vcpu);
1898 #endif
1899 } else if (op_inst == Hit_Invalidate_I) {
1900 /* Perform the icache synchronisation on the guest's behalf */
1901 er = kvm_mips_guest_cache_op(protected_writeback_dcache_line,
1902 curr_pc, va, run, vcpu, cause);
1903 if (er != EMULATE_DONE)
1904 goto done;
1905 er = kvm_mips_guest_cache_op(protected_flush_icache_line,
1906 curr_pc, va, run, vcpu, cause);
1907 if (er != EMULATE_DONE)
1908 goto done;
1909
1910 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1911 /* Replace the CACHE instruction, with a SYNCI */
1912 kvm_mips_trans_cache_va(inst, opc, vcpu);
1913 #endif
1914 } else {
1915 kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1916 cache, op, base, arch->gprs[base], offset);
1917 er = EMULATE_FAIL;
1918 }
1919
1920 done:
1921 /* Rollback PC only if emulation was unsuccessful */
1922 if (er == EMULATE_FAIL)
1923 vcpu->arch.pc = curr_pc;
1924 /* Guest exception needs guest to resume */
1925 if (er == EMULATE_EXCEPT)
1926 er = EMULATE_DONE;
1927
1928 return er;
1929 }
1930
1931 enum emulation_result kvm_mips_emulate_inst(u32 cause, u32 *opc,
1932 struct kvm_run *run,
1933 struct kvm_vcpu *vcpu)
1934 {
1935 union mips_instruction inst;
1936 enum emulation_result er = EMULATE_DONE;
1937 int err;
1938
1939 /* Fetch the instruction. */
1940 if (cause & CAUSEF_BD)
1941 opc += 1;
1942 err = kvm_get_badinstr(opc, vcpu, &inst.word);
1943 if (err)
1944 return EMULATE_FAIL;
1945
1946 switch (inst.r_format.opcode) {
1947 case cop0_op:
1948 er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
1949 break;
1950
1951 #ifndef CONFIG_CPU_MIPSR6
1952 case cache_op:
1953 ++vcpu->stat.cache_exits;
1954 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1955 er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
1956 break;
1957 #else
1958 case spec3_op:
1959 switch (inst.spec3_format.func) {
1960 case cache6_op:
1961 ++vcpu->stat.cache_exits;
1962 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1963 er = kvm_mips_emulate_cache(inst, opc, cause, run,
1964 vcpu);
1965 break;
1966 default:
1967 goto unknown;
1968 };
1969 break;
1970 unknown:
1971 #endif
1972
1973 default:
1974 kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
1975 inst.word);
1976 kvm_arch_vcpu_dump_regs(vcpu);
1977 er = EMULATE_FAIL;
1978 break;
1979 }
1980
1981 return er;
1982 }
1983 #endif /* CONFIG_KVM_MIPS_VZ */
1984
1985 /**
1986 * kvm_mips_guest_exception_base() - Find guest exception vector base address.
1987 *
1988 * Returns: The base address of the current guest exception vector, taking
1989 * both Guest.CP0_Status.BEV and Guest.CP0_EBase into account.
1990 */
1991 long kvm_mips_guest_exception_base(struct kvm_vcpu *vcpu)
1992 {
1993 struct mips_coproc *cop0 = vcpu->arch.cop0;
1994
1995 if (kvm_read_c0_guest_status(cop0) & ST0_BEV)
1996 return KVM_GUEST_CKSEG1ADDR(0x1fc00200);
1997 else
1998 return kvm_read_c0_guest_ebase(cop0) & MIPS_EBASE_BASE;
1999 }
2000
2001 enum emulation_result kvm_mips_emulate_syscall(u32 cause,
2002 u32 *opc,
2003 struct kvm_run *run,
2004 struct kvm_vcpu *vcpu)
2005 {
2006 struct mips_coproc *cop0 = vcpu->arch.cop0;
2007 struct kvm_vcpu_arch *arch = &vcpu->arch;
2008 enum emulation_result er = EMULATE_DONE;
2009
2010 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2011 /* save old pc */
2012 kvm_write_c0_guest_epc(cop0, arch->pc);
2013 kvm_set_c0_guest_status(cop0, ST0_EXL);
2014
2015 if (cause & CAUSEF_BD)
2016 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2017 else
2018 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2019
2020 kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
2021
2022 kvm_change_c0_guest_cause(cop0, (0xff),
2023 (EXCCODE_SYS << CAUSEB_EXCCODE));
2024
2025 /* Set PC to the exception entry point */
2026 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2027
2028 } else {
2029 kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
2030 er = EMULATE_FAIL;
2031 }
2032
2033 return er;
2034 }
2035
2036 enum emulation_result kvm_mips_emulate_tlbmiss_ld(u32 cause,
2037 u32 *opc,
2038 struct kvm_run *run,
2039 struct kvm_vcpu *vcpu)
2040 {
2041 struct mips_coproc *cop0 = vcpu->arch.cop0;
2042 struct kvm_vcpu_arch *arch = &vcpu->arch;
2043 unsigned long entryhi = (vcpu->arch. host_cp0_badvaddr & VPN2_MASK) |
2044 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2045
2046 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2047 /* save old pc */
2048 kvm_write_c0_guest_epc(cop0, arch->pc);
2049 kvm_set_c0_guest_status(cop0, ST0_EXL);
2050
2051 if (cause & CAUSEF_BD)
2052 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2053 else
2054 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2055
2056 kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
2057 arch->pc);
2058
2059 /* set pc to the exception entry point */
2060 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0;
2061
2062 } else {
2063 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
2064 arch->pc);
2065
2066 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2067 }
2068
2069 kvm_change_c0_guest_cause(cop0, (0xff),
2070 (EXCCODE_TLBL << CAUSEB_EXCCODE));
2071
2072 /* setup badvaddr, context and entryhi registers for the guest */
2073 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2074 /* XXXKYMA: is the context register used by linux??? */
2075 kvm_write_c0_guest_entryhi(cop0, entryhi);
2076
2077 return EMULATE_DONE;
2078 }
2079
2080 enum emulation_result kvm_mips_emulate_tlbinv_ld(u32 cause,
2081 u32 *opc,
2082 struct kvm_run *run,
2083 struct kvm_vcpu *vcpu)
2084 {
2085 struct mips_coproc *cop0 = vcpu->arch.cop0;
2086 struct kvm_vcpu_arch *arch = &vcpu->arch;
2087 unsigned long entryhi =
2088 (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2089 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2090
2091 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2092 /* save old pc */
2093 kvm_write_c0_guest_epc(cop0, arch->pc);
2094 kvm_set_c0_guest_status(cop0, ST0_EXL);
2095
2096 if (cause & CAUSEF_BD)
2097 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2098 else
2099 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2100
2101 kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
2102 arch->pc);
2103 } else {
2104 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
2105 arch->pc);
2106 }
2107
2108 /* set pc to the exception entry point */
2109 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2110
2111 kvm_change_c0_guest_cause(cop0, (0xff),
2112 (EXCCODE_TLBL << CAUSEB_EXCCODE));
2113
2114 /* setup badvaddr, context and entryhi registers for the guest */
2115 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2116 /* XXXKYMA: is the context register used by linux??? */
2117 kvm_write_c0_guest_entryhi(cop0, entryhi);
2118
2119 return EMULATE_DONE;
2120 }
2121
2122 enum emulation_result kvm_mips_emulate_tlbmiss_st(u32 cause,
2123 u32 *opc,
2124 struct kvm_run *run,
2125 struct kvm_vcpu *vcpu)
2126 {
2127 struct mips_coproc *cop0 = vcpu->arch.cop0;
2128 struct kvm_vcpu_arch *arch = &vcpu->arch;
2129 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2130 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2131
2132 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2133 /* save old pc */
2134 kvm_write_c0_guest_epc(cop0, arch->pc);
2135 kvm_set_c0_guest_status(cop0, ST0_EXL);
2136
2137 if (cause & CAUSEF_BD)
2138 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2139 else
2140 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2141
2142 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2143 arch->pc);
2144
2145 /* Set PC to the exception entry point */
2146 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0;
2147 } else {
2148 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2149 arch->pc);
2150 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2151 }
2152
2153 kvm_change_c0_guest_cause(cop0, (0xff),
2154 (EXCCODE_TLBS << CAUSEB_EXCCODE));
2155
2156 /* setup badvaddr, context and entryhi registers for the guest */
2157 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2158 /* XXXKYMA: is the context register used by linux??? */
2159 kvm_write_c0_guest_entryhi(cop0, entryhi);
2160
2161 return EMULATE_DONE;
2162 }
2163
2164 enum emulation_result kvm_mips_emulate_tlbinv_st(u32 cause,
2165 u32 *opc,
2166 struct kvm_run *run,
2167 struct kvm_vcpu *vcpu)
2168 {
2169 struct mips_coproc *cop0 = vcpu->arch.cop0;
2170 struct kvm_vcpu_arch *arch = &vcpu->arch;
2171 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2172 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2173
2174 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2175 /* save old pc */
2176 kvm_write_c0_guest_epc(cop0, arch->pc);
2177 kvm_set_c0_guest_status(cop0, ST0_EXL);
2178
2179 if (cause & CAUSEF_BD)
2180 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2181 else
2182 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2183
2184 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2185 arch->pc);
2186 } else {
2187 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2188 arch->pc);
2189 }
2190
2191 /* Set PC to the exception entry point */
2192 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2193
2194 kvm_change_c0_guest_cause(cop0, (0xff),
2195 (EXCCODE_TLBS << CAUSEB_EXCCODE));
2196
2197 /* setup badvaddr, context and entryhi registers for the guest */
2198 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2199 /* XXXKYMA: is the context register used by linux??? */
2200 kvm_write_c0_guest_entryhi(cop0, entryhi);
2201
2202 return EMULATE_DONE;
2203 }
2204
2205 enum emulation_result kvm_mips_emulate_tlbmod(u32 cause,
2206 u32 *opc,
2207 struct kvm_run *run,
2208 struct kvm_vcpu *vcpu)
2209 {
2210 struct mips_coproc *cop0 = vcpu->arch.cop0;
2211 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2212 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2213 struct kvm_vcpu_arch *arch = &vcpu->arch;
2214
2215 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2216 /* save old pc */
2217 kvm_write_c0_guest_epc(cop0, arch->pc);
2218 kvm_set_c0_guest_status(cop0, ST0_EXL);
2219
2220 if (cause & CAUSEF_BD)
2221 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2222 else
2223 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2224
2225 kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2226 arch->pc);
2227 } else {
2228 kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2229 arch->pc);
2230 }
2231
2232 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2233
2234 kvm_change_c0_guest_cause(cop0, (0xff),
2235 (EXCCODE_MOD << CAUSEB_EXCCODE));
2236
2237 /* setup badvaddr, context and entryhi registers for the guest */
2238 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2239 /* XXXKYMA: is the context register used by linux??? */
2240 kvm_write_c0_guest_entryhi(cop0, entryhi);
2241
2242 return EMULATE_DONE;
2243 }
2244
2245 enum emulation_result kvm_mips_emulate_fpu_exc(u32 cause,
2246 u32 *opc,
2247 struct kvm_run *run,
2248 struct kvm_vcpu *vcpu)
2249 {
2250 struct mips_coproc *cop0 = vcpu->arch.cop0;
2251 struct kvm_vcpu_arch *arch = &vcpu->arch;
2252
2253 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2254 /* save old pc */
2255 kvm_write_c0_guest_epc(cop0, arch->pc);
2256 kvm_set_c0_guest_status(cop0, ST0_EXL);
2257
2258 if (cause & CAUSEF_BD)
2259 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2260 else
2261 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2262
2263 }
2264
2265 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2266
2267 kvm_change_c0_guest_cause(cop0, (0xff),
2268 (EXCCODE_CPU << CAUSEB_EXCCODE));
2269 kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2270
2271 return EMULATE_DONE;
2272 }
2273
2274 enum emulation_result kvm_mips_emulate_ri_exc(u32 cause,
2275 u32 *opc,
2276 struct kvm_run *run,
2277 struct kvm_vcpu *vcpu)
2278 {
2279 struct mips_coproc *cop0 = vcpu->arch.cop0;
2280 struct kvm_vcpu_arch *arch = &vcpu->arch;
2281 enum emulation_result er = EMULATE_DONE;
2282
2283 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2284 /* save old pc */
2285 kvm_write_c0_guest_epc(cop0, arch->pc);
2286 kvm_set_c0_guest_status(cop0, ST0_EXL);
2287
2288 if (cause & CAUSEF_BD)
2289 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2290 else
2291 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2292
2293 kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2294
2295 kvm_change_c0_guest_cause(cop0, (0xff),
2296 (EXCCODE_RI << CAUSEB_EXCCODE));
2297
2298 /* Set PC to the exception entry point */
2299 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2300
2301 } else {
2302 kvm_err("Trying to deliver RI when EXL is already set\n");
2303 er = EMULATE_FAIL;
2304 }
2305
2306 return er;
2307 }
2308
2309 enum emulation_result kvm_mips_emulate_bp_exc(u32 cause,
2310 u32 *opc,
2311 struct kvm_run *run,
2312 struct kvm_vcpu *vcpu)
2313 {
2314 struct mips_coproc *cop0 = vcpu->arch.cop0;
2315 struct kvm_vcpu_arch *arch = &vcpu->arch;
2316 enum emulation_result er = EMULATE_DONE;
2317
2318 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2319 /* save old pc */
2320 kvm_write_c0_guest_epc(cop0, arch->pc);
2321 kvm_set_c0_guest_status(cop0, ST0_EXL);
2322
2323 if (cause & CAUSEF_BD)
2324 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2325 else
2326 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2327
2328 kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2329
2330 kvm_change_c0_guest_cause(cop0, (0xff),
2331 (EXCCODE_BP << CAUSEB_EXCCODE));
2332
2333 /* Set PC to the exception entry point */
2334 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2335
2336 } else {
2337 kvm_err("Trying to deliver BP when EXL is already set\n");
2338 er = EMULATE_FAIL;
2339 }
2340
2341 return er;
2342 }
2343
2344 enum emulation_result kvm_mips_emulate_trap_exc(u32 cause,
2345 u32 *opc,
2346 struct kvm_run *run,
2347 struct kvm_vcpu *vcpu)
2348 {
2349 struct mips_coproc *cop0 = vcpu->arch.cop0;
2350 struct kvm_vcpu_arch *arch = &vcpu->arch;
2351 enum emulation_result er = EMULATE_DONE;
2352
2353 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2354 /* save old pc */
2355 kvm_write_c0_guest_epc(cop0, arch->pc);
2356 kvm_set_c0_guest_status(cop0, ST0_EXL);
2357
2358 if (cause & CAUSEF_BD)
2359 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2360 else
2361 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2362
2363 kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2364
2365 kvm_change_c0_guest_cause(cop0, (0xff),
2366 (EXCCODE_TR << CAUSEB_EXCCODE));
2367
2368 /* Set PC to the exception entry point */
2369 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2370
2371 } else {
2372 kvm_err("Trying to deliver TRAP when EXL is already set\n");
2373 er = EMULATE_FAIL;
2374 }
2375
2376 return er;
2377 }
2378
2379 enum emulation_result kvm_mips_emulate_msafpe_exc(u32 cause,
2380 u32 *opc,
2381 struct kvm_run *run,
2382 struct kvm_vcpu *vcpu)
2383 {
2384 struct mips_coproc *cop0 = vcpu->arch.cop0;
2385 struct kvm_vcpu_arch *arch = &vcpu->arch;
2386 enum emulation_result er = EMULATE_DONE;
2387
2388 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2389 /* save old pc */
2390 kvm_write_c0_guest_epc(cop0, arch->pc);
2391 kvm_set_c0_guest_status(cop0, ST0_EXL);
2392
2393 if (cause & CAUSEF_BD)
2394 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2395 else
2396 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2397
2398 kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2399
2400 kvm_change_c0_guest_cause(cop0, (0xff),
2401 (EXCCODE_MSAFPE << CAUSEB_EXCCODE));
2402
2403 /* Set PC to the exception entry point */
2404 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2405
2406 } else {
2407 kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2408 er = EMULATE_FAIL;
2409 }
2410
2411 return er;
2412 }
2413
2414 enum emulation_result kvm_mips_emulate_fpe_exc(u32 cause,
2415 u32 *opc,
2416 struct kvm_run *run,
2417 struct kvm_vcpu *vcpu)
2418 {
2419 struct mips_coproc *cop0 = vcpu->arch.cop0;
2420 struct kvm_vcpu_arch *arch = &vcpu->arch;
2421 enum emulation_result er = EMULATE_DONE;
2422
2423 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2424 /* save old pc */
2425 kvm_write_c0_guest_epc(cop0, arch->pc);
2426 kvm_set_c0_guest_status(cop0, ST0_EXL);
2427
2428 if (cause & CAUSEF_BD)
2429 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2430 else
2431 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2432
2433 kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2434
2435 kvm_change_c0_guest_cause(cop0, (0xff),
2436 (EXCCODE_FPE << CAUSEB_EXCCODE));
2437
2438 /* Set PC to the exception entry point */
2439 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2440
2441 } else {
2442 kvm_err("Trying to deliver FPE when EXL is already set\n");
2443 er = EMULATE_FAIL;
2444 }
2445
2446 return er;
2447 }
2448
2449 enum emulation_result kvm_mips_emulate_msadis_exc(u32 cause,
2450 u32 *opc,
2451 struct kvm_run *run,
2452 struct kvm_vcpu *vcpu)
2453 {
2454 struct mips_coproc *cop0 = vcpu->arch.cop0;
2455 struct kvm_vcpu_arch *arch = &vcpu->arch;
2456 enum emulation_result er = EMULATE_DONE;
2457
2458 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2459 /* save old pc */
2460 kvm_write_c0_guest_epc(cop0, arch->pc);
2461 kvm_set_c0_guest_status(cop0, ST0_EXL);
2462
2463 if (cause & CAUSEF_BD)
2464 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2465 else
2466 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2467
2468 kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2469
2470 kvm_change_c0_guest_cause(cop0, (0xff),
2471 (EXCCODE_MSADIS << CAUSEB_EXCCODE));
2472
2473 /* Set PC to the exception entry point */
2474 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2475
2476 } else {
2477 kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2478 er = EMULATE_FAIL;
2479 }
2480
2481 return er;
2482 }
2483
2484 enum emulation_result kvm_mips_handle_ri(u32 cause, u32 *opc,
2485 struct kvm_run *run,
2486 struct kvm_vcpu *vcpu)
2487 {
2488 struct mips_coproc *cop0 = vcpu->arch.cop0;
2489 struct kvm_vcpu_arch *arch = &vcpu->arch;
2490 enum emulation_result er = EMULATE_DONE;
2491 unsigned long curr_pc;
2492 union mips_instruction inst;
2493 int err;
2494
2495 /*
2496 * Update PC and hold onto current PC in case there is
2497 * an error and we want to rollback the PC
2498 */
2499 curr_pc = vcpu->arch.pc;
2500 er = update_pc(vcpu, cause);
2501 if (er == EMULATE_FAIL)
2502 return er;
2503
2504 /* Fetch the instruction. */
2505 if (cause & CAUSEF_BD)
2506 opc += 1;
2507 err = kvm_get_badinstr(opc, vcpu, &inst.word);
2508 if (err) {
2509 kvm_err("%s: Cannot get inst @ %p (%d)\n", __func__, opc, err);
2510 return EMULATE_FAIL;
2511 }
2512
2513 if (inst.r_format.opcode == spec3_op &&
2514 inst.r_format.func == rdhwr_op &&
2515 inst.r_format.rs == 0 &&
2516 (inst.r_format.re >> 3) == 0) {
2517 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2518 int rd = inst.r_format.rd;
2519 int rt = inst.r_format.rt;
2520 int sel = inst.r_format.re & 0x7;
2521
2522 /* If usermode, check RDHWR rd is allowed by guest HWREna */
2523 if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2524 kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2525 rd, opc);
2526 goto emulate_ri;
2527 }
2528 switch (rd) {
2529 case MIPS_HWR_CPUNUM: /* CPU number */
2530 arch->gprs[rt] = vcpu->vcpu_id;
2531 break;
2532 case MIPS_HWR_SYNCISTEP: /* SYNCI length */
2533 arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2534 current_cpu_data.icache.linesz);
2535 break;
2536 case MIPS_HWR_CC: /* Read count register */
2537 arch->gprs[rt] = (s32)kvm_mips_read_count(vcpu);
2538 break;
2539 case MIPS_HWR_CCRES: /* Count register resolution */
2540 switch (current_cpu_data.cputype) {
2541 case CPU_20KC:
2542 case CPU_25KF:
2543 arch->gprs[rt] = 1;
2544 break;
2545 default:
2546 arch->gprs[rt] = 2;
2547 }
2548 break;
2549 case MIPS_HWR_ULR: /* Read UserLocal register */
2550 arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
2551 break;
2552
2553 default:
2554 kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2555 goto emulate_ri;
2556 }
2557
2558 trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, KVM_TRACE_HWR(rd, sel),
2559 vcpu->arch.gprs[rt]);
2560 } else {
2561 kvm_debug("Emulate RI not supported @ %p: %#x\n",
2562 opc, inst.word);
2563 goto emulate_ri;
2564 }
2565
2566 return EMULATE_DONE;
2567
2568 emulate_ri:
2569 /*
2570 * Rollback PC (if in branch delay slot then the PC already points to
2571 * branch target), and pass the RI exception to the guest OS.
2572 */
2573 vcpu->arch.pc = curr_pc;
2574 return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
2575 }
2576
2577 enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
2578 struct kvm_run *run)
2579 {
2580 unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2581 enum emulation_result er = EMULATE_DONE;
2582
2583 if (run->mmio.len > sizeof(*gpr)) {
2584 kvm_err("Bad MMIO length: %d", run->mmio.len);
2585 er = EMULATE_FAIL;
2586 goto done;
2587 }
2588
2589 /* Restore saved resume PC */
2590 vcpu->arch.pc = vcpu->arch.io_pc;
2591
2592 switch (run->mmio.len) {
2593 case 8:
2594 *gpr = *(s64 *)run->mmio.data;
2595 break;
2596
2597 case 4:
2598 if (vcpu->mmio_needed == 2)
2599 *gpr = *(s32 *)run->mmio.data;
2600 else
2601 *gpr = *(u32 *)run->mmio.data;
2602 break;
2603
2604 case 2:
2605 if (vcpu->mmio_needed == 2)
2606 *gpr = *(s16 *) run->mmio.data;
2607 else
2608 *gpr = *(u16 *)run->mmio.data;
2609
2610 break;
2611 case 1:
2612 if (vcpu->mmio_needed == 2)
2613 *gpr = *(s8 *) run->mmio.data;
2614 else
2615 *gpr = *(u8 *) run->mmio.data;
2616 break;
2617 }
2618
2619 done:
2620 return er;
2621 }
2622
2623 static enum emulation_result kvm_mips_emulate_exc(u32 cause,
2624 u32 *opc,
2625 struct kvm_run *run,
2626 struct kvm_vcpu *vcpu)
2627 {
2628 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2629 struct mips_coproc *cop0 = vcpu->arch.cop0;
2630 struct kvm_vcpu_arch *arch = &vcpu->arch;
2631 enum emulation_result er = EMULATE_DONE;
2632
2633 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2634 /* save old pc */
2635 kvm_write_c0_guest_epc(cop0, arch->pc);
2636 kvm_set_c0_guest_status(cop0, ST0_EXL);
2637
2638 if (cause & CAUSEF_BD)
2639 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2640 else
2641 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2642
2643 kvm_change_c0_guest_cause(cop0, (0xff),
2644 (exccode << CAUSEB_EXCCODE));
2645
2646 /* Set PC to the exception entry point */
2647 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2648 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2649
2650 kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
2651 exccode, kvm_read_c0_guest_epc(cop0),
2652 kvm_read_c0_guest_badvaddr(cop0));
2653 } else {
2654 kvm_err("Trying to deliver EXC when EXL is already set\n");
2655 er = EMULATE_FAIL;
2656 }
2657
2658 return er;
2659 }
2660
2661 enum emulation_result kvm_mips_check_privilege(u32 cause,
2662 u32 *opc,
2663 struct kvm_run *run,
2664 struct kvm_vcpu *vcpu)
2665 {
2666 enum emulation_result er = EMULATE_DONE;
2667 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2668 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
2669
2670 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2671
2672 if (usermode) {
2673 switch (exccode) {
2674 case EXCCODE_INT:
2675 case EXCCODE_SYS:
2676 case EXCCODE_BP:
2677 case EXCCODE_RI:
2678 case EXCCODE_TR:
2679 case EXCCODE_MSAFPE:
2680 case EXCCODE_FPE:
2681 case EXCCODE_MSADIS:
2682 break;
2683
2684 case EXCCODE_CPU:
2685 if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
2686 er = EMULATE_PRIV_FAIL;
2687 break;
2688
2689 case EXCCODE_MOD:
2690 break;
2691
2692 case EXCCODE_TLBL:
2693 /*
2694 * We we are accessing Guest kernel space, then send an
2695 * address error exception to the guest
2696 */
2697 if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2698 kvm_debug("%s: LD MISS @ %#lx\n", __func__,
2699 badvaddr);
2700 cause &= ~0xff;
2701 cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
2702 er = EMULATE_PRIV_FAIL;
2703 }
2704 break;
2705
2706 case EXCCODE_TLBS:
2707 /*
2708 * We we are accessing Guest kernel space, then send an
2709 * address error exception to the guest
2710 */
2711 if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2712 kvm_debug("%s: ST MISS @ %#lx\n", __func__,
2713 badvaddr);
2714 cause &= ~0xff;
2715 cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
2716 er = EMULATE_PRIV_FAIL;
2717 }
2718 break;
2719
2720 case EXCCODE_ADES:
2721 kvm_debug("%s: address error ST @ %#lx\n", __func__,
2722 badvaddr);
2723 if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2724 cause &= ~0xff;
2725 cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
2726 }
2727 er = EMULATE_PRIV_FAIL;
2728 break;
2729 case EXCCODE_ADEL:
2730 kvm_debug("%s: address error LD @ %#lx\n", __func__,
2731 badvaddr);
2732 if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2733 cause &= ~0xff;
2734 cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
2735 }
2736 er = EMULATE_PRIV_FAIL;
2737 break;
2738 default:
2739 er = EMULATE_PRIV_FAIL;
2740 break;
2741 }
2742 }
2743
2744 if (er == EMULATE_PRIV_FAIL)
2745 kvm_mips_emulate_exc(cause, opc, run, vcpu);
2746
2747 return er;
2748 }
2749
2750 /*
2751 * User Address (UA) fault, this could happen if
2752 * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
2753 * case we pass on the fault to the guest kernel and let it handle it.
2754 * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
2755 * case we inject the TLB from the Guest TLB into the shadow host TLB
2756 */
2757 enum emulation_result kvm_mips_handle_tlbmiss(u32 cause,
2758 u32 *opc,
2759 struct kvm_run *run,
2760 struct kvm_vcpu *vcpu,
2761 bool write_fault)
2762 {
2763 enum emulation_result er = EMULATE_DONE;
2764 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2765 unsigned long va = vcpu->arch.host_cp0_badvaddr;
2766 int index;
2767
2768 kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx\n",
2769 vcpu->arch.host_cp0_badvaddr);
2770
2771 /*
2772 * KVM would not have got the exception if this entry was valid in the
2773 * shadow host TLB. Check the Guest TLB, if the entry is not there then
2774 * send the guest an exception. The guest exc handler should then inject
2775 * an entry into the guest TLB.
2776 */
2777 index = kvm_mips_guest_tlb_lookup(vcpu,
2778 (va & VPN2_MASK) |
2779 (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) &
2780 KVM_ENTRYHI_ASID));
2781 if (index < 0) {
2782 if (exccode == EXCCODE_TLBL) {
2783 er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
2784 } else if (exccode == EXCCODE_TLBS) {
2785 er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
2786 } else {
2787 kvm_err("%s: invalid exc code: %d\n", __func__,
2788 exccode);
2789 er = EMULATE_FAIL;
2790 }
2791 } else {
2792 struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
2793
2794 /*
2795 * Check if the entry is valid, if not then setup a TLB invalid
2796 * exception to the guest
2797 */
2798 if (!TLB_IS_VALID(*tlb, va)) {
2799 if (exccode == EXCCODE_TLBL) {
2800 er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
2801 vcpu);
2802 } else if (exccode == EXCCODE_TLBS) {
2803 er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
2804 vcpu);
2805 } else {
2806 kvm_err("%s: invalid exc code: %d\n", __func__,
2807 exccode);
2808 er = EMULATE_FAIL;
2809 }
2810 } else {
2811 kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
2812 tlb->tlb_hi, tlb->tlb_lo[0], tlb->tlb_lo[1]);
2813 /*
2814 * OK we have a Guest TLB entry, now inject it into the
2815 * shadow host TLB
2816 */
2817 if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, va,
2818 write_fault)) {
2819 kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n",
2820 __func__, va, index, vcpu,
2821 read_c0_entryhi());
2822 er = EMULATE_FAIL;
2823 }
2824 }
2825 }
2826
2827 return er;
2828 }