]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/x86/kernel/cpu/common.c
x86/ibt: Convert IBT selftest to asm
[thirdparty/linux.git] / arch / x86 / kernel / cpu / common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/mem_encrypt.h>
22 #include <linux/smp.h>
23 #include <linux/cpu.h>
24 #include <linux/io.h>
25 #include <linux/syscore_ops.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackprotector.h>
28 #include <linux/utsname.h>
29
30 #include <asm/alternative.h>
31 #include <asm/cmdline.h>
32 #include <asm/perf_event.h>
33 #include <asm/mmu_context.h>
34 #include <asm/doublefault.h>
35 #include <asm/archrandom.h>
36 #include <asm/hypervisor.h>
37 #include <asm/processor.h>
38 #include <asm/tlbflush.h>
39 #include <asm/debugreg.h>
40 #include <asm/sections.h>
41 #include <asm/vsyscall.h>
42 #include <linux/topology.h>
43 #include <linux/cpumask.h>
44 #include <linux/atomic.h>
45 #include <asm/proto.h>
46 #include <asm/setup.h>
47 #include <asm/apic.h>
48 #include <asm/desc.h>
49 #include <asm/fpu/api.h>
50 #include <asm/mtrr.h>
51 #include <asm/hwcap2.h>
52 #include <linux/numa.h>
53 #include <asm/numa.h>
54 #include <asm/asm.h>
55 #include <asm/bugs.h>
56 #include <asm/cpu.h>
57 #include <asm/mce.h>
58 #include <asm/msr.h>
59 #include <asm/cacheinfo.h>
60 #include <asm/memtype.h>
61 #include <asm/microcode.h>
62 #include <asm/microcode_intel.h>
63 #include <asm/intel-family.h>
64 #include <asm/cpu_device_id.h>
65 #include <asm/uv/uv.h>
66 #include <asm/set_memory.h>
67 #include <asm/traps.h>
68 #include <asm/sev.h>
69
70 #include "cpu.h"
71
72 u32 elf_hwcap2 __read_mostly;
73
74 /* Number of siblings per CPU package */
75 int smp_num_siblings = 1;
76 EXPORT_SYMBOL(smp_num_siblings);
77
78 /* Last level cache ID of each logical CPU */
79 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
80
81 u16 get_llc_id(unsigned int cpu)
82 {
83 return per_cpu(cpu_llc_id, cpu);
84 }
85 EXPORT_SYMBOL_GPL(get_llc_id);
86
87 /* L2 cache ID of each logical CPU */
88 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_l2c_id) = BAD_APICID;
89
90 static struct ppin_info {
91 int feature;
92 int msr_ppin_ctl;
93 int msr_ppin;
94 } ppin_info[] = {
95 [X86_VENDOR_INTEL] = {
96 .feature = X86_FEATURE_INTEL_PPIN,
97 .msr_ppin_ctl = MSR_PPIN_CTL,
98 .msr_ppin = MSR_PPIN
99 },
100 [X86_VENDOR_AMD] = {
101 .feature = X86_FEATURE_AMD_PPIN,
102 .msr_ppin_ctl = MSR_AMD_PPIN_CTL,
103 .msr_ppin = MSR_AMD_PPIN
104 },
105 };
106
107 static const struct x86_cpu_id ppin_cpuids[] = {
108 X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
109 X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
110
111 /* Legacy models without CPUID enumeration */
112 X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
113 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
114 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
115 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
116 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
117 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
118 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
119 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
120 X86_MATCH_INTEL_FAM6_MODEL(EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
121 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
122 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
123
124 {}
125 };
126
127 static void ppin_init(struct cpuinfo_x86 *c)
128 {
129 const struct x86_cpu_id *id;
130 unsigned long long val;
131 struct ppin_info *info;
132
133 id = x86_match_cpu(ppin_cpuids);
134 if (!id)
135 return;
136
137 /*
138 * Testing the presence of the MSR is not enough. Need to check
139 * that the PPIN_CTL allows reading of the PPIN.
140 */
141 info = (struct ppin_info *)id->driver_data;
142
143 if (rdmsrl_safe(info->msr_ppin_ctl, &val))
144 goto clear_ppin;
145
146 if ((val & 3UL) == 1UL) {
147 /* PPIN locked in disabled mode */
148 goto clear_ppin;
149 }
150
151 /* If PPIN is disabled, try to enable */
152 if (!(val & 2UL)) {
153 wrmsrl_safe(info->msr_ppin_ctl, val | 2UL);
154 rdmsrl_safe(info->msr_ppin_ctl, &val);
155 }
156
157 /* Is the enable bit set? */
158 if (val & 2UL) {
159 c->ppin = __rdmsr(info->msr_ppin);
160 set_cpu_cap(c, info->feature);
161 return;
162 }
163
164 clear_ppin:
165 clear_cpu_cap(c, info->feature);
166 }
167
168 static void default_init(struct cpuinfo_x86 *c)
169 {
170 #ifdef CONFIG_X86_64
171 cpu_detect_cache_sizes(c);
172 #else
173 /* Not much we can do here... */
174 /* Check if at least it has cpuid */
175 if (c->cpuid_level == -1) {
176 /* No cpuid. It must be an ancient CPU */
177 if (c->x86 == 4)
178 strcpy(c->x86_model_id, "486");
179 else if (c->x86 == 3)
180 strcpy(c->x86_model_id, "386");
181 }
182 #endif
183 }
184
185 static const struct cpu_dev default_cpu = {
186 .c_init = default_init,
187 .c_vendor = "Unknown",
188 .c_x86_vendor = X86_VENDOR_UNKNOWN,
189 };
190
191 static const struct cpu_dev *this_cpu = &default_cpu;
192
193 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
194 #ifdef CONFIG_X86_64
195 /*
196 * We need valid kernel segments for data and code in long mode too
197 * IRET will check the segment types kkeil 2000/10/28
198 * Also sysret mandates a special GDT layout
199 *
200 * TLS descriptors are currently at a different place compared to i386.
201 * Hopefully nobody expects them at a fixed place (Wine?)
202 */
203 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
204 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
205 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
206 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
207 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
208 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
209 #else
210 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
211 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
212 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
213 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
214 /*
215 * Segments used for calling PnP BIOS have byte granularity.
216 * They code segments and data segments have fixed 64k limits,
217 * the transfer segment sizes are set at run time.
218 */
219 /* 32-bit code */
220 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
221 /* 16-bit code */
222 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
223 /* 16-bit data */
224 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
225 /* 16-bit data */
226 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
227 /* 16-bit data */
228 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
229 /*
230 * The APM segments have byte granularity and their bases
231 * are set at run time. All have 64k limits.
232 */
233 /* 32-bit code */
234 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
235 /* 16-bit code */
236 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
237 /* data */
238 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
239
240 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
241 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
242 #endif
243 } };
244 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
245
246 #ifdef CONFIG_X86_64
247 static int __init x86_nopcid_setup(char *s)
248 {
249 /* nopcid doesn't accept parameters */
250 if (s)
251 return -EINVAL;
252
253 /* do not emit a message if the feature is not present */
254 if (!boot_cpu_has(X86_FEATURE_PCID))
255 return 0;
256
257 setup_clear_cpu_cap(X86_FEATURE_PCID);
258 pr_info("nopcid: PCID feature disabled\n");
259 return 0;
260 }
261 early_param("nopcid", x86_nopcid_setup);
262 #endif
263
264 static int __init x86_noinvpcid_setup(char *s)
265 {
266 /* noinvpcid doesn't accept parameters */
267 if (s)
268 return -EINVAL;
269
270 /* do not emit a message if the feature is not present */
271 if (!boot_cpu_has(X86_FEATURE_INVPCID))
272 return 0;
273
274 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
275 pr_info("noinvpcid: INVPCID feature disabled\n");
276 return 0;
277 }
278 early_param("noinvpcid", x86_noinvpcid_setup);
279
280 #ifdef CONFIG_X86_32
281 static int cachesize_override = -1;
282 static int disable_x86_serial_nr = 1;
283
284 static int __init cachesize_setup(char *str)
285 {
286 get_option(&str, &cachesize_override);
287 return 1;
288 }
289 __setup("cachesize=", cachesize_setup);
290
291 /* Standard macro to see if a specific flag is changeable */
292 static inline int flag_is_changeable_p(u32 flag)
293 {
294 u32 f1, f2;
295
296 /*
297 * Cyrix and IDT cpus allow disabling of CPUID
298 * so the code below may return different results
299 * when it is executed before and after enabling
300 * the CPUID. Add "volatile" to not allow gcc to
301 * optimize the subsequent calls to this function.
302 */
303 asm volatile ("pushfl \n\t"
304 "pushfl \n\t"
305 "popl %0 \n\t"
306 "movl %0, %1 \n\t"
307 "xorl %2, %0 \n\t"
308 "pushl %0 \n\t"
309 "popfl \n\t"
310 "pushfl \n\t"
311 "popl %0 \n\t"
312 "popfl \n\t"
313
314 : "=&r" (f1), "=&r" (f2)
315 : "ir" (flag));
316
317 return ((f1^f2) & flag) != 0;
318 }
319
320 /* Probe for the CPUID instruction */
321 int have_cpuid_p(void)
322 {
323 return flag_is_changeable_p(X86_EFLAGS_ID);
324 }
325
326 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
327 {
328 unsigned long lo, hi;
329
330 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
331 return;
332
333 /* Disable processor serial number: */
334
335 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
336 lo |= 0x200000;
337 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
338
339 pr_notice("CPU serial number disabled.\n");
340 clear_cpu_cap(c, X86_FEATURE_PN);
341
342 /* Disabling the serial number may affect the cpuid level */
343 c->cpuid_level = cpuid_eax(0);
344 }
345
346 static int __init x86_serial_nr_setup(char *s)
347 {
348 disable_x86_serial_nr = 0;
349 return 1;
350 }
351 __setup("serialnumber", x86_serial_nr_setup);
352 #else
353 static inline int flag_is_changeable_p(u32 flag)
354 {
355 return 1;
356 }
357 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
358 {
359 }
360 #endif
361
362 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
363 {
364 if (cpu_has(c, X86_FEATURE_SMEP))
365 cr4_set_bits(X86_CR4_SMEP);
366 }
367
368 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
369 {
370 unsigned long eflags = native_save_fl();
371
372 /* This should have been cleared long ago */
373 BUG_ON(eflags & X86_EFLAGS_AC);
374
375 if (cpu_has(c, X86_FEATURE_SMAP))
376 cr4_set_bits(X86_CR4_SMAP);
377 }
378
379 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
380 {
381 /* Check the boot processor, plus build option for UMIP. */
382 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
383 goto out;
384
385 /* Check the current processor's cpuid bits. */
386 if (!cpu_has(c, X86_FEATURE_UMIP))
387 goto out;
388
389 cr4_set_bits(X86_CR4_UMIP);
390
391 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
392
393 return;
394
395 out:
396 /*
397 * Make sure UMIP is disabled in case it was enabled in a
398 * previous boot (e.g., via kexec).
399 */
400 cr4_clear_bits(X86_CR4_UMIP);
401 }
402
403 /* These bits should not change their value after CPU init is finished. */
404 static const unsigned long cr4_pinned_mask =
405 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
406 X86_CR4_FSGSBASE | X86_CR4_CET;
407 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
408 static unsigned long cr4_pinned_bits __ro_after_init;
409
410 void native_write_cr0(unsigned long val)
411 {
412 unsigned long bits_missing = 0;
413
414 set_register:
415 asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
416
417 if (static_branch_likely(&cr_pinning)) {
418 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
419 bits_missing = X86_CR0_WP;
420 val |= bits_missing;
421 goto set_register;
422 }
423 /* Warn after we've set the missing bits. */
424 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
425 }
426 }
427 EXPORT_SYMBOL(native_write_cr0);
428
429 void __no_profile native_write_cr4(unsigned long val)
430 {
431 unsigned long bits_changed = 0;
432
433 set_register:
434 asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
435
436 if (static_branch_likely(&cr_pinning)) {
437 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
438 bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
439 val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
440 goto set_register;
441 }
442 /* Warn after we've corrected the changed bits. */
443 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
444 bits_changed);
445 }
446 }
447 #if IS_MODULE(CONFIG_LKDTM)
448 EXPORT_SYMBOL_GPL(native_write_cr4);
449 #endif
450
451 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
452 {
453 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
454
455 lockdep_assert_irqs_disabled();
456
457 newval = (cr4 & ~clear) | set;
458 if (newval != cr4) {
459 this_cpu_write(cpu_tlbstate.cr4, newval);
460 __write_cr4(newval);
461 }
462 }
463 EXPORT_SYMBOL(cr4_update_irqsoff);
464
465 /* Read the CR4 shadow. */
466 unsigned long cr4_read_shadow(void)
467 {
468 return this_cpu_read(cpu_tlbstate.cr4);
469 }
470 EXPORT_SYMBOL_GPL(cr4_read_shadow);
471
472 void cr4_init(void)
473 {
474 unsigned long cr4 = __read_cr4();
475
476 if (boot_cpu_has(X86_FEATURE_PCID))
477 cr4 |= X86_CR4_PCIDE;
478 if (static_branch_likely(&cr_pinning))
479 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
480
481 __write_cr4(cr4);
482
483 /* Initialize cr4 shadow for this CPU. */
484 this_cpu_write(cpu_tlbstate.cr4, cr4);
485 }
486
487 /*
488 * Once CPU feature detection is finished (and boot params have been
489 * parsed), record any of the sensitive CR bits that are set, and
490 * enable CR pinning.
491 */
492 static void __init setup_cr_pinning(void)
493 {
494 cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
495 static_key_enable(&cr_pinning.key);
496 }
497
498 static __init int x86_nofsgsbase_setup(char *arg)
499 {
500 /* Require an exact match without trailing characters. */
501 if (strlen(arg))
502 return 0;
503
504 /* Do not emit a message if the feature is not present. */
505 if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
506 return 1;
507
508 setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
509 pr_info("FSGSBASE disabled via kernel command line\n");
510 return 1;
511 }
512 __setup("nofsgsbase", x86_nofsgsbase_setup);
513
514 /*
515 * Protection Keys are not available in 32-bit mode.
516 */
517 static bool pku_disabled;
518
519 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
520 {
521 if (c == &boot_cpu_data) {
522 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
523 return;
524 /*
525 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
526 * bit to be set. Enforce it.
527 */
528 setup_force_cpu_cap(X86_FEATURE_OSPKE);
529
530 } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
531 return;
532 }
533
534 cr4_set_bits(X86_CR4_PKE);
535 /* Load the default PKRU value */
536 pkru_write_default();
537 }
538
539 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
540 static __init int setup_disable_pku(char *arg)
541 {
542 /*
543 * Do not clear the X86_FEATURE_PKU bit. All of the
544 * runtime checks are against OSPKE so clearing the
545 * bit does nothing.
546 *
547 * This way, we will see "pku" in cpuinfo, but not
548 * "ospke", which is exactly what we want. It shows
549 * that the CPU has PKU, but the OS has not enabled it.
550 * This happens to be exactly how a system would look
551 * if we disabled the config option.
552 */
553 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
554 pku_disabled = true;
555 return 1;
556 }
557 __setup("nopku", setup_disable_pku);
558 #endif
559
560 #ifdef CONFIG_X86_KERNEL_IBT
561
562 __noendbr u64 ibt_save(bool disable)
563 {
564 u64 msr = 0;
565
566 if (cpu_feature_enabled(X86_FEATURE_IBT)) {
567 rdmsrl(MSR_IA32_S_CET, msr);
568 if (disable)
569 wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
570 }
571
572 return msr;
573 }
574
575 __noendbr void ibt_restore(u64 save)
576 {
577 u64 msr;
578
579 if (cpu_feature_enabled(X86_FEATURE_IBT)) {
580 rdmsrl(MSR_IA32_S_CET, msr);
581 msr &= ~CET_ENDBR_EN;
582 msr |= (save & CET_ENDBR_EN);
583 wrmsrl(MSR_IA32_S_CET, msr);
584 }
585 }
586
587 #endif
588
589 static __always_inline void setup_cet(struct cpuinfo_x86 *c)
590 {
591 bool user_shstk, kernel_ibt;
592
593 if (!IS_ENABLED(CONFIG_X86_CET))
594 return;
595
596 kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT);
597 user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) &&
598 IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK);
599
600 if (!kernel_ibt && !user_shstk)
601 return;
602
603 if (user_shstk)
604 set_cpu_cap(c, X86_FEATURE_USER_SHSTK);
605
606 if (kernel_ibt)
607 wrmsrl(MSR_IA32_S_CET, CET_ENDBR_EN);
608 else
609 wrmsrl(MSR_IA32_S_CET, 0);
610
611 cr4_set_bits(X86_CR4_CET);
612
613 if (kernel_ibt && ibt_selftest()) {
614 pr_err("IBT selftest: Failed!\n");
615 wrmsrl(MSR_IA32_S_CET, 0);
616 setup_clear_cpu_cap(X86_FEATURE_IBT);
617 }
618 }
619
620 __noendbr void cet_disable(void)
621 {
622 if (!(cpu_feature_enabled(X86_FEATURE_IBT) ||
623 cpu_feature_enabled(X86_FEATURE_SHSTK)))
624 return;
625
626 wrmsrl(MSR_IA32_S_CET, 0);
627 wrmsrl(MSR_IA32_U_CET, 0);
628 }
629
630 /*
631 * Some CPU features depend on higher CPUID levels, which may not always
632 * be available due to CPUID level capping or broken virtualization
633 * software. Add those features to this table to auto-disable them.
634 */
635 struct cpuid_dependent_feature {
636 u32 feature;
637 u32 level;
638 };
639
640 static const struct cpuid_dependent_feature
641 cpuid_dependent_features[] = {
642 { X86_FEATURE_MWAIT, 0x00000005 },
643 { X86_FEATURE_DCA, 0x00000009 },
644 { X86_FEATURE_XSAVE, 0x0000000d },
645 { 0, 0 }
646 };
647
648 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
649 {
650 const struct cpuid_dependent_feature *df;
651
652 for (df = cpuid_dependent_features; df->feature; df++) {
653
654 if (!cpu_has(c, df->feature))
655 continue;
656 /*
657 * Note: cpuid_level is set to -1 if unavailable, but
658 * extended_extended_level is set to 0 if unavailable
659 * and the legitimate extended levels are all negative
660 * when signed; hence the weird messing around with
661 * signs here...
662 */
663 if (!((s32)df->level < 0 ?
664 (u32)df->level > (u32)c->extended_cpuid_level :
665 (s32)df->level > (s32)c->cpuid_level))
666 continue;
667
668 clear_cpu_cap(c, df->feature);
669 if (!warn)
670 continue;
671
672 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
673 x86_cap_flag(df->feature), df->level);
674 }
675 }
676
677 /*
678 * Naming convention should be: <Name> [(<Codename>)]
679 * This table only is used unless init_<vendor>() below doesn't set it;
680 * in particular, if CPUID levels 0x80000002..4 are supported, this
681 * isn't used
682 */
683
684 /* Look up CPU names by table lookup. */
685 static const char *table_lookup_model(struct cpuinfo_x86 *c)
686 {
687 #ifdef CONFIG_X86_32
688 const struct legacy_cpu_model_info *info;
689
690 if (c->x86_model >= 16)
691 return NULL; /* Range check */
692
693 if (!this_cpu)
694 return NULL;
695
696 info = this_cpu->legacy_models;
697
698 while (info->family) {
699 if (info->family == c->x86)
700 return info->model_names[c->x86_model];
701 info++;
702 }
703 #endif
704 return NULL; /* Not found */
705 }
706
707 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
708 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
709 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
710
711 #ifdef CONFIG_X86_32
712 /* The 32-bit entry code needs to find cpu_entry_area. */
713 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
714 #endif
715
716 /* Load the original GDT from the per-cpu structure */
717 void load_direct_gdt(int cpu)
718 {
719 struct desc_ptr gdt_descr;
720
721 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
722 gdt_descr.size = GDT_SIZE - 1;
723 load_gdt(&gdt_descr);
724 }
725 EXPORT_SYMBOL_GPL(load_direct_gdt);
726
727 /* Load a fixmap remapping of the per-cpu GDT */
728 void load_fixmap_gdt(int cpu)
729 {
730 struct desc_ptr gdt_descr;
731
732 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
733 gdt_descr.size = GDT_SIZE - 1;
734 load_gdt(&gdt_descr);
735 }
736 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
737
738 /**
739 * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
740 * @cpu: The CPU number for which this is invoked
741 *
742 * Invoked during early boot to switch from early GDT and early per CPU to
743 * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
744 * switch is implicit by loading the direct GDT. On 64bit this requires
745 * to update GSBASE.
746 */
747 void __init switch_gdt_and_percpu_base(int cpu)
748 {
749 load_direct_gdt(cpu);
750
751 #ifdef CONFIG_X86_64
752 /*
753 * No need to load %gs. It is already correct.
754 *
755 * Writing %gs on 64bit would zero GSBASE which would make any per
756 * CPU operation up to the point of the wrmsrl() fault.
757 *
758 * Set GSBASE to the new offset. Until the wrmsrl() happens the
759 * early mapping is still valid. That means the GSBASE update will
760 * lose any prior per CPU data which was not copied over in
761 * setup_per_cpu_areas().
762 *
763 * This works even with stackprotector enabled because the
764 * per CPU stack canary is 0 in both per CPU areas.
765 */
766 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
767 #else
768 /*
769 * %fs is already set to __KERNEL_PERCPU, but after switching GDT
770 * it is required to load FS again so that the 'hidden' part is
771 * updated from the new GDT. Up to this point the early per CPU
772 * translation is active. Any content of the early per CPU data
773 * which was not copied over in setup_per_cpu_areas() is lost.
774 */
775 loadsegment(fs, __KERNEL_PERCPU);
776 #endif
777 }
778
779 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
780
781 static void get_model_name(struct cpuinfo_x86 *c)
782 {
783 unsigned int *v;
784 char *p, *q, *s;
785
786 if (c->extended_cpuid_level < 0x80000004)
787 return;
788
789 v = (unsigned int *)c->x86_model_id;
790 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
791 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
792 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
793 c->x86_model_id[48] = 0;
794
795 /* Trim whitespace */
796 p = q = s = &c->x86_model_id[0];
797
798 while (*p == ' ')
799 p++;
800
801 while (*p) {
802 /* Note the last non-whitespace index */
803 if (!isspace(*p))
804 s = q;
805
806 *q++ = *p++;
807 }
808
809 *(s + 1) = '\0';
810 }
811
812 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
813 {
814 unsigned int eax, ebx, ecx, edx;
815
816 c->x86_max_cores = 1;
817 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
818 return;
819
820 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
821 if (eax & 0x1f)
822 c->x86_max_cores = (eax >> 26) + 1;
823 }
824
825 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
826 {
827 unsigned int n, dummy, ebx, ecx, edx, l2size;
828
829 n = c->extended_cpuid_level;
830
831 if (n >= 0x80000005) {
832 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
833 c->x86_cache_size = (ecx>>24) + (edx>>24);
834 #ifdef CONFIG_X86_64
835 /* On K8 L1 TLB is inclusive, so don't count it */
836 c->x86_tlbsize = 0;
837 #endif
838 }
839
840 if (n < 0x80000006) /* Some chips just has a large L1. */
841 return;
842
843 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
844 l2size = ecx >> 16;
845
846 #ifdef CONFIG_X86_64
847 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
848 #else
849 /* do processor-specific cache resizing */
850 if (this_cpu->legacy_cache_size)
851 l2size = this_cpu->legacy_cache_size(c, l2size);
852
853 /* Allow user to override all this if necessary. */
854 if (cachesize_override != -1)
855 l2size = cachesize_override;
856
857 if (l2size == 0)
858 return; /* Again, no L2 cache is possible */
859 #endif
860
861 c->x86_cache_size = l2size;
862 }
863
864 u16 __read_mostly tlb_lli_4k[NR_INFO];
865 u16 __read_mostly tlb_lli_2m[NR_INFO];
866 u16 __read_mostly tlb_lli_4m[NR_INFO];
867 u16 __read_mostly tlb_lld_4k[NR_INFO];
868 u16 __read_mostly tlb_lld_2m[NR_INFO];
869 u16 __read_mostly tlb_lld_4m[NR_INFO];
870 u16 __read_mostly tlb_lld_1g[NR_INFO];
871
872 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
873 {
874 if (this_cpu->c_detect_tlb)
875 this_cpu->c_detect_tlb(c);
876
877 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
878 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
879 tlb_lli_4m[ENTRIES]);
880
881 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
882 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
883 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
884 }
885
886 int detect_ht_early(struct cpuinfo_x86 *c)
887 {
888 #ifdef CONFIG_SMP
889 u32 eax, ebx, ecx, edx;
890
891 if (!cpu_has(c, X86_FEATURE_HT))
892 return -1;
893
894 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
895 return -1;
896
897 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
898 return -1;
899
900 cpuid(1, &eax, &ebx, &ecx, &edx);
901
902 smp_num_siblings = (ebx & 0xff0000) >> 16;
903 if (smp_num_siblings == 1)
904 pr_info_once("CPU0: Hyper-Threading is disabled\n");
905 #endif
906 return 0;
907 }
908
909 void detect_ht(struct cpuinfo_x86 *c)
910 {
911 #ifdef CONFIG_SMP
912 int index_msb, core_bits;
913
914 if (detect_ht_early(c) < 0)
915 return;
916
917 index_msb = get_count_order(smp_num_siblings);
918 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
919
920 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
921
922 index_msb = get_count_order(smp_num_siblings);
923
924 core_bits = get_count_order(c->x86_max_cores);
925
926 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
927 ((1 << core_bits) - 1);
928 #endif
929 }
930
931 static void get_cpu_vendor(struct cpuinfo_x86 *c)
932 {
933 char *v = c->x86_vendor_id;
934 int i;
935
936 for (i = 0; i < X86_VENDOR_NUM; i++) {
937 if (!cpu_devs[i])
938 break;
939
940 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
941 (cpu_devs[i]->c_ident[1] &&
942 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
943
944 this_cpu = cpu_devs[i];
945 c->x86_vendor = this_cpu->c_x86_vendor;
946 return;
947 }
948 }
949
950 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
951 "CPU: Your system may be unstable.\n", v);
952
953 c->x86_vendor = X86_VENDOR_UNKNOWN;
954 this_cpu = &default_cpu;
955 }
956
957 void cpu_detect(struct cpuinfo_x86 *c)
958 {
959 /* Get vendor name */
960 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
961 (unsigned int *)&c->x86_vendor_id[0],
962 (unsigned int *)&c->x86_vendor_id[8],
963 (unsigned int *)&c->x86_vendor_id[4]);
964
965 c->x86 = 4;
966 /* Intel-defined flags: level 0x00000001 */
967 if (c->cpuid_level >= 0x00000001) {
968 u32 junk, tfms, cap0, misc;
969
970 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
971 c->x86 = x86_family(tfms);
972 c->x86_model = x86_model(tfms);
973 c->x86_stepping = x86_stepping(tfms);
974
975 if (cap0 & (1<<19)) {
976 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
977 c->x86_cache_alignment = c->x86_clflush_size;
978 }
979 }
980 }
981
982 static void apply_forced_caps(struct cpuinfo_x86 *c)
983 {
984 int i;
985
986 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
987 c->x86_capability[i] &= ~cpu_caps_cleared[i];
988 c->x86_capability[i] |= cpu_caps_set[i];
989 }
990 }
991
992 static void init_speculation_control(struct cpuinfo_x86 *c)
993 {
994 /*
995 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
996 * and they also have a different bit for STIBP support. Also,
997 * a hypervisor might have set the individual AMD bits even on
998 * Intel CPUs, for finer-grained selection of what's available.
999 */
1000 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
1001 set_cpu_cap(c, X86_FEATURE_IBRS);
1002 set_cpu_cap(c, X86_FEATURE_IBPB);
1003 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1004 }
1005
1006 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
1007 set_cpu_cap(c, X86_FEATURE_STIBP);
1008
1009 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
1010 cpu_has(c, X86_FEATURE_VIRT_SSBD))
1011 set_cpu_cap(c, X86_FEATURE_SSBD);
1012
1013 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
1014 set_cpu_cap(c, X86_FEATURE_IBRS);
1015 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1016 }
1017
1018 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
1019 set_cpu_cap(c, X86_FEATURE_IBPB);
1020
1021 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
1022 set_cpu_cap(c, X86_FEATURE_STIBP);
1023 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1024 }
1025
1026 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
1027 set_cpu_cap(c, X86_FEATURE_SSBD);
1028 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1029 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
1030 }
1031 }
1032
1033 void get_cpu_cap(struct cpuinfo_x86 *c)
1034 {
1035 u32 eax, ebx, ecx, edx;
1036
1037 /* Intel-defined flags: level 0x00000001 */
1038 if (c->cpuid_level >= 0x00000001) {
1039 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
1040
1041 c->x86_capability[CPUID_1_ECX] = ecx;
1042 c->x86_capability[CPUID_1_EDX] = edx;
1043 }
1044
1045 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
1046 if (c->cpuid_level >= 0x00000006)
1047 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
1048
1049 /* Additional Intel-defined flags: level 0x00000007 */
1050 if (c->cpuid_level >= 0x00000007) {
1051 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
1052 c->x86_capability[CPUID_7_0_EBX] = ebx;
1053 c->x86_capability[CPUID_7_ECX] = ecx;
1054 c->x86_capability[CPUID_7_EDX] = edx;
1055
1056 /* Check valid sub-leaf index before accessing it */
1057 if (eax >= 1) {
1058 cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
1059 c->x86_capability[CPUID_7_1_EAX] = eax;
1060 }
1061 }
1062
1063 /* Extended state features: level 0x0000000d */
1064 if (c->cpuid_level >= 0x0000000d) {
1065 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1066
1067 c->x86_capability[CPUID_D_1_EAX] = eax;
1068 }
1069
1070 /* AMD-defined flags: level 0x80000001 */
1071 eax = cpuid_eax(0x80000000);
1072 c->extended_cpuid_level = eax;
1073
1074 if ((eax & 0xffff0000) == 0x80000000) {
1075 if (eax >= 0x80000001) {
1076 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1077
1078 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1079 c->x86_capability[CPUID_8000_0001_EDX] = edx;
1080 }
1081 }
1082
1083 if (c->extended_cpuid_level >= 0x80000007) {
1084 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1085
1086 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1087 c->x86_power = edx;
1088 }
1089
1090 if (c->extended_cpuid_level >= 0x80000008) {
1091 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1092 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1093 }
1094
1095 if (c->extended_cpuid_level >= 0x8000000a)
1096 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1097
1098 if (c->extended_cpuid_level >= 0x8000001f)
1099 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1100
1101 if (c->extended_cpuid_level >= 0x80000021)
1102 c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
1103
1104 init_scattered_cpuid_features(c);
1105 init_speculation_control(c);
1106
1107 /*
1108 * Clear/Set all flags overridden by options, after probe.
1109 * This needs to happen each time we re-probe, which may happen
1110 * several times during CPU initialization.
1111 */
1112 apply_forced_caps(c);
1113 }
1114
1115 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1116 {
1117 u32 eax, ebx, ecx, edx;
1118
1119 if (c->extended_cpuid_level >= 0x80000008) {
1120 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1121
1122 c->x86_virt_bits = (eax >> 8) & 0xff;
1123 c->x86_phys_bits = eax & 0xff;
1124 }
1125 #ifdef CONFIG_X86_32
1126 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
1127 c->x86_phys_bits = 36;
1128 #endif
1129 c->x86_cache_bits = c->x86_phys_bits;
1130 }
1131
1132 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1133 {
1134 #ifdef CONFIG_X86_32
1135 int i;
1136
1137 /*
1138 * First of all, decide if this is a 486 or higher
1139 * It's a 486 if we can modify the AC flag
1140 */
1141 if (flag_is_changeable_p(X86_EFLAGS_AC))
1142 c->x86 = 4;
1143 else
1144 c->x86 = 3;
1145
1146 for (i = 0; i < X86_VENDOR_NUM; i++)
1147 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1148 c->x86_vendor_id[0] = 0;
1149 cpu_devs[i]->c_identify(c);
1150 if (c->x86_vendor_id[0]) {
1151 get_cpu_vendor(c);
1152 break;
1153 }
1154 }
1155 #endif
1156 }
1157
1158 #define NO_SPECULATION BIT(0)
1159 #define NO_MELTDOWN BIT(1)
1160 #define NO_SSB BIT(2)
1161 #define NO_L1TF BIT(3)
1162 #define NO_MDS BIT(4)
1163 #define MSBDS_ONLY BIT(5)
1164 #define NO_SWAPGS BIT(6)
1165 #define NO_ITLB_MULTIHIT BIT(7)
1166 #define NO_SPECTRE_V2 BIT(8)
1167 #define NO_MMIO BIT(9)
1168 #define NO_EIBRS_PBRSB BIT(10)
1169
1170 #define VULNWL(vendor, family, model, whitelist) \
1171 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1172
1173 #define VULNWL_INTEL(model, whitelist) \
1174 VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1175
1176 #define VULNWL_AMD(family, whitelist) \
1177 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1178
1179 #define VULNWL_HYGON(family, whitelist) \
1180 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1181
1182 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1183 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
1184 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
1185 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
1186 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
1187 VULNWL(VORTEX, 5, X86_MODEL_ANY, NO_SPECULATION),
1188 VULNWL(VORTEX, 6, X86_MODEL_ANY, NO_SPECULATION),
1189
1190 /* Intel Family 6 */
1191 VULNWL_INTEL(TIGERLAKE, NO_MMIO),
1192 VULNWL_INTEL(TIGERLAKE_L, NO_MMIO),
1193 VULNWL_INTEL(ALDERLAKE, NO_MMIO),
1194 VULNWL_INTEL(ALDERLAKE_L, NO_MMIO),
1195
1196 VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1197 VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1198 VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1199 VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1200 VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1201
1202 VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1203 VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1204 VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1205 VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1206 VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1207 VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1208
1209 VULNWL_INTEL(CORE_YONAH, NO_SSB),
1210
1211 VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1212 VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1213
1214 VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1215 VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1216 VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1217
1218 /*
1219 * Technically, swapgs isn't serializing on AMD (despite it previously
1220 * being documented as such in the APM). But according to AMD, %gs is
1221 * updated non-speculatively, and the issuing of %gs-relative memory
1222 * operands will be blocked until the %gs update completes, which is
1223 * good enough for our purposes.
1224 */
1225
1226 VULNWL_INTEL(ATOM_TREMONT, NO_EIBRS_PBRSB),
1227 VULNWL_INTEL(ATOM_TREMONT_L, NO_EIBRS_PBRSB),
1228 VULNWL_INTEL(ATOM_TREMONT_D, NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1229
1230 /* AMD Family 0xf - 0x12 */
1231 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1232 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1233 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1234 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1235
1236 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1237 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1238 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1239
1240 /* Zhaoxin Family 7 */
1241 VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1242 VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1243 {}
1244 };
1245
1246 #define VULNBL(vendor, family, model, blacklist) \
1247 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1248
1249 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues) \
1250 X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6, \
1251 INTEL_FAM6_##model, steppings, \
1252 X86_FEATURE_ANY, issues)
1253
1254 #define VULNBL_AMD(family, blacklist) \
1255 VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1256
1257 #define VULNBL_HYGON(family, blacklist) \
1258 VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1259
1260 #define SRBDS BIT(0)
1261 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1262 #define MMIO BIT(1)
1263 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1264 #define MMIO_SBDS BIT(2)
1265 /* CPU is affected by RETbleed, speculating where you would not expect it */
1266 #define RETBLEED BIT(3)
1267 /* CPU is affected by SMT (cross-thread) return predictions */
1268 #define SMT_RSB BIT(4)
1269
1270 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1271 VULNBL_INTEL_STEPPINGS(IVYBRIDGE, X86_STEPPING_ANY, SRBDS),
1272 VULNBL_INTEL_STEPPINGS(HASWELL, X86_STEPPING_ANY, SRBDS),
1273 VULNBL_INTEL_STEPPINGS(HASWELL_L, X86_STEPPING_ANY, SRBDS),
1274 VULNBL_INTEL_STEPPINGS(HASWELL_G, X86_STEPPING_ANY, SRBDS),
1275 VULNBL_INTEL_STEPPINGS(HASWELL_X, X86_STEPPING_ANY, MMIO),
1276 VULNBL_INTEL_STEPPINGS(BROADWELL_D, X86_STEPPING_ANY, MMIO),
1277 VULNBL_INTEL_STEPPINGS(BROADWELL_G, X86_STEPPING_ANY, SRBDS),
1278 VULNBL_INTEL_STEPPINGS(BROADWELL_X, X86_STEPPING_ANY, MMIO),
1279 VULNBL_INTEL_STEPPINGS(BROADWELL, X86_STEPPING_ANY, SRBDS),
1280 VULNBL_INTEL_STEPPINGS(SKYLAKE_L, X86_STEPPING_ANY, SRBDS | MMIO | RETBLEED),
1281 VULNBL_INTEL_STEPPINGS(SKYLAKE_X, X86_STEPPING_ANY, MMIO | RETBLEED),
1282 VULNBL_INTEL_STEPPINGS(SKYLAKE, X86_STEPPING_ANY, SRBDS | MMIO | RETBLEED),
1283 VULNBL_INTEL_STEPPINGS(KABYLAKE_L, X86_STEPPING_ANY, SRBDS | MMIO | RETBLEED),
1284 VULNBL_INTEL_STEPPINGS(KABYLAKE, X86_STEPPING_ANY, SRBDS | MMIO | RETBLEED),
1285 VULNBL_INTEL_STEPPINGS(CANNONLAKE_L, X86_STEPPING_ANY, RETBLEED),
1286 VULNBL_INTEL_STEPPINGS(ICELAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
1287 VULNBL_INTEL_STEPPINGS(ICELAKE_D, X86_STEPPING_ANY, MMIO),
1288 VULNBL_INTEL_STEPPINGS(ICELAKE_X, X86_STEPPING_ANY, MMIO),
1289 VULNBL_INTEL_STEPPINGS(COMETLAKE, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
1290 VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPINGS(0x0, 0x0), MMIO | RETBLEED),
1291 VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
1292 VULNBL_INTEL_STEPPINGS(LAKEFIELD, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
1293 VULNBL_INTEL_STEPPINGS(ROCKETLAKE, X86_STEPPING_ANY, MMIO | RETBLEED),
1294 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT, X86_STEPPING_ANY, MMIO | MMIO_SBDS),
1295 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D, X86_STEPPING_ANY, MMIO),
1296 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS),
1297
1298 VULNBL_AMD(0x15, RETBLEED),
1299 VULNBL_AMD(0x16, RETBLEED),
1300 VULNBL_AMD(0x17, RETBLEED | SMT_RSB),
1301 VULNBL_HYGON(0x18, RETBLEED | SMT_RSB),
1302 {}
1303 };
1304
1305 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1306 {
1307 const struct x86_cpu_id *m = x86_match_cpu(table);
1308
1309 return m && !!(m->driver_data & which);
1310 }
1311
1312 u64 x86_read_arch_cap_msr(void)
1313 {
1314 u64 ia32_cap = 0;
1315
1316 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1317 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1318
1319 return ia32_cap;
1320 }
1321
1322 static bool arch_cap_mmio_immune(u64 ia32_cap)
1323 {
1324 return (ia32_cap & ARCH_CAP_FBSDP_NO &&
1325 ia32_cap & ARCH_CAP_PSDP_NO &&
1326 ia32_cap & ARCH_CAP_SBDR_SSDP_NO);
1327 }
1328
1329 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1330 {
1331 u64 ia32_cap = x86_read_arch_cap_msr();
1332
1333 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1334 if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1335 !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1336 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1337
1338 if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1339 return;
1340
1341 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1342
1343 if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1344 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1345
1346 if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1347 !(ia32_cap & ARCH_CAP_SSB_NO) &&
1348 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1349 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1350
1351 /*
1352 * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1353 * flag and protect from vendor-specific bugs via the whitelist.
1354 */
1355 if ((ia32_cap & ARCH_CAP_IBRS_ALL) || cpu_has(c, X86_FEATURE_AUTOIBRS)) {
1356 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1357 if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1358 !(ia32_cap & ARCH_CAP_PBRSB_NO))
1359 setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1360 }
1361
1362 if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1363 !(ia32_cap & ARCH_CAP_MDS_NO)) {
1364 setup_force_cpu_bug(X86_BUG_MDS);
1365 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1366 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1367 }
1368
1369 if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1370 setup_force_cpu_bug(X86_BUG_SWAPGS);
1371
1372 /*
1373 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1374 * - TSX is supported or
1375 * - TSX_CTRL is present
1376 *
1377 * TSX_CTRL check is needed for cases when TSX could be disabled before
1378 * the kernel boot e.g. kexec.
1379 * TSX_CTRL check alone is not sufficient for cases when the microcode
1380 * update is not present or running as guest that don't get TSX_CTRL.
1381 */
1382 if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1383 (cpu_has(c, X86_FEATURE_RTM) ||
1384 (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1385 setup_force_cpu_bug(X86_BUG_TAA);
1386
1387 /*
1388 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1389 * in the vulnerability blacklist.
1390 *
1391 * Some of the implications and mitigation of Shared Buffers Data
1392 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1393 * SRBDS.
1394 */
1395 if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1396 cpu_has(c, X86_FEATURE_RDSEED)) &&
1397 cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1398 setup_force_cpu_bug(X86_BUG_SRBDS);
1399
1400 /*
1401 * Processor MMIO Stale Data bug enumeration
1402 *
1403 * Affected CPU list is generally enough to enumerate the vulnerability,
1404 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1405 * not want the guest to enumerate the bug.
1406 *
1407 * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1408 * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1409 */
1410 if (!arch_cap_mmio_immune(ia32_cap)) {
1411 if (cpu_matches(cpu_vuln_blacklist, MMIO))
1412 setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1413 else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1414 setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1415 }
1416
1417 if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1418 if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (ia32_cap & ARCH_CAP_RSBA))
1419 setup_force_cpu_bug(X86_BUG_RETBLEED);
1420 }
1421
1422 if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1423 setup_force_cpu_bug(X86_BUG_SMT_RSB);
1424
1425 if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1426 return;
1427
1428 /* Rogue Data Cache Load? No! */
1429 if (ia32_cap & ARCH_CAP_RDCL_NO)
1430 return;
1431
1432 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1433
1434 if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1435 return;
1436
1437 setup_force_cpu_bug(X86_BUG_L1TF);
1438 }
1439
1440 /*
1441 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1442 * unfortunately, that's not true in practice because of early VIA
1443 * chips and (more importantly) broken virtualizers that are not easy
1444 * to detect. In the latter case it doesn't even *fail* reliably, so
1445 * probing for it doesn't even work. Disable it completely on 32-bit
1446 * unless we can find a reliable way to detect all the broken cases.
1447 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1448 */
1449 static void detect_nopl(void)
1450 {
1451 #ifdef CONFIG_X86_32
1452 setup_clear_cpu_cap(X86_FEATURE_NOPL);
1453 #else
1454 setup_force_cpu_cap(X86_FEATURE_NOPL);
1455 #endif
1456 }
1457
1458 /*
1459 * We parse cpu parameters early because fpu__init_system() is executed
1460 * before parse_early_param().
1461 */
1462 static void __init cpu_parse_early_param(void)
1463 {
1464 char arg[128];
1465 char *argptr = arg, *opt;
1466 int arglen, taint = 0;
1467
1468 #ifdef CONFIG_X86_32
1469 if (cmdline_find_option_bool(boot_command_line, "no387"))
1470 #ifdef CONFIG_MATH_EMULATION
1471 setup_clear_cpu_cap(X86_FEATURE_FPU);
1472 #else
1473 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1474 #endif
1475
1476 if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1477 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1478 #endif
1479
1480 if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1481 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1482
1483 if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1484 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1485
1486 if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1487 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1488
1489 if (cmdline_find_option_bool(boot_command_line, "nousershstk"))
1490 setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK);
1491
1492 arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1493 if (arglen <= 0)
1494 return;
1495
1496 pr_info("Clearing CPUID bits:");
1497
1498 while (argptr) {
1499 bool found __maybe_unused = false;
1500 unsigned int bit;
1501
1502 opt = strsep(&argptr, ",");
1503
1504 /*
1505 * Handle naked numbers first for feature flags which don't
1506 * have names.
1507 */
1508 if (!kstrtouint(opt, 10, &bit)) {
1509 if (bit < NCAPINTS * 32) {
1510
1511 /* empty-string, i.e., ""-defined feature flags */
1512 if (!x86_cap_flags[bit])
1513 pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
1514 else
1515 pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1516
1517 setup_clear_cpu_cap(bit);
1518 taint++;
1519 }
1520 /*
1521 * The assumption is that there are no feature names with only
1522 * numbers in the name thus go to the next argument.
1523 */
1524 continue;
1525 }
1526
1527 for (bit = 0; bit < 32 * NCAPINTS; bit++) {
1528 if (!x86_cap_flag(bit))
1529 continue;
1530
1531 if (strcmp(x86_cap_flag(bit), opt))
1532 continue;
1533
1534 pr_cont(" %s", opt);
1535 setup_clear_cpu_cap(bit);
1536 taint++;
1537 found = true;
1538 break;
1539 }
1540
1541 if (!found)
1542 pr_cont(" (unknown: %s)", opt);
1543 }
1544 pr_cont("\n");
1545
1546 if (taint)
1547 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1548 }
1549
1550 /*
1551 * Do minimum CPU detection early.
1552 * Fields really needed: vendor, cpuid_level, family, model, mask,
1553 * cache alignment.
1554 * The others are not touched to avoid unwanted side effects.
1555 *
1556 * WARNING: this function is only called on the boot CPU. Don't add code
1557 * here that is supposed to run on all CPUs.
1558 */
1559 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1560 {
1561 #ifdef CONFIG_X86_64
1562 c->x86_clflush_size = 64;
1563 c->x86_phys_bits = 36;
1564 c->x86_virt_bits = 48;
1565 #else
1566 c->x86_clflush_size = 32;
1567 c->x86_phys_bits = 32;
1568 c->x86_virt_bits = 32;
1569 #endif
1570 c->x86_cache_alignment = c->x86_clflush_size;
1571
1572 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1573 c->extended_cpuid_level = 0;
1574
1575 if (!have_cpuid_p())
1576 identify_cpu_without_cpuid(c);
1577
1578 /* cyrix could have cpuid enabled via c_identify()*/
1579 if (have_cpuid_p()) {
1580 cpu_detect(c);
1581 get_cpu_vendor(c);
1582 get_cpu_cap(c);
1583 get_cpu_address_sizes(c);
1584 setup_force_cpu_cap(X86_FEATURE_CPUID);
1585 cpu_parse_early_param();
1586
1587 if (this_cpu->c_early_init)
1588 this_cpu->c_early_init(c);
1589
1590 c->cpu_index = 0;
1591 filter_cpuid_features(c, false);
1592
1593 if (this_cpu->c_bsp_init)
1594 this_cpu->c_bsp_init(c);
1595 } else {
1596 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1597 }
1598
1599 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1600
1601 cpu_set_bug_bits(c);
1602
1603 sld_setup(c);
1604
1605 #ifdef CONFIG_X86_32
1606 /*
1607 * Regardless of whether PCID is enumerated, the SDM says
1608 * that it can't be enabled in 32-bit mode.
1609 */
1610 setup_clear_cpu_cap(X86_FEATURE_PCID);
1611 #endif
1612
1613 /*
1614 * Later in the boot process pgtable_l5_enabled() relies on
1615 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1616 * enabled by this point we need to clear the feature bit to avoid
1617 * false-positives at the later stage.
1618 *
1619 * pgtable_l5_enabled() can be false here for several reasons:
1620 * - 5-level paging is disabled compile-time;
1621 * - it's 32-bit kernel;
1622 * - machine doesn't support 5-level paging;
1623 * - user specified 'no5lvl' in kernel command line.
1624 */
1625 if (!pgtable_l5_enabled())
1626 setup_clear_cpu_cap(X86_FEATURE_LA57);
1627
1628 detect_nopl();
1629 }
1630
1631 void __init early_cpu_init(void)
1632 {
1633 const struct cpu_dev *const *cdev;
1634 int count = 0;
1635
1636 #ifdef CONFIG_PROCESSOR_SELECT
1637 pr_info("KERNEL supported cpus:\n");
1638 #endif
1639
1640 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1641 const struct cpu_dev *cpudev = *cdev;
1642
1643 if (count >= X86_VENDOR_NUM)
1644 break;
1645 cpu_devs[count] = cpudev;
1646 count++;
1647
1648 #ifdef CONFIG_PROCESSOR_SELECT
1649 {
1650 unsigned int j;
1651
1652 for (j = 0; j < 2; j++) {
1653 if (!cpudev->c_ident[j])
1654 continue;
1655 pr_info(" %s %s\n", cpudev->c_vendor,
1656 cpudev->c_ident[j]);
1657 }
1658 }
1659 #endif
1660 }
1661 early_identify_cpu(&boot_cpu_data);
1662 }
1663
1664 static bool detect_null_seg_behavior(void)
1665 {
1666 /*
1667 * Empirically, writing zero to a segment selector on AMD does
1668 * not clear the base, whereas writing zero to a segment
1669 * selector on Intel does clear the base. Intel's behavior
1670 * allows slightly faster context switches in the common case
1671 * where GS is unused by the prev and next threads.
1672 *
1673 * Since neither vendor documents this anywhere that I can see,
1674 * detect it directly instead of hard-coding the choice by
1675 * vendor.
1676 *
1677 * I've designated AMD's behavior as the "bug" because it's
1678 * counterintuitive and less friendly.
1679 */
1680
1681 unsigned long old_base, tmp;
1682 rdmsrl(MSR_FS_BASE, old_base);
1683 wrmsrl(MSR_FS_BASE, 1);
1684 loadsegment(fs, 0);
1685 rdmsrl(MSR_FS_BASE, tmp);
1686 wrmsrl(MSR_FS_BASE, old_base);
1687 return tmp == 0;
1688 }
1689
1690 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1691 {
1692 /* BUG_NULL_SEG is only relevant with 64bit userspace */
1693 if (!IS_ENABLED(CONFIG_X86_64))
1694 return;
1695
1696 if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
1697 return;
1698
1699 /*
1700 * CPUID bit above wasn't set. If this kernel is still running
1701 * as a HV guest, then the HV has decided not to advertize
1702 * that CPUID bit for whatever reason. For example, one
1703 * member of the migration pool might be vulnerable. Which
1704 * means, the bug is present: set the BUG flag and return.
1705 */
1706 if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1707 set_cpu_bug(c, X86_BUG_NULL_SEG);
1708 return;
1709 }
1710
1711 /*
1712 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1713 * 0x18 is the respective family for Hygon.
1714 */
1715 if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1716 detect_null_seg_behavior())
1717 return;
1718
1719 /* All the remaining ones are affected */
1720 set_cpu_bug(c, X86_BUG_NULL_SEG);
1721 }
1722
1723 static void generic_identify(struct cpuinfo_x86 *c)
1724 {
1725 c->extended_cpuid_level = 0;
1726
1727 if (!have_cpuid_p())
1728 identify_cpu_without_cpuid(c);
1729
1730 /* cyrix could have cpuid enabled via c_identify()*/
1731 if (!have_cpuid_p())
1732 return;
1733
1734 cpu_detect(c);
1735
1736 get_cpu_vendor(c);
1737
1738 get_cpu_cap(c);
1739
1740 get_cpu_address_sizes(c);
1741
1742 if (c->cpuid_level >= 0x00000001) {
1743 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1744 #ifdef CONFIG_X86_32
1745 # ifdef CONFIG_SMP
1746 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1747 # else
1748 c->apicid = c->initial_apicid;
1749 # endif
1750 #endif
1751 c->phys_proc_id = c->initial_apicid;
1752 }
1753
1754 get_model_name(c); /* Default name */
1755
1756 /*
1757 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1758 * systems that run Linux at CPL > 0 may or may not have the
1759 * issue, but, even if they have the issue, there's absolutely
1760 * nothing we can do about it because we can't use the real IRET
1761 * instruction.
1762 *
1763 * NB: For the time being, only 32-bit kernels support
1764 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1765 * whether to apply espfix using paravirt hooks. If any
1766 * non-paravirt system ever shows up that does *not* have the
1767 * ESPFIX issue, we can change this.
1768 */
1769 #ifdef CONFIG_X86_32
1770 set_cpu_bug(c, X86_BUG_ESPFIX);
1771 #endif
1772 }
1773
1774 /*
1775 * Validate that ACPI/mptables have the same information about the
1776 * effective APIC id and update the package map.
1777 */
1778 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1779 {
1780 #ifdef CONFIG_SMP
1781 unsigned int apicid, cpu = smp_processor_id();
1782
1783 apicid = apic->cpu_present_to_apicid(cpu);
1784
1785 if (apicid != c->apicid) {
1786 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1787 cpu, apicid, c->initial_apicid);
1788 }
1789 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1790 BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1791 #else
1792 c->logical_proc_id = 0;
1793 #endif
1794 }
1795
1796 /*
1797 * This does the hard work of actually picking apart the CPU stuff...
1798 */
1799 static void identify_cpu(struct cpuinfo_x86 *c)
1800 {
1801 int i;
1802
1803 c->loops_per_jiffy = loops_per_jiffy;
1804 c->x86_cache_size = 0;
1805 c->x86_vendor = X86_VENDOR_UNKNOWN;
1806 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1807 c->x86_vendor_id[0] = '\0'; /* Unset */
1808 c->x86_model_id[0] = '\0'; /* Unset */
1809 c->x86_max_cores = 1;
1810 c->x86_coreid_bits = 0;
1811 c->cu_id = 0xff;
1812 #ifdef CONFIG_X86_64
1813 c->x86_clflush_size = 64;
1814 c->x86_phys_bits = 36;
1815 c->x86_virt_bits = 48;
1816 #else
1817 c->cpuid_level = -1; /* CPUID not detected */
1818 c->x86_clflush_size = 32;
1819 c->x86_phys_bits = 32;
1820 c->x86_virt_bits = 32;
1821 #endif
1822 c->x86_cache_alignment = c->x86_clflush_size;
1823 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1824 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1825 memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1826 #endif
1827
1828 generic_identify(c);
1829
1830 if (this_cpu->c_identify)
1831 this_cpu->c_identify(c);
1832
1833 /* Clear/Set all flags overridden by options, after probe */
1834 apply_forced_caps(c);
1835
1836 #ifdef CONFIG_X86_64
1837 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1838 #endif
1839
1840 /*
1841 * Vendor-specific initialization. In this section we
1842 * canonicalize the feature flags, meaning if there are
1843 * features a certain CPU supports which CPUID doesn't
1844 * tell us, CPUID claiming incorrect flags, or other bugs,
1845 * we handle them here.
1846 *
1847 * At the end of this section, c->x86_capability better
1848 * indicate the features this CPU genuinely supports!
1849 */
1850 if (this_cpu->c_init)
1851 this_cpu->c_init(c);
1852
1853 /* Disable the PN if appropriate */
1854 squash_the_stupid_serial_number(c);
1855
1856 /* Set up SMEP/SMAP/UMIP */
1857 setup_smep(c);
1858 setup_smap(c);
1859 setup_umip(c);
1860
1861 /* Enable FSGSBASE instructions if available. */
1862 if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1863 cr4_set_bits(X86_CR4_FSGSBASE);
1864 elf_hwcap2 |= HWCAP2_FSGSBASE;
1865 }
1866
1867 /*
1868 * The vendor-specific functions might have changed features.
1869 * Now we do "generic changes."
1870 */
1871
1872 /* Filter out anything that depends on CPUID levels we don't have */
1873 filter_cpuid_features(c, true);
1874
1875 /* If the model name is still unset, do table lookup. */
1876 if (!c->x86_model_id[0]) {
1877 const char *p;
1878 p = table_lookup_model(c);
1879 if (p)
1880 strcpy(c->x86_model_id, p);
1881 else
1882 /* Last resort... */
1883 sprintf(c->x86_model_id, "%02x/%02x",
1884 c->x86, c->x86_model);
1885 }
1886
1887 #ifdef CONFIG_X86_64
1888 detect_ht(c);
1889 #endif
1890
1891 x86_init_rdrand(c);
1892 setup_pku(c);
1893 setup_cet(c);
1894
1895 /*
1896 * Clear/Set all flags overridden by options, need do it
1897 * before following smp all cpus cap AND.
1898 */
1899 apply_forced_caps(c);
1900
1901 /*
1902 * On SMP, boot_cpu_data holds the common feature set between
1903 * all CPUs; so make sure that we indicate which features are
1904 * common between the CPUs. The first time this routine gets
1905 * executed, c == &boot_cpu_data.
1906 */
1907 if (c != &boot_cpu_data) {
1908 /* AND the already accumulated flags with these */
1909 for (i = 0; i < NCAPINTS; i++)
1910 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1911
1912 /* OR, i.e. replicate the bug flags */
1913 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1914 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1915 }
1916
1917 ppin_init(c);
1918
1919 /* Init Machine Check Exception if available. */
1920 mcheck_cpu_init(c);
1921
1922 select_idle_routine(c);
1923
1924 #ifdef CONFIG_NUMA
1925 numa_add_cpu(smp_processor_id());
1926 #endif
1927 }
1928
1929 /*
1930 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1931 * on 32-bit kernels:
1932 */
1933 #ifdef CONFIG_X86_32
1934 void enable_sep_cpu(void)
1935 {
1936 struct tss_struct *tss;
1937 int cpu;
1938
1939 if (!boot_cpu_has(X86_FEATURE_SEP))
1940 return;
1941
1942 cpu = get_cpu();
1943 tss = &per_cpu(cpu_tss_rw, cpu);
1944
1945 /*
1946 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1947 * see the big comment in struct x86_hw_tss's definition.
1948 */
1949
1950 tss->x86_tss.ss1 = __KERNEL_CS;
1951 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1952 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1953 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1954
1955 put_cpu();
1956 }
1957 #endif
1958
1959 void __init identify_boot_cpu(void)
1960 {
1961 identify_cpu(&boot_cpu_data);
1962 if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1963 pr_info("CET detected: Indirect Branch Tracking enabled\n");
1964 #ifdef CONFIG_X86_32
1965 enable_sep_cpu();
1966 #endif
1967 cpu_detect_tlb(&boot_cpu_data);
1968 setup_cr_pinning();
1969
1970 tsx_init();
1971 lkgs_init();
1972 }
1973
1974 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1975 {
1976 BUG_ON(c == &boot_cpu_data);
1977 identify_cpu(c);
1978 #ifdef CONFIG_X86_32
1979 enable_sep_cpu();
1980 #endif
1981 validate_apic_and_package_id(c);
1982 x86_spec_ctrl_setup_ap();
1983 update_srbds_msr();
1984
1985 tsx_ap_init();
1986 }
1987
1988 void print_cpu_info(struct cpuinfo_x86 *c)
1989 {
1990 const char *vendor = NULL;
1991
1992 if (c->x86_vendor < X86_VENDOR_NUM) {
1993 vendor = this_cpu->c_vendor;
1994 } else {
1995 if (c->cpuid_level >= 0)
1996 vendor = c->x86_vendor_id;
1997 }
1998
1999 if (vendor && !strstr(c->x86_model_id, vendor))
2000 pr_cont("%s ", vendor);
2001
2002 if (c->x86_model_id[0])
2003 pr_cont("%s", c->x86_model_id);
2004 else
2005 pr_cont("%d86", c->x86);
2006
2007 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
2008
2009 if (c->x86_stepping || c->cpuid_level >= 0)
2010 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
2011 else
2012 pr_cont(")\n");
2013 }
2014
2015 /*
2016 * clearcpuid= was already parsed in cpu_parse_early_param(). This dummy
2017 * function prevents it from becoming an environment variable for init.
2018 */
2019 static __init int setup_clearcpuid(char *arg)
2020 {
2021 return 1;
2022 }
2023 __setup("clearcpuid=", setup_clearcpuid);
2024
2025 DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = {
2026 .current_task = &init_task,
2027 .preempt_count = INIT_PREEMPT_COUNT,
2028 .top_of_stack = TOP_OF_INIT_STACK,
2029 };
2030 EXPORT_PER_CPU_SYMBOL(pcpu_hot);
2031
2032 #ifdef CONFIG_X86_64
2033 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
2034 fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
2035 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
2036
2037 static void wrmsrl_cstar(unsigned long val)
2038 {
2039 /*
2040 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2041 * is so far ignored by the CPU, but raises a #VE trap in a TDX
2042 * guest. Avoid the pointless write on all Intel CPUs.
2043 */
2044 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2045 wrmsrl(MSR_CSTAR, val);
2046 }
2047
2048 /* May not be marked __init: used by software suspend */
2049 void syscall_init(void)
2050 {
2051 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2052 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2053
2054 #ifdef CONFIG_IA32_EMULATION
2055 wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
2056 /*
2057 * This only works on Intel CPUs.
2058 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2059 * This does not cause SYSENTER to jump to the wrong location, because
2060 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2061 */
2062 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2063 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
2064 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2065 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2066 #else
2067 wrmsrl_cstar((unsigned long)ignore_sysret);
2068 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2069 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2070 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2071 #endif
2072
2073 /*
2074 * Flags to clear on syscall; clear as much as possible
2075 * to minimize user space-kernel interference.
2076 */
2077 wrmsrl(MSR_SYSCALL_MASK,
2078 X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2079 X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2080 X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2081 X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2082 X86_EFLAGS_AC|X86_EFLAGS_ID);
2083 }
2084
2085 #else /* CONFIG_X86_64 */
2086
2087 #ifdef CONFIG_STACKPROTECTOR
2088 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
2089 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2090 #endif
2091
2092 #endif /* CONFIG_X86_64 */
2093
2094 /*
2095 * Clear all 6 debug registers:
2096 */
2097 static void clear_all_debug_regs(void)
2098 {
2099 int i;
2100
2101 for (i = 0; i < 8; i++) {
2102 /* Ignore db4, db5 */
2103 if ((i == 4) || (i == 5))
2104 continue;
2105
2106 set_debugreg(0, i);
2107 }
2108 }
2109
2110 #ifdef CONFIG_KGDB
2111 /*
2112 * Restore debug regs if using kgdbwait and you have a kernel debugger
2113 * connection established.
2114 */
2115 static void dbg_restore_debug_regs(void)
2116 {
2117 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2118 arch_kgdb_ops.correct_hw_break();
2119 }
2120 #else /* ! CONFIG_KGDB */
2121 #define dbg_restore_debug_regs()
2122 #endif /* ! CONFIG_KGDB */
2123
2124 static inline void setup_getcpu(int cpu)
2125 {
2126 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2127 struct desc_struct d = { };
2128
2129 if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2130 wrmsr(MSR_TSC_AUX, cpudata, 0);
2131
2132 /* Store CPU and node number in limit. */
2133 d.limit0 = cpudata;
2134 d.limit1 = cpudata >> 16;
2135
2136 d.type = 5; /* RO data, expand down, accessed */
2137 d.dpl = 3; /* Visible to user code */
2138 d.s = 1; /* Not a system segment */
2139 d.p = 1; /* Present */
2140 d.d = 1; /* 32-bit */
2141
2142 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2143 }
2144
2145 #ifdef CONFIG_X86_64
2146 static inline void ucode_cpu_init(int cpu) { }
2147
2148 static inline void tss_setup_ist(struct tss_struct *tss)
2149 {
2150 /* Set up the per-CPU TSS IST stacks */
2151 tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2152 tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2153 tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2154 tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2155 /* Only mapped when SEV-ES is active */
2156 tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2157 }
2158
2159 #else /* CONFIG_X86_64 */
2160
2161 static inline void ucode_cpu_init(int cpu)
2162 {
2163 show_ucode_info_early();
2164 }
2165
2166 static inline void tss_setup_ist(struct tss_struct *tss) { }
2167
2168 #endif /* !CONFIG_X86_64 */
2169
2170 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2171 {
2172 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2173
2174 #ifdef CONFIG_X86_IOPL_IOPERM
2175 tss->io_bitmap.prev_max = 0;
2176 tss->io_bitmap.prev_sequence = 0;
2177 memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2178 /*
2179 * Invalidate the extra array entry past the end of the all
2180 * permission bitmap as required by the hardware.
2181 */
2182 tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2183 #endif
2184 }
2185
2186 /*
2187 * Setup everything needed to handle exceptions from the IDT, including the IST
2188 * exceptions which use paranoid_entry().
2189 */
2190 void cpu_init_exception_handling(void)
2191 {
2192 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2193 int cpu = raw_smp_processor_id();
2194
2195 /* paranoid_entry() gets the CPU number from the GDT */
2196 setup_getcpu(cpu);
2197
2198 /* IST vectors need TSS to be set up. */
2199 tss_setup_ist(tss);
2200 tss_setup_io_bitmap(tss);
2201 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2202
2203 load_TR_desc();
2204
2205 /* GHCB needs to be setup to handle #VC. */
2206 setup_ghcb();
2207
2208 /* Finally load the IDT */
2209 load_current_idt();
2210 }
2211
2212 /*
2213 * cpu_init() initializes state that is per-CPU. Some data is already
2214 * initialized (naturally) in the bootstrap process, such as the GDT. We
2215 * reload it nevertheless, this function acts as a 'CPU state barrier',
2216 * nothing should get across.
2217 */
2218 void cpu_init(void)
2219 {
2220 struct task_struct *cur = current;
2221 int cpu = raw_smp_processor_id();
2222
2223 ucode_cpu_init(cpu);
2224
2225 #ifdef CONFIG_NUMA
2226 if (this_cpu_read(numa_node) == 0 &&
2227 early_cpu_to_node(cpu) != NUMA_NO_NODE)
2228 set_numa_node(early_cpu_to_node(cpu));
2229 #endif
2230 pr_debug("Initializing CPU#%d\n", cpu);
2231
2232 if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2233 boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2234 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2235
2236 if (IS_ENABLED(CONFIG_X86_64)) {
2237 loadsegment(fs, 0);
2238 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2239 syscall_init();
2240
2241 wrmsrl(MSR_FS_BASE, 0);
2242 wrmsrl(MSR_KERNEL_GS_BASE, 0);
2243 barrier();
2244
2245 x2apic_setup();
2246 }
2247
2248 mmgrab(&init_mm);
2249 cur->active_mm = &init_mm;
2250 BUG_ON(cur->mm);
2251 initialize_tlbstate_and_flush();
2252 enter_lazy_tlb(&init_mm, cur);
2253
2254 /*
2255 * sp0 points to the entry trampoline stack regardless of what task
2256 * is running.
2257 */
2258 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2259
2260 load_mm_ldt(&init_mm);
2261
2262 clear_all_debug_regs();
2263 dbg_restore_debug_regs();
2264
2265 doublefault_init_cpu_tss();
2266
2267 if (is_uv_system())
2268 uv_cpu_init();
2269
2270 load_fixmap_gdt(cpu);
2271 }
2272
2273 #ifdef CONFIG_MICROCODE_LATE_LOADING
2274 /**
2275 * store_cpu_caps() - Store a snapshot of CPU capabilities
2276 * @curr_info: Pointer where to store it
2277 *
2278 * Returns: None
2279 */
2280 void store_cpu_caps(struct cpuinfo_x86 *curr_info)
2281 {
2282 /* Reload CPUID max function as it might've changed. */
2283 curr_info->cpuid_level = cpuid_eax(0);
2284
2285 /* Copy all capability leafs and pick up the synthetic ones. */
2286 memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
2287 sizeof(curr_info->x86_capability));
2288
2289 /* Get the hardware CPUID leafs */
2290 get_cpu_cap(curr_info);
2291 }
2292
2293 /**
2294 * microcode_check() - Check if any CPU capabilities changed after an update.
2295 * @prev_info: CPU capabilities stored before an update.
2296 *
2297 * The microcode loader calls this upon late microcode load to recheck features,
2298 * only when microcode has been updated. Caller holds microcode_mutex and CPU
2299 * hotplug lock.
2300 *
2301 * Return: None
2302 */
2303 void microcode_check(struct cpuinfo_x86 *prev_info)
2304 {
2305 struct cpuinfo_x86 curr_info;
2306
2307 perf_check_microcode();
2308
2309 store_cpu_caps(&curr_info);
2310
2311 if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
2312 sizeof(prev_info->x86_capability)))
2313 return;
2314
2315 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2316 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2317 }
2318 #endif
2319
2320 /*
2321 * Invoked from core CPU hotplug code after hotplug operations
2322 */
2323 void arch_smt_update(void)
2324 {
2325 /* Handle the speculative execution misfeatures */
2326 cpu_bugs_smt_update();
2327 /* Check whether IPI broadcasting can be enabled */
2328 apic_smt_update();
2329 }
2330
2331 void __init arch_cpu_finalize_init(void)
2332 {
2333 identify_boot_cpu();
2334
2335 /*
2336 * identify_boot_cpu() initialized SMT support information, let the
2337 * core code know.
2338 */
2339 cpu_smt_check_topology();
2340
2341 if (!IS_ENABLED(CONFIG_SMP)) {
2342 pr_info("CPU: ");
2343 print_cpu_info(&boot_cpu_data);
2344 }
2345
2346 cpu_select_mitigations();
2347
2348 arch_smt_update();
2349
2350 if (IS_ENABLED(CONFIG_X86_32)) {
2351 /*
2352 * Check whether this is a real i386 which is not longer
2353 * supported and fixup the utsname.
2354 */
2355 if (boot_cpu_data.x86 < 4)
2356 panic("Kernel requires i486+ for 'invlpg' and other features");
2357
2358 init_utsname()->machine[1] =
2359 '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
2360 }
2361
2362 /*
2363 * Must be before alternatives because it might set or clear
2364 * feature bits.
2365 */
2366 fpu__init_system();
2367 fpu__init_cpu();
2368
2369 alternative_instructions();
2370
2371 if (IS_ENABLED(CONFIG_X86_64)) {
2372 /*
2373 * Make sure the first 2MB area is not mapped by huge pages
2374 * There are typically fixed size MTRRs in there and overlapping
2375 * MTRRs into large pages causes slow downs.
2376 *
2377 * Right now we don't do that with gbpages because there seems
2378 * very little benefit for that case.
2379 */
2380 if (!direct_gbpages)
2381 set_memory_4k((unsigned long)__va(0), 1);
2382 } else {
2383 fpu__init_check_bugs();
2384 }
2385
2386 /*
2387 * This needs to be called before any devices perform DMA
2388 * operations that might use the SWIOTLB bounce buffers. It will
2389 * mark the bounce buffers as decrypted so that their usage will
2390 * not cause "plain-text" data to be decrypted when accessed. It
2391 * must be called after late_time_init() so that Hyper-V x86/x64
2392 * hypercalls work when the SWIOTLB bounce buffers are decrypted.
2393 */
2394 mem_encrypt_init();
2395 }